(19) United States
12y Reissued Patent

Kanno

(10) Patent Number:
45) Date of Reissued Patent:

USOORE49508E

US RE49.508 E
Apr. 25,2023

(54) MEMORY SYSTEM AND METHOD FOR

(71)
(72)
(73)
(21)
(22)

Inventor:

Filed:

Appl. No.: 17/087,268

Nov. 2, 2020

Related U.S. Patent Documents

Reissue of:
(64) Patent No.:

Issued:
Appl. No.:
Filed:

U.S. Applications:

10,418,371
Sep. 17, 2019
16/126,231
Sep. 10, 2018

CONTROLLING NONVOLATILE MEMORY
Applicant: Kioxia Corporation, Tokyo (IP)
Shinichi Kanno, Tokyo (JP)

Assignee: Kioxia Corporation, Tokyo (JP)

(63) Continuation of application No. 15/700,363, filed on

(30)

Sep. 11, 2017, now Pat. No. 10,103,158.

Foreign Application Priority Data

Feb. 28, 2017

(51) Int. CL

(52)

G11C 11/34

(JP)

G1I1C 16/04

GO6F 3/06

HOIL 27/11524
HOIL 27/105

GO6F 12/02

U.S. CL
CPC

(2006.01
(2006.01
(2017.01
(2023.01
(2006.01
(2006.01

O N T S

(Continued)

2017-036930

HOIL 27711524 (2013.01); GO6I’ 3/0604

(2013.01); GO6F 3/0608 (2013.01); GO6F
3/0631 (2013.01); GO6F 3/0644 (2013.01);
GO6F 3/0652 (2013.01); GO6Ll’ 3/0659
(2013.01); GO6F 3/0679 (2013.01); GO6F

12/0246 (2013.01); GO6F 12/06 (2013.01);
HOIL 27/1052 (2013.01); GO6F 2212/1016
(2013.01); GO6F 2212/214 (2013.01); GO6F
2212/7202 (2013.01); G1IC 16/16 (2013.01)

(58) Field of Classification Search
CPC G11C 88/12; G11C 29/76; GO6F 12/0246

USPC 365/63; 711/1.3, E12.001
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,229,854 Bl 1/2016 Kuzmin
10,103,158 B2* 10/2018 Kanno

(Continued)

GO6F 3/0608

iiiiiiiiiiiiiiiiii

FOREIGN PATENT DOCUMENTS

JP 2013-513881 A 4/2013
JP 2017-27388 A 2/2017
WO WO 2016/013076 Al 1/2016

Primary Examiner — My lrang lon

(74) Attorney, Agent, or Firm — Oblon, McClelland,
Maier & Neustadt, L.L.P.

(57) ABSTRACT

According to one embodiment, a memory system classifies
a plurality of nonvolatile memory dies connected to a
plurality of channels, into a plurality of die groups such that
cach of the plurality of nonvolatile memory dies belongs to
only one die group. The memory system performs a data
write/read operation for one die group of the plurality of die
groups 1n accordance with an I/O command from a host
designating one of a plurality of regions including at least
one region corresponding to each die group. The memory
system manages a group of free blocks in the nonvolatile
memory for each of the plurality of die group by using a
plurality of free block pools corresponding to the plurality of
die groups.

34 Claims, 36 Drawing Sheets

NAND I/F }13
30 90 Isolaed gp 80 L —
00 -) NWMset i bl L Pt L P
Namespace [>T 7! ree ook | [NAND)- 00 | NAND]-610 VAND)-620... | NAND)-640
101 ~{ Namespace LSubsel py Lpool _Jif1 Ide die die die ;
31 91 Iggiaw ‘§ e e e i e e e i e e e o o o o . o = Y R P e aar et s i s e
) _f___g__“(EEMWMMSBLBm.r;jg?,h_- _________________________________ e LI T
102~ Namespace J<_> we I L1 | INAND}~801 _MANDr-eeﬂ NAND[-621___ | INAND{~641!
i l _____________ 1 [|die die die die ;
i 0 I N e 1
103 — | %:hwﬁmmrwaaz_r{mahmz 622 | [NAND}-642;
Cold data Lo WEB i E ; inﬁ gie die dig :
Namespace | , L\ ! | [NAND}-603 | [NAND]-613 | [NAND-623 | [NAND}-643
. 5 |4 die |die die die ;
dgta(me 2 ‘”WBIE Free block [IL.! . : i : i
b i poo! - ! ' —)
104 ~{ Namespace | 5 it %NANB 605 | [NAND}-615 [NAND}-625 | [NAND]-645
“‘{Nam&space > : ikl) | :
e B Y o1 | | |
106 ~ 34 : | 11 /NAND-606 | [NAND}-B16 | [NAND}-626 | [NAND}~-646:
Namespace <=1 WS | ‘;* i Hdie l ldie | "Idie I die :
Lw.--?--“-- B e T S SO N pT ST SR I
G Shared NVM set
» % Cho Ch1 Ch2 <= ChN

US RE49,508 E

Page 2
(51) Int. CL 2014/0195725 Al1* 7/2014 Bennett GO6F 12/0246
GO6F 12/06 (2006.01) 2014/0207997 A1 7/2014 P TS
eterson
GIIC 16/16 (2006.01) 2014/0258596 Al* 9/2014 Kojima GO6F 12/0246
. 711/103
(56) References Cited 2015/0347025 AL* 12/2015 LAW oo GOG6F 3/0611
. 711/103
U.S. PATENT DOCUMENTS 2016/0034354 A1l 2/2016 Hashimoto
2016/0062677 Al* 3/2016 Samuels ..o...ooo.... GO6F 3/0616
2010/0325343 Al* 12/2010 Takashima G11C 29/76 711/103
| | | 711/E12.001 2016/0103617 Al 4/2016 Kang
2011/0145475 Al 6/2011 Elettheriou et al. 2016/0313943 Al 10/2016 Hashimoto et al.
2011/0302361 Al 12/2011 Yamazaki et al. 2017/0024276 Al 1/2017 Kanno
2013/0019057 Al 1/2013 Stephens 7017/0168929 Al 62017 Kanno
2013/0250643 Al* 9/2013 Matsunaga G11C 8/12 2017/0262728 Al 9/2017 Kanno
365/63 2017/0262365 Al 9/2017 Kanno
2014/0003142 Al 1/2014 Lee et al. 2018/0088805 Al 3/2018 Kanno
2014/0019672 Al* 1/2014 Harasawa GO6F 12/0246

711/103

* cited by examiner

US RE49,508 E

Sheet 1 of 36

Apr. 25,2023

U.S. Patent

L-W 0|g

[Qofied]

| 390|d _
19 08 Aowsw ysey gNYN

-4
\ ===
4o| U]
01l
4/1
ONVN
Cl
_ Ndd
1/ c
ANvdd
vl Y
-% iy
W
b

M J~oe
=)
ct vid

ass

[BUILLIS)
19sh pu3

IeUILLIS)
Bsnpuy || sesnpugy |

jun Buiuiquiod

195 NAN
Jiun [03u09 aBuBYOXS 1S WAN

9¢
GC

Ve
07 Jiun j0J3u02 Ado9 Jas-NAN-I8IU]

| 11UN [04U0D UOHE3ID JaS-INAN-MEN

20~ Jun [ouod uonetado Do

X4 Jiun j0JjuU0d Jos WAN |

=TT olg

A

1

SOH

euwsel | O | 4

US RE49,508 E

Sheet 2 of 36

Apr. 25,2023

U.S. Patent

}°S NA

N
(O
)

fl-l——L_—ﬂﬂﬂﬁ““_'_l“u“*ﬁ__“ﬁﬁ*i_ﬁﬁﬂ_ﬁ“m

NUO == 2o
TSN S e e —

ol
ob9 IP ONVN

ol <] _
69 IP ANVN 679 IP ONVN 619

al
ehg P ANVN

ol
749 IP ONVN
oD ANVN

9IP ANVN

9¢9

m_

ol
019 IP ANVN

ol
€79 1 g9~ 7P ONWN
ol —
79— 7 UNVN I o

s
e - T T T T S e e e T T T T T T ||.|||H.“.H_.I4|I|||||||I..h_.h...“|||||l.||.ﬁ.

g ol 3 ol
17 IP ANWN 19 IP ANVN

Snivist duser deeer SERE cdwal Yiuhic ek e sk whhic dehish Swsiel el deiveh el e e ivduink iuhirin dege dave' el e el e e viee inieie bbb AL s it sl il iy ik ek drivetc ineivis dbebd pgee SWeRE ToWEt JURW. MW redhil Fewhll duhirl el ot ok Pt e s abil
W e AN bbbt deieblt debier jpuiph TUsaY MR Wi bl el sk daiebd Dol b e Weiel senii s debieh AN Febhkk bbbl et deieiel S M b Wieed e e b e v mew e e wwietr byt el Awwes Tewws dninke hinieie el whiiel el g dpipl Joiaies RSE BURSE et velieie

YO

oIp NVN

91D ANVN

909

509

<]
°09 IP ANVYN

04O

OIP ANVN

oIp ONVN

Wrem s e S EE—e E—— s ey EEEE WOER P A maam iy N Y IR A M mme vew e b e s e e W

ol \/
ol \/ m
ol \/ m

Rl T L R U T P TN TR A N AN R WA R R R W WO el ek R DY R R R R L R L I R R I T T T e L B I I T T S

tl

4/1

ONVN

¢ Ol

US RE49,508 E

Sheet 3 of 36

Apr. 25,2023

U.S. Patent

el

olp
CCI~{ONVN

4/1 ANVN

%o
1os WAN paseyg 99 9O

HWMWWWHﬂﬂlWWWWHW“MMmm%mmmmmmwmmmmm“mnlll""'

Josgns
AAN

29
(| 1osqns

mgg E @e
soedsaweN |
mRHELY I 101

9T - 0BdSOUeN ||

¥90|q 981 | jasqns | 1y
NAN ME (B38W) J0H

L aoedssweN |

ejep Plod
0l

E 201

Tt
B

N I S S s et e TS TS A T A N - P ey Y.

O UTPSWAN T
09 08 poeosy 06

¢ Ol

US RE49,508 E

Sheet 4 of 36

Apr. 25, 2023

U.S. Patent

el

zr__o....

cyO 14O OUD

R TEe vy wiviel ielel epiepll vk mpieide vieieie el e rerbe aninh Hpid et hohbedk bgskeh Gbily Gl jhbjegs ekl b e ekl bbb ke e

09 mz«z

S L T T T T VTR FYVTTY g TYITIR I Sy STEN Y

}9S _>_>z
PoJe|0S]

[ohpnh], Bl MR R R WRRAR ke bkl Bielk s e e e

Pale|os]

4/1 ANVN

‘—"'"‘-H'_m#

A $90|q ElEp

13019 Ejep

134NS WAN

v

)

FOld

EmE?oE HOO|] G wwnann
MO} BIE(] «gmuemmssssnsn

US RE49,508 E

Sheet 5 of 36

Apr. 25,2023

U.S. Patent

aIp aIp |
OF9~{ANVYN 929~ ANVN

aIp ! alp
G9~ ANYN GZ9~ANVYNIT S19~aNyN|1 S09

) (1)

"y

19014
Indul Jas

L
a4
w

‘4

Y i iy
el R W W W SR W RN AR PMART AN PR W TR Wik WAe m A VMTIR BB MR M oaAWAl MAAEN MARM AR npaan WP

o9Ip oIp olp .w@ ¥00|0 GOZ= = ¥0C ¥00|q (
£79~ANVYN €29~{ANVN| | €19~{aNVYN] ..N ndugo [E 2™ ndugg e
7 oAl A i)
219~{ANVN | 209 i| 564\ ¥00iq Elep Y ¥00(q ejep /-
T pr— T e T T T T T s m_ut uuuuuuuuuuuuuuu "y an

LLO~JANVYN| | 109

[RN RAMAEy AL Mielel s R AR R R e M, smmm el mames sy R B RELES DR B B WL B DA M

i SIS ———— 1 28 JUBWIBAOW YOO0|f <@ =nunnn

T - - . - - -

19S WAN Paje]

| 019

;iiiiiiiﬁiiiiii iyl iy R WA AR A e WRHY WHARE Gk AR S P i g el A VAR G W DRl s

_ w 29
18s WAN Paje(os] 09---

ol 4/1 ANVN

1S INAN S WAN |
19S INAN 21} NYO --- 40 M \h/ uy Ok /W 0u0

US RE49,508 E

Sheet 6 of 36

Apr. 25,2023

U.S. Patent

S 1.

ol
049 IP ONVN

IIIII_'!I;I‘II!I!I!;

9P ANVN

O \vj
ol \/

ol \/
ol A1/

f——uu———_——-_'—-_“_H__““_-—:—r——-——_mqm“m_h_m“““mmm#“mﬂmm

fll[lllllllllll'll!l

029

e Bl = Sy S T T bl e s e PR ST IS W TEPWN EWE AW

th

SIP ONVN

9¢9

ol
679 IP UNVN

OIP ONVN [~
OIP ONVN [~

aIp ANYN

oIP ONVYN

¢C9Y

¢CY

X4°,

oIP ONVN
oI ONVN

I ONVN |

(PIP ONVN |

oIP ONVN
91D ANVN

s weiny ey el wien R e W T

US RE49,508 E

Sheet 7 of 36

Apr. 25,2023

U.S. Patent

L)
¥
O
-
P
<

cCY

¢CY

19

T

—_—

PV T VT CRTTTTTT LR T TTTT R TV IT QY Ry Fr ¥ PR Y VY PV 7 ¥ T v v e ey

©
-
O
-
P
<C

o
-
O

O4o

N

P,
-
O

-
O

—
-
Lo

P
AL AL o MM A il i UG W el bbbl gy AL A W M R R geler depd G A

3

Trkibip iyl

9

&

asqns
ANAN

irwrirn hiWe'rh Yy L L

i A dwiy widw inlvh dwid el riie rhee wier rinly e Tedl swiw dwinl Tl e e

o_:om

195 NAN

PaJe|0S]

06 O

ejep
(e1ewi) JoH

/[9Dl

90l

GO}
POl

¢0l

¢0l

P
001

S. Patent Apr. 25,2023 Sheet 8 of 36 S RE49,508 E

3

L1 o
. L 5
: . \ 1 N . 8
. . i ' I
1 L] Y n
.l- ¥ { :"' *1 . o T'lrlrl
y . 1
) L] ¥ EE A 1 X ﬁ‘}
. . =
™
" ™
L]
»
L]
u
: LY
-
.
X L]
: L
, -
-
.\ .
L |
.) .
.]
. . . |
. :
] .
3
]
- .
L] .
[. .‘r"
n é‘
[
L
. .
Y .
L]
L]
Y
-
]
-
LY
-
LY
]
L]
LY
L1
bl .
. o
. > M [
) - Tkt t ¥ A R REREK
. . - -
- + 4 4 & . 4 4 ¥ &
N R Nkt ko *
» . " +
] . [
"
-,
.
.
-
-
L]
, -
4 4 B B 4 d ok
‘ R
r. 8
-
-
ottt Tt
. MO
£
?11‘. - .
=
Y
A R]
i- ™
™
L]
B h
] -
]
L]
»
-
L]
«7
*_-"‘l .
L]
»
.
L]
. 'li‘i‘l‘i‘-i‘
:. A T
At kN
N R
. +i+i‘iiii
L |] “
.)
.
: B e e, e T T T e T, T T T A R R N -,
‘I'"' VT N ¥
~ *' v
|
Q*:} + i
-
]
.-
L]
-
% :
n, :
- N
.::_h . .
i.‘l.ﬁ.‘ n
E:I : -
E ’ n)
LR L] i
k. % -
i g It
[w3 3 3| t
EEEEEEEELEETAE RN WY L -

x

et of

»

*u 4%y
AT DU

"
YAl

Ty

US RE49,508 E

Sheet 9 of 36

Apr. 25,2023

U.S. Patent

a
F
..n..n
-II -

- - .r'.-_ ,

+

- ' “a
. ..n..u.u ot .
Il Fl) a o
t._... r. gy e e T
. e e e G

r
+
A 4 d 4 4 dd A A dFFEFFEF

s

r -

L] L

S S "'a."‘-i"-. "r'-r"'-"'-'-

llllllll.-l.-.-....._..-.-..__._...._.-.-.

i

. i

-

)

F
N
A

Ll
.- j

r‘-"‘"'}-‘r

:
“.u

o

r . d d
=] F
]
L L + + , +]
g
*
'
Kl
=+ ’ L ’-.-”_.l.n.t L]
- oy T ¥ a
L] L £y , a

L
-‘-. 3 [3

) i - .‘1.‘..-.‘.. i
T a, L
b _“_. uuu. tf{ :.:...
- o,] L L]
K) uu uu_-. .!r-.-_-_ ll-_ il_ﬂ l._ﬂ
T . . " "

... .._..
lo - W
.-l-l.. P .h_-”..-bri. - .I. . " |] .I_[..I_.

-

US RE49,508 E

Sheet 10 of 36

Apr. 25,2023

U.S. Patent

0L 914

188 AN LCI e

o
#

4

tFE SR TER FFY FER KR FP)FF_SFF KA WA KB FI RS Ag

,
+

o YN

TR R TR LR TR R R TR IR e

1,
L3
£
L]

A e L T PR TR W L B I L e L%

S YN

Y INYH

. omar e Aaiw

|

2P (NN

e

%
%
<
{
%
¥

1
1

A W A R R ke Rk e

,..____.r ‘ .
, A.f._.. :
.t_. _ S W o i o

i
1,
. i S, i e e, e -_-.'t"h.";'t"ﬂ“.‘h'l.‘l“‘.l‘-r“

oL E B 3 T T T T e T .«.h.i.h.E

e v Wtk g, el

@i TN
’ r; -
TE gk, bl g gt e W W W TR A LA FAw e e AT

o

m w ——

BSANGEL Oy

%
e T ey e AR AR R g

mﬁ ,% R

x
Witk plen wiat e piet nt"\ti.llt""t W e T

w
-
;.L
E 5

VR byl
LT
r‘h.'hl.__'.r-.'u,\‘.- —
e -

ok ol Lk et bk %%mum.ﬁfﬁm{“\ﬂmm
*Mi .
Lu“
K]
L |
19
+

g6 83 g8 A

2

P mﬁﬁﬁ

T e oma,

N
-
;

E
¥
N ey gy

AR

£
{3

1 '
: "
L : - X b K- L S H r F “
3 F .._ N] . . ' - g d " "] : i
k ' F) A q X
A . £, B e, £ ’
- .lL..-I . - “ . . + .l -
) ; .ﬁi_.l...\..l..l-.\..u-..l...\. W o g at ol Ty
v oK S A S il gl A A ol o o oI _ .u__..l_.H__...__._._.. Wl g T gl A
A r.-_‘. .5 .-
! i

A . B
HMM&#&:‘:&*&HWWWWW% it Ugte Mgt s ey g

G (I

ol i h‘ﬂﬂiﬂqﬂi‘ﬂuﬁﬂ‘i“‘uﬁ“‘

.,,.Hmwww?mu AIOUIBL USEY

¥
F
'
__

ix;

N okt am oLk i k. ok

%
4

mﬁmﬁxﬁaﬁm‘tﬂﬂ.ﬁm‘uﬁm i T i e

.. .-m__...._..-..\.ih...-. .l . i b) h
mm W - ﬁ‘.‘\‘\“\“\“‘.&hﬁﬁlﬂﬂ T e e e S B
‘w ._.,_.r... .._.w..crut#\.m”]

AT oD QNN |

WA vk Ll miph A

-."ln.“-"li'i..-'-
Lﬁﬂ‘

S CINYN -

i
o n 5y }
m

1 aiare ™
s L W -t
e WAE T
i, S

| b
Hapdey egng g, by sl tHee wtw, atwih, MR OCEYRY R R R e TR e ot atwtn et e e s st pewee W oTwW WML KW E% LN .LE AT AL
" T e

POt

g

L T ks TR Bl R by Aok el ok bl ook sl ol b ST

US RE49,508 E

Sheet 11 of 36

Apr. 25,2023

U.S. Patent

#————-—I——-ll—-—n—-—-———_—————_-—"_—-—_———“

g EIIIL I T A S S el see——d e—)" e—e—e—p— s—— TTT T IS TS T IS DS S D S D A DI D D Py Sy Y T B S e

CC#2190|d

4/1 ANVN

/

Ll D14

eleppleaul | | Juswanow yoo|g <------
BIep PllepA MO} BlE(] -

CL#
120[g
00¢
A # Ad02 Ble(
vE_u_.m_
| ¢ # %190(]

~iood oja eiep) [ieaopy L 99

1sgns NAN

COH
390[d
14:;
0] |

|00d %20|q 9814

|
!
|
=
I
oo NN
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
-
S T
|
|
|
|
|
]
i
|
]
l
|
|
|
|
|
|
{
|
I
|
|
|
|
O
S~
|
- |
D |
A
|
= |
>:
Z,

US RE49,508 E

Sheet 12 of 36

Apr. 25,2023

U.S. Patent

f-___—__-__—.-."—___________—_—______‘

Cd %
Ld V077
L2 #00|d

B R T R B e R R R L vk A L VR R Y TR W BRI R WY R W R nhhavh e R RO DR RN DR I T W AR AR

4/1 ANVN

g==
¢l #00[d

/P74 \d

WP |d
P |€d
<Pl
P _]id
|1 #¥00/d

¢l Ol

2 # m

%00|d “

N Ad02 eleQ “
winjay 002
J O LL# !

%00|g “

LCHA0I] |

(lood ¥o0iq ejep) m

Josqns AN "
;;;;;;; (T T T S AN

US RE49,508 E

Sheet 13 of 36

Apr. 25, 2023

U.S. Patent

elep pleAul [| JusWisAow ¥o0|g <€ ------
140 0u) elep plieA 7777 MO BJE(]
m ok m
m 2 # m
" \\ ¥ooIg W _
m P |ld LA | m
m ¢l #3190/ . swmm__,, " MO 07 m
m WP |¥d — NIRAE: m
“ 30 190|d |
i 1304 FN_._ _Lv___oo_n_ “
m P]Id (lood %20|q Bjep) nad 99 m
m 1| #00(g Josans AN “
| (I % @ T IS AN
09

4/I ANVN

U.S. Patent Apr. 25,2023 Sheet 14 of 36 US RE49,508 E

Inter-NVM-set copy operation

Copy destma’uon Copy source
NVM set NVM set
Free block pml Free block pool
:‘ :' 91 E 1:,____,,
: " NVM subset o NVM subset ::
()~ i~(4) (data block pool) (data block pool)
*, | GCinputblock [er.] 0
g"’}“e N 201:.
= User input block | ,e*°
(2) > Data flow
31 211 «waxaxd Block movement

FIG. 14

LBAD
LBAT

, Hold only physical address Before inter
: of copy source NVM set -NVM-set copy

LBAN

LBAC
| BA1

Hold only physical address After inter
of copy destination NVM set -NVM-set copy

LBAN

F1G. 15

US RE49,508 E

Sheet 15 of 36

Apr. 25,2023

U.S. Patent

CC#190[d

vd
td

¢d
b

L #190[d

F—————-——_d—ﬂlﬂ_“l—'ml—r—_mmmm—_-—_—-—h

| 1d b
| ed ed
' |zd 2d |
1 ld la
| zr#wolg 2€ #0019

[d [vd
led[cd
lzd[Zd
fd[d
[0 "\ € #500]g

S B et SN bbb gk b mhll g ek b G MMM AN b’ RAMAS MRS MM MMM RARAE AR AR My e

e gy L B T T T T T T T e T T PR S ————
o

0ud 18 ©_\ mu _ n_
m B Ly #%00q |
| 2]e00|}Y nau o9y | |
i 102
W m 189S INAN
m _ Adoo ejeq . uoljeunsap a\wo
M (100d %001q E1ep) t— 16 - 1
| 10od ¥901q 88.4 1980anNsS NAN m
m 24 m
| o8 _ m
m 2L # m
m 3¥00|g m
m “ 19S NAN
m xwwm | | 80InoS \go
m (oodooiq erep) | _ ¢ B
m Jasans WAN "

08 elep pleAu] [| JuSWSAOW X00]|g ~------
. /7 A elep PlleA 777 I g P —

US RE49,508 E

Sheet 16 of 36

Apr. 25,2023

U.S. Patent

¢l

bd
vd

cd
ld

¢V #°0|g

#-ﬂh-_l-_-_-_m““m'—"“-—mmmm“mm“mmm

td
¢d
ld

CCHAO0IY

vd
td
¢d
Ld

L ¢ #90[g

r““““uuuﬂuuu“—uh—.m__—-—-_—_-"'-__._ﬁ—_.“

el mivimls Al veiely v sl gl deigle pheisl odeimiel g AL ik ikl kbl ik

vd
td |
¢d
ld

¢E #3190/

va
ed

¢d
hd |

L€ #9018

¢

VP |vd
EP{td
(P |2d
P]id

bl #901d

4/1 ONVYN

sl

AN RS RN S EEEE AN EEEE AR N G BAF el A BT T OBTE TR PTRS TUR B BB VRN SUE R RS DT - BT OFTTR PP P P P PR A TR TR el vk vk el v v vrem vey e evvm veer remr YR v

WiNJay .

100d ¥20]0 9914

Salgiinl gl G S W b bbb Wb bbbk el BARS MAAALY AAAAE BN MAALE MARAL MM WRALA MRALN BARAE AR MMAAL RARAN WRAAAI MMM RAAAN RSN ROAGN bR M SRR BRGRA RN chass BARE minlek Sl RS BLAA AR ELRAL BARE MNAE VNS REAS

(jood ¥o0|q ejep)
19sgns WAN

R iyl vkl v

N OW#
Ho0[d

(100d %001q €jep) | _ e
josans WAN

Ly #9019 |
naul 0Y |

10C

Ado9 eje(]

Aeviee v Wl v e i v et devied vl et e

.y,

195 WAN
-09

ejep pieAur [] juswaAow %00|g < ------

elep piieA 77777,

MOJ} Ble(] «

US RE49,508 E

Sheet 17 of 36

Apr. 25,2023

U.S. Patent

pemli A S AR AL R el A B B B W AL JLELE RN

bd
td

Cd
Ld

¢V #90]g

£d

Ca
hd

CC#90[

d
td

¢d
ld

L ¢ #100]d

F_-—l__—__—__-__'—h---—-——————_‘

e R R R A . R DR kel s s T BRI B Bl e

bd
£d
¢d
ld

¢C #00(d

4/1 ANVN

il

5 8l "9 | 4
Ly #300/q | !
jnaur oo |
L0C
PO m
. (jood %00|q €jep) |16 Hm% AN
}Josans WAN m
m # | m
“ 320|g) m
m CT# m
m |2 # m
M 190|9 . J8S WAN
m (1ood y00iq ejep) | _ . 09
L1 joodyoogeald | | 19sans WAN m
09 ejep plleAul [] JuawiaAow %00jg€------
BleppPlleA o MO} B1B(] ~e—

ol Ol

US RE49,508 E

abueyoxs Iaye Ajg)eipswiwl
008 S! 1#19S WAN
- 10} S8J1IMB) JO JoqUnN
ot
= abueyoxe aouis pasdeo arey pasde|e aney sAep 0ol
® shep 00| Uaym 006 S! 1#19S NAN UBYM 00} S! Z#18S INAN
= 10} S8]1IM8] JO JaquinN 10} S8)1IMBI JO JaqUINN
2 110 AN obueyox3 H”L 244195 WAN
7 g eleq d eie(]
sAep 0oL Buunp sAep 0ol Buunp
o salul 00| UsnLImal si eje(] ssli 00 us)uMmal si eleq
&
m.,. abueyoxe aouis pesdeje aey abueyoxa Jaye Ajsjelpswiwl pasdejs aAeY sAep 0|
\; sAep 00| UsuM 006 S Z# 189S IWAN 00L St Z#1eS WAN Usym (08 SI L# 19SS NAN
. 10} SOILIMBJ 10 JBqINN 10§ S8)lIMB3I JO JOqUINN 10] SB)IIMBI JO J8QWINN
] |
< 24198 WAN _H!l| 4188 WAN
Y EleQ E— Y Eled
shep oL buunp sAep 00| buunp

S} 008 USNMAI SI Bleq]

U.S. Patent

SaLu} 008 Us)LMmal S| el

US RE49,508 E

Sheet 19 of 36

Apr. 25, 2023

U.S. Patent

18

%009 Jndu} Jas am

yooigindu g9 [Pe %,

(Jood %20|q ejep)
18sqns WAN

¢# 195 NAN

/E

#C@EW&.OE V_QO_m dsmmunnm
T —

0¢ O14

08

¥00]q Jndui J8s

300jq ndul 99

(jood %00|q ejep)
Jesgns AAN

100d %00]q 9814

L# 19S ANAN

ejep SJM

abueyoxa 19s WAN 810J8g

US RE49,508 E

Sheet 20 of 36

Apr. 25, 2023

U.S. Patent

18

00| Indul Jas

%00]q nduj D9

(jood %00|q ejep)

PSS AAN

|00d %00|q 8914

¢# 195 NAN

H.C@Em\fQE V_OO_m anunnun

T

08

¥00]q Indui J18s

%00]q Indul 99

(jood ¥20|q E}Ep)

}osgns WAN

jood }00|q 98l

L# 195 AN

elep SjlM

uonesado abueyoxs 18s WAN

US RE49,508 E

T I B A el W gl b e AR S il b bt b il ABARAL BARAL BGRML BAREA BRGAL ARRARE MALRL leb Mdhmd mpsss iy RARE AR MEAE MG WM MG N B A RRARS BARE RRAVE

'

iiiii;;;;ii vl el et vivhiel eiavie Yeiesl mipiet it el it Beile A el e e irivirirle e TRER ekt WA VR Rkt ARl bk el Wb bl kb

swwi mwdn dwwk vwbn s seley prem EEE YR W e wedr dmh dwivir e A it I Wl i winel et el el e svieid Wit eiwink wieide ey veinel pimiy welsle Y RS el e e

ETS_ oipl |
- _2.@ ANVN 079
=
~
@ Cl
e
9
NYo =--
[
X m
& “
% m
5 _
= “
“ w
i ap| | .
091--10v9~{ANVN| 029
&l

U.S. Patent

n_z,qz

AN

T I - Y S e Y e e e . N Rl) b s ey e BT ST EPEET W PEEPE T WY T WA b ew e e pEy W PUE PPSW TEEY el el

4/1 ANVN

m_
b9 oz< 109

gt Wb e el PR ek gt igih b bk el Ty

ikl BhA Gkl ke s Mgy BT Bk BT LA RS AN EREEE bl b s PR T TS AN AN S EELAE S L B [IIIIIIIII!IIIII']III.[I.IIII

o |
ONYN

yn 091 19S INAN
T8 pamsunog 2%
it josqns |
11 yo0|q 9814 "
| Josqns |:
| E“E a0

.

Lt
by,

. ap [V food
019 m_z<z 009~{GNVN[| !}i[%o01q o0
iiiiiiiiiiiiiii y 198 WAN
1/1 ANYN E:E MaU pajealn V06!
AN
Eo QUd 189S INAN Mau 8jeal)
oIp __,“ s
919 8@ ann(ft{: ... -)
. S josqns |
) 100d m
o ? 03 E mm ¥00[q 881 "
aIp ap| | | WE
| 019~JANVN][| 009~{aNYN|T ! w d0¢l

19S AN
feuibLQ d06}

¢¢ 9l

U.S. Patent Apr. 25,2023 Sheet 22 of 36 US RE49,508 E

New-NVM-set creation operation

Orlglnal NVIVI set / ge&ﬂégtgzt

Free block pcol Free block pool

NVM subset [19051900 o ,,.
(data bIOCk pOOI) "y nn Hllll\

‘.

3 », Extract only blocks at particular
physicai position

"*,‘ “.| GC input block)
Write ‘e, , 400,401
User input block ,,..* g

130B,130C 410,411

e Data flow

=sxunp Block movement

F1G. 23

US RE49,508 E

Sheet 23 of 36

Apr. 25,2023

U.S. Patent

LU 040
CC#
" B
v A90[d
5
L d A0[g
¢V #9019 CL#
P0G ||
L # 0CE
009 Adod ele(
L #9010
;;;;;;;;;;;;;;;;;;;;;;; jnaut o

/GP74 L d
CCH#A90Id 1\ ¢l #2190

7T #
S
LC #
E (j00d %00|q ejep) 0le

V 195 INAN {0 V195 WAN
[00d %20[q 3814 Jo Jasgns WAN

L) e Aven WYE Tl wh e e whrh bk b ek pleik v e derieie wrimir Wi e e v veiet Al wie Tl i e Tiwim e’ shrivie Tiviwie miwee deimie vieieh vl e i Tieiee sbwini el i il ey peie svuipr plmiec il | ol

bd
| £d

¢d

|
:
;
”
_
_
:
|
|
|
|
|
|
|
|
!
|
:
:
|
|
|
|
|
|
|
|
|
|
|
*
!
“ 91BO0||Y
_
!
_
_
_
|
_
_
_
!
!
_
!
_
|
|
|
|
|
|
|
|
|
|
|
|
i
|

oL 4/1 ANWN 00t

A

g,

W 18S WAN)
189S WAN

-- (et

US RE49,508 E

Sheet 24 of 36

Apr. 25,2023

U.S. Patent

 Vd
td

cd
Ld

¢V #3190/

#‘-—_-—-—-_---____-___—-_'____--H‘

€d

¢d
ld

CCH#10Id

vd
£d

¢a
Ld

L ¢ #190|d

H“ﬂ“uu“““u‘ﬁ-uuu“uu“uﬂum“““u“-ﬁh

o) 4/1 ONVN O

N_‘ #v_oo_m

P |vd
- ¢P |¢&d
¢P|2d
P]ld
L1 #Y00|g

WO B BARE Wi bk bk ey dipp ey e el ey el ik dbgih el M bbbl b dbhad ml S P

L

b

A

|

00d 00| 8814 10 19SGnS AN

e G2 914
06
Adoo eje(] e w
o # wapog | 1 (V1S NAN)
¥O0|¢ indul 79y | | 195 AN
_oon ¥00|q ejep) | pPaZISUMO(
v 185 AAN 10 Y 19S5 AAN m.,:{. 0es

(jood Yo0|q ejep)

a19s NAN IO | g 195 NAN
j00d %00|q 9814 10 1954ns AAN

RIep PlleA 777

BEES SALE WLALE MLERAD JAREL cppLAy MM BARAE BRAAE bebeh mams Il LELEF BEAE LR BN R SUREL RN SN AR VR WA AN BARF BN SN SRR AL REEF BN ERAE WA bwld B mbbd el s

elep plleAu] [| 1uBLWBAOW X00|g <€~ -----

(8 19S WAN)

198 AN
Mau pajeal)

~- e

MO}} Ele(]

US RE49,508 E

Sheet 25 of 36

Apr. 25, 2023

U.S. Patent

00d %20]q 814 J0 18sgns AAN

A 0UD 00¢ 0Z 914
/ m m
| d ! “
| ed " |
|2 “ w
1 1d m m
| Zv#dpoid m m
m m E pipo | |V me__v_,_\yz?v_
m “ A20]8 (jood %00(q €1EP) et 09 | PazISUMOG]
M | VISWANIO| b YI19S AN -~ 0gE
“ | [100d%00/q 83l | 7] Jo}esqns AN “
ﬂ_ m m
M w e “
| €d ! "
| 2d w “
| 1d m |
| ce#xoog | m
m m . - (8788 NAN)
m | L2811 l(ood yooig erep) el 9
“ | g1es WAN Jo q19S AN “

0€ elep plleAuT [| JUSWBAOW ¥00|g ~—-—---
‘! A/T NV elepPlileN . MO}} BB (] <«—

US RE49,508 E

Sheet 26 of 36

Apr. 25,2023

U.S. Patent

040 581 061 [C DI

4O

.--'
!

e

alp
¢19~|ANVN

m_ _
119 oz,q

J0¢€!

mumm“mﬂ-—wmw“um“uumm“ﬂu““—‘

J-_
e labigieh pipyben wjeiplyiel wiylyt Wiyl e vl wielnie webelh chiskin shbbbih bbbl bbbl A A el sl delcieie shelebieh kbbb s aapua SRl

H“““m#ﬂq#ﬂw-—lﬁMMm“ﬂ

eIp| | alp alp alp|
591~ 0P9~|ONVN[| 0zg~{ONVN]T 019~ONVN[] 009~NVN[| /L =7 oo smmmem=s
_ GOl
188 INAN PauIquIoD ajesi)
g8l m@_\ oo@
m m am J0€}
Y8l vl Gl ..,..u_,......m# 195 AN

R L L LA ML R . dlekbh Bk B sl e E——— I.l.III—-.IIl

el .._\H UNVN el mmv V061 T 119 AN

US RE49,508 E

Sheet 27 of 36

Apr. 25,2023

U.S. Patent

3¢ 914

18S VAN JUSJSJIP 0] JUSLUBAOW YOO0|f Cew=snxs
19S INAN SWES UIUJIM JUSWISAOW YO0|] ~e——o

ejep sj Bjep S} ejep U

qogL—~ M ogp— M o L

(Z)

¥20|q Indul Jas

%00]q ndut 99

(jo0d %00|q e1ep)
}19sqns WAN

(Jood »00|q ejep)

12Sgns AN b V061

(/) 1)
(2) 100d %00|q 9914 (2)

¢# 195 AAN (9)

(lood ¥20|q ElED)
losgns NAN

jood }00|q 2814 100d %20jq 9814

CHISWAN (g) PR

€9 1« £8l
uonelado buluiqwod 18s WAN

79 _\ 8l G9 v\ G8l

U.S. Patent Apr. 25,2023 Sheet 28 of 36 US RE49,508 E

S101
Has

command from host been
received?

No

Yes
Check ID included in command [~>102

Region 5103

corresponding to
NVM set #1 is designated

NO
by command?

Yes é)

Determine NVM set #1 to be 5104
access target

5105

No

VWrite commana?

Yes

3106 S111
Does new

NO
?
user input block need to be
allocated? Vou
Yes 3107 Another process

Allocate block in free block pool
of NVM set #1 as user input S112

block
. 3108 Reference UT

o113
Write data t t block -
Read data from block in NVM
S109 | sybset belonging to NVM set #1
Update LUT

No

S114
S110 | Return read data and read

Return write completion completion response to host
response to host

. End

FI1G. 29

U.S. Patent Apr. 25,2023 Sheet 29 of 36 US RE49,508 E

Region
corresponding to
NVM set #2 is designated

No Process for another NVM sets
by command?
Yes
Determine NVM set #2 {o be S116
access farget

S117

No
Yes

S118 ' S123
allocated?

Read command?
Yes
| S119 |
o Yes Y .
Allocate block in free block Another process
pool of NVM set #2 as user

S115

NG Does new
user input block need to be

input block
I _ 5124
5120
_ Reference LUT
Write data to user input block
S125
5121 '
Read data from block in NVM
Update LUT subset belonging to NVM set #2
5122 S126
~ Return write completion Return read data and read

response to host completion response to host

I
|< '

L R

End

F1G. 30

U.S. Patent Apr. 25,2023 Sheet 30 of 36 US RE49,508 E

Has number of
blocks included in NVM subset #1
belonging to NVM set #1 reached
threshold X17

5201

Yes _ _

Allocate block in free block pool of NVM set #1 as 5202
copy destination block

Select block including a mixture of valid data and 5203

invalid data from blocks in NVM subset #1 as copy
source block

Copy only valid data from selected block to copy S204
destination block

Update LUT 5209

Return block which becomes a block including only S206
invalid data to free block pool of NVM set #1

S207

Has number of
blocks included in NVM subset #1
decreased to threshold X2 (<X1)

or less?

No

Yes

End

F1G. 31

U.S. Patent Apr. 25,2023 Sheet 31 of 36 US RE49.508 E

— Has command
Including parameters designating

copy source NVM set and copy destination
NVM set been received?

S301

No

YeS |

Allocate block in free block pool of copy destination [~S302
NVM set as copy destination block

Select block including valid data from blocks belonging {~—S303

to copy source NVM set as copy source block |
Copy valid data from copy source block to copy 5304

I destination block

Update LUT 5305

I Return copy source block which becomes a block 9306
including no valid data to free block pool of copy
source NVM set

S307

Does copy
source NVM set include no block
including valid data?

No

Yes

End

F1G. 32

US RE49,508 E

Sheet 32 of 36

Apr. 25,2023

U.S. Patent

¢€ Ol 4

CLPS

LLPS

0L¥S

60%S

1SOY 0} asuodsal uona|dwod ajlim uinjey

pu-
SO\

¢ EIEp pijeA buipnjoul

117 a1epdn |

%00]q PaJeaoye 0} Ejep SjUM

¥20|g UONBUIISOP S1lIM SB 189S AN
uoneunssp Adoo jo jood ¥20jq 9384} Ul ¥00]q 81BI0||Y

SOA

¢, PEAledv) Uoa(] 198

INAN 82.n0s Adoo 0} Buibuojeq

18SaNS AN O US)M 89 0] elep
9)lIM SEH

80¥S

90pS

GOPS

POvsS

eorsS

cO¥S

300[q OU 8PNl 18S NAN 824n0S
AdoD $80(]

ON

LOVS

108 WAN 921n0s Ado9 Jo |00d %00|q @81 0) BJep pljeA ou

Buipnjour %00|q B SeW098(YIyM ¥00|q 80In0S AJOD UINeY

1N78epdn

| ¥00|q uoneulsap
Adoa 0 %00|q 80inos Adoo wouj ejep piiea Adon

¥20|q @2.nos Adod se jas WAN 824nos Adod 0)

| Buibuojoq syoolq Loy} Ejep pifea BUIPNIOU! Y00/q 108193

¥00]q uoneunssp Adod se 1as WAN
uoijeunsap Adod Jo j00d %20|q 83J} Ul %20]q 81e20||\Y

SOA

7 PAAI998) U3 19S INAN

Uoneunssp Adoa pue jas s_w_,m 501nos Adod
fujeubisep sisjoweled buipnioul
pUBLIIOD SeH

G

ON

LOVS

U.S. Patent Apr. 25,2023 Sheet 33 of 36 US RE49,508 E

Has new-NVM-set
creation command been
received?

Yes
Determine die group to be reserved for new NVM set SoU2
o ——
I Allocate block in free block pool of original NVM S303
set as copy destination block
I Select block holding valid data from blocks belonging 5504
to new NVM set as copy source block

Copy valid data from copy source block to copy S505
destination block

Update LUT 5506

Return copy source block which becomes a block S907

including no valid data to free block pool of new
NVM set

S501

No

5508

Does new
NVM set include no block including
valid data?

NO

— >»!Yes

End

F1G. 34

U.S. Patent Apr. 25,2023 Sheet 34 of 36 US RE49.508 E

~ Has new-NVM-set
creation command been received?

S601

NO

S602

Yes
| Determine die group to be reserved for new NVM set
>

Allocate block in free block pool of original NVM set
as copy destination block

5604 |

Select block including mixture of valid data and invalid
data from blocks belonging to original NVM set as
copy source block

S605

Copy valid data from copy source block to copy
destination block

'SGOGI
Update LUT

S607

Does physical position
of copy source block which becomes a
block including no valid data belong
to new NVM set?

No

5609

Return copy source block which becomes a
block including no valid data to free block

pool of original NVM set

S608

Return copy source block which becomes a block
including no valid data to free block pool of new NVM set

5610

Does new
NVM set include no block including
valid data”?

L - : Yes

No

End

F1G. 35

U.S. Patent Apr. 25,2023 Sheet 35 of 36 US RE49,508 E

802 801 /2
Main memory 805
(RAM) Network
controller
806
803 Processor

(CPU) Peripheral
BIOS-ROM [/F controller

808 807A 3

Controller

SSD

807 807A 3

F1G. 36

U.S. Patent Apr. 25,2023 Sheet 36 of 36 US RE49,508 E

- »
_-:"J:
.
s
S,
/]
-~
~
.
1
I
L
”~
-
-~
%
Q
Y
901A

NN =/

\\\ Ch =\ \::H) l 4&"\

Y \\}}\ , ﬁﬁ,‘;’ Yar

s, N W]
N | ‘% / =

NN/ i—
- WE—J >
) —

FI1G. 37

US RE49,508 E

1

MEMORY SYSTEM AND METHOD FOR
CONTROLLING NONVOLATILE MEMORY

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a Reissue of U.S. Pat. No. 10,418,371,
issued Sep. 17, 2019, which is a continuation of U.S.
application Ser. No. 15/700,365, filed Sep. 11, 2017, which
1s based upon and claims the benefit of prionty from
Japanese Patent Application No. 2017-036930, filed Feb. 28,
2017, the entire contents of both of which are incorporated
herein by reference.

FIELD

Embodiments described herein relate generally to a tech-
nique for controlling a nonvolatile memory.

BACKGROUND

In recent years, memory systems comprising nonvolatile
memories have been widely prevalent.

As such a memory system, a solid state drive (SSD) based
on a NAND flash technology i1s known. The SSD i1s used as
a storage for various computers in view of its features such
as low power consumption and high performance.

Normally, the SSD 1s equipped with a large number of
nonvolatile memory dies 1n order to increase the capacity of
the SSD. The individual nonvolatile memory dies can oper-
ate independently. Thus, the nonvolatile memories can func-
tion as units for parallel processing.

However, typically, operations for one nonvolatile
memory die are performed sequentially rather than in par-
allel. Thus, 1f a read request occurs for a nonvolatile memory
die in which a write operation 1s being executed (i.e., die
contention), a time until when the read request 1s responded
to (1.e., read latency) may be very long.

Theretfore, a new function needs to be implemented which

enables a host to access the SSD without causing die
contention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating a configuration
example of a memory system of an embodiment.

FIG. 2 1s a block diagram illustrating a plurality of
nonvolatile memory sets (NVM sets) each spanning a plu-
rality of channels, which sets are obtained by classifying a
plurality of NAND flash memory dies 1n the memory system
of the embodiment.

FIG. 3 15 a block diagram 1llustrating a relation between
block management corresponding to each NVM set and one
or more regions (namespaces) corresponding to each NVM
set.

FIG. 4 1s a diagram illustrating a host write/garbage
collection operation for an 1solated NVM set, which opera-
tion 1s performed by the memory system of the embodiment.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. § 1s a diagram 1illustrating a host write/garbage
collection operation for a shared NVM set, which operation
1s performed by the memory system of the embodiment.

FIG. 6 1s a block diagram illustrating a plurality of NVM
sets each comprising a set of NAND flash memory dies
connected to the same channel, which sets are obtained by
classitying a plurality of NAND flash memory dies in the
memory system of the embodiment.

FIG. 7 1s a block diagram illustrating a relation between
block management corresponding to each NVM set 1n FIG.
6 and one or more regions (namespaces) corresponding to

each NVM set.

FIG. 8 1s a diagram schematically illustrating a flash
memory package applied to the memory system of the
embodiment.

FIG. 9 1s a cross-sectional view illustrating the structure
of a flash memory package 1in FIG. 8.

FIG. 10 1s a diagram illustrating a relation between a
plurality of NVM sets each comprising a set of NAND flash
memory dies connected to the same channel and one or more
flash memory packages used as the NVM sets.

FIG. 11 1s a diagram illustrating a part of a garbage
collection operation for a certain NVM subset, which opera-
tion 1s performed by the memory system of the embodiment.

FIG. 12 1s a diagram 1llustrating one remaining part of the
garbage collection operation for the certain NVM subset,
which operation 1s performed by the memory system of the
embodiment.

FIG. 13 1s a diagram illustrating the other remaining part
of the garbage collection operation for the certain NVM
subset, which operation 1s performed by the memory system
of the embodiment.

FIG. 14 1s a diagram 1illustrating an inter-NVM-set copy
operation performed by the memory system of the embodi-
ment.

FIG. 15 1s a diagram 1illustrating a relation between the
contents of an address translation table before the inter-
NVM-set copy operation in FIG. 14 and the contents of the
address ftranslation table after the inter-NVM-set copy
operation.

FIG. 16 1s a diagram illustrating a part of the inter-NVM-
set copy operation performed by the memory system of the
embodiment.

FIG. 17 1s a diagram illustrating one remaining part of the
inter-NVM-set copy operation performed by the memory
system ol the embodiment.

FIG. 18 1s a diagram illustrating the other remaining part
of the mnter-NVM-set copy operation performed by the
memory system of the embodiment.

FIG. 19 15 a diagram 1llustrating an outline of an NVM set
exchange operation performed by the memory system of the
embodiment.

FIG. 20 1s a diagram illustrating a host write/garbage
collection operation performed for two NVM sets belfore the
NVM set exchange operation.

FIG. 21 1s a diagram illustrating a host write/garbage
collection operation performed for the NVM set exchange
operation between two NVM sets.

FIG. 22 15 a diagram 1llustrating an outline of a new NVM
set creation operation performed by the memory system of
the embodiment.

FIG. 23 1s a diagram illustrating a host write/garbage
collection operation performed for new-NVM-set creation.

FIG. 24 1s a diagram 1llustrating a part of the new NVM
set creation operation performed by the memory system of
the embodiment.

US RE49,508 E

3

FIG. 25 1s a diagram 1llustrating one remaining part of the
new NVM set creation operation performed by the memory

system ol the embodiment.

FIG. 26 1s a diagram 1llustrating the other remaining part
of the new NVM set creation operation performed by the
memory system of the embodiment.

FIG. 27 1s a diagram illustrating an outline of an NVM set
combining operation performed by the memory system of
the embodiment.

FIG. 28 1s a diagram 1llustrating a host write/garbage
collection operation performed for NVM set combining.

FI1G. 29 1s a flowchart 1llustrating a part of a procedure of
a data write/read operation performed by the memory sys-
tem of the embodiment.

FI1G. 30 1s a flowchart illustrating the remaining part of the
procedure of the data write/read operation performed by the
memory system of the embodiment.

FIG. 31 1s a flowchart illustrating a procedure of the
garbage collection operation performed for each of the
NVM subsets belonging to a certain NVM set.

FI1G. 32 1s a flowchart of a procedure of the inter-NVM-set
copy operation performed by the memory system of the
embodiment.

FI1G. 33 1s a flowchart illustrating another procedure of the
inter-NVM-set copy operation performed by the memory
system ol the embodiment.

FIG. 34 1s a flowchart illustrating a procedure of the
new-NVM-set creation operation performed by the memory
system ol the embodiment.

FI1G. 35 1s a flowchart 1llustrating another procedure of the
new-NVM-set creation operation performed by the memory
system ol the embodiment.

FIG. 36 1s a block diagram illustrating a configuration
example of a host applied to the memory system of the
embodiment.

FIG. 37 1s a block diagram illustrating a configuration
example of a computer comprising the memory system of
the embodiment and a host.

DETAILED DESCRIPTION

Various embodiments will be described hereinafter with
reference to the accompanying drawings.

In general, according to one embodiment, a memory
system 1s connectable to a host. The memory system com-
prises a nonvolatile memory and a controller. The nonvola-
tile memory comprises a plurality of nonvolatile memory
dies connected to a plurality of channels. The controller 1s
clectrically connected to the nonvolatile memory and 1is
configured to control the nonvolatile memory via the plu-
rality of channels. Fach of the nonvolatile memory dies
comprises a plurality of blocks.

The controller classifies the plurality of nonvolatile
memory dies mto a plurality of die groups such that each of
the plurality of nonvolatile memory dies belongs to only one
die group. The controller performs a data write/read opera-
tion for one of the plurality of die groups 1n accordance with
an /O command from the host designating one of a plurality
of regions i1ncluding at least one region corresponding to
cach die group.

The controller manages a group of free blocks in the
nonvolatile memory for each of the plurality of die group by
using a plurality of free block pools corresponding to the
plurality of die groups.

The controller performs, for each of the plurality of die
groups, an operation of allocating one of the free blocks 1n
the corresponding free block pool as a block to which user

10

15

20

25

30

35

40

45

50

55

60

65

4

data 1s to be written, an operation of writing the user data to
the allocated block, an operation of managing the block
filled with the user data by using a data block pool, and an
operation of returning blocks which are managed by the data
block pool and which hold no valid data to the correspond-
ing iree block pool.

First, with reference to FIG. 1, a configuration of an
information processing system comprising a memory sys-
tem according to an embodiment will be described.

The memory system 1s a semiconductor storage device
configured to write data to a nonvolatile memory and to read
data from the nonvolatile memory. The memory system 1s
implemented, for example, as a NAND flash technology
based solid state drive (SSD) 3.

The mformation processing system 1 comprises a host
(host device) 2 and an SSD 3. The host 2 1s an information
processing apparatus such as a server or a personal com-
puter. A typical example of a server functioning as the host
2 1s a server 1n a data center.

In a case where the host 2 1s implemented by the server
in the data center, the host (server) 2 may be connected to a
plurality of end user terminals (clients) 51 via a network 50.
The host 2 can provide various services to the end user
terminals 51. A plurality of virtual machines may be
executed on a physical server functioning as the host
(server) 2. The virtual machines can function as a virtual
serves configured to provide various services to correspond-
ing clients (end user terminals 51).

The SSD 3 may be used as a main storage for the
information processing apparatus (computing device) func-
tioning as the host 2. The SSD 3 may be built into the
information processing apparatus or connected to the infor-
mation processing apparatus via a cable or a network.

As an interface which interconnects the host 2 and the
SSD 3, SCSI, Serial Attached SCSI (SAS), ATA, Serial ATA

(SATA), PCI Express (PCle), Ethernet (registered trade
mark), Fibre channel, NVM Express (NVMe) (registered
trade mark), and the like may be used.

The SSD 3 comprises a controller 4 and a nonvolatile
memory (NAND flash memory) 5. The SSD 3 may comprise
a random access memory, for example, a DRAM 6.

The NAND flash memory 5 comprises a memory cell
array comprising a plurality of memory cells arranged 1n a
matrix. The NAND flash memory 5 may be a NAND flash
memory of a two-dimensional structure or a NAND flash
memory of a three-dimensional structure.

The memory cell array in the NAND flash memory 5
comprises a plurality of blocks B0 to Bm-1. Each of the
blocks B0 to Bm-1 is organized of a large number of pages
(1n this case, pages P0 to Pn-1). Blocks B0 to Bm-1 function
as erase units. The blocks may be referred to as “erase
blocks™ or “physical blocks”. Each of the pages P0 to Pn-1
comprises a plurality of memory cells connected to the same
word line. The pages PO to Pn-1 are units for a data write
operation and a data read operation.

The controller 4 1s electrically connected to the NAND
flash memory 5 via a NAND interface 13 such as Toggle and
an open NAND flash interface (ONFI), and a plurality of
channels (Ch). The NAND interface 13 functions as a
NAND control circuit configured to control the NAND flash
memory 3.

As 1llustrated in FIG. 2, the NAND flash memory 5
comprises a plurality of NAND flash memory dies (in FIG.
2, illustrated as “NAND dies™). Each of the NAND flash
memory dies 1s a nonvolatile memory die comprising a
memory cell array comprising a plurality of blocks and a
peripheral circuit which controls the memory cell array. The

US RE49,508 E

S

individual NAND flash memory dies can operate indepen-
dently. Thus, the NAND flash memory dies function as
single parallel operation units. The NAND flash memory
dies are also referred to as “NAND flash memory chips”.
FIG. 2 1llustrates a case where a plurality of channels Ch0,
Chl, Ch2, . .. ChN are connected to the NAND interface 13

and where the same number (for example, K dies per
channel, K 1s an imteger of 2 or larger) of NAND flash
memory dies are connected to each of the channels Ch0,
Chl, Ch2, . . . ChN. Each of the channels comprises a
communication line (memory bus) for communication with

the corresponding NAND flash memory dies.

In FIG. 2, NAND flash memory dies 600, 601, 602 to 606
are connected to the channel Ch0. NAND flash memory dies
610, 611, 612 to 616 are connected to the channel Chl.
NAND tlash memory dies 620, 621, 622 to 626 arc con-
nected to the channel Ch2. Similarly, NAND flash memory

dies 640, 641, 642 to 646 are connected to the channel ChN.

The controller 4 controls the NAND flash memory 5 via
the channels Ch0, Chl, Ch2, ... ChN. The controller 4 can
simultaneously drive the channels Ch0, Chl, Ch2, . .. ChN.
In other words, the NAND interface 13 comprises N NAND
control circuits corresponding to the channels Ch0, Chl,
Ch2, ... ChN, respectively. The controller 4 uses the NAND
control circuits to allow the channels Ch0, Chl, Ch2, . . .
ChN to be driven independently.

In the present embodiment, the controller 4 classifies KxN
NAND flash memory dies 600 to 646 into a plurality of die
groups such that each of the NAND flash memory dies
belongs to only one die group. The die group 1s heremafter
referred to as the “nonvolatile memory subset (NVM set)”.

In FIG. 2, each NVM set spans a plurality of channels
Ch0, Chl, Ch2, ... ChN. These NVM sets may by obtained
by striping the KxN NAND flash memory dies 600 to 646
across the channels Ch0, Chl, Ch2, . . . ChN. For example,
the NVM set 60 comprises the NAND flash memory dies
600, 610, 620, . . . 640 connected to the channels Ch0, Chl,
Ch2, . .. ChN, respectively. The NVM set 61 comprises the
NAND flash memory dies 601, 611, 621, . . . 641 connected
to the channels Ch0, Chl, Ch2, . . . ChN, respectively. The
NVM set 62 comprises the NAND flash memory dies 602,
603, ... 605, 606 connected to the channel Ch0, the NAND
flash memory dies 612, 613, . . . 615, 616 connected to the
channel Chl, the NAND flash memory dies 622, 623, . . .
625, 626 connected to the channel Ch2, and the NAND flash
memory dies 642, 643, . . . 645, 646 connected to the channel
ChN.

As described above, in FIG. 2, the KxN NAND flash
memory dies 600 to 646 1s classified into the plurality of
NVM sets each spanning the plurality of channels. In each
of the NVM sets, a data write/read operation can be simul-
taneously performed on up to N NAND flash memory dies.

A plurality of regions which can be specified by the host
2 can be associated with the plurality of NVM sets, respec-
tively. The plurality of regions 1s logical regions which are
accessible to the host 2. One or more regions may corre-
spond to each NVM set. The number of regions correspond-
ing to each NVM set may vary with the NVM set.

The controller 4 can simultaneously execute a plurality of
I/O commands (write commands or read commands) speci-
tying diflerent regions corresponding to different NVM sets
without causing die contention. Therefore, for example,
even when a read command intended for a region corre-
sponding to the NVM set 61 1s received from the host 2
while a data write operation 1s being executed in the NVM
set 60, the controller 4 can immediately execute a data read

10

15

20

25

30

35

40

45

50

55

60

65

6

operation corresponding to the read command without wait-
ing for the data write operation to complete.

In the SSD 3 1llustrated in FIG. 3, the controller 4 can also
function as a flush translation layer (FTL) configured to
perform data management on the NAND flash memory 3
and block management on the NAND flash memory 5.

The data management performed by the FTL comprises
(1) management of mapping information indicative a cor-
respondence relation between logical addresses and physical
addresses 1 the NAND flash memory 3, and (2) a process
for hiding read/write 1n units of pages and an erase operation
in units of blocks. The logical addresses are addresses used
by the host 2 to address the SSD 3. Logical block addresses
(LBA) are normally used as the logical addresses.

Management of mapping between the logical block
addresses (LBA) and the physical addresses 1s performed
using a lookup table (LUT) functioning as an address
translation table (logical-to-physical address translation
table). A physical address corresponding to a certain LBA 1s
indicative of a physical location 1n the NAND flash memory
5 to which data corresponding to the LBA has been written.
The lookup table (LUT) may be loaded from the NAND
flash memory 5 into the DRAM 6 when the SSD 3 is
powered on. In general, each lookup table has a relatively
large size. Therefore, at least a part of each lookup table may
be housed in the DRAM 6 as an address translation table
cache.

In the NAND flash memory 5, data write to a page can be
carried out only once per erase cycle. Thus, the controller 4
writes update data corresponding to a certamn LBA to a
physical location different from a physical location where
previous data corresponding to the LBA 1s stored. The
controller 4 updates the corresponding lookup table (LUT)
to associate a physical address of the physical location to
which the update data 1s written with the LBA. Conse-
quently, the previous data corresponding to the LBA 1is
invalidated.

The present embodiment uses a plurality of lookup tables
(LUT) 40, 41, 42, The lookup tables (LUT) 40, 41,
42, . . . basically correspond to the respective NVM sets.
Each of the lookup tables may be associated with one region
or with one group for garbage collection.

Each NVM set comprises at least one group for garbage
collection. The group for garbage collection comprises a
plurality of blocks and 1s used as a unit which 1s subjected
to garbage collection. Exclusively one lookup table may be
used for an NVM set comprising only one group for garbage
collection. A plurality of lookup tables may be used for an
NVM set comprising a plurality of groups for garbage
collection.

The controller 4 also has a multi namespace control
function. The mult1 namespace control function enables a
plurality of logical address spaces (LBA spaces) to be
allocated to the SSD 3 in order to allow one storage device
to be handled as a plurality of drives.

Each of the above-described plurality of regions may be
implemented by a namespace. Each namespace corresponds
to a region in the NAND flash memory 5. A logical address
range (LBA range) 1s allocated to each namespace. The size
of the LBA range (in other words, the number of LBAs) can
be varied with the namespace. Each LBA range starts with
LBAO. The individual namespaces are identified by 1denti-
fiers of the namespaces.

A write command from the host 2 includes the identifier
ol a particular namespace, 1n other words, a namespace 1D
(NSID). The controller 4 determines a region (namespace) to
be accessed to which write data 1s to be written, based on the

US RE49,508 E

7

namespace ID in the write command from the host 2.
Similarly, a read command from the host 2 includes a
namespace ID corresponding to a particular namespace. The
controller 4 determines a region (namespace) to be accessed
from which data 1s to be read, based on the namespace 1D
in the read command from the host 2.

Block management includes management of bad blocks,
wear leveling, and garbage collection.
Wear leveling 1s an operation of leveling the wear of

blocks.

Garbage collection 1s an operation of increasing the
number of free blocks to which data can be written. In a
garbage collection operation, the controller 4 copies only
valid data 1n some blocks including a mixture of the valid
data and invalid data to another block (for example, a free
block). The valid data as used herein means data which 1s
referred to from the LUT (1.e., data linked to a certain logical
address as the latest data) and may subsequently be read by
the host 2. The invalid data means data which no longer has
a possibility of being read from the host 2. For example, data
associated with a certain logical address 1s valid data, and
data associated with no logical address 1s invalid data. The
controller 4 maps, to the LBAs of the copied valid data, copy
destination physical addresses of the valid data. A block
including only invalid data as the valid data has been copied
to another block 1s released as a free block. Consequently,
the block can be reused after an erase operation 1s performed
on the block.

Now, a configuration of the controller 4 will be described.

The controller 4 comprises a host interface 11, a CPU 12,
the NAND interface 13, a DRAM intertace 14, etc. The CPU
12, the NAND interface 13, and the DRAM interface 14 are
interconnected via the bus 10.

The host iterface 11 1s a host interface circuit configured
to perform communication with the host 2. The host inter-
face 11 may be, for example, a PCle controller (NVMe
controller). The host interface 11 receives various com-
mands (write commands, read commands, various control
commands, unmap (UNMAP) command, and the like) from
the host 2.

The wnite command requests the SSD 3 to write data
designated by the write command. The write command may
include a starting LBA, a transfer length, and an ID. The ID
in the write command 1s an identifier for uniquely 1dentity-
ing a region to which data i1s to be written. The ID may be
a namespace ID. The read command requests the SSD3 to
read data designated by the read command. The read com-
mand may include a starting LBA, a transfer length, and an
ID. The ID 1n the read command 1s an 1dentifier for uniquely
identifying a region from which data 1s to be read. The ID
may be a namespace 1D.

The CPU 12 1s a processor configured to control the host
interface 11, the NAND interface 13, and the DRAM
interface 14. The CPU 12 loads a control program (firm-
ware) from the NAND flash memory 5 or a ROM not
illustrated 1n the drawings into the DRAM 6 1n response to
power-on of the SSD 3, and executes the firmware and thus
various processes. The firmware may be loaded mnto a
SRAM 1n the controller 4, which 1s not illustrated in the
drawings. The CPU 12 can execute, for example, command
processes for processing various commands from the host 2,
in addition to the above-described F'TL process. Operations
of the CPU 12 can be controlled by the above-described
firmware executed by the CPU 12. A part or all of each of
the FTL process and the command process may be executed
by dedicated hardware 1n the controller 4.

10

15

20

25

30

35

40

45

50

55

60

65

8

The CPU 12 can function as an NVM set control unit 21,
a garbage collection (GC) operation control unit 22, an
inter-NVM-set copy control unit 23, a new-NVM-set cre-
ation control unit 24, an NVM set exchange control unit 25,
and an NVM set combinming unit 26.

The NVM set control unit 21 classifies the KxN NAND
flash memory dies 600 to 646 into a plurality of NVM sets
such that each of the KxN NAND flash memory dies 600 to
646 belongs to only one NVM set. The NVM set control unit
21 performs a data write/read operation for one of the
plurality of NVM sets 1n accordance with an I/O command
from the host 2 designating any one of a plurality of regions

including at least one region per NVM set. For example, 1n
a case where the plurality of NVM sets have a first NVM set

and a second NVM set, the NVM set control unit 21

performs a data write/read operation for the first NVM set in
accordance with a first /O command from the host 2
designating at least one region corresponding to the first
NVM set, and performs a data write/read operation for the
second NVM set 1n accordance with a second I/O command
from the host 2 designating at least one region correspond-
ing to the second NVM set.

Further, the NVM set control unit 21 individually man-
ages Iree blocks in the NAND flash memory (a large number
of NAND flash memory dies) 5 for each of the plurality of
NVM sets by using a plurality of free block pools corre-
sponding to the plurality of NVM sets. The free blocks mean
blocks holding no valid data. For example, each of the free
blocks belonging to the first NVM set 1s managed by a first
free block pool corresponding to the first NVM set, and each
of the free blocks belonging to the second NVM set 1s
managed by a second free block pool corresponding to the
second NVM set. In an operation of mitializing the SSD 3,
the NVM set control unit 21 places all the blocks belonging
to the first NVM set 1n the first free block pool, and places
all the blocks belonging to the second NVM set in the
second free block pool.

For each of the plurality of NVM sets, the NVM set
control unit 21 performs an allocate operation of allocating
one of the free blocks 1n the corresponding free block pool
as a block to which user data (write data from the host 2 or
data to be copied from another block for garbage collection)
1s to be written, an operation of writing the user data to the
allocated block, an operation of managing the block filled
with the user data by using the data block pool (also referred
to as an active block pool), and an operation of returming
blocks which are managed by the data block pool and which
hold no valid data to the corresponding free block pool.

Consequently, blocks placed in a free block pool corre-
sponding to a certain NVM set can be used only by one or
more regions corresponding to the NVM set, enabling die
contention between a plurality of NVM sets to be reliably
prevented. The data block pool means a pool used to manage
cach of blocks which belong to the corresponding NVM set
and which hold valid data.

The present embodiment allows handling of two types of
NVM sets, that 1s, an 1solated NVM set and a shared NVM
set.

The 1solated NVM set 1s an NVM set comprising only one
group for garbage collection (only one data block pool). In
other words, a free block pool corresponding to an 1solated
NVM set 1s a free block pool dedicated to a single data block
pool for managing the blocks which belong to the NVM set
and which hold valid data. In the 1solated NVM set, a single
data block pool occupies the free block pool corresponding
to the 1solated NVM set.

US RE49,508 E

9

The shared NVM set 1s an NVM set comprising a plurality
ol groups for garbage collection (a plurality of data block
pools). In other words, the free block pool corresponding to
the shared NVM set 1s a free block pool shared by a plurality
of data block pools for managing the respective blocks
which belong to the NVM set and which hold valid data. In
the shared NVM set, a plurality of data block pools shares
the free block pool corresponding to the shared NVM set.

The garbage collection (GC) operation control umt 22
independently executes garbage collection for each of the
above-described groups for garbage collection.

In garbage collection of the 1solated NVM set, 1n other
words, 1n garbage collection of the blocks 1n the single data
block pool belonging to the isolated NVM set, the GC
operation control unit 22 performs operations of (1) allo-
cating one of the free blocks in the free block pool corre-
sponding to the 1solated NVM set as a copy destination
block, (2) copying only valid data from one or more blocks
included in the data block pool and including a mixture of
the valid data and 1nvalid data to the copy destination block,
and (3) returning, to the free block pool corresponding to the
1solated NVM set, the blocks including only the invalid data
as a result of copying the valid data to the copy destination
block. Consequently, the free blocks resulting from GC of an
1solated NVM set can be used only by one or more regions
corresponding to the NVM set, enabling die contention
between a plurality of NVM sets to be reliably prevented.

In garbage collection of the shared NVM set, 1n other
words, 1 garbage collection of the blocks in one of the
plurality of data block pools belonging to the shared NVM
set, the GC operation control unmit 22 performs operations of
(1) allocating one of the free blocks 1n the free block pool
corresponding to the shared NVM set as a copy destination
block, (2) copying only valid data from one or more blocks
included in the data block pool and including a mixture of
the valid data and 1nvalid data to the copy destination block,
and (3) returning, to the free block pool corresponding to the
shared NVM set, the blocks including only the invalid data
as a result of copying the valid data to the copy destination
block. Consequently, since the free blocks resulting from
GC of a shared NVM set can be used only by one or more
regions corresponding to the NVM set, enabling die con-
tention between a plurality of NVM sets to be reliably
prevented.

The mter-NVM-set copy control unit 23 performs an
inter-NVM-set copy operation 1n order to level the degrees
of wear of the NVM sets (the numbers of program/erase
cycles of the NVM sets). The inter-NVM-set copy operation
can be used, for example, to copy valid data stored in an
1solated NVM set with a high degree of wear to an 1solated
NVM set with a low degree of wear. Consequently, the
degrees of wear of these NVM sets can be leveled. The host
2 can deliver, to the SSD 3, an iter-NVM-set copy com-
mand including a parameter designating a copy source NVM
set and a copy destination NVM set.

The inter-NVM-set copy control unit 23 (1) selects a
block holding valid data from the blocks belonging to the
copy source NVM set, as a copy source block, (2) copies
only the valid data in the copy source block to a copy
destination block allocated from a free block pool corre-
sponding to a copy destination NVM set, (3) updates a
lookup table managing mapping between logical addresses
and physical addresses 1 the copy source NVM set to map
a physical address indicative of a physical location 1n the
copy destination block to which the valid data has been
copied to the logical address corresponding to the copied
valid data, (4) when valid data no longer exist in the copy

10

15

20

25

30

35

40

45

50

55

60

65

10

source block, returns the copy source block to the free block
pool corresponding to the copy source NVM set, and (5)
repeats the operations (1) to (4) until a block holding valid
data no longer exists 1n the copy source NVM set. Conse-
quently, the data 1n the copy source NVM set (the data with
a high update frequency) can be moved to the copy desti-
nation NVM set with few program/erase cycles. As a result,
the copy destination NVM set with a low degree of wear 1s
utilized to write data with a high update frequency. There-
fore, this enables delay of timing when the number of
program/erase cycles for the copy source NVM set reaches
a limit value.

The new-NVM-set creation control unit 24 creates a new
NVM set from another NVM set. For example, the new-
NVM-set creation control unit 24 can create a set of some of
the NAND flash memory dies included in a certain NVM
set, as a new NVM set. Consequently, one NVM set can be
divided 1nto two NVM sets.

The NVM set exchange control unit 25 performs an NVM
set exchange operation 1n order to level the degrees of wear
(the numbers of program/erase cycles) of the NVM sets. The
NVM set exchange operation can be used to exchange data
between an 1solated NVM set with a high degree of wear and
an 1solated NVM set with a low degree of wear. Conse-
quently, the degrees of wear of these NVM sets can be
leveled. The host 2 can transmit, to the SSD 3, an NVM set
exchange command including parameters designating two
NVM sets (a first NVM set and a second NVM set) for
which stored data are to be exchanged with each other.

The NVM set exchange control umt 25 performs an
operation of copying only the valid data 1n the first NVM set
to the second NVM set and an operation of copying only the
valid data 1n the second NVM set to the first NVM set.

In the operation of copying only the valid data in the first
NVM set to the second NVM set, the NVM set exchange
control unit 25 (1) selects a block holding valid data from the
blocks belonging to the first NVM set, as a copy source
block, (2) copies only the valid data 1n the copy source block
to a copy destination block allocated from the free block
pool corresponding to the second NVM set, (3) updates the
lookup table managing the mapping between logical
addresses and physical addresses 1n the first NVM set to map
the physical address indicative of the physical location 1n the
copy destination block to which the valid data has been
copied to the logical address corresponding to the copied
valid data, (4) when valid data no longer exist in the copy
source block, returns the copy source block to the free block
pool corresponding to the first NVM set, and (5) repeats the
operations (1) to (4) until a block holding valid data no
longer exists 1n the first NVM set.

In the operation of copying only the valid data in the
second NVM set to the first NVM set, the NVM set
exchange control unit 25 (1) selects a block holding valid
data from the blocks belonging to the second NVM set, as
a copy source block, (2) copies only the valid data in the
copy source block to a copy destination block allocated from
the free block pool corresponding to the first NVM set, (3)
updates the lookup table managing the mapping between
logical addresses and physical addresses 1n the second NVM
set to map the physical address indicative of the physical
location 1n the copy destination block to which the valid data
has been copied to the logical address corresponding to the
copied valid data, (4) when valid data no longer exist in the
copy source block, returns the copy source block to the free
block pool corresponding to the second NVM set, and (5)
repeats the operations (1) to (4) until a block holding valid
data no longer exists in the second NVM set.

US RE49,508 E

11

Consequently, the degrees of wear of the two NVM sets
can be leveled.

The NVM set combining unit 26 combines two or more
NVM sets mnto one NVM set. The host 2 can designate the
two or more NVM sets to be combined and the one NVM set
to which the NVM sets are to be combined.

The NAND mterface 13 controls the NAND flash
memory 5 under the control of the CPU 12. The DRAM
interface 14 1s a DRAM controller configured to control the
DRAM 6 under the control of the CPU 12. A part of the
storage region in the DRAM 6 1s utilized as a write buller
(WB) 1n which write data from the host 2 1s temporarily
stored. In the present embodiment, a plurality of write
buflers (WB) 30, 31, 32, . . . are utilized. At least one write
builer (WB) may be prepared for each NVM set. Other part
ol the storage region 1n the DRAM 6 1s utilized to store the
above-described lookup tables (LUTs) 40, 41, 42,

FIG. 3 illustrates an example of a relation between block
management corresponding to each NVM set in FIG. 2 and

one or more regions (namespaces) corresponding to each
NVM set.

The NVM set 60 comprises the NAND flash memory die
600 connected to the channel Ch0, the NAND flash memory
die 610 connected to the channel Chl, the NAND flash
memory die 620 connected to the channel Ch2, . . . and the
NAND ftlash memory die 640 connected to the channel ChN.
The blocks (iree blocks) which belong to the NVM set 60
and which hold no valid data are each managed by a iree
block pool 80 corresponding to the NVM set 60. In a process
of mitializing the SSD 3, the controller 4 places all the
blocks belonging to the NVM set 60, 1n other words, all the
blocks 1n the NAND flash memory dies 600, 610, 620, . . .
640, 1n the free block pool 80 corresponding to the NVM set
60.

The blocks belonging to the NVM set 60 are managed
using the free block pool 80 and an NVM subset 90. The
NVM subset 90 15 a data block pool configured to manage
cach of the blocks which belong to the NVM set 60 and
which hold valid data. The blocks included 1n the NVM
subset 90 form one group for garbage collection.

The free block pool 80 1s a free block pool dedicated to
one NVM subset 90. Therefore, the NVM set 60 functions
as an NVM set exclusively used by one NVM subset 90
(1solated NVM set). One write bufler (WB) 30 1s associated
with the NVM subset 90.

The NVM set 60 1s utilized as a physical storage space for
at least one region (namespace) which can be designated by
the host 2. The NVM set 60 may be a physical storage space
dedicated to only one namespace. FIG. 3 illustrates a case
where the NVM set 60 1s utilized as a physical storage space

for the two namespaces 100, 101.
The NVM set 61 comprises the NAND flash memory die

601 connected to the channel Ch0, the NAND flash memory
die 611 connected to the channel Chl, the NAND flash
memory die 621 connected to the channel Ch2, . . . and the
NAND tlash memory die 641 connected to the channel ChN.
The blocks (iree blocks) which belong to the NVM set 61
and which hold no valid data are each managed by a iree
block pool 81 corresponding to the NVM set 61. In the
process ol 1mtializing the SSD 3, the controller 4 places all
the blocks belongmg to the NVM set 61, 1 other words, all
the blocks in the NAND flash memory dies 601, 611,
621, . .. 641, 1n the free block pool 81 corresponding to the
NVM Set 61.

The blocks belonging to the NVM set 61 are managed
using the free block pool 81 and an NVM subset 91. The

NVM subset 91 1s a data block pool configured to manage

10

15

20

25

30

35

40

45

50

55

60

65

12

cach of the blocks which belong to the NVM set 61 and
which hold valid data. The blocks included 1n the NVM
subset 91 form one group for garbage collection. The free
block pool 81 1s a free block pool dedicated to one NVM
subset 91. Theretfore, the NVM set 61 functions as an NVM
set exclusively used by one NVM subset 91 (1solated NVM
set). One write buller (WB) 31 i1s associated with the NVM
subset 91.

The NVM set 61 1s utilized as a physical storage space for
at least one region (namespace). The NVM set 61 may be a
physical storage space dedicated to only one namespace.
FIG. 3 1llustrates a case where the NVM set 61 1s utilized as
a physical storage space for one namespaces 102.

The NVM set 62 comprises the NAND flash memory dies
602, 603, . . . 605, 606 connected to the channel ChO0, the
NAND flash memory dies 612, 613, ... 615, 616 connected
to the channel Chl, the NAND flash memory dies 622,
623, ... 625, 626 connected to the channel Ch2, ... and the
NAND flash memory dies 642, 643, . . . 645, 646 connected
to the channel ChIN. The blocks (free blocks) which belong
to the NVM set 62 and which hold no valid data are each
managed by a free block pool 82 corresponding to the NVM
set 62. In the process of initializing the SSD 3, the controller
4 places all the blocks belonging to the NVM set 62, 1n other
words, all the blocks 1n the NAND flash memory dies 602
to 606, 612 to 616, 622 to 626, . . . 642 to 646, in the free
block pool 82 corresponding to the NVM set 62.

The blocks belonging to the NVM set 62 are managed
using the free block pool 82 and NVM subsets 92, 93, 94,
95. Each of the NVM subsets 92, 93, 94, 95 is a data block
pool configured to manage each of the blocks which belong
to the NVM set 62 and which hold valid data. The blocks
included 1n the NVM subset 92 form one group for garbage
collection, the blocks included 1n the NVM subset 93 form
another group for garbage collection, the blocks included 1n
the NVM subset 94 form yet another group for garbage
collection, and the blocks included 1in the NVM subset 95
form still another group for garbage collection. The free
block pool 82 1s a free block pool shared by the NVM
subsets 92, 93, 94, 95, Therefore, the NVM set 62 functions
as a shared NVM set shared by the plurality of NVM subsets
02 to 95. The NVM subsets 92, 93, 94, 95 are associated
with write buflers (WB) 32, 33, 34, 35.

The NVM set 62 1s utilized as a physical storage space for
at least one region (namespace). The NVM set 62 may be a
physical storage space dedicated to only one namespace, or
a physical storage space for a plurality of namespaces. FIG.
3 illustrates a case where the NVM set 62 1s utilized as a
physical storage space for four namespaces 103, 104, 105,
106.

FIG. 3 1llustrates a case where the namespace 103 uses the
two NVM subsets 92 and 93. For example, an LBA range
corresponding to the namespace 103 may be divided into
two sub LBA ranges. Write data corresponding to one of the
sub LBA ranges (for example, cold data with a low update
frequency) may be written to an 111put block for the NVM
subset 92 (write destination block) via the write buller (WB)
32. Write data corresponding to the other sub LBA range (for
example, hot data with a high update frequency (meta data))
may be written to an mput block for the NVM subset 93
(write destination block) via the write bufler (WB) 33.

In FIG. 3, a data write/read operation 1s performed for the
NVM set 60 in accordance with an I/O command from the
host 2 including the ID of the namespace 100 or 101.
Further, a data write/read operation 1s performed for the
NVM set 61 1n accordance with an I/O command from the
host 2 including the ID of the namespace 102. Further, a data

US RE49,508 E

13

write/read operation 1s performed for the NVM set 62 in
accordance with an I/O command from the host 2 including
the ID of any of the namespaces 103 to 106. Therefore, the
NVM sets 60, 61, 62 can be simultaneously accessed, and a
long latency (a particular long read latency) resulting from
die contention can be suppressed.

Furthermore, garbage collection i1s executed indepen-
dently for each NVM subset, and thus, a namespace exclu-
sively using one or more NVM subsets 1s not affected (GC
contention) by garbage collection of another NVM subset
used by another namespace.

The shared NVM set 62 has the following features.

Inside the shared NVM set 62, the free block pool 82 1s
shared by the plurality of NVM subsets 92 to 95, and thus,

die contention may occur. However, when a new input block
for a certain NVM subset needs to allocated, the controller
4 can select a block having a small number of program/erase
cycles from the free blocks 1n the shared free block pool 82,
and allocate the selected block as a new mput block.
Consequently, degrees of wear of the NVM subsets 92, 93,
94, 95 can be leveled.

The 1solated NVM sets 60, 61 have the following features.

Inside each of the 1solated NVM sets 60, 61, one NVM

subset can exclusively use one free block pool. Therefore, 11
one namespace 1s associated with this one NVM subset, the
namespace can exclusively use the 1solated NVM set with-
out causing die contention. However, the 1solated NVM set
shares no free blocks with the other NVM sets, and thus, 1f
data stored in a particular 1solated NVM set has a high
rewrite Ifrequency (high update frequency), this 1solated
NVM set may have a higher degree of wear than the other
NVM sets. Such uneven wear may be a factor which

shortens the life of the SSD 3.

In the present embodiment, the shared NVM set and the
1solated NVM set can be allowed to coexist in one SSD 3.
Theretore, for example, the shared NVM set and the 1solated
NVM set can be used differently according to a workload.

In the case in FIG. 3, the following environment 1s

provided for the individual namespaces.
<NVM Set 60>

The namespaces 100, 101 share the one NVM subset 90.
No die contention occurs between the namespaces 100, 101
and the other namespaces, whereas GC contention may
occur between the namespaces 100, 101.

<NVM Set 61>

The namespace 102 exclusively uses the one NVM subset
91. No die contention or GC contention occurs between the
namespace 102 and the other namespaces.

<NVM Set 62>

The namespace 103 exclusively uses the two NVM sets
92, 93. Die contention may occur between the namespace
103 and the other namespaces which use the NVM set 62,
whereas no GC contention occurs between the namespace
103 and the other namespaces.

The namespaces 104, 105 share the one NVM subset 94.
Die contention may occur between the namespaces 104, 105
and the other namespaces which use the NVM set 62. No GC
contention occurs between the namespaces 104, 105 and the
other namespaces, whereas GC contention may occur
between the namespaces 104, 105.

The namespace 106 exclusively uses the one NVM subset
95. Die contention may occur between the namespace 106
and the other namespaces which use the NVM set 62,
whereas no GC contention occurs between the namespace
106 and the other namespaces.

10

15

20

25

30

35

40

45

50

55

60

65

14

Now, with reference to FIG. 4, a host write/garbage
collection operation for the 1solated NVM sets 60, 61 will be
described.

A upper leit part of the FIG. 4 illustrates a host write/
garbage collection operation for the NVM set 60.

(1) Allocation of the User Input Block

First, one of the free blocks in the free block pool 80 1s
allocated as a user input block 210. The user input block 210
1s a block to which write data from the host 2 1s to be written
and 1s also referred to as a write destination block. If the user
input block 210 has already been allocated, this operation 1s

not performed.
(2) Host Write
Write data from the host 2 1s written to the user input

block 210 from the write buffer 30. The write buffer 30

temporarily stores write data associated with the namespace
100 or the namespace 101. The lookup table corresponding
to the NVM set 60 1s updated. Consequently, a physical
address 1ndicative of a physical location 1n the user input
block 210 to which the write data has been written 1s mapped
to a logical address (LBA) corresponding to the write data.

(3) Movement of the User Input Block

When the user input block 210 1s filled with the write data,
the user 1input block 210 1s moved to the NVM subset (data
block pool) 90. In other words, the user mput block 210
filled with the data 1s managed by the NVM subset (data
block pool) 90.

(4) Allocation of the GC Input Block

When garbage collection needs to be executed in the
NVM set 60, a garbage collection operation for the blocks
in the NVM subset 90 1s performed independently of the
other NVM sets. For example, when the number of blocks
included in the NVM subset 90 1s larger than a certain
threshold X1 corresponding to the NVM subset 90, the
garbage collection operation may be determined to be nec-
essary. The threshold X1 may be determined based on the
total number of blocks which can be allocated for the NVM
subset 90. For example, the certain threshold X1 corre-
sponding to the NVM set 90 may be a value resulting from
subtraction of a predetermined number from the total num-
ber of blocks which can be allocated for the NVM subset 90.

When the garbage collection operation 1s needed in the
NVM set 60, one free block 1n the free block pool 80 1s
allocated as the GC mput block 200. The GC mput block 200
1s a block to which valid data 1s to be copied for garbage
collection and 1s also referred to as a copy destination block.

(5) Copying of Valid Data

One or more blocks including a mixture of valid data and
invalid data are selected from the blocks 1n the NVM subset
90 as copy source blocks. Only the valid data 1n the selected
blocks 1s copied to the GC put block 200. The lookup table
corresponding to the NVM set 60 1s updated. Consequently,
a physical address indicative of a physical location 1n the GC
input block 200 to which the valid data has been copied 1s
mapped to a logical address (LBA) corresponding to the
copied valid data.

(6) Movement of the GC Input Block

When the GC mput block 200 1s filled with the valid data,
the GC 1put block 200 1s moved to the NVM subset 90. In
other words, the GC mput block 200 filled with the valid
data 1s managed by the NVM subset (data block pool) 90.

(7) Returning of Blocks

Blocks which are managed by the NVM subset 90 and
which do not hold valid data are returned from the NVM
subset 90 to the free block pool 80. Blocks which do not hold

valid data are blocks where all the data therein are invali-

US RE49,508 E

15

dated by host write, or blocks where all the valid data therein
are copied to the copy destination block by the garbage
collection operation.

A lower left part of FIG. 4 1llustrates a host write/garbage
collection operation for the NVM set 61.

(1) Allocation of the User Input Block

One free block 1n the free block pool 81 1s allocated as a
user mput block 211.

(2) Host Write

Write data from the host 2 i1s written to the user input
block 211 from the write bufler 31. The write buller 31
temporarily stores write data associated with the namespace
102. The lookup table corresponding to the NVM set 61 1s
updated. Consequently, a physical address indicative of a
physical location 1n the user input block 211 to which the
write data has been written 1s mapped to a logical address
(LBA) corresponding to the write data.

(3) Movement of the User Input Block

When the user input block 211 1s filled with the write data,
the user input block 211 1s moved to the NVM subset (data
block pool) 91. In other words, the user mput block 211
filled with the data 1s managed by the NVM subset (data
block pool) 91.

(4) Allocation of the GC Input Block

When garbage collection needs to be executed in the
NVM set 61, a garbage collection operation for the blocks
in the NVM subset 91 1s performed independently of the
other NVM sets. For example, when the number of blocks
included 1n the NVM subset 91 1s larger than the certain
threshold X1 corresponding to the NVM subset 91, the
garbage collection operation may be determined to be nec-
essary. The threshold X1 may be determined based on the
total number of blocks which can be allocated for the NVM
subset 91. For example, the certain threshold X1 corre-
sponding to the NVM set 91 may be a value resulting from
subtraction of a predetermined number from the total num-
ber of blocks which can be allocated for the NVM subset 91.

When the garbage collection operation 1s needed in the
NVM set 61, one free block 1n the free block pool 81 1s
allocated as the GC input block 201.

(5) Copying of Valid Data

One or more blocks including a mixture of valid data and
invalid data are selected from the blocks 1n the NVM subset
91 as copy source blocks. Only the valid data in the selected
blocks 1s copied to the GC mput block 201. The lookup table
corresponding to the NVM set 61 1s updated. Consequently,
a physical address indicative of a physical location in the GC
input block 201 to which the valid data has been copied is
mapped to a logical address (LBA) corresponding to the
copied valid data.

(6) Movement of the GC Input Block

When the GC mput block 201 1s filled with the valid data,
the GC 1nput block 201 1s moved to the NVM subset 91. In
other words, the GC mput block 201 filled with the valid
data 1s managed by the NVM subset (data block pool) 91.

(7) Returning of Blocks

Blocks which are managed by the NVM subset 91 and
which do not hold valid data are returned from the NVM
subset 91 to the free block pool 81. Blocks which do not hold
valid data are blocks where all the data therein are invali-
dated by host write or blocks where all the valid data therein
are copied to the copy destination block by the garbage
collection operation.

FIG. 5 1s a host write/garbage collection operation per-
formed for the shared NVM set 62. In FIG. 5, a case 1s
assumed where the shared NVM set 62 comprises only the
two NVM subsets 94, 95.

10

15

20

25

30

35

40

45

50

55

60

65

16

A host write/garbage collection operation for the NVM
subset 94 1s performed as follows.
(1) Allocation of the User Input Block

One free block 1n the free block pool 82 1s allocated as a
user mput block 214.
(2) Host Write

Write data from the host 2 1s written to the user input
block 214 from the write bufler 34. The write builer 34

temporarily stores write data associated with the namespace
104 or 105. The lookup table corresponding to the NVM
subset 94 1s updated. Consequently, a physical address
indicative of a physical location 1n the user input block 214
to which the write data has been written 1s mapped to a
logical address (LBA) corresponding to the write data.

(3) Movement of the User Input Block

When the user input block 214 1s filled with the write data,
the user input block 214 1s moved to the NVM subset (data
block pool) 94. In other words, the user mput block 214
filled with the data 1s managed by the NVM subset (data
block pool) 94.

(4) Allocation of the GC Input Block

When garbage collection needs to be executed in the
NVM subset (data block pool) 94, a garbage collection
operation for the blocks 1n the NVM subset 94 1s performed
independently of the other NVM sets and the other NVM
subsets 1n the NVM set 62. For example, when the number
of blocks included in the NVM subset 94 1s larger than the
certain threshold X1 corresponding to the NVM subset 94,
the garbage collection operation may be determined to be
necessary. The threshold X1 may be determined based on
the total number of blocks which can be allocated for the
NVM subset 94. For example, the certain threshold X1
corresponding to the NVM set 94 may be a value resulting
from subtraction of a predetermined number from the total

number of blocks which can be allocated for the NVM
subset 94.

When the garbage collection operation 1s needed for the
NVM subset 94, one free block 1n the free block pool 82 1s
allocated as a GC input block 204.

(5) Copying of Valid Data

One or more blocks including a mixture of valid data and
invalid data are selected from the blocks 1n the NVM subset
94 as copy source blocks. Only the valid data 1n the selected
blocks 1s copied to the GC mput block 204. The lookup table
corresponding to the NVM subset 94 1s updated. Conse-
quently, a physical address indicative of a physical location
in the GC mput block 204 to which the valid data has been
copied 1s mapped to a logical address (LBA) corresponding
to the copied valid data.

(6) Movement of the GC Input Block

When the GC mput block 204 1s filled with the valid data,
the GC 1mput block 204 1s moved to the NVM subset 94. In
other words, the GC 1nput block 204 filled with the valid
data 1s managed by the NVM subset (data block pool) 94.

(7) Returming of Blocks

Blocks which are managed by the NVM subset 94 and
which do not hold valid data are returned from the NVM
subset 94 to the free block pool 82. Blocks which do not hold
valid data are blocks where all the data therein are invali-
dated by host write or blocks where all the valid data therein
are copied to the copy destination block by the garbage
collection operation.

A host write/garbage collection operation for the NVM
subset 95 1s performed in accordance with the same proce-
dure for the host write/garbage collection operation for the

NVM subset 94.

US RE49,508 E

17

FIG. 6 illustrates another configuration example of a
plurality of NVM sets.

In FIG. 6, each NVM set comprises a set of NAND flash
memory dies connected to the same channel. That 1s, an
NVM set 110 comprises the NAND flash memory dies 600,
601, 602, 603, . .. 605, 606 connected to the channel Ch0.
An NVM set 111 comprises the NAND flash memory dies
610, 611, 612, 613, . .. 615, 616 connected to the channel
Chl. An NVM set 112 comprises the NAND flash memory
dies 620, 621, 622, 623, . . . 625, 626 connected to the
channel Ch2, . . . the NAND flash memory dies 640, 641,
642, 643, . . . 645, 646 connected to the channel ChN.

In the NVM set configuration in FIG. 6, accesses to the
NVM sets 110, 111, 112 are executed via diflerent channels.
Therefore, on whichever NAND flash memory die 1n a
certain NVM set a data write/read operation 1s being per-
formed, a data write/read operation can be immediately
performed for any NAND flash memory die 1n another
NVM set.

In the NVM set configuration 1 FIG. 2 1 which each
NVM set spans a plurality of channels, one channel 1s shared
among the NVM sets. Therefore, in the NVM set configu-
ration 1n FIG. 2, 1f a write/read request to the NAND flash
memory die 600 in the NVM set 60 and a write/read request
to the NAND flash memory die 601 in the NVM set 61 are
simultaneously 1ssued, latency may increase due to access
contention to the channel Ch0.

In the NVM set configuration in FIG. 6, accesses to the
NVM sets 110, 111, 112 are executed via diflerent channels,
and thus, even 1 write/read requests to the NVM sets 110,
111, 112 are simultaneously 1ssued, the write/read requests
can be immediately performed. Therefore, latency on access
requests from the host 2 can be reduced.

However, 1n the NVM set configuration in FIG. 6, peak
I/0 performance of each NVM set 1s limited to the perfor-
mance of a single channel. Therefore, the NVM set con-
figuration in FIG. 6 1s suitably utilized in combination with
a mechanism which enables the performance of a single
channel to be improved.

FIG. 7 illustrates a relation between block management
corresponding to each NVM set 1n FIG. 6 and one or more
regions (namespaces) corresponding to each NVM set.

[.ike the NVM set 60 in FIG. 2, the NVM set 110 can
function as an 1solated NVM set. In the process of initial-
1zing the SSD 3, all the blocks belonging to the NVM set 110
are placed 1n the free block pool 80 dedicated to the NVM
subset 90. Like the NVM set 61 1n FIG. 2, the NVM set 111
can function as an isolated NVM set. In the process of
iitializing the SSD 3, all the blocks belonging to the NVM
set 111 are placed 1n the free block pool 81 dedicated to the
NVM subset 91. Like the NVM set 62 1n FIG. 2, the NVM
set 112 can function as a shared NVM set. In the process of
mitializing the SSD 3, all the blocks belonging to the NVM
set 112 are placed 1n the free block pool 82 shared by the
NVM subsets 92 to 95.

FIG. 8 schematically illustrates a flash memory package
which can be used as the NAND flash memory 5 mounted
in the SSD 3.

This flash memory package 910 1s a memory package
which enables an increase 1n the rate of data input and data
output and a reduction 1 power consumption based on a
through silicon via (TSV) technique which uses an electrode
perpendicularly penetrating the inside of NAND flash
memory dies stacked in the package. In the flash memory
package 910, the plurality of stacked NAND flash memory
dies 1s housed 1n the single package. A case 1s 1llustrated
where eight NAND flash memory dies D0 to D7 are housed

10

15

20

25

30

35

40

45

50

55

60

65

18

in a single package. However, the number of NAND flash
memory dies housed 1n the package 1s not limited to this
example.

The flash memory package 910 comprises a package
substrate 911 such as a printed wiring board, an interface die
(also referred to as an interface chip) Ce, and the above-
described stacked NAND flash memory dies D0 to D7. On
a back surface of the package substrate 911, a plurality of
solder bumps 916 1s arranged which functions as a plurality
of external I/O terminals (electrodes) to allow signals to be
input and output. These signals include I/0 signals of an 8
bit width and various control signals (a plurality of chip
enable signals CE, a command latch enable signal CLE, an
address latch enable signal ALE, a write enable signal WE,
a read enable signal RE, a plurality of ready/busy 51gnals
RB, and the like). The IO signals of an 8 bit width are used
to transmit commands, addresses, data, and the like. A part
of the address may include a chip address. A NAND flash
memory die to be accessed may be selected based on a
combination of the chip enable signal CE and the chip
address.

The interface die Ce 1s arranged on a front surface of the
package substrate 911. The mterface die Ce 1s connected to
the plurality of solder bumps 916 via a wiring layer not
illustrated in the drawings.

The stacked NAND flash memory dies D0 to D7 are
interconnected by a large number of vertical vias 925. The
interface die Ce transmits the I/O signals, the chip enable
signals CE, the command latch enable signal CLE, the
address latch enable signal ALE, the write enable signal WE,
the read enable signal RE, and the like to the NAND ﬂash
memory dies D0 to D7 via the large number of vertical vias
925, and receives the I/O signals, the ready/busy signals RB,
and the like from the NAND flash memory dies D0 to D7 via
the large number of vertical vias 925.

The interface die Ce may incorporate a parallel/serial
conversion circuit. The mterface die Ce may convert the I/O
signals of an 8 bit width from the controller 4 into, for
example, I/O signals of a 64 bit width using the parallel/
serial conversion circuit, and transmit the I/O signals of a 64
bit width to the NAND flash memory dies D0 to D7 via
particular 64 vertical vias included in the large number of
vertical vias 925.

Each of the vertical vias 925 comprises a plurality of
through electrodes V penetrating semiconductor substrates
of the stacked NAND flash memory dies D0 to D7, and a
plurality of bump electrodes (solder bumps) 919 each con-
necting corresponding two of the stacked NAND flash
memory dies D0 to D7.

In a conventional memory package using wire bonding,
an increased number of dies stacked increase the parasitic
capacitance and parasitic resistance of external I/O terminals
of the package, making the memory package dithicult to
operate at high frequency.

In the tflash memory package 910 1n FIG. 8, the stacked
NAND flash memory dies D0 to D7 are interconnected by
the large number of vertical vias 925 instead of bonding
wire. Therelore, the parasitic capacitance and parasitic resis-
tance of the external I/O terminals can be reduced to enable
the NAND flash memory dies 1n the flash memory package
910 to operate at high operating frequency.

FIG. 9 1s a cross-sectional view of the flash memory
package 910.

The stacked NAND flash memory dies D0 to D7 are
mounted on a front surface of a supporting substrate 912.
Through electrodes V are embedded in each of the NAND
flash memory dies D0 to D7. The through electrodes V are

US RE49,508 E

19

clectrodes penetrating the semiconductor substrate in the
corresponding NAND flash memory die. The through elec-
trodes V 1n two adjacent NAND flash memory dies are
connected together by solder bumps 919. In this case, on the
front surface of each NAND flash memory die, the through
clectrodes V may be connected to the solder bumps 919 via
wiring layers provided above the corresponding semicon-
ductor substrate. The two adjacent NAND flash memory
dies may be physically coupled together via bonding layers
915.

The interface die Ce 1s mounted on a back surface of the
supporting substrate 912. Wiring layers 923 are formed 1n
the supporting substrate 912. The interface die Ce 1s con-
nected to the wiring layers 923 via a plurality of the solder
bumps 918. Each through electrode V 1n the lowermost
NAND flash memory die D0 1s connected to the wiring
layers 923. Consequently, the interface die Ce 1s electrically
connected to the NAND flash memory dies D0 to D7.

The supporting substrate 912 1s connected to the package
substrate 911 via a plurality of solder bumps 917. The
interface die Ce 1s sealed with a sealing resin 921. The
NAND flash memory dies D0 to D7 are sealed with a sealin
resin 922. Outer peripheries of the sealing resins 921, 922
are sealed with a sealing resin 920, and the upper portion of
the sealing resin 1s sealed with a metal plate 913.

FIG. 10 1llustrates a relation between a plurality of NVM
sets described with reference to FIG. 6 and one or more flash
memory packages used as the NVM sets.

FIG. 10 1llustrates an example where a large number of
NAND flash memory dies in the NAND flash memory 3 are

classified into two NVM sets 130, 131. The NVM sets 130,
131 correspond to the 1solated NVM sets 110, 111 described
with reference to FIG. 6, respectively. The NVM set 130
comprises the NAND flash memory dies D0 to D7 each
connected to the channel Ch0, and the NVM set 131
comprises NAND flash memory dies D10 to D17 each
connected to the channel Chl.

The NAND flash memory dies D0 to D7 1n the NVM set

130 are implemented by the single flash memory package
910. In the flash memory package 910, the NAND flash
memory dies D0 to D7 are stacked and interconnected by a
large number of vertical vias (each vertical via comprises the
through electrodes V and the solder bumps 919) as described
with reference to FIG. 8 and FIG. 9. A plurality of signal
lines 1n the channel Ch0 connects to the plurality of external
[/O terminals (solder bumps 916) provided on the back
surface of the package substrate 911 of the flash memory
package 910. The signal lines may include an I/O signal line
of an 8 bit width and a plurality of control signal lines for the
various control signals (the plurality of chip enable signals
CE, the command latch enable signal CLE, the address latch
enable signal ALE, the write enable signal WE, the read
enable signal RE, the plurality of ready/busy signals RB, and
the like). These signals received from the NAND interface
13 via the channel Ch0 are transmitted to the NAND flash
memory dies D0 to D7 via the mterface die Ce and the large
number of vertical vias.

Also the NAND flash memory dies D10 to D17 in the
NVM set 131 are implemented by a single flash memory
package 930. The tflash memory package 930 has a structure
similar to the structure of the flash memory package 910.
That 1s, 1n the flash memory package 930, the NAND flash
memory dies D10 to D17 are stacked and interconnected by
a large number of vertical vias (each vertical via comprises
the through electrodes V and the solder bumps 939). A
plurality of signal lines in the channel Chl connects to a
plurality of external I/O terminals (solder bumps 936) pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

20

vided on a back surface of a package circuit board 931 of the
flash memory package 930. The signal lines may include an
I/O signal line of an 8 bit width and a plurality of control
signal lines for the various control signals (the plurality of
chip enable signals CE, the command latch enable signal
CLE, the address latch enable signal ALE, the write enable
signal WE, the read enable signal RE, the plurality of
ready/busy signals RB, and the like). These signals recerved
from the NAND interface 13 via the channel Chl are
transmitted to the NAND flash memory dies D10 to D17 via
the 1nterface die Ce and the large number of vertical vias.

The controller 4 performs a data write/read operation for
the NVM set 130 via the channel Ch0 1n accordance with an
[/O command from the host 2 designating a region
(namespace) corresponding to the NVM set 130. The con-
troller 4 also performs a data write/read operation for the
NVM set 131 via the channel Chl 1n accordance with an I/O
command from the host 2 designating a region (namespace)
corresponding to the NVM set 131.

In the configuration 1n FIG. 10, the peak I/O performance
of each NVM set 1s limited to the performance of a single
channel, but the performance of each channel is better than
in a configuration using a normal memory package in which
a plurality of dies 1s connected together by wire bonding.
Theretfore, the configuration in FIG. 10 enables simultane-
ous execution of write/read requests to the NVM sets 130,
131, respectively, and also enables minimization of degra-
dation of the peak I/O performance of each NVM set.

FIG. 10 illustrates the case where the plurality of NAND
flash memory dies included 1n each isolated NVM set 1s
implemented by the memory package comprising the large
number of vertical vias (TSVs). However, a plurality of
NAND flash memory dies included in a shared NVM set can
also be implemented by a memory package comprising a
large number of vertical vias (TSVs).

When a single memory package comprising a large num-
ber of vertical vias (TSVs) supports two or more channels,
a plurality of NAND flash memory dies included in two or
more NVM sets corresponding to two or more channels may
be implemented by a single memory package.

Now, a garbage collection operation for the NVM set 60
described with reference to FIG. 2 and FIG. 3 will be
specifically described with reference to FIG. 11 to FIG. 13.

In FIG. 11 to FIG. 13, for simplification of illustration, a
case 1s assumed where the NVM set 60 comprises two
NAND flash memory dies 1 and 2 and where each die
comprises two blocks each including pages P1 to P4.

As 1llustrated in FIG. 11, a free block (1n this case, a free
block #21) 1n the free block pool 80 i1s allocated as the GC
input block 200.

Subsequently, a block including a mixture of valid data
and invalid data (block #11) 1s selected from the NVM
subset 90 as a copy source block. Only the valid data 1n the
selected copy source block (block #11) 1s copied to the GC
input block 200 (block #21).

In the block #11, if a mixture of valid data d1, d3 and
invalid data d2, d4 1s present, only the valid data d1 and the
valid data d3 are copied to the GC input block 200 (block
#21). At this time, the data d1 1s copied to the page P1 of the
block #21, and the data d3 1s copied to the page P2 of the
block #21.

When the valid data (data d1 and data d3) in the block #11
are copied to the GC input block 200 (block #21), the data
d1 and the data d3 in the block #11 are invalidated. Conse-
quently, the block #11 becomes a block holding no valid
data, and thus, the block #11 1s returned to the free block
pool 80 as depicted 1 FIG. 12.

US RE49,508 E

21

In the NVM subset 90, a block #12 including a mixture of
valid data d5, d7 and invalid data d6, d8 exists. When the
block #12 1s selected as a copy source block, only the valid
data (data d5 and data d7) in the block #12 are copied to the
GC mput block 200 (block #21). At this time, the data dS 1s
copied to the page P3 of the block #21, and the data d7 is
copied to the page P4 of the block #21.

When the valid data (data d5 and data d7) in the block #12
are copied to the GC mput block 200 (block #21), the data
dS and the data d7 in the block #12 are invalidated. Con-
sequently, the block #12 becomes a block holding no valid
data, and thus, the block #12 1s returned to the free block
pool 80 as depicted in FIG. 13. When the data d5 and the
data d7 are copied to the GC mput block 200 (block #21),
the block #21 1s filled with the valid data. In this case, the
block #21 1s moved to the NVM subset 90.

FIG. 14 1llustrates an iter-NVM-set copy operation. In
the description below, the NVM set 60 1n FIG. 2 15 assumed
to be a copy source NVM set, and the NVM set 61 1n FIG.
2 1s assumed to be a copy destination NVM set. The host 2
can designate the copy source NVM set and the copy
destination NVM set. The copy destination NVM set may be
an NVM set not currently used by the host 2. When the
NVM set not currently used by the host 2 1s used as the copy
destination block, a mixture of hot data and cold data in the
copy destination NVM set resulting from the inter-NVM-set
copy operation can be prevented. It all of the NVM sets are
currently being utilized, the host 2 may transmit a command
requesting creation of a new NVM set to the SSD 3.

The inter-NVM-set copy operation 1s performed accord-
ing to the following procedure.

(1) Allocation of the User Input Block

In the copy destination block (NVM set 61), one free
block 1n the free block pool 81 is allocated as the user input
block 211.

(2) Host Write

Write data from the host 2 1s written to the user input
block 211 from the write bufler 31. Normally, write data
associated with the namespace 102 corresponding to the
copy destination NVM set, that 1s, write data directed to the
copy destination NVM set, 1s stored in the write bufler 31.
However, after the mter-NVM-set copy operation 1s started,
write data associated with the namespace 100 or 101 cor-
responding to the copy source NVM set, that 1s, write data
directed to the copy source NVM set, 1s stored in the write
bufler 31. The lookup table corresponding to the NVM
subset 90 1s updated. Consequently, a physical address
indicative of a physical location 1n the user input block 211
to which the write data has been written 1s mapped to a
logical address (LBA) corresponding to the write data.

As described above, before the inter-NVM-set copy
operation, the write destination of the write data associated
with the namespace 101 or the namespace 100 1s the user
input block 210 1n the copy source NVM set (NVM set 60).
However, after the inter-NVM-set copy operation, the write
destination of the write data associated with the namespace
101 or the namespace 100 1s the user input block 211 1n the
copy destination NVM set (NVM set 61).

(3) Movement of the User Input Block

When the user mput block 211 1s filled with the write data,

the user input block 211 1s moved to the NVM subset (data
block pool) 91. In other words, the user mput block 211
filled with the data 1s managed by the NVM subset (data
block pool) 91.

10

15

20

25

30

35

40

45

50

55

60

65

22

(4) Allocation of the GC Input Block

In the copy destination block (NVM set 61), one free
block 1n the free block pool 81 1s allocated as the GC input
block 201.

(5) Copying of Valid Data from the Copy Source NVM
Set to the Copy Destination NVM Set

A block holding valid data 1s selected from the blocks 1n
the NVM subset 90 of the copy source NVM set (NVM set

60) as a copy source block. Only the valid data 1n the copy
source block 1s copied to the GC mput block (copy desti-
nation block) 201 of the copy destination block (NVM set
61). In this case, first, valid data to be copied is selected from
the copy source block. The selected valid data 1s read from
the copy source block and written to the GC mput block
(copy destination block) 201.

When the valid data 1s copied to the GC input block 201,
the lookup table corresponding to the NVM subset 90 1s
updated. Consequently, a physical address indicative of a
physical location 1n the GC mput block 201 to which the
valid data has been written 1s mapped to a logical address
(LBA) corresponding to the valid data.

(6) Movement of the GC Input Block

In the copy destination NVM set (NVM set 61), when the
GC 1nput block 201 1s filled with the valid data from the
block 1n the copy source NVM set (NVM set 60), the GC
input block 201 1s moved to the NVM subset 91. In other
words, the GC mput block 201 filled with the valid data 1s
managed by the NVM subset (data block pool) 91.

(7) Returming of Blocks

In the copy destination NVM set (NVM set 61), blocks
which are managed by the NVM subset 91 and which hold
no valid data are returned from the NVM subset 91 to the
free block pool 81. For example, when all of the data held
by a certain block in the NVM subset 91 are mvalidated by
writing of new write data to the user mput block 211, the
block 1s returned from the NVM subset 91 to the free block
pool 81.

(7)' Returning of the Copy Source Block

In the copy source NVM set (NVM set 60), when the valid
data 1n the copy source block 1s copied to the GC mput block
201 and thereby valid data no longer exist 1n the copy source
block, the copy source block is returned from the NVM
subset 90 to the free block pool 80.

The mnter-NVM-set copy operation allows a physical
storage space for data (hot data) stored 1n the copy source
NVM set to be changed to the copy destination NVM set
subjected to a small number of rewrites (a small number of
program/erase cycles). Therefore, wear leveling can be
executed to level the degrees of wear among the NVM sets.

Betfore valid data selected as a copy target 1s actually
copied to the GC mput block 201, write data with the same
LBAx as that of the selected valid data (i1.e., new data
corresponding to the LBAX) may be written to the user input
block 211. When the write data (new data corresponding to
the LBAX) 1s written to the user input block 211, the lookup
table corresponding to the NVM subset 90 1s updated.
Consequently, a physical address indicative of a physical
location 1n the user mput block 211 to which the write data
has been written 1s mapped to an LBAX corresponding to the
write data.

In this case, the selected valid data 1s old data which 1s no
longer read by the host 2. Therefore, 1f write data with the
same LBAX as that of the valid data selected as a copy target
1s written to the user input block 211 before the valid data 1s
actually copied to the GC mput block 201, a copying
operation for the selected valid data may be suspended. This
allows prevention of execution of an unwanted copying
operation.

US RE49,508 E

23

Alternatively, instead of suspension of the copying opera-
tion for the valid data, an operation may be performed in
which the copying operation 1tself for the selected valid data
1s performed, with update of the lookup table corresponding
to the NVM subset 90 avoided. Consequently, a physical
address corresponding to the LBAX can be prevented from
being changed to a value indicative of a physical location to
which the valid data (old data) has been copied. More
specifically, each time valid data corresponding to a certain
LBA 1s copied to the GC mput block 201, the controller 4
references the lookup table to determine to which of the
copy source NVM set (NVM set 60) or the copy destination
NVM set (NVM set 61) the physical address corresponding,
to the LBA corresponds. It the physical address corresponds
to the copy destination NVM set (NVM set 61), the con-
troller 4 recognizes that new data corresponding to the LBA
has been written to the user input block 211, and avoids
updating the lookup table. On the other hand, 11 the physical
address corresponds to the copy source NVM set (NVM set
60), the controller 4 recognizes that the copied valid data 1s
the latest data corresponding to the LBA, and updates the
lookup table. Update of the lookup table allows the physical
address mdicative of the physical location to which the valid
data has been copied to be mapped to the LBA.

FIG. 15 illustrates a relation between the contents of the
address translation table (LUT) before the inter-NVM-set
copy operation 1n FIG. 14 and the contents of the address
translation table (LUT) after the inter-NVM-set copy opera-
tion.

In a period of time before the mter-NVM-set copy opera-
tion 1s performed, the LUT 40 corresponding to the NVM
subset 90 holds only the physical addresses of the copy
source NVM set (NVM set 60).

When an mter-NVM-set copy operation irom the copy
source NVM set (NVM set 60) to the copy destination NVM
set (NVM set 61) 15 started, the physical addresses 1n the
LUT 40 are updated. For example, when data d10 corre-
sponding to an LBA 10 1s copied from the copy source block
(NVM set 60) to the GC mput block 201 1n the copy
destination NVM set (NVM set 61), a physical address
indicative of a physical location in the copy destination
NVM set (NVM set 61) to which the data d10 has been
copied 1s mapped to the LBA 10 1n the LUT 40. Therelore,
when the inter-NVM-set copy operation 1s completed, the
LUT 40 holds only the physical addresses of the NVM set
61.

When the mter-NVM-set copy operation 1s performed
using a mechanism similar to the mechanism for GC, the
controller 4 can read data requested by the host 2 from the
copy destination NVM set (NVM set 61) by referencing the
LUT 40 without a special process lfor creating address
translation information corresponding to the data copied to
the copy destination NVM set (NVM set 61).

Now, the inter-NVM-set copy operation will be specifi-
cally described with reference to FIG. 16 to FIG. 18.

In FIG. 16 to FIG. 18, for simplification of illustration, the
NVM set 60 1s assumed to comprise the NAND flash
memory dies 1 and 2, the NVM set 61 1s assumed to
comprise the NAND flash memory dies 3 and 4, and each of

dies 1s assumed to have two blocks each including the pages
P1 to P4. Valid data 1s assumed to be copied from the NVM

set 60 to the NVM set 61.

As 1llustrated 1n FIG. 16, 1n the copy destination NVM set
(NVM set 61), a free block (in this case, a block #41) 1n the
free block pool 81 1s allocated as the GC input block 201.

Subsequently, 1n the copy source NVM set (NVM set 60),
a block holding valid data 1s selected from the NVM subset

10

15

20

25

30

35

40

45

50

55

60

65

24

90 as a copy source block. Only the valid data 1n the selected
copy source block (block #11) 1s copied to the GC input
block 201 (block #41) i the copy destination NVM set
(NVM set 61).

In the block #11, if a mixture of the valid data d1, d3 and
the invalid data d2, d4 1s present, only the valid data d1 and
the valid data d3 are copied to the GC mput block 201 (block
#41). At this time, the data d1 1s copied to the page P1 of the
block #41, and the data d3 1s copied to the page P2 of the
block #41.

When the valid data (data d1 and data d3) in the block #11
are copied to the GC input block 201 (block #41), the data
d1 and the data d3 in the block #11 are invalidated. Conse-
quently, the block #11 becomes a block holding no valid
data, and thus, the block #11 1s returned to the free block
pool 80 as depicted mn FIG. 17.

In the NVM subset 90, a block #12 including a mixture of
valid data dS, d7 and invalid data d6, d8 exists. When the
block #12 1s selected as a copy source block, only the valid
data (data d5 and data d7) 1n the block #12 are copied to the
GC mput block 201 (block #41). At this time, the data dS 1s
copied to the page P3 of the block #41, and the data d7 is
copied to the page P4 of the block #41.

When the valid data (data d5 and data d7) in the block #12
are copied to the GC input block 201 (block #41), the data
dS and the data d7 in the block #12 are invalidated. Con-
sequently, the block #12 becomes a block holding no valid
data, and thus, the block #12 1s returned to the free block
pool 80 as depicted 1n FIG. 18. When the data d5 and the
data d7 are copied to the GC mput block 201 (block #41),
the block #41 1s filled with the valid data. In this case, the
block #41 1s moved to the NVM subset 91.

FIG. 19 1illustrates an outline of an NVM set exchange

operation of exchanging data in two NVM sets (an NVM set
#1, an NVM set #2) with each other.

The NVM set #1 1s assumed to be the NVM set 60, and
the NVM set #2 1s assumed to be the NVM set 61. A state
betfore an NVM set exchange operation 1s assumed to be
such that data A (data with a high update frequency) 1s stored
in the NVM set #1 (NVM set 60) and that data B (data with
a low update frequency) 1s stored 1n the NVM set #2 (NVM
set 61).

In this case, the number of rewrites (the number of
program/erase cycles) for the NVM set #1 (NVM set 60) 15
larger than the number of rewrites (the number of program/
erase cycles) for the NVM set #2 (NVM set 61). The number
of rewrites (the number of program/erase cycles) for the
NVM set may be represented by the average of the numbers
of program/erase cycles for all the blocks belonging to the
NVM set or by the total of the numbers of program/erase
cycles for all the blocks belonging to the NVM set.

For example, the data in the NVM set #1 (NVM set 60)
1s rewritten 800 times during a period of 100 days (the
number of program/erase cycles 800), and the data in the
NVM set #2 (NVM set 61) i1s rewritten only 100 times
during the same period of 100 days (the number of program/
erase cycles=100). If a limit value for the number of rewrites
for each block 1s, for example, 1,000, when 200 (=1000-800)
rewrites (program/erase operations) are executed on the
NVM set #1, the number of rewrites for the NVM set #1
reaches the limit value. In this case, each block 1n the NVM
set #1 1s likely to be no longer able to function normally.

In the present embodiment, an operation ol exchanging

the data i the NVM set #1 (NVM set 60) with the data in
the NVM set #2 (NVM set 61) can be perfonned as needed.
For example, when 100 days have elapsed since the start of

use of the SSD 3, the data 1n the NVM set #1 (NVM set 60)

US RE49,508 E

25

may be exchanged with the data in the NVM set #2 (NVM
set 61) 1n accordance with a command from the host 2
requesting NVM set exchange.

In the NVM set exchange operation, the valid data stored
in the NVM set #1 (NVM set 60) are copied to the NVM set

#2 (NVM set 61). Subsequently, the lookup table corre-
sponding to the NVM set #1 (NVM set 60) 1s updated.
Consequently, physical addresses indicative of physical
locations 1n the NVM set #2 (NVM set 61) to which the valid
data have been copied are mapped to logical addresses

(LBAs) corresponding to the copied valid data.
The valid data stored 1n the NVM set #2 (NVM set 61)

also are copied to the NVM set #1 (NVM set 60). Subse-
quently, the lookup table corresponding to the NVM set #2
(NVM set 61) 1s updated. Consequently, physical addresses
indicative of physical locations 1n the NVM set #1 (NVM set
60) to which the valid data have been copied are mapped to
logical addresses (LBA) corresponding to the copied valid
data.

When the NVM set exchange operation 1s completed, a
physical storage space for the data A (data with a high update
frequency) 1s changed to the NVM set #2 (NVM set 61), and
a physical storage space for the data B (data with a low
update frequency) 1s changed to the NVM set #1 (NVM set
60).

Immediately after completion of the data exchange, the
number of rewrites for the NVM set #2 (NVM set 61) 1s 100,
and the number of rewrites for the NVM set #1 (NVM set
60) 1s 800.

Subsequently, the data A 1s updated again at a high
frequency, thus increasing the number of rewrites for the
NVM set #2 to 800 during 100 days. On the other hand, the
data B 1s updated at a relatively low frequency, thus increas-
ing the number of rewrites for the NVM set #1 to 100 during
100 days. As result, when 200 days have elapsed since the
initial state (1.e., when 100 days have elapsed since the NVM

set exchange), the number of rewrites for the NVM set #2
(NVM set 61) 1s 900, and the number of rewrites for the

NVM set #1 (NVM set 60) 1s 900.
As described above, execution of the NVM set exchange

operation allows equalization of the numbers of rewrites for
the blocks belonging to the NVM set #1 (NVM set 60) and

the NVM sets can be leveled.

FI1G. 20 illustrates a host write/garbage collection opera-
tion performed for the two NVM sets before the NVM set
exchange operation.

Before execution of the NVM set exchange operation, the
host write/garbage collection operation 1s performed inde-

pendently on the NVM set #1 (NVM set 60) and on the
NVM set #2 (NVM set 61). Specifically, the operation 1s
performed as described with reference to FIG. 4.

FIG. 21 1s a host write/garbage collection operation
performed between the two NVM sets for the NVM set
exchange operation.

(1) Allocation of the User Input Block

In the NVM set #1, one block 1n the free block pool 80 1s
allocated as the user input block 210. In the NVM set #2, one
block 1n the free block pool 81 i1s allocated as the user input
block 211.

(2) Host Write

Write data from the host 2 1s written to the user input
block 210 from the write bufler 30. Normally, write data
associated with the namespace 100 or the namespace 101
corresponding to the NVM set #1 (NVM set 60), that is,
write data directed to the NVM set #1, 1s stored in the write
butler 30. However, after the NVM set exchange operation

the NVM set #2 (NVM set 61). Thus, the degrees of wear of

10

15

20

25

30

35

40

45

50

55

60

65

26

1s started, write data associated with the namespace 102
corresponding to the NVM set #2 (NVM set 61), that 1s,
write data directed to the NVM set #2, 1s stored 1n the write
bufler 30. The lookup table corresponding to the NVM set
#2 (NVM set 61) 1s updated. Consequently, a physical
address indicative of a physical location 1n the user mput
block 210 to which the write data has been written 1s mapped
to a logical address (LBA) corresponding to the write data.

As described above, before the NVM set exchange opera-
tion, the write destination of the write data associated with
the namespace 102 1s the user input block 211 1n the NVM
set #2 (NVM set 61). However, after the NVM set exchange
operation 1s started, the write destination of the write data
associated with the namespace 102 1s changed to the user
input block 210 1n the NVM set #1 (NVM set 60).

Write data from the host 2 1s written to the user input
block 211 from the write bufler 31. Normally, write data
associated with the namespace 102 corresponding to the
NVM set #2 (NVM set 61), that 1s, write data directed to the
NVM set #2, 1s stored 1n the write bufler 31. However, after
the NVM set exchange operation 1s started, write data

associated with the namespace 100 or 101 corresponding to
the NVM set #1 (NVM set 60), that 1s, write data directed

to the NVM set #1, 1s stored in the write buffer 31. The
lookup table corresponding to the NVM set #1 (NVM set 60)
1s updated. Consequently, a physical address indicative of a
physical location 1n the user mput block 211 to which the
write data has been written 1s mapped to a logical address
(LBA) corresponding to the write data.

As described above, before the NVM set exchange opera-
tion, the write destination of the write data associated with
the namespace 101 or the namespace 100 1s the user input
block 210 in the NVM set #1 (NVM set 60). However, after
the NVM set exchange operation 1s started, the write des-
tination of the write data associated with the namespace 101
or the namespace 100 1s changed to the user input block 211
in the NVM set #2 (NVM set 61).

(3) Movement of the User Input Block

When the user input block 210 1s filled with the write data,
the user iput block 210 1s moved to the NVM subset (data
block pool) 90. In other words, the user mput block 210
filled with the data 1s managed by the NVM subset (data
block pool) 90.

When the user input block 211 1s filled with the write data,
the user input block 211 1s moved to the NVM subset (data
block pool) 91. In other words, the user mput block 211
filled with the data 1s managed by the NVM subset (data
block pool) 91.

(4) Allocation of the GC Input Block

In the NVM set #1 (NVM set 60), one free block in the
free block pool 80 1s allocated as the GC input block 200.

In the NVM set #2 (NVM set 61), one free block in the
free block pool 81 1s allocated as the GC input block 201.
(5) Exchange of Valid Data
A block holding valid data 1s selected from the blocks 1n
the NVM subset 90 of the NVM set #1 (NVM set 60) as a
copy source block. Only the valid data 1n the copy source
block are copied to the GC mput block 201 in the NVM set
#2 (NVM set 61). Subsequently, the lookup table corre-
sponding to the NVM subset 90 1s updated. Consequently,
physical addresses indicative of physical locations in the GC
input block 201 to which the valid data have been copied are
mapped to logical addresses (LBAs) corresponding to the
copied valid data.

A block holding valid data 1s selected from the blocks 1n
the NVM subset 91 of the NVM set #2 (NVM set 61) as a

copy source block. Only the valid data 1n the copy source

US RE49,508 E

27

block are copied to the GC mput block 200 in the NVM set
#1 (NVM set 60). Subsequently, the lookup table corre-
sponding to the NVM subset 91 1s updated. Consequently,
physical addresses indicative of physical locations 1n the GC
input block 200 to which the valid data have been copied are
mapped to logical addresses (LBAs) corresponding to the
copied valid data.

(6) Movement of the GC Input Block

In the NVM set #1 (INVM set 60), when the GC input
block 200 1s filled with valid data from one or more blocks
in the NVM set #2 (NVM set 61), the GC 1nput block 200
1s moved to the NVM subset 90. In other words, the GC
input block 200 filled with the valid data 1s managed by the
NVM subset (data block pool) 90.

In the NVM set #2 (NVM set 61), when the GC nput
block 201 1s filled with valid data from one or more blocks
in the NVM set #1 (INVM set 60), the GC 1nput block 201
1s moved to the NVM subset 91. In other words, the GC
input block 201 filled with the valid data 1s managed by the
NVM subset (data block pool) 91.

(7) Returning of the Copy Source Block

In the NVM set #1 (NVM set 60), blocks which are
managed by the NVM subset 90 and which hold no valid
data are returned from the NVM subset 90 to the free block
pool 80. For example, when all the data held by a certain
block 1n the NVM subset 90 are invalidated by writing of
new write data to user input block 210, the block 1s returned
from the NVM subset 90 to the free block pool 80.

In the NVM set #2 (NVM set 61), blocks which are
managed by the NVM subset 91 and which hold no valid
data are returned from the NVM subset 91 to the free block
pool 81. For example, when all the data held by a certain
block 1n the NVM subset 91 are invalidated by writing of
new write data to the user input block 211, the block 1s
returned from the NVM subset 91 to the free block pool 81.

FIG. 22 illustrates an outline of a new-NVM-set creation

operation.
An NVM set 160 comprising the NAND flash memory

dies 600 to 606, 610 to 616, 620 to 626, . . . 640 to 646 is
assumed to be utilized. In the NVM set 160, a free block
pool 180 exists. The free block pool 180 1s shared by an
NVM subset 190B and an NVM subset 190C. Moreover, a
write buller 130B 1s provided 1n association with the NVM
subset 1908, and a write bufler 130C 1s provided in asso-
ciation with the NVM subset 190C.

The controller 4 can create a new NVM set 161 from the
NVM set 160 as depicted 1n a lower portion of FIG. 22. In
this case, first, NAND flash memory dies to be reserved for
the new NVM set 161 are determined from a plurality of

NAND flash memory dies included in the NVM set 160. In
the example illustrated 1n FIG. 22, the NAND flash memory
dies 600, 610, 620, . . . 640 are determined as NAND flash
memory dies for the NVM set 161. The valid data in the
NAND flash memory dies 600, 610, 620, . .. 640 are copied
to a group of blocks belonging to the remaining NAND flash
memory dies 1 the NVM set 160.

Consequently, a free block pool 181, an NVM subset
190A, and a write bufler 130A for the NVM set 161 are
created. Each of the free blocks 1n the NAND flash memory
dies 600, 610, 620, . . . 640 1s managed by the free block pool
181 for the NVM set 161. The original NVM set 160 i1s a
downsized NVM set. The free block pool 180 manages only
a group of free blocks belonging to the remaining NAND
flash memory dies other than the NAND tlash memory dies
600, 610, 620, . . . 640.

FI1G. 23 illustrates a host write/garbage collection opera-
tion performed to create a new NVM set. In FIG. 23, a case

10

15

20

25

30

35

40

45

50

55

60

65

28

1s assumed where the new NVM set 161 1s created from the
original NVM set 160 comprising two NVM subsets 1908,

190C.

(1) Allocation of the User Input Block

One free block 1n the free block pool 180 corresponding
to the original NVM set 160 1s allocated as a user input block
410 corresponding to the NVM subset 190B. One free block
in the free block pool 180 1s allocated as a user 1input block
411 corresponding to the NVM subset 190C. If the user
input blocks 410, 411 have already been allocated, this
operation 1s not performed.

(2) Host Write

Write data from the host 2 1s written to the user input
block 410 from a write bufler 130B. Subsequently, the
lookup table corresponding to the NVM subset 190B 1is
updated. Consequently, a physical address indicative of a
physical location in the user mput block 410 to which the
write data has been written 1s mapped to a logical address
(LBA) corresponding to the write data.

Write data from the host 2 1s written to the user input
block 411 from a wrte bufler 130C. Subsequently, the
lookup table corresponding to the NVM subset 190C 1s
updated. Consequently, a physical address indicative of a
physical location in the user mput block 411 to which the
write data has been written 1s mapped to a logical address
(LBA) corresponding to the write data.

(3) Movement of the User Input Block

When the user mnput block 410 1s filled with the write data,
the user iput block 410 1s moved to the NVM subset (data
block pool) 190B. In other words, the user input block 410
filled with the data 1s managed by the NVM subset (data
block pool) 190B.

When the user input block 411 1s filled with the write data,
the user input block 411 1s moved to the NVM subset (data
block pool) 190C. In other words, the user input block 411
filled with the data 1s managed by the NVM subset (data
block pool) 190C.

(4) Allocation of the GC Input Block

In the original NVM set (NVM set 160), one of the free
blocks 1n the free block pool 180 1s allocated as the GC input
block 400 eerrespendmg to the NVM subset 190B. One of
the free blocks 1n the free block pool 180 1s allocated as the
GC mput block 401 corresponding to the NVM subset 190C.

(5) Copying of Valid Data

One or more blocks including a mixture of valid data and
invalid data are selected from the blocks 1n the NVM subset
190B (or the NVM subset 190C) as copy source blocks.

Only the valid data in each of the copy source blocks are
copied to the GC input block 400 (or the GC mput block

401). Subsequently, the lookup table corresponding to the
NVM subset 1908 (or the NVM subset 190C) 1s updated.
Consequently, physical addresses indicative of physical
locations 1n the GC mput block 400 (or the GC 1nput block
401) to which the valid data have been copied are mapped
to logical addresses (LBAs) corresponding to the copied
valid data.

(6) Movement of the GC Input Block

When the GC nput block 400 (or the GC mput block 401)
1s filled with the valid data, the GC mput block 400 (or the
GC mput block 401) 1s moved to the NVM subset 190B (or
the NVM subset 190C). In other words, the GC mput block
400 (or the GC mput block 401) filled with the valid data 1s
managed by the corresponding NVM subset (data block
pool).

(7), (7) Returnming of Blocks

Blocks managed by the NVM subset 190B (or the NVM
subset 190C) and holding no valid data are returned to the

US RE49,508 E

29

free block pool. In this case, blocks which do not belong to
a set of dies to be allocated to the new NVM set 161 are

returned from the NVM subset 190B (or the NVM subset
190C) to the free block pool 180. On the other hand, the

blocks which belong to the set of dies to be allocated to the
new NVM set 161 are returned from the NVM subset 1908

(or the NVM subset 190C) to the free block pool 181 of the
new NVM set.

The case where GC 1s executed on the whole original
NVM set 160 has been described. However, blocks holding,
valid data may preferentially be selected, as copy source

blocks, from the blocks which belong to the set of dies to be
allocated to the new NVM set 161, and then, only the valid
data 1n the selected copy source blocks may be copied to the
GC mput block (copy destination block). This enables the
new NVM set 161 to be created 1n a short time.

Now, the new-NVM-set creation operation will specifi-

cally be described using FIG. 24 to FIG. 26. In FIG. 24 to

FIG. 26, for simplification of 1illustration, an NVM set 330

(NVM set A) 1s assumed to comprise the NAND flash

memory dies 1 to 4, and each of dies 1s assumed to have two
blocks each including the pages P1 to P4.

First, the NAND flash memory dies 1 and 2 to be reserved
for the new NVM set B are determined by being selected
from the NAND flash memory dies 1 to 4 belonging to the
NVM set A.

Then, as depicted in FIG. 24, a block (in this case, the
block #41) 1n a free block pool 300 of the NVM set A 1s
allocated as a GC mput block 320. A block holding valid
data (1n this case, the block #11) 1s selected from the blocks
in the NAND flash memory dies 1 and 2 reserved for the new
NVM set B, as a copy source block. Valid data in the
selected copy source block (block #11) 1s copied to the GC
input block 320 (block #41).

In the block #11, 1f a mixture of the valid data d1, d3 and
the invalid data d2, d4 1s present, only the valid data d1 and
the valid data d3 are copied to the GC mput block 320 (block
#41). At this time, the data d1 1s copied to the page P1 of the
block #41, and the data d3 1s copied to the page P2 of the
block #41.

When the valid data (data d1 and data d3) in the block #11
are copied to the GC mput block 320 (block #41), the data
d1 and the data d3 in the block #11 are invalidated. Conse-
quently, the block #11 becomes a block holding no valid

data, and thus, the block #11 1s returned to a free block pool
301 newly created for the NVM set B as depicted 1in FIG. 25.

In the NAND flash memory dies reserved for the NVM set
B, the block #12 including a mixture of the valid data d5, d7
and the mvalid data d6, d8 1s present. When the block #12
1s selected as a copy source block, only the valid data (data
dS and data d7) in the block #12 are copied to the GC 1mput
block 320 (block #41). At this time, the data dS 1s copied to
the page P3 of the block #21, and the data d7 1s copied to the
page P4 of the block #41.

When the valid data (data d5 and data d7) in the block #12
are copied to the GC mput block 320 (block #41), the data
dS and the data d7 in the block #12 are invalidated. Con-
sequently, the block #12 becomes a block holding no valid
data, and thus, the block #12 1s returned to the free block
pool 301 of the NVM set B (new NVM set) as depicted in
FIG. 26.

FI1G. 27 illustrates an outline of an NVM set combining,
operation.

FIG. 27 1llustrates an operation of combining the NVM
set #1 (NVM set 163) and the NVM set #2 (NVM set 164)

to the NVM set #3 (NVM set 163).

10

15

20

25

30

35

40

45

50

55

60

65

30

The NVM set #1 (NVM set 163) comprises the NAND
flash memory dies 600, 610, 620, . . . 640. The NVM set #2
(NVM set 164) comprises the NAND flash memory dies
601, 611, 621, . . . 641. The NVM set #3 (NVM set 165)
comprises the NAND flash memory dies 602 to 606, 612 to
616, 622 to 626, . . . 642 to 646.

When the NVM set #1 (NVM set 163) and the NVM set
#2 (NVM set 164) are combined to the NVM set #3 (NVM
set 165), a free block pool 183 corresponding to the NVM
set #1 (NVM set 163) and a free block pool 184 correspond-
ing to the NVM set #2 (NVM set 164) are also combined to
a free block pool 185 corresponding to the NVM set #3
(NVM set 165). Further, an NVM subset 190A of the NVM
set #1 (NVM set 163) and an NVM subset 190B of the NVM
set #2 (NVM set 164) are combined to an NVM subset 190C
of the NVM set #3 (NVM set 165).

FIG. 28 1llustrates a host write/garbage collection opera-
tion performed for NVM set combining.

Betfore the NVM set combining operation 1s performed, a
write data writing operation and a garbage collection opera-
tion are performed independently on the NVM sets #1 to #3.

(1) Allocation of the User Input Block

One free block 1n the free block pool 183 1s allocated as
a user mput block 413. One free block 1n the free block pool
184 1s allocated as a user mnput block 414. One free block 1n
the free block pool 183 1s allocated as a user input block 415.
If the user mput blocks 413, 414, 415 have already been
allocated, this operation 1s not performed.

(2) Host Write

In the NVM set #1 (NVM set 163), write data from the
host 2 1s written to the user input block 413 from the write
bufler 130A. The write buller 130A temporarnly stores write
data associated with the NVM subset 190A. Subsequently,
the lookup table corresponding to the NVM set 163 1s
updated. Consequently, a physical address indicative of a
physical location in the user mput block 413 to which the
write data has been written 1s mapped to a logical address
(LBA) corresponding to the write data.

In the NVM set #2 (NVM set 164), write data from the
host 2 1s written to the user input block 414 from the write
bufter 130B. The write butler 130B temporarily stores write
data associated with the NVM subset 190B. Subsequently,
the lookup table corresponding to the NVM set 164 1s
updated. Consequently, a physical address indicative of a
physical location in the user mput block 414 to which the
write data has been written 1s mapped to a logical address
(LBA) corresponding to the write data.

In the NVM set #3 (NVM set 165), write data from the
host 2 1s written to the user input block 415 from the write
bufler 130C. The write builer 130C temporarily stores write
data associated with the NVM subset 190C. Subsequently,
the lookup table corresponding to the NVM set 165 1s
updated. Consequently, a physical address indicative of a
physical location 1n the user mput block 415 to which the
write data has been written 1s mapped to a logical address
(LBA) corresponding to the write data.

(3) Movement of the User Input Block

When the user mnput block 415 1n the NVM set #3 1s filled
with the write data, the user iput block 415 1s moved to the
NVM subset (data block pool) 190C. In other words, the
user iput block 415 filled with the data 1s managed by the
NVM subset (data block pool) 190C.

Betfore the NVM set combining operation 1s performed,
when the user mput block 413 1n the NVM set #1 1s filled
with the write data, the user iput block 413 1s moved to the
NVM subset (data block pool) 190A, and when the user
input block 414 1n the NVM set #2 1s filled with the write

US RE49,508 E

31

data, the user input block 414 1s moved to the NVM subset
(data block pool) 190B. However, after the NVM set com-
bining operation 1s performed, an operation illustrated 1n (3)’
1s performed instead of the operation 1illustrated in (3).

(3) Movement of the User Input Block to the Combining
Destination NVM Set.

When the user mnput block 413 1n the NVM set #1 1s filled

with the write data, the user input block 413 1s moved to the
NVM subset 190C of the NVM set #3. In other words, the

user mput block 413 filled with the data 1s managed by the
NVM subset (data block pool) 190C.

When the user input block 414 1n the NVM set #2 1s filled
with the write data, the user input block 414 1s moved to the
NVM subset 190C of the NVM set #3. In other words, the
user mput block 414 filled with the data 1s managed by the
NVM subset (data block pool) 190C.

(4) Allocation of the GC Input Block

When garbage collection needs to be executed on the
NVM subset (data block pool) 190A, a garbage collection
operation for a group of the blocks in the NVM subset 190A
1s performed independently of the other NVM sets. For
example, the garbage collection operation may be deter-
mined to be necessary when the number of blocks included
in the NVM subset 190A 1s larger than the certain threshold
X1 corresponding to the NVM subset 190A. The threshold
X1 may be determined based on the total number of blocks
which can be allocated for the NVM subset 190A. For
example, the certain threshold X1 corresponding to the
NVM set 190 A may be a value resulting from subtraction of
a predetermined number from the total number of blocks
which can be allocated for the NVM subset 190A.

When the garbage collection operation 1s needed for the
NVM subset 190A, one free block in the free block pool 183
1s allocated as a GC input block 403.

When the garbage collection operation needs to be per-
formed on the NVM subset (data block pool) 190B, a
garbage collection operation for a group of the blocks 1n the
NVM subset 190B 1s executed independently of the other
NVM sets. For example, the garbage collection operation
may be determined to be necessary when the number of
blocks included 1in the NVM subset 190B 1s larger than the
certain threshold X1 corresponding to the NVM subset
190B. The threshold X1 may be determined based on the
total number of blocks which can be allocated for the NVM
subset 190B. For example, the certain threshold X1 corre-
sponding to the NVM set 190B may be a value resulting
from subtraction of a predetermined number from the total
number of blocks which can be allocated for the NVM
subset 190B.

When the garbage collection operation 1s needed for the
NVM subset 190B, one free block 1n the free block pool 184
1s allocated as a GC input block 404.

When the garbage collection operation needs to be per-
formed on the NVM subset (data block pool) 190C, a
garbage collection operation for a group of the blocks in the
NVM subset 190C 1s executed independently of the other
NVM sets. For example, the garbage collection operation
may be determined to be necessary when the number of
blocks 1included 1n the NVM subset 190C 1s larger than the
certain threshold X1 corresponding to the NVM subset
190C. The threshold X1 may be determined based on the
total number of blocks which can be allocated for the NVM
subset 190C. For example, the certain threshold X1 corre-
sponding to the NVM set 190C may be a value resulting

from subtraction of a predetermined number from the total
number of blocks which can be allocated for the NVM

subset 190C.

10

15

20

25

30

35

40

45

50

55

60

65

32

When the garbage collection operation 1s needed for the
NVM subset 190C, one free block 1n the free block pool 185

1s allocated as a GC mput block 405.

(5) Copying of Valid Data

One or more blocks including a mixture of valid data and
invalid data are selected from the blocks in the NVM subset

190A as copy source blocks. Only the valid data in the
selected blocks are copied to the GC mnput block 403.
Subsequently, the lookup table corresponding to the NVM
set 163 15 updated. Consequently, physical addresses indica-
tive of physical locations 1n the GC mput block 403 to which
the valid data have been copied are mapped to logical
addresses (LBAs) corresponding to the copied valid data.
One or more blocks including a mixture of valid data and
invalid data are also selected from the blocks in the NVM
subset 190B as copy source blocks. Only the valid data 1n the
selected blocks are copied to the GC iput block 404.
Subsequently, the lookup table corresponding to the NVM
set 164 1s updated. Consequently, physical addresses indica-
tive of physical locations 1n the GC mput block 404 to which
the valid data have been copied are mapped to logical
addresses (LBAs) corresponding to the copied valid data.
One or more blocks including a mixture of valid data and
invalid data are further selected from the blocks 1n the NVM
subset 190C as copy source blocks. Only the valid data in the
selected blocks are copied to the GC mput block 405.
Subsequently, the lookup table corresponding to the NVM
set 165 1s updated. Consequently, physical addresses indica-
tive of physical locations 1n the GC nput block 405 to which
the valid data have been copied are mapped to logical

addresses (LBAs) corresponding to the copied valid data.
(6) Movement of the GC Input Block

When the GC mput block 405 1n the NVM set #3 1s filled
with the valid data, the GC 1nput block 4035 1s moved to the
NVM subset 190C. In other words, the GC mnput block 4035
filled with the valid data 1s managed by the NVM subset
(data block pool) 190C.

Betfore the NVM set combining operation 1s performed,
when the GC mput block 403 1n the NVM set #1 1s filled
with the valid data, the GC 1nput block 403 1s moved to the
NVM subset 190A, and when the GC 1nput block 404 1n the
NVM set #2 1s filled with the valid data, the GC input bloc
404 1s moved to the NVM subset 190B. However, after the
NVM set combining operation 1s performed, an operation
illustrated 1 (6)' 1s performed instead of the operation
illustrated 1n (6).

(6)' Movement of the GC Input Block to the Combiming
Destination NVM Set

When the GC mput block 403 1n the NVM set #1 1s filled
with the valid data, the GC 1nput block 403 1s moved to the
NVM subset 190C 1n the NVM set #3. The GC mput block
403 filled with the valid data 1s managed by the NVM subset
(data block pool) 190C.

When the GC input block 404 1n the NVM set #2 1s filled
with the valid data, the GC 1nput block 404 1s moved to the
NVM subset 190C in the NVM set #3. The GC input block
404 filled with the valid data 1s managed by the NVM subset
(data block pool) 190C.

(7) Returning of Blocks

Blocks in the NVM set #3 which are managed by the
NVM subset 190C and which hold no valid data are returned
from the NVM subset 190C to the free block pool 185.
Blocks which do not hold valid data are blocks where all the
data therein are mnvalidated by host write, or blocks where all
the valid data therein are copied to the copy destination
block by the garbage collection operation.

US RE49,508 E

33

Betfore the NVM set combining operation 1s performed,
blocks 1n the NVM set #1 which are managed by the NVM
subset 190 A and which hold no valid data are returned from
the NVM subset 190A to the free block pool 183, and blocks
in the NVM set #2 which are managed by the NVM subset
190B and which hold no valid data are returned from the
NVM subset 190B to the free block pool 184. However,
alter the NVM set combining operation 1s performed, an
operation 1illustrated 1 (7) 1s performed instead of the
operation illustrated 1 (7).

(7) Movement of the Blocks 1in the NVM Subset to the
Combining Destination NVM Set

The blocks 1n the NVM subset 190A are moved to the
NVM subset 190C in the NVM set #3. In other words, the
blocks 1n the NVM subset 190A are managed by the NVM
subset (data block pool) 190C.

The blocks m the NVM subset 190B are moved to the
NVM subset 190C 1n the NVM set #3. In other words, the
blocks 1n the NVM subset 190B are managed by the NVM

subset (data block pool) 190C.

(8) Movement of Free Blocks to the Combiming Destina-
tion NVM Set

The free blocks 1n the free block pool 183 of the NVM set
#1 are moved to the free block pool 185 of the NVM set #3.
The free blocks 1n the free block pool 184 of the NVM set
#2 are moved to the free block pool 185 of the NVM set #3.

Flowcharts 1n FIG. 29 and FIG. 30 illustrate a procedure
ol a data write/read operation performed by the controller 4.

When the controller 4 receives a command from the host
2 (step S101, YES), the NVM set control unit 21 of the
controller 4 checks a namespace ID included 1n the received
command (step S102). I the recerved command designates
a region corresponding to the NVM set #1 (step S103, YES),
the NVM set control unit 21 determines the NVM set #1 to
be an access target (step S104). For example, 1n a case where
a namespace with NSID1 corresponds to the NVM set #1, 1f
the received command includes the NSID1, the NVM set
control umt 21 may determine that the region corresponding
to the NVM set #1 1s designated.

If the recerved command 1s a write command (step S105,
YES), the NVM set control unit 21 determines whether or
not allocation of a new user mput block 1s needed (step
S5106). 11 the allocation of a new user 1mput block 1s needed
(step S106, YES), the NVM set control unit 21 allocates a
free block in the free block pool of the NVM set #1 as a user
iput block (step S107) and writes data (write data) to the
allocated user 1iput block (step S108). It the allocation of a
new user mput block 1s not needed (step S106, NO), the
NVM set control umit 21 writes the write data to an already
allocated user input block (step S108).

When the write data 1s written to the user input block, the
NVM set control unit 21 updates the LUT corresponding to
the NVM set #1 (step S109). The NVM set control unit 21
then returns a write completion response to the host 2 (step
S110).

If the received command 1s a read command (step S105,
NO, step S111, YES), the NVM set control unit 21 refer-
ences the LUT corresponding to the NVM set #1 (step S112)
to acquire a physical address corresponding to a starting
LLBA 1n the read command. The NVM set control unit 21
reads data designated by the read command from a block in

the NVM subset belonging to the NVM set #1 (step S113).
The NVM set control unit 21 then returns the read data and

a read completion response to the host 2 (step S114).

If the received command does not designate the region
corresponding to the NVM set #1 (step S103, NO), the NVM
set control unit 21 determines whether or not the received

10

15

20

25

30

35

40

45

50

55

60

65

34

command designates a region corresponding to the NVM set
#2 (step S115 m FIG. 30). If the received command desig-
nates a region corresponding to the NVM set #2 (step S115,
YES), the NVM set control unit 21 determines the NVM set
#2 to be an access target (step S116). For example, 1n a case
where a namespace with NSID2 corresponds to the NVM set
#2, 11 the received command 1ncludes the NSID2, the NVM
set control unit 21 may determine that the region corre-
sponding to the NVM set #2 1s designated.

If the recetved command 1s a write command (step S117,
YES), the NVM set control unit 21 determines whether or
not allocation of a new user mput block 1s needed (step
S118). It the allocation of a new user 1nput block 1s needed
(step S118, YES), the NVM set control unit 21 allocates a
free block 1n the free block pool of the NVM set #2 as a user
input block (step S119) and writes data (write data) to the
allocated user mput block (step S120). It the allocation of a
new user mput block 1s not needed (step S118, NO), the
NVM set control unit 21 writes the write data to an already
allocated user input block (step S120).

When the write data 1s written to the user input block, the
NVM set control unit 21 updates the LUT corresponding to
the NVM set #2 (step S121). The NVM set control unit 21
then returns a write completion response to the host 2 (step
S122).

If the received command 1s a read command (step S117,
NO, step S123, YES), the NVM set control unit 21 refer-
ences the LUT corresponding to the NVM set #2 (step S124)
to acquire a physical address corresponding to a starting
L.LBA 1n the read command. The NVM set control unit 21

reads data designated by the read command from a block in
the NVM subset belonging to the NVM set #2 (step S125).
The NVM set control unit 21 returns the read data and a read
completion response to the host 2 (step S126).

A flowchart 1n FIG. 31 1llustrates a procedure of a garbage
collection operation performed for each NVM subset
belonging to a certain NVM set.

The GC operation control unit 22 determines whether or
not the number of blocks included 1n an NVM subset #1
belonging to the NVM set #1 has reached the threshold X1
corresponding to the NVM subset #1 (step S201). If the
number of blocks included 1n an NVM subset #1 belonging
to the NVM set #1 has reached the threshold X1 correspond-
ing to the NVM subset #1 (step S201, YES), the GC
operation control unit 22 starts GC for the NVM subset #1.

The GC operation control unit 22 first allocates a free
block 1n the free block pool of the NVM set #1 as a copy
destination block (step S202). The GC operation control unit
22 then selects a block including a mixture of valid data and
invalid data from the blocks 1n the NVM subset #1 as a copy
source block (step S203).

The GC operation control umt 22 then copies only the
valid data 1n the selected block (copy source block) to the
copy destination block (step S204). The GC operation
control unit 22 then updates the LUT corresponding to the
NVM subset #1 (step S205). When valid date no longer exist
in copy source block by the copy of the valid data to the copy
destination block, the GC operation control unit 22 returns
the block (copy source block) which becomes a block
including only the mvalid data to the free block pool of the
NVM set #1 (step S2006).

The GC operation control unit 22 subsequently deter-
mines whether or not the number of blocks included in the

NVM subset #1 has decreased to a threshold X2 (<X1) or
less corresponding to the NVM subset #1 (step S207). It the
number of blocks included in the NVM subset #1 has

decreased to the threshold X2 (<X1) or less, the GC opera-

US RE49,508 E

35

tion control unit 22 ends the garbage collection operation. I
the number of blocks included 1n the NVM subset #1 has not
decreased to the threshold X2 (<X1) or less (step S207, NO),
the GC operation control unit 22 continues the garbage
collection operation (steps S202 to S206).

A flowchart in FIG. 32 illustrates a procedure of an
inter-NVM-set copy operation performed by the inter-
NVM-set copy control unit 23.

Upon recerving an mter-NVM-set copy command from
the host 2 which includes parameters designating a copy
source NVM set and a copy destination NVM set (step S301,
YES), the inter-NVM-set copy control unit 23 allocates a
free block in the free block pool of the copy destination
NVM set as a copy destination block (step S302). The
inter-NVM-set copy control unit 23 selects a block with
valid data from the blocks belonging to the copy source
NVM set as a copy source block (step S303).

The 1nter-NVM-set copy control unit 23 then copies the
valid data from the copy source block to the copy destination
block (step S304). When the valid data 1s copied, the
inter-NVM-set copy control umt 23 updates the LUT cor-
responding to the NVM subset of the copy source NVM set
(step S305).

When valid date no longer exist in copy source block by
the copy of the valid data to the copy destination block, the
inter-NVM-set copy control unit 23 returns the copy source
block which becomes a block including no valid data to the
free block pool of the copy source NVM set (step S306).

The mnter-NVM-set copy control unit 23 repeats the
processing 1n step S302 to step S306 until a block including
valid data no longer exists 1n the copy source NVM set (step
S307).

A flowchart in FIG. 33 illustrates a procedure of an
inter-NVM-set copy operation performed by the inter-
NVM-set copy control unit 23. A host write operation during,
the inter-NVM-set copy operation 1s assumed to be allowed.

Upon receiving an mter-NVM-set copy command from
the host 2 which includes parameters designating a copy
source NVM set and a copy destination NVM set (step S401,
YES), the inter-NVM-set copy control unit 23 allocates a
free block in the free block pool of the copy destination
NVM set as a copy destination block (step S402). The
inter-NVM-set copy control unit 23 then selects a block with
valid data from the blocks belonging to the copy source
NVM set as a copy source block (step S403).

The inter-NVM-set copy control unit 23 then copies the
valid data from the copy source block to the copy destination
block (step S404). When the valid data 1s copied, the
inter-NVM-set copy control umt 23 updates the LUT cor-
responding to the NVM subset of the copy source NVM set
(step S405).

When valid date no longer exist in copy source block by
the copy of the valid data to the copy destination block, the
inter-NVM-set copy control unit 23 returns the copy source
block which becomes a block including no valid data to the
free block pool of the copy source NVM set (step S406).

The mter-NVM-set copy control unit 23 then determines
whether or not a block including valid data does not exist in
the copy source NVM set, that 1s, whether or not a block
including valid data no longer exists in the copy source
NVM set (step S407). I a block including valid data does
not exist 1n the copy source NVM set (step S407, YES), the
inter-NVM-set copy control unit 23 ends the inter-NVM-set
copy operation.

On the other hand, if a block including valid data exists
in the copy source NVM set (step S407, NO), the NVM set

control unit 21 of the controller 4 determines whether or not

10

15

20

25

30

35

40

45

50

55

60

65

36

write data to be written to the NVM subset belonging to the
copy source NVM set has been received (step S408). It the
write data to be written to the NVM subset belonging to the
copy source NVM set has not been received (step S408,
NO), the process continues with step S402.

I1 the write data to be written to the NVM subset belong-

ing to the copy source NVM set has been received (step
S408, YES), that 1s, 1f the write data directed to the copy
source NVM set 1s received from the host 2 while perform-
ing the mter-NVM-set copy operation, the NVM set control
umt 21 allocates a free block 1n the free block pool of the
copy destination NVM set as a write destination block (step
S409). The NVM set control unit 21 writes the write data to
the allocated write destination block (step S410). When the
write data 1s written to the allocated write destination block,
the NVM set control unit 21 updates the LUT corresponding
to the NVM subset belonging to the copy source NVM set
(step S411). In step S411, the controller 4 maps a physical
address indicative of a physical location in the allocated
write destination block to which the write data 1s written, to
a logical address corresponding to the write data.

The controller 4 then returns a write completion response
to the host 2 (step S412). When the write completion
response 1s returned to the host 2, the process continues with
step S402.

The processing 1n step S402 to step S412 1s repeated until
a block including valid data no longer exists in the copy
source NVM set (step S407).

A flowchart in FIG. 34 illustrates a procedure of a
new-NVM-set creation operation performed by the new-
NVM-set creation control unit 24.

Upon receiving a new-NVM-set creation command (step
S501, YES), the new-NVM-set creation control unit 24
determines a group of NAND flash memory dies to be
reserved for a new NVM set by selecting the group of
NAND flash memory dies from all the NAND flash memory
dies belonging to the original NVM set (step S502). The
original NVM set may be designated by the new-NVM-set
creation command.

The new-NVM-set creation control unit 24 subsequently
allocates a free block 1n the free block pool of the original
NVM set as a copy destination block (step S503). The
new-NVM-set creation control unit 24 then selects a block
holding valid data from the blocks belonging to the new
NVM set (that 1s, the blocks belonging to the group of the
reserved NAND flash memory dies) as a copy source block
(step S504).

The new-NVM-set creation control unit 24 then copies
the valid data from the copy source block to the copy
destination block (step S5035). When the valid data are
copied, the new-NVM-set creation control unit 24 updates
the LUT corresponding to the NVM subset of the original
NVM set (step S506). When valid data no longer exist in the
copy source block, the new-NVM-set creation control unit
24 subsequently returns the copy source block which
becomes a block including no valid data to the free block
pool of the new NVM set (step S507).

The new-NVM-set creation control umt 24 then deter-
mines whether or not a block including valid data does not
exist 1n the new NVM set, that 1s, whether or not a block
including valid data no longer exists in the new NVM set
(step S508). If a block including valid data does not exist 1n
the new NVM set (step S508, YES), the new-NVM-set
creation control unit 24 ends the new-NVM-set creation
operation. If a block including valid data exists 1in the new

NVM set (step S508, NO), the new-NVM-set creation

US RE49,508 E

37

control umt 24 continues with the new-NVM-set creation
operation (step S503 to step S507).

The processing 1n step S3503 to step S507 1s repeated until
a block including valid data no longer exists in the new
NVM set.

A flowchart in FIG. 35 1llustrates another procedure of the
new-NVM-set creation operation performed by the new-
NVM-set creation control unit 24. The flowchart 1llustrates
the procedure in which the new-NVM-set creation operation
and a garbage collection operation for the original NVM set
are performed 1n parallel.

Upon recerving a new-NVM-set creation command (step
S601), the new-NVM-set creation control unit 24 deter-
mines a group of NAND flash memory dies to be reserved
for a new NVM set (step S602). The new-NVM-set creation
control unit 24 subsequently allocates a free block 1n the free
block pool of the original NVM set as a copy destination
block (step S603). The new-NVM-set creation control unit
24 then selects a block including a mixture of valid data and
invalid data from the blocks belonging to the original NVM
set as a copy source block (step S604). In step S604, the
new-NVM-set creation control unit 24 may preferentially
select a block with few valid data as a copy source block.

The new-NVM-set creation control unit 24 then copies
the valid data from the copy source block to the copy
destination block (step S6035). When the valid data are
copied, the new-NVM-set creation control unit 24 updates
the LUT corresponding to the NVM subset of the original
NVM set (step S606).

When valid data no longer exist 1n the copy source block,
the new-NVM-set creation control unit 24 subsequently
determines whether or not the physical position of the copy
source block which becomes a block including no valid data
belongs to the new NVM set (step S607). If the physical
position of the copy source block which becomes a block
including no valid data belongs to the new NVM set (step
S607, YES), the new-NVM-set creation control unit 24
returns the copy source which becomes a block including no
valid data to the free block pool of the new NVM set (step
S608). IT the physical position of the copy source block
which becomes a block including no valid data does not
belong to the new NVM set (step S607, NO), the new-NVM-
set creation control umt 24 returns the copy source block
which becomes a block including no valid data to the free
block pool of the original NVM set (step S609).

The new-NVM-set creation control unit 24 then deter-
mines whether or not a block including valid data does not
exist 1n the new NVM set, that 1s, whether or not a block
including valid data no longer exists 1n the new NVM set
(step S610). IT a block including valid data does not exist 1n
the new NVM set (step S610, YES), the new-NVM-set
creation control unit 24 ends the new-NVM-set creation
operation. If a block including valid data exists in the new
NVM set (step S610, NO), the new-NVM-set creation
control unit 24 executes the processing 1n step S603.

The processing 1n step S603 to step S607 1s repeated until
a block including valid data no longer exists in the new
NVM set.

FIG. 36 illustrates a configuration example of an infor-
mation processing apparatus (computing device) function-
ing as the host 2.

The mformation processing apparatus 1s implemented as
a computing device like a server. The information process-
ing apparatus comprises a processor (CPU) 801, a main
memory 802, a BIOS-ROM 803, a network controller 803,
a peripheral interface controller 806, a controller 807, and an
embedded controller (EC) 808.

10

15

20

25

30

35

40

45

50

55

60

65

38

The processor 801 1s a CPU configured to control opera-
tions of the components of the information processing
apparatus. The processor 801 executes various programs
loaded from one of the plurality of SSDs 3 into the main
memory 802. The main memory 802 i1s a random access
memory such as a DRAM. The programs may include a
setting program configured to 1ssue commands to nstruct
execution of the above-described nter-NVM-set copy,
NVM set exchange, new-NVM-set creation, and NVM set
combining.

The processor 801 also executes a basic input/output
system (BIOS) stored 1n a BIOS-ROM 803 that 1s a non-
volatile memory. The BIOS 1s a system program for hard-
ware control.

The network controller 805 1s a communication device
such as a wired LAN controller, a wireless LAN controller.
The peripheral interface controller 806 1s configured to
communicate with a peripheral device such as a USB device.

The controller 807 1s configured to execute communicate
with devices connected to a plurality of connectors 807A.
The plurality of SSDs 3 may be connected to the respective
connectors 807A. The controller 807 1s an SAS expander, a
PCle switch, a PCle expander, a flash array controller, a
RAID controller, or the like.

The EC 808 functions as a system controller configured to
execute power management for the information processing
apparatus.

FIG. 37 1llustrates a configuration example of an infor-
mation processing apparatus (server) comprising the plural-
ity of SSDs 3 and the host 2.

The information processing apparatus (server) comprises
a thin-box-shaped housing 901 which can be housed 1n a
rack. A large number of the SSDs 3 may be arranged 1n the
housing 901. In this case, the SSDs 3 may be removably
inserted into respective slots provided in a front surface
901A of the housing 901.

A system board (mother board) 902 1s arranged in the
housing 901. Various electronic components including the
CPU 801, the main memory 802, the network controller 805,
and the controller 807 are mounted on the system board
(mother board) 902. The electronic components function as
the host 2.

As described above, according to the present embodi-
ment, a plurality of NAND flash memory dies 1s classified
into a plurality of NVM sets such that each of the plurality
of NAND flash memory dies belongs to only one NVM set.
In accordance with an I/O command from the host desig-
nating at least one region (for example, a namespace)
corresponding to each NVM set, a data write/read operation
1s performed for one of the plurality of NVM sets. Therelore,
a plurality of I/O commands (write commands or read
commands) designating different regions corresponding to
the different NVM sets can be simultaneously executed
without causing die contention. Consequently, for example,
even 1, during execution of a data write operation for a
certain NVM set, a read command directed for a region
corresponding to another NVM set 1s received from the host
2, the controller 4 can immediately perform a data read
operation corresponding to the read command without the
need to wait for the data write operation to complete.

A group of free blocks 1n the NAND flash memory die 5
are individually managed for each of the plurality of NVM
sets by using a plurality of free block pools corresponding to
the plurality of NVM sets. Then, the controller 4 performs,
for each of the plurality of NVM sets, an operation of
allocating one free block in the corresponding free block
pool as an input block (a user mput block or a GC input

US RE49,508 E

39

block), an operation of writing user data to the imput block,
an operation of managing the mput block filled with the user
data by using an NVM subset (a data block pool), and an

operation of returning blocks which are managed by the
NVM subset and which hold no valid data to the corre-

sponding free block pool. As described above, the use of free
blocks corresponding to the respective NVM sets allows the
allocation of the input block and the returning of the free
blocks to be executed independently for each NVM set.
Theretfore, for example, a block 1n a die belonging to a
certain NVM set can be prevented from being allocated as
an mput block for another NVM set. The present embodi-
ment can ensure that no die contention occurs.

The present embodiment also allows coexistence, 1 a

single SSD 3, of a shared NVM set in which a free block
pool 1s shared by a plurality of NVM subsets (a plurality of
groups for garbage collection) and an 1solated NVM set 1n
which a free block pool 1s exclusively used by one NVM
subset (one group for garbage collection).

In the present embodiment, the NAND flash memory has
been 1llustrated as a nonvolatile memory. However, the
functions of the present embodiment are also applicable to
various other nonvolatile memories, For example, a mag-
netoresistive random access memory (MRAM), a phase
change random access memory (PRAM), a resistive random
access memory (ReRAM), or a ferroelectric random access
memory (FeRAM).

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of the mventions.
Indeed, the novel embodiments described herein may be
embodied 1n a variety of other forms; furthermore, various
omissions, substitutions and changes 1n the form of the
embodiments described herein may be made without depart-
ing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such
forms or modifications as would fall within the scope and
spirit of the inventions.

What 1s claimed 1s:

1. A memory system connectable to a host, the memory

system comprising;:
a nonvolatile memory including a plurality of nonvolatile
memory dies connected to a plurality of channels, each
of the nonvolatile memory dies including a plurality of
blocks; and
a controller configured to control the nonvolatile memory
via the plurality of channels, wherein
the controller 1s configured to:
classily the plurality of nonvolatile memory dies into a
first die group 1ncluding a plurality of first nonvola-
tile memory dies and a second die group including a
plurality of second nonvolatile memory dies ditler-
ent from the first nonvolatile memory dies;

in response to receiving, from the host, a first write
command designating a first region corresponding to
the first die group, write first data to be written to the
first region to a first write destination block which 1s
selected from one of the first nonvolatile memory
dies; and

in response to receiving, from the host, a second write
command designating a second region correspond-
ing to the second die group, write second data to be
written to the second region to a second write
destination block which 1s selected from one of the
second nonvolatile memory dies,

10

15

20

25

30

35

40

45

50

55

60

65

40

a group of free blocks belonging to the first die group is
managed by a first free block pool corresponding to the
first die group,

a group of free blocks belonging to the second die group
is managed by a second free block pool corrvesponding
to the second die group,

the first write destination block is allocated from the first
free block pool,

the second write destination block is allocated from the
second free block pool,

the first free block pool is a free block pool dedicated to
a first data block pool managing each of blocks which
belongs to the first die group and which holds valid
data, and

the second free block pool is a shared free block pool
shaved by a plurality of second data block pools
managing vespective blocks which belong to the second
die group and which hold valid data.

2. The memory system of claim 1, wherein

the controller 1s further configured to:

in response to receiving, from the host, a first read
command designating the first region while a write
operation for the second data 1s being executed, read
data from the first die group without waiting for
completion of the write operation for the second data.

[3. The memory system of claim 1, wherein

a group of Iree blocks belonging to the first die group 1s
managed by a first free block pool corresponding to the
first die group, and a group of free blocks belonging to
the second die group 1s managed by a second free block
pool corresponding to the second die group,

the first write destination block 1s allocated from the first
free block pool, and the second write destination block
1s allocated from the second free block pool, and

the first free block pool 1s a free block pool dedicated to
a first data block pool managing each of blocks which
belongs to the first die group and which holds valid
data, and the second free block pool 1s a shared free
block pool shared by a plurality of second data block
pools managing respective blocks which belong to the
second die group and which hold valid data.}

4. The memory system of claim [3] /, wherein

the controller 1s further configured to:

in garbage collection on the first data block pool, allocate
one of the free blocks in the first free block pool as a
first copy destination block,
copy, to the first copy destination block, only valid data

from one or more blocks 1n the first data block pool,
and
return, to the first free block pool, the one or more

blocks which include only invalid data as a result of
copying of the valid data to the first copy destination
block; and
in garbage collection on the second data block pool which
1s one of the plurality of second data block pools,
allocate one of the free blocks in the second free block
pool shared by the plurality of second data block pools,
as a second copy destination block,
copy, to the second copy destination block, only valid data
from one or more blocks 1n the one second data block
pool, and
return, to the second free block pool, the one or more
blocks which include only mvalid data as a result of
copying of the valid data to the second copy destination

block.

US RE49,508 E

41

[S. The memory system of claim 1, wherein

a group of free blocks belonging to the first die group 1s
managed by a first free block pool corresponding to the
first die group, and a group of iree blocks belonging to
the second die group 1s managed by a second free block
pool corresponding to the second die group,

the first write destination block 1s allocated from the first
free block pool, and the second write destination block
1s allocated from the second free block pool, and

the first free block pool 15 a free block pool dedicated to
a first data block pool managing each of blocks which
belongs to the first die group and which holds valid
data, and the second free block pool 1s a free block pool
dedicated to a second data block pool managing each of

blocks which belongs to the second die group and
which holds valid data.}

[6. The memory system of claim 5, wherein

the controller 1s further configured to:

in garbage collection on the first data block pool,

allocate one of the free blocks 1n the first free block pool
as a first copy destination block,

copy, to the first copy destination block, only valid data
from one or more blocks 1n the first data block pool, and

return, to the first free block pool, the one or more blocks
which include only invalid data as a result of copying
of the valid data to the first copy destination block; and

in garbage collection on the second data block pool,

allocate one of the free blocks 1n the second free block
pool as a second copy destination block,

copy, to the second copy destination block, only valid data
from one or more blocks in the second data block pool,
and

return, to the second free block pool, the one or more
blocks which include only 1nvalid data as a result of
copying of the valid data to the second copy destination
block.]

[7. The memory system of claim 1, wherein

a group of free blocks belonging to the first die group 1s
managed by a first free block pool corresponding to the
first die group, and a group of iree blocks belonging to
the second die group 1s managed by a second free block
pool corresponding to the second die group,

the first write destination block 1s allocated from the first
free block pool, and the second write destination block
1s allocated from the second free block pool, and

the first free block pool 1s a shared free block pool shared
by a plurality of first data block pools managing
respective blocks which belong to the first die group
and which hold valid data, and the second free block
pool 1s a shared free block pool shared by a plurality of
second data block pools managing respective blocks
which belong to the second die group and which hold
valid data.]

[8. The memory system of claim 7, wherein

the controller 1s further configured to:

in garbage collection on one first data block pool of the
plurality of first data block pools,

allocate, as a first copy destination block, one of the free
blocks 1n the first free block pool shared by the plurality
of first data block pools,

copy, to the first copy destination block, only valid data
from one or more blocks 1n the one first data block pool,
and

return, to the first free block pool, the one or more blocks
which include only 1nvalid data as a result of copying
of the valid data to the first copy destination block; and

10

15

20

25

30

35

40

45

50

55

60

65

42

in garbage collection on one second data block pool of the
plurality of second data block pools,

allocate, as a second copy destination block, one of the
free blocks 1n the second free block pool shared by the
plurality of second data block pools,

copy, to the second copy destination block, only valid data
from one or more blocks 1n the one second data block
pool, and

return, to the second free block pool, the one or more
blocks which include only mvalid data as a result of
copying of the valid data to the second copy destination

block.]

9. The memory system of claim 1, wherein

the first nonvolatile memory dies included in the first die
group are a set of nonvolatile memory dies connected
to the respective channels, and the second nonvolatile
memory dies included 1n the second die group are a set
of other nonvolatile memory dies connected to the
respective channels.

10. The memory system of claim 1, wherein

the first nonvolatile memory dies included in the first die
group are a set ol nonvolatile memory dies each
connected to a first channel of the plurality of channels,
and the second nonvolatile memory dies included 1n the
second die group are a set of nonvolatile memory dies

cach connected to a second channel of the plurality of
channels.

11. A method of controlling a nonvolatile memory includ-

ing a plurality of nonvolatile memory dies connected to a
plurality of channels, each of the nonvolatile memory dies
including a plurality of blocks, the method comprising:

classitying the plurality of nonvolatile memory dies nto
a first die group including a plurality of first nonvolatile
memory dies and a second die group including a
plurality of second nonvolatile memory dies different
from the first nonvolatile memory dies;

in response to recerving, from a host, a first write com-
mand designating a first region corresponding to the
first die group, writing first data to be written to the first
region to a first write destination block which 1is
selected from one of the first nonvolatile memory dies;
and

in response to receiving, from the host, a second write
command designating a second region corresponding
to the second die group, writing second data to be
written to the second region to a second write destina-
tion block which 1s selected from one of the second
nonvolatile memory dies, wherein

a group of free blocks belonging to the first die group is
managed by a first free block pool corresponding to the
first die group,

a group of free blocks belonging to the second die group
is managed by a second free block pool corrvesponding
to the second die group,

the first write destination block is allocated from the first
free block pool

the second write destination block is allocated from the
second free block pool,

the first free block pool is a free block pool dedicated to
a first data block pool managing each of blocks whick
belongs to the first die group and which holds valid
data, and

the second free block pool is a sharved free block pool
shaved by a plurality of second data block pools
managing vespective blocks which belong to the second

die group and which hold valid data.

US RE49,508 E

43

12. The method of claim 11, further comprising:
in response to receiving, from the host, a first read
command designating the first region while a write
operation for the second data 1s being executed, reading
data from the first die group without waiting for
completion of the write operation for the second data.
[13. The method of claim 11, wherein
a group of free blocks belonging to the first die group 1s
managed by a first free block pool corresponding to the
first die group, and a group of free blocks belonging to
the second die group 1s managed by a second free block
pool corresponding to the second die group,
the first write destination block 1s allocated from the first
free block pool, and the second write destination block
1s allocated from the second free block pool, and
the first free block pool 1s a free block pool dedicated to
a first data block pool managing each of blocks which
belongs to the first die group and which holds valid
data, and the second free block pool 1s a shared free
block pool shared by a plurality of second data block
pools managing respective blocks which belong to the
second die group and which hold valid data.]
14. The method of claim [13] //, further comprising:
in garbage collection on onre first data block pool of the
plurality of first data block pools, allocating one of the
free blocks 1n the first free block pool as a first copy
destination block shared by the plurality of first data
block pools,
copying, to the first copy destination block, only valid
data from one or more blocks in the onre first data
block pool, and
returning, to the first free block pool, the one or more
blocks which include only invalid data as a result of
copying of the valid data to the first copy destination

block; and

in garbage collection on [the] one second data block pool
[which is one] of the plurality of second data block
pools,
allocating one of the free blocks 1n the second free
block pool shared by the plurality of second data

block pools, as a second copy destination block,
copying, to the second copy destination block, only
valid data from one or more blocks in the one second
data block pool, and
returning, to the second free block pool, the one or
more blocks which include only invalid data as a
result of copying of the valid data to the second copy
destination block.
15. The method of claim 11, wherein
the first nonvolatile memory dies included in the first die
group are a set of nonvolatile memory dies connected
to the respective channels, and the second nonvolatile
memory dies included in the second die group are a set
of other nonvolatile memory dies connected to the
respective channels.
16. The method of claim 11, wherein
the first nonvolatile memory dies included in the first die
group are a set ol nonvolatile memory dies each
connected to a first channel of the plurality of channels,
and the second nonvolatile memory dies included in the
second die group are a set of nonvolatile memory dies
cach connected to a second channel of the plurality of
channels.
17. A memory system connectable to a host, the memory

system comprising.

10

15

20

25

30

35

40

45

50

55

60

65

44

a nonvolatile memory including a plurality of nonvolatile
memory dies connected to a plurality of channels, each
of the plurality of nonvolatile memory dies including a
plurality of blocks; and
a controller configured to control the nonvolatile memory
via the plurality of channels, wherein
the controller is configured to:
classify the plurality of nonvolatile memory dies into a
fivst die group and a second die group such that each
of the plurality of nonvolatile memory dies belongs
to only one die group;
in rvesponse to rveceiving, from the host, a first write
command designating a first vegion corresponding to
the first die group, write first data to be written to the
first region to a first write destination block which is
selected from the first die group,; and
in vesponse to rveceiving, from the host, a second write
command designating a second vegion correspond-
ing to the second die group, write second data to be
written to the second region to a second write
destination block which is selected from the second
die group,

free blocks belonging to the first die group arve managed

by a first free block pool corresponding to the first die
group,

free blocks belonging to the second die group ave man-

aged by a second free block pool corresponding to the
second die group,

the first write destination block is allocated from the first
free block pool

the second write destination block is allocated from the
second free block pool,

the first free block pool is a free block pool dedicated to
a first data block pool, the first data block pool man-
aging each of blocks which belongs to the first die
group and which stores valid data, and

the second free block pool is a sharved free block pool
shaved by a plurality of second data block pools, the
plurality of second data block pools managing vespec-
tive blocks which belong to the second die group and

which store valid data.
18. The memory system of claim 17, wherein
the controller is further configured to:
in response to receiving, from the host, a first read
command designating the first region while a write
operation for the second data is being executed, read
data from the first die group without waiting for
completion of the write operation for the second data.
19. The memory system of claim 17, wherein
the controller is further configured to:
in a garbage collection operation on the first data block
pool,
allocate one of the free blocks in the first free block pool
as a first copy destination block,
copy, to the first copy destination block, only valid data
from one or more blocks in the first data block pool,
and
return, to the first free block pool, the one or more
blocks which include only invalid data as a rvesult of
copying of the valid data to the first copy destination
block: and
in a garbage collection operation on one of the plurality
of second data block pools,
allocate one of the free blocks in the second free block
pool, as a second copy destination block,

US RE49,508 E

45

copy, to the second copy destination block, only valid
data from one or more blocks in the one of the
plurality of second data block pools, and
return, to the second free block pool, the one or more
blocks which include only invalid data as a result of
copying of the valid data to the second copy desti-
nation block
20. The memory system of claim 17, wherein
the first die group includes a plurality of first nonvolatile
memory dies vespectively connected to the plurality of
channels, and
the second die group includes a plurality of second
nonvolatile memory dies vespectively connected to the
plurality of channels.
21. The memory system of claim 17, wherein
the first die group includes a plurality of first nonvolatile
memory dies each connected to a first channel of the
plurality of channels, and
the second die group includes a plurality of second
nonvolatile memory dies each connected to a second

channel of the plurality of channels.
22. A memory system connectable to a host, the memory

system comprising.

a nonvolatile memory including a plurality of nonvolatile
memory dies connected to a plurality of channels, each
of the plurality of nonvolatile memory dies including a
plurality of blocks; and

a controller configured to control the nonvolatile memory
via the plurality of channels, wherein

the controller is configured to:

classify the plurality of nonvolatile memory dies into a
first die group and a second die group such that eack
of the plurality of nonvolatile memory dies belongs to
only one die group; and

in vesponse to receiving, from the host, a copy command
designating the first die group as a copy source and
designating the second die group as a copy destination,
(1) read valid data from a first block which is selected

from the first die group; and
(2) write the vead valid data to a second block which is
selected from the second die group.

23. The memory system of claim 22, wherein

the controller is further configured to:

(3) return the first block to a free block pool belonging to
the first die group when valid data no longer exist in the
first block.

24. The memory system of claim 23, wherein

the controller is further configured to:

repeat operations of (1) to (3) until a block storing valid
data no longer exists in the first die group.

25. The memory system of claim 22, wherein

the controller is further configured to:

in vesponse to rveceiving, from the host, a write command
designating a first region corresponding to the first die
group while performing an operation for the copy
command, write first write data to be written to the first
region to a write destination block which is selected
from the second die group.

26. The memory system of claim 22, wherein

the controller is configured to cause the first die group and
the second die group to simultaneously execute 1/0O
commands.

27. The memory system of claim 22, wherein

the first die group includes a plurality of first nonvolatile
memory dies rvespectively connected to the plurality of
channels, and

5

10

15

20

25

30

35

40

45

50

55

60

65

46

the second die group includes a plurality of second
nonvolatile memory dies rvespectively connected to the
plurality of channels.

28. The memory system of claim 22, wherein

the first die group includes a plurality of first nonvolatile
memory dies each connected to a first channel of the
plurality of channels, and

the second die group includes a plurality of second
nonvolatile memory dies each connected to a second
channel of the plurality of channels.

29. A memory system connectable to a host, the memory

system comprising.

a nonvolatile memory including a plurality of nonvolatile
memory dies connected to a plurality of channels, each
of the plurality of nonvolatile memory dies including a
plurality of blocks; and
a controller configured to control the nonvolatile memory
via the plurality of channels, wherein
the controller is configured to:
classify the plurality of nonvolatile memory dies into a
fivst die group and a second die group such that each
of the plurality of nonvolatile memory dies belongs
to only one die group;
in vesponse to rveceiving, from the host, a first write
command designating a first vegion corresponding to
the first die group, write first data to be written to the
first region to a first write destination block which is
selected from the first die group,; and
in response to receiving, from the host, a second write
command designating a second region correspond-
ing to the second die group, write second data to be
written to the second region to a second write
destination block which is selected from the second
die group, wherein

free blocks belonging to the first die group are managed

by a first free block pool corresponding to the first die
group,

free blocks belonging to the second die group ave man-

aged by a second free block pool corresponding to the
second die group,

the first write destination block is allocated from the first
free block pool

the second write destination block is allocated from the
second free block pool,

the first free block pool is a shaved free block pool shared
by a plurality of first data block pools, the plurality of
first data block pools managing respective blocks
which belong to the first die group and which store
valid data, and

the second free block pool is a sharved free block pool
shaved by a plurality of second data block pools, the
plurality of second data block pools managing vespec-
tive blocks which belong to the second die group and
which store valid data.

30. The memory system of claim 29, wherein

the controller is further configured to:

in respomnse to receiving, from the host, a first read
command designating the first region while a write
operation for the second data is being executed, read
data from the first die group without waiting for
completion of the write operation for the second data.

31. The memory system of claim 29, wherein

the controller is further configured to:

in a garbage collection operation on one of the plurality
of first data block pools,

allocate, as a first copy destination block, one of the

free blocks in the first free block pool,

US RE49,508 E

47

copy, to the first copy destination block, only valid data
from one or move blocks in the one of the plurality of
first data block pools, and

veturn, to the first free block pool, the one or more
blocks which include only invalid data as a vesult of 5
copying of the valid data to the first copy destination

block: and

in a garbage collection operation on one of the plurality
of second data block pools,

allocate, as a second copy destination block, one of the
free blocks in the second free block pool,

copy, to the second copy destination block, only valid
data from one or more blocks in the one of the
plurality of second data block pools, and

veturn, to the second free block pool, the one or more
blocks which include only invalid data as a result of 1°
copying of the valid data to the second copy desti-

nation block.
32. The memory system of claim 29, wherein
the first die group includes a plurality of first nonvolatile
memory dies respectively connected to the plurality of 2V
channels, and
the second die group includes a plurality of second
nonvolatile memory dies vespectively connected to the
plurality of channels.

33. The memory system of claim 29, wherein 23

the first die group includes a plurality of first nonvolatile

memory dies each connected to a first channel of the
plurality of channels, and

the second die group includes a plurality of second

nonvolatile memory dies each connected to a second 3
channel of the plurality of channels.

34. A method of controlling a nonvolatile memory, the
nonvolatile memory including a plurality of nonvolatile
memory dies connected to a plurality of channels, each of
the plurality of nonvolatile memory dies including a plural- 33
ity of blocks, said method comprising:

classifving the plurality of nonvolatile memory dies into a

first die group and a second die group such that eack
of the plurality of nonvolatile memory dies belongs to
only one die group; and

10

48

in response to receiving, from a host, a copy command
designating the first die group as a copy source and
designating the second die group as a copy destination,

(1) reading valid data from a first block which is
selected from the first die group; and

(2) writing the read valid data to a second block which
is selected from the second die group.
35. The method of claim 34, further comprising:
(3) returning the first block to a free block pool belonging
to the first die group when valid data no longer exist in

the first block.

36. The method of claim 35, further comprising:

repeating operations of (1) to (3) until a block storing
valid data no longer exists in the first die group.

37. The method of claim 34, further comprising:

in vesponse to receiving, from the host, a write command
designating a first vegion corresponding to the first die
group while performing an operation for the copy
command, writing first write data to be written to the
first region to a write destination block which is
selected from the second die group.

38. The method of claim 34, further comprising:

causing the first die group and the second die group to
simultaneously execute I/O commands.

39. The method of claim 34, wherein

the first die group includes a plurality of first nonvolatile
memory dies vespectively connected to the plurality of
channels, and

the second die group includes a plurality of second
nonvolatile memory dies vespectively connected to the
plurality of channels.

40. The method of claim 34, wherein

the first die group includes a plurality of first nonvolatile
memory dies each connected to a first channel of the
plurality of channels, and

the second die group includes a plurality of second
nonvolatile memory dies each connected to a second
channel of the plurality of channels.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

