

(19) United States (12) **Reissued Patent** Hoffberg

US RE49,334 E (10) **Patent Number:** (45) **Date of Reissued Patent:** Dec. 13, 2022

- **MULTIFACTORIAL OPTIMIZATION** (54)SYSTEM AND METHOD
- Applicant: Hoffberg Family Trust 2, West (71)Harrison, NY (US)
- Inventor: Steven M. Hoffberg, West Harrison, (72)NY (US)
- Assignee: Hoffberg Family Trust 2, Wilmington, (73)

References Cited

(56)

U.S. PATENT DOCUMENTS

2,006,004 A	6/1935 Wenzel
3,014,605 A	12/1961 Heising
	(Continued)

FOREIGN PATENT DOCUMENTS

5/2001 1580501 A

DE (US)

Appl. No.: 16/375,507 (21)

(22)Filed: Apr. 4, 2019

Related U.S. Patent Documents

Reissue of:

Patent No.:	9,615,264
Issued:	Apr. 4, 2017
Appl. No.:	13/429,666
Filed:	Mar. 26, 2012
	Issued: Appl. No.:

U.S. Applications:

Division of application No. 12/089,277, filed as ap-(60)plication No. PCT/US2006/038759 on Oct. 3,

(Continued)

Int. Cl. (51)(2009.01)H04W 16/28 G06Q 10/06 (2012.01)(Continued) (52) **U.S. Cl.**

OTHER PUBLICATIONS

US 6,009,171 A, 12/1999, Ciarcia et al. (withdrawn) US 10,243,938 B2, 03/2019, Ateniese et al. (withdrawn)

Primary Examiner — Dennis G Bonshock (74) Attorney, Agent, or Firm — Hoffberg & Associates; Steven M. Hoffberg

(57)ABSTRACT

A method for providing unequal allocation of rights among agents while operating according to fair principles, comprising assigning a hierarchal rank to each agent; providing a synthetic economic value to a first set of agents at the a high level of the hierarchy; allocating portions of the synthetic economic value by the first set of agents to a second set of agents at respectively different hierarchal rank than the first set of agents; and conducting an auction amongst agents using the synthetic economic value as the currency. A method for allocation among agents, comprising assigning a wealth generation function for generating future wealth to each of a plurality of agents, communicating subjective market information between agents, and transferring wealth generated by the secure wealth generation function between agents in consideration of a market transaction. The method may further comprise the step of transferring at least a portion of the wealth generation function between agents.

(58)

CPC H04W 16/28 (2013.01); G06Q 10/0631 (2013.01); *G06Q 10/0635* (2013.01);

(Continued)

Field of Classification Search CPC ... H04W 16/28; H04W 84/18; H04W 72/082; H04W 64/003; G06Q 10/0631;

(Continued)

21 Claims, 2 Drawing Sheets

Page 2

Related U.S. Application Data

2006, now Pat. No. 8,144,619, which is a continuation-in-part of application No. 11/467,931, filed on Aug. 29, 2006, now Pat. No. 8,874,477.

(60) Provisional application No. 60/723,339, filed on Oct.
4, 2005.

(51)	Int. Cl.	
	G06Q 10/10	(2012.01)
	G06Q 20/06	(2012.01)
	G06Q 20/22	(2012.01)

4,494,114 A	A 1/1985	Kaish
4,514,592 A	A 4/1985	Miyaguchi
4,528,588 A	A 7/1985	Lofberg
4,529,870 A	A 7/1985	Chaum
4,536,739 A	A 8/1985	Nobuta
4,558,176 A	A 12/1985	Arnold et al.
4,564,018 A	A 1/1986	Hutchison et al.
4,564,108 A	A 1/1986	Widlund et al.
4,564,840 A	A 1/1986	Brisse et al.
4,567,600 A	A 1/1986	Massey et al.
4,575,621 A	A 3/1986	Dreifus
4,578,531 A	A 3/1986	Everhart et al.
4,582,389 A	A 4/1986	Wood et al.
4,590,470 A	A 5/1986	Koenig
4.595.950 A	A 6/1986	Lofberg

	(======)
G06Q 20/40	(2012.01)
G06Q 30/02	(2012.01)
G06Q 30/08	(2012.01)
G06Q 40/00	(2012.01)
G06Q 40/04	(2012.01)
G06Q 50/18	(2012.01)
H04W 64/00	(2009.01)
H04W 72/08	(2009.01)
H04W 84/18	(2009.01)

(52) **U.S. Cl.**

CPC G06Q 10/06375 (2013.01); G06Q 10/103 (2013.01); G06Q 20/065 (2013.01); G06Q 20/22 (2013.01); G06Q 20/40 (2013.01); G06Q 30/0201 (2013.01); G06Q 30/08 (2013.01); G06Q 40/00 (2013.01); G06Q 40/04 (2013.01); G06Q 50/188 (2013.01); H04W 64/003 (2013.01); H04W 72/082 (2013.01); H04W 84/18 (2013.01)

(58) Field of Classification Search CPC G06Q 10/0635; G06Q 10/06375; G06Q 10/103; G06Q 30/0201; G06Q 30/08;

ч,555,550 А	0/1980	Lolocig
4,625,076 A	11/1986	Okamoto et al.
4,633,036 A	12/1986	Hellman et al.
4,636,782 A	1/1987	Nakamura et al.
4,653,003 A	3/1987	Kirstein
4,672,572 A	6/1987	Alsberg
4,677,663 A	6/1987	Szlam
4,704,610 A	11/1987	Smith et al.
4,706,086 A	11/1987	Panizza
4,707,788 A	11/1987	Tashiro et al.
4,731,769 A	3/1988	Schaefer et al.
4,731,841 A	3/1988	Rosen et al.
4,734,564 A	3/1988	Boston et al.
4,736,203 A	4/1988	Sidlauskas
4,737,983 A	4/1988	Frauenthal et al.
4,740,779 A	4/1988	Cleary et al.
4,740,780 A	4/1988	Brown et al.
4,752,676 A	6/1988	Leonard et al.
4,752,824 A	6/1988	Moore
4,757,529 A	7/1988	Glapa et al.
4,768,221 A	8/1988	Green et al.
4,787,039 A	11/1988	Murata
4,789,928 A	12/1988	Fujisaki
4,789,929 A	12/1988	Nishimura et al.
4,795,223 A	1/1989	Moss
4,797,911 A	1/1989	Szlam et al.
4,799,156 A	1/1989	Shavit et al.
		-

G06Q 40/04; G06Q 20/22; G06Q 40/00; H04Q 64/003

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

3,573,747 A	4/1971	Adams
3,581,072 A	5/1971	Nymeyer
4,048,452 A	9/1977	Oehring et al.
4,200,770 A	4/1980	Hellman et al.
4,218,582 A	8/1980	Hellman et al.
4,264,782 A	4/1981	Konheim
4,286,118 A	8/1981	Mehaffey et al.
4,291,749 A	9/1981	Ootsuka et al.
4,306,111 A	12/1981	Lu et al.
4,309,569 A	1/1982	Merkle
4,314,232 A	2/1982	Tsunoda
4,326,098 A	4/1982	Bouricius et al.
4,337,821 A	7/1982	Saito
4,351,982 A	9/1982	Miller et al.
4,365,110 A	12/1982	Lee et al.
4,386,233 A	5/1983	Smid et al.
4,393,269 A	7/1983	Konheim et al.
4,399,323 A	8/1983	Henry
4,401,848 A	8/1983	Tsunoda
4,405,829 A	9/1983	Rivest et al.
4,407,564 A	10/1983	Ellis
4,419,730 A	12/1983	Ito et al.
4,438,824 A	3/1984	Mueller-Schloer
4,441,405 A	4/1984	Takeuchi
4,451,887 A	5/1984	Harada et al.
4,453,074 A	6/1984	Weinstein
4,458,109 A	7/1984	Mueller-Schloer
4,471,164 A	9/1984	Henry
4,477,874 A	10/1984	Ikuta et al.
4,486,853 A	12/1984	Parsons

1,72,100	11	1,1,0,	
4,807,279	Α	2/1989	McClure et al.
4,809,180	Α	2/1989	Saitoh
4,812,628	Α	3/1989	Boston et al.
4,818,048	Α	4/1989	Moss
4,819,267	Α	4/1989	Cargile et al.
4,823,264	Α	4/1989	Deming
4,827,508	Α	5/1989	Shear
4,827,518	Α	5/1989	Feustel et al.
4,827,520	Α	5/1989	Zeinstra
4,837,551	Α	6/1989	Iino
4,852,149	Α	7/1989	Zwick et al.
4,853,687	Α	8/1989	Isomura et al.
4,860,216	Α	8/1989	Linsenmayer
4,866,754	Α	9/1989	Hashimoto
4,868,376	Α	9/1989	Lessin et al.
4,876,594	Α	10/1989	Schiffman
4,878,243	Α	10/1989	Hashimoto
4,881,178	Α	11/1989	Holland et al.
4,887,818	Α	12/1989	Escott
4,890,323	Α	12/1989	Beker et al.
4,893,301	Α	1/1990	Andrews et al.
4,894,857		1/1990	Szlam et al.
4,896,363	Α	1/1990	Taylor et al.
4,903,201	Α	2/1990	Wagner
4,914,705	Α	4/1990	Nigawara
4,918,728		4/1990	Matyas et al.
4,924,501			Cheeseman et al.
4,926,325		5/1990	Benton et al.
4,926,480	Α	5/1990	Chaum
4,930,073	Α	5/1990	Cina, Jr.
4,930,150	Α	5/1990	Katz
4,933,964	Α	6/1990	Girgis
4,935,956			Hellwarth et al.
4,941,168			Kelly, Jr.
4,941,173			Boule et al.
4,952,928			Carroll et al.
4,953,204			Cuschleg, Jr. et al.
4,958,371			Damoci et al.
ч,900,971	A	9/1990	Damoer et al.

(56)	Referen	ces Cited		5,214,688	Α	5/1993	Szlam et al.
				5,214,707			Fujimoto et al.
ί	J.S. PATENT	DOCUMENTS		5,218,635 5,224,153		6/1993 6/1993	Bonvallet et al. Katz
4,961,142	A 10/1990	Elliott et al.	:	5,224,162	Α	6/1993	Okamoto et al.
4,967,178	A 10/1990	Saito et al.		/ /			Gasser et al. Kuhns et al.
/ /	A $11/1990$ A $12/1000$			5,224,173 5,228,094		0/1993 7/1993	
	A $12/1990$ A $12/1990$	Kehnemuyi et al. Ohta et al.	:	5,229,764	Α		Matchett et al.
4,979,171	A 12/1990	Ashley		5,235,166			Fernadez
4,987,587 4,988,976	A 1/1991 A 1/1991			5,235,635			Dennison et al. Bijnagte
4,993,068		Piosenka et al.	:	5,237,159	Α	8/1993	Stephens et al.
4,995,258	A 2/1991	Frank		5,239,574			Brandman et al.
4,996,959 4,998,272		Akimoto Hawkins, Jr. et al.		5,241,599			Bellovin et al. Gokcebay
5,006,829		Miyamoto et al.		5,247,569	Α	9/1993	Cave
5,006,983	A 4/1991	Wayne et al.		5,251,252		10/1993	
5,007,000 5,007,078		Baldi Masson et al.		5,253,165		10/1993	Leiseca et al. Tanaka
5,007,078			:	5,254,843	A	10/1993	Hynes et al.
5,016,170		Pollalis et al.		5,255,349			Thakoor et al.
5,016,270 5,020,095		Katz Morganstein et al.		5,257,190		10/1993 11/1993	
5,020,095		Tanaka et al.	:	5,270,921	Α	12/1993	Hornick
5,020,105		Rosen et al.		5,272,754			Boerbert
5,036,461 5,036,535		Elliott et al. Gechter et al.		5,274,560 5,274,700		12/1993 12/1993	Gechter et al.
5,040,208		Jolissaint	:	5,275,400	A	1/1994	Weingardt et al.
5,043,736		Darnell et al.		5,276,732			Stent et al.
5,046,094 5,048,075		Kawamura et al.		5,276,737 5,278,532		1/1994 1/1994	Hegg et al.
5,048,075		Furukawa	:	5,278,898	Α	1/1994	Cambray et al.
5,056,141	A 10/1991	Dyke		5,280,527			Gullman et al.
5,056,147 5,063,522		Turner et al. Winters		5,283,431 5,283,731		2/1994 2/1994	Lalonde et al.
· · · ·	A 11/1991 A 11/1991		:	5,283,818	Α	2/1994	Klausner et al.
5,067,162	A 11/1991	Driscoll, Jr. et al.		5,289,530		2/1994	
5,070,323	A 12/1991 A 12/1991	Iino et al. Duffany		5,291,550 5,291,560			Levy et al. Daugman
5,070,435		Szlam et al.		5,293,115	Α	3/1994	Swanson
5,070,526		Richmond et al.		5,297,146		3/1994	Ogawa Thorne et al.
5,070,931 5,073,890		Kalthoff et al.		5,299,132			Wortham
5,073,929			:	5,299,263	Α	3/1994	Beller et al.
5,073,950		Colbert et al.		5,302,955 5,309,504			Schutte et al. Morganstein
5,077,665 5,077,789		Silverman et al. Clark, Jr. et al.		5,309,505			Szlam et al.
5,081,711		Rickman, Jr.		5,309,513		5/1994	
5,097,528		Gursahaney et al.		5,311,574 5,311,577			Livanos Madrid et al.
5,103,449 5,103,476	$\begin{array}{ccc} A & 4/1992 \\ A & 4/1992 \end{array}$	Jolissaint Waite et al.		5,313,516			Afshar et al.
5,111,390	A 5/1992	Ketcham		5,315,658		5/1994	
5,119,504		Durboraw, III Kudo		5,319,543 5,319,703		6/1994 6/1994	Wilhelm Drory
5,121,422 5,128,984				5,319,705		6/1994	Halter et al.
5,131,020		Liebesny et al.		5,321,745			Drory et al. Crockett
5,131,038		Puhi et al. Silverman et al.		5,325,292 5,325,294		6/1994	Crockett Keene
5,155,680		Wiedemer	:	5,327,490	Α	7/1994	Cave
5,161,181				5,329,579		7/1994 7/1994	Brunson Eyster
5,163,083	A 11/1992 A 11/1992	Dowden et al. Kaplan		5,334,974			Simms et al.
5,163,094		Prokoski et al.		5,335,276			Thompson et al.
5,164,904				5,335,288 5,335,743			Faulkner Gillbrand et al.
· · ·		Mitchell et al. Morganstein et al.		5,341,412			Ramot et al.
5,168,517		Waldman		5,341,414		8/1994	L
, ,	A 1/1993 A 2/1002			5,341,428 5,341,429		8/1994 8/1994	Schatz Stringer et al.
5,185,786 5,191,611				5,341,477			Pitkin et al.
5,193,110		Jones et al.		5,343,527	А	8/1994	Moore
5,193,855		Shamos		5,345,549			Appel et al.
5,198,797 5,203,499		5		5,345,817 5,347,452		9/1994 9/1994	Grenn et al. Bay. Jr.
5,203,499				5,347,578			Duxbury
5,206,903	A 4/1993	Kohler et al.		5,347,580	Α	9/1994	Molva et al.
5,208,858		Vollert et al.		5,351,041			Ikata et al. Katz
5,214,413	A 5/1993	Okabayashi et al.		5,351,285	A	9/1994	Natz

5,297,146 A	3/1994	Ogawa
5,297,195 A	3/1994	Thorne et al.
5,299,132 A	3/1994	Wortham
5,299,263 A	3/1994	Beller et al.
5,302,955 A	4/1994	Schutte et al.
5,309,504 A	5/1994	Morganstein
5,309,505 A	5/1994	Szlam et al.
5,309,513 A	5/1994	Rose
5,311,574 A	5/1994	Livanos
5,311,577 A	5/1994	Madrid et al.
5,313,516 A	5/1994	Afshar et al.
5,315,658 A	5/1994	Micali
5,319,543 A	6/1994	Wilhelm
5,319,703 A	6/1994	Drory
5,319,705 A	6/1994	Halter et al.
5,321,745 A	6/1994	Drory et al.
5,325,292 A	6/1994	Crockett
5,325,294 A	6/1994	Keene
5,327,490 A	7/1994	Cave
5,329,579 A	7/1994	Brunson
5,333,190 A	7/1994	Eyster
5,334,974 A	8/1994	Simms et al.
5,335,276 A	8/1994	Thompson et al.
5,335,288 A	8/1994	Faulkner
5,335,743 A	8/1994	Gillbrand et al.
5,341,412 A	8/1994	Ramot et al.

(56)		Referen	ces Cited	5,497,271	Α	3/1996	Mulvanny et al.
	шa			5,497,339			Bernard Sadazmilt at al
	U.S.	PATENT	DOCUMENTS	5,497,430 5,499,293			Sadovnik et al. Behram et al.
5,359,6	545 A	10/1994	Katz	5,500,899		3/1996	
, ,	.65 A		Stringfellow et al.	5,502,762		3/1996	Andrew et al.
5,361,2		11/1994	-	5,504,482			Schreder
5,363,4			Gagne et al.	5,504,491			Chapman Oikawa et al.
, , ,	523 A		Derby et al.	5,504,622 5,506,595			Fukano et al.
/ /	575 A 595 A	11/1994 11/1994	Chakravarti et al.	5,506,898			Costantini et al.
5,371,5			Miyauchi et al.	5,508,912			Schneiderman
5,377,0			Maeda et al.	5,511,112		4/1996	
/ /	70 A		Cambray et al.	5,511,117 5,511,121		4/1996 4/1996	Zazzera
5,390,2			Klausner et al.	5,511,724			Freiberger et al.
5,390,3 5,392,3		2/1995 2/1995	Morales	5,515,421			Sikand et al.
5,394,3			Clearwater	5,517,566			Smith et al.
5,400,0	45 A	3/1995		5,519,403			Bickley et al.
5,400,3			Knuth et al.	5,519,410 5,519,773			Smalanskas et al. Dumas et al.
5,402,4 5,404,4		3/1995 4/1995	Miller et al. Hirata	5,519,778			Leighton et al.
5,412,7			Drexler et al.	5,521,722			Colvill et al.
/ /	39 A		Groves et al.	5,523,559			Swanson
5,414,7			Bahler et al.	5,523,739			Manneschi Vlauanan at al
5,416,3		5/1995	0.	5,524,140 5,524,147		6/1996 6/1996	Klausner et al. Bean
5,420,8 5,420,9			Anderson et al. Arnaud et al.	5,525,977		6/1996	
5,422,5			Swanson	5,526,417			Dezonno
5,425,0			Trefzger	5,526,428		6/1996	
5,428,5		6/1995		5,528,248			Steiner et al.
5,428,6			Indeck et al.	5,528,492 5,528,496			Fukushima Brauer et al.
5,430,2 5,430,7		_	Fernadez Jesurum et al.	5,528,516			Yemini et al.
5,432,8			Hashimoto	5,528,666	Α	6/1996	Weigand et al.
5,432,8			Lu et al.	5,530,235			Stefik et al.
5,432,9		7/1995	e	5,530,931			Cook-Hellberg et al.
5,434,9			Robinson et al.	5,533,103 5,533,107			Peavey et al. Irwin et al.
5,436,9 5,440,4			Hanson Hegg et al.	5,533,109		7/1996	
5,442,3		8/1995		5,533,123			Force et al.
5,442,5			Parrillo	5,534,855			Shockley et al.
5,442,6			Hays et al.	5,534,888 5,534,975			Lebby et al. Stefik et al.
5,448,0 5,448,6		9/1995		5,535,257			Goldberg et al.
5,448,6		9/1995	Hardy et al. Cain	5,535,383		7/1996	-
5,450,3		9/1995		5,537,467			Cheng et al.
5,450,3		9/1995		5,537,470		7/1996	
5,450,6			Takahara et al.	5,539,645 5,539,869			Mandhyan et al. Spoto et al.
5,453,6 5,455,4		9/1995 10/1995		5,544,220			Trefzger
, ,	47 A		Drexler et al.	5,544,232	Α	8/1996	Baker et al.
	'61 A		Monica et al.	/ /			Smithies et al.
/ /	/81 A		Kaplan et al.	5,546,452 5,546,456			Andrews et al. Vilsoet et al.
/ /	082 A 286 A	11/1995	Chaco Clare et al.	5,546,462			Indeck et al.
			Donaghue, Jr. et al.	5,546,580			Seliger et al.
			Berson et al.	5,547,125			Hennessee et al.
· · · ·	99 A			5,553,145		9/1996	
, , ,	339 A		Watson et al.	5,553,155 5,553,661			Kuhns et al. Beyerlein et al.
	93 A 82 A	12/1995 12/1995		5,555,172		9/1996	
			Hammond	5,555,286			Tendler
5,479,5	501 A	12/1995		5,555,290			McLeod et al.
5,481,5			Comerford	5,555,295 5,555,502		9/1996 9/1996	
, ,	513 A		Ford et al. Faulkner	5,557,668		9/1996	L
5,483,6 5,483,6			Kuwamoto et al.	5,557,765			Lipner et al.
5,485,1		_	Vaughn	5,559,520		9/1996	Barzegar et al.
5,485,3	512 A	1/1996	Horner et al.	5,559,867			Langsenkamp et al.
5,485,5			Recht et al.	5,559,878			Keys et al. Dravlar at al
5,485,5 5,486,8		1/1996	_	5,559,885 5,560,011		9/1996 9/1996	Drexler et al. Uvama
5,480,6			Borrego et al. Goldsmith et al.	5,561,711		10/1996	-
5,493,6			Chiang et al.	5,561,718			Trew et al.
, , ,	590 A		Shimazaki	5,568,540			Greco et al.
5,494,0	97 A		Straub et al.	5,570,419			Cave et al.
, , ,			Stent et al.	· · ·			Timm et al.
5,495,5	528 A	2/1996	Dunn et al.	5,572,576	А	11/1996	Klausner et al.

(56)		Referen	ces Cited	5,646,986		Sahni et al.
	τια			5,646,988		Hikawa Dorton
	U.S.	PATENT	DOCUMENTS	5,646,997 5,647,017	7/1997	Barton Smithies et al.
5 572 5	06 A	11/1006	Quali	5,647,364		Schneider et al.
5,572,5 5,572,5		11/1996 11/1996	Wildes et al.	5,648,769		Sato et al.
5,573,2		11/1996		5,650,770		Schlager et al.
5,574,7			Baird et al.	5,650,929		Potter et al.
5,574,7			LaPadula et al.	5,652,788	7/1997	Hara Hennessee et al.
			Fukatsu et al.	5,653,386 5,654,715		Hayashikura et al.
5,577,1 5,578,8		11/1996	Cambray et al. Taylor	5,655,013		Gainsboro
5,579,3		11/1996	-	5,655,014		Walsh et al.
5,579,3			Bales et al.	5,657,074		Ishibe et al.
5,579,3			Conner et al.	5,659,616 5,659,726	8/1997	Sudia Sandford, II et al.
5,579,5			Orlen et al.	5,661,283		Gallacher et al.
5,581,6 5,581,6			Szlam et al. Robinson et al.	5,664,018		Leighton
5,581,6			Richardson, Jr. et al.	5,664,109		Johnson et al.
5,583,9	933 A	12/1996	Mark	5,664,115	9/1997	
5,583,9		12/1996		5,666,102 5,666,400	9/1997	Lahiff McAllister et al.
5,586,1			McAllister et al.	5,666,414	9/1997	
5,586,1 5,586,2			Stent et al. Komatsu et al.	5,666,416	9/1997	
5,588,0			Detering et al.	5,666,420		Micali
5,588,0			Chandos et al.	5,666,523		D'Souza
5,590,1			Howe et al.	5,668,878		Brands Satoh et al.
5,590,1		12/1996		5,670,953 5,672,106		Orford et al.
5,592,4 5,592,5			Keskin et al. Smith et al.	5,675,637		Szlam et al.
5,592,5			Nagel et al.	5,677,955		Doggett et al.
5,592,9	945 A		Fiedler	5,679,940		Templeton et al.
5,594,7			Goodman	5,680,460 5,682,032	10/1997	Tomko et al. Philipp
5,594,7 5,594,7			Curreri et al. Szlam et al.	5,682,142		Loosmore et al.
5,594,8			Colbert	5,684,863	11/1997	
	'10 A		Weisser, Jr. et al.	5,687,215		Timm et al.
5,604,8		2/1997		5,687,225 5,687,236		Jorgensen Moskowitz et al.
5,606,6 5,608,3		2/1997 3/1997	Houser et al.	5,689,252		Ayanoglu et al.
5,610,7			Hayashi et al.	5,689,652		Lupien et al.
5,610,9		3/1997	-	5,691,695	11/1997	
5,610,9		3/1997		5,692,033 5,692,034	11/1997	Farris Richardson, Jr. et al.
5,613,0			Cooperman et al. Hoffman et al.	5,692,034		McManis
5,613,0 5,615,1		3/1997		5,696,809	12/1997	_
5,615,2			Hoffman	5,696,818		Doremus et al.
5,616,9			Fernadez	5,696,827 5,696,908	12/1997	Brands Muehlberger et al.
5,619,5			Van Berkum	5,699,056	12/1997	
5,619,9 5,621,2		4/1997 4/1997	Langhans et al.	5,699,418	12/1997	
5,621,8			Lermuzeaux et al.	5,699,427		Chow et al.
5,623,5			Jones et al.	5,701,295		Bales et al.
5,623,6		4/1997		5,702,165 5,703,562	12/1997	Koibuchi Nilsen
5,625,6 5,625,6			Greco et al. Gray et al.	5,703,935		Raissyan et al.
5,627,5			Ramaswamy et al.	5,706,427		Tabuki
5,629,9		5/1997	Stefik et al.	5,710,834		Rhoads
5,629,9		5/1997		5,712,625 5,712,632		Murphy Nishimura et al.
5,631,9 5,632,0			Mills et al. Landfield et al.	5,712,640		Andou et al.
5,633,9		5/1997		5,712,912		Tomko et al.
5,633,9		5/1997	August et al.	5,712,914		Aucsmith et al.
5,633,9			Kaish et al.	5,714,852 5,715,307		Enderich Zazzera
5,633,9 5,634,0			Davis et al. Stefik et al.	5,715,403	2/1998	
5,634,0			Barnewall et al.	5,717,387		Suman et al.
5,636,2			Utsumi et al.	5,717,741		Yue et al.
5,636,2			Dijkstra et al.	5,717,757 5,719,950	2/1998	Osten et al.
5,636,2 5,636,2			Holmquist et al. Rhoads	5,720,770		Nappholz et al.
5,638,3			Kobayashi et al.	RE35,758		Winter et al.
5,638,4	36 A	6/1997	Hamilton et al.	5,724,418	3/1998	-
5,638,4			Stefik et al.	5,724,425		Chang et al.
5,638,4			Spelman et al. Goninath et al	5,724,488		Prezioso Sandford II et al
5,640,5 5,640,5			Gopinath et al. Miller et al.	5,727,092 5,727,154		Sandford, II et al. Fry et al.
5,644,7			Burks et al.	5,727,165		Ordish et al.
5,646,8		7/1997		5,729,600		Blaha et al.

Page 6

(56)		References Cited	5,790,665 A	8/1998	Micali
			5,790,668 A	8/1998	Tomko
	US	PATENT DOCUMENTS	5,790,674 A	8/1998	Houvener et al.
	0.0.		5,790,703 A	8/1998	
	5,732,368 A	3/1998 Knoll et al.	5,790,935 A		Payton
	5,734,154 A	3/1998 Jachimowicz et al.	5,793,846 A	8/1998	•
	/ /		5,793,868 A	8/1998	
	5,734,204 A	3/1998 Sobue	5,794,207 A		Walker et al.
	5,734,752 A	3/1998 Knox	· · ·		
	5,734,973 A	3/1998 Honda	5,796,791 A	8/1998	Polcyn
	5,737,419 A	4/1998 Ganesan	5,796,816 A	8/1998	Utsumi
	/ /		5,796,841 A	8/1998	Cordery et al.
	5,737,420 A	4/1998 Tomko et al.	5,797,127 A		Walker et al.
	5,740,233 A	4/1998 Cave et al.	· · ·		
	5,740,240 A	4/1998 Jolissaint	5,797,128 A	8/1998	Birnbaum
	5,740,244 A	4/1998 Indeck et al.	5,799,077 A	8/1998	Yoshii
	/ /		5,799,083 A	8/1998	Brothers et al.
	5,742,226 A	4/1998 Szabo et al.	5,755,005 11	0/1//0	

$J, I = 2, 220$ Λ	T/1//0	SZabb (M a)		-		
5,742,675 A	4/1998	Kilander et al.	5,799,086	А	8/1998	Sudia
5,742,683 A		Lee et al.	5,799,087	Α	8/1998	Rosen
5,742,685 A		Berson et al.	5,799,088	А	8/1998	Raike
5,745,555 A	4/1998	_	5,802,199	А	9/1998	Pare, Jr. et al.
5,745,569 A		Moskowitz et al.	5,802,502	Α	9/1998	Gell et al.
5,745,573 A		Lipner et al.	5,805,055	Α	9/1998	Colizza
5,745,604 A		Rhoads	5,805,719	Α	9/1998	Pare, Jr. et al.
5,745,678 A		Herzberg et al.	5,805,803	Α	9/1998	Birrell et al.
5,745,754 A		Lagarde et al.	5,806,048	Α	9/1998	Kiron et al.
5,748,103 A		Flach et al.	5,806,071	А		Balderrama et al.
5,748,711 A		Scherer	5,809,144			Sirbu et al.
5,748,738 A		Bisbee et al.	5,809,437		9/1998	_
/ /		Rhoads	5,812,398			Nielsen
5,748,763 A			5,812,642		9/1998	
5,748,783 A		Rhoads Caldbarra at al	5,812,668		9/1998	-
5,748,890 A		Goldberg et al.	5,815,252			Price-Francis
5,748,960 A		Fischer	5,815,551		9/1998	
5,749,785 A		Rossides	5,815,554			Burgess et al.
5,751,809 A		Davis et al.	5,815,566			Ramot et al.
5,751,836 A	_ /	Wildes et al.	5,815,500		9/1998	
5,751,909 A		Gower	· · · ·			Williams et al.
5,752,754 A		Amitani et al.	5,815,657			
5,752,976 A		Duffin et al.	5,819,237			Garman Sanfard II at al
5,754,659 A	5/1998	Sprunk et al.	5,819,289			Sanford, II et al.
5,754,939 A	5/1998	Herz et al.	5,822,400		10/1998	
5,757,431 A	5/1998	Bradley et al.	5,822,401			Cave et al.
5,757,914 A	5/1998	McManis	· · ·			McCausland et al.
5,757,916 A	5/1998	MacDoran et al.	5,822,432			Moskowitz et al.
5,758,311 A	5/1998	Tsuji et al.	5,822,436			
5,758,328 A	5/1998	Giovannoli	5,825,869			Brooks et al.
5,761,285 A	6/1998	Stent	5,825,871		10/1998	
5,761,288 A	6/1998	Pinard et al.	5,825,880	А		Sudia et al.
5,761,298 A		Davis et al.	5,826,014	А	10/1998	Coley et al.
5,761,686 A		Bloomberg	5,826,029	Α	10/1998	Gore, Jr. et al.
5,763,862 A		Jachimowicz et al.	5,826,244	А	10/1998	Huberman
5,764,789 A		Pare, Jr. et al.	5,828,731	А	10/1998	Szlam et al.
5,765,152 A		Erickson	5,828,734	Α	10/1998	Katz
5,767,496 A		Swartz et al.	5,828,751	Α	10/1998	Walker et al.
5,768,355 A		Salibrici et al.	5,828,840	Α	10/1998	Cowan et al.
5,768,360 A		Reynolds et al.	5,828,878	Α	10/1998	Bennett
5,768,382 A		Schneier et al.	5,831,545			Murray et al.
5,768,385 A		Simon	5,832,089			Kravitz et al.
/ /			5,832,119		11/1998	
5,768,388 A		Goldwasser et al.	5,832,450			Myers et al.
5,768,426 A		Rhoads Narris et al	5,832,464			Houvener et al.
5,770,849 A		Novis et al.	5,832,488			Eberhardt
5,771,071 A		Bradley et al.	5,835,572			Richardson, Jr. et al.
5,772,585 A		Lavin et al.	5,835,726			Shwed et al.
5,774,073 A		Maekawa et al.	5,835,881			Trovato et al.
5,774,357 A		Hoffberg et al.	5,835,896			Fisher et al.
5,774,537 A	6/1998		· · · ·			
5,774,551 A		Wu et al.	5,838,237			Revell et al. Wilson et al
5,777,394 A	7/1998		5,838,772			Wilson et al.
5 778 102 A	7/1998	Sandford II et al	5,838,779	A	11/1998	Fuller et al.

5,757,914 A	5/1998	McManis	5,022,410 A
5,757,916 A	5/1998	MacDoran et al.	5,822,432 A
5,758,311 A	5/1998	Tsuji et al.	5,822,436 A
5,758,328 A		Giovannoli	5,825,869 A
5,761,285 A	6/1998	Stent	5,825,871 A
5,761,288 A	6/1998	Pinard et al.	5,825,880 A
5,761,298 A	6/1998	Davis et al.	5,826,014 A
5,761,686 A	6/1998	Bloomberg	5,826,029 A
5,763,862 A	6/1998	Jachimowicz et al.	5,826,244 A
5,764,789 A	6/1998	Pare, Jr. et al.	5,828,731 A
5,765,152 A	6/1998	Erickson	5,828,734 A
5,767,496 A	6/1998	Swartz et al.	5,828,751 A
5,768,355 A	6/1998	Salibrici et al.	5,828,840 A
5,768,360 A		Reynolds et al.	5,828,878 A
5,768,382 A	6/1998	Schneier et al.	5,831,545 A
5,768,385 A	6/1998	Simon	5,832,089 A
5,768,388 A	6/1998	Goldwasser et al.	5,832,119 A
5,768,426 A	6/1998	Rhoads	5,832,450 A
5,770,849 A		Novis et al.	5,832,464 A
5,771,071 A		Bradley et al.	5,832,488 A
5,772,585 A		Lavin et al.	5,835,572 A
5,774,073 A	6/1998	Maekawa et al.	5,835,726 A
5,774,357 A	6/1998	Hoffberg et al.	5,835,881 A
5,774,537 A	6/1998	Kim	5,835,896 A
5,774,551 A	6/1998	Wu et al.	5,838,237 A
5,777,394 A	7/1998		5,838,772 A
5,778,102 A		Sandford, II et al.	5,838,779 A
5,778,367 A		Wesinger, Jr. et al.	5,838,792 A
5,778,882 A		Raymond et al.	5,838,812 A
5,779,634 A	_	Ema et al.	5,839,114 A
5,781,872 A		Konishi et al.	5,839,119 A
5,781,890 A		Nematbakhsh et al.	5,841,122 A
5,784,461 A	7/1998	Shaffer et al.	5,841,852 A
5,784,463 A	7/1998	Chen et al.	5,841,865 A
5,784,566 A	7/1998	Viavant et al.	5,841,886 A
5,787,156 A	7/1998	Katz	5,841,907 A
5,787,159 A	7/1998	Hamilton et al.	5,841,978 A
5,787,187 A	7/1998	Bouchard et al.	5,844,244 A
5,789,733 A	8/1998	Jachimowicz et al.	5,845,211 A
, ,			, , , –

5,838,792	Α	11/1998	Ganesan
5,838,812	Α	11/1998	Pare, Jr. et al.
5,839,114	Α	11/1998	Lynch et al.
5,839,119	Α	11/1998	Krsul et al.
5,841,122	Α	11/1998	Kirchhoff
5,841,852	Α	11/1998	He
5,841,865	Α	11/1998	Sudia
5,841,886	Α	11/1998	Rhoads
5,841,907	Α	11/1998	Javidi et al.
5,841,978	Α	11/1998	Rhoads
5,844,244	Α	12/1998	Graf et al.
5,845,211	Α	12/1998	Roach, Jr.

(56)	Referen	ces Cited	5.	901,229	Α	5/1999	Fujisaki et al.
			5,	901,246	А	5/1999	Hoffberg et al.
L	J.S. PATENT	DOCUMENTS		903,454			Hoffberg et al. Tonisson
5,845,253	A 12/1998	Rensimer et al.	5,	903,651	Α	5/1999	Kocher
5,845,266	A 12/1998	Lupien et al.		903,880		5/1999	
5,845,267 5,848,143		Ronen Andrews et al.		903,889		5/1999	de la Huerga et al. Lesk
5,848,155			5,	905,792	Α	5/1999	Miloslavsky
5,848,231		Teitelbaum et al.		905,800		_	Moskowitz et al. Ausubel
5,850,428 5,850,442				905,975			Barrows
5,850,446		Berger et al.		907,149			Marckini
5,850,451				907,601			David et al. Shaffer et al.
5,850,481 5,852,814				909,493			Motoyama
5,854,832		Dezonno	· · · · · · · · · · · · · · · · · · ·	910,982			Shaffer et al.
5,857,013		Yue et al.	· · · · · · · · · · · · · · · · · · ·	910,987		6/1999 6/1999	Ginter et al. Ballard
5,857,022 5,857,023		Sudia Demers et al.		,911,132		6/1999	
5,862,223		Walker et al.		911,136		6/1999	
5,862,246		Colbert		911,143 911,687			Deinhart et al. Sato et al.
5,862,260 5,864,305		Rhoads Rosenquist		912,818			McGrady et al.
5,867,386		Hoffberg et al.	-	912,947			Langsenkamp et al.
5,867,559		Jorgensen et al.		912,974			Holloway et al. Higley et al.
5,867,564 5,867,572		Bhusri MacDonald et al.		913,195			Weeren et al.
5,867,578		Brickell et al.		913,196			Talmor et al.
5,867,795		Novis et al.	· · · · · · · · · · · · · · · · · · ·	914,951			Bentley et al. Dulman
5,867,799 5,867,802		Lang et al. Borza		,915,011			Miloslavsky
5,867,821		Ballantyne et al.		915,018			Aucsmith
5,869,822		Meadows, II et al.	· · · · · · · · · · · · · · · · · · ·	915,019			Ginter et al. Cox et al.
5,870,464 5,870,723		Brewster et al. Pare, Jr. et al.	· · · · · · · · · · · · · · · · · · ·	915,087			Hammond et al.
5,870,744	A 2/1999	Sprague		915,093			Berlin et al.
5,872,833		Scherer		915,209		6/1999 6/1999	Lawrence Karpf
5,872,834 5,872,848		Teitelbaum Romney et al.	_	915,973			Hoehn-Saric et al.
5,872,849	A 2/1999	Sudia		917,893		6/1999	
5,873,068 5,873,071		Beaumont et al. Ferstenberg et al.		917,903			Jolissaint Bernard et al.
5,873,782			5,	918,227	Α	6/1999	Polnerow et al.
5,875,108		Hoffberg et al.		919,239			Fraker et al. Waizmann et al.
5,876,926 5,878,126		Beecham Velamuri et al.	,	920,058			Weber et al.
5,878,130		Andrews et al.		920,384		7/1999	
5,878,137		Ippolito et al.		920,477			Hoffberg et al. Indeck et al.
5,878,144 5,881,225		Aucsmith et al. Worth		920,629		7/1999	
5,881,226		Veneklase		920,630			Wertheimer et al.
5,884,272		Walker et al.		920,861		7/1999	Hall et al. Hurd
5,884,277 5,889,473		Khosla Wicks	· · · · · · · · · · · · · · · · · · ·	923,746			Baker et al.
5,889,474		LaDue	· · · · · · · · · · · · · · · · · · ·	923,763			Walker et al. Fuller et al.
5,889,799 5,889,862		Grossman et al. Ohta et al.	· · · · · · · · · · · · · · · · · · ·	924,016		7/1999	
5,889,863			5,	924,082	Α	7/1999	Silverman et al.
5,889,868		Moskowitz et al.		924,083			Silverman et al. Kinugasa et al.
5,890,129 5,890,138		Spurgeon Godin et al.		925,126		7/1999	e
5,890,150		Rapaport et al.		926,528		7/1999	
5,892,824		Beatson et al.	,	926,539			Shtivelman Okamoto
5,892,838 5,892,900		Brady Ginter et al.		926,796			Walker et al.
5,892,902				928,333			Landfield et al.
5,893,902		Transue et al.		929,753			Montague Nepustil
5,894,505 5,896,446		Koyama Sagady et al.	-	930,369			Cox et al.
5,897,616	A 4/1999	Kanevsky et al.	· · · · · · · · · · · · · · · · · · ·	930,759			Moore et al.
5,897,620 5,898,154		Walker et al. Rosen	· · · · · · · · · · · · · · · · · · ·	930,777		7/1999	Barber Yu et al.
5,898,154 5,898,759			,	930,804			Suwa et al.
5,898,762			· · · · · · · · · · · · · · · · · · ·	933,480		8/1999	
5,898,830		Wesinger, Jr. et al.		933,492			Turovski Sabraals et al
5,899,998 5,901,209		McGauley et al. Tannenbaum et al.	-	933,498			Schneck et al. Pu et al.
5,901,209		Shaffer et al.	,	933,809			Hunt et al.
·							

5,507,000	11	5/1///	Shaner et al.
5,909,493	А	6/1999	Motoyama
5,910,982	Α	6/1999	Shaffer et al.
5,910,987	Α	6/1999	Ginter et al.
5,910,988	Α	6/1999	Ballard
5,911,132	Α	6/1999	Sloane
5,911,136	Α	6/1999	Atkins
5,911,143	Α	6/1999	Deinhart et al.
5,911,687		6/1999	Sato et al.
5,912,818	Α	6/1999	McGrady et al.
5,912,947		6/1999	Langsenkamp et a
5,912,974		6/1999	Holloway et al.
5,913,025		6/1999	Higley et al.
5,913,195		6/1999	Weeren et al.
5,913,196		6/1999	Talmor et al.
5,914,951		6/1999	Bentley et al.
5,915,008		6/1999	Dulman
5,915,011		6/1999	Miloslavsky
5,915,018		6/1999	Aucsmith
5,915,019		6/1999	Ginter et al.
5,915,027		6/1999	Cox et al.
5,915,027		6/1999	Hammond et al.
5,915,087		6/1999	Berlin et al.
5,915,209		6/1999	Lawrence
/ /		6/1999	
5,915,240		6/1999	Karpf Hachn Serie at al
5,915,973			Hoehn-Saric et al
5,917,893		6/1999	Katz
5,917,903		6/1999	Jolissaint
5,918,213		6/1999	Bernard et al.
5,918,227		6/1999	Polnerow et al.
5,919,239		7/1999	Fraker et al.
5,919,246		7/1999	Waizmann et al.
5,920,058		7/1999	Weber et al.
5,920,384		7/1999	Borza
5,920,477		7/1999	Hoffberg et al.
5,920,628		7/1999	Indeck et al.
5,920,629		7/1999	Rosen
5,920,630		7/1999	Wertheimer et al.
5,920,861		7/1999	Hall et al.
5,923,745		7/1999	Hurd
5,923,746		7/1999	Baker et al.
5,923,763	Α	7/1999	Walker et al.
5,924,016	Α	7/1999	Fuller et al.
5,924,074	Α	7/1999	Evans
5,924,082	Α	7/1999	Silverman et al.
5,924,083	Α	7/1999	Silverman et al.
5,924,406		7/1999	Kinugasa et al.
5,925,126		7/1999	Hsieh
5,926,528		7/1999	David
5,926,539		7/1999	Shtivelman
5,926,548		7/1999	Okamoto
5,926,796		7/1999	Walker et al.
5.928.333		7/1999	Landfield et al.

(56)		Referen	ces Cited	5,974,548 A		
	US	PATENT	DOCUMENTS	RE36,416 E 5,977,884 A	11/1999	Szlam et al. Ross
	0.5.			5,978,475 A		Schneier et al.
5,93	5,071 A	8/1999	Schneider et al.	5,978,494 A	11/1999	\mathbf{v}
/	7,055 A	8/1999	I	5,978,840 A 5,978,918 A		Nguyen et al. Scholnick et al.
	7,068 A 7,390 A	8/1999 8/1999	Audebert	5,979,773 A		Findley, Jr. et al.
	7,394 A		Wong et al.	5,982,298 A	11/1999	Lappenbusch et al.
5,93	8,707 A	8/1999	Uehara	5,982,325 A		Thornton et al.
/	0,493 A		Desai et al.	5,982,520 A 5,982,891 A		Weiser et al. Ginter et al.
r	0,496 A 0,497 A		Gisby et al. Miloslavsky	/ /		McCalley et al.
	0,504 A		Griswold	5,983,154 A		
	0,508 A		Long et al.	5,983,161 A 5,983,205 A		Lemelson et al. Brams et al.
· · · · · · · · · · · · · · · · · · ·	0,813 A 0,947 A		Hutchings Takeuchi et al.	5,983,208 A		Haller et al.
· · · · · · · · · · · · · · · · · · ·	1,813 A		Sievers et al.	5,983,350 A		Minear et al.
/	1,947 A		Brown et al.	5,984,366 A 5,986,746 A		Priddy Metz et al.
	3,403 A 3,422 A		Richardson, Jr. et al. Van Wie et al.	5,987,132 A	11/1999	
	3,423 A	8/1999		5,987,140 A	11/1999	Rowney et al.
· · · · · · · · · · · · · · · · · · ·	3,424 A		Berger et al.	5,987,153 A		Chan et al.
/	4,823 A		Jade et al. Flance et al	5,987,155 A 5,987,440 A		Dunn et al. O'Neil et al.
,	5,877 A 6,387 A		Elango et al. Miloslavsky	5,987,459 A		Swanson et al.
· · · · · ·	6,388 A		Walker et al.	5,990,825 A	11/1999	
	6,394 A		Gambuzza	5,991,399 A 5,991,406 A		Graunke et al. Lipner et al.
	6,414 A 6,669 A	8/1999 8/1999	Cass et al. Polk	5,991,408 A		Pearson et al.
/	8,040 A		DeLorme et al.	5,991,429 A		Coffin et al.
	8,136 A	9/1999		5,991,431 A 5,991,519 A		Borza et al. Benhammou et al.
,	9,045 A 9,046 A		Ezawa et al. Kenneth et al.	5,991,519 A 5,991,731 A		Colon et al.
	9,852 A	9/1999 9/1999		5,991,758 A	11/1999	
	9,854 A	9/1999	Sato	5,991,877 A		Luckenbaugh
	9,863 A	9/1999	-	5,991,878 A 5,995,625 A		McDonough et al. Sudia et al.
	9,866 A 9,876 A		Coiera et al. Ginter et al.	5,995,630 A	11/1999	
	9,879 A		Berson et al.	5,995,943 A		
	9,881 A	9/1999		5,996,076 A 5,999,095 A		Rowney et al. Earl et al.
	9,882 A 9,885 A	9/1999 9/1999	Leighton	5,999,629 A		Heer et al.
/	0,195 A		Stockwell et al.	5,999,637 A		Toyoda et al.
	1,055 A		Mowry, Jr.	5,999,919 A 5,999,973 A		Jarecki et al. Glitho et al.
· · · · · · · · · · · · · · · · · · ·	2,638 A 2,639 A		Demers et al. Ohki et al.	6,002,326 A		
/	2,641 A		Korshun	6,002,756 A		
	3,319 A		Dutta et al.	6,002,767 A 6,002,770 A		
	3,332 A 3,405 A		Miloslavsky Miloslavsky	6,002,770 A		
	3,419 A		Lohstroh et al.	6,003,084 A	12/1999	Green et al.
	4,583 A	9/1999		6,003,135 A		Bialick et al.
/	6,392 A 6,397 A		Tanigawa et al. Shaffer et al.	6,003,765 A 6,004,276 A		Okamoto Wright et al.
· · · · · · · · · · · · · · · · · · ·	6,400 A		Chaum et al.	6,005,517 A		Friedrichs
5,95	6,408 A	9/1999	Arnold	6,005,859 A		Harvell et al.
	8,016 A		Chang et al.	6,005,939 A 6,005,943 A		Fortenberry et al. Cohen et al.
· · · · · · · · · · · · · · · · · · ·	8,050 A 9,529 A		Griffin et al. Kail, IV	6,006,194 A	12/1999	
/	0,073 A		Kikinis et al.	6,006,328 A	12/1999	
	0,083 A	9/1999		6,006,332 A 6,008,741 A		Rabne et al. Shinagawa et al.
,	0,177 A 3,632 A	9/1999 10/1999	Miloslavsky	6,009,177 A		
	3,635 A		Szlam et al.	6,009,430 A		Joseph et al.
,	3,648 A	10/1999		6,009,475 A 6,009,526 A	12/1999 12/1999	
	3,657 A 3,908 A	10/1999 10/1999	Bowker et al. Chadha	6,011,858 A		Stock et al.
· · · · · ·	3,914 A		Skinner et al.	6,012,035 A		Freeman, Jr. et al.
/	3,924 A		Williams et al.	6,012,039 A		Hoffman et al.
	6,429 A 6,446 A	10/1999 10/1999		6,012,045 A 6,012,049 A		Barzilai et al. Kawan
/	6,440 A 6,448 A		Namba et al.	6,012,049 A		Li et al.
· · · · · · · · · · · · · · · · · · ·	8,176 A		Nessett et al.	6,013,956 A		Anderson, Jr.
· · · · · · · · · · · · · · · · · · ·	0,143 A		Schneier et al.	6,014,605 A		Morisawa et al.
/	0,479 A		Shepherd Grebe et al	6,014,627 A		Togher et al. Minton
/	3,616 A 4,146 A		Grebe et al. Randle et al.	6,014,643 A 6,014,666 A		Minton Helland et al.
· · · · · ·	4,389 A			6,016,318 A		Tomoike
~						

5,999,095	Α	12/1999	Earl et al.
5,999,629	Α	12/1999	Heer et al.
5,999,637	Α	12/1999	Toyoda et al.
5,999,919	Α	12/1999	Jarecki et al.
5,999,973	Α	12/1999	Glitho et al.
6,002,326	Α	12/1999	Turner
6,002,756	Α	12/1999	Lo et al.
6,002,767	Α	12/1999	Kramer
6,002,770	Α	12/1999	Tomko et al.
6,002,772	Α	12/1999	Saito
6,003,084	Α	12/1999	Green et al.
6,003,135	Α	12/1999	Bialick et al.
6,003,765	A	12/1999	Okamoto
6,004,276	Α	12/1999	Wright et al.
6,005,517	А	12/1999	Friedrichs
6,005,859	А	12/1999	Harvell et al.
6,005,939	Α	12/1999	Fortenberry et al.
6,005,943	Α	12/1999	Cohen et al.
6,006,194	Α	12/1999	Merel
6,006,328	Α	12/1999	Drake
6,006,332	А	12/1999	Rabne et al.
6,008,741	Α	12/1999	Shinagawa et al.
6,009,177	А	12/1999	Sudia
6,009,430	А	12/1999	Joseph et al.
6,009,475		12/1999	Shrader
6.009.526	A	12/1999	Choi

(56)]	Referen	ces Cited	6,044,257 A	3/2000	Boling et al.
		ATENT		6,044,349 A 6,044,350 A		Tolopka et al. Weiant, Jr. et al.
	U.S. P.	ALENI	DOCUMENTS	6,044,363 A		Mori et al.
	6,016,476 A	1/2000	Maes et al.	6,044,388 A		DeBellis et al.
	/ /		Williams et al.	6,044,401 A	3/2000	Harvey
	6,018,724 A	1/2000		6,044,402 A		Jacobson et al.
	6,018,739 A		McCoy et al.	6,044,462 A		Zubeldia et al. Kanda et al.
	6,018,801 A		Palage et al.	6,044,463 A 6,044,464 A	3/2000	
	6,021,202 A 6,021,393 A		Anderson et al. Honda et al.	· · ·		Anand et al.
	/ /		Jones et al.	6,044,468 A		Osmond
	/ /		Ausubel	6,045,039 A		
	/ /		Demers et al.	6,047,051 A 6,047,066 A		Ginzboorg et al. Brown et al.
	6,021,491 A 6,021,497 A	2/2000	Bouthillier et al.	6,047,060 A	4/2000	
	/ /		Brett et al.	6,047,072 A	4/2000	Field et al.
	6,023,686 A	2/2000		6,047,242 A		Benson
	/ /		Dean et al.	6,047,264 A 6,047,268 A		Fisher et al. Bartoli et al.
	6,023,765 A 6,026,163 A	2/2000 2/2000		6,047,268 A	4/2000	
	/ /		LeBourgeois	6,047,274 A		Johnson et al.
	6,026,167 A	2/2000		6,047,322 A		Vaid et al.
	/ /	2/2000		6,047,325 A		Jain et al. Doctor
	6,026,379 A		Haller et al.	6,047,374 A 6,047,887 A	4/2000 4/2000	
	, ,		Ausubel Johns-Vano et al.	6,049,610 A		Crandall
	/ /	2/2000		6,049,612 A	4/2000	Fielder et al.
	/ /		Heer et al.	6,049,613 A		Jakobsson
	/ /	2/2000		6,049,627 A 6,049,671 A		Becker et al. Slivka et al.
	6,028,937 A 6,028,939 A	2/2000	Tatebayashi et al. Vin	6,049,785 A		Gifford
	/ /		Pfundstein	6,049,786 A		Smorodinsky
	/ /	2/2000		6,049,787 A		Takahashi et al.
	/ /		Nikander	6,049,838 A		Miller et al. Reiter et al
	<i>, ,</i>		Cabrera et al.	6,049,872 A 6,049,874 A	_	Reiter et al. McClain et al.
	6,029,195 A 6,029,201 A	2/2000 2/2000		6,049,875 A		Suzuki et al.
			Scanlan	6,052,466 A	4/2000	•
	, ,	2/2000	Ferguson	6,052,467 A		Brands
	6,031,910 A		Deindl et al.	6,052,468 A 6,052,469 A		Hillhouse Johnson et al.
	6,031,913 A 6,031,914 A		Hassan et al. Tewfik et al.	6,052,645 A		Harada
	6,032,118 A		Tello et al.	6,052,688 A		Thorsen
	6,034,605 A	3/2000		6,052,780 A	4/2000	
	6,034,618 A		Tatebayashi et al.	6,052,788 A 6,055,314 A		Wesinger, Jr. et al. Spies et al.
	6,034,626 A 6,035,041 A		Maekawa et al. Frankel et al.	6,055,321 A		Numao et al.
	6,035,276 A		Newman et al.	6,055,494 A		Friedman
	6,035,280 A		Christensen	6,055,506 A		Frasca, Jr.
	6,035,398 A	3/2000	5	6,055,508 A 6,055,512 A		Naor et al. Dean et al.
	/ /		Vaeth et al. Mousse et al	6,055,512 A		Franklin et al.
	/ /		Moussa et al. Alessandro	6,055,575 A		Paulsen et al.
	/ /		Strait et al.	6,055,636 A		Hillier et al.
	/ /		Dwork et al.	6,055,637 A 6,055,639 A		Hudson et al.
	6,038,322 A		Harkins Laurance et al	6,055,059 A 6,056,197 A		Schanze Hara et al.
	6,038,337 A 6,038,560 A	3/2000	Lawrence et al. Wical	6,056,199 A		Wiklof et al.
	/ /		Bapat et al.	6,057,872 A		Candelore
	6,038,581 A		Aoki et al.	6,058,187 A	5/2000	
	, ,		Bolt et al.	6,058,188 A 6,058,189 A		Chandersekaran et al. McGough
	/ /		Hsu et al. Finsterwald	6,058,193 A		Cordery et al.
	6,040,783 A		Houvener et al.	6,058,303 A	5/2000	Åstrom et al.
	6,041,122 A	3/2000	Graunke et al.	6,058,379 A		Odom et al.
	6,041,123 A		Colvin, Sr.	6,058,381 A 6,058,383 A		Nelson Narasimhalu et al.
	6,041,349 A 6,041,355 A	3/2000	Sugauchi et al.	6,061,003 A		Harada
	6,041,355 A		Kunzelman et al.	6,061,448 A		Smith et al.
	6,041,408 A		Nishioka et al.	6,061,451 A		Muratani et al.
	6,041,410 A		Hsu et al.	6,061,454 A		Malik et al.
	6,041,411 A	3/2000	-	6,061,665 A		Bahreman Thomas of al
	6,041,412 A 6,042,005 A		Timson et al. Basile et al.	6,061,692 A 6,061,729 A		Thomas et al. Nightingale
	6,042,003 A 6,044,131 A		McEvoy et al.	6,061,729 A 6,061,789 A		Hauser et al.
	6,044,155 A		Thomlinson et al.	6,061,790 A		Bodnar
	/ /		Uesaka et al.	6,061,791 A	5/2000	Moreau
	6,044,205 A	3/2000	Reed et al.	6,061,792 A	5/2000	Simon

6,052,469 A	4/2000	Johnson et al.
6,052,645 A	4/2000	Harada
6,052,688 A	4/2000	Thorsen
6,052,780 A	4/2000	Glover
6,052,788 A	4/2000	Wesinger, Jr. et al.
6,055,314 A	4/2000	Spies et al.
6,055,321 A	4/2000	Numao et al.
6,055,494 A	4/2000	Friedman
6,055,506 A	4/2000	Frasca, Jr.
6,055,508 A	4/2000	Naor et al.
6,055,512 A	4/2000	Dean et al.
6,055,518 A	4/2000	Franklin et al.
6,055,575 A	4/2000	Paulsen et al.
6,055,636 A	4/2000	Hillier et al.
6,055,637 A	4/2000	Hudson et al.
6,055,639 A	4/2000	Schanze
6,056,197 A	5/2000	Hara et al.
6,056,199 A	5/2000	Wiklof et al.
6,057,872 A	5/2000	Candelore
6,058,187 A	5/2000	Chen
6,058,188 A	5/2000	Chandersekaran et al.
6,058,189 A	5/2000	McGough
6,058,193 A	5/2000	Cordery et al.
6,058,303 A	5/2000	Åstrom et al.
6,058,379 A	5/2000	Odom et al.
6,058,381 A	5/2000	Nelson

(56)]	Referen	ces Cited	6,081,597			Hoffstein et al.
		ATENIT	DOCUMENTS	6,081,598 6,081,610		6/2000 6/2000	Dai Dwork et al.
	U.S. P.	ALENI	DOCUMENTS	6,081,750			Hoffberg et al.
6.061.	794 A	5/2000	Angelo et al.	6,081,790		6/2000	
, , ,	796 A		Chen et al.	6,081,793			Challener et al.
· · · · ·	797 A		Jade et al.	6,081,893			Grawrock et al. Subramaniam et al
	798 A		Coley et al.	6,081,900 6,082,776			Subramaniam et al. Feinberg
· · · ·	799 A 723 A		Eldridge et al. Cohn et al.	6,084,510			Lemelson et al.
		5/2000		6,084,969			Wright et al.
, , ,	738 A		Fridrich	6,085,175			Gugel et al.
· · · ·	740 A		Curiger et al.	6,085,216 6,088,450			Huberman et al. Davis et al.
	741 A 751 A		Horn et al. Smithies et al.	6,091,956			Hollenberg
· · · · ·	764 A	_	Bhaskaran et al.	6,092,005		7/2000	
, , ,	878 A		Denker et al.	6,092,014		7/2000	
, ,	968 A	5/2000		6,092,724 6,098,016			Bouthillier et al. Ishihara
	977 A 008 A		Haverstock et al. Simon et al.	6,098,051			Lupien et al.
	119 A		Sandford, II et al.	6,104,101			Miller et al.
· · · · ·	675 A		Teicher	6,105,873		8/2000	•
, , ,	466 A		Selker et al.	6,108,644 6,108,787			Goldschlag et al. Anderson et al.
	620 A 184 A	5/2000	Holden et al. Barnett	6,112,181			Shear et al.
, , ,			Sullivan et al.	6,115,654			Eid et al.
		5/2000		6,118,403		9/2000	
	952 A		Saito et al.	6,118,874 6,119,229			Okamoto et al. Martinez et al.
· · · · ·	954 A 955 A		Moreau Coppersmith et al.	/ /			Saito et al.
			Keagy et al.	6,128,391			Denno et al.
· · · ·	970 A		Salatino et al.	6,131,087			Luke et al. Passo Ir et al
, , ,	118 A	_	Ohta et al.	6,131,090 6,134,326		10/2000	Basso, Jr. et al. Micali
	141 A 239 A		Houvener et al. McManis	6,134,328			Cordery et al.
, ,			Nguyen et al.	6,134,536			Shepherd
	874 A	6/2000	Shin et al.	6,134,647			Acton et al.
	876 A		Obata et al.	6,137,884 6,138,107		10/2000 10/2000	
, ,		6/2000 6/2000	Rozen et al.	6,138,119			Hall et al.
			Cordery et al.	6,141,423	А	10/2000	Fischer
· · · · ·	160 A	6/2000	Grantham et al.	6,141,750		10/2000	
, ,			Frailong et al.	6,141,755 6,141,758			Dowd et al. Benantar et al.
· · · · ·			Kigo et al. Kusakabe et al.	6,144,336			Preston et al.
· · · · ·	237 A	6/2000		6,145,079			Mitty et al.
			Drupsteen	6,147,598			Murphy et al.
			Kurtzberg et al.	6,148,342		11/2000	Lachelt et al. Ho
, ,			Hardy et al. DiMaria et al.	6,149,440			Clark et al.
	852 A		Ashworth et al.	6,151,309			Busuioc et al.
			Copley et al.	6,151,395		11/2000	
· · · ·			Ketcham Millor II	6,151,589 RE37,001			Aggarwal et al. Morganstein et al.
, , ,	861 A 864 A	6/2000	Miller, II Batten	6,157,721			Shear et al.
			Scheldt et al.	6,157,914			Seto et al.
			DiRienzo et al.	6,158,010 6,161,099			Moriconi et al. Harrington et al.
		6/2000	Saito Camp et al.	6,161,139			Win et al.
			Deindl et al.	6,161,181	А		Haynes, III et al.
	163 A		Hoffstein et al.	6,163,607			Bogart et al.
			Tanaka et al.	6,163,701 6,167,386		12/2000	Saleh et al. Brown
· · · · ·	166 A 167 A	6/2000	Moshfeghi et al. Borza	6,167,522			Lee et al.
			Bonder et al.	6,169,476			Flanagan
6,078,	586 A		Dugan et al.	6,169,789			Rao et al.
	663 A		Yamamoto	6,169,802 6,169,805			Lerner et al. Dunn et al.
	665 A 667 A		Anderson et al. Johnson	6,173,159			Wright et al.
	853 A		Ebner et al.	6,174,262		1/2001	Ohta et al.
6,078,	909 A	6/2000	Knutson	6,175,626			Aucsmith et al.
	946 A		Johnson Hardwat al	6,175,803			Chowanic et al. Weinreich et al
, ,	018 A 020 A	6/2000 6/2000	Hardy et al. Liu	6,175,831 6,178,377			Weinreich et al. Ishihara et al.
	020 A 021 A		Abadi et al.	6,182,000			Ohta et al.
, , ,	047 A		Cotugno et al.	6,185,514			Skinner et al.
	621 A	6/2000	Vardanyan et al.	6,185,683			Ginter et al.
· · · ·		6/2000	e	, ,			Birrell et al.
0,081,1	555 A	0/2000	Laubach et al.	0,192,472	DI	2/2001	Garay et al.

6,092,005 A		Okada
6,092,014 A	. 7/2000	Okada
6,092,724 A	7/2000	Bouthillier et al.
6,098,016 A	8/2000	Ishihara
6,098,051 A	8/2000	Lupien et al.
6,104,101 A	8/2000	Miller et al.
6,105,873 A		Jeger
6,108,644 A		Goldschlag et al.
6,108,787 A		Anderson et al.
6,112,181 A		Shear et al.
6,115,654 A		Eid et al.
6,118,403 A		Lang
6,118,874 A		Okamoto et al.
6,119,229 A		Martinez et al.
6,125,186 A		Saito et al.
6,128,391 A		Denno et al.
6,131,087 A		Luke et al.
/ /		
6,131,090 A		Basso, Jr. et al.
6,134,326 A		Micali
6,134,328 A		Cordery et al.
6,134,536 A		Shepherd
6,134,647 A		Acton et al.
6,137,884 A		Micali
6,138,107 A		Elgamal
6,138,119 A		Hall et al.
6,141,423 A		Fischer
6,141,750 A		Micali
6,141,755 A		Dowd et al.
6,141,758 A	10/2000	Benantar et al.
6,144,336 A	. 11/2000	Preston et al.
6,145,079 A	11/2000	Mitty et al.
6,147,598 A	11/2000	Murphy et al.
6,148,338 A	11/2000	Lachelt et al.
6,148,342 A	11/2000	Но
6,149,440 A	11/2000	Clark et al.
6,151,309 A	11/2000	Busuioc et al.
6,151,395 A		Harkins
6,151,589 A		Aggarwal et al.
RE37,001 E	12/2000	Morganstein et al.
6,157,721 A		Shear et al.
6,157,914 A		Seto et al.
6,158,010 A		Moriconi et al.
6,161,099 A		Harrington et al.
6,161,139 A		Win et al.
6,161,181 A		Haynes, III et al.
6,163,607 A		Bogart et al.
/ /		Saleh et al.
6,163,701 A		Brown
6,167,386 A		
6,167,522 A		Lee et al. Elenagen
6,169,476 B		Flanagan Rec. et. el
6,169,789 B		Rao et al.
6,169,802 B	1 1/2001	Lerner et al.

(56)		Referen	ces Cited	6,449,535			Obradovich et al.
	U.S.	PATENT	DOCUMENTS	6,449,612 6,452,565			Bradley et al. Kingsley et al.
				6,459,881		10/2002	Hoder et al.
,	92,473 B1		Ryan, Jr. et al.	6,463,454 6,466,977			Lumelsky et al. Sitaraman et al.
,	92,476 B1 95,698 B1	2/2001 2/2001	Gong Lillibridge et al.	6,470,265			
/	9,001 B1		Ohta et al.	/ /			Kohno et al.
	99,050 B1		Alaia et al.	6,480,587 6 480 753			Rao et al. Calder et al.
	99,102 B1 91,493 B1	3/2001	Cobb Silverman	6,484,088			
· · · · ·)2,022 B1	3/2001		, ,			Aggarwal et al.
)2,058 B1		Rose et al.	/ /			Ebata et al. Horrigan et al.
	20,986 B1 25,901 B1		Aruga et al. Kail, IV	6,499,018			Alaia et al.
	26,383 B1	5/2001		6,501,765			Lu et al.
	26,618 B1		Downs et al.	6,503,170 6,507,739		1/2003	Tabata Gross et al.
/	80,098 B1 80,146 B1		Ando et al. Alaia et al.	6,519,702			Williams
	30,501 B1		Bailey, Sr. et al.	6,522,946		2/2003	Weis
	33,520 B1	5/2001	Ito et al.	6,530,537 6,542,742			Hanlon Schramm et al.
/	86,977 B1 40,411 B1		Verba et al. Thearling	6,546,416		4/2003	
/	13,691 B1		Fisher et al.	6,556,548	B1	4/2003	Kirkby et al.
,	19,873 B1	6/2001	Richard et al.	6,556,951			Deleo et al. Smith
· · · · · · · · · · · · · · · · · · ·	52,544 B1 55,942 B1		Hoffberg Knudsen	6,557,756 6,560,580		5/2003 5/2003	Fraser et al.
/	50,024 B1	7/2001		6,564,192			Kinney, Jr. et al.
6,26	53,334 B1	7/2001	Fayyad et al.	6,570,980			Baruch
	56,652 B1		Godin et al.	6,571,277 6,581,008			Daniels-Barnes et al. Intriligator et al.
	56,692 B1 72,473 B1		Greenstein Sandholm	6,587,837			Spagna et al.
/	72,474 B1	8/2001	_	6,587,946			Jakobsson
	85,867 B1		Boling et al.	6,591,232 6,601,036			Kassapoglou Walker et al.
	92,736 B1 92,743 B1		Aruga et al. Pu et al.	6,606,607			Martin et al.
/	2,787 B1		Scott et al.	6,609,112			Boarman et al.
)4,758 B1		Iierbig et al.	6,609,114 6,611,812			Gressel et al. Hurtado et al.
)8,072 B1 21,212 B1		Labedz et al. Lange	6,622,116			Skinner et al.
,	21,267 B1		e e e e e e e e e e e e e e e e e e e	6,625,734			Marvit et al.
· · · · · · · · · · · · · · · · · · ·	· ·		French et al.	6,629,082 6,639,898			Hambrecht et al. Dutta et al.
,	24,519 B1 30,551 B1		Burchetta et al.	6,639,982			Stuart et al.
	/		Mitra et al.				Hoffberg et al.
	,		Hollatz et al.				Kelley et al. Carlton-Foss
,	38,011 B1 40,928 B1	_		, ,			Bala et al.
,	53,679 B1		Cham et al.	/ /			Wall et al.
	56,822 B1		Diaz et al.	, ,			Rice et al. Stilp et al.
	59,270 B1 59,571 B1	3/2002 3/2002	Endo et al.	6,662,141		12/2003	L
	50,222 B1	3/2002		6,665,705			Daniels-Barnes et al.
	56,907 B1		Fanning et al.	6,671,759 6,678,245			Noda et al. Cooper et al.
	77,809 B1 34,739 B1		Rezaiifar et al. Roberts, Jr.	6,683,945			Enzmann et al.
/	39,400 B1	5/2002	Bushey et al.	6,684,250			Anderson et al.
)3,276 B1	5/2002		6,687,822 6,691,156			Jakobsson Drummond et al.
· · · · · · · · · · · · · · · · · · ·	93,465 B2 97,141 B1	5/2002 5/2002		6,704,713		3/2004	
	97,167 B2		Skinner et al.	6,711,253			Prabhaker
	98,245 B1		Gruse et al.	6,712,701 6,718,312			Boylan, III et al. McAfee et al.
/)0,996 B1)1,027 B1	_	Hoffberg et al. Xu et al.	6,728,266		4/2004	Sabry et al.
6,41	1,221 B2	6/2002	Horber	6,736,322			Gobburu et al.
/	l1,889 B1 l5,151 B1		Mizunuma et al. Kreppel	6,754,169 6,754,643			Baum et al. Goldsmith
,	15,156 B1		Stadelmann	6,766,307	B1	7/2004	Israel et al.
6,41	18,367 B1		Toukura et al.	6,772,171			Baentsch et al.
	18,424 B1 29,812 B1		Hoffberg et al. Hoffberg	6,779,111 6,785,606			Gehrmann et al. DeKock et al.
/	30,537 B1		Tedesco et al.	6,785,671			Bailey et al.
6,43	30,690 B1	8/2002	Vanstone et al.	6,791,472	B1	9/2004	Hoffberg
	84,380 B1		Andersson et al.	6,792,399			Phillips et al.
· · · · · ·	36,005 B1 38,694 B2	8/2002 8/2002	Bellinger Saito	6,799,165 6,804,345			Boesjes Bala et al.
· · · · · · · · · · · · · · · · · · ·	i2,473 B1		Berstis et al.	<i>' '</i>			Marconcini et al.
6,44	43,841 B1	9/2002	Rossides	6,834,272			Naor et al.
6,44	45,308 B1	9/2002	Koike	6,834,811	B1	12/2004	Huberman et al.

/ /			
6,501,765 B		2002	Lu et al.
6,503,170 B		2003	Tabata
6,507,739 B	51 1/	2003	Gross et al.
6,519,702 B	31 2/	2003	Williams
6,522,946 B	51 2/	2003	Weis
6,530,537 B	32 3/	2003	Hanlon
6,542,742 B	32 4/	2003	Schramm et al.
6,546,416 B	31 4 /	2003	Kirsch
6,556,548 B	31 4 /	2003	Kirkby et al.
6,556,951 B	3 1 4/	2003	Deleo et al.
6,557,756 B	51 5/	2003	Smith
6,560,580 B	51 5/	2003	Fraser et al.
6,564,192 B		2003	Kinney, Jr. et al.
6,570,980 B	51 5/	2003	Baruch
6,571,277 B	51 5/	2003	Daniels-Barnes et al.
6,581,008 B	6/	2003	Intriligator et al.
6,587,837 B		2003	Spagna et al.
6,587,946 B			Jakobsson
6,591,232 B		2003	Kassapoglou
6,601,036 B			Walker et al.
6,606,607 B		2003	Martin et al.
6,609,112 B		2003	Boarman et al.
6,609,114 B		2003	Gressel et al.
6,611,812 B			Hurtado et al.
6,622,116 B		2003	
6,625,734 B		-	Marvit et al.
6,629,082 B			Hambrecht et al.
6,639,898 B		2003	Dutta et al.
6,639,982 B		2003	Stuart et al.
6,640,145 B			Hoffberg et al.
6,641,050 B		2003	Kelley et al.
6,647,373 B		2003	Carlton-Foss
6,654,459 B		2003	Bala et al.
6,654,806 B			Wall et al.
6,658,467 B			Rice et al.
6,661,379 B		2003	Stilp et al.
6,662,141 B		2003	Kaub
6,665,705 B		2003	Daniels-Barnes et al.
6,671,759 B			Noda et al.
6,678,245 B		2005	Cooper et al.
6,683,945 B		2004	Enzmann et al.
6,684,250 B			Anderson et al.
6,687,822 B			Jakobsson
/ /			Drummond et al.
6,691,156 B			_
6,704,713 B			Brett Drobbalser
6,711,253 B		_	Prabhaker
6,712,701 B		2004	Boylan, III et al.
6,718,312 B		2004	McAfee et al.
6,728,266 B		2004	Sabry et al.
6,736,322 B		2004	Gobburu et al.
6,754,169 B		2004	Baum et al.
6,754,643 B	61 6 /	2004	Goldsmith

(56)		Referen	ces Cited	7,206,814 7,212,634		4/2007 5/2007	Kirsch Briscoe
	U.S	. PATENT	DOCUMENTS	7,212,034 7,213,260 7,219,225	B2	5/2007	
6,8	842,463 B1	1/2005	Drwiega et al.	7,219,449	B1	5/2007	Hoffberg et al.
,	842,515 B2		Mengshoel et al.	7,240,036 7,242,988		_	Mamdani et al. Hoffberg et al.
	845,367 B2 847,939 B1		Bendel et al. Shemesh	7,246,164			Lehmann et al.
6,8	850,252 B1	2/2005	Hoffberg	7,248,841			Agee et al.
,	850,502 B1 859,533 B1		Kagan et al. Wang et al.	7,249,027 7,249,069			Ausubel Alie et al.
	865,559 B2	3/2005		7,249,081	B2	7/2007	Shearer et al.
,	865,825 B2		Bailey, Sr. et al.	7,249,085 7,249,175			Kinney, Jr. et al. Donaldson
	868,525 B1 876,309 B1	3/2005 4/2005	Szabo Lawrence	7,251,589			Crowe et al.
6,8	886,102 B1	4/2005	Lyle	7,263,607			Ingerman et al.
	901,446 B2 926,796 B1		Chellis et al. Nishida et al.	7,264,069 7,268,700			Fiorenza et al. Hoffberg
	928,261 B2		Hasegawa et al.	7,269,253	B1	9/2007	Wu et al.
	931,538 B1		Sawaguchi	7,271,737 7,278,159			Hoffberg Kaashoek et al.
· · · · · · · · · · · · · · · · · · ·	934,249 B1 937,726 B1	8/2005 8/2005	Bertin et al. Wang	7,286,665		10/2007	
6,9	944,663 B2	9/2005	Schuba et al.	7,287,007			Detering Caldman at al
	954,731 B1 954,931 B2		Montague Shetty et al.	7,290,033 7,290,132			Goldman et al. Aboba et al.
-	-		Young et al.	7,295,806	B2	11/2007	Corbett et al.
6,9	956,835 B2	10/2005	Tong et al.	7,298,289			Hoffberg Singh et al.
,	958,986 B2 959.288 B1		Cain Medina et al.	7,310,660			White et al.
6,9	959,388 B1	10/2005	Bleumer	7,319,973			Tobin et al.
· · · · · · · · · · · · · · · · · · ·	/		Bansal et al. Dobrovolny	7,321,871 7,324,971			Scott et al. Bookstaber
,	,		Blaker et al.	7,328,187	B2	2/2008	Suhmoon
,	978,252 B2			7,328,188 7,330,826		2/2008	Barry Porat et al.
,	003,485 B1 003,499 B2		Young Arditti et al.	7,334,720			Hulst et al.
7,0	006,881 B1	2/2006	Hoffberg et al.	7,337,139			Ausubel
,	016,870 B1 023,979 B1		Jones et al. Wu et al.	7,337,324			Hrle et al. Benaloh et al.
	036,146 B1		Goldsmith	7,337,332	B2	2/2008	Tsuria et al.
	039,598 B2		Tobin et al.	7,339,992 7,342,876			Chang et al. Bellur et al.
	043,245 B2 043,759 B2	5/2006 5/2006	Dokko Kaashoek et al.	7,343,342			Ausubel
7,0	044,362 B2	5/2006	Yu	7,346,557			Matsuura Hallar at al
	047,242 B1 062,458 B2	5/2006	Ponte Maggioncalda et al.	7,349,827 7,353,531			Heller et al. Brown et al.
	062,461 B1		Ausubel	7,356,688	B1	4/2008	Wang
	069,308 B2		Abrams	7,356,696 7,360,080			Jakobsson et al. Camnisch et al.
	072,942 B1 075,902 B2	7/2006 7/2006		7,366,695			Allen-Rouman et al.
7,0	076,553 B2	7/2006	Chan et al.	7,372,952 7,373,310			Wu et al.
	085,682 B1 096,197 B2		Heller et al. Messmer et al.	7,395,614		5/2008 7/2008	Bailey, Sr. et al.
	099,839 B2		Madoff et al.	7,398,315	B2	7/2008	Atkinson et al.
	103,565 B1 103,580 B1	9/2006	Vaid Batachia et al.	7,398,317 7,412,519		7/2008 8/2008	Chen et al. Wang
· · · · · · · · · · · · · · · · · · ·	105,580 B1 107,706 B1		Bailey, Sr. et al.	7,412,605	B2	8/2008	Raley et al.
,	110,525 B1	9/2006	Heller et al.	7,415,432 7,415,436			Gianakouros et al. Evelyn et al.
	113,780 B2 113,927 B1		McKenna et al. Tanaka et al.	7,416,124			Yoshida et al.
7,	124,440 B2	10/2006	Poletto et al.	7,421,741			Phillips, II et al.
	130,579 B1 133,841 B1		Rael et al. Wurman et al.	7,424,617 7,430,607			Boyd et al. Bolles et al.
,	,		Hoffberg et al.	7,437,323	B1	10/2008	Valkov et al.
	/		Chekuri et al.				Hoffberg et al. Shraim et al.
	143,434 B1 149.801 B2		Paek et al. Burrows et al.	/ /			Ogawa et al.
7,	162,035 B1	1/2007	Durst et al.	/ /			Cole et al.
,	162,639 B1 165,046 B2		Bleumer Ausubel	, ,			Comeau et al. Vestergaard et al.
	181,017 B1		Nagel et al.	7,469,152	B2	12/2008	Cetiner et al.
/	184,540 B2		Dezonno et al.	· ·			Massey et al. Kovama et al
r	184,777 B2 194,515 B2	2/2007 3/2007	Diener et al. Kirsch	7,472,080		12/2008	Koyama et al. Goel
7,	197,639 B1	3/2007	Juels et al.	7,475,054	B2	1/2009	Hearing et al.
	200,219 B1		Edwards et al.	7,475,055			Hutchison et al.
<i>,</i>	200,571 B1 204.041 B1		Jenniges et al. Bailey, Sr. et al.	7,487,123 7,487,206			Keiser et al. Gu et al.
-	206,762 B2						Guler et al.

))		
7,263,607 B2	8/2007	Ingerman et al.
7,264,069 B2	9/2007	Fiorenza et al.
7,268,700 B1	9/2007	Hoffberg
7,269,253 B1	9/2007	Wu et al.
7,271,737 B1	9/2007	Hoffberg
7,278,159 B2	10/2007	Kaashoek et al.
7,286,665 B1	10/2007	Wang
7,287,007 B1	10/2007	Detering
7,290,033 B1	10/2007	Goldman et al.
7,290,132 B2	10/2007	Aboba et al.
7,295,806 B2	11/2007	Corbett et al.
7,298,289 B1		Hoffberg
7,305,445 B2	12/2007	Singh et al.
/ /		White et al.
7,310,660 B1		
7,319,973 B1		Tobin et al.
7,321,871 B2	1/2008	
7,324,971 B2	1/2008	
7,328,187 B2		Suhmoon
7,328,188 B1	2/2008	
7,330,826 B1		Porat et al.
7,334,720 B2		Hulst et al.
7,337,139 B1		Ausubel
7,337,195 B2		Hrle et al.
7,337,324 B2		Benaloh et al.
7,337,332 B2		Tsuria et al.
7,339,992 B2		Chang et al.
7,342,876 B2	3/2008	Bellur et al.
7,343,342 B2	3/2008	Ausubel
7,346,557 B2	3/2008	Matsuura
7,349,827 B1	3/2008	Heller et al.
7,353,531 B2	4/2008	Brown et al.
7,356,688 B1	4/2008	Wang
7,356,696 B1	4/2008	Jakobsson et al.
7,360,080 B2	4/2008	Camnisch et al.
7,366,695 B1	4/2008	Allen-Rouman et al.
7,372,952 B1	5/2008	Wu et al.
7,373,310 B1	5/2008	Homsi
7,395,614 B1	7/2008	Bailey, Sr. et al.
7,398,315 B2	7/2008	Atkinson et al.
7,398,317 B2	7/2008	Chen et al.
7,412,519 B2	8/2008	Wang
7,412,605 B2	8/2008	Raley et al.
7,415,432 B1	8/2008	Gianakouros et al.
7,415,436 B1	8/2008	Evelyn et al.
7,416,124 B2	8/2008	Yoshida et al.
7,421,741 B2	9/2008	
7,424,617 B2	9/2008	Boyd et al.
7,430,607 B2	9/2008	Bolles et al.
7,437,323 B1	10/2008	Valkov et al.
7,451,005 B2	11/2008	
7,457,823 B2	11/2008	\mathbf{c}
7,460,065 B2	12/2008	Ogawa et al.

Page 13

U.S. PATENT DOCUMENTS

7,500,104 B2	3/2009	Goland
7,505,056 B2	3/2009	Kurzweil et al.
7,506,028 B2	3/2009	
· · ·		
7,516,089 B1		Walker et al.
7,519,559 B1		Appelman
7,520,421 B2	4/2009	Salafia, III et al.
7,523,072 B2		Stefik et al.
/ /		
7,523,085 B2	4/2009	e
7,548,937 B2		Gu et al.
7,552,176 B2	6/2009	Atkinson et al.
7,558,759 B2	7/2009	Valenzuela et al.
7,559,070 B2	_	Nakamura et al.
/ /		
7,567,909 B1		Billingsley
7,574,179 B2	8/2009	Barak et al.
7,584,363 B2	9/2009	Canard et al.
7,590,589 B2	9/2009	Hoffberg
7,590,602 B1		Luzzatto
· · ·		
7,596,552 B2		Levy et al.
7,600,017 B2	10/2009	Holtzman et al.
7,600,255 B1	10/2009	Baugher
7,603,304 B2		Asthana et al.
7,603,319 B2		Raley et al.
, ,		-
7,609,848 B2		Wang et al.
7,613,225 B1	11/2009	Haque et al.
7,627,510 B2	12/2009	Jain et al.
7,630,927 B2		Canard et al.
7,634,598 B2		Kim et al.
7,636,789 B2	12/2009	Li et al.
7,640,166 B2	12/2009	Wiederin et al.
7,641,108 B2	1/2010	Kurzweil et al.
7,644,144 B1	1/2010	Horvitz et al.
7,644,274 B1		Jakobsson et al.
7,646,343 B2		Shtrom et al.
/ /		
7,650,319 B2		Hoffberg et al.
7,653,816 B2		Avritch et al.
7,660,783 B2	2/2010	Reed
7,660,993 B2	2/2010	Birrell et al.
7,664,708 B2	2/2010	Stefik et al.
7,676,034 B1		Wu et al.
7,676,423 B2	3/2010	
7,676,439 B2		Tattan et al.
7,685,642 B2		Gilliam et al.
7,693,939 B2	4/2010	Wu et al.
7,698,248 B2	4/2010	Olson
7,698,335 B1	4/2010	Vronay
7,702,806 B2		Gil et al.
7,707,118 B2	4/2010	
7,710,932 B2		
· · ·		Muthuswamy et al.
7,711,808 B2		Parry
7,715,852 B2	5/2010	Chen et al.
7,716,532 B2	5/2010	Horvitz
7,720,767 B2	5/2010	Ta et al.
7,724,896 B2	5/2010	Nimour et al.
7,725,401 B2		Raley et al.
7,725,414 B2		Nigam et al.
· ·		-
7,729,975 B2		Ausubel et al.
7,730,120 B2		Singh et al.
7,730,314 B2	6/2010	Kim
7,739,335 B2	6/2010	Siegel et al.
7,742,972 B2	6/2010	Lange et al.
7,743,134 B2		Kohler, Jr. et al.
7,743,163 B2	6/2010	Ruppert
7,751,423 B2		Hottinen et al.
/ /		
7,751,973 B2		Ibrahim W
7,752,064 B2		Kauffman
7,761,471 B1	7/2010	Lee et al.
7,773,749 B1	8/2010	Durst et al.
7,774,257 B2		Maggioncalda et al.
7,774,264 B1		Ausubel
, ,		
7,774,609 B2		Rover et al.
7,778,856 B2		Reynolds et al.
7,778,869 B2	8/2010	Jain et al.
7,788,155 B2	8/2010	Jones et al.
7,788,205 B2		Chalasani et al.
7,797,732 B2		
, 1947 (1)/ 15 /		
7,777,752 12	9/2010	Tam et al.

7,801,802	B2	9/2010	Walker et al.
7,808,922	B2	10/2010	Dekorsy
7,813,527	B2	10/2010	Wang
7,813,822	B1	10/2010	Hoffberg
7,813,989	B2	10/2010	Jones et al.
7,817,796	B1	10/2010	Clippinger et al.
7,827,128	B1	11/2010	Karlsson et al.
7,831,573	B2	11/2010	Lillibridge et al.
7,836,498	B2	11/2010	Poletto et al.
7,843,822	B1	11/2010	Paul et al.
7,844,535	B2	11/2010	Guler et al.
7,849,139	B2	12/2010	Wolfson et al.
7,860,486	B2	12/2010	Frank et al.
7,869,591	B1	1/2011	Nagel et al.
7 870 240	D 1	1/2011	Horritz

7,870,240 BI	1/2011	Horvitz
7,877,304 B1	1/2011	Coulter
7,885,947 B2	2/2011	Michele et al.
7,890,581 B2	2/2011	Rao et al.
7,894,595 B1	2/2011	Wu et al.
7,904,187 B2	3/2011	Hoffberg et al.
7,909,243 B2	3/2011	Merkow et al.
7,916,327 B2		Yamaguchi
7,916,858 B1		Heller et al.
7,921,173 B2	4/2011	Atkinson et al.
7,929,689 B2		Huitema et al.
7,933,829 B2	4/2011	Goldberg et al.
7,937,586 B2	5/2011	Torre et al.
, ,	5/2011	Racz et al.
7,942,317 B2		
7,945,464 B2	5/2011	El Homsi Debinebels et el
7,947,936 B1	5/2011	Bobinchak et al.
7,949,121 B1	5/2011	Flockhart et al.
7,953,219 B2	5/2011	Freedman et al.
7,956,807 B1	6/2011	Celebi et al.
7,962,346 B2	6/2011	Faltings
7,966,078 B2	6/2011	Hoffberg et al.
7,974,714 B2	7/2011	Hoffberg
7,979,628 B2	7/2011	Dolgunov et al.
7,983,941 B2	7/2011	Munro et al.
7,987,003 B2	7/2011	Hoffberg et al.
7,990,947 B2	8/2011	Twitchell, Jr. et al.
8,005,746 B2	8/2011	Conwell
8,015,073 B2	9/2011	Ilechko et al.
8,015,398 B2	9/2011	Camenisch et al.
8,015,607 B1	9/2011	Appelman
8,019,814 B2	9/2011	Bou-Ghannam et al.
8,020,029 B2	9/2011	Aggarwal et al.
8,024,274 B2	9/2011	Parkes et al.
8,024,317 B2	9/2011	Nair et al.
8,027,665 B2	9/2011	Frank
8,031,060 B2	10/2011	Hoffberg et al.
8,032,435 B2	10/2011	Henoch
8,032,433 B2 8,032,477 B1	10/2011	Hoffberg et al.
8,032,751 B2		Avritch et al.
· · ·	10/2011	Sireau
8,046,292 B2	_	
8,046,293 B2	10/2011	Sireau
8,046,313 B2		Hoffberg et al.
8,046,832 B2	10/2011	Goodman et al.
8,051,011 B2	11/2011	Luzzatto
8,054,965 B1		Wu et al.
8,060,035 B2	11/2011	Haykin
8,060,401 B2	11/2011	Ingman et al.
8,060,433 B2	11/2011	Conitzer et al.
8,065,370 B2	11/2011	Hulten et al.
8,069,072 B2	11/2011	Ingman et al.
8,073,731 B1	12/2011	Rajasenan
8,081,969 B2	12/2011	Lauer et al.
8,082,582 B2	12/2011	Li et al.

8,082,582 B2 8,086,520 B2 8,086,700 B2 12/2011 Byde et al. 12/2011 Davis et al. 12/2011 Sidhu et al. 8,086,842 B2 1/2012 Jiang et al. 1/2012 Tewfik 8,098,585 B2 8,098,637 B1 1/2012 Tysowski et al. 8,099,386 B2 1/2012 Garbow et al. 8,099,668 B2 8,107,375 B1 1/2012 Wong et al. 8,111,646 B1 2/2012 Chang 2/2012 Eglen et al. 2/2012 Emigh et al. 8,112,303 B2 8,112,483 B1 2/2012 Mauti, Jr. 8,121,628 B2

(56)		Referen	ces Cited		8,480,483 8,484,366			Soussa et al. Patel et al.
	U.S.	. PATENT	DOCUMENTS		8,510,200	B2	8/2013	Pearlman et al.
	8,121,708 B1	2/2012	Wilcon at al		8,510,324 8,516,266			Bai et al. Hoffberg et al.
	8,126,830 B2		Wilson et al. Lloyd et al.		8,527,317		9/2013	Haddad
	8,126,947 B2	2/2012	Yoshida et al.		8,533,843		9/2013	
	8,131,302 B2		Quigley et al.		8,538,740 8,538,785			Kumar et al. Coleman et al.
	8,132,005 B2 8,137,201 B2		Tarkkala et al. Chickering et al.		8,553,623			Buer et al.
	8,138,934 B2		Veillette et al.		8,559,388			Viorel et al.
	8,144,619 B2		Hoffberg		8,566,247			Nagel et al.
	8,148,989 B2 8,159,493 B2		Kopp Lecerf et al.		/ /			Nielsen et al. Heller et al.
	8,165,916 B2		Hoffberg et al.		/ /			Hoffberg et al.
	8,166,016 B2		Higgins et al.		8,583,564			Wiseman et al.
	8,175,578 B2		McCown et al.		8,584,200 8,589,206		11/2013	Boss et al.
	8,195,496 B2 8,195,578 B2		Gottlieb et al. Luzzatto		8,589,884			Gorthi et al.
	8,204,856 B2		Meyer et al.		8,593,946			Goldstein et al.
	8,214,298 B2		McCown		8,600,830 8,600,847		$\frac{12}{2013}$	Hoffberg Gherson et al.
	8,218,502 B1 8,220,046 B2		Liu et al. Hamilton et al.		8,607,305			Neystadt et al.
	8,220,040 B2 8,224,905 B2		Bocharov et al.		8,612,271			Nielsen et al.
	8,225,458 B1	7/2012	Hoffberg		/ /			DiCrescenzo et al.
	8,229,718 B2		Heil et al. Dein et el		8,620,887 8,621,074		12/2013 12/2013	Shikari et al.
	8,233,918 B2 8,245,301 B2		Roin et al. Evans et al.		8,629,789			Hoffberg
	8,245,302 B2		Evans et al.		8,635,132			Wilks et al.
	8,245,921 B2	8/2012	_		8,645,514 8,645,697			Gnanasambandam e Emigh et al.
	8,249,916 B2 8,250,650 B2		Gworek Jeffries et al.		8,661,537			Stephens, Jr.
	8,255,297 B2		Morgenstern et al.		8,667,288		3/2014	
	8,261,062 B2	9/2012	Aura et al.		8,676,394 8,682,343			Lo et al. Schmidt et al.
	8,270,603 B1 8,271,506 B2		Durst et al. Martinez et al.		8,682,686			Warner et al.
	8,271,620 B2		Witchey		8,682,726			Hoffberg
	8,275,741 B2	9/2012	Tysowski et al.		8,689,003			Agrawal Warman at al
	8,281,121 B2				8,706,516 8,706,914			Warner et al. Duchesneau
	8,289,182 B2 8,296,571 B2		Hamilton et al.		8,706,915			Duchesneau
	8,300,798 B1		Wu et al.		8,712,918			Luzzatto
	8,312,271 B2		Bangerter et al.		8,713,450 8,733,632			Garbow et al. Faith et al.
	8,312,511 B2 8,315,938 B1		Garbow et al. Forsythe		8,737,965			McCown et al.
	8,316,237 B1				8,744,890			Bernier et al.
	8,319,766 B2		Gormish et al.		8,761,787 8,768,737			Chen et al. Solomon et al.
	8,320,302 B2 8,321,955 B2		Richeson et al. Feng et al.		8,768,851			Appelman
	8,326,282 B2		÷		8,769,373	B2	7/2014	Rogers, Jr. et al.
	8,327,443 B2	12/2012	Eiland et al.		8,774,717			Ferris et al. Marino et al
	8,331,632 B1 8,333,670 B2	12/2012 12/2012	Mohanty et al.		8,775,822 8,777,735			Marino et al. Fine et al.
	8,341,547 B2		Ingman et al.		8,781,462			Osterloh et al.
	8,346,799 B1	1/2013	Huet et al.		8,792,922			Budianu et al.
	8,352,302 B2		Ingman et al.		8,793,778 8,793,780			Marinov et al. Suffling
	8,352,400 B2 8,355,018 B2		Hoffberg et al. Rhodes et al.		8,794,516			Racz et al.
	8,359,265 B2		Van Rensburg et al.		8,798,246			Viswanathan
	8,363,744 B2		Agee et al.		8,813,107 8,831,205			Higgins et al. Wu et al.
	8,364,136 B2 8,369,880 B2		Hoffberg et al. Citrano, III et al.		8,831,220			McCown et al.
	8,369,967 B2		Hoffberg et al.		8,831,869			Bai et al.
	8,373,582 B2		Hoffberg		8,832,073 8,838,561			Nagaraj et al. Yoshida et al.
	8,385,533 B2 8,402,356 B2		Flockhart et al. Martinez et al.		8,849,183			Edge et al.
	8,402,490 B2		Hoffberg-Borghesani et al	•	8,862,495		10/2014	
	8,407,198 B2	3/2013	Yoshida et al.		8,869,111			Gorthi et al.
	8,411,842 B1 8,412,952 B1		Wu et al. Ramzan et al.		8,874,477 8,881,275			Hoffberg Stephens, Jr.
	8,412,952 B1 8,416,064 B2	4/2013			8,892,221			Kram et al.
	8,416,197 B2	4/2013	Feng et al.		8,892,495	B2	11/2014	Hoffberg et al.
	8,418,039 B2		Birmingham et al.		8,892,673			Emigh et al.
	8,429,083 B2 8,447,804 B2		Appelman Bai et al.		8,892,712 8,892,900			Kuchibhotla et al. Bangerter et al.
	8,462,681 B2		Pochiraju et al.		8,892,900			Smith et al.
	8,463,651 B2	6/2013	Connors et al.		/ /			Felsher et al.
	8,464,067 B2		Pashalidis		8,909,462			Lection et al.
	8,468,244 B2	6/2013	Redlich et al.		8,914,022	B 2	12/2014	Kostanic et al.

8,583,564 B2	11/2013	Wiseman et al.
8,584,200 B2	11/2013	Frank
8,589,206 B2	11/2013	Boss et al.
8,589,884 B2	11/2013	Gorthi et al.
8,593,946 B2	11/2013	Goldstein et al.
8,600,830 B2	12/2013	Hoffberg
8,600,847 B1	12/2013	Gherson et al.
8,607,305 B2	12/2013	
8,612,271 B2	12/2013	Nielsen et al.
8,615,087 B2	12/2013	DiCrescenzo et al.
8,620,887 B2	12/2013	
8,621,074 B2	12/2013	
8,629,789 B2	1/2014	U
8,635,132 B1	1/2014	Wilks et al.
8,645,514 B2	2/2014	Gnanasambandam et al.
8,645,697 B1	2/2014	\mathcal{C}
8,661,537 B2	2/2014	Stephens, Jr.
8,667,288 B2	3/2014	Yavuz
8,676,394 B2	3/2014	Lo et al.
8,682,343 B2	3/2014	_
8,682,686 B2	3/2014	
8,682,726 B2	3/2014	U
8,689,003 B2	4/2014	0
8,706,516 B2	4/2014	
8,706,914 B2		Duchesneau
8,706,915 B2	4/2014	Duchesneau
8,712,918 B2	4/2014	
8,713,450 B2		Garbow et al. Faith et al.
8,733,632 B2 8,737,965 B2	5/2014 5/2014	
8,744,890 B1	6/2014	
8,761,787 B2	6/2014	Chen et al.
8,768,737 B1	7/2014	
8,768,851 B2	7/2014	
8,769,373 B2	7/2014	Rogers, Jr. et al.
8,774,717 B2	7/2014	
8,775,822 B2	7/2014	
8,777,735 B1	7/2014	
8,781,462 B2		Osterloh et al.
8,792,922 B2	7/2014	Budianu et al.
8,793,778 B2	7/2014	
8,793,780 B2	7/2014	
8,794,516 B2	8/2014	U
8,798,246 B1		Viswanathan
8,813,107 B2	8/2014	
8,831,205 B1		Wu et al.
8,831,220 B2	9/2014	
8,831,869 B2	9/2014	
8,832,073 B2	9/2014	Nagaraj et al.
8,838,561 B2	9/2014	e s
8,849,183 B2	9/2014	
8,862,495 B2	10/2014	

Page 15

(56) **References Cited**

U.S. PATENT DOCUMENTS

8,915,781 B2	12/2014	Fine et al.
8,935,366 B2		Mehr et al.
/ /		
8,958,408 B1		Jain et al.
8,961,300 B2	2/2015	Fine
8,961,301 B2	2/2015	Fine et al.
8,964,958 B2	2/2015	Steiner
· · ·		
8,965,834 B2		Burchard
8,968,082 B2	3/2015	Fine et al.
8,968,104 B2	3/2015	Fine et al.
8,971,519 B1	3/2015	Hoffberg
8,974,284 B2		Selby et al.
		•
8,984,030 B2		Nagpal et al.
8,984,402 B2	3/2015	Rolleston et al.
8,986,096 B2	3/2015	Fine et al.
8,990,100 B2		Nielsen et al.
8,990,370 B2	_ /	Sarmenta et al.
· · ·		
8,991,716 B2		Takigahira
8,992,311 B2	3/2015	Fine
8,992,312 B2	3/2015	Fine et al.
8,996,558 B2		Flanagan et al.
9,009,183 B2		Ahmed et al.
· · ·		
9,009,318 B2		Rangarajan et al.
9,009,492 B2	4/2015	Belenky et al.
9,020,987 B1		Nanda et al.
9,045,927 B1		
9,053,562 B1	_ /	Rabin et al.
9,055,362 B2		
9,055,511 B2	6/2015	Gupta et al.
9,060,381 B2		Tarte et al.
9,070,252 B2		Riahei et al.
9,070,253 B2		
		Tung et al.
9,071,446 B2		
9,076,294 B2		Fine et al.
9,076,295 B2		Fine et al.
9,092,939 B2	7/2015	Fine et al.
9,092,940 B2	7/2015	Fine et al.
9,094,836 B2	7/2015	Lee et al.
9,098,711 B2		Yoshida et al.
9,112,806 B2		Holcomb
· ·		
9,119,083 B2		Zimmerman
9,121,217 B1		Hoffberg
9,122,702 B2	9/2015	Biswas et al.
9,132,352 B1	9/2015	Rabin et al.
9,143,392 B2	9/2015	Duchesneau
9,148,473 B1		Sharma
, ,		
RE45,775 E		Agee et al.
9,151,633 B2		
9,159,019 B2	10/2015	Takigahira
9,167,505 B2	10/2015	Gupta et al.
9,177,280 B2		Nielsen et al.
9,189,047 B2		Bestgen et al.
9,200,908 B2		Diaz et al.
· ·		
		Hall et al.
		Sampedro Diaz et al.
/ /		McAlister et al.
0.000.000 0.0	12/2015	Re et al
9,208,203 B2	12/2013	
· · ·		
9,208,458 B2	12/2015	Nielsen et al.
9,208,458 B2 9,208,624 B2	12/2015 12/2015	Nielsen et al. Rude et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1	12/2015 12/2015 12/2015	Nielsen et al. Rude et al. Wise
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2	12/2015 12/2015 12/2015 12/2015	Nielsen et al. Rude et al. Wise Fine et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1	12/2015 12/2015 12/2015 12/2015 12/2015	Nielsen et al. Rude et al. Wise Fine et al. Wu et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2	12/2015 12/2015 12/2015 12/2015 12/2015 12/2015	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1	12/2015 12/2015 12/2015 12/2015 12/2015 12/2015	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2	12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2	12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2	12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2	12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 1/2016 1/2016	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2 9,239,951 B2	12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 1/2016 1/2016 1/2016	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al. Hoffberg et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2 9,239,951 B2 9,256,849 B2	$\begin{array}{r} 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 1/2016\\ 1/2016\\ 1/2016\\ 2/2016\end{array}$	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al. Hoffberg et al. Nielsen et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2 9,235,821 B2 9,235,821 B2 9,256,849 B2 9,256,908 B2	$\begin{array}{r} 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 1/2016\\ 1/2016\\ 1/2016\\ 2/2016\end{array}$	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al. Hoffberg et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2 9,239,951 B2 9,256,849 B2	$\begin{array}{r} 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 1/2016\\ 1/2016\\ 2/2016\\ 2/2016\\ 2/2016\end{array}$	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al. Hoffberg et al. Nielsen et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2 9,235,821 B2 9,235,821 B2 9,256,849 B2 9,256,908 B2 9,256,908 B2 9,258,307 B2	$\begin{array}{r} 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 1/2016\\ 1/2016\\ 1/2016\\ 2/2016\\ 2/2016\\ 2/2016\\ 2/2016\end{array}$	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al. Nielsen et al. Dai et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2 9,235,821 B2 9,256,849 B2 9,256,849 B2 9,256,908 B2 9,256,908 B2 9,258,307 B2 9,261,371 B2	$\begin{array}{r} 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 1/2016\\ 1/2016\\ 1/2016\\ 2/2016\\ 2/2016\\ 2/2016\\ 2/2016\\ 2/2016\\ 2/2016\end{array}$	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al. Hoffberg et al. Nielsen et al. Dai et al. Pianese et al. R et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2 9,235,821 B2 9,235,821 B2 9,256,849 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2	12/2015 12/2015 12/2015 12/2015 12/2015 12/2015 1/2016 1/2016 1/2016 2/2016 2/2016 2/2016 2/2016 3/2016	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al. Hoffberg et al. Nielsen et al. Dai et al. Pianese et al. R et al. Kayama
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2 9,235,821 B2 9,235,821 B2 9,256,849 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,404 B2 9,276,404 B2	$\begin{array}{r} 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 1/2016\\ 1/2016\\ 1/2016\\ 2/2016\\ 2/2016\\ 2/2016\\ 3/2016\\ 3/2016\\ 3/2016\end{array}$	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al. Hoffberg et al. Nielsen et al. Dai et al. Pianese et al. R et al. Kayama Zufall et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2 9,235,821 B2 9,235,821 B2 9,256,849 B2 9,256,908 B2	$\begin{array}{c} 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 1/2016\\ 1/2016\\ 1/2016\\ 2/2016\\ 2/2016\\ 2/2016\\ 2/2016\\ 3/2016\\ 3/2016\\ 3/2016\\ 3/2016\\ 3/2016\\ \end{array}$	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al. Hoffberg et al. Nielsen et al. Dai et al. Pianese et al. R et al. Kayama Zufall et al.
9,208,458 B2 9,208,624 B2 9,209,985 B1 9,214,063 B2 9,215,322 B1 9,219,947 B2 9,220,018 B1 9,224,262 B2 9,232,559 B2 9,235,821 B2 9,235,821 B2 9,235,821 B2 9,256,849 B2 9,256,849 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,908 B2 9,256,404 B2 9,276,404 B2	$\begin{array}{c} 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 12/2015\\ 1/2016\\ 1/2016\\ 1/2016\\ 2/2016\\ 2/2016\\ 2/2016\\ 2/2016\\ 3/2016\\ 3/2016\\ 3/2016\\ 3/2016\\ 3/2016\\ \end{array}$	Nielsen et al. Rude et al. Wise Fine et al. Wu et al. Holden et al. Yang et al. Fine et al. Nath et al. Nielsen et al. Hoffberg et al. Nielsen et al. Dai et al. Pianese et al. R et al. Kayama Zufall et al.

9,280,778	B2	3/2016	Gillies et al.
9,290,896		3/2016	Bianco
9,294,560	B2	3/2016	Klein et al.
9,298,806	B1	3/2016	Vessenes et al.
9,299,218	B2	3/2016	Fine et al.
9,305,428	B2	4/2016	Fine et al.
9,311,664	B2	4/2016	Bulumulla et al.
9,311,670	B2	4/2016	Hoffberg
9,317,830	B2	4/2016	Nielsen et al.
9,317,997	B2	4/2016	Fine et al.
9,317,998	B2	4/2016	Fine
9,317,999	B2	4/2016	Fine et al.
9,325,504	B2	4/2016	Weiss et al.
9,342,829	B2	5/2016	Zhou et al.
0 344 355	R2	5/2016	Vasseur et al

9,344,355		5/2016	Vasseur et al.
9,344,438	B2	5/2016	Xiao et al.
9,346,428	B2	5/2016	Bortolin
9,348,419	B2	5/2016	Julian et al.
9,355,649	B2	5/2016	King et al.
9,361,616	B2	_ /	Zhou et al.
9,361,797		6/2016	Chen et al.
9,362,742			Kayama
9,367,706			Loveland et al.
9,377,314			Tseng et al.
9,379,981		_ 4	Zhou et al.
9,392,018			Adams et al.
9,397,985			Seger, II et al.
9,405,750			Jiao et al.
9,406,063		_ /	Zhou et al.
9,406,195			Tung et al.
9,416,499			Cronin et al.
9,419,951			Felsher et al.
9,424,509			Ashrafi
9,424,509		_ /	Vandervort
, ,			
9,425,620		_ /	Chassin et al.
9,443,383		_ /	Fine et al.
9,449,121		9/2016	
9,449,494			Leyerle et al.
9,454,755		_ /	Gouget et al.
9,455,777			Johnson et al.
9,456,086			Wu et al.
9,461,826		10/2016	
9,471,910			Racz et al.
9,473,626			Nielsen et al.
9,489,671			Zhou et al.
9,489,762		11/2016	
9,489,798			Fine et al.
9,495,668		11/2016	
9,524,510			Jalali et al.
9,535,563			Hoffberg et al.
9,536,385			Fine et al.
9,542,642		1/2017	
9,551,582			Hoffberg
9,552,694			Fine et al.
9,552,696			Fine et al.
9,553,812			Mahadevan et al.
9,558,623			Fine et al.
RE46,310			Hoffberg et al.
9,563,863		_ /	Nielsen et al.
9,563,890		2/2017	Zhou
9,576,285		2/2017	Zhou
9,576,426			Marshall et al.
9,578,678			Nielsen et al.
9,584,543		2/2017	Kaminsky
9,603,033		3/2017	Garg et al.
9,607,052	B2	3/2017	Shmueli et al.
9,608,829	B2	3/2017	Spanos et al.

9,615,264 B2	4/2017	Hoffberg
9,619,967 B2	4/2017	Fine et al.
9,626,685 B2	4/2017	Martinez et al.
9,635,024 B2	4/2017	Pisharody et al.
9,635,177 B1	4/2017	Hoffberg
9,646,130 B2	5/2017	Drew et al.
9,646,300 B1	5/2017	Zhou et al.
9,661,615 B2	5/2017	Ye et al.
9,665,101 B1	5/2017	Templeton
9,665,865 B1	5/2017	Xing et al.
9,667,649 B1	5/2017	Lategan et al.
9,672,518 B2	6/2017	Sobel et al.

Page 16

(56)		Referen	ces Cited	9,959,065			Ateniese et al. Karighattern et al
	IIS	DATENT	DOCUMENTS	9,960,909 9,965,628			Karighattam et al. Ford et al.
	0.5.1		DOCUMENTS	9,965,804			Winklevoss et al.
9,684,929	R1	6/2017	Shapiro	9,965,805			Winklevoss et al.
9,688,286			Wilkes, III et al.	9,966,220			Trevor et al.
9,696,418		7/2017		9,967,088	B2	5/2018	Ateniese et al.
9,699,212			Adams et al.	9,967,096			Ateniese et al.
9,703,616	B2	7/2017	Bauerle et al.	9,967,333			Chen et al.
9,704,151			Zhou et al.	9,967,334 9,973,341		5/2018 5/2018	
9,705,895			Gutzmann Choatham III at al	9,986,577			
9,707,942 9,710,804			Cheatham, III et al. Zhou et al.	9,995,076			Hoffberg
9,716,653		7/2017		9,996,574	B2	6/2018	Li et al.
9,722,912			Zhao et al.	9,997,023			Fine et al.
9,727,042			Hoffberg-Borghesani et al.	9,998,286 10,002,389			Ramathal et al. Winklevoss et al.
9,728,037			Fine et al.	10,002,389			Emmerson
9,736,147 9,736,308		8/2017	Wu et al.	10,013,246			Zessin et al.
9,747,597		8/2017		10,013,286			Chen et al.
9,753,802			Shipilov et al.	10,015,017			Finlow-Bates
9,756,116	B2	9/2017	Ribeiro et al.	10,015,478			Rabin et al.
9,767,651			Fine et al.	10,021,132 10,022,613			Adams et al. Tran et al.
9,773,217			Nielsen et al.	10,022,013		7/2018	
9,774,578			Ateniese et al. Gupta et al.	10,026,118			Castinado et al.
, , ,			Urzhumov	10,027,649	B2	7/2018	Beecham
/ /			Hooshmand et al.	10,032,212			Winkelman et al.
/ /			Ateniese et al.	10,038,695			Goldfarb et al.
/ /			Yoshida et al.	10,042,782 10,043,176			Struttmann Gulchenko
· · · ·			Marshall et al. Folkening	10,046,228			Tran et al.
, ,			Toll et al.	10,051,060			Basu et al.
9,794,797				10,051,069			Hu et al.
, ,			Rabin et al.	10,068,228		_ /	Winklevoss et al.
9,800,310			Urzhumov	10,075,298 10,078,822			Struttmann Racz et al.
/ /			Gutzmann Danial at al	/ /			Rosati et al.
9,807,100			Daniel et al. Wu et al	10,084,607			Toll et al.
, ,			Hui et al.	, ,			Goldfarb et al.
/ /			Ben Bassat et al.	/ /			Goldfarb et al.
, ,			Niedzwiecki et al.	/ /			Karunakar et al. Goldfarb et al.
			Hoffberg December at al	/ /			Bloomquist et al.
			Rajendran et al. Henderson et al.				Rabin et al.
, ,			Zhou et al.	/ /			Goldfarb et al.
, ,			Spanos et al.	10,097,344			
· · ·			Neubecker et al.	10,097,356			Zinder Madisetti et al.
			Krishnapura Rogati at al	, ,			Rosati et al.
· · ·			Rosati et al. Tran et al.	10,103,885			
9,855,785			Nagelberg et al.	10,110,576			Ateniese et al.
9,858,569			Phan et al.	/ /			Goldfarb et al.
9,859,952			Keech et al.	, ,			Robinson et al.
9,860,391			Wu et al. Nagelberg et al	10,118,696			Lemmey et al.
9,862,222 9,866,545			Nagelberg et al. Beecham				Struttmann
9,867,112			Schwengler et al.	10,122,661			
9,870,591		1/2018		10,127,816			e
9,875,510			Kasper	/ /			Vandervort Reacham et al
9,876,775			Mossbarger	/ /			Beecham et al. Jeffries et al.
9,881,176 9,887,933			Goldfarb et al. Lawrence, III	/ /			Finlow-Bates
9,890,744			·	/ /			McLaughlin et al.
9,892,460			Winklevoss et al.	10,135,921			Finlow-Bates
9,893,898		2/2018		/ /			Johnsrud et al. Chandracheker et al
9,894,485			Finlow-Bates	/ /			Chandrashekar et al. Egner et al.
9,896,572 9,898,782			Belalcazar Otalora Winklevoss et al.	, ,			Zhou et al.
9,906,552			Brown et al.	· ·			Hesselink et al.
9,916,588			Nielsen et al.	· · ·			Bells et al.
9,922,278			Kapinos et al.	· · ·			Anderson et al.
9,922,498			Fine et al.	10,158,611			6
9,928,290		3/2018					Nagelberg et al. Hoffberg
9,940,594 9,942,214			Rosati et al. Burciu et al.	10,163,137			Vandervort
9,942,214			Horowitz et al.	· · ·			Chen et al.
9,948,467		4/2018		10,168,705			Kazemi et al.
9,948,580			Reed et al.	10,169,614			Brady et al.

10,086,949	B2	10/2018	Karunakar et al.
10,089,489	B2	10/2018	Goldfarb et al.
10,091,276	B2	10/2018	Bloomquist et al.
10,092,843	B1	10/2018	Rabin et al.
10,095,878	B2	10/2018	Goldfarb et al.
10,097,344	B2	10/2018	Davis
10,097,356	B2	10/2018	Zinder
10,102,265	B1	10/2018	Madisetti et al.
10,102,501	B2	10/2018	Rosati et al.
10,103,885	B2	10/2018	Davis
10,110,576	B2	10/2018	Ateniese et al.
10,114,970	B2	10/2018	Goldfarb et al.
10,116,693	B1	10/2018	Robinson et al.
10,118,696	B1	11/2018	Hoffberg
10,121,015	B2	11/2018	Lemmey et al.
10,121,019	B2	11/2018	Struttmann
10,122,661	B2	11/2018	Golan
10,127,816	B2	11/2018	Hoffberg
10,129,032	B2	11/2018	Vandervort
10,129,097	B2	11/2018	Beecham et al.
10,129,292	B2	11/2018	Jeffries et al.
10,135,616	B2	11/2018	Finlow-Bates
10,135,859	B2	11/2018	McLaughlin et al.
10,135,921	B2	11/2018	Finlow-Bates
10,142,312	B2	11/2018	Johnsrud et al.
10,142,491	B1	11/2018	Chandrashekar et a

Page 17

(56)		Referen	ces Cited	2002/0077954			Slaight et al.
				2002/0082856			Gray et al.
	U.S.	PATENT	DOCUMENTS	2002/0083175			Afek et al.
				2002/0091782			Benninghoff
	248 B2	1/2019		2002/0094081			Medvinsky Zumel et el
· · · · ·			Mintz et al.	2002/0095327 2002/0103999			Zumel et al. Camnisch et al.
			Ryon et al.	2002/0103999			Coussement
	550 B2		Smith et al.	2002/0114278			Reinsma et al.
			Fine et al.	2002/0123954		9/2002	
· · · · ·		1/2019		2002/0128803			Skinner et al.
	402 B2 073 B2	1/2019	Brew et al. Marin	2002/0131399			Philonenko
, , ,			Nazzari et al.	2002/0138386			Maggioncalda et al.
			Struttmann et al.	2002/0147675	A1		Das et al.
· · · · ·			Tran et al.	2002/0151992		10/2002	Hoffberg et al.
		2/2019		2002/0161671			Matsui et al.
10,198,	908 B2	2/2019	Dabrowski	2002/0165756			Tobin et al.
10,198,	949 B2	2/2019	Becker	2002/0165814			Lee et al.
10,200,	261 B2		Cuervo Laffaye et al.	2002/0165817			Rackson et al.
			Madisetti et al.	2002/0174052			Guler et al.
, , ,	341 B2	2/2019		2002/0174344 2002/0183066		11/2002 12/2002	e e e e e e e e e e e e e e e e e e e
	997 B2		Epstein et al.	2002/0185000			Needham et al.
	079 B2	2/2019	-	2002/0194334			Focant et al.
, , ,	739 B2		Rossi et al. Laugwitz et al.	2002/0198950		12/2002	
	434 B2		Cheng et al.	2003/0002646			Gutta et al.
· · · · ·	516 B2		Parello et al.	2003/0009698	A1	1/2003	Lindeman et al.
	621 B2	3/2019		2003/0014293	A1	1/2003	Shetty et al.
	349 B1		Liu et al.	2003/0014373			Perge et al.
10,237,	420 B1	3/2019	Wu et al.	2003/0016251			Kondo
10,242,	219 B2	3/2019	Struttmann	2003/0018561			Kitchen et al.
10,245,	875 B1		Nagelberg et al.	2003/0023538			Das et al.
2001/0000			Shtivelman et al.	2003/0033302 2003/0035468			Banerjee et al. Corbaton et al.
2001/0003			Skinner et al.	2003/0033408			Hao et al.
2001/0008			Johnson et al.	2003/0055787		3/2003	
2001/0011			Shenkman Saita	2003/0055895		3/2003	5
2001/0013 2001/0024		8/2001	Campbell et al.	2003/0055898			Yeager et al.
			Rupp et al.	2003/0065608		4/2003	e
2001/0032		10/2001		2003/0078867	A1	4/2003	Scott et al.
2001/0033			Amalfitano	2003/0083926			Semret et al.
2001/0034		10/2001		2003/0086554			Krimstock et al.
2001/0039	528 A1	11/2001	Atkinson et al.	2003/0087652			Simon et al.
2001/0039				2003/0088488			Solomon et al.
2001/0042			Walker et al.	2003/0095652 2003/0097325			Mengshoel et al. Friesen et al.
2001/0043			Miloslavsky	2003/0101124			Semret et al.
2001/0045			Bailey, Sr. et al.	2003/0101274			Yi et al.
2001/0047 2001/0049			Garahi et al. Moshal et al.	2003/0115088			Thompson
2001/0049		_	Hindman et al.	2003/0115114			Tateishi et al.
2002/0002			Shearer et al.	2003/0115251	A1	6/2003	Fredrickson et al.
2002/0006		1/2002		2003/0119558	A1	6/2003	Steadman et al.
2002/0007			Nemovicher	2003/0120809			Bellur et al.
2002/0009	190 A1	1/2002	McIllwaine et al.	2003/0135437			Jacobsen
2002/0010	663 A1	1/2002	Muller	2003/0139995		7/2003	
2002/0010		1/2002		2003/0152086			El Batt
2002/0010			Muller et al.	2003/0158806 2003/0172018			Hanley et al. Chen et al.
2002/0013			Parunak et al.	2003/0172018			Farnham et al.
2002/0013			Bykowsky et al.	2003/0172278			Horrigan et al.
2002/0018			Jensen et al. Miloslavsky et al	2003/0195780			Arora et al.
2002/0019 2002/0021			Miloslavsky et al. Bruno et al.	2003/0204569			Andrews et al.
2002/0021			Simonds	2003/0217106			Adar et al.
2002/0023			Wang et al.	2003/0220978			
2002/0029			Lewis et al.	2003/0225822			Olson et al.
2002/0035			Buist et al.	2003/0233274			
2002/0040			Lieben et al.				Salvadori et al.
2002/0042	274 A1	4/2002	Ades	2003/0233584	Al	12/2003	Douceur

2002/0042274 A1 4/2002 Ades 4/2002 Gujral et al. 2002/0042769 A1 4/2002 Barber et al. 2002/0046122 A1 4/2002 Szlam et al. 2002/0047859 A1 5/2002 Clenaghan et al. 2002/0052816 A1 5/2002 Burton 2002/0052819 A1 5/2002 Delgado et al. 2002/0052873 A1 5/2002 Williams 2002/0055899 A1 5/2002 Harvey et al. 2002/0059379 A1 6/2002 Narlikar et al. 2002/0069241 A1 6/2002 Mulinder et al. 2002/0073018 A1 2002/0073049 A1 6/2002 Dutta

2003/0233584 A1 12/2003 Douceur 2004/0003283 A1 1/2004 Goodman et al. 1/2004 Kevin Fung 2004/0006528 A1 1/2004 Fung 2004/0006529 A1 1/2004 Fung 2004/0006534 A1 2004/0015554 A1 1/2004 Wilson 2/2004 Montepeque 2004/0024684 A1 2004/0024687 A1 2/2004 Delenda 2/2004 Cain 2004/0028018 A1 2/2004 Balabine et al. 2004/0034773 A1 2/2004 Fung 2004/0039670 A1 2/2004 Hambrecht et al. 2004/0039685 A1

(56)		Referen	ces Cited	2005/0267824 A1 2005/0278240 A1	12/2005 12/2005	Hurewitz
	U.S. 1	PATENT	DOCUMENTS	2005/0286426 A1	12/2005	Padhye et al.
				2005/0289043 A1		Maudlin
2004/0049479			Dorne et al.	2005/0289650 A1 2006/0026423 A1		Kalogridis Bangerter et al.
2004/0054551 2004/0054610			Ausubel et al. Amstutz et al.	2006/0020123 AI		McMenamin
2004/0054617		3/2004		2006/0039381 A1	2/2006	Anschutz et al.
2004/0054741			Weatherby et al.	2006/0041456 A1		Hurewitz
2004/0059665			Suri et al.	2006/0046658 A1 2006/0059075 A1		Cruz et al. Hurewitz
2004/0068416 2004/0068447			Solomon Mao et al.	2006/0059075 AI		Pickford
2004/0073642		4/2004		2006/0069621 A1		Chang et al.
2004/0077320			Jackson et al.	2006/0095578 A1		Paya et al.
2004/0081183			Monza et al.	2006/0148414 A1 2006/0153356 A1		Tee et al. Sisselman et al.
2004/0083195 2004/0093278			McCord et al. Burchetta et al.	2006/0155398 A1		Hoffberg et al.
2004/0093371			Burrows et al.	2006/0167703 A1	7/2006	
2004/0095907			Agee et al.	2006/0167784 A1		Hoffberg
2004/0101127			Dezonno et al.	2006/0167787 A1 2006/0168119 A1		Ausubel Inoue et al.
2004/0103013 2004/0111308			Jameson Yakov G06Q 10/087	2006/0168140 A1		Inoue et al.
2001/0111500		0,2001	705/28	2006/0168147 A1		Inoue et al.
2004/0111310	A1	6/2004	Szlam et al.	2006/0173730 A1		Birkestrand Dirkestrand
2004/0111484			Young et al.	2006/0174007 A1 2006/0190725 A1	8/2006	Birkestrand Huang
2004/0117302 2004/0132405			Weichert et al. Kitazawa et al.	2006/0200253 A1		Hoffberg et al.
2004/0132403			Watarai et al.	2006/0200258 A1	9/2006	Hoffberg et al.
2004/0141508	A1		Schoeneberger et al.	2006/0200259 A1		Hoffberg et al.
2004/0148358			Singh et al.	2006/0200260 A1 2006/0218277 A1		Hoffberg et al. Birkestrand
2004/0153375 2004/0181571		_	Mukunya et al. Atkinson et al.	2006/0222101 A1		Cetiner et al.
2004/0181581		9/2004		2006/0223447 A1		Masoomzadeh-Fard et al.
2004/0181585			Atkinson et al.	2006/0224436 A1 2006/0259957 A1		Matsumoto et al. Tam et al.
2004/0184478			Donescu et al.	2006/0239937 AI		Flinn et al.
2004/0199597 2004/0213400			Libbey et al. Golitsin et al.	2007/0002762 A1		Matsumoto et al.
2004/0215793			Ryan et al.	2007/0005799 A1		Matsumoto et al.
2004/0228356			Adamczyk et al.	2007/0006224 A1 2007/0011453 A1		Stocker Tarkkala et al.
2004/0230678 2004/0236817			Huslak et al. Huberman et al.	2007/0016476 A1		Hoffberg et al.
2004/0230817			Corbett et al.	2007/0038498 A1	2/2007	Powell et al.
2004/0259558	A1	12/2004	Skafidas et al.	2007/0043811 A1 2007/0053513 A1		Kim et al.
2004/0260645		12/2004		2007/0055515 AI		Hoffberg Nikolajevic et al.
2004/0264677 2004/0266505			Horvitz et al. Keam et al.	2007/0061022 A1		Hoffberg-Borghesani et al.
2004/0268121			Shelest et al.	2007/0061023 A1		Hoffberg et al.
2005/0002335			Adamczyk et al.	2007/0061735 A1 2007/0063875 A1		Hoffberg et al. Hoffberg
2005/0010502			Birkestrand et al.	2007/0064912 A1		Kagan et al.
2005/0021739 2005/0022184			Carter et al. Birkestrand et al.	2007/0070038 A1	3/2007	Hoffberg et al.
2005/0027816			Olney et al.	2007/0071222 A1		Flockhart et al.
2005/0038774			Lillibridge et al.	2007/0087756 A1 2007/0094734 A1		Hoffberg Mangione-Smith et al.
2005/0044032 2005/0044228			Lee et al. Birkestrand et al.	2007/0097205 A1		Venkatachalam
2005/0050364		3/2005		2007/0100748 A1		Dheer et al.
2005/0055410			Landsman et al.	2007/0115125 A1 2007/0115916 A1		Lyon et al. Nguyen et al.
2005/0065808			Fallings Kaciba at al	2007/0115910 A1		Kim et al.
2005/0065837 2005/0074014			Kosiba et al. Rao et al.	2007/0118463 A1	5/2007	
2005/0075891			Arguimbau	2007/0118464 A1	5/2007	•
2005/0080710			Malato et al.	2007/0118465 A1 2007/0124395 A1	5/2007	Avery Edge et al.
2005/0080858 2005/0090227			Pessach Rao et al.	2007/0124355 AI		Khan et al.
2005/0090227			Sulkowski et al.	2007/0136087 A1		Yamaguchi
2005/0108164			Salafia et al.	2007/0156460 A1		Nair et al.
2005/0129217			McPartlan et al.	2007/0174179 A1 2007/0195048 A1		Nam et al.
2005/0137939 2005/0141706			Calabria et al. Regli et al.	2007/0217339 A1		
2005/0141/00			Calabria et al.	2007/0233543 A1		
2005/0144065	A1	6/2005	Calabria et al.	2007/0245416 A1		Dickinson et al.
2005/0164664			DiFonzo et al. Brown	2007/0265980 A1 2007/0277248 A1		Sehgal Agrawal et al.
2005/0166041 2005/0187803		7/2005 8/2005	Brown Jain et al.	2007/0277248 A1 2007/0294769 A1		
2005/0195960			Shaffer et al.	2007/0297328 A1		Semret et al.
2005/0197857		9/2005		2008/0016029 A1		John et al.
2005/0198031			Pezaris et al.	2008/0034090 A1		Schofield et al.
2005/0246420 2005/0251434		11/2005 11/2005		2008/0034203 A1 2008/0040749 A1		Camnisch et al. Hoffberg et al.
2005/0251454	111	11/2003			2/2008	nonorig et al.

Page 19

(56) **References Cited**

U.S. PATENT DOCUMENTS

2008/0095121 A1	4/2008	Shattil
2008/0109343 A1	5/2008	Robinson et al.
2008/0115103 A1	5/2008	Datars et al.
2008/0120308 A1	5/2008	Martinez et al.
2008/0132241 A1	6/2008	Hancock et al.
2008/0139136 A1	6/2008	Shtrom et al.
2008/0162331 A1	7/2008	Ephrati et al.
2008/0162486 A1	7/2008	Bells et al.
2008/0162666 A1	7/2008	Ebihara et al.
2008/0168001 A1	7/2008	Kagarlis
2008/0168002 A1	7/2008	Kagarlis et al.
2008/0189158 A1	8/2008	Bala et al.
		Cioffi et al.
2008/0205501 A1		
2008/0207149 A1	8/2008	Unkefer et al.
2008/0212461 A1	9/2008	Pande et al.
2008/0227404 A1	9/2008	Harel et al.
2008/0229097 A1	9/2008	Bangerter et al.
2008/0232238 A1	9/2008	Agee
2008/0243577 A1	10/2008	Schwartz et al.
2008/0262893 A1	10/2008	Hoffberg
2008/0271144 A1	10/2008	ę
2008/0279147 A1	11/2008	Hassan et al.
2008/0299923 A1	12/2008	O'Brien et al.
2008/0300891 A1	12/2008	Boss et al.
2008/0300942 A1	12/2008	Boss et al.
2008/0300947 A1	12/2008	Boss et al.
2008/0300948 A1	12/2008	Boss et al.
2008/0300949 A1	12/2008	Boss et al.
2008/0301022 A1	12/2008	Patel et al.
2008/0301024 A1	12/2008	Boss et al.
2008/0301025 A1	12/2008	
2008/0301026 A1	12/2008	Boss et al.
2008/0301027 A1	12/2008	Boss et al.
2008/0301028 A1	12/2008	Boss et al.
2008/0301029 A1	12/2008	Boss et al.
2008/0301030 A1	12/2008	Boss et al.
2008/0301031 A1	12/2008	Boss et al.
2008/0301688 A1	12/2008	Boss et al.
2008/0301689 A1	12/2008	Boss et al.
2008/0313707 A1		Jain et al.
2009/0012875 A1		
2009/0024430 A1	1/2009	Marcus
2009/0024438 A1	1/2009	Ingman et al.
2009/0024590 A1	1/2009	Sturge et al.
2009/0041100 A1	2/2009	Kimmich et al.
2009/0048928 A1	2/2009	
2009/0054018 A1	2/2009	Waheed et al.
2009/0059912 A1	3/2009	Rauba et al.
2009/0076632 A1	3/2009	Kram et al.
2009/0076868 A1	3/2009	
2009/0091451 A1		Jones et al.
2009/0133123 A1	5/2009	Radha et al.
2009/0135753 A1	5/2009	Veillette
2009/0170607 A1	7/2009	Chiao et al.
2009/0180392 A1	7/2009	Greiner et al.
2009/0182667 A1	7/2009	Parkes et al.
2009/0187583 A1	7/2009	Pape et al.
2009/0216910 A1	8/2009	Duchesneau
2009/0228309 A1	9/2009	Moll
2009/0220509 AI	9/2009	
		Hatheway et al.
2009/0300347 A1	12/2009	Camenisch et al.
2009/0327024 A1	12/2009	Nielsen et al.
2010/0010862 A1	1/2010	Nielsen et al.
2010/0010863 A1	1/2010	
2010/0010803 A1		Nielsen et al.
2010/0010883 A1	1/20010	Nielsen et al.
	1/2010	
2010/0017870 A1	1/2010	Kargupta
2010/0017870 A1 2010/0037248 A1		
2010/0037248 A1	1/2010 2/2010	Kargupta Lo et al.
2010/0037248 A1 2010/0042456 A1	1/2010 2/2010 2/2010	Kargupta Lo et al. Stinchcombe et al.
2010/0037248 A1 2010/0042456 A1 2010/0048134 A1	1/2010 2/2010 2/2010 2/2010	Kargupta Lo et al. Stinchcombe et al. McCarthy et al.
2010/0037248 A1 2010/0042456 A1	1/2010 2/2010 2/2010	Kargupta Lo et al. Stinchcombe et al.
2010/0037248 A1 2010/0042456 A1 2010/0048134 A1	1/2010 2/2010 2/2010 2/2010	Kargupta Lo et al. Stinchcombe et al. McCarthy et al.
2010/0037248 A1 2010/0042456 A1 2010/0048134 A1 2010/0076642 A1 2010/0088135 A1	1/2010 2/2010 2/2010 2/2010 3/2010 4/2010	Kargupta Lo et al. Stinchcombe et al. McCarthy et al. Hoffberg et al. Nielsen et al.
2010/0037248 A1 2010/0042456 A1 2010/0048134 A1 2010/0076642 A1 2010/0088135 A1 2010/0088164 A1	1/2010 2/2010 2/2010 2/2010 3/2010 4/2010 4/2010	Kargupta Lo et al. Stinchcombe et al. McCarthy et al. Hoffberg et al. Nielsen et al. Nielsen et al.
2010/0037248 A1 2010/0042456 A1 2010/0048134 A1 2010/0076642 A1 2010/0088135 A1 2010/0088164 A1 2010/0100403 A1	1/2010 2/2010 2/2010 2/2010 3/2010 4/2010 4/2010 4/2010	Kargupta Lo et al. Stinchcombe et al. McCarthy et al. Hoffberg et al. Nielsen et al. Nielsen et al. Pollock et al.
2010/0037248 A1 2010/0042456 A1 2010/0048134 A1 2010/0076642 A1 2010/0088135 A1 2010/0088164 A1	1/2010 2/2010 2/2010 2/2010 3/2010 4/2010 4/2010	Kargupta Lo et al. Stinchcombe et al. McCarthy et al. Hoffberg et al. Nielsen et al. Nielsen et al.

2010/0111097 A1	5/2010	Karabinis et al.
2010/0121839 A1		Meyer et al.
2010/0138344 A1		Wong et al.
2010/0145951 A1	6/2010	Van Coeverden De Groot et al.
2010/0147488 A1	6/2010	Pierre et al.
2010/0150027 A1		Atwal et al.
2010/0161817 A1		Xiao et al.
2010/0191591 A1	7/2010	Silbert
2010/0205032 A1	8/2010	Nielsen et al.
2010/0211574 A1	8/2010	Mislan et al.
2010/0211894 A1	8/2010	
2010/0217696 A1		Schuba et al.
2010/0223096 A1	9/2010	Bosan et al.
2010/0232380 A1	9/2010	Choi et al.
2010/0235285 A1	9/2010	Hoffberg
2010/0267536 A1	10/2010	
2010/0284333 A1		Shirota et al.
2010/0317420 A1	12/2010	Hoffberg
2010/0318918 A1	12/2010	Mahmoodshahi
2010/0324969 A1	12/2010	Miller
2010/0332281 A1		Horvitz et al.
2011/0004513 A1		Hoffberg
2011/0029347 A1	2/2011	Kozat et al.
2011/0029419 A1	2/2011	Seeger, Jr. et al.
2011/0029922 A1		Hoffberg et al.
2011/0035245 A1		Nielsen et al.
2011/0035251 A1		Nielsen et al.
2011/0035252 A1		Nielsen et al.
2011/0035260 A1	2/2011	Nielsen et al.
2011/0035324 A1	2/2011	Nielsen et al.
2011/0035328 A1		Nielsen et al.
2011/0035528 A1		Nielsen et al.
2011/0087430 A1		Boss et al.
2011/0090118 A1	4/2011	Raeder et al.
2011/0093500 A1	4/2011	Meyer et al.
2011/0112880 A1		Ryan et al.
2011/0131081 A1		Nielsen et al.
2011/0137805 A1		Brookbanks et al.
2011/0156896 A1	6/2011	Hoffberg et al.
2011/0161127 A1	6/2011	Stripling et al.
2011/0164527 A1	7/2011	Mishra et al.
2011/0164546 A1		Mishra et al.
2011/0167110 A1		Hoffberg et al.
2011/0178948 A1		Cheng et al.
2011/0213669 A1	9/2011	Vojnovic et al.
2011/0218916 A1	9/2011	Barber
2011/0225103 A1	9/2011	Clarke et al.
2011/0238552 A1		Monogioudis
2011/0238552 A1		Dettori et al.
2011/0251892 A1		Laracey
2011/0295752 A1	12/2011	Parkes et al.
2011/0295766 A1	12/2011	Tompkins
2012/0004893 A1		Vaidyanathan et al.
2012/0017232 A1		Hoffberg et al.
		•
2012/0022908 A1		Sprimont et al.
2012/0036016 A1		Hoffberg et al.
2012/0036140 A1	2/2012	Nielsen et al.
2012/0054626 A1	3/2012	Odenheimer
2012/0078769 A1		Becher et al.
2012/0089983 A1		Chandra et al.
2012/0144989 A1		Du Plessis et al.
2012/0150651 A1	6/2012	Hoffberg et al.
2012/0159321 A1	6/2012	Rolleston et al.
2012/0179966 A1		Kappos
2012/0221380 A1		Dissmore et al.
2012/0238211 A1	, _ , _ , _	Ferris et al.
2012/0253532 A1	10/2012	McMullin et al.
2012/0260329 A1	10/2012	Suffling

10/2012 Suffling 10/2012 Katzin et al. 2012/0260329 A1 2012/0271712 A1 2012/0310809 A1 12/2012 Wilson, Jr. et al. 12/2012 Boardman et al. 2012/0316688 A1 12/2012 Bangerter et al. 2012/0331285 A1 1/2013 Nielsen et al. 2013/0006718 A1 1/2013 Di Tucci et al. 2013/0024379 A1 2/2013 Mogalayapalli et al. 2013/0036222 A1 2013/0080307 A1 3/2013 Hoffberg 4/2013 Wesson et al. 2013/0085926 A1 2013/0116920 A1 5/2013 Cavalcante et al. 2013/0117143 A1 5/2013 Colella et al.

Page 20

(56)	Referer	nces Cited	2015/0170471		6/2015	
U.S	. PATENT	DOCUMENTS	2015/0193717 2015/0199875 2015/0204550	A1	7/2015	Nielsen et al. Fine et al.
	- /		2015/0204559			Hoffberg et al.
2013/0117162 A1		Feng et al.	2015/0206389 2015/0211919			Fine et al. Julian et al.
2013/0121194 A1		Heshmati	2015/0211919		_	Tang et al.
2013/0122882 A1		Patel et al.	2015/0212975		8/2015	
2013/0147598 A1		Hoffberg et al.	2015/0220892		8/2015	
2013/0165070 A1		Hoffberg	2015/0223539		8/2015	
2013/0166387 A1		Hoffberg	2015/0223892			Miller et al.
2013/0211877 A1		Kushkuley et al.	2015/0244690			Mossbarger
2013/0226669 A1 2013/0238455 A1		Chiang et al.	2015/0256556			Kaminsky
2013/0258455 A1 2013/0262680 A1		Laracey Gujarathi et al.	2015/0269570			Phan et al.
2013/0202000 A1		Marinov et al.	2015/0269624	A1	9/2015	Cheng et al.
2014/0074765 A1			2015/0307634	Al		Belalcazar Otalora
2014/0081793 A1		Hoffberg	2015/0330645	A1	11/2015	Speranzon et al.
2014/0089241 A1		Hoffberg et al.	2015/0332202	A1	11/2015	Nielsen et al.
2014/0101312 A1		Huang et al.	2015/0332283	A1	11/2015	Witchey
2014/0108126 A1		Carneross et al.	2015/0332554			Fine et al.
2014/0122149 A1	5/2014	Nielsen et al.	2015/0339607			Nielsen et al.
2014/0173452 A1	6/2014	Hoffberg et al.	2015/0356523		12/2015	
2014/0229621 A1	8/2014	Song et al.	2015/0363769			Ronca et al.
2014/0257868 A1		Hayward et al.	2015/0379408			Kapoor et al.
2014/0258110 A1		Davis et al.	2016/0025500			Hoffberg
2014/0258356 A1		Zeng et al.	2016/0027229			Spanos et al.
2014/0272907 A1		Raniere	2016/0028552			Spanos et al.
2014/0274263 A1		Fine et al.	2016/0034530 2016/0045841			Nguyen et al. Kaplan et al.
2014/0274264 A1		Fine et al.	2016/004563			Fujimura et al.
2014/0274265 A1		Fine et al.	2016/0063378			Park et al.
2014/0274266 A1		Fine et al.	2016/0071368			Fine et al.
2014/0274267 A1		Marshall et al.	2016/0071372			Fine et al.
2014/0274268 A1 2014/0274269 A1		Fine et al.	2016/0078219		3/2016	
2014/0274209 A1		Fine et al.	2016/0085955		3/2016	
2014/0274270 A1 2014/0274271 A1		_	2016/0098898		4/2016	Fine et al.
2014/0274272 A1		Tung et al.	2016/0103902	A1	4/2016	Moser et al.
2014/0274325 A1		Fine et al.	2016/0112281	A1	4/2016	Mason
2014/0274326 A1		Fine et al.	2016/0140653	A1		McKenzie
2014/0274327 A1	9/2014	Fine et al.	2016/0155079			Nielsen et al.
2014/0274328 A1	9/2014	Fine et al.	2016/0162873			Zhou et al.
2014/0274329 A1	9/2014	Fine et al.	2016/0164672			Karighattam et al.
2014/0274330 A1		Selby et al.	2016/0177521			Laugwitz et al.
2014/0274331 A1		Fine et al.	2016/0201168			Shishido et al.
2014/0274333 A1			2016/0203477 2016/0203522			Yang et al. Shiffert et al.
2014/0274334 A1		Fine et al.	2016/0203322		7/2016	
2014/0274335 A1		Fine et al.	2016/0217 130		7/2016	
2014/0274336 A1 2014/0274337 A1		Tung et al. Fine et al.	2016/0224949			Thomas et al.
2014/0274337 A1 2014/0274338 A1			2016/0224951			Hoffberg
2014/0274338 A1 2014/0274339 A1		Fine et al.	2016/0225107			Nielsen et al.
2014/0274340 A1		Fine et al.	2016/0232537	A1	8/2016	Nonez et al.
2014/0274352 A1		Marshall et al.	2016/0232746	A1	8/2016	Fine et al.
2014/0274365 A1		Riahei et al.	2016/0247351	A1	8/2016	Fine et al.
2014/0279148 A1		Hyde et al.	2016/0254910			Finlow-Bates
2014/0280972 A1		Calippe et al.	2016/0259937			Ford et al.
2014/0302905 A1	10/2014	Fine et al.	2016/0260091		9/2016	
2014/0304041 A1	10/2014	Nielsen et al.	2016/0260095		9/2016	
2014/0344015 A1	11/2014	Puertolas-Montanes et al.	2016/0260171			Ford et al.
2014/0349692 A1		Zhou et al.	2016/0261404			Ford et al.
2014/0362697 A1		Desnoyer	2016/0261685 2016/0261690		9/2016 9/2016	Chen et al.
2014/0379506 A1		Marshall et al.	2016/0201090			Fine et al.
2015/0006349 A1		Eddy et al.	2016/0273733			Fay et al.
2015/0006350 A1		Prasad et al. Thou at al	2016/0292072			Grey et al.
2015/0026072 A1 2015/0033026 A1		Zhou et al. Roelse et al.	2016/0300223			Moss-Pultz et al.
2015/0033026 A1 2015/0073907 A1		Purves et al.	2016/0301531		_	Finlow-Bates
2015/0075907 AT 2015/0081444 A1		Hoffberg	2016/0306982			Seger et al.

3/2015 Hoffberg 3/2015 Flurscheim et al. 2015/0081444 A1 2015/0088674 A1 3/2015 Folkening 2015/0089353 A1 4/2015 Powell et al. 2015/0097531 A1 4/2015 Keech et al. 2015/0102940 A1 4/2015 Hoffberg 2015/0111591 A1 4/2015 Caimi et al. 2015/0116162 A1 4/2015 Gharachorloo et al. 2015/0120392 A1 4/2015 Jung et al. 2015/0120551 A1 5/2015 Nielsen et al. 2015/0149242 A1 2015/0170112 A1 6/2015 DeCastro 2015/0170470 A1 6/2015 Fine et al.

10/2016 Seger et al. 2016/0306982 A1 11/2016 Back et al. 2016/0330034 A1 11/2016 Lam 2016/0342977 A1 12/2016 Liao et al. 2016/0358253 A1 12/2016 Arjomand et al. 2016/0358267 A1 12/2016 Rice 2016/0364708 A1 12/2016 Margadoudakis 2016/0379205 A1 12/2016 Bowman et al. 2016/0379212 A1 12/2016 Arjomand et al. 2016/0379312 A1 1/2017 Zinder 2017/0005804 A1 2/2017 Cecchetti et al. 2017/0031676 A1 2017/0032614 A1 2/2017 Fine et al.

Page 21

(56)	-	Referen	ces Cited	201 201
	U.S. P	ATENT	DOCUMENTS	201
2017/0034197	A 1	2/2017	Daniel et al.	201 201
2017/0034197			Arjomand et al.	201
2017/0046689		2/2017	Lohe et al.	201
2017/0048209			Lohe et al.	201 201
2017/0048234 2017/0048235			Lohe et al. Lohe et al.	201
2017/0054611	A1	2/2017	Tiell	201
2017/0063551			Quinn et al.	201 201
2017/0083907 2017/0085545			McDonough et al. Lohe et al.	201
2017/0085555	A1		Bisikalo et al.	201
2017/0091397		3/2017		201 201
2017/0091756 2017/0098346			Stern et al. Fine et al.	201
2017/0102307		4/2017	Eberhardt et al.	201
2017/0103355			Eberhardt Diaraa at al	201 201
2017/0103458 2017/0103472		4/2017	Pierce et al. Shah	201
2017/0103608			Fine et al.	201
2017/0104345			Wenzel et al.	201 201
2017/0109735 2017/0116693			Sheng et al. Rae et al.	201
2017/0124556		5/2017		201
2017/0124647			Pierce et al.	201 201
2017/0126684 2017/0126702			Armknecht et al. Krishnamurthy	201
2017/0132619			Miller et al.	201
2017/0132620			Miller et al.	201 201
2017/0132621 2017/0132625		_	Miller et al. Kennedy	201
2017/0132626			Kennedy	201
2017/0132931			Hoffberg	201 201
2017/0134280 2017/0140321		5/2017 5/2017	Nielsen et al.	201
2017/0145193			Belalcazar Otalora	201
2017/0148016			Davis Eine et el	201 201
2017/0148265 2017/0178128			Fine et al. Fourez et al.	201
2017/0180134		6/2017		201
2017/0185981			Emmerson Einlaw Datas	201 201
2017/0188197 2017/0200147		7/2017	Finlow-Bates Ansari	201
2017/0206382		7/2017	Rodriguez De Castro et al.	201
2017/0206512		7/2017 7/2017	Hoffberg Choi	201 201
2017/0206532 2017/0206603			Al-Masoud	201
2017/0206604	A1	7/2017	Al-Masoud	201
2017/0207059 2017/0207917		7/2017 7/2017	Trevor et al.	201 201
2017/0207917		7/2017		201
2017/0221032	A1	8/2017	Mazed	201
2017/0221052 2017/0228704			Sheng et al. Zhou et al.	201 201
2017/0228704			Sheng et al.	201
2017/0228822		8/2017	Creighton et al.	201 201
2017/0230189 2017/0230242			Toll et al. Hammer et al.	201
2017/0232300			Tran et al.	201
2017/0236094		8/2017		201 201
2017/0236121 2017/0237554			Lyons et al. Jacobs et al.	201
2017/0237569			Vandervort	201
2017/0237570			Vandervort	201 201
2017/0237766 2017/0237770		_ /	Mattson et al. Meriac	201
2017/0242729	A1	8/2017	Chen et al.	201
2017/0243208			Kurian et al. Castinado et al	201 201
2017/0243213 2017/0243214			Castinado et al. Johnsrud et al.	201
2017/0243222			Balasubramanian	201
2017/0243286			Castinado et al.	201
2017/0243287 2017/0244707			Johnsrud et al. Johnsrud et al.	201 201
2017/0244707			Johnstud et al. Jhingran et al.	201
2017/0249482			Takaai et al.	201

2017/0249606 A1	8/2017	Pirooz
2017/0255917 A1	9/2017	Singh et al.
2017/0262833 A1	9/2017	
2017/0278026 A1		Nielsen et al.
2017/0278186 A1		Creighton et al.
2017/02/8180 A1	10/2017	
2017/0286717 A1		Khi et al.
2017/0286934 A1		Poreh et al.
2017/0293669 A1	10/2017	Madhavan et al.
2017/0293747 A1	10/2017	Naqvi
2017/0295023 A1	10/2017	Madhavan et al.
2017/0300627 A1	10/2017	Giordano et al.
2017/0318008 A1	11/2017	Mead
2017/0323294 A1		Rohlfing et al.
2017/0323392 A1		Kasper et al.
		Feeney et al.
_		
2017/0327035 A1	11/2017	
2017/0330174 A1		Demarinis et al.
2017/0330250 A1		
2017/0331803 A1	11/2017	Parello et al.
2017/0338947 A1	11/2017	Ateniese et al.
2017/0338957 A1	11/2017	Ateniese et al.
2017/0344435 A1	11/2017	Davis
2017/0344580 A1		
2017/0344987 A1		e
		Dix et al.
2017/0346693 A1		
2017/0346804 A1		
2017/0346830 A1		Goldfarb et al.
2017/0352033 A1		Buckman et al.
2017/0352116 A1	12/2017	Pierce et al.
2017/0352219 A1	12/2017	Spanos et al.
2017/0357966 A1	12/2017	Chandrasekhar et al.
2017/0359288 A1	12/2017	Golan
2017/0359374 A1		Smith et al.
2017/0364450 A1		Struttmann
		Goldfarb et al.
2017/0364699 A1		
2017/0364700 A1		
2017/0364701 A1		Struttmann
2017/0364702 A1	12/2017	Goldfarb et al.
2017/0366353 A1	12/2017	Struttmann
2017/0366395 A1	12/2017	Goldfarb et al.
2017/0366416 A1	12/2017	Beecham et al.
2017/0366547 A1	12/2017	Goldfarb et al.
2017/0372308 A1		
2017/0372391 A1		Metnick et al.
2017/0372392 A1		Metnick et al.
2017/0372022 A1		
2018/0006831 A1		
2018/0013567 A1		
2018/0018723 A1		
2018/0019867 A1	1/2018	Davis
2018/0019921 A1	1/2018	Davis
2018/0020324 A1	1/2018	Beauford
2018/0025166 A1	1/2018	Daniel et al.
2018/0025365 A1	1/2018	Wilkinson et al.
2018/0025435 A1		Karame et al.
2018/0025442 A1		Isaacson et al.
2018/0023442 A1		Ateniese et al.
2018/0032273 A1 2018/0039667 A1		Pierce et al.
2018/0039982 A1		Metnick et al.
2018/0039993 A1		Rossi et al.
2018/0040007 A1		Lane et al.
2018/0040040 A1		Barski et al.
2018/0040041 A1	2/2018	Metnick
2018/0046889 A1	2/2018	Kapinos et al.
2018/0048469 A1		Ateniese et al.
2018/00/00/23 A1	2/2018	

2/2018 Hoffberg2/2018 Mokhasi3/2018 Hoffberg)18/0049043 A1 018/0053182 A1 018/0068358 A1 018/0075527 A1 3/2018 Nagla et al. 3/2018 Watanabe et al. 018/0076957 A1 018/0077134 A1 3/2018 Beecham 3/2018 Tran et al. 018/0078843 A1 3/2018 Witchey et al. 018/0082043 A1 018/0082216 A1 3/2018 Northrup 3/2018 Rosati et al. 018/0082255 A1 3/2018 Tummuru et al. 018/0082256 A1 018/0082296 A1 3/2018 Brashers

Page 22

	Reference	s Cited	2018/0198632	A1	7/2018	Gajek et al.
			2018/0198794	A1	7/2018	Huh et al.
U.S. 1	PATENT D	OCUMENTS	2018/0204191	A1	7/2018	Wilson et al
			2018/0204192	A1	7/2018	Whaley et a
84042 A1	3/2018 F	inlow-Bates	2018/0204213	A1		Zappier et a
			2018/0204259	A1		McGregor e
			2018/0204260	A1		McGregor e
			2018/0205537	A1	7/2018	Wilson et al
			2018/0205552	A1	7/2018	Struttmann
			2018/0205555	A1	7/2018	Watanabe et
			2018/0205558	A1	7/2018	Ferrin
			2018/0211252	A1	7/2018	Lintner et a
			2018/0211316	A1	7/2018	Lintner et a
		•	2018/0211322	A1	7/2018	Lintner et a
89685 A1			2018/0211487	A1	7/2018	Fine et al.
	84042 A1 88928 A1 89041 A1 89436 A1 89465 A1 89625 A1 89678 A1 89678 A1 89683 A1 89683 A1	U.S. PATENT D 84042 A1 3/2018 F 88928 A1 3/2018 S 89041 A1 3/2018 S 89436 A1 3/2018 S 89465 A1 3/2018 W 89625 A1 3/2018 W 89667 A1 3/2018 W 89678 A1 3/2018 W 89683 A1 3/2018 W	88928A13/2018Smith et al.89041A13/2018Smith et al.89436A13/2018Smith et al.89465A13/2018Winstrom et al.89625A13/2018Rosati et al.89667A13/2018McGregor et al.89678A13/2018Metnick et al.89683A13/2018Setty et al.89684A13/2018McGregor et al.	U.S. PATENT DOCUMENTS2018/0198794 2018/0204191 2018/020419284042 A13/2018 Finlow-Bates2018/0204192 2018/020421388928 A13/2018 Smith et al.2018/0204259 2018/020425989041 A13/2018 Smith et al.2018/0204260 2018/020553789436 A13/2018 Smith et al.2018/0205537 2018/020555289465 A13/2018 Winstrom et al.2018/0205552 2018/020555289625 A13/2018 Rosati et al.2018/0205558 2018/020555889667 A13/2018 McGregor et al.2018/0211252 2018/021125289683 A13/2018 Setty et al.2018/0211316 2018/021132289684 A13/2018 McGregor et al.2018/0211322 2018/0211322	U.S. PATENT DOCUMENTS2018/0198794 A1 2018/0204191 A1 2018/0204192 A184042 A13/2018 Finlow-Bates2018/0204192 A1 2018/0204213 A1 2018/0204259 A1 2018/0204259 A189041 A13/2018 Smith et al.2018/0204259 A1 2018/0204260 A1 2018/0205537 A1 2018/0205552 A1 2018/0205555 A1 2018/0205555 A1 2018/0205555 A1 2018/0205558 A1 2018/0205558 A1 2018/0205558 A1 2018/0205558 A1 2018/0205558 A1 2018/0205558 A1 2018/0211252 A1 2018/0211252 A1 2018/0211316 A1 2018/0211322 A1 	U.S. PATENT DOCUMENTS2018/0198794A17/201884042A13/2018Finlow-Bates2018/0204191A17/201884042A13/2018Finlow-Bates2018/0204213A17/201888928A13/2018Smith et al.2018/0204259A17/201889041A13/2018Smith et al.2018/0204260A17/201889436A13/2018Smith et al.2018/0205537A17/201889455A13/2018Winstrom et al.2018/0205555A17/201889667A13/2018Rosati et al.2018/0205555A17/201889667A13/2018Metnick et al.2018/0211252A17/201889678A13/2018Setty et al.2018/0211316A17/201889683A13/2018McGregor et al.2018/0211322A17/201889684A13/2018McGregor et al.2018/0211322A17/201889684A13/2018McGregor et al.2018/0211322A17/201889684A13/2018McGregor et al.2018/0211322A17/201889684A13/2018McGregor et al.2018/0211322A17/201889684A13/2018McGregor et al.2018/0211322A17/2018

2018/0089685 A1	3/2018	McGregor et al.
2018/0089729 A1	3/2018	Metnick et al.
2018/0089758 A1	3/2018	Stradling et al.
2018/0089760 A1	3/2018	U
2018/0089761 A1	3/2018	e
2018/0091316 A1	3/2018	0
2018/0096163 A1	4/2018	Jacques de Kadt et al.
2018/0096563 A1	4/2018	Fine et al.
2018/0101684 A1	4/2018	Murphy et al.
2018/0101848 A1	4/2018	\mathcal{L}
2018/0102013 A1	4/2018	L
2018/0103042 A1	4/2018	
2018/0108024 A1	4/2018	Greco et al.
2018/0109541 A1 2018/0113752 A1		Gleichauf Derbakova et al.
2018/0115752 A1 2018/0115413 A1		_
2018/0115415 AI		King Dechu et al.
2018/0113423 AI 2018/0117446 AI		
2018/0117447 A1		Tran et al.
2018/0121673 A1		Goldfarb et al.
2018/0121075 AI		Higgins
2018/0122031 A1	5/2018	
2018/0123882 A1		Anderson et al.
2018/0129700 A1		Naccache et al.
2018/0131511 A1		Taylor et al.
2018/0137306 A1		Brady et al.
2018/0137503 A1		High et al.
2018/0139042 A1		Binning et al.
2018/0139103 A1	5/2018	Guo et al.
2018/0139186 A1	5/2018	Castagna
2018/0144156 A1	5/2018	Marin
2018/0144292 A1		Mattingly et al.
2018/0145836 A1	5/2018	
2018/0146338 A1		Finlow-Bates
2018/0146339 A1		Finlow-Bates
2018/0150440 A1		Keuffer et al.
2018/0150488 A1		Runchey
2018/0150865 A1 2018/0157481 A1	5/2018 6/2018	Arora Zessin et al.
2018/0157688 A1	6/2018	Zessin et al.
2018/0157088 AI	6/2018	Arora
2018/0158051 AI	6/2018	
2018/0158058 A1		Kogure
2018/0158278 A1		Dabrowski
2018/0160270 A1		Finlow-Bates
2018/0165720 A1	6/2018	Barkeloo
2018/0165781 A1	6/2018	Rodriguez et al.
2018/0166062 A1	6/2018	Hoffberg
2018/0167217 A1	6/2018	Brady et al.
2018/0173747 A1	6/2018	Baird
2018/0173906 A1		Rodriguez et al.
2018/0174122 A1		Mattingly et al.
2018/0174188 A1	6/2018	
2018/0176017 A1		Rodriguez et al.
2018/0181759 A1		Smith et al.
2018/0181904 A1		Wilkinson et al.
2018/0181909 A1		Wilkinson et al.
2018/0181953 A1 2018/0181964 A1		Lacoss-Arnold et al. Zagarese et al.
2018/0181904 A1 2018/0183587 A1		Won et al.
2018/0183387 A1 2018/0183600 A1		
2018/0185000 A1 2018/0189312 A1		Alas et al.
2018/0189312 AI 2018/0189730 AI		Wilkinson et al.
2018/0189750 A1 2018/0191503 A1		
2010/0171303 AI	112010	I XI WAI VI AI.
2018/0192131 A1	7/2019	Epstein et al.

2018/0211487		7/2018	Fine et al.
2018/0212783	A1	7/2018	King
2018/0212970	A1	7/2018	Chen et al.
2018/0216946	A1	8/2018	Gueye
2018/0218003	A1	8/2018	Banga et al.
2018/0218364	A1	8/2018	Cantrell et al.
2018/0218454	Al	8/2018	Simon et al.
2018/0219676	A1	8/2018	Mattingly et al.
2018/0220278	A1	8/2018	Tal et al.
2018/0225366	A1	8/2018	Mallard
2018/0225611	A1	8/2018	Daniel et al.
2018/0227128	A1	8/2018	Church et al.
2018/0232731	A1	8/2018	Liu
2018/0234239		8/2018	Hasegawa et al.
2018/0240165		8/2018	Kilpatrick
2018/0240639		8/2018	Trevor et al.
2018/0241573		8/2018	Ramathal et al.
2018/0247191		8/2018	Katz et al.
2018/0247320		8/2018	Gauld
2018/0247520		8/2018	O'Brien
2018/0248085		8/2018	Johnson et al.
2018/0248701		8/2018	Sardesai et al.
2018/0248880		9/2018	Kohli et al.
2018/0253691		9/2018	High et al.
2018/0253702		9/2018	Dowding
2018/0254887		9/2018	Ateniese et al.
2018/0257306		9/2018	Mattingly et al.
2018/0260811		9/2018	Bergner et al.
2018/0260879		9/2018	Bergner et al.
2018/0260921		9/2018	Wagstaff
2018/0262335		9/2018	Bergner et al.
2018/0264347		9/2018	Tran et al.
2018/0267539		9/2018	Shih
2018/0267789		9/2018	Mandal et al.
2018/0268436	A1	9/2018	Sprague et al.
2018/0276597	A1	9/2018	Fuller et al.
2018/0276600	A1	9/2018	Fuller et al.
2018/0276626	A1	9/2018	Laiben
2018/0276663	A1	9/2018	Arora
2018/0278596	A1	9/2018	Ateniese et al.
2018/0285217	A1	10/2018	Smith et al.
2018/0285412	A1	10/2018	Zhuang
2018/0285838	A1	10/2018	Franaszek et al.
2018/0285840	A1	10/2018	Hasan
2018/0285879	A1	10/2018	Gadnis et al.
2018/0285983	A1	10/2018	Franaszek et al.
2018/0285996	A1	10/2018	Ma
2018/0287790		10/2018	Everett et al.
2018/0287805		10/2018	Ramathal et al.
2018/0287915		10/2018	Smith et al.
2018/0293547		10/2018	Randhawa
2018/0293553		10/2018	Dembo et al.
2018/0293555			Hyun et al.
2010/0293550			

Wilson et al.

Whaley et al.

Zappier et al.

Wilson et al.

Lintner et al.

Lintner et al.

Lintner et al.

McGregor et al.

McGregor et al.

Struttmann et al.

Watanabe et al.

2018/0293557 A1 10/2018 Kim et al. 10/2018 Rhie et al. 2018/0294955 A1 10/2018 O'Brien et al. 2018/0294956 A1 2018/0294957 A1 10/2018 O'Brien et al. 2018/0295546 A1 10/2018 Crawford 10/2018 Madisetti et al. 2018/0300382 A1 10/2018 Gagel et al. 2018/0300495 A1 10/2018 Agrawal et al. 2018/0302222 A1 10/2018 Beecham 2018/0302390 A1 10/2018 Bernau et al. 2018/0307854 A1 10/2018 Beecham et al. 2018/0307857 A1 10/2018 Rettaroli et al. 2018/0307868 A1

(56)		Referen	ces Cited	2019/005859			Watanabe et
	U.S.	PATENT	DOCUMENTS	2019/005859 2019/005859			Polcha et al. Takada Chin
				2019/005860			Toll et al.
2018/030807			Emmerson	2019/005870 2019/006509			Kempf et al. Karr et al.
2018/030816 2018/031480			Sekimura et al. Mintz et al.	2019/000503			Salomon
2018/031504			Kennedy et al.	2019/006576			Wood et al.
2018/031505		11/2018	Pickover et al.	2019/006578			Vijayasankar Songunta ot
2018/031514			Darnell et al.	2019/006611 2019/007314			Sengupta et Ateniese et a
2018/031530 2018/032256		11/2018 11/2018		2019/007315			Nagle et al.
2018/032259				2019/007364			Dazin
2018/032396			Watanabe et al.	2019/007364 2019/007496			Wright et al. Ateniese et a
2018/032629 2018/032861			Tran et al. Sinha et al.	2019/007496			Finlow-Bates
2018/032994			Horii et al.	2019/007502			Anderson et
2018/032994				2019/007516 2019/008011			Finlow-Bates Brady et al.
2018/033183 2018/033655				2019/008040			Molinari et a
2018/033776			Gleichauf	2019/00804			Pierce et al.
2018/033787				2019/009780 2019/009780			Vann et al. Mahanta et a
2018/034186			Katz et al.	2019/009780		3/2019	
			Lotter et al. Lotter et al.	2019/009801			Wilkinson
2018/034330			Lotter et al.	2019/010189			Cantrell et a
2018/034330			Lotter et al.	2019/010240 2019/010242			Shi et al. Little et al.
2018/034333 2018/034986			Lotter et al. Trieflinger	2019/010242			Kim et al.
2018/034987			High et al.	2019/010410			Khan et al.
2018/034989			Arora et al.	2019/010419	96 A1	4/2019	Li et al.
2018/034996 2018/035226			O'Brien et al. O'Hanlon et al.	г			
2018/035220			Lawrenson et al.	F	OREIG	N PALE	NT DOCUM
2018/035760			Wilkinson et al.	AU	1997030	5816	5/2001
2018/036569			Sanders et al.	AU	1997030		5/2001
2018/037377 2018/037398			Madisetti et al. Katz et al.	AU		9583 A1	2/2005
2018/037398			Katz et al.	AU AU		1930 B2 1749 B2	11/2012 1/2013
2018/037403			Nazzari et al.	CA		5191 A1	5/2009
2018/037409 2018/037417		12/2018	Chen et al.	CA		5727 A1	5/2009
2019/000478		1/2019		CN CN		3526 B 5526 B	10/2008 11/2008
2019/000556		1/2019		CN		8307 A	9/2010
2019/000719 2019/000719		1/2019 1/2019	Neumann et al.	CN		5269 B	4/2011
2019/000719			Chen et al.	CN CN		5898 B 3505 B	5/2011 7/2011
2019/001224			Mercuri et al.	CN		0508 A	10/2012
2019/001259 2019/001262			Beser et al. Habuchi et al.	CN		4605 B	12/2012
2019/001202			Bishnoi et al.	CN CN		4796 B 2274 B	3/2013
2019/001393	32 A1		Maino et al.	CN CN		4269 B	3/2013 7/2014
2019/001393			Mercuri et al.	CN		3277 B	9/2014
2019/001393 2019/001394			Mercuri et al. Mercuri et al.	CN		0551 A	9/2014
2019/001641			Sheldon-Coulson et al.	CN CN		1088 B 5013 A	10/2015 12/2015
2019/001888			Madisetti et al.	CN		5409 A	10/2017
2019/001888 2019/001897			Madisetti et al. Goldfarb et al.	EP		8672	12/1984
2019/002581		1/2019	Mattingly et al.	EP EP		9822 1409	11/1990 4/1991
2019/002581			Mattingly et al.	EP		5314	10/1993
2019/002614 2019/002827		1/2019	Peffers et al. Davis	EP		5247	6/1996
2019/002827			Pierce et al.	EP EP		3757 2741	5/1999 10/1999
2019/002828		1/2019		EP		4336	11/2000
2019/003490 2019/003492		1/2019 1/2019	_	EP	1285	5380 A2	2/2003
2019/003492			Simons et al.	EP		5594 A2	7/2003
2019/003520		1/2019	Simons et al.	EP EP		5112 A1 5456 A1	4/2006 3/2008
2019/003670			Kano et al.	EP		7518 A1	10/2009
2019/003671 2019/004240		1/2019 2/2019	Qiu Gao et al.	EP		5550 A1	8/2010
2019/004240			Dupont	EP EP		5082 A4 7875 A4	8/2013 1/2014
2019/004473		2/2019	Vandervort	EP		8487 A1	3/2014
2019/005083			Kikinis Uill at al	EP		9851 A4	12/2016
2019/005403 2019/005711			Hill et al. Liu et al.	EP FP		5174 A4	2/2017
2019/005711			Chalakudi et al.	EP EP		7171 A1 2729 A4	12/2017 7/2018
			Komenda et al.	EP			12/2018

2019/0058590	Al	2/2019	Watanabe et al.
2019/0058593	A1	2/2019	Polcha et al.
2019/0058599	A1	2/2019	Takada Chino et al.
2019/0058604	A1	2/2019	Toll et al.
2019/0058709	A1	2/2019	Kempf et al.
2019/0065093	A1	2/2019	Karr et al.
2019/0065709	A1	2/2019	Salomon
2019/0065764	A1	2/2019	Wood et al.
2019/0065788	A1	2/2019	Vijayasankar et al.
2019/0066119	A1	2/2019	Sengupta et al.
2019/0073146	A1	3/2019	Ateniese et al.
2019/0073152	A1	3/2019	Nagle et al.
2019/0073645	A1	3/2019	Dazin
2019/0073646	A1	3/2019	Wright et al.
2019/0074962	A1	3/2019	Ateniese et al.
2019/0074966	A1	3/2019	Finlow-Bates
2019/0075022	A1	3/2019	Anderson et al.
2019/0075160	A1	3/2019	Finlow-Bates
2019/0080118	A1	3/2019	Brady et al.
2019/0080407	A1	3/2019	Molinari et al.
2019/0080411	A1	3/2019	Pierce et al.
2019/0097806	A1	3/2019	Vann et al.
2019/0097807	A1	3/2019	Mahanta et al.
2019/0097813	A1	3/2019	King
2019/0098013	A1	3/2019	Wilkinson
2019/0101896	A1	4/2019	Cantrell et al.
2019/0102409	A1	4/2019	Shi et al.
2019/0102423	A1	4/2019	Little et al.
2019/0102839	A1	4/2019	Kim et al.
2019/0104102	A1	4/2019	Khan et al.
2019/0104196	A1	4/2019	Li et al.

JMENTS

2	2018/0357603 A1	12/2018	Wilkinson et al.	AU	1997036816	5/2001
2	2018/0365691 A1	12/2018	Sanders et al.	AU	1997036840	5/2001
2	2018/0373776 A1	12/2018	Madisetti et al.	AU AU	2003289583 A1	2/2001
2	2018/0373983 A1	12/2018	Katz et al.	AU AU	2003289383 AT 2008311930 B2	11/2012
2	2018/0373984 A1	12/2018	Katz et al.			
2	2018/0374037 A1	12/2018	Nazzari et al.	AU CA	2008311749 B2	1/2013
_	2018/0374094 A1	12/2018			2705191 A1	5/2009
_	2018/0374173 A1		Chen et al.	CA	2716727 A1	5/2009
	2019/0004789 A1	1/2019		CN	101283526 B	10/2008
	2019/0005566 A1	1/2019		CN	101305526 B	11/2008
	2019/0007198 A1		Neumann et al.	CN	101828307 A	9/2010
	2019/0007199 A1	1/2019		CN	102036269 B	4/2011
	2019/0007484 A1		Chen et al.	CN	102075898 B	5/2011
	2019/0012249 A1		Mercuri et al.	CN	102123505 B	7/2011
	2019/0012595 A1		Beser et al.	CN	102710508 A	10/2012
	2019/0012623 A1		Habuchi et al.	CN	102844605 B	12/2012
	2019/0012695 A1		Bishnoi et al.	CN	102954796 B	3/2013
	2019/0012093 AI		Maino et al.	CN	102982274 B	3/2013
	2019/0013933 A1		Mercuri et al.	CN	103954269 B	7/2014
	2019/0013934 A1		Mercuri et al.	CN	104023277 B	9/2014
	2019/0013948 A1		Mercuri et al.	CN	104050551 A	9/2014
	2019/0016419 A1		Sheldon-Coulson et al.	CN	104961088 B	10/2015
	2019/0018887 A1		Madisetti et al.	CN	105205013 A	12/2015
	2019/0018888 A1		Madisetti et al.	CN	107306409 A	10/2017
	2019/0018008 A1		Goldfarb et al.	EP	0128672	12/1984
	2019/0018979 AI		Mattingly et al.	EP	0399822	11/1990
	2019/0025817 AI		Mattingly et al.	EP	0421409	4/1991
	2019/0025818 AI		Peffers et al.	EP	0565314	10/1993
	2019/0028275 A1	1/2019	_	EP	0715247	6/1996
	2019/0028275 AI		Pierce et al.	EP	0913757	5/1999
	2019/0028270 A1	1/2019		EP	0952741	10/1999
	2019/0028280 A1			EP	1054336	11/2000
		1/2019		EP	1285380 A2	2/2003
	2019/0034926 A1	1/2019		EP	1325594 A2	7/2003
	2019/0035208 A1		Simons et al.	EP	1646112 A1	4/2006
	2019/0035209 A1		Simons et al.	EP	1895456 A1	3/2008
	2019/0036702 A1		Kano et al.	EP	2107518 A1	10/2009
	2019/0036712 A1	1/2019		EP	2215550 A1	8/2010
	2019/0042407 A1		Gao et al.	EP	2476082 A4	8/2013
	2019/0044735 A1		Dupont	EP	2257875 A4	1/2014
	2019/0044736 A1	2/2019		EP	2848487 A1	3/2015
2	2019/0050831 A1	2/2019	Kikinis	EP	2989851 A4	12/2016
2	2019/0054030 A1	2/2019	Hill et al.	EP	3005174 A4	2/2017
4	2019/0057115 A1	2/2019	Liu et al.	EP	3257171 A1	12/2017
2	2019/0057379 A1	2/2019	Chalakudi et al.	EP	3242729 A4	7/2018
2	2019/0057454 A1	2/2019	Komenda et al.	EP	3417642 A1	12/2018

(56)	References Cited	WO	WO9837481	8/1998
		WO	WO9845768	10/1998
	FOREIGN PATENT DOCUMENTS	WO	WO9901815	1/1999
		WO	WO9924928	5/1999
EP	2550765 B1 1/2019	WO	WO9927476	6/1999
FR	2907582 A1 4/2008	WO	WO9948296	9/1999
FR	2905763 B1 12/2008	WO	WO0077539	12/2000
GB	2264796 9/1993	WO	WO0108063	2/2001
GB	2366401 B 3/2002	WO	WO0108072	2/2001
GB	2418267 A 3/2006	WO	WO0110076	2/2001
GB	2498924 A 8/2013	WO	WO0154335	7/2001
JP	2001019496 1/2001	WO	WO0207031	1/2002
JP	2002342684 11/2002	WO	WO0291100	11/2002
JP	2005539296 A 12/2005	WO	WO02091100	11/2002
JP	3979400 B2 9/2007	WO	WO2004018158	3/2004
JP	4245059 B2 3/2009	WO	WO2005114106 A1	12/2005
JP	4947145 B2 6/2012	WO	WO2006027557 A1	3/2006
JP	2012160004 A 8/2012	WO	WO2006029297	3/2006
JP	5140121 B2 2/2013	WO	WO2006039803	4/2006
JP	5181184 B2 4/2013	WO	WO2006047879	5/2006
JP	5228366 B2 7/2013	WO	WO2006096612 A2	9/2006
JP	5516577 B2 6/2014	WO	WO2007044383 A3	6/2007
JP	5682610 B2 3/2014	WO	WO2008109641 A2	9/2008
JP	5734299 B2 6/2015	WO	WO2007067930 A3	10/2008
JP	6015086 B2 10/2016	WO	WO2008142682 A2	11/2008
JP	6426477 B2 11/2018	WO	WO2009067252 A1	5/2009
JF KR		WO	WO2009067254 A1	5/2009
		WO	WO2009082717 A2	7/2009
KR		WŎ	WO2009114161 A1	9/2009
KR	100924683 B1 11/2009	WŎ	WO2009126785 A2	10/2009
KR	100962399 B1 6/2010	WO	WO2009146132 A2	12/2009
KR	101036693 B1 5/2011	WŎ	WO2009148641 A1	12/2009
KR	101179919 B1 9/2012	WŎ	WO2010024929 A1	3/2010
KR	101288970 B1 7/2013	WŎ	WO2010027308 A1	3/2010
KR	101379255 B1 3/2014	WO	WO2010028315 A1	3/2010
KR	101422213 B1 7/2014	WŎ	WO2010025515 AI	7/2010
KR	20150092933 A 8/2015	WŎ	WO2010090617 A1	8/2010
KR	20170004054 A 1/2017	WO	WO2010143182 A1	12/2010
KR	101703163 B1 2/2017	WŎ	WO20101010462 A1	1/2011
RU	2161819 1/2001	WŎ	WO2011048531 A1	4/2011
RU	0017642 1/2017	WO	WO2011010351 A1	7/2011
WO	WO9002382 3/1990	WO	WO2011085252 A1	11/2011
WO	WO9222870 12/1992	WO	WO2011141371 A1 WO2011153155 A2	12/2011
WO	WO9301550 1/1993	WO	WO2011133133 A2 WO2012072651 A1	6/2012
WO	WO9403859 2/1994	WO	WO2012072031 A1 WO2013073020 A1	5/2012
WO	WO9406103 3/1994			
WO	WO9419912 9/1994	WO	WO2015030731 A1	3/2015
WO	WO9627155 9/1996	WO	WO2016011582 A1	1/2016
WO	WO9634356 10/1996	WO	WO2016176684 A1	11/2016
WO	WO9737315 10/1997	WO	WO2017147331 A1	8/2017
WO	WO9743761 11/1997	WO	WO2017200948 A1	11/2017
WO	WO9809144 3/1998			
WO	WO9809209 3/1998			
WO	WO9810381 3/1998	* aitar	l by examiner	

U.S. Patent Dec. 13, 2022 Sheet 1 of 2 US RE49,334 E

U.S. Patent Dec. 13, 2022 Sheet 2 of 2 US RE49,334 E

Allocate portion of economic surplus to deferring members 604

Fig. 6

1

MULTIFACTORIAL OPTIMIZATION SYSTEM AND METHOD

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue; a claim printed with strikethrough indicates that the claim was canceled, disclaimed, or held invalid by a prior post-patent action or proceeding.

CROSS REFERENCE TO RELATED APPLICATIONS

2

this risk may also improve efficiency of a market-based system, that is, increase the overall surplus in the market.

When a single party seeks to sell goods to the highest valued purchaser(s), to establish a market price, the rules of conduct typically define an auction. Typically, known auctions provide an ascending price or descending price over time, with bidders making offers or ceasing to make offers, in the descending price or ascending price models, respectively, to define the market price. After determining the 10 winner of the auction, typically a bidder who establishes a largest economic surplus, the pricing rules define the payment, which may be in accordance with a uniform price auction, wherein all successful bidders pay the lowest successful bid, a second price auction wherein the winning bidder pays the amount bid by the next highest bidder, and pay-what-you-bid (first price) auctions. The pay-what-youbid auction is also known as a discriminative auction while the uniform price auction is known as a non-discriminative auction. In a second-price auction, also known as a Vickrey 20 auction, the policy seeks to create a disincentive for speculation and to encourage bidders to submit bids reflecting their true value for the good, rather than "shaving" the bid to achieve a lower cost. In the uniform price and second price schemes, the bidder is encourages to disclose the actual 25 private value to the bidder of the good or service, since at any price below this amount, there is an excess gain to the buyer, whereas by withholding this amount the bid may be unsuccessful, resulting in a loss of the presumably desirable opportunity. In the pay-what-you-bid auction, on the other 30 hand, the buyer need not disclose the maximum private valuation, and those bidders with lower risk tolerance will bid higher prices. See, ww.isoc.org/inet98/proceedings/3b/ 3b_3.html; www.ibm.com/iac/reports-technical/reports-busneg-internet.html.

The present application is a *Reissue of U.S. Pat. No.* 9,615,264, issued Apr. 4, 2017, on U.S. patent application Ser. No. 13/429,666, which is a Divisional of U.S. patent application Ser. No. 12/089,277, filed Apr. 4, 2008, issued as U.S. Pat. No. 8,144,619, issued Mar. 27, 2012, which is a U.S. National Stage application under 35 U.S.C. §371 of PCT/US06/38759, filed Oct. 3, 2006, and claims benefit of priority from U.S. patent application Ser. No. 11/467,931 filed Aug. 29, 2006, now U.S. Pat. No. 8,874,477, issued Oct. 28, 2014, and claims benefit of priority from U.S. Provisional Patent Application No. 60/723,339, filed Oct. 4, 2005, each of which is expressly incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to the field of multifactorial economic optimization, and more generally to optimization of communities of elements having conflicting requirements and overlapping resources.

35 Two common types of auction are the English auction,

BACKGROUND OF THE INVENTION

In modern retail transactions, predetermined price transactions are common, with market transactions, i.e., commerce conducted in a setting which allows the transaction price to float based on the respective valuation allocated by the buyer(s) and seller(s), often left to specialized fields. While interpersonal negotiation is often used to set a transfer price, this price is often different from a transfer price that 45 might result from a best-efforts attempt at establishing a market price. Assuming that the market price is optimal, it is therefore assumed that alternatives are sub-optimal. Therefore, the establishment of a market price is desirable over simple negotiations. 50

One particular problem with market-based commerce is that both seller optimization and market efficiency depend on the fact that representative participants of a preselected class are invited to participate, and are able to promptly communicate, on a relevant timescale, in order to accurately 55 value the goods or services and make an offer. Thus, in traditional market-based system, all participants are in the same room, or connected by a high quality (low latency, low error) telecommunications link. Alternately, the market valuation process is prolonged over an extended period, 60 allowing non-real time communications of market information and bids. Thus, attempts at ascertaining a market price for non-commodity goods can be subject to substantial inefficiencies, which reduce any potential gains by market pricing. Further, while market pricing might be considered 65 "fair", it also imposes an element of risk, reducing the ability of parties to predict future pricing and revenues. Addressing

which sells a single good to the highest bidder in an ascending price auction, and the Dutch auction, in which multiple units are available for sale, and in which a starting price is selected by the auctioneer, which is successively
40 reduced, until the supply is exhausted by bidders (or the minimum price/final time is reached), with the buyer(s) paying the lowest successful bid. The term Dutch auction is also applied to a type of sealed bid auction. In a multi-unit live Dutch auction, each participant is provided with the
45 current price, the quantity on hand and the time remaining in the auction. This type of auction, typically takes place over a very short period of time and there is a flurry of activity in the last portion of the auction process. The actual auction terminates when there is no more product to be sold or the time period expires.

In selecting the optimal type of auction, a number of factors are considered. In order to sell large quantities of a perishable commodity in a short period of time, the descending price auctions are often preferred. For example, the produce and flower markets in Holland routinely use the Dutch auction (hence the derivation of the name), while the U.S. Government uses this form to sell its financial instruments. The format of a traditional Dutch auction encourages early bidders to bid up to their "private value", hoping to pay some price below the "private value". In making a bid, the "private value" becomes known, helping to establish a published market value and demand curve for the goods, thus allowing both buyers and sellers to define strategies for future auctions.

In an auction, typically a seller retains an auctioneer to conduct an auction with multiple buyers. (In a reverse auction, a buyer solicits the lowest price from multiple

competing vendors for a desired purchase). Since the seller retains the auctioneer, the seller essentially defines the rules of the auction. These rules are typically defined to maximize the revenues or profit to the seller, while providing an inviting forum to encourage a maximum number of high valued buyers. If the rules discourage high valuations of the goods or services, or discourage participation by an important set of potential bidders, then the rules are not optimum. Rules may also be imposed to discourage bidders who are unlikely to submit winning bids from consuming resources. A rule may also be imposed to account for the valuation of the good or service applied by the seller, in the form of a reserve price. It is noted that these rules typically seek to allocate to the seller a portion of the economic benefit that 15 through restrictions allow the seller to achieve greater revwould normally inure to the buyer (in a perfectly efficient auction), creating an economic inefficiency. However, since the auction is to benefit the seller, not society as a whole, this potential inefficiency is tolerated. An optimum auction thus seeks to produce a maximum profit (or net revenues) for the 20 seller. An efficient auction, on the other hand, maximizes the sum of the utilities for the buyer and seller. It remains a subject of academic debate as to which auction rules are most optimum in given circumstances; however, in practice, simplicity of implementation may be a paramount concern, 25 and simple auctions may result in highest revenues; complex auctions, while theoretically more optimal, may discourage bidders from participating or from applying their true and full private valuation in the auction process. Typically, the rules of the auction are predefined and 30 invariant. Further, for a number of reasons, auctions typically apply the same rules to all bidders, even though, with a priori knowledge of the private values assigned by each bidder to the goods, or a prediction of the private value, an optimization rule may be applied to extract the full value 35 assigned by each bidder, while selling above the seller's reserve. In a known ascending price auction, each participant must be made aware of the status of the auction, e.g., open, closed, and the contemporaneous price. A bid is indicated by the 40 identification of the bidder at the contemporaneous price, or occasionally at any price above the minimum bid increment plus the previous price. The bids are asynchronous, and therefore each bidder must be immediately informed of the particulars of each bid by other bidders. In a known descending price auction, the process traditionally entails a common clock, which corresponds to a decrementing price at each decrement interval, with an ending time (and price). Therefore, once each participant is made aware of the auction parameters, e.g., starting price, 50 price decrement, ending price/time, before the start of the auction, the only information that must be transmitted is auction status (e.g., inventory remaining). As stated above, an auction is traditionally considered an efficient manner of liquidating goods at a market price. The 55 theory of an auction is that either the buyer will not resell, and thus has an internal or private valuation of the goods regardless of other's perceived values, or that the winner will resell, either to gain economic efficiency or as a part of the buyer's regular business. In the later case, it is a general 60 presumption that the resale buyers are not in attendance at the auction or are otherwise precluded from bidding, and therefore that, after the auction, there will remain demand for the goods at a price in excess of the price paid during the auction. Extinction of this residual demand results in the 65 so-called "winner's curse", in which the buyer can make no profit from the transaction during the auction. Since this

detracts from the value of the auction as a means of conducting profitable commerce, it is of concern to both buyer and seller.

Research into auction theory (game theory) shows that in an auction, the goal of the seller is to optimize the auction by allocating the goods inefficiently, if possible, and thus to appropriate to himself an excess gain. This inefficiency manifests itself by either withholding goods from the market or placing the goods in the wrong hands. In order to assure 10 for the seller a maximum gain from a misallocation of the goods, restrictions on resale are imposed; otherwise, post auction trading will tend to undue the misallocation, and the anticipation of this trading will tend to control the auction pricing. The misallocations of goods imposed by the seller enues than if free resale were permitted. It is believed that in an auction followed by perfect resale, that any misassignment of the goods lowers the seller's revenues below the optimum and likewise, in an auction market followed by perfect resale, it is optimal for the seller to allocate the goods to those with the highest value. Therefore, if post-auction trading is permitted, the seller will not benefit from these later gains, and the seller will obtain sub optimal revenues. These studies, however, typically do not consider transaction costs and internal inefficiencies of the resellers, as well as the possibility of multiple classes of purchasers, or even multiple channels of distribution, which may be subject to varying controls or restrictions, and thus in a real market, such theoretical optimal allocation is unlikely. In fact, in real markets the transaction costs involved in transfer of ownership are often critical in determining a method of sale and distribution of goods. For example, it is the efficiency of sale that motivates the auction in the first place. Yet, the auction process itself may consume a substantial margin, for example 1-15% of the transaction value. To presume, even

without externally imposed restrictions on resale, that all of the efficiencies of the market may be extracted by free reallocation, ignores that the motivation of the buyer is a profitable transaction, and the buyer may have fixed and variable costs on the order of magnitude of the margin. Thus, there are substantial opportunities for the seller to gain enhanced revenues by defining rules of the auction, strategically allocating inventory amount and setting reserve pricing.

Therefore, perfect resale is but a fiction created in auction (game) theory. Given this deviation from the ideal presumptions, auction theory may be interpreted to provide the seller with a motivation to misallocate or withhold based on the deviation of practice from theory, likely based on the respective transaction costs, seller's utility of the goods, and other factors not considered by the simple analyses.

In many instances, psychology plays an important role in the conduct of the auction. In a live auction, bidders can see each other, and judge the tempo of the auction. In addition, multiple auctions are often conducted sequentially, so that each bidder can begin to understand the other bidder's patterns, including hesitation, bluffing, facial gestures or mannerisms. Thus, bidders often prefer live auctions to remote or automated auctions if the bidding is to be conducted strategically. Internet auctions are quite different from live auctions with respect to psychological factors. Live auctions are often monitored closely by bidders, who strategically make bids, based not only on the "value" of the goods, but also on an assessment of the competition, timing, psychology, and progress of the auction. It is for this reason that so-called proxy bidding, wherein the bidder creates a preprogrammed

5

"strategy", usually limited to a maximum price, are disfavored as a means to minimize purchase price, and offered as a service by auctioneers who stand to make a profit based on the transaction price. A maximum price proxy bidding system is somewhat inefficient, in that other bidders may test the proxy, seeking to increase the bid price, without actually intending to purchase, or contrarily, after testing the proxy, a bidder might give up, even below a price he might have been willing to pay. Thus, the proxy imposes inefficiency in the system that effectively increases the transaction cost.

In order to address a flurry of activity that often occurs at the end of an auction, an auction may be held open until no further bids are cleared for a period of time, even if advertised to end at a certain time. This is common to both live and automated auctions. However, this lack of determinism may upset coordinated schedules, thus impairing efficient business use of the auction system. changes in network architecture. Ad hoc networks pose control issues with respect to contention, routing and information conveyance. There are typically tradeoffs involving equipment size, cost and complexity, protocol complexity, throughput efficiency, energy consumption, and "fairness" of access arbitration. Other factors may also come into play. L. Buttyan and J.-P.

6

An ad hoc network is a wireless network which does not require fixed infrastructure or centralized control. The terminals in the network cooperate and communicate with each other, in a self organizing network. In a multihop network, communications can extend beyond the scope of a single node, employing neighboring nodes to forward messages to their destination. In a mobile ad hoc network, constraints are not placed on the mobility of nodes, that is, they can relocate within a time scale which is short with respect to the communications, thus requiring consideration of dynamic changes in network architecture.

Ad hoc networks pose control issues with respect to contention, routing and information conveyance. There are typically tradeoffs involving equipment size, cost and comconsumption, and "fairness" of access arbitration. Other factors may also come into play. L. Buttyan and J.-P. Hubaux. Rational exchange—a formal model based on game theory. In Proceedings of the 2nd International Workshop on Electronic Commerce (WELCOM), November 2001. citeseer.ist.psu.edu/an01rational.html; P. Michiardi and R. Molva. Game theoretic analysis of security in mobile ad hoc networks. Technical Report RR-02-070, Institut Eurécom, 2002; P. Michiardi and R. Molva. A game theoretical approach to evaluate cooperation enforcement mechanisms in mobile ad hoc networks. In Proceedings of WiOpt '03, March 2003; Michiardi, P., Molva, R.: Making greed work in mobile ad hoc networks. Technical report, (2002)Institut Eurecom citeseer.ist.psu.edu/ michiardi02making.html; S. Shenker. Making greed work in networks: A game-theoretic analysis of switch service disciplines. IEEE/ACM Transactions on Networking, 3(6):819-831, December 1995; A. B. MacKenzie and S. B. Wicker. Selfish users in aloha: A game-theoretic approach. In

Game Theory

Use of Game Theory to control arbitration of ad hoc networks is well known. F. P. Kelly, A. Maulloo, and D. Tan. 20 Rate control in communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49, 1998. citeseer.ist.psu.edu/ kelly98rate.html; J. MacKie-Mason and H. Varian. Pricing congestible network resources. IEEE Journal on Selected 25 Areas in Communications, 13(7):1141-1149, 1995. Some prior studies have focused on the incremental cost to each node for participation in the network, without addressing the opportunity cost of a node foregoing control over the communication medium. Courcoubetis, C., Siris, V. A. and 30 Stamoulis, G. D. Integration of pricing and flow control for available bit rate services in ATM networks. In Proceedings IEEE Globecom '96, pp. 644-648. London, UK. citeseer.ist.psu.edu/courcoubetis96integration.html.

A game theoretic approach addresses the situation where 35 Vehicular Technology Conference, 2001. VTC 2001 Fall.

the operation of an agent which has freedom of choice, allowing optimization on a high level, considering the possibility of alternatives to a well designed system. According to game theory, the best way to ensure that a system retains compliant agents is to provide the greatest antici- 40 pated benefit, at the least anticipated cost, compared to the alternates.

Game Theory provides a basis for understanding the actions of Ad hoc network nodes. A multihop ad hoc network requires a communication to be passed through a 45 disinterested node. The disinterested node incurs some cost, thus leading to a disincentive to cooperate. Meanwhile, bystander nodes must defer their own communications in order to avoid interference, especially in highly loaded networks. By understanding the decision analysis of the 50 various nodes in a network, it is possible to optimize a system which, in accordance with game theory, provides benefits or incentives, to promote network reliability and stability. The incentive, in economic form, may be charged to those benefiting from the communication, and is prefer- 55 ably related to the value of the benefit received. The proposed network optimization scheme employs a modified combinatorial (VCG) auction, which optimally compensates those involved in the communication, with the benefiting party paying the second highest bid price (second price). The 60 surplus between the second price and VCG price is distributed among those who defer to the winning bidder according to respective bid value. Equilibrium usage and headroom may be influenced by deviating from a zero-sum condition. The mechanism seeks to define fairness in terms of market 65 value, providing probable participation benefit for all nodes, leading to network stability.

IEEE VTS 54th, volume 3, October 2001; J. Crowcroft, R. Gibbens, F. Kelly, and S. Östring. Modelling incentives for collaboration in mobile ad hoc networks. In Proceedings of WiOpt '03, 2003.

Game theory studies the interactions of multiple independent decision makers, each seeking to fulfill their own objectives. Game theory encompasses, for example, auction theory and strategic decision-making. By providing appropriate incentives, a group of independent actors may be persuaded, according to self-interest, to act toward the benefit of the group. That is, the selfish individual interests are aligned with the community interests. In this way, the community will be both efficient and the network of actors stable and predictable. Of course, any systems wherein the "incentives" impose too high a cost, themselves encourage circumvention. In this case, game theory also addresses this issue.

In computer networks, issues arise as the demand for communications bandwidth approaches the theoretical limit. 5 Under such circumstances, the behavior of nodes will affect how close to the theoretical limit the system comes, and also which communications are permitted. The well known collision sense, multiple access (CSMA) protocol allows each node to request access to the network, essentially without 0 cost or penalty, and regardless of the importance of the communication. While the protocol incurs relatively low overhead and may provide fully decentralized control, under congested network conditions, the system may exhibit instability, that is, a decline in throughput as demand increases, 5 resulting in ever increasing demand on the system resources and decreasing throughput. Durga P. Satapathy and Jon M. Peha, Performance of Unlicensed Devices With a Spectrum

7

Etiquette, Proceedings of IEEE Globecom, November 1997, pp. 414-418. citeseer.ist.psu.edu/satapathy97 performance.html. According to game theory, the deficit of the CSMA protocol is that it is a dominant strategy to be selfish and hog resources, regardless of the cost to society, resulting in "the tragedy of the commons." Garrett Hardin. The Tragedy of the Commons. Science, 162:1243-1248, 1968. Alternate Location: dieoff.com/page95.htm.

In an ad hoc network used for conveying real-time information, as might be the case in a telematics system, there are potentially unlimited data communication requirements (e.g., video data), and network congestion is almost guaranteed. Therefore, using a CSMA protocol as the paradigm for basic information conveyance is destined for failure, unless there is a disincentive to network use. (In 15 power constrained circumstances, this cost may itself provide such a disincentive). On the other hand, a system which provides more graceful degradation under high load, sensitivity to the importance of information to be communicated, and efficient utilization of the communications medium 20 would appear more optimal. One way to impose a cost which varies in dependence on the societal value of the good or service is to conduct an auction, which is a mechanism to determine the market value of the good or service, at least between the auction 25 participants. Walsh, W. and M. Wellman (1998). A market protocol for decentralized task allocation, in "Proceedings of the Third International Conference on Multi-Agent Systems," pp. 325-332, IEEE Computer Society Press, Los Alamitos. In an auction, the bidder seeks to bid the lowest 30 value, up to a value less than or equal to his own private value (the actual value which the bidder appraises the good or service, and above which there is no surplus), that will win the auction. Since competitive bidders can minimize the gains of another bidder by exploiting knowledge of the 35 private value attached to the good or service by the bidder, it is generally a dominant strategy for the bidder to attempt to keep its private value a secret, at least until the auction is concluded, thus yielding strategies that result in the largest potential gain. On the other hand, in certain situations, 40 release or publication of the private value is a dominant strategy, and can result in substantial efficiency, that is, honesty in reporting the private value results in the maximum likelihood of prospective gain.

8

communications risk within the acceptable communications risk tolerance and a communications cost within the acceptable aggregate communications cost; and routing a communication using one of the set of network topologies. In according with this embodiment of the invention, alternate network topologies are available through the plurality of nodes, and the selection of a network topology is based not only on a potential efficiency of a topology, but also a risk with respect to that topology. Therefore, a less efficient topology with lower risk may be rationally selected based on a risk tolerance. In accordance with this embodiment, the method may further comprise the step of arbitraging a risk to increase a cost-benefit.

A further embodiment of the invention provides a method of routing a communication, comprising: defining a source node, a destination node, and at least two intermediate nodes; estimating a network state of at least one of the intermediate nodes; arbitraging a risk with respect to an accuracy of the estimate of network state with an arbitrage agent; communicating between said source and said destination; and compensating said at least two intermediate nodes and said agent. A still further object of the invention is top provide method of optimizing relationships between a set of agents with respect to a set of allocable resources, comprising for a plurality of agents, determining at least one of a subjective resource value function, and a subjective risk tolerance value function; providing at least one resource allocation mechanism, wherein a resource may be allocated on behalf of an agent in exchange for value; providing at least one risk transference mechanism, wherein a risk may be transferred from one agent to another agent in exchange for value; selecting an optimal allocation of resources and assumption of risk by maximizing, within an error limit, an aggregate economic surplus of the putative organization of agents; accounting for the allocation of resources and allocation of risk in accordance with the subjective resource value function and a subjective risk tolerance value function for the selected optimal allocation; and allocating resources and risk in accordance with the selected optimal organization. The resource may comprises, for example, a communication opportunity. The agent may have a subjective resource value for failing to gain an allocation of a resource. Likewise, the agent may have an option or ability to defect from the 45 organization. The agent may have a multipart resource requirement, wherein an optimal resource allocation requires allocation of a plurality of resource components. A risk transference agent may be provided to insure a risk. A risk transference agent may be provided to arbitrage a risk. A risk transference agent may be provided which speculatively acquires resources. The optimal resource allocation may comprise an explicit allocation of a first portion of component resources and an implicit allocation of a second portion of component resources, a risk transference agent undertaking to fulfill the second portion. In accordance with a still further aspect of the invention, a method of optimizing an allocation of resources and deference from contesting the allocation of resources to other agents is provided, comprising: determining a subjective resource value function, and a subjective deference value function for an agent with respect to a resource allocation within a community; selecting an optimal allocation of resources and deference by maximizing, within an error limit, an aggregate economic surplus of the community; allocating resources in accordance with the selected optimal organization; and accounting in accordance with the subjective resource value function, and subjective deference

SUMMARY AND OBJECTS OF THE INVENTION

The present invention provides a networking system comprising a network model, said model comprising a 50 network parameter estimate; a packet router, routing packets in dependence on the model; and an arbitrage agent, to arbitrage a risk that said network parameter estimate is incorrect. The arbitrage agent typically operates with superior information or resources, such that its own estimate of 55 the network at a relevant time is different than that produced by the network model, resulting in an arbitrage opportunity. In this case, arbitrage is not necessarily meant to indicate a risk-free gain, but rather a reduced risk potential gain. The present invention also provides a method for routing 60 a communication, comprising defining a set of available intermediary nodes, a plurality of members of the set being associated with a risk factor and an inclusion cost; defining an acceptable communications risk tolerance and an acceptable aggregate communications cost; defining a set of net- 65 work topologies, each network topology employing a subset of members of the set of intermediary nodes, having a

9

value function. This deference value function thus quantifies in an economic function the deference of one agent to another.

The present invention further provides a method of optimizing an allocation of resources within members of a 5 community, comprising: determining subjective resource value functions for a plurality of resources for members of the community; selecting an optimal allocation of resources, within an error limit, to maximize an aggregate economic surplus of the community; charging members of the com- 10 munity in accordance with the respective subjective resource value functions and member benefits; allocating at least a portion of the economic surplus resulting from the allocation to members who defer gaining a resource allocation benefit of the community. The invention further provides a method 15 of encouraging recruitment of entities into an auction, comprising: defining a set of prevailing parties and a transaction price; defining an economic surplus from the transaction; and distributing a portion of the economic surplus to auction participants not within the set of prevailing parties, in 20 relation to a magnitude of an offer. A further aspect of the invention provides a method for optimizing a market, comprising: recruiting at least four parties comprising at least one buyer, at least one seller, and at least one deferring party; matching bidders with offerors to maximize a surplus; and 25 allocating the surplus at least in part to the deferring party, to motivate deference. In accordance with these embodiments, cooperation with a resource allocation which might otherwise be rejected, or incentivized the members not to defect from the community. Further, this mechanism incen- ³⁰ tivizes active participation, which may lead to a more liquid market and more optimal allocations. The auction may be a combinatorial auction. A plurality of suppliers may transact with a plurality of buyers in a single transaction. In accordance with one embodiment, only bidders having a significant risk of being within the set of prevailing parties are distributed the portion of the economic surplus. A portion of the economic surplus may be allocated dependent on a risk of being within the set of prevailing parties. Bidders may be required to pay a bid fee, for example a non-refundable 40 deposit. This bid fee may itself be set, scale with the bid, or set by the bidder, wherein the payback may be a function of the winning bid amount, bidder bid, amount paid, and parameters of other bidders. The economic surplus may be allocated in such manner to increase the liquidity of a 45 market. The present invention further provides an ad hoc communication node, comprising: an input for receiving communications and an output for generating communications; and a processor, for seeking an optimization of an ad hoc 50 communication network, said processor determining a network state for a portion of the network and estimating a network state for a different portion of the network, said processor engaging in a transaction with another node for transferring a risk of an erroneous state estimation.

10

FIG. 5 shows a flowchart of a third method in accordance with the present invention;

FIG. 6 shows a flowchart of a fourth method in accordance with the present invention;

FIG. 7 shows a flowchart of a fifth method in accordance with the present invention;

FIG. 8 shows a block diagram of a third embodiment of the present invention;

DESCRIPTION OF THE INVENTION

This disclosure incorporates herein by reference the entirety of WO/2006/029297.

The present invention seeks, among other aspects, to apply aspects of optimization theory to the control and arbitration of communities of resources, that is, elements or agents which operate independently and therefore cannot be directly controlled without compromise. Rather, the system is controlled by providing incentives and disincentives for various behaviors and actions seeking to promote an efficient outcome for the system as a whole, given the external constraints. Each agent then maximizes its own state based on its own value function, in light of the incentives and disincentives, resulting in an optimal network.

This optimization employs elements of game theory, and the present invention therefore invokes all those elements encompassed within its scope as applied to the problems and systems presented. The ad hoc network of elements typically reside within "communities", that is, the present invention does not particularly seek to apply principles to trivial networks which can be optimized without compromise or arbitration, although its principles may be applicable. The present invention therefore applies to the enhancement or optimization of communities. These communities may themselves have various rules, reputation hierarchies, arrangements or cultures, which can be respected or programmed as a part of the system operation, or merely operate as constraints on optimization. Thus, in accordance with a game theoretic analysis, various rules and perceived benefits may be applied to appropriately model the real system, or may be imposed to control behavior. These communities may be formed or employed for various purposes, and typically interoperate in a "commons" or economy, in which all relevant actions of each member of the community have an effect on others, and this effect can be quantified or normalized into "economic" terms. For example, a typical application of this technology would be to arbitrate access to a common or mutually interfering medium, such as a communications network. By optimizing communications, the greatest aggregate value of communications will generally be achieved, which may or may not correspond to a greatest aggregate communications bandwidth. For example, both quantity and quality of service may be independent (or semi-independent) parameters. 55 Thus, the system tends to promote a high quality of service (or at least as high a quality as is required) over a bulk volume of service. This, in turn, permits new applications which depend on reliable communications. A general type of economic optimization is a market economy, in which independent agents each act to maximize their respective interests. A subset of a market is an auction, in which a resource is allocated to a highest valued user or consumer, or a user or consumer acquires a resource at a lowest cost, in a single process. In a market economy, agents 65 may act as peers, and each agent may act as a source of supply or assert a demand. That is, at some market price, a consumer may relinquish assets to others and become a

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings show:

FIG. 1 shows a block diagram of a first embodiment of the 60 present invention;

FIG. 2 shows a block diagram of a second embodiment of the present invention;

FIG. 3 shows a flowchart of a first method in accordance with the present invention;

FIG. 4 shows a flowchart of a second method in accordance with the present invention;

11

supplier. Generally, a consumer has a higher private value for a resource than a supplier. The suppler, for example, may have a lower cost to obtain the resource, or a lower value for consumption of the resource, or both. Peers that both buy and sell a resource may seek to arbitrage, that is, seek to 5 establish a committed source of supply at a lower cost than a committed purchaser, thus assuring a profit. In order to be effective, arbitrage requires that the intermediary have an advantage, or else the ultimate buyer would transact directly with the ultimate seller. The advantage(s) may be, for 10 example, information, proprietary elements or methods, location, lower transactional costs, available capital, risk tolerance, storage facility, or the like.

So long as the advantage does not derive from an economically inefficiency monopoly or other structure that 15 reallocate the resource or portions thereof. Thus, a single artificially and/or "illegally" limits the efficiency of other agents, the arbitrage agent increases net efficiency of the network. That is, the presence and action of the arbitrage agent increases the economic surplus of the transaction and the market in general. An object of the present invention therefore seeks to overcome the inefficiency of seeking to solve a complex NP-complete optimization problem by providing arbitrage opportunities that allow a market solution to the optimization which balances optimization cost with intermediary 25 profits. Accordingly, while the net result may deviate from an abstract optimum condition, when one considers the cost of achieving this abstract optimum, the arbitrage-mediated result is superior in terms of market surplus. The availability of arbitrage and intermediaries therefore allows a particular 30 agent to balance its own optimization costs against overall gains. The subject of complexity theory, including combinatorial optimization, and solution of approximation of NP-complete problems, has been extensively studied. See, e.g., the refer- 35 ences set forth in the combinatorial optimization and auction appendix, which are expressly incorporated herein by reference. Assuming a set of rational agents, each agent will seek to locally optimize its state to achieve the greatest gains and 40 incur the lowest net costs. Thus, in a system which seeks to optimize a network of such agents, by permitting each agent to optimize its local environment state, the network may then be approximated by a network of local, environments, each typically comprising a plurality of agents. Thus, in the 45 same way as the complexity of an NP-complete problem grows in polynomial space, the simplification of an NP complete problem will also be polynomial. While this simplification incurs an inefficiency, each agent models a proximate region in the space of interest, which tends to be linear 50 (i.e., superposable) in a preferred embodiment. Agents compete with each other, and therefore the incentive to distort is limited. Likewise, since the preferred simplification of the problem does not impose a heuristic (i.e., a substitution of a first relatively simpler or more readily analytic algorithm for 55 a second more intractable algorithm), it does not accordingly distort the incentives from those inherent in the basic optimization. In a simple auction, a role is imposed on an agent, while in a market an agent can choose its own role dynamically, in 60 a series of transactions, dependent on its own value function. In a market, a set of agents having a resource or requiring a resource seek to interact to reallocate the resource, such that the needs are generally satisfied, up to a "market clearing price". That is, individual agents transact to transfer the 65 resource from those with supply to those with demand, at a price between the private values of the two agents, which

12

reallocation occurs until the demand ask price is higher than the supply bid price. An auction is designed to maximize the economic surplus, which is then typically allocated to the more restrictive of the source of supply or consumer or the sponsor. A market, on the other hand, generally operates to minimize the gap between bid and ask over an extended period, and thus the economic surplus tends to proportionate based on the balance of supply and demand at the clearing price. The particular reallocation also depends on the state of information of each agent, inefficiencies in transfer, and the like.

Where a need or supply is not unitary, one possible means for achieving an optimal solution is a combinatorial auction, in which multiple suppliers, or multiple consumers, or both, need is not met by a single supplier, but rather there are at least three parties to a transaction. The net result is a competition between parties that raises the potential for a holdout. In fact, one way to circumvent this issue (a "hold-20 out" problem) is to have direct or indirect (bypass) competition for each element. In such a circumstance, no agent can effectively demand more than the least cost alternate(s). A combinatorial auction (multifactorial optimization, also known as a Vickrey Clarke Grove [VCG] Auction) seeks to match, for the entire network of possibilities, the highest valued users with the lowest cost suppliers. This leads, however, to a surplus between the two, which must be allocated. In a one-to-many auction, the surplus is generally allocated to the restricted agent, i.e., the agent(s) with "market power". On the other hand, in an optimal market, the surplus will tend toward zero. That is, the profit to each party will tend toward a competitive mean, with higher profits only gained by undertaking higher risk. In imperfect markets, arbitrage opportunities exist, where profits can be made by trading the same resource.

In a multihop ad hoc network, a path between source and destination consists of a number of legs, with alternate paths available for selection of an optimum. If each node has its own distinct destination, there will likely be competing demands for each intermediate communication node.

One way to promote revealing a private value is if the end result of the process does not penalize those with aberrantly high or low values. One known method is to compute the result of the process as if the bidder or askor was not involved, leading to a so-called second price. Thus, the highest bidder wins, at a price established by a second highest bid. A lowest askor wins, at a price established by the second lowest askor. In a market, the highest bidder and lowest askor win, with a second price dependent on a more restrictive of supply and demand. In a combinatorial auction, this may be extended to price each component as if the highest bidder was uninvolved. In one embodiment of the invention, the second price applies to both buyer and seller, respectively, with the economic surplus allocated to other purposes. Thus, in this case, neither party gains the particular benefit of an imbalance of supply and demand. In fact, this perturbs the traditional market somewhat, in that an imbalance in supply and demand does not particularly recruit new market entrants in the same manner as an allocation of the surplus.

Arbitrage

The present invention seeks to model, within a microeconomy, the elements of the real economy which tend to improve efficiency toward "perfection", that is, a perfect universal balance of supply and demand, for which no strategy (other than bidding a true private value) will produce a superior result. It is known that combinatorial auc-

13

tions permit arbitrage opportunities. See, Andrew Gilpin and Tuomas Sandholm. 2004. Arbitrage in Combinatorial Exchanges. AAMAS-04 6th Workshop on Agent Mediated Electronic Commerce (AMEC-VI), New York, N.Y., 2004, expressly incorporated herein by reference.

These efficiency producing elements, paradoxically, are the parasitic elements which thrive off of predictable inefficiencies. That is, by promoting competition among the parasitic elements, an efficient balance of optimization of the direct market and optimization of the derivative markets will 10 produce an overall superior result to an optimization of the direct market alone.

While the use of derivative markets in real economies is

14

residual arbitrage opportunity will remain, but the inherent inefficiency of the arbitrage may be less than the corresponding overhead involved in providing more perfect information to the individual nodes (i.e., overall arbitrage cost is less than efficiency gain).

As such, a design feature of an embodiment of the invention is to provide or even encourage arbitrage mechanisms and arbitrage opportunities, in an effort to improve overall system efficiency. In fact, an embodiment of the system is preferably constructed to regularly provide arbitrage opportunities which can be conducted with low risk and with substantial market efficiency gains, and these arbitrage opportunities may be an important part of the

well known, the implementation of these as aspects of microeconomies and isolated markets is not well known, 15 and a part of an embodiment of the present invention. For example, in a corporate bankruptcy auction, there are often resellers present who seek to purchase assets cheaply at a "wholesale" price, and to redistribute them on a less urgent basis or in smaller quantities, or at a different location, or 20 otherwise transformed, and to sell them at a higher "retail" price. The auction price is determined by the number and constitution of bidders, as well as the possibility of proxy or absentee bidding. In fact, we presume that the auctioneers themselves are efficient, and that significantly higher bid 25 prices are not available in a modified process without incurring substantial investment, risk, or delay. Indeed, these premises in a narrow sense might be false, i.e., a rational auctioneer might indeed make greater investment, undertake higher risk, or incur greater delay. However, this possible 30 inefficiency merely shifts the allocation of the surplus, and to the extent there is a substantial gain to be made, encourages arbitrage, which in turn encourages competition at subsequent auctions, leading to at least a partial remediation of the allocation "error" in the long term, over a series of 35

operation of the embodiment.

A second opportunity provides risk transference, such as debt transactions, insurance, and market-making, and/or the like. In such transactions, a market risk is apparent. Each node, on the other [and] *hand*, has its own subjective risk tolerance. Likewise, the market risk provides an opportunity for nodes having a high risk tolerance to improve yield, by trading risk for return. Those nodes which have generally greater liquid resources, which inherently have no return while uninvested, and may permit other nodes having lesser resources to borrow, at interest. Because there is a risk of non-payment, nodes may have different credit ratings, and this creates an opportunity for credit rating "agencies" and/or guarantors. In an ad hoc network, there is also a possibility for delivery failure, which, in turn, provides an opportunity for insurance.

Manet System

Multihop Ad Hoc Networks require cooperation of nodes which are relatively disinterested in the content being conveyed. Typically, such disinterested intermediaries incur a cost for participation, for example, power consumption or opportunity cost. Economic incentives may be used to

auctions.

Therefore, the market system, with derivative and arbitrage possibilities, and deviations from optimal performance is at least partially self-correcting over the long term.

Likewise, because the system has mechanisms for reduc- 40 ing the effects of imperfections in the presumptions and/or the conformance of a real system to the stated mechanisms and applicable rules, particular aspects of the system which impose administrative or overhead burdens may be circumvented by imposing less restrictive criteria and allowing a 45 "self correcting" mechanism to remediate. Thus, for example, if a theoretically ideal mechanism imposes a 15% burden due to overhead, thus achieving an 85% overall efficiency (100–15=85), while a simplifying presumption achieves a result which imposes a 20% efficiency impair- 50 ment but only a 2% overhead factor (100-20-2=78), and an arbitrage mechanism is available to correct the simplified model to gain 12% efficiency with another 2% overhead (78+12–2), the net result is 88% efficiency, above that of the theoretically ideal mechanism.

An arbitrage mechanism seeks to identify inefficiency based on superior information or mechanism, and a pricing or value disparity, and conduct a countertrade seeking to exploit the disparity while undertaking relatively low risk, to increase overall market efficiency. (That is, to ultimately 60 reallocate resources from a lower valued holder to a higher valued holder). An ad hoc network generally presents a case where individual nodes have imperfect information, and efforts to gain better information invariably lead to increased over-65 head. Therefore, by intentionally truncating the information gathering and discovery aspect of the ad hoc network, a

promote cooperation of disinterested intermediaries, also known as recruitment. An economic optimization may be achieved using a market-finding process, such as an auction. In many scenarios, the desire for the fairness of an auction is tempered by other concerns, i.e., there are constraints on the optimization which influence price and parties of a transaction. For example, in military communication systems, rank may be deemed an important factor in access to, and control over, the communications medium. A simple process of rank-based preemption, without regard for subjective or objective importance, will result in an inefficient economic distortion. In order to normalize the application of rank, one is presented with two options: imposing a normalization scheme with respect to rank to create a unified economy, or providing considering rank using a set of rules outside of the economy. One way to normalize rank, and the implicit hierarchy underlying the rank, is by treating the economy as an object-oriented hierarchy, in which each individual inherits or is allocated a subset of the rights of a 55 parent, with peers within the hierarchy operating in a purely economic manner. The extrinsic consideration of rank, outside of an economy, can be denominated "respect", which corresponds to the societal treatment of the issue, rather than normalizing this factor within the economy, in order to avoid unintended secondary economic distortion. Each system has its merits and limitations. An economic optimization is one involving a transaction in which all benefits and detriments can be expressed in normalized terms, and therefore by balancing all factors, including supply and demand, at a price, an optimum is achieved. Auctions are well known means to achieve an economic optimization between distinct interests, to transfer

15

a good or right in exchange for a market price. While there are different types of auctions, each having their limitations and attributes, as a class these are well accepted as a means for transfer of goods or rights at an optimum price. Where multiple goods or rights are required in a sufficient combi- 5 nation to achieve a requirement, a so-called Vickrey-Clarke-Groves (VCG) auction may be employed. In such an auction, each supplier asserts a desired price for his component. The various combinations which meet the requirement are then compared, and the lowest selected. In a combinatorial 10 supply auction, a plurality of buyers each seeks a divisible commodity, and each bids its best price. The bidders with the combination of prices which are maximum are selected. In a commodity market, there are a plurality of buyers and sellers, so the auction is more complex. In a market 15 economy, the redistribution of goods or services are typically transferred between those whose value them least to those who value them most. The transaction price depends on the balance between supply and demand; with the surplus being allocated to the limiting factor.

16

at some additional but predetermined transaction costs, while one with a high risk tolerance can "go bare" and obtain a lower transaction cost, or undertake third party risk for profit.

Insurance may be provided in various manners For example, some potential market participants may reserve wealth, capacity or demand for a fee, subject to claim in the event of a risk event. In other cases, a separate system may be employed, such as a cellular carrier, to step in, in the event that a lower cost resource is unavailable (typically for bandwidth supply only). A service provider may provide risk-related allocations to network members in an effort to increase perceived network stability; likewise, if the network is externally controlled, each node can be subject to a reserve [requirements] *requirement* which is centrally (or [hierarchally] *hierarchically*) allocated. If an agent promises to deliver a resource, and ultimately fails to deliver, it may undertake an indemnification, paying the buyer an amount representing "damages" or "liquidated 20 damages", the transaction cost of buyer, e.g., the cost or estimated cost of reprocurement plus lost productivity and/ or gains. Likewise, if an agent fails to consume resources committed to it, it owes the promised payment, less the resale value of the remaining resources, if any. An indemnification insurer/guarantor can undertake to pay the gap on behalf of the defaulting party. Typically, the insurer may, but need not be, a normal agent peer. Hedge strategies may also be employed in known manner. In order for markets to be efficient, there must be a possibility of beneficial use or resale of future assets. This imposes some complexity, since the assets are neither physical nor possessed by the intermediary. However, cryptographic authentication of transactions may provide some remedy. On the other hand, by increasing liquidity and providing market-makers, the transaction surplus may be minimized, and thus the reallocation of the surplus as discussed above minimized. Likewise, in a market generally composed of agents within close proximity, the interposition of intermediaries may result in inefficiencies rather than efficiencies, and the utility of such complexity may better come from the facilitation of distant transactions. Thus, if one presumes slow, random nodal mobility, little advantage is seen from liquid resource and demand reallocation. On the other hand, if an agent has a predefined itinerary for rapidly relocating, it can efficiently conduct transactions over its path, prearranging communication paths, and thus providing trunk services. Thus, over a short term, direct multihop communications provide long-distance communications of both administrative and content data. On the other hand, over a longer term, relocation of agents may provide greater efficiency for transport of administrative information, increasing the efficiency of content data communications over the limited communications resources, especially if a store-and-forward paradigm is acceptable. It is noted that in an economy having persistent and deep use of financial derivatives, a stable currency is preferred, and the declining value credit discussed above would provide a disincentive to agents who might otherwise take risks over a long time-frame. It is possible, however, to distinguish between credits held by "consumers" and those held by "arbitrageurs" or institutions, with the former having a declining value but can be spent, and those which have a stable value but must be first converted (at some possible administrative cost) for consumer use. Bandwidth Auction

Derivatives, Hedges, Futures and Insurance

In a market economy, the liquidity of the commodity is typically such that the gap between bid and ask is small enough that the gap between them is small enough that it is insignificant in terms of preventing a transaction. In a 25 traditional market, the allocation of the surplus oscillates in dependence on whether it is a buyer's or seller's market. Of course, the quantum of liquidity necessary to assure an acceptably low gap is subjective, but typically, if the size of the market is sufficient, there will be low opportunity for 30 arbitrage, or at least a competitive market for arbitrage. The arbitrage may be either in the commodity, or options, derivatives, futures, or the like.

In a market for communications resources, derivatives may provide significant advantages over a simple unitary 35 market for direct transactions. For example, a node may wish to procure a reliable communications pathway (high quality of service or QoS) for an extended period. Thus, it may seek to commit resources into the future, and not be subject to future competition for or price fluctuation of those 40 resources, especially being subject to a prior broadcast of its own private valuation and a potential understanding by competitors of the presumed need for continued allocation of the resources. Thus, for similar reasons for the existence of derivative, options, futures, etc. markets in the real 45 economy, their analogy may be provided within a communications resource market. In a futures market analogy, an agent seeks to procure its long-term or bulk requirements, or seeks to dispose of its assets in advance of their availability. In this way, there is 50 increased predictability, and less possibility of self-competition. It also allows transfer of assets in bulk to meet an entire requirement or production lot capability, thus increasing efficiency and avoiding partial availability or disposal.

One issue in mobile ad hoc networks is accounting for 55 mobility of nodes and unreliability of communications. In commodities markets, one option is insurance of the underlying commodity and its production. The analogy in communications resource markets focuses on communications reliability, since one aspect of reliability, nodal mobility is 60 "voluntary" and not typically associated with an insurable risk. On the other hand, the mobility risk may be mitigated by an indemnification. In combination, these, and other risk transfer techniques, may provide means for a party engaged in a communications market transaction to monetarily compensate for risk tolerance factors. An agent in the market having a low risk tolerance can undertake risk transference,

A previous scheme proposes the application of game theory in the control of multihop mobile ad hoc networks

17

according to "fair" principles. In this prior scheme, nodes seeking to control the network (i.e., are "buyers" of bandwidth), conduct an auction for the resources desired. Likewise, potential intermediate nodes conduct an auction to supply the resources. The set of winning bidders and win-5 ning sellers is optimized to achieve the maximum economic surplus. Winning bidders pay the maximum bid price or second price, while winning sellers receive their winning ask or second price. The remaining surplus is redistributed among the winners and losing bidders, whose cooperation 10 and non-interference with the winning bidders is required for network operation. The allocation of the portion to losing bidders is, for example, in accordance with their proportionate bid for contested resources, and for example, limited to the few (e.g., 3) highest bidders or lowest offerors. The 15 winning bids are determined by a VCG combinatorial process. The result is an optimum network topology with a reasonable, but by no means the only, fairness criterion, while promoting network stability and utility. The purpose of rewarding losers is to encourage recruit- 20 ment, and therefore market liquidity. In order to discourage strategic losing bids, one possible option is to impose a statistical noise on the process to increase the risk that a strategically losing bid will be a winning bid. Another way is to allocate the available surplus corresponding to the 25 closeness of the losing bid to the winning bid, not merely on its magnitude. Alternately, a "historical" value for the resource may be established, and an allocation made only if the bid is at or above the trailing mean value. Further, the loser's allocation may be dependent on a future bid with 30 respect to a corresponding resource at or above the prior value. In similar manner, various algorithms for surplus allocation may be designed to encourage recruitment of agents seeking to win, while possibly discouraging bidders who have little realistic possibility of winning. Bidders who 35 do not seek to win impose an inefficiency on the network, for example requiring other agents to communicate, evaluate, acknowledge, and defer to these bids. Therefore, a relatively small bidding fee may be imposed in order to assert a bid, which may be used to increase the available surplus to be 40 allocated between the winning and top losing bidders. As discussed above, risk may be a factor in valuing a resource. The auction optimization may therefore be normalized or perturbed in dependence on an economic assessment of a risk tolerance, either based on a personal valua- 45 tion, or based on a third party valuation (insurance/ indemnification). Likewise, the optimization may also be modified to account for other factors. Thus, one issue with such a traditional scheme for fair allocation of resources is that it does not readily permit 50 intentional distortions, that is, the system is "fair". However, in some instances, a relatively extrinsic consideration to supply and subjective demand may be a core requirement of a system. For example, in military systems, it is traditional and expected that higher military rank will provide access to 55 and control over resources on a favored basis. (Note that, in contrast to an example discussed elsewhere herein, this favoritism is not enforced by a hierarchal wealth generation distribution). In civilian systems, emergency and police use may also be considered privileged. However, by seeking to 60 apply economic rules to this access, a number of issues arise. Most significantly, as a privileged user disburses currency, this is distributed to unprivileged users, leading to an inflationary effect and comparative dilution of the intended privilege. If the economy is real, that is the currency is 65 linked to a real economy, this grant of privilege will incur real costs, which is also not always an intended effect. If the

18

economy is synthetic, that is, it is unlinked to external economies, then the redistribution of wealth within the system can grant dramatic and potentially undesired control to a few nodes, potentially conveying the privilege to those undeserving, except perhaps due to fortuitous circumstances such as being in a critical location or being capable of interfering with a crucial communication.

Two different schemes may be used to address this desire for both economic optimality and hierarchal considerations. One scheme maintains optimality and fairness within the economic structure, but applies a generally orthogonal consideration of "respect" as a separate factor within the operation of the protocol. Respect is a subjective factor, and thus permits each bidder to weight its own considerations. It is further noted that Buttyan et al. have discussed this factor as a part of an automated means for ensuring compliance with network rules, in the absence of a hierarchy. Levente Buttyan and Jean-Pierre Hubaux, Nuglets: a Virtual Currency to Stimulate Cooperation in Self-Organized Mobile Ad Hoc Networks, Technical Report DSC/2001/004, EPFL-DI-ICA, January 2001, incorporated herein by reference. See, P. Michiardi and R. Molva, CORE: A collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks, In B. Jerman-Blazic and T. Klobucar, editors, Communications and Multimedia Security, IFIP TC6/TC11 Sixth Joint Working Conference on Communications and Multimedia Security, Sep. 26-27, 2002, Portoroz, Slovenia, volume 228 of IFIP Conference Proceedings, pages 107-121. Kluwer Academic, 2002; Sonja Buchegger and Jean-Yves Le Boudec, A Robust Reputation System for P2P and Mobile Ad-hoc Networks, Second Workshop on the Economics of Peer-to-Peer Systems, June 2004; Po-Wah Yau and Chris J. Mitchell, Reputation Methods for Routing Security for Mobile Ad Hoc Networks; Frank Kargl, Andreas Klenk, Stefan Schlott, and Micheal Weber.

Advanced Detection of Selfish or Malicious Nodes in Ad Hoc Network. The 1st European Workshop on Security in Ad-Hoc and Sensor Networks (ESAS 2004); He, Qi, et al., SORI: A Secure and Objective Reputation-based Incentive Scheme for Ad-Hoc Networks, IEEE Wireless Communications and Networking Conference 2004, each of which is expressly incorporated herein by reference.

The bias introduced in the system operation is created by an assertion by one claiming privilege, and deference by one respecting privilege. One way to avoid substantial economic distortions is to require that the payment made be based on a purely economic optimization, while selecting the winner based on other factors. In this way, the perturbations of the auction process itself is subtle, that is, since bidders realize that the winning bid may not result in the corresponding benefit, but incurs the publication of private values and potential bidding costs, there may be perturbation of the bidding strategy from optimal. Likewise, since the privilege is itself unfair and predictable, those with lower privilege ratings will have greater incentive to defect from, or act against, the network. Therefore, it is important that either the assertion of privilege be subjectively reasonable to those who must defer to it, or the incidence or impact of the assertions be uncommon or have low anticipated impact on the whole. On the other hand, the perturbation is only one-sided, since the payment is defined by the network absent the assertion of privilege. In the extreme case, the assertion of privilege will completely undermine the auction optimization, and the system will be prioritized on purely hierarchal grounds, and the pricing non-optimal or unpredictable. This condition may be acceptable or even efficient in military systems, but may be

19

unacceptable where the deference is voluntary and choice of network protocol is available, i.e., defection from the network policies is an available choice.

It is noted that those seeking access based on respect, must still make an economic bid. This bid, for example, 5 should be sufficient in the case that respect is not afforded, for example, from those of equal rank or above, or those who for various reasons have other factors that override the assertion of respect. Therefore, one way to determine the amount of respect to be afforded is the self-worth advertised 10 for the resources requested. This process therefore may minimize the deviation from optimal and therefore promotes stability of the network. It is further noted that those who assert respect based on hierarchy typically have available substantial economic resources, and therefore it is largely a 15 desire to avoid economic redistribution rather than an inability to effect such a redistribution, that compels a consideration of respect. In a combinatorial auction, each leg of a multihop link is separately acquired and accounted. Therefore, administra- 20 tion of the process is quite involved. That is, each bidder broadcasts a set of bids for the resources required, and an optimal network with maximum surplus is defined. Each leg of each path is therefore allocated a value. In this case, it is the winning bidder who defers based on respect, since the 25 other resources are compensated equally and therefore agnostic. Thus, if pricing is defined by the economic optimization, then the respect consideration requires that a subsidy be applied, either as an excess payment up to the amount of the 30 winning bid, or as a discount provided by the sellers, down to the actually bid value.

20

their full value. This model appears rational, and therefore a preferred system requires a node claiming privilege and gaining a resulting benefit to pay the winning bid value (as an expression of market value), and perhaps in addition pay the winning bidder who is usurped its anticipated benefit, that is, the difference in value between the second price and its published private valuation, this having an economically neutral affect, but also requiring a respected node to potentially possess substantial wealth.

A further possible resolution of this issue provides for an assessment of an assertion of respect by each involved node. Since the allocation of respect is subjective, each bidder supplies a bid, as well as an assertion of respect. Each other node receives the bids and assertions, and applies a weighting or discount based on its subjective analysis of the respect assertion. In this case, the same bid is interpreted differently by each supplier, and the subjective analysis must be performed by or for each supplier. By converting the respect assertion into a subjective weighting or discount, a pure economic optimization may then be performed, with the subjectively perturbed result by each node reported and used to compute the global optimization. An alternate scheme for hierarchal deference is to organize the economy itself into a hierarchy, as discussed in the first example. In a hierarchy, a node has one parent and possibly multiple children. At each level, a node receives an allocation of wealth from its parent, and distributes all or a portion of its wealth to children. A parent is presumed to control its children, and therefore can allocate their wealth or subjective valuations to its own ends. When nodes representing different lineages must be reconciled, one may refer to the common ancestor for arbitration, or a set of inherited rules to define the hierarchal relationships. In this system, the resources available for reallocation between branches of the hierarchy depend on the allocation by the common grandparent, as well as competing allocations within the branch. This system presumes that children communicate with their parents and are obedient. In fact, if the communication presumption is violated, one must then rely on a priori instructions, which may not be sufficiently adaptive to achieve an optimal result. If the obedience presumption is violated, then the hierarchal deference requires an enforcement mechanism within the hierarchy. If both presumptions are simultaneously violated, then the system will likely fail, except on a voluntary basis, with results similar to the "reputation" scheme described herein. Thus, it is possible to include hierarchal deference as a factor in optimization of a multihop mobile ad hoc network, leading to compatibility with tiered organizations, as well as with shared resources. Application of Game Theory to Ad Hoc Networks There are a number of aspects of ad hoc network control which may be adjusted in accordance with game theoretic approaches. An example of the application of game theory to influence system architecture arises when communications latency is an issue. A significant factor in latency is the node hop count. Therefore, a system may seek to reduce node hop count by using an algorithm other than a nearest 60 neighbor algorithm, bypassing some nodes with longer distance communications. In analyzing this possibility, one must not only look at the cost to the nodes involved in the communication, but also the cost to nodes which are prevented from simultaneously accessing the network due to 65 interfering uses of network resources. As a general proposition, the analysis of the network must include the impact of each action, or network state, on every node in the system,

Since the pricing is dependent on the network absent the respect consideration, there is an economic deficit or required subsidy. In some cases, the respected bidder simply 35 pays the amount required, in excess of its actual bid. If we presume that the respected bidder could have or would have outbid the winning bidder, it then pays the third price, rather than the second price. If the respected bidder does not have, or will not allocate the resources, then the subsidy must 40 come from the others involved. On one hand, since the respect in this case may be defined by the otherwise winning bidder, this bidder, as an element of its respect, may pay the difference. However, this cost (both the lost economic gains of the transaction and the subsidy) will quickly disincentiv- 45 ize any sort of grant of respect. The recipients could also provide a discount; however this would require consent of both the winning bidder and the recipients, making concluding the transaction more difficult. One other possibility is to request "donations" from nearby nodes to meet the subsidy, 50 a failure of which undermines the assertion of respect. Another alternate is to assume that there is a surplus between the aggregate winning bid and the aggregate cost, and so long as the bidder claiming respect pays the minimum cost, then the system remains operable, although the benefits 55 of surplus allocation are lost, and all affected nodes must defer to this respect mechanism. In this case, it is more difficult to arbitrate between competing demands for respect, unless a common value function is available, which in this case we presume is not available. The node demanding respect may have an impact on path segments outside its required route and the otherwise optimal interfering routes; and thus the required payment to meet the differential between the optimum network and the resulting network may thus be significant. It is noted that, in the real economy, where the U.S. Government allocates private resources, it is required to pay
21

although simplifying presumptions may be appropriate where information is unavailable, or the anticipated impact is trivial.

Game theory is readily applied in the optimization of communications routes through a defined network, to 5 achieve the best economic surplus allocation. In addition, the problem of determining the network topology, and the communications themselves, are ancillary, though real, applications of game theory. Since the communications incidental to the arbitration require consideration of some of 10 the same issues as the underlying communications, corresponding elements of game theory may apply at both levels of analysis. Due to various uncertainties, the operation of the system is stochastic. This presumption, in turn, allows estimation of optimality within a margin of error, simplify-15 ing implementation as compared to a rigorous analysis without regard to statistical significance. There are a number of known and proven routing models proposed for forwarding of packets in ad hoc networks. These include Ad Hoc On-Demand Distance Vector 20 (AODV) Routing, Optimized Link State Routing Protocol (OLSR), Dynamic Source Routing Protocol (DSR), and Topology Dissemination Based on Reverse-Path Forwarding (TBRPF). There can be significant differences in optimum routing 25 depending on whether a node can modulate its transmit power, which in turn controls range, and provides a further control over network topology. Likewise, steerable antennas, antenna arrays, and other forms of multiplexing provide further degrees of control over network topology. Note that 30 the protocol-level communications are preferably broadcasts, while information conveyance communications are typically point-to-point. Prior studies typically presume a single transceiver, with a single omnidirectional antenna, operating according to in-band protocol data, for all com- 35

22

likewise, under heavier loads, critical communications may still be delayed or impeded. A variable cost, dependent on relative "importance", may be imposed, and indeed, as alluded to above, this cost may be market based, in the manner of an auction. In a multihop network, such an auction is complicated by the requirement for a distribution of payments within the chain of nodes, with each node having potential alternate demands for its cooperation. The market-based price-finding mechanism excludes nodes which ask a price not supported by its market position, and the auction itself may comprise a value function encompassing reliability, latency, quality of service, or other noneconomic parameters, expressed in economic terms. The network may further require compensation to nodes which must defer communications because of inconsistent states, such as in order to avoid interference or duplicative use of an intermediary node, and which take no direct part in the communication. It is noted that the concept of the winner of an auction paying the losers is not generally known, and indeed somewhat counterintuitive. Indeed, the effect of this rule perturbs the traditional analysis framework, since the possibility of a payment from the winner to the loser alters the allocation of economic surplus between the bidder, seller, and others. Likewise, while the cost to the involved nodes may be real, the cost to the uninvolved nodes may be subjective. While it would appear that involved nodes would generally be better compensated than uninvolved nodes, the actual allocation or reallocation of wealth according to the optimization may result in a different outcome. The network provides competitive access to the physical transport medium, and cooperation with the protocol provides significant advantages over competition with it. Under normal circumstances, a well developed ad hoc network system can present as a formidable coordinated competitor for access to contested bandwidth by other systems, while within the network, economic surplus is optimized. Thus, a node presented with a communications requirement is presented not with the simple choice to participate or abstain, but rather whether to participate in an ad hoc network with predicted stability and mutual benefit, or one with the possibility of failure due to selfish behavior, and noncooperation. Even in the absence of a present communication requirement, a network which rewards cooperative behavior may be preferable to one which simply expects altruism without rewarding it. The protocol may also encompass the concept of node reputation, that is, a positive or negative statement by others regarding the node in question. P. Michiardi and R. Molva. Core: A collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks. In Communication and Multimedia Security 2002 Conference, 2002. This reputation may be evaluated as a parameter in an economic analysis, or applied separately, and may be anecdotal or statistical. In any case, if access to resources and payments are made dependent on reputation, nodes will be incentivized to maintain a good reputation, and avoid generating a bad reputation. Therefore, by maintaining and applying the reputation in a manner consistent with the community goals, the nodes are compelled to advance those goals in order to benefit from the community. Game theory distinguishes between good reputation and bad reputation. Nodes may have a selfish motivation to assert that another node has a bad reputation, while it would have little selfish motivation, absent collusion, for undeservedly asserting a good reputation. On the other hand, a node may have a selfish motivation in failing to reward behavior with a good reputation.

munications. The tradeoff made in limiting system designs according to these presumptions should be clear.

It is the general self-interest of a node to conserve its own resources, maintain an opportunity to access network resources, while consuming whatever resource of other 40 nodes as it desires. Clearly, this presents a significant risk of the "tragedy of the commons", in which selfish individuals fail to respect the very basis for the community they enjoy, and a network of rational nodes operating without significant incentives to cooperate would likely fail. On the other hand, 45 if donating a node's resources generated a sufficient associated benefit to that node, while consuming network resources imposed a sufficient cost, stability and reliability can be achieved. So long as the functionality is sufficient to meet the need, and the economic surplus is "fairly" allo- 50 cated, that is, the cost incurred is less than the private value of the benefit, and that cost is transferred as compensation to those burdened in an amount in excess of their incremental cost, adoption of the system should increase stability. In fact, even outside of these bounds, the system may be more stable 55 than one which neither taxes system use nor rewards altruistic behavior. While the basic system may be a zero sum system, and over time, the economic effects will likely average out (assuming symmetric nodes), in any particular instance, the incentive for selfish behavior by a node will be 60 diminished. One way to remedy selfish behavior is to increase the cost of acting this way, that is, to impose a cost or tax for access to the network. In a practical implementation, however, this is problematic, since under lightly loaded conditions, the 65 "value" of the communications may not justify a fixed cost which might be reasonable under other conditions, and

23

Economics and reputation may be maintained as orthogonal considerations, since the status of a node's currency account provides no information about the status of its reputation.

This reputation parameter may be extended to encompass 5 respect, that is, a subjective deference to another based on an asserted or imputed entitlement. While the prior system uses reputation as a factor to ensure compliance with system rules, this can be extended to provided deferential preferences either within or extrinsic to an economy. Thus, in a 10 military hierarchy, a relatively higher ranking official can assert rank, and if accepted, override a relatively lower ranking bidder at the same economic bid. For each node, an algorithm is provided to translate a particular assertion of respect (i.e., rank and chain of command) into an economic 15 perturbation. For example, in the same chain of command, each difference in rank might be associated with a 25% compounded discount, when compared with other bids, i.e.

24

communication is of value to a plurality of nodes, and a large set of recipient nodes may efficiently receive the same information. This allocation from multiple bidders to multiple sellers is a direct extension of VCG theory, and a similar algorithm may be used to optimize allocation of costs and benefit.

The principal issue involved in VCG auctions is that the computational complexity of the optimization grows with the number of buyers and their different value functions and allocations. While various simplifying presumptions may be applied, studies reveal that these simplifications may undermine the VCG premise, and therefore do not promote honesty in reporting the buyer's valuation, and thus are not "strategyproof", which is a principal advantage of the VCG process. The surplus, i.e., gap between bid and ask, is then available to compensate the deferred bidders. This surplus may be, for example, distributed proportionately to the 20 original bid value of the bidder, thus further encouraging an honest valuation of control over the resource. Thus, if we presume that a bidder may have an incentive to adopt a strategy in which it shaves its bid to lower values, an additional payoff dependent on a higher value bid will promote higher bides and disincentivize shaving. On the other hand, it would be inefficient to promote bidding above a bidder's private value, and therefore care must be exercised to generally avoid this circumstance. In similar manner, potential offerors may be compensated for low bids, to promote availability of supply. It is noted that, by broadcasting supply and demand, fault tolerance of the network is improved, since in the event that an involved node becomes unavailable, a competing node or set of nodes for that role $_{35}$ may be quickly enlisted.

 $B_1 = B_0 \times 10(1 + 0.25 \times \Delta R),$

Wherein B_1 is the attributed bid, B_0 is the actual bid, and ΔR is the difference in rank, positive or negative.

Outside the chain of command, a different, generally lower, discount (dNCOC) may be applied, possibly with a base discount as compared to all bids within the chain of 25 command (dCOC), i.e.,

 $B_1 = B_0 \times 10(1 + dCOC + dNCOC \times \Delta R).$

The discount is applied so that higher ranking officers pay less, while lower ranking officers pay more. Clearly, there is 30 a high incentive for each bid to originate from the highest available commander within the chain of command, and given the effect of the perturbation, for ranking officers to "pull rank" judiciously.

The Modified VCG Auction

The optimization is such that, if any offeror asks an amount that is too high, it will be bypassed in favor of more "reasonable" offerors. Since the bidder pays the second highest price, honesty in bidding the full private value is encouraged. The distribution of the surplus to losing bidders, which exercise deference to the winner, is proportional to the amount bid, that is, the reported value. In a scenario involving a request for information meeting specified criteria, the auction is complicated by the fact that the information resource content is unknown to the recipient, and therefore the bid is blind, that is, the value of the information to the recipient is indeterminate. However, game theory supports the communication of a value function or utility function, which can then be evaluated at each node possessing information to be communicated, to normalize its value to the requestor. Fortunately, it is a dominant strategy in a VCG auction to communicate a truthful value, and therefore broadcasting the private value function, to be evaluated by a recipient, is not untenable. In a mere request for information conveyance, such as the intermediate transport nodes in a multihop network, or in a cellular network infrastructure extension model, the bid may be a true (resolved) value, since the information content is not the subject of the bidding; rather it is the value of the commu-The VCG auction is postulated as being optimal for 60 nications per se, and the bidding node can reasonably value its bid. Game theory also allows an allocation of cost between various recipients of a broadcast or multicast. That is, in many instances, information which is of value to a plurality of nodes, and a large set of recipient nodes may efficiently receive the same information. This allocation is a direct extension of VCG theory.

A so-called Vickrey-Clarke-Groves, or VCG, auction is a type of auction suitable for bidding, in a single auction, for the goods or services of a plurality of offerors, as a unit. Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders, Journal of Finance 16, 8-37; Clarke, 40 E. H. (1971). Multipart pricing of public goods, Public Choice 11, 17-33.

In the classic case, each bidder bids a value vector for each available combination of goods or services. The various components and associated ask price are evaluated 45 combinatorially to achieve the minimum sum to meet the requirement. The winning bid set is that which produces the maximum value of the accepted bids, although the second (Vickrey) price is paid. In theory, the Vickrey price represents the maximum state of the network absent the highest 50 bidder, so that each bidder is incentivized to bit its private value, knowing that its pricing will be dependent not on its own value, but the subjective value applied by others. In the present context, each offeror submits an ask price (reserve) or evaluatable value function for a component of the combination. If the minimum aggregate to meet the bid requirement is not met, the auction fails. If the auction is successful, then the set of offerors selected is that with the lowest aggregate bid, and they are compensated that amount. allocation of multiple resources between agents. It is "strategyproof' and efficient, meaning that it is a dominant strategy for agents to report their true valuation for a resource, and the result of the optimization is a network which maximizes the value of the system to the agents. 65 Game theory also allows an allocation of cost between various recipients of a broadcast or multicast. That is, the

25

Operation of Protocol

The preferred method for acquiring an estimate of the state of the network is through use of a proactive routing protocol. Thus, in order to determine the network architecture state, each node must broadcast its existence, and, for 5 example, a payload of information including its identity, location, itinerary (navigation vector) and "information value function". Typically, the system operates in a continuous set of states, so that it is reasonable to commence the process with an estimate of the state based on prior infor- 10 mation. Using an in-band or out-of-band propagation mechanism, this information must propagate to a network edge, which may be physically or artificially defined. If all nodes operate with a substantially common estimation of network topology, only deviations from previously propa-15 gated information need be propagated. On the other hand, various nodes may have different estimates of the network state, allowing efficiency gains through exploitation of superior knowledge as compared with seeking to convey full network state information to each node. A CSMA scheme may be used for the protocol-related communications because it is relatively simple and robust, and well suited for ad hoc communications in lightly loaded networks. We presume that the network is willing to tolerate protocol related inefficiency, and therefore that protocol 25 communications can occur in a lightly loaded network even if the content communications are saturated. An initial node transmits using an adaptive power protocol, to achieve an effective transmit range, for example, of greater than an average internodal distance, but not encompassing the entire 30 network. This distance therefore promotes propagation to a set of nearby nodes, without unnecessarily interfering with communications of distant nodes and therefore allowing this task to be performed in parallel in different regions. Neighboring nodes also transmit in succession, providing sequen- 35 tial and complete protocol information propagation over a relevance range, for example 3-10 maximum range hops. If we presume that there is a spatial limit to relevance, for example, 5 miles or 10 hops, then the network state propagation may be so limited. Extending the network to encom- 40 pass a large number of nodes will necessarily reduce the tractability of the optimization, and incur an overhead which may be inefficient. Each node preferably maintains a local estimate of relevance. This consideration is accommodated, along with a desire to prevent exponential growth in proto-45 col-related data traffic, by receiving an update from all nodes within a node's network relevance boundary, and a state variable which represents an estimate of relevant status beyond the arbitrarily defined boundary. The propagation of network state may thus conveniently occur over a finite 50 number of hops, for example 3-10. In a dense population of nodes, such as in a city, even a single maximum range communication may result in a large number of encompassed nodes. On the other hand, in a deserted environment, there may be few or no communications partners, at any 55 time.

26

may be subject to mutual interference, and can occur without substantial external influence. Alternately, it is clear that to limit latencies and communication risks, it may be prudent to bypass nearby and neighboring nodes, thus trading latency for power consumption and overall network capacity. Therefore, a hierarchal scheme may be implemented to geographically organize the network at higher analytical levels, and geographic cells may cooperate to appear externally as a single coordinated entity.

In order to estimate a network edge condition, a number of presumptions must be made. The effect of an inaccurate estimate of the network edge condition typically leads to inefficiency, while inordinate efforts to accurately estimate the network edge condition may also lead to inefficiency. Perhaps the best way to achieve compromise is to have a set of adaptive presumptions or rules, with a reasonable starting point. For example, in a multihop network, one might arbitrarily set a network edge the maximum range of five 20 hops of administrative data using a 95% reliable transmission capability. Beyond this range, a set of state estimators is provided by each node for its surroundings, which are then communicated up to five hops (or the maximum range represented by five hops). This state estimator is at least one cycle old, and by the time it is transferred five hops away, it is at least six cycles old. Meanwhile, in a market economy, each node may respond to perceived opportunities, leading to a potential for oscillations if a time-element is not also communicated. Thus, it is preferred that the network edge state estimators represent a time-prediction of network behavior under various conditions, rather than a simple scalar value or instantaneous function. For example, each node may estimate a network supply function and a network demand function, liquidity estimate and bid-ask gap for its environment, and its own subjective risk tolerance, if separately reported; the impact of nodes closer than five hops may then be subtracted from this estimate to compensate for redundant data. Further, if traffic routes are identifiable, which would correspond in a physical setting of highways, fixed infrastructure access points, etc., a state estimator for these may be provided as well. As discussed above, nodes may bid not only for their own needs or resources, but also to act as market-makers or merchants, and may obtain long term commitments (futures and/or options) and employ risk reduction techniques (insurance) and/or indemnification), and thus may provide not only an estimate of network conditions, but also "guaranty" this state. A node seeking to communicate within the five hop range needs to consider the edge state estimate only when calculating its own supply and demand functions, bearing in mind competitive pressures from outside. On the other hand, nodes seeking resources outside the five hop range must rely on the estimate, because a direct measurement or acquisition of information would require excess administrative communications, and incur an inefficient administrative transaction. Thus, a degree of trust and reliance on the estimate may ensue, wherein a node at the arbitrary network edge is designated as an agent for the principal in procuring or selling the resource beyond its own sphere of influence, based on the provided parameters. The incentive for a node to provide misinformation is limited, since nodes with too high a reported estimate value lose gains from competitive sale transactions, and indeed may be requested to be buyers, and vice versa. While this model may compel trading by intermediary nodes, if the information communicated accurately represents the network state, an economic advantage

Under conditions of relatively high nodal densities, the

system may employ a zone strategy, that is, proximate groups of nodes are is treated as an entity or cluster for purposes of external state estimation, especially with respect 60 to distant nodes or zones. In fact, a supernode may be nominated within a cluster to control external communications for that cluster. Such a presumption is realistic, since at extended distances, geographically proximate nodes may be modeled as being similar or inter-related, while at close 65 distances, and particularly within a zone in which all nodes are in direct communication, inter-node communications

27

will accrue to the intermediary participating, especially in a non-power constrained, unlicensed spectrum node configuration.

It should be borne in mind that the intended administration of the communications is an automated process, with 5 little human involvement, other than setting goals, risk tolerance, cost constraints, etc. In a purely virtual economy with temporally declining currency value, the detriment of inaccurate optimizations is limited to reduced nodal efficiency, and with appropriate adaptivity, the system can learn 10 from its "mistakes". (A defined decline in currency value tends to define the cost constraints for that node, since wealth cannot be accumulated nor overspent).

28

an error/inconsistency detection and correction algorithm specifically applied to this type of information. Thus, if each node has relatively complete information, or accurate estimates for incomplete information, then each node can perform the calculation and derive a closely corresponding solution, and verify that solutions reported by others are reasonably consistent to allow or promote reliance thereon. As part of the network mapping, communications impairment and interference sources are also mapped. GPS assistance may be particularly useful in this aspect. Where network limitations are caused by interfering communications, the issue is a determination of a strategy of deference or competition. If the interfering communication is continuous or unresponsive, then the only available strategy is competition. On the other hand, when the competing system uses, for example, a CSMA system, such as 802.11, competition with such a communication simply leads to retransmission, and therefore ultimately increased network load, and a deference strategy may be more optimal, at least and until it is determined that the competing communication is incessant. Other communications protocols, however, may have a more or less aggressive strategy. By observation of a system over time, its strategies may be revealed, and game theory permits composition of an optimal strategy to deal with interference or coexistence. It is noted that this strategy may be adopted adaptively by the entire ad hoc network, which may coordinate deference or competition as determined optimal. The optimization process produces a representation of optimal network architecture during the succeeding period. That is, value functions representing bids are broadcast, with the system then being permitted to determine an optimal real valuation and distribution of that value. Thus, prior to completion of the optimization, potentially inconsistent allocations must be prevented, and each node must communicate its evaluation of other node's value functions, so that the optimization is performed on a normalized economic basis. This step may substantially increase the system overhead, and is generally required for completion of the auction. This valuation may be inferred, however, for intermediate nodes in a multihop network path, since there is little subjectivity for nodes solely in this role, and the respective value functions may be persistent. For example, the valuation applied by a node to forward information is generally independent of content and involved party. A particular complication of a traffic information system is that the nature of the information held by any node is private to that node (before transmission), and therefore the 50 valuation is not known until after all bids are evaluated. Thus, prior to completion of optimization, each node must communicate its evaluation of other nodes' value functions, so that the optimization is performed on an economic basis. This required step substantially increases the system overhead. This valuation may be inferred, however, for transit nodes in a multihop network path.

A supernode within a zone may be selected for its superior capability, or perhaps a central location. The zone is defined 15 by a communication range of the basic data interface for communications, with the control channel preferably having a longer range, for example at least double the normal data communications range. Communications control channel transmitters operate on a number of channels, for example at 20 least 7, allowing neighboring zones in a hexagonal tiled array to communicate simultaneously without interference. In a geographic zone system, alternate zones which would otherwise be interfering may use an adaptive multiplexing scheme to avoid interference. All nodes may listen on all 25 control channels, permitting rapid analysis and propagation of control information. As discussed elsewhere herein, directional antennas of various types may be employed, although it is preferred that out-of-band control channels employ omnidirectional antennas, having a generally longer range 30 (and lower data bandwidth) than the normal data communications channels, in order to have a better chance to disseminate the control information to potentially interfering sources, and to allow coordination of nodes more globally. In order to effectively provide decentralized control, 35 either each node must have a common set of information to allow execution of an identical control algorithm, or nodes defer to the control signals of other nodes without internal analysis for optimality. A model of semi-decentralized control is also known, in which dispersed supernodes are 40 nominated as master, with other topologically nearby nodes remaining as slave nodes. In the pure peer network, relatively complete information conveyance to each node is required, imposing a relatively high overhead. In a masterslave (or supernode) architecture, increased reliance on a 45 single node trades-off reliability and robustness (and other advantages of pure peer-to-peer networks) for efficiency. A supernode within a cellular zone may be selected for its superior capability, or perhaps is at a central location or is immobile. Once each control node (node or supernode) has an estimate of network topology, the next step is to optimize network channels. According to VCG theory, each agent has an incentive to broadcast its truthful value or value function for the scarce resource, which in this case, is control over 55 communications physical layer, and or access to information. This communication can be consolidated with the network discovery transmission. Each control node then performs a combinatorial solution to select the optimum network configuration from the potentially large number of 60 possibilities, which may include issues of transmit power, data rate, path, timing, reliability and risk criteria, economic and virtual economic costs, multipath and redundancy, etc., for the set of simultaneous equations according to VCG theory (or extensions thereof). This solution should be 65 consistent between all nodes, and the effects of inconsistent solutions may be resolved by collision sensing, and possibly

As discussed above, may of the strategies for making the

economic markets more efficient may be employed either directly, or analogy, to the virtual economy of the ad hoc network. The ability of nodes to act as market maker and derivative market agents facilitates the optimization, since a node may elect to undertake a responsibility (e.g., transaction risk), rather than relay it to others, and therefore the control/administrative channel chain may be truncated at that point. If the network is dense, then a node which acts selfishly will be bypassed, and if the network is sparse, the node may well be entitled to gain transactional profit by

29

acting as a principal and trader, subject to the fact that profits will generally be suboptimal if pricing is too high or too low. After the network architecture is defined, compensation is paid to those nodes providing value or subjected to a burden (including foregoing communication opportunity) by those 5 gaining a benefit. The payment may be a virtual currency, with no specific true value, and the virtual currency system provides a convenient method to flexibly tax, subsidize, or control the system, and thus steer the virtual currency to a normalized extrinsic value. In a real currency system, exter- 10 nal controls are more difficult, and may have unintended consequences. A hybrid economy may be provided, linking both the virtual and real currencies, to some degree. This is especially useful if the network itself interfaces with an outside economy, such as the cellular telephony infrastruc- 15 nodes will be more able to control the resources. The ture (e.g., 2G, 2.5G, 3G, 4G, proposals for 5G, WiFi (802.11x) hotspots, WiMax (802.16x), etc.) Using the protocol communication system, each node transmits its value function (or change thereof), passes through communications from neighboring nodes, and may, 20 for example transmit payment information for the immediate-past bid for incoming communications. Messages are forwarded outward (avoiding redundant) propagation back to the source), with messages appended from the series of nodes. Propagation continues for a finite 25 number of hops, until the entire community has an estimate of the state and value function of each node in the community. Advantageously, the network beyond a respective community may be modeled in simplified form, to provide a better estimate of the network as a whole. If the propagation 30 were not reasonably limited, the information would be stale by the time it is employed, and the system latency would be inordinate. Of course, in networks where a large number of hops are realistic, the limit may be time, distance, a counter or value decrement, or other variable, rather than hops. 35 reasons, including both malicious and accidental). Because

30

Transmissions are preferably made in frames, with a single bidding process controlling multiple frames, for example a multiple of the maximum number of hops. Therefore, the bid encompasses a frame's-worth of control over the modalities. In the event that the simultaneous use of, or control over, a modality by various nodes is not inconsistent, then the value of the respective nodes may be summed, with the resulting allocation based on, for example, a ratio of the respective value functions. As a part of the optimization, nodes are rewarded not only for supporting the communication, but also for deferring their own respective communications needs. As a result, after controlling the resources, a node will be relatively less wealthy and less able to subsequently control the resources, while other distribution to deferred nodes also serves to prevent pure reciprocal communications, since the proposed mechanism distributes and dilutes the wealth to deferring nodes. Another possible transaction between nodes is a loan, that is, instead of providing bandwidth per se, one node may loan a portion of its generator function or accumulated wealth to another node. Presumably, there will be an associated interest payment. Since the currency in the preferred embodiment is itself defined by an algorithm, the loan transaction may also be defined by an algorithm. While this concept is somewhat inconsistent with a virtual currency which declines in value over time and/or space, it is not completely inconsistent, and, in fact, the exchange may arbitrage these factors, especially location-based issues. Because each node in the model presented above has complete information, for a range up to the maximum node count, the wealth of each node can be estimated by its neighbors, and payment inferred even if not actually consummated. (Failure of payment can occur for a number of each hop adds significant cost, the fact that nodes beyond the maximum hop distance are essentially incommunicado is typically of little consequence; since it is very unlikely that a node more than 5 or 10 hops away will be efficiently directly included in any communication, due to the increasing cost with distance, as well as reduction in reliability and increase in latency. Thus, large area and scalable networks may exist. Communications are generally of unencrypted data. Assuming the network is highly loaded, this may allow a node to incidentally fulfill its data requirements as a bystander, and thus at low cost meet its needs, allowing nodes with more urgent or directed needs to both control and compensate the network. While this may reduce compensation to intermediaries and data sources, the improvements in efficiency will likely benefit the network as a whole in increase stability, since we assume that peak load conditions will occur frequently. Enforcement of responsibility may be provided by a centralized system which assures that the transactions for each node are properly cleared, and that non-compliant nodes are either excluded from the network or at least labeled. While an automated clearinghouse which periodically ensures nodal compliance is preferred, a human dis-60 cretion clearinghouse, for example presented as an arbitrator or tribunal, may be employed. It is clear that, once an economic optimization methodology is implemented, various factors may be included in the optimization, as set forth in the Summary and Objects of the invention and claims. Likewise, the optimization itself may have intrinsic limitations, which may create arbitrage opportunities. One set of embodiments of the present invention

Likewise, the range may be adaptively determined, rather than predetermined, based on some criteria.

After propagation, each node evaluates the set of value functions for its community, with respect to its own information and ability to forward packets. Each node may then 40 make an offer to supply or forward information, based on the provided information. In the case of multihop communications, the offers are propagated to the remainder of the community, for the maximum number of hops, including the originating node. At this point, each node has a representa- 45 tion of the state of its community, with community edge estimates providing consistency for nodes with differing community scopes, the valuation function each node assigns to control over portions of the network, as well as a resolved valuation of each node for supplying the need. Under these 50 circumstances, each node may then evaluate an optimization for the network architecture, and come to a conclusion consistent with that of other members of its community. If supported, node reputation may be updated based on past performance, and the reputation applied as a factor in the 55 optimization and/or externally to the optimization. As discussed above, a VCG-type auction is employed as a basis for optimization. Since each node receives bid information from all other nodes within the maximum node count, the VCG auction produces an optimized result. As discussed above, by permitting futures, options, derivatives, insurance/indemnification/guaranties, long and short sales, etc., the markets may be relatively stabilized as compared to a simple set of independent and sequential auctions, which may show increased volatility, oscillations, 65 chaotic behavior, and other features which may be inefficient.

31

encourages such arbitrage as a means for efficiently minimizing perturbations from optimality—as the model deviance from reality creates larger arbitrage opportunities, there will be a competitive incentive for recruitment of agents as arbitragers, and also an incentive to create and implement 5 better models. The resulting equilibrium may well be more efficient than either mechanism alone.

The Synthetic Economy

Exerting external economic influences on the system may have various effects on the optimization, and may exacerbate 10 differences in subjective valuations. The application of a monetary value to the virtual currency substantially also increases the possibility of misbehavior and external attacks. On the other hand, a virtual currency with no assessed real value is self-normalizing, while monetization leads to exter- 15 nal and generally irrelevant influences as well as possible external arbitrage (with potential positive and negative effects). External economic influences may also lead to benefits, which are discussed in various publications on non-zero sum games. In order to provide fairness, the virtual currency (similar to the so-called "nuglets" or "nugglets" proposed for use in the Terminodes project) is self-generated at each node according to a schedule, and itself may have a time dependent value. L. Blazevic, L. Buttyan, S. Capkun, S. Giord- 25 iano, J.-P. Hubaux, and J.-Y. Le Boudec. Self-organization in mobile ad-hoc networks: the approach of terminodes. IEEE Communications Magazine, 39(6):166-174, June 2001; M. Jakobsson, J. P. Hubaux, and L. Buttyan. A micro-payment scheme encouraging collaboration in multi-hop cellular net- 30 works. In Proceedings of Financial Crypto 2003, January 2003; J. P. Hubaux, et al., "Toward Self-Organized Mobile Ad Hoc Networks: The Terminodes Project", IEEE Com-39(1), 2001. citeseer.ist.psu.edu/ munications, hubaux01toward.html; Buttyan, L., and Hubaux, J.-P. 35 node control over such communications. Stimulating Cooperation in Self-Organizing Mobile Ad Hoc DSC/citeseer.ist.psu.edu/ Rep. Networks. Tech. buttyan01stimulating.html; Levente Buttyan and Jean-Pierre Hubaux, "Enforcing Service Availability in Mobile Ad-Hoc WANs", 1st IEEE/ACM Workshop on Mobile Ad Hoc 40 Networking and Computing (MobiHOC citeseer.ist.psu.edu/ buttyan00enforcing.html; L. Buttyan and J.-P. Hubaux. Nuglets: a virtual currency to stimulate cooperation in selforganized ad hoc networks. Technical Report DSC/2001, citeseer.ist.psu.edu/article/buttyan01nuglets.html; Mario 45 Cagalj, Jean-Pierre Hubaux, and Christian Enz. Minimumenergy broadcast in all-wireless networks: Np-completeness and distribution issues. In The Eighth ACM International Conference on Mobile Computing and Networking (Mobi-2002), citeseer.ist.psu.edu/ 50 Com cagalj02minimumenergy.html; N. Ben Salem, L. Buttyan, J. P. Hubaux, and Jakobsson M. A charging and rewarding scheme for packet forwarding. In Proceeding of Mobihoc, June 2003. For example, the virtual currency may have a half-life or temporally declining value. On the other hand, 55 the value may peak at a time after generation, which would encourage deference and short term savings, rather than immediate spending, and would allow a recipient node to benefit from virtual currency transferred before its peak value. This also means that long term hoarding of the 60 currency is of little value, since it will eventually decay in value, while the system presupposes a nominal rate of spending, which is normalized among nodes. The variation function may also be adaptive, but this poses a synchronization issue for the network. An external estimate of node 65 wealth may be used to infer counterfeiting, theft and failure to pay debts, and to further effect remediation.

32

The currency is generated and verified in accordance with micropayment theory. Rivest, R. L., A. Shamir, PayWord and MicroMint: Two simple micropayment schemes, also presented at the RSA '96 conference, http//theory.lcs.mit-.edu/rivest/RivestShamirmpay.ps, citeseer.ist.psu.edu/ rivest96payword.html; Silvio Micali and Ronald Rivest. Micropayments revisited. In Bart Preneel, editor, Progress in Cryptology—CT-RSA 2002, volume 2271 of Lecture Notes in Computer Science. Springer-Verlag, Feb. 18-22, 2002. citeseer.ist.psu.edu/micali02micropayments.html.

Micropayment theory generally encompasses the transfer of secure tokens (e.g., cryptographically endorsed information) having presumed value, which are intended for verification, if at all, in a non-real time transaction, after the transfer to the recipient. The currency is circulated (until expiration) as a token, and therefore may not be subject to immediate definitive authentication by source. Since these tokens may be communicated through an insecure network, 20 the issue of forcing allocation of payment to particular nodes may be dealt with by cryptographic techniques, in particular public key cryptography, in which the currency is placed in a cryptographic "envelope" (cryptolope) addressed to the intended recipient, e.g., is encrypted with the recipient's public key, which must be broadcast and used as, or in conjunction with, a node identifier. This makes the payment unavailable to other than the intended recipient. The issue of holding the encrypted token hostage and extorting a portion of the value to forward the packet can be dealt with by community pressure, that is, any node presenting this (or other undesirable) behavior might be ostracized. The likelihood of this type of misbehavior is also diminished by avoiding monetization of the virtual currency. Further, redundant routing of such information may prevent single-This currency generation and allocation mechanism generally encourages equal consumption by the various nodes over the long term. In order to discourage excess consumption of bandwidth, an external tax may be imposed on the system, that is, withdrawing value from the system based on usage. Clearly, the effects of such a tax must be carefully weighed, since this will also impose an impediment to adoption as compared to an untaxed system. On the other hand, a similar effect use-disincentive may be obtained by rewarding low consumption, for example by allocating an advertising subsidy between nodes, or in reward of deference. The external tax, if associated with efficiency-promoting regulation, may have a neutral or even beneficial effect. Each node computes a value function, based on its own knowledge state, risk profile and risk tolerance, and wealth, describing the value to it of additional information, as well as its own value for participating in the communications of others. The value function typically includes a past travel history, future travel itinerary, present location, recent communication partners, and an estimator of information strength and weakness with respect to the future itinerary. It may be presumed that each node has a standard complement of sensors, and accurately acquired descriptive data for its past travel path. Otherwise, a description of the available information is required. One advantage of a value function is that it changes little over time, unless a need is satisfied or circumstances change, and therefore may be a persistent attribute. Using the protocol communication system, each node transmits its value function (or change thereof), passes through communications from neighboring nodes, and may, for example transmit payment information for the immediate-past bid for incoming communications.

33

Messages are forwarded outward (avoiding redundant propagation back to the source), with messages appended from the series of nodes. Propagation continues for a finite number of hops, until the entire community has an estimate of the state and value function of each node in the community. Advantageously, the network beyond a respective community may be modeled in simplified form, to provide a better estimate of the network as a whole.

After propagation, each node evaluates the set of value functions for its community, with respect to its own information and ability to forward packets. Each node may then make an offer to supply or forward information, based on the provided information. In the case of multihop communications, the offers are propagated to the remainder of the 15community, for the maximum number of hops, including the originating node. At this point, each node has a representation of the state of its community, with community edge estimates providing consistency for nodes with differing community scopes, the valuation function each node assigns 20 to control over portions of the network, as well as a resolved valuation of each node for supplying the need. Under these circumstances, each node may then evaluate an optimization for the network architecture, and come to a conclusion consistent with that of other members of its community. If 25 supported, node reputation may be updated based on past performance, and the reputation applied as a factor in the optimization and/or externally to the optimization. As discussed above, a VCG-type auction is employed as a basis for optimization. Since each node receives bid information from 30 all other nodes within the maximum node count, the VCG auction produces an optimized result. Transmissions are made in frames, with a single bidding process controlling multiple frames, for example a multiple of the maximum number of hops. Therefore, the bid encom- 35 passes a frame's-worth of control over the modalities. In the event that the simultaneous use of, or control over, a modality by various nodes is not inconsistent, then the value of the respective nodes may be summed, with the resulting allocation based on, for example, a ratio of the respective 40 value functions. As a part of the optimization, nodes are rewarded not only for supporting the communication, but also for deferring their own respective needs. As a result, after controlling the resources, a node will be relatively less wealthy and less able to subsequently control the resources, 45 while other nodes will be more able to control the resources. The distribution to deferred nodes also serves to prevent pure reciprocal communications, since the proposed mechanism distributes and dilutes the wealth to deferring nodes. Because each node in the model presented above has 50 complete information, for a range up to the maximum node count, the wealth of each node can be estimated by its neighbors, and payment inferred even if not actually consummated. (Failure of payment can occur for a number of reasons, including both malicious and accidental). Because 55 each hop adds significant cost, the fact that nodes beyond the maximum hop distance are essentially incommunicado is typically of little consequence; since it is very unlikely that a node more than 5 or 10 hops away will be efficiently included in any communication, due to the increasing cost 60 with distance, as well as reduction in reliability and increase in latency. Thus, large area and scalable networks may exist. Typically, cryptography is employed for both authentication and to preserve privacy. External regulation, in a legal sense at least, is typically imposed by restrictions on hard- 65 ware and software design, as well as voluntary compliance at risk of detection and legal sanction.

34

A synthetic economy affords the opportunity to provide particular control over the generator function, which in turn supports a hierarchy. In this scheme, each node controls the generator function at respectively lower nodes, and thus can allocate wealth among subordinates. If one assumes real time communications, then it is clear that the superordinate node can directly place bids on behalf of subordinates, thus effectively controlling its entire branch. In the absence of real time communications, the superordinate node must 10 defer to the discretion of the subordinate, subject to reallocation later if the subordinate defects. If communications are impaired, and a set of a priori instructions are insufficient, then it is up to the subjective response of a node to provide deference. It is noted that when sets of nodes "play favorites", the VCG auction will no longer be considered "strategyproof". The result is that bidders will assume bidding strategies that do not express their secret valuation, with the result being likely suboptimal market finding during the auction. This factor can be avoided if hierarchal overrides and group bidding play only a small role in the economy, and thus the expected benefits from shaded bidding are outweighed by the normal operation of the system. For example, by taxing transactions, over-valued bidding will be disincentivized, and by redistributing economic surplus to bystanders, the aggregate wealth of the controlling group will be mitigated. A synthetic economy affords the opportunity to provide particular control over the generator function, which in turn provides particular advantages with respect to a hierarchal organization. In this scheme, each node has the ability to control the generator function at respectively lower nodes, and thus can allocate wealth among subordinates. If one assumes real time communications, then it is clear that the superordinate node can directly place bids on behalf of subordinates, thus effectively controlling its entire branch. In the absence of real time communications, the superordinate node must defer to the discretion of the subordinate, subject to reallocation later if the subordinate defects. If communications are impaired, and a set of a priori instructions are insufficient, then it is up to the subjective response of a node to provide deference. Thus, a node may transfer all or a portion of its generator function, either for a limited time or permanently, using feed-forward or feedback control. In this sense, the hierarchal and financial derivatives, options, futures, loans, etc. embodiments of the invention share a common theme. It is noted that when sets of nodes "play favorites", the VCG auction will no longer be considered "strategyproof". The result is that bidders will assume bidding strategies that do not express their secret valuation, with the result being likely suboptimal market price finding during the auction. This factor can be avoided if hierarchal overrides and group bidding play only a small role in the economy, and thus the expected benefits from shaded bidding are outweighed by the normal operation of the system. On the other hand, the present invention potentially promotes competition within branches of a hierarchy, to the extent the hierarchy does not prohibit this. Between different branches of a hierarchy, there will generally be full competition, while within commonly controlled branches of a hierarchy, cooperation will be expected. Since the competitive result is generally more efficient, there will be incentive for the hierarchal control to permit competition as a default state, asserting control only where required for the hierarchal purpose. Military Hierarchy

In a typical auction, each player is treated fairly; that is, the same rules apply to each player, and therefore a single

35

economy describes the process. The fair auction therefore poses challenges for an inherently hierarchal set of users, such as a military organization. In the military, there is typically an expectation that "rank has its privileges". The net result, however, is a decided subjective unfairness to 5 lower ranking nodes. In a mobile ad hoc network, a real issue is user defection or non-compliance. For example, where a cost is imposed on a user for participating in the ad hoc network, e.g., battery power consumption, if the anticipated benefit does not exceed the cost, the user will simply 10 turn off the device until actually needed, to conserve battery power outside the control of the network. The result of mass defection will of course be the instability and failure of the ad hoc network itself. Thus, perceived fairness and net benefit is required to important for network success, assum- 15 ing that defection or non-compliance remains possible. On the other hand, in military systems, the assertion of rank as a basis for priority is not necessarily perceived as arbitrary and capricious, and is generally not perceived subjectively as such. Orders and communications from a 20 central command are critical for the organization itself. Therefore, the difficulty in analyzing the application of a fair game to a hierarchal organization is principally a result of conceptualizing and aligning the individual incentives with those of the organization as a whole. Since the organization 25 exists outside of the ad hoc network, it is generally not unrealistic to expect compliance with the hierarchal attributes both within and outside of the network. An artificial economy provides a basis for an economically efficient solution. In this economy, each node has a 30 generator function for generating economic units which are used in a combinatorial auction with other nodes. The economic units may have a declining value, so that wealth does not accumulate over long periods, and by implication, wealth accumulated in one region is not available for 35 transfer in a distant region, since the transfer may be subject to latency and/or cost. Even if a low latency system is employed to transfer the value, an express spatially declining value function may also be imposed. The geographic decline may also be explicit, for example based on a GPS or 40 navigational system. In other cases, nodal motility is valuable, and mobile nodes are to be rewarded over those which are stationary. Therefore, the value or a portion thereof, or the generator function, may increase with respect to relocations. This scheme may be extended to the hierarchal case by treating each chain of command as an economic unit with respect to the generator function. At any level of the hierarchy, the commander retains a portion of the wealth generation capacity, and delegates the remainder to its subor- 50 dinates. In the case of real-time communications, a commander may directly control allocation of the generator function at each time period. Typically, there is no real-time communications capability, and the wealth generator function must be allocated a priori. Likewise, wealth may also be 55 reallocated, although a penalty is incurred in the event of an initial misallocation since the transfer itself incurs a cost, and there will be an economic competitive distortion, under which a node's subjective value of a resource is influenced by its subjective wealth. If a node is supplied with wealth 60 beyond its needs, the wealth is wasted, since it declines in value and cannot be hoarded indefinitely. If a node is supplied with insufficient wealth, economic surplus through transactional gains are lost. Thus, each node must analyze its expected circumstances to retain or delegate the generator 65 function, and to optimally allocate wealth between competing subordinates.

36

In any transaction, there will be a component which represents the competitive "cost", and a possible redistribution among nodes within a hierarchal chain. This redistribution may be of accumulated wealth, or of the generation function portion. In the former case, if the communication path fails, no further transfers are possible, while in the later case, the result is persistent until the transfer function allocation is reversed. It is also possible to transfer an expiring or declining portion of the generating function; however, this might lead a node which is out of range to have no ability to rejoin the network upon return, and thus act as an impediment to efficient network operation. As discussed above, one possibility is for nodes to borrow or load currency. In this case, a node deemed credit-worthy may blunt the impact of initially having insufficient wealth by merely incurring a transaction cost (including interest, if applied). In practice, the bulk of the wealth generating function will be widely distributed, and not concentrated at the top of the hierarchy. If this is true, under most circumstances, the network will appear to operate according to a non-hierarchal or fair VCG model, but in some circumstances, normal operation may be usurped by nodes which have apparent excess wealth resulting from a superior wealth generator function. Typically, hierarchically superior nodes will use their ability to transfer wealth to themselves, or to recruit subordinates to cooperate, in order to directly or indirectly control the network resources. It is possible, however, for nodes within one branch of a hierarchy to conspire against nodes outside that branch, resulting in a different type of distortion. Since the ad hoc network typically gains by having a larger number of participating nodes, this type of behavior may naturally be discouraged. On the other hand, hierarchically superior nodes either retain, or more likely, can quickly recruit surrounding subordinates to allocate their

wealth generating function and accumulated wealth to pass urgent or valuable messages.

Where expensive assets are employed, an actual transfer of wealth or the generator function to a single entity may be
required. For example, a high level node might have access to a high power broadcast system, which interferes with other communications, or simply incurs a high cost to operate. Low level nodes might ordinarily be limited to cellular (i.e., short range, low power radio) wireless communications. In order for a low level node to control an expensive asset, the assent or cooperation of others may be required, for example by hierarchal superiors.

Since the network should be stable in the absence of command and control communications, a hierarchal superior should assure that subordinate nodes possess sufficient wealth and motivation to maintain ad hoc network operation. Insufficient wealth will tend to eliminate the advantage to nodal participation (and therefore encourage defection), unless payments from acting as intermediary are significant. Thus, a node with insufficient wealth generation function may potentially exhaust its resources, and be unavailable for ad hoc intermediary use, even for the benefit of the hierarchy. On the other hand, an initial allocation of too much wealth will encourage high spending and less active participation as an intermediary. While it is possible in a military system to formulate an "engineered" solution which forces participation and eliminates defection, this solution does not gain the benefit of economic optimization and may have limited application outside of mandatory hierarchies. Game theory is a useful basis for analyzing ad hoc networks, and understanding the behavior of complex networks of independent nodes. By presuming a degree of

37

choice and decision-making by nodes, we obtain an analysis that is robust with respect to such considerations. The principal issues impeding deployment are the inherent complexity of the system, as well as the overhead required to continuously optimize the system. Determination of a set of 5 simplifying presumptions to reduce protocol overhead and reduce complexity may improve performance. Hierarchal considerations can be imposed to alter the optimization of the system, which would be expected to provide only a small perturbation to the efficient and optimal operation of the 10 system according to a pure VCG protocol. A marketplace auction with competition between potential buyers and potential sellers, and with the economic surplus distributed between parties which must defer to active participants, provides incentive to all affected parties, and therefore may 15 provide a better result than a simple transfer between supply and demand elements only. The ad hoc network does not exist in a vacuum. There are various competing interests seeking to use the same bandwidth, and technological superiority alone does not assure 20 dominance and commercial success. Game theory may also be used as a tool to analyze the entities which seek to deploy ad hoc networks, especially where they compete.

38

accounted for by, for example, the concepts of inheritance and delegation. Thus, each branch of a hierarchy tree may be considered an object, which receives a set of characteristics from its root, and from which each sub-branch inherits the characteristics and adds subcharacteristics of, for example, specialization. It is noted that the hierarchy need not follow non-ambiguous or perfect rules, and thus there is no particular limit imposed that the hierarchy necessarily follow these formalisms. Rather, by analyzing those aspects of the hierarchy which comply with these formalisms in accordance therewith, efficiency is facilitated.

In establishing an economic system, a preliminary question is whether the system is microeconomic or macroeconomic; that is, whether the economy is linked to a real economy or insulated from it. One disadvantage of a real economy with respect to a peer relationship is that external wealth can override internal dynamics, thus diminishing the advantages to be gained by optimization, and potentially creating a perception of unfairness for externally less wealthy agents, at least unless and until the system accomplishes a wealth redistribution. An artificial economy provides a solution for a peer network in which each node has an equal opportunity to gain control over the ad hoc network, independent of outside influences and constraints. On 25 the other hand, by insulating the network from external wealth redistribution, real efficiency gains may be unavailable. Therefore, both types of economies, as well as hybrids, are available. Thus, as discussed in more detail below, a "fair" initial (or recurring) wealth distribution may be applied, which may be supplemented with, and/or provide an output of, external wealth. The rules or proportion of external influence may be predetermined, adaptive, or otherwise. In accordance with the proposed artificial economy, each similar to the relating to "altruism", although not identical, 35 node has a generator function for generating economic units, which are then used in a transaction (e.g., an auction) with other nodes to create a market economy, that is, each node has a supply and demand function, and acts as a source or sink for a limited resource. In some cases, nodes may have only supply or demand functions, or a degree of asymmetry, but in this case, these are typically subject to an external economic consideration, and the artificial economy will be less effective in providing appropriate incentives. According to one implementation of this embodiment, the artificial economic units have a temporally and/or spatially declining value, so that wealth does not accumulate over long periods and/or cannot be transferred over large distances. The decline may be linear, exponential, or based on some other function. This creates a set of microeconomies insulated from each other. Where distant microeconomies must deal with each other, there is a discount. This architecture provides a number of advantages, for example, by decreasing the influence of more spatially and temporally distant effects, the scope of an optimization analysis may be relatively constrained, while reducing the amount of information which must be stored over time and/or carried over distance in order to permit an optimization. Likewise, since the economy is artificial, the discount need not be recouped within the scope of the system; that is, conservation of capital is not required. In the same manner, a somewhat different incentive structure may be provided; that is, economic units generated at one location and at one time may have a higher value at a different location and time; this may encourage reduced immediate use of the system resources, 65 and relocation to higher valued locations. As discussed below, one embodiment of the invention permits trading of credits, and thus, for example, a user may establish a

First Embodiment

In a typical auction, each player is treated fairly; that is, the same rules apply to each player, and therefore a single economy describes the process. The fair auction therefore poses challenges for an inherently hierarchal set of users, 30 such as a military organization, where rank is accompanied by privilege. The net result, however, is a decided apparent disadvantage to lower ranking agents, at least when viewed in light of constricted self-interest. The issues that arise are

and thus the game theoretic analysis of altruistic behavior may be imported for consideration, as appropriate.

In a mobile ad hoc communications network, a real issue is user defection or non-compliance. For example, where a cost is imposed on a user for participating in the ad hoc 40 network, e.g., battery power consumption in a mesh radio network, if the anticipated benefit does not exceed the cost, the user will simply turn off or disable the device until actually needed. The result of mass defection will, of course, be the instability and failure of the ad hoc network itself, 45 leading to decreased utility, even for those who gain an unfair or undue advantage under the system. Thus, perceived fairness and net benefit is required for network success, assuming that defection and/or non-compliance are possible.

On the other hand, in military systems, the assertion of 50 rank as a basis for priority is not itself necessarily arbitrary or capricious. Orders and communications from a central command are critical for the organization itself, and thus the lower ranking agents gain at least a peripheral, if not direct benefit as their own chain of command employs their 55 resources. Therefore, the difficulty in analyzing the application of a fair game paradigm to a hierarchal organization is principally a result of conceptualizing and aligning the individual incentives with those of the organization as a whole and the relationship between branches. Thus, in 60 contradistinction to typical self-organizing peer-to-peer networks, a hierarchal network is not seen as self-organizing, at least in terms of the hierarchy, which is extrinsic to the formation of the communications network under consideration.

As discussed below, the "distortions" of the network imposed by the external hierarchy can be analyzed and

39

repeater site at an under-served location to gain credits for use elsewhere. Preferably, beyond a "near field" effect, the value does not continue to increase, since this may result in inflationary pressures, and undermine the utility of the system in optimally balancing immediate supply and 5 demand at a particular location.

As can be seen, through modifications of the governing rules and formulae, the system can be incentivized to behave in certain ways, but care should be exercised since a too narrow analysis of the incentive might result in unintended 10 long term or distant effects. To the extent that human behavior and subjective analysis is involved, care should also be exercised in applying a rationality assumption, since this is not always true. Rather, there may be applicable models for human irrational behavior that are better suited to 15 an understanding of the network behavior in response to a perturbation. The typical peer-to-peer ad hoc network may be extended to the hierarchal case by treating each branch (including sub-branches) within the chain of command as an economic 20 unit with respect to the generator function. At any level of the hierarchy, the commander optionally retains a portion of the wealth generation capacity, and delegates the remainder to its subordinates. Therefore, the rank and hierarchal considerations are translated to an economic wealth (or wealth 25 generation) distribution. One aspect of this system allows wealth transfer or redistribution, although in a real system, a time delay is imposed, and in the event of a temporally and/or spatially declining value, the transfer will impose a cost. Thus, an initial misallocation is undesired, and there 30 will be an incentive to optimally distribute the wealth initially. Of course, if centralized control with low penalty is desired, it is possible to limit the penalty, if any, for wealth redistribution through appropriate rules, although the time for propagation through the network remains an issue, and 35

40

competitive bidders. While according to one proposal, this portion is allocated in accordance with their reported valuations, this creates a potential incentive for bidders who know they will not be winning bidders to overbid, and thereby gain an increased portion of the surplus. In order to reward honest reporting of private values, the reward function must penalize both overreporting and underreporting of private values. This circumstance occurs if, at each bid, there is a risk of winning commensurate with the bid, and thus the system is strategyproof. In order to achieve this circumstance, for example, a statistical noise or probability distribution may be added to the system, with an acceptance of a bid made a statistical process. This results in a "fuzzy" boundary on the bid value, although it may impose an inefficiency on the market since any deviation from the optimal market price represents a loss. Another approach to minimizing strategic bidding is to impose a bid fee. That is, each bidder must offer a prepayment corresponding to a small portion of its bid, thereby disincentivizing bidding to lose. The winning bidder will then pay a second price plus the deposit bid. The sellers will receive their own lowest cost (or second cost) bid. Losing bidders will receive a payment in accordance with the value of their bid, less the bid deposit. In order to disincentivize strategic bidding, the average return to a bidder is less than the bid cost. In fact, a good target for the bidder deposit is the administrative cost of transacting the bidding negotiations. This, in turn, provides an incentive to keep the administrative overhead low, thus improving overall system performance, especially where the administrative communications compete with normal communications for bandwidth. In this circumstance, those bidding to win receive either the benefit of the transaction or a payment for deference, less the transactional fee. Those who are bidding strategically, in manner seeking to acquire the deference payment, must risk the transactional cost, and to gain substantially, must submit a relatively high bid. When the bids are "competitive", there is a substantial risk that the bid will be a winning bid, and thus incur the full bid cost. Thus, there is a disincentive to bidding a high value, but without an intent to win. Of course, the bid deposit may be a flat fee, or subject to a mathematical or adaptive function, rather than directly related to administrative cost. The aggregated bid deposits may, for example, be awarded to a class who are optimally incentivized by the nature of this payment. For example, it may be awarded to those selling bandwidth, in a manner generally inversely proportional to the value of their ask, or, for example, based on allocations during the combinatorial (VCG) auction. This payment would then incentivize sellers to offer services at a low price, improving network availability. Of course, there may be other classes within the auction population who may be taxed or subsidized, using value derived from the auction process. In a strategyless auction, automated bidding is quite feasible, since the optimal bid is the computed value. For auctions in which a bidder does not have an incentive to bid its true private value, and this must assume a strategic play, automated bidding becomes more of a challenge, but may also be automated.

blind nodes (i.e., those which do not have an efficient communication path, or have insufficient resources to utilize otherwise available paths through the hierarchy) may also lead to limitations on system performance.

In this system, there may be an economic competitive 40 distortion, under which a node's subjective value of a resource is influenced by its then subjective wealth. If a node is supplied with wealth beyond its needs, the wealth is wasted, since it may decline in value and cannot be hoarded indefinitely. (In a network wealth model in which wealth 45 could be hoarded indefinitely, small deviations from optimality and arbitrage opportunities may be exploited to create a perception of unfairness, thus, this is not preferred.) If a node is supplied with insufficient wealth, economic surplus through transactional gains are lost. Thus, each node must 50 analyze its expected circumstances to retain or delegate the generator function, and to optimally allocate wealth between competing subordinates. Likewise, there may be a plurality of quasi-optimal states.

In any economic transaction, there is an amount that a 55 seller requires to part with the resource, a price a buyer is willing to pay, and a surplus between them. Typically, in a two party transaction, the surplus is allocated to the party initiating the transaction, that is, the party initiating the transaction uses some discovery mechanism to find the 60 minimum price acceptable by the buyer. In brokered or agent-mediated transactions, a portion of the surplus is allocated to a facilitator. In accordance with one aspect of the present invention, compliance with the community rules, as well as an incentive to bid or ask a true private value is encouraged by distributing a portion of the transaction surplus to losing

In a strategy-less auction, a bidder cannot gain by bidding over or under its private value. If a bidder bids below its private value, it has a reduced chance of gaining the benefit of the transaction.

In an auction which is subject to strategic bidding, the strategy may be mitigated by imposing commensurate risks and costs to balance the perceived advantage toward zero.

41

In particular, the competitive bidders seeking to allocate a scarce resource for themselves receive compensation for deferring to the winning bidder in an amount commensurate with their reported value. Thus, sellers receive their minimum acceptable value, buyers pay their maximum valuation, the surplus is distributed to the community in a manner tending to promote the highest bids within the private value of the bidder. In a corresponding manner, the auction rules can be established to incentivized sellers to ask the minimum possible amount, above their reserve. For example, a portion of the surplus may be allocated to bidders in accordance with how close they come to the winning ask. Therefore, both incentives may be applied, for example with the surplus split in two, and half allocated to the bidder pool and half allocated to the seller pool. Clearly, other allocations or proportionations are possible. The winning bidder and/or seller may be included within the rebate pool. This is particularly advantageous where for various reasons, the winning bidder is not selected. Thus, 20 this process potentially decouples the bidding (auction) process and the resulting commercial transaction. Because of transactional inefficiencies, human behavioral aspects, and a desire to avoid increased network overhead by "false" bidders seeking a share of the allocation pool without 25 intending to win the auction, it may be useful to limit the allocation of the surplus pool to a subset of the bidders and/or sellers, for example the top three of one or both. This therefore encourages bidders and/or sellers to seek to be in the limited group splitting the pool, and thus incentivizes 30 higher bids and lower asks. Of course, a party will have a much stronger incentive to avoid bidding outside its valuation bounds, so the risk of this type of inefficiency is small. As discussed above, one embodiment of the invention provides a possible redistribution or wealth among nodes 35 within a hierarchal chain. This redistribution may be of accumulated wealth, or of the generation function portion. Trading among hierarchally related parties is preferred, since the perceived cost is low, and the wealth can be repeatedly redistributed. In fact, it is because of the possi- 40 bility of wealth oscillation and teaming that the declining wealth function is preferred, since this will tend to defeat closely related party control over the network for extended periods. It is noted that, in a multihop mobile ad hoc network, if 45 a communication path fails, no further transfers are possible, potentially resulting in stalled or corrupt system configuration. It is possible to transfer an expiring or declining portion of the generating function; however, this might lead a node which is out of range to have no ability to rejoin the network 50 upon return, and thus act as an impediment to efficient network operation. Therefore, it is preferred that, in an artificial economy, each node has some intrinsic wealth generator function, so an extended period of inactivity, a node gains wealth likely sufficient to rejoin the network as 55 a full participant.

42

lowest-ranking members, then the maximum distortion due to hierarchal modifications is 15%.

One way that this allocation of wealth may be apparent is with respect to the use of expensive assets. Thus, a high level node might have access to a high power broadcast system or licensed spectrum, while low level nodes might ordinarily be limited to lower power transmission and/or unlicensed spectrum or cellular wireless communications. For a low level node to generate a broadcast using an expensive asset (or to allocate a massive amount of space bandwidth product), it must pass the request up through the chain of command, until sufficient wealth (i.e., authority) is available to implement the broadcast.

In fact, such communications and authorizations are quite 15 consistent with the expectations within a hierarchal organization, and this construct is likely to be accepted within a military-type hierarchal organization. Under normal circumstances, a superior would have an incentive to assure that each subordinate node possesses sufficient wealth to carry out its function and be incentivized to participate in the network. If a subordinate has insufficient initial wealth (or wealth generating function) allocation, it may still participate, but it must expend its internal resources to obtain wealth for participation toward its own benefit. This, in turn, leads to a potential exhaustion of resources, and the unavailability of the node for ad hoc intermediary use, even for the benefit of the hierarchy. An initial surplus allocation will lead to overbidding for resources, and thus inefficient resource allocation, potential waste of allocation, and a disincentive to act as an intermediary in the ad hoc network. While in a traditional military hierarchy, cooperation can be mandated, in systems where cooperation is perceived as contrary to the net personal interests of the actor, network stability may be poor, and defection in spite of mandate.

In practice, in a typical military-type hierarchy, the bulk

In a military system, it is thus possible to formulate an "engineered" solution which forces participation and eliminates defection; however, it is clear that such solutions forfeit the potential gains of optimality, and incentivizes circumvention and non-compliance. Further, because such a system is not "cost sensitive" (however the appropriate cost function might be expressed), it fails to respond to "market" forces.

Accordingly, a peer to peer mobile ad hoc network suitable for respecting hierarchal organization structures is provided. In this hierarchal system, the hierarchy is represented by an initial wealth or wealth generation function distribution, and the hierarchally higher nodes can reallocate wealth of nodes beneath themselves, exercising their higher authority. This wealth redistribution can be overt or covert, and if overt, the hierarchal orders can be imposed without nodal assent. In a covert redistribution, trust may be required to assure redistribution by a node to a grandchild node.

The wealth and its distribution can be implemented using modified micropayment techniques and other verifiable cryptographic techniques. This wealth can be applied to auctions and markets, to allocate resources. Various aspects of this system are discussed in more detail elsewhere in this specification. In accordance with aspects of this embodiment, an example is provided. In this scenario, a vehicle traveling along a highway seeks traffic information 10-20 miles ahead on the road. The transceiver in the vehicle has a range of about 0.5 miles, meaning that, assuming maximum hop range, 20-40 hope would be necessary in each direction in order to fulfill a response to a request for information. If we further assume that the traffic density allows an average

of the wealth generating function will be distributed to the lowest ranks with the highest numbers. Thus, under normal circumstances, the network will appear to operate according 60 to a non-hierarchal (i.e., peer) model, with the distortion that not all nodes have a common generator function. On the other hand, hierarchically superior nodes either retain, or more likely, can quickly recruit surrounding subordinates to allocate their wealth generating function and accumulated 65 wealth to pass urgent or valuable messages. Thus, if 85% of the wealth and network resources are distributed to the

43

density of compatible transceivers of 1 per 0.05 miles², then it would appear that for each hop, a number of intermediaries would be possible. We further assume that each vehicle has a pair of antennas (which may operate on different frequencies), forward and backward looking, so that forward 5 And backward communications are non-interfering. It is noted that, in operation, it is not a single vehicle that seeks information responding to a request; rather, it is likely that 2-25% of vehicles will seek information within a short period, especially of the cost of fulfilling a request is 10 relatively low. We also assume that there is no common trigger event, such as an accident, which would provoke essentially all vehicles to request the same information, a circumstances that could be addressed through a multicast or broadcast. 15 If the vehicle sought to arrange a communication over the entire 10-20 miles in advance of communicating, this would require a multifactorial optimization likely involving over 100 transceivers, and if even one of the 20-40 intermediates fails, the entire communication fails. The administrative 20 overhead for this process may not outweigh its advantages. On the other hand, if we instead presume that the vehicle only optimize a path over a limited range or number of hops, e.g., 1 mile or 5 hops, then the optimization is facilitated and the administrative overhead reduced. On the other hand, this 25 requires that vehicles or nodes at the fringe arrange for completion of the communication. It is here that the statistical aspects of the network architecture may be exploited to achieve efficiencies. Thus, in observing or participating in the network activities over a period of time, a node can 30 model the behavior of nearby nodes, and determine a degree of risk with respect to the model. That node may then undertake the risk associated with its assessment of its environment, and communicate an offer to act as agent for completion of the communication, without explicitly com- 35 municating the details of the communication. Therefore, the originating node optimizes a local region ad hoc network, and then adopts an estimate of the network state beyond the edge of the local region. Economically, the vehicle seeking the information broad- 40 casts a bid or value function of its valuation of the resources it requires. This bid is propagated to the local region or beyond, and compared with the bids or value functions of other vehicles or nodes. A winning vehicle or node then assumes control over the minimum temporal-spatial-fre- 45 quency channel required. As stated above, at the edge of the local region, nodes may act as proxies or agents, and undertake the risk of the more distant communication, adding a risk premium to their ask. The node with the lowest ask is selected as the agent or proxy. It is noted that the role 50 of communication intermediary and proxy or agent is discrete, and therefore need not be a single element, though certain efficiencies are gained if this is the case. The agent or proxy must also conduct an auction for the next stage of the communication, in a process which is repeated until the 55 destination node is included within the local region.

44

assets. For example, a cellular telephone carrier may choose to participate in the network, using its fixed infrastructure as a backup, or bypass. In that case, if the network fails, or is less efficient, it has the option of using its own facilities.

The agent or proxy therefore arbitrages the risk, based on its own knowledge of its local region which is different from the local region of the originator of the communication. There may be less competition for the role of arbitrageur, allowing it to claim a larger portion of the economic surplus. In fact, an arbitrageur may pre-acquire resources at a defined price, and resell them later at a profit. Thus, it is seen that economic efficiencies and increased profits for intermediaries are not inconsistent, where opportunities for reduction in inefficiencies exist. Adding hierarchal element to this example, it is noted that certain risks are reduced when transactions are conducted between related entities. For example, if their respective wealth is interlinked, over the long term, the risk of nonpayment is abated. Likewise, the risk of defection or noncompliance is reduced. Further, since it is presumed that the benefit function of related nodes is intertwined, actual costs may be reduced, since the communication itself is a countervailing benefit to the cost of a related node conveying the message or packet. Thus, there will likely be a preference for communications between more closely related nodes than between more distantly related or unrelated nodes. On the other hand, since wealth (virtual or real) itself is desirable, and inter-party transactions limit wealth gain opportunities, there will also be an incentive to conduct transactions with unrelated nodes for full value. As discussed above, in a hierarchy, a top level node is initially allocated the entire wealth and/or wealth generation function for its subordinates, which is then redistributed as appropriate or desired. The top level node will generally not maintain more wealth than required, since this is inefficient, and redistributions

The proxy or agent undertakes the risk of the cost of the

incur their own inefficiencies.

The economy is preferably virtual, employing arbitrary value credits generated using a cryptographic function. One possible exception is where external elements, such as cellular telephone carriers, are integrated into the system. Since these are real economy agents, there must be some interchange in value between credits and cash, unless the cellular carrier gains a benefit from the ad hoc network. One such possible benefit is extension of its fixed infrastructure to serve under-covered areas. Another possible benefit is the ability to provide information from the ad hoc network to more remote areas. A further benefit is the ability to use unlicensed spectrum for its activities in a standard and non-interfering manner.

In the virtual economy, each node has a physically and/or logically secure cryptographic module, which sequentially generates values which have a unique index number, and may be verified as to node and time of origin, and possibly chain of owners. A node receiving this value can therefore verify that it is authentic, its time of creation (and therefore) amortization schedule), and as an audit trail, the chain of ownership. Each bid is also cryptographically secure and signed, so that if a node places a bid, and later fails to pay, a later investigation can be conducted to correctly account for the transaction, and possibly penalize wrongdoing. The payments for a communication are communicated after the transaction, in a cryptographic wrapper (cryptolope) destined for a target node. Since these are secure, the opportunity for theft is low, and there is little incentive for intentional delay of transmission by any intermediate. Further, these packets may be transmitted along redundant paths, to limit the ability of any one node to disrupt communications.

downstream communications, as well as the risk of nonpayment, and thus may well charge a substantial premium over its actual risk-free cost. Therefore, the efficiency gained 60 for through the use of the agent or proxy derives from the administrative efficiencies gained, as well as comprehension that the risks are inherent, and must generally be undertaken by some element of the network. The incrementally added risks may be small, but are transferred. A node which 65 tion promotes itself for acting as agent or proxy may do so because it has lower risks, costs or otherwise unproductive

45

The ability of a node to spend the same value packet twice is limited by a number of factors. First, since each node has a defined generator function, if its spending exceeds its generation capacity, this will be apparent to nearby nodes. Second, since each packet has an index value, the other 5 nodes may compare these values to make sure that they are not used more than once by any node, before they are transferred to another node. Since the value of the credit declines in value over time, indefinite period monitoring is not required.

In some instances, saving value may be an efficient strategy. In order to take advantage of these gains, special bank nodes may be established which have the ability to hoard credits and then reissue new credits when required. Typically, there will be no interest, and in fact there may be 15 discount and delay. The net result of promoting savings will typically be a reduction in demand with respect to supply, thus increasing availability of resources. By allowing withdrawal of savings, periods of inflation and high peak demand is possible. Further, if the withdrawn wealth has the same 20 amortization schedule as newly generated credits, an event which provokes a "run on the bank" may result in a rapid diminution of saved wealth, unless the immediate recipients bank the newly transferred wealth. As is seen, many of the economic institutions of the real 25 economy have equivalents in the virtual economy, and therefore may be employed in their traditional and known roles to improve efficiency where the self-organizing features of the network alone incur corresponding inefficiencies, thus creating opportunities. Where necessary, links to a 30 real economy, in order to pay for capital investment, efforts, or compensate for risks, may be employed, however it is preferred that these links be attenuated in order to isolate the bulk of the ad hoc network from the influence of realeconomy node wealth, and therefore to promote defection of ³⁵ those nodes who are disadvantaged thereby.

46

within the economy, in order to avoid unintended secondary economic distortion. Each system has its merits and limitations. An economic optimization is one involving a transaction in which all benefits and detriments can be expressed in normalized terms, and therefore by balancing all factors, including supply and demand, at a price, an optimum is achieved. Auctions are well known means to achieve an economic optimization between distinct interests, to transfer a good or right in exchange for a market price. While there are different types of auctions, each having their limitations and attributes, as a class these are well accepted as a means for transfer of goods or rights at an optimum price. Where multiple goods or rights are required in a sufficient combination to achieve a requirement, a so-called Vickrey-Clarke-Groves (VCG) auction may be employed. In such an auction, each supplier asserts a desired price for his component. The various combinations which meet the requirement are then compared, and the lowest cost combination selected. In a combinatorial supply auction, a plurality of buyers each seeks a divisible commodity, and each bids its best price. The bidders with the combination of prices which are maximum are selected. In a commodity market, there are a plurality of buyers and sellers, so the auction is more complex. In a market economy, the redistribution of goods or services is typically transferred between those who value them least to those who value them most. The transaction price depends on the balance between supply and demand; with the surplus being allocated to the limiting factor. There has thus been shown and described novel communications devices and systems and methods which fulfill all the objects and advantages sought therefore. Many changes, modifications, variations, combinations, subcombinations and other uses and applications of the subject invention will, however, become apparent to those skilled in the art after considering this specification and the accompanying drawings which disclose the preferred embodiments thereof. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention, which is to be limited only by the claims which follow.

Second Embodiment

Multihop Ad Hoc Networks require cooperation of nodes 40 which are relatively disinterested in the content being conveyed. Typically, such disinterested intermediaries incur a cost for participation, for example, power consumption or opportunity cost. Economic incentives may be used to promote cooperation of disinterested intermediaries. An 45 economic optimization may be achieved using a market price-finding process, such as an auction. In many scenarios, the desire for the fairness of an auction is tempered by other concerns, i.e., there are constraints on the optimization which influence price and parties of a transaction. For 50 example, in military communication systems, rank may be deemed an important factor in access to, and control over, the communications medium. A simple process of rankbased preemption, without regard for subjective or objective importance, will result in an inefficient economic distortion. 55 In order to normalize the application of rank, one is presented with two options: imposing a normalization scheme with respect to rank to create a unified economy, or considering rank using a set of rules outside of the economy. One way to normalize rank, and the implicit hierarchy underlying 60 the rank, is by treating the economy as an object-oriented hierarchy, in which each individual inherits or is allocated a subset of the rights of a parent, with peers within the hierarchy operating in a purely economic manner. The extrinsic consideration of rank, outside of an economy, can 65 be denominated "respect", which corresponds to the societal treatment of the issue, rather than normalizing this factor

What is claimed is:

1. A networking system for controlling an allocation of at least one physical resource by at least one automated control within a network having a changing network state associated with a network state risk, based on a received control signal, comprising:

a memory configured to store parameters of a network model, comprising a first set of stored values representing an estimate of the changing network state; an automated arbitrage agent, comprising at least one automated processor and being operationally associated with the memory and [the] an automated communication network interface port, configured to: (1) engage in a negotiation of an automatic arbitrage transaction based on at least; (a) an analysis of the network state risk, and (b) a self-interest of the automated arbitrage agent, with at least one automated counterparty, with respect to a communication of information relating to the first set of stored values, the negotiation comprising at least one automated communication through the automated communication network interface port, (2) engage in the transaction comprising a communication of at least a portion of information defining

10

47

the estimate of the changing network state through the automated communication network interface port,

- (3) update the network model[;], and
- (4) generate the control signal selectively dependent on ⁵ the updated network model; and
- an output of the automated arbitrage agent configured to communicate at least one of the generated control signal and information dependent on the generated control signal.
- 2. The networking system according to claim 1, wherein the automated arbitrage agent is configured:
 - to receive the network state information through the

48

9. The networking system according to claim **1**, wherein the network model comprises information describing the network state risk comprising a respective risk of availability and an inclusion cost of a set of available intermediary nodes which engage in communications through the network.

10. The networking system according to claim 1, wherein the physical resource comprises a node of a mobile ad hoc communication network.

11. The networking system according to claim 1, wherein the at least one automated counterparty has a risk tolerance with respect to an assessed network state risk associated with allocation of the at least one physical

automated communication network interface port and 15 to store the received network state information in the memory, and

to transmit information to compensate for the received network state information.

3. The networking system according to claim **1**, wherein ₂₀ the network state risk comprises a risk of impaired availability of the at least one physical resource within the network, and the transaction comprises a communication of information adapted to decrease an uncertainty of the network state risk.

4. The networking system according to claim 1, wherein the automated arbitrage agent is configured to automatically sense network state information, and to communicate the automatically sensed network state information to the at least one automated counterparty as a result of the transac- 30 tion.

5. The networking system according to claim **1**, wherein the automatic arbitrage agent is further configured to: receive network state information comprising sensed system condition information from at least one first auto- 35 mated counterparty in at least one first transaction for a first compensation, transmit the network state information comprising the sensed system condition information to at least one second automated counterparty in at least one second 40 transaction for a second compensation, and [to] negotiate the at least one first transaction and the at least one second transaction to produce a profit based on an excess of the second compensation over the first compensation and a transactional cost. 6. The networking system according to claim 1, wherein the at least one automated arbitrage agent has an associated risk tolerance, wherein the transaction reduces an assessment of the network state risk incurred by the automated arbitrage agent, and the automated arbitrage agent is further 50 configured to compensate the at least one automated counterparty as part of the automatic arbitrage transaction dependent on an at least amount of the reduction in the assessed network state risk.

resource within the network, and

wherein the transaction communicates sufficient information to the at least one automated counterparty to reduce an assessment of the network state risk by the automated counterparty from a level above its risk tolerance to a level below its risk tolerance.

12. The networking system according to claim 1, wherein the automated control is configured to select one of a plurality of future configurations of a network, representing potential network states, comprising the at least one physical
²⁵ resource, wherein at least one of the future configurations has an associated risk of failure, and wherein the automated arbitrage agent is configured to automatically negotiate the transaction to reduce the associated network state risk comprising a risk of failure, and to selectively produce the control signal in dependence thereon.

13. The networking system according to claim **1**, wherein the network model further comprises at least one predicted future state of availability of the at least one physical resource.

14. The networking system according to claim 1, wherein the automated arbitrage agent is configured to conduct the *negotiation of the* automatic arbitrage [negotiation] *transaction* with another automated arbitrage agent having its own respective network model comprising a second set of stored values representing an estimate of the changing network state, wherein the *negotiation of the* automatic arbitrage transaction [negotiation] between the automated arbitrage agent and the other automated arbitrage agent is 45 dependent on differences in the first set of stored values and the second set of stored values. **[15**. A networking method for producing a control signal for automatically controlling an allocation of at least one physical resource within an automated network, comprising: maintaining a network model as a set of stored parameters in a memory, representing an estimate of a changing network state subject to a communication risk dependent on the allocation of the at least one physical resource; providing an automated arbitrage agent, comprising at least one automated processor operationally associated with the memory and an automated communication network interface port; engaging in an automated negotiation of an automatic arbitrage transaction based on at least (a) an analysis of the communication risk, and (b) a self-interest of the automated arbitrage agent, between the automated arbitrage agent and at least one automated counterparty by communications through the automated communication network interface port, the automatic arbitrage transaction being for communicating information to alter an estimate of the communication risk by the automated arbitrage agent;

7. The networking system according to claim 1, *wherein* 55 the automated arbitrage agent competes with other automated arbitrage agents for the transaction, and the transaction has a compensation which is competitively determined based on the competition with the other automated arbitrage agents. 60
8. The networking system according to claim 1, wherein the automated arbitrage agent is configured to automatically selectively receive information *adapted to improve the network model*, through the automated communication network interface port[adapted to improve the network model], and 65 to automatically selectively transmit information stored in the memory dependent on the network model.

49

engaging in the negotiated automatic arbitrage transaction comprising communicating the information to alter the estimate of the communication risk by the automated arbitrage agent;

updating the maintained network model;

- generating the control signal dependent on at least the altered estimate of the communication risk by the automated arbitrage agent; and
- at least one of communicating the generated control signal and communicating information dependent on the generated control signal.]

[16. The network method according to claim **15**, wherein said engaging in the negotiated automatic arbitrage transaction further comprises conveying compensation to the at 15 least one automated counterparty.] **17**. The network method according to claim **15**, wherein the automated network comprises a shared communication medium, and the automated communication network interface port communicates with the at least one automated 20 counterparty through the shared communication medium. **18**. A networking method comprising:

50

communication risk dependent on allocation of at least one physical resource within the automated communication network.

21. A communication networking system, comprising: a memory configured to store a communication network model of an estimate of a varying network state of an automated communication network comprising a plurality of physical communication resources, comprising an estimate of a risk of future impaired function of the plurality of physical communication resources, the estimate being dependent on an availability of network state information for the automated communication network;

- storing parameters defining a network model of a communication network having a changing state in a memory, comprising *network state* information for ²⁵ estimating a time-varying state of the communication network and a reliability risk of at least one physical resource within the communication network;
- providing an automated arbitrage agent which acts in its own self-interest, comprising at least one automated ³⁰ processor and being associated with the memory; engaging in an automated negotiation based on at least (a) an analysis of the reliability risk, and [the] (b) selfinterest of the automated arbitrage agent, through an 35 automated communication network between the automated arbitrage agent and at least one automated counterparty, of a transaction comprising a communication of *the* network state information; communicating the network state information through the $_{40}$ automated communication network in accordance with the automated negotiation of the transaction; estimating the communication network state and the reliability risk of the at least one physical resource within the communication network based on at least the net- 45 work model and the communicated network state information; updating the stored parameters defining the network model in the memory based on at least the communicated network state information; 50 generating a control signal, by at least one automated control, for automatically altering an allocation of at least one physical resource within the network, dependent on at least the estimated communication network state and the reliability risk of the at least one physical 55 resource within the communication network; and communicating at least one of the generated control signal

an automated arbitrage agent, configured to:

- engage in an automated negotiation with respect to at least (a) a self-interest of the automated arbitrage agent, and (b) an analysis of the risk of future impaired function, through the automated communication network, with at least one other automated arbitrage agent, with respect to a transaction to communicate network state information for the automated communication network, wherein the transaction to communicate the network state information for the automated communication network incurs a transmission cost;
- conclude the negotiated transaction by communicating the network state information for the automated communication network and a compensation for the transmission cost;
- update the communication network model based on at least the communicated network state information for the automated communication network;

update the estimate of the risk of future impaired function of the plurality of physical communication resources based on the updated communication net-

- work model; and
- produce an automated communication network control signal dependent on at least the updated communication network model [updated] and the updated estimate of the risk of future impaired function of the plurality of physical communication resources; and at least one automated control, configured to allocate the plurality of physical *communication* resources in dependence on at least the automated communication network control signal.

22. The communication networking system according to claim 21, wherein the compensation comprises a transfer of virtual currency through the automated communication network.

23. A networking system comprising:

a network model comprising a set of stored values representing statistical estimates of a varying availability state of an automated network comprising physical elements, an accuracy of the statistical estimates being limited by availability of state information for the automated network; and

an automated arbitrage agent, comprising at least one automated processor and a communication network interface port, configured to:

and information dependent on the generated control signal.

19. The networking method according to claim **18**, further 60 comprising compensating the at least one automated counterparty for said communicating.

20. The networking method according to claim 18, wherein the at least one physical resource comprises a communication network intermediary of the automated 65 communication network through which a communication passes, and the network state information comprises a

engage in an automated negotiation based on at least (a) an analysis of the statistical estimates of the varying availability state, and (b) a self-interest of the automated arbitrage agent, through the communication network interface port, between the automated arbitrage agent and an automated counterparty agent; engage in an automatic arbitrage transaction through the communication network interface port with the

51

automated counterparty agent, the transaction comprising at least communicating previously unavailable automated network state information for the automated network to increase an accuracy of the statistical estimates, and a token representing com- 5 pensation for the arbitrage transaction, and update the network model based on the communicated previously unavailable automated network state information for the automated network; and account for the communicated token; and 10 a control, configured to automatically control the automated network in dependence on the updated network model comprising the set of stored values, the control having an output signal selectively dependent on the network model. 15 52

24. The networking method according to claim 23, wherein the communicated token comprises a cryptographically-authenticated virtual currency.

* * * * *