

(19) United States (12) **Reissued Patent** Ellison et al.

US RE49,307 E (10) **Patent Number:** (45) Date of Reissued Patent: *Nov. 22, 2022

- ALKALI-DOPED AND ALKALI-FREE (54)**BOROALUMINOSILICATE GLASS**
- Applicant: **CORNING INCORPORATED**, (71)Corning, NY (US)
- (72)Inventors: Adam James Ellison, Corning, NY (US); Jason Sanger Frackenpohl, Corning, NY (US); John Christopher

U.S. Cl. (52)

(56)

- CPC H01Q 1/38 (2013.01); H01Q 1/2283 (2013.01); *H01Q 9/0407* (2013.01); *H01Q 15/0013* (2013.01)
- (58)Field of Classification Search CPC C03C 3/095; C03C 13/046; C03C 3/11; C03C 3/093; C03C 3/118; B32B 17/06; C03B 17/02

See application file for complete search history.

References Cited

Mauro, Corning, NY (US); Douglas Miles Noni, Jr., Horseheads, NY (US); Natesan Venkataraman, Painted Post, NY (US)

- Assignee: Corning Incorporated, Corning, NY (73)(US)
- This patent is subject to a terminal dis-*) Notice: claimer.
- Appl. No.: 16/902,663 (21)
- Filed: Jun. 16, 2020 (22)

Related U.S. Patent Documents

Reissue of:

(64)	Patent No .:	10,000,409
	Issued:	Jun. 19, 2018
	Appl. No.:	15/478,571
	Filed:	Apr. 4, 2017

U.S. PATENT DOCUMENTS

3,008,841 A 11/1961 Tiede 3,673,049 A 6/1972 Giffen et al. (Continued)

FOREIGN PATENT DOCUMENTS

CN 1531007 A 9/2004 CN 1807308 A 7/2006 (Continued)

OTHER PUBLICATIONS

European Patent Application No. 14755493.5 Office Action dated Oct. 2, 2018; 6 pages; European Patent Office. (Continued)

Primary Examiner — Carlos N Lopez (74) Attorney, Agent, or Firm — Russell S. Magaziner

(57)

U.S. Applications:

Division of application No. 14/455,332, filed on Aug. (62)8, 2014, now Pat. No. 9,643,884.

(Continued)

Int. Cl. (51)**B32B** 17/06 (2006.01)*C03C 3/091* (2006.01)(Continued)

Alkali-doped boroaluminosilicate glasses are provided. The glasses include the network formers SiO₂, B₂O₃, and Al₂O₃. The glass may, in some embodiments, have a Young's modulus of less than about 65 GPa and/or a coefficient of thermal expansion of less than about 40×10^{-7} /° C. The glass may be used as a cover glass for electronic devices, a color filter substrate, a thin film transistor substrate, or an outer clad layer for a glass laminate.

ABSTRACT

32 Claims, 2 Drawing Sheets

Page 2

Related U.S. Application Data

Provisional application No. 61/866,272, filed on Aug. (60) 15, 2013.

(51)	Int. Cl.	
	C03B 17/06	(2006.01)
	H01Q 1/38	(2006.01)
	H01Q 1/22	(2006.01)
	H01Q 9/04	(2006.01)
	H01Q 15/00	(2006.01)
	~	

/	/	
2001/0034294 A1	10/2001	Peuchert et al.
2002/0013210 A1	1/2002	Peuchert et al.
2002/0032117 A1	3/2002	Peuchert et al.
2002/0151426 A1	10/2002	Murata et al.
2003/0087746 A1	5/2003	Ritter et al.
2003/0129417 A1	7/2003	Chen et al.
2003/0129417 A1 2004/0209758 A1	10/2004	Peuchert et al.
2006/0003884 A1	1/2006	Nishizawa et al.
2006/0242996 A1	11/2006	Deangelis et al.
2007/0158317 A1	7/2007	Brix et al.
2007/0190338 A1	8/2007	Aitken et al.
2007/0190340 A1	8/2007	Coppola et al.
2007/0213194 A1	9/2007	Abensour et al.
2008/0194394 A1	8/2008	Lecomte
2008/0206494 A1	8/2008	Kurachi et al.
2009/0129061 A1	5/2009	Fechner et al.
2010/0048016 A1	2/2010	Izumi et al.
2010/0084016 A1	4/2010	
2010/0151210 A1		Shimatani
2010/0292068 A1	11/2010	Takaya et al.
2010/0300536 A1	12/2010	Aitken et al.
2011/0207594 A1	8/2011	Niida et al.
2011/0240499 A1	10/2011	Taniguchi et al.
2011/0318555 A1	12/2011	Bookbinder et al.
2011/0318561 A1		Murata et al.
2012/0015150 A1	1/2012	
2012/0013130 A1 2012/0063479 A1		Li et al.
2012/0088648 A1		Ellison et al.
2012/0135226 A1		Bookbinder et al.
2012/0135852 A1	5/2012	Ellison et al.
2012/0135853 A1	5/2012	Amin et al.
2012/0141668 A1	6/2012	Nakashima
2012/0282450 A1	11/2012	Kawaguchi et al.
2012/0308803 A1	12/2012	Dejneka et al.
2013/0037105 A1	2/2013	.
2013/0330599 A1		Kroll et al.
2014/0049708 A1		Murata et al.
2014/0242375 A1		Mauro et al.
2014/0335331 A1		Ellison et al.
2014/0342897 A1	11/2014	Amin et al.
2015/0037552 A1	2/2015	Mauro
2015/0037553 A1	2/2015	Mauro
2015/0051060 A1	2/2015	Ellison et al.
2015/0140299 A1	5/2015	Ellison et al.
2016/0174301 A1	6/2016	Comte et al.
2018/0339932 A1	11/2018	Qian et al.
2020/0055769 A1	2/2020	Schwall et al.
2020/0102241 A1	4/2020	Miyasaka et al.

(56) **References Cited**

U.S. PATENT DOCUMENTS

3,737,294 A	6/1973	Dumbaugh et al.
3,746,526 A	7/1973	
3,849,097 A	11/1974	Giffen et al.
3,931,438 A	1/1976	Beall et al.
4,102,664 A	7/1978	Dumbaugh, Jr.
4,214,886 A	7/1980	—
4,350,532 A		Randklev
4,554,259 A	11/1985	
5,116,787 A		Dumbaugh, Jr.
5,342,426 A		Dumbaugh, Jr.
5,348,916 A		Kushitani et al.
5,489,558 A		Moffatt et al.
5,559,060 A	9/1996	
5,785,726 A	7/1998	Dorfeld et al.
5,801,109 A	9/1998	Nishizawa et al.
5,811,361 A	9/1998	
5,824,127 A	10/1998	Bange et al.
5,851,939 A	12/1998	Miwa
6,096,670 A	8/2000	Lautenschlaeger et al.
6,128,924 A	10/2000	Bange et al.
6,169,047 B1	1/2001	
6,287,674 B1		Verlinden et al.
6,319,867 B1	11/2001	
6,329,310 B1		Peuchert et al.
6,417,124 B1		Peuchert et al.
6,465,381 B1		Lautenschlaeger et al.
6,468,933 B1		Narita et al.
6,537,937 B1		Nishizawa et al.
6,680,266 B1		Peuchert et al.
6,707,526 B2		Peuchert et al.
RE38,959 E	1/2006	
6,992,030 B2		Paulson
7,153,797 B2		Peuchert
7,157,392 B2		Peuchert et al.
7,201,965 B2		Gulati et al.
7,323,426 B2	1/2008	
7,323,427 B2		Wolff et al.
7,470,642 B2		Fechner et al.
7,514,149 B2		Bocko et al.
7,534,734 B2	5/2009	
7,635,521 B2	12/2009	Aitken et al.
7,696,113 B2		Ellison
7,763,559 B2		Kurachi et al.
8,007,913 B2		Coppola et al.
8,129,299 B2		Kishimoto et al.
8,349,751 B2		Nagai et al.
8,445,394 B2		Aitken et al.
8,497,220 B2		Murata
8.697.590 B2		Li et al.

FOREIGN PATENT DOCUMENTS

7,157,392	B2	1/2007	Peuchert et al.	CN	101092280 A	12/2007
7,201,965		4/2007	Gulati et al.	CN	101243020 A	8/2008
7,323,426		1/2008	Aitken	CN	101400613 A	4/2009
7,323,427		1/2008	Wolff et al.	CN	102417295 A	4/2012
7,470,642	B2	12/2008	Fechner et al.	CN	102448901 A	5/2012
7,514,149	B2	4/2009	Bocko et al.	CN	103249689 A	8/2013
7,534,734	B2	5/2009	Ellison	DE	102005019958 A1	11/2006
7,635,521	B2	12/2009	Aitken et al.	DE	102008005857 A1	7/2009
7,696,113	B2	4/2010	Ellison	FR	2905694 A1	3/2008
7,763,559	B2	7/2010	Kurachi et al.	$_{\rm JP}$	60-036349 A	2/1985
8,007,913	B2	8/2011	Coppola et al.	$_{\rm JP}$	63-011543 A	1/1988
8,129,299	B2	3/2012	Kishimoto et al.	$_{\rm JP}$	01-201041 A	8/1989
8,349,751	B2	1/2013	Nagai et al.	$_{\rm JP}$	07-010598 A	1/1995
8,445,394	B2	5/2013	Aitken et al.	$_{\rm JP}$	07-277763 A	10/1995
8,497,220	B2	7/2013	Murata	$_{\rm JP}$	07-300336 A	11/1995
8,697,590	B2	4/2014	Li et al.	$_{\rm JP}$	08-295530 A	11/1996
8,796,165	B2	8/2014	Ellison et al.	$_{\rm JP}$	09-156953 A	6/1997
8,835,335	B2	9/2014	Murata et al.	$_{\rm JP}$	2719504 B2	2/1998
9,023,421	B2	5/2015	Nakashima	$_{\rm JP}$	10-139467 A	5/1998
9,096,462	B2	8/2015	Li	$_{\rm JP}$	2000-001331 A	1/2000
9,266,769	B2	2/2016	Aitken et al.	$_{\rm JP}$	2001-172041 A	6/2001
9,346,705	B2	5/2016	Kiczenski et al.	$_{\rm JP}$	2001151534 A	6/2001
9,512,030	B2	12/2016	Mauro	$_{\rm JP}$	2002-003240 A	1/2002
9,643,884	B2 *	5/2017	Ellison C03B 17/02	2 JP	2002-029775 A	1/2002
10,000,409	B2	6/2018	Ellison et al.	$_{\rm JP}$	2003-054984 A	2/2003
10,112,865	B2	10/2018	Kiczenski et al.	$_{\rm JP}$	2003-335548 A	11/2003
10,399,890	B2 *	9/2019	Mauro B32B 17/06	5 JP	2004-002062 A	1/2004
2001/0034293	A1	10/2001	Peuchert et al.	$_{\rm JP}$	2004075494 A	3/2004

Page 3

(56)	References	Cited	Ellison et al.; U.S. Appl. No. 61/821,426; "Alkali-Free
	EODEICNI DATENIT	DOCUMENTS	Phosphoborosilicate Glass;" May 2013; 24 pages.
	FOREIGN PATENT	DOCUMENTS	Ellison et al.; U.S. Appl. No. 61/866,272; "Alkali-Doped and
JP	2004-168597 A	5/2004	Alkali-Free Boroaluminosilicate Glass;" Aug. 2013; 23 pages.
JP		7/2004 7/2004	English Translation of CN201480054310.X First Office Action
JP		4/2004	dated Mar. 17, 2017, China Patent Office.
JP		9/2005	English Translation of JP2014560016 Office Action dated Oct. 25,
JP		7/2006	2016; 3 pages; Japanese Patent Office.
JP		8/2006	English Translation of JP2016534765 Office Action dated May 8,
JP		9/2007	2018; 4 pages; Japanese Patent Office.
JP		7/2008	European Patent Application No. 14753438.2; Office Action dated
$_{ m JP}$	2008-308375 A 12	2/2008	
$_{ m JP}$	2008-308376 A 12	2/2008	Jan. 13, 2021; 5 pages; European Patent Office.
$_{ m JP}$	2009-525943 A	7/2009	European Patent Application No. 13710680.3 Office Action dated
$_{ m JP}$	2010-509180 A 3	3/2010	Dec. 8, 2017; 4 Pages; European Patent Office.
$_{ m JP}$	2010-215463 A 9	9/2010	European Patent Application No. 14755493.5 Decision to grant a
$_{\rm JP}$	2001151534	3/2011	European patent dated Feb. 11, 2021; 2 Pages; European Patent
$_{ m JP}$	2011-093728 A :	5/2011	Office.
$_{ m JP}$		8/2011	European Patent Office; International Search Report; dated Mar. 6,
JP		5/2012	2015; pp. 1-4.
JP		1/2012	International Preliminary Report on Patentability; PCT/US2014/
JP		7/2013	
SU		2/1988	050486; dated Feb. 23, 2016.
TW		4/2006	International Search Report and Written Opinion of the Interna-
WO		4/1989	tional Searching Authority; PCT/US13/28177; dated Jul. 16, 2013;
WO		4/1989	10 Pages; European Patent Office.
WO		2/2008	International Search Report and Written Opinion of the Interna-
WO		1/2011	tional Searching Authority; PCT/US2014/037043; dated Aug. 13,
WO WO		5/2012 1/2012	2014; 11 Pages; European Patent Office.
WO		1/2012 2/2013	International Search Report and Written Opinion of the Interna-
WO		5/2013	tional Searching Authority; PCT/US2014/050486; dated Mar. 6,
WO		9/2013	
WO		9/2013	2015. $1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 $
WO		9/2013	International Search Report and Written Opinion, dated Jul. 16,
WŎ		1/2014	2013, pp. 1-11, International Patent Application No. PCT/US2013/
WO		5/2019	028177, European Patent Office, The Netherlands.
WÖ		9/2019	John C. Mauro; "Statistics of modifier distributions in mixed
WO		2/2019	network glasses"; The Journal of Chemical Physics 138 (2013); pp.
WO		2/2019	12A522-1-12A522-8.

OTHER PUBLICATIONS

English Translation of KR1020167006450 Office Action dated Jul.

20, 2020; 8 Pages; Korean Patent Office.

Mauro, "Statistics of Modifier Distributions in Mixed Network" Glasses,"J. Chem. Phys. 138, 12A522 (2013).

U.S. Appl. No. 17/221,926 Office Action dated Jun. 23, 2021; 44 pages; U.S. Patent Office.

U.S. Appl. No. 17/221,926, Response to Office Action dated Jul. 8, 2021; 14 pages; U.S. Patent Office.

U.S. Appl. No. 17/221,926 Notice of Allowance dated Sep. 27, 2021; 7 pages; U.S. Patent Office.

U.S. Appl. No. 17/221,926 Examiner Initiated Summary Record dated Aug. 30, 2021; 5 pages; U.S. Patent Office.

U.S. Appl. No. 17/221,926, Final Office Action dated Aug. 10, 2021; 11 pages; U.S. Patent Office.

U.S. Appl. No. 17/221,926, Response to Office Action dated Aug. 12, 2021; 4 pages; U.S. Patent Office.

U.S. Appl. No. 17/221,926, Response to Office Action dated Sep. 7, 2021; 5 pages; U.S. Patent Office.

Korean Patent Application No. 10-2016-7006353, Notice of Allowance dated May 12, 2021, 4 pages (2 pages of English Translation and 2 pages of Original Document), Korean Patent Office.

Korean Patent Application No. 10-2015-7033782; Office Action dated Mar. 30, 2021; 4 Pages; Korean Patent Office. Mauro et al.; U.S. Appl. No. 61/604,839; "Low CTE Alkali-Free Boroaluminosilcate Glass Compositions and Glass Articles Com-

prising the Same;" Feb. 2012; 25 pages.

Orlov A.D., Razrabotka Sostavov i Tekhnologii Tugoplavkikh Elektrovakuumnykh Stekol Volframovoi Gruppy. Thesis. Moskva, 1991.

PCT/US2014/037043 International Preliminary Report on Patentability dated Nov. 19, 2015.

PCT/US2014/037043 Search Report dated Aug. 13, 2014.

Shigeki Morimoto; "Phase separation and crystallization in the system SiO.sub.2--Al.sub.20.sub.3--P.sub.2O.sub.5--B.sub.2-O.sub. 3--Na.sub.2O glasses"; Journal of Non-Crystalline Solids 352 (2006); pp. 756-760.

Korean Patent Application No. 10-2016-7006450, Office Action dated May 22, 2021, 5 pages (2 pages of English Translation and 3 pages of Original Document), Korean Patent Office. Chinese Patent Application No. 202110371219.2, Office Action, dated Jul. 1, 2022, 5 pages, Chinese Patent Office. PCT/US2014/050279 Search report dated Oct. 29, 2014—Cited as EP Search Report.

* cited by examiner

U.S. Patent Nov. 22, 2022 Sheet 1 of 2 US RE49,307 E

U.S. Patent Nov. 22, 2022 Sheet 2 of 2 US RE49,307 E

FIG. 2C

22N

26N

FIG. 2D

FIG. 2A

FIG. 2B

FIG. 2E

FIG. 2F

ALKALI-DOPED AND ALKALI-FREE **BOROALUMINOSILICATE GLASS**

Matter enclosed in heavy brackets [] appears in the 5 original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue; a claim printed with strikethrough indicates that the claim was canceled, disclaimed, or held invalid by a prior post-patent action or proceeding.

This application is a reissue application of U.S. applica-

metal oxide modifiers in the clad layer glass is less than or equal to about 1 mol %. The clad glass has a first coefficient of thermal expansion, averaged over a temperature range from about 20° C. to about 300° C., of less than about 40×10^{-7} /° C. and the core glass has a second coefficient of thermal expansion, averaged over a temperature range from about 20° C. to about 300° C., that is greater than the first coefficient of thermal expansion.

A fourth aspect of the disclosure is to provide a method of ¹⁰ making a glass. The method comprises: providing a glass melt, the glass melt comprising SiO₂, B₂O₃, and Al₂O₃, wherein the sum of alkali metal oxide modifiers in the glass is less than or equal to about 1 mol %; and down-drawing the

tion Ser. No. 15/478,571, filed Apr. 4, 2017, which is a divisional application of U.S. application Ser. No. 14/455, ¹⁵ 332, filed on Aug. 8, 2014, now issued as U.S. Pat. No. 9,643,884, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 61/866,272, filed [on] Aug. 15, 2013, the content of which is relied upon and incorporated herein by reference in its 20 entirety.

BACKGROUND

The disclosure relates to glasses that do not contain alkali 25 metals or their oxides. More particularly, the disclosure relates to glasses that either contain low levels of alkali metals and/or alkali metal oxides or are alkali-doped and alkali-free and are formable by down-draw processes such as slot-draw and fusion-draw techniques. Even more par- 30 ticularly, the disclosure relates to glasses that either contain low levels of alkali metals and/or alkali metal oxides or are alkali-doped and alkali-free and can be formed into a clad layer for a glass laminate.

glass melt to form the glass

These and other aspects, advantages, and salient features will become apparent from the following detailed description, the accompanying drawings, and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic cross-sectional view of a glass laminate; and

FIGS. 2A, 2B, 2C, 2D, 2E, and 2F are photographs of Knoop scratch test results for a glass sample.

DETAILED DESCRIPTION

In the following description, like reference characters designate like or corresponding parts throughout the several views shown in the figures. It is also understood that, unless otherwise specified, terms such as "top," "bottom," "outward," "inward," and the like are words of convenience and are not to be construed as limiting terms. In addition, whenever a group is described as comprising at least one of 35 a group of elements and combinations thereof, it is understood that the group may comprise, consist essentially of, or consist of any number of those elements recited, either individually or in combination with each other. Similarly, whenever a group is described as consisting of at least one of a group of elements or combinations thereof, it is understood that the group may consist of any number of those elements recited, either individually or in combination with each other. Unless otherwise specified, a range of values, when recited, includes both the upper and lower limits of the range as well as any ranges therebetween. As used herein, the indefinite articles "a," "an," and the corresponding definite article "the" mean "at least one" or "one or more," unless otherwise specified. It also is understood that the various features disclosed in the specification and the drawings can be used in any and all combinations. As used herein, the terms "glass article" and "glass articles" are used in their broadest sense to include any object made wholly or partly of glass. Unless otherwise specified, all compositions are expressed in terms of mole A second aspect of the disclosure is to provide a glass 55 percent (mol %). Coefficients of thermal expansion (CTE) are expressed in terms of 10^{-7} /° C. and represent a value measured over a temperature range from about 20° C. to

SUMMARY

Alkali-doped boroaluminosilicate glasses are provided. The glasses include the network formers SiO₂, B₂O₃, and Al_2O_3 . The glass may, in some embodiments, have a 40 Young's modulus of less than about 65 GPa and/or a coefficient of thermal expansion, averaged over a temperature range from about 20° C. to about 300° C., of less than about 40×10^{-7} /° C. The glass may be used as a cover glass for electronic devices, a color filter substrate, a thin film 45 transistor substrate, or an outer clad layer for a glass laminate.

Accordingly, one aspect of the disclosure is to provide a glass comprising from about 50 mol % to about 70 mol % SiO₂; from about 5 mol % to about 20 mol % Al₂O₃; from 50 about 12 mol % to about 35 mol % B_2O_3 ; up to about 5 mol % MgO; up to about 12 mol % CaO; and up to about 5 mol % SrO, wherein the sum of alkali metal oxide modifiers is less than or equal to about 1 mol %.

comprising SiO₂, B₂O₃, and Al₂O₃. The sum of alkali metal oxide modifiers in the glass is less than or equal to about 1 mol %. The glass is substantially free of P₂O₅, and has at least one of a Young's modulus of less than about 65 GPa, a coefficient of thermal expansion, averaged over a tempera- 60 ture range from about 20° C. to about 300° C., of less than about 40×10⁻⁷/° C., and a Knoop scratch threshold of at least about 15 N (Newtons). A third aspect of the disclosure is to provide a glass laminate comprising a core glass and a clad glass laminated 65 onto an outer surface of the core glass. The clad glass layer comprises SiO₂, B_2O_3 , and Al_2O_3 and the sum of alkali

about 300° C., unless otherwise specified.

It is noted that the terms "substantially" and "about" may be utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. These terms are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue. Thus, a glass that is "substantially free of alkali metal oxides" or "substantially free of P_2O_5 "

3

is one in which such oxides are not actively added or batched into the glass, but may be present in very small amounts as contaminants.

Referring to the drawings in general and to FIG. 1 in particular, it will be understood that the illustrations are for 5 the purpose of describing particular embodiments and are not intended to limit the disclosure or appended claims thereto. The drawings are not necessarily to scale, and certain features and certain views of the drawings may be shown exaggerated in scale or in schematic in the interest of 10 clarity and conciseness.

Described herein are glasses and glass articles made therefrom that comprise the network formers SiO_2 , B_2O_3 , and Al_2O_3 , and, in some embodiments, have low (i.e., less than about 40×10^{-7} /° C.) coefficients of thermal expansion 15 (CTE). In some embodiments, the glasses are intentionally lightly doped with less than about 1 mol % of alkali metals or alkali metal oxides to lower the resistivity of the glass melt and avoid "fire-through" of refractory containment and processing structures. In other embodiments, the glasses are 20 free of alkali metals and alkali metal oxides (also referred to herein as "alkali metal oxide modifiers"). In some embodiments, these glasses also have low values of Young's modulus and shear modulus to improve the intrinsic or native damage resistance of the glass. 25 In some embodiments, the glasses described herein are formable by down-draw processes that are known in the art, such as slot-draw and fusion-draw processes. The fusion draw process is an industrial technique that has been used for the large-scale manufacture of thin glass sheets. Compared 30 to other flat glass manufacturing techniques, such as the float or slot draw processes, the fusion draw process yields thin glass sheets with superior flatness and surface quality. As a result, the fusion draw process has become the dominant manufacturing technique in the fabrication of thin glass 35 substrates for liquid crystal displays, as well as for cover glass for personal electronic devices such as notebooks, entertainment devices, tables, laptops, and the like. The fusion draw process involves the flow of molten glass over a trough known as an "isopipe," which is typically 40 made of zircon or another refractory material. The molten glass overflows the top of the isopipe from both sides, meeting at the bottom of the isopipe to form a single sheet where only the interior of the final sheet has made direct contact with the isopipe. Since neither exposed surface of 45 the final glass sheet has made contact with the isopipe material during the draw process, both outer surfaces of the glass are of pristine quality and do not require subsequent finishing. In order to be fusion drawable, a glass must have a 50 sufficiently high liquidus viscosity (i.e., the viscosity of a molten glass at the liquidus temperature). In some embodiments, the glasses described herein have a liquidus viscosity of at least about 100 kilopoise (kpoise), in other embodiments, at least about 120 kpoise, and in still other embodi- 55 ments, these glasses have a liquidus viscosity of at least about 300 kpoise. In those instances in which the alkalidoped and alkali-free glass is used as a clad layer in a glass laminate and the viscosity behavior of the core glass with respect to temperature is approximately the same as that of 60 the clad glass, the liquidus viscosity of the clad glass may be greater than or equal to about 70 kPoise. Traditional fusion draw is accomplished using a single isopipe, resulting in a homogeneous glass product. The more complicated laminate fusion process makes use of two 65 isopipes to form a laminated sheet comprising a core glass composition surrounded on either (or both) side by outer

4

clad layers. One of the main advantages of laminate fusion is that when the coefficient of thermal expansion of the clad glass is less than that of the core glass, the CTE difference results in a compressive stress in the outer clad layer. This compressive stress increases the strength of the final glass product without the need for ion exchange treatment. Unlike ion exchange, this strengthening can be achieved without the use of alkali ions in the glass.

Accordingly, in some embodiments, the alkali-doped and alkali-free glasses described herein may be used to form a glass laminate, schematically shown in FIG. 1. Glass laminate 100 comprises a core glass 110 surrounded by a clad glass **120** or "clad layer" formed from the alkali-doped and alkali-free glass described herein. The core glass **110** has a CTE that is greater than that of the alkali-doped and alkalifree glass in the clad layer **120**. The core glass may, in some embodiments, be an alkali aluminosilicate glass. In one non-limiting example, the core glass is an alkali aluminosilicate glass having the composition 66.9 mol % SiO₂, 10.1 mol % Al₂O₃, 0.58 mol % B₂O₃, 7.45 mol % Na₂O, 8.39 mol % K₂O, 5.78 mol % MgO, 0.58 mol % CaO, 0.2 mol % SnO_2 , 0.01 mol % ZrO₂, and 0.01 mol % Fe₂O₃, with a strain point of 572° C., an anneal point of 629° C., a softening point of 888° C., and $CTE=95.5\times10^{-7}/^{\circ}$ C. When employed as a clad glass in a laminated product, the alkali-doped and alkali-free glass compositions described herein can provide high compressive stresses to the clad layer. The CTE of low alkali metal oxide/alkali-doped and alkali-free fusion-formable glasses described herein are generally in the range of about 40×10^{-7} /° C. or less and, in some embodiments, in the range of about 35×10^{-7} /° C. or less. When such a glass is paired with, for example, an alkali aluminosilicate glass (e.g., Gorilla® Glass, manufactured by Corning Incorporated) having a CTE of 90×10⁻⁷/° C., the expected compressive stress in the clad glass can be calculated using the elastic stress equations given below in which subscripts 1 and 2 refer to the core glass and the clad glass, respectively:

$$\sigma_{2} = \frac{E_{1}(e_{2} - e_{1})}{\left(\frac{E_{1}}{E_{2}}(1 - v_{2})\right) + \left(\frac{2t_{2}}{t_{1}}(1 - v_{1})\right)}$$

and
$$\sigma_{1} = -\frac{2t_{2}}{t_{1}}\sigma_{2}$$

where E is Young's modulus, v is Poisson's ratio, τ is the glass thickness, σ is the stress, and e_2 - e_1 is the difference in thermal expansion between the clad glass and the core glass. Using the same elastic modulus and Poisson's ratio for the clad glass and core glass further simplifies the above equations.

To calculate the difference in thermal expansion between the clad glass and core glass, it is assumed that the stress sets in below the strain point of the softer glass of the clad and core. The stresses in the clad glass can be estimated using these assumptions and the equations above. For typical display-like glass with a CTE of 30×10^{-7} /° C. as the clad glass and an alkali aluminosilicate core glass with CTE of 90×10^{-7} /° C., overall thicknesses in the range of 0.5-1.0 mm and clad glass thickness of 10-100 µm, the compressive stress of the clad glass is estimated to be in a range from about 200 MPa to about 315 MPa. In some embodiments, the glasses described herein have coefficients of thermal expansion of less than about 40×10^{-7} /° C. and, in some

5

embodiments, less than about 35×10^{-7} /° C. For these glasses, the compressive stress of the clad glass layer would be at least about 40 MPa, and in other embodiments, at least about 80 MPa.

The alkali-doped and alkali-free glasses described herein 5 have especially low coefficients of thermal expansion. In some embodiments, the CTE of the glass is less than less than about 40×10^{-7} /° C. and, in other embodiments, is less than about 35×10^{-7} /° C. When paired with a core glass having a higher CTE, the glasses described herein provide a 10 high level of compressive stress in the clad layers of the final laminated glass product. This increases the strength of the glass laminate product. Room-temperature compressive stresses of at least about 40 MPa and, in some embodiments, at least about 80 MPa are attainable by using the glasses 15 disclosed herein in the clad layer of the laminate. When used as a clad layer, the liquidus viscosity requirements of the glasses described herein may be lowered. In those embodiments where the viscosity behavior of the core glass with respect to temperature is approximately the same as (i.e., 20) "matched with") that of the clad glass, the liquidus viscosity of the clad glass may be greater than or equal to about 70 kPoise. The alkali-doped and alkali-free glasses have values of Young's modulus and shear modulus that are significantly 25 less than those of other commercially available fusiondrawn glasses. In some embodiments, the Young's modulus is less than about 65 gigapascals (GPa) and, in still other embodiments, less than about 60 GPa. The low elastic moduli provide these glasses with a high level of intrinsic 30 damage resistance.

6

glasses described herein is greater than or equal to about 4 mol % and less than or equal to the amount of Al_2O_3 present in the glass (i.e., 4 mol %≤MgO+CaO+SrO≤Al_2O_3). In some embodiments, the total amount of alkali and alkaline earth oxides in the glasses described herein is greater than or equal to about 4 mol % and less than or equal to the amount of Al_2O_3 present in the glass (i.e., 4 mol %≤Li₂O+Na₂O+K₂O+MgO+CaO+SrO≤Al₂O₃). In certain embodiments, the glass is free of P₂O₅.

The glass may further include up to about 0.2 mol % ZrO₂ (i.e., 0 mol $\% \le ZrO_2 \le 0.2 \text{ mol }\%$), up to about 0.2 mol % Fe_2O_3 (i.e., 0 mol $\% \leq Fe_2O_3 \leq 0.2$ mol %) and at least one fining agent such as SnO₂, CeO₂, As₂O₃, Sb₂O₅, Cl⁻, F⁻, or the like. The at least one fining agent may, in some embodiments, include up to about 0.2 mol % SnO₂ (i.e., 0 mol $\% \le SnO_2 \le 0.2 \mod \%$). Compositions and of non-limiting examples of these glasses are listed in Table 1. Each of the oxide components of these glasses serves a function. Silica (SiO_2) is the primary glass forming oxide, and forms the network backbone for the molten glass. Pure SiO₂ has a low CTE and is alkali metal-free. Due to its extremely high melting temperature, however, pure SiO₂ is incompatible with the fusion draw process. The viscosity curve is also much too high to match with any core glass in a laminate structure. In some embodiments, the amount of SiO_2 in the glasses described herein ranges from about 50 mol % to about 70 mol %. In other embodiments, the SiO₂ concentration ranges from about 55 mol % to about 70 mol %. In addition to silica, the glasses described herein comprise the network formers Al_2O_3 and B_2O_3 to achieve stable glass formation, low CTE, low Young's modulus, low shear modulus, and to facilitate melting and forming. By mixing all four of these network formers in appropriate concentrations, it is possible achieve stable bulk glass formation while minimizing the need for network modifiers such as alkali or alkaline earth oxides, which act to increase CTE and modulus. Like SiO₂, Al₂O₃ contributes to the rigidity to the glass network. Alumina can exist in the glass in either fourfold or fivefold coordination. In some embodiments, the glasses described herein comprise from about 5 mol % to about 12 mol % Al₂O₃ and, in particular embodiments, from about 6 mol % to about 10 mol % Al_2O_3 . Boron oxide (B_2O_3) is also a glass-forming oxide that is used to reduce viscosity and thus improves the ability to melt and form glass. B_2O_3 can exist in either threefold or fourfold coordination in the glass network. Threefold coordinated B_2O_3 is the most effective oxide for reducing the Young's modulus and shear modulus, thus improving the intrinsic damage resistance of the glass. Accordingly, the glasses described herein, in some embodiments, comprise from about 12 mol % up to about 35 mol % B₂O₃ and, in other embodiments, from about 18 mol % to about 30 mol % B_2O_3 . Alkaline earth oxides (MgO, CaO, and SrO), like B₂O₃, also improve the melting behavior of the glass. However, they also act to increase CTE and Young's and shear moduli. In some embodiments, the glasses described herein comprise up to about 5 mol % MgO, up to about 12 mol % CaO, and up to about 5 mol % SrO and, in other embodiments, up to about 3 mol % MgO, from about 2 mol % up to about 10 mol % CaO, and up to about 3 mol % SrO. In order to ensure that the vast majority of B_2O_3 in the glass is in the threefold coordinated state and thus obtain a high native scratch resistance, (MgO)+(CaO)+(SrO) \leq (Al₂O₃)+1 mol % in some embodiments, or, in other embodiments, (MgO)+(CaO)+ $(SrO) \leq (Al_2O_3).$

In some embodiments, the glasses described herein consist essentially of or comprise: from about 50 mol % to about $70 \text{ mol }\% \text{ SiO}_2 \text{ (i.e., 50 mol }\% \le \text{SiO}_2 \le 70 \text{ mol }\%); \text{ from about}$ 5 mol % to about 20 mol % Al_2O_3 (i.e., 5 mol % $\leq Al_2O_3 \leq 20$ 35 mol %); from about 12 mol % to about 35 mol % B_2O_3 (i.e., 12 mol $\&\leq B_2O_3 \leq 35 \mod \%$; up to about 5 mol % MgO (i.e., 0 mol $\% \leq MgO \leq 5$ mol %); up to about 12 mol % CaO (i.e., 0 mol $\% \leq CaO \leq 12 \mod \%$); and up to about 5 mol %SrO (i.e., 0 mol $\% \leq SrO \leq 5$ mol %), wherein the sum of the 40 alkali metal oxide modifiers is less than or equal to 0.1 mol % (i.e., 0 mol % $\leq Li_2O+Na_2O+K_2 \leq 0$ 0.1 mol %). In some embodiments, 4 mol % \leq MgO+CaO+SrO \leq Al₂O₃+1 mol %. In certain embodiments, the glass is substantially free of, or contains 0 mol %, P_2O_5 and/or alkali metal oxide modifiers. 45 The glass may further include up to about 0.5 mol % Fe_2O_3 (i.e., 0 mol % $\leq Fe_2O_3 \leq 0.5$ mol %); up to about 0.2 mol % ZrO₂ (i.e., 0 mol % \leq ZrO₂ \leq 0.2 mol %); and, optionally, at least one fining agent such as SnO₂, CeO₂, As₂O₃, Sb₂O₅, Cl⁻, F⁻, or the like. The at least one fining agent may, in 50 some embodiments, include up to about 0.7 mol % SnO_2 (i.e., 0 mol $\% \le SnO_2 \le 0.5$ mol %); up to about 0.7 mol %CeO₂ up to about 0.5 mol % (i.e., 0 mol % \leq CeO₂ \leq 0.7 mol %); As_2O_3 (i.e., 0 mol % $\leq As_2O_3 \leq 0.5$ mol %); and up to about 0.5 mol % Sb₂O₃ (i.e., 0 mol % \leq Sb₂O₃ \leq 0.5 mol %). 55 In particular embodiments, the glasses consist essentially of or comprise: from about 55 mol % to about 70 mol % SiO_2 (i.e., 55 mol % $\leq SiO_2 \leq 70$ mol %); from about 6 mol % to about 10 mol % Al_2O_3 (i.e., 6 mol % $Al_2O_3 \le 10$ mol %); from about 18 mol % to about 30 mol % B_2O_3 (i.e., 18 mol 60 $\& \leq B_2O_3 \leq 30 \mod \%$; up to about 3 mol % MgO (i.e., 0 mol) $\% \leq MgO \leq 3 \mod \%$; from about 2 mol % up to about 10 mol % CaO (i.e., 2 mol % \leq CaO \leq 10 mol %); and up to about 3 mol % SrO (i.e., 0 mol % \leq SrO \leq 3 mol %), wherein the sum of the alkali metal oxide modifiers is less than or equal to 1 65 mol (i.e., 0 mol $\% \le Li_2O + Na_2O + K_2O \le 1$ mol %). In some embodiments, the total amount of MgO, CaO, and SrO in the

8

TABLE 1-continued

e in small									
ous inclu-				Exemplary	compositic	ons of glass	es.		
glass may	5	mol %							
ut 0.7 mol	5		19	20	21	22	23	24	
p to about									
one fining		SiO_2	66.56	64.20	61.34	59.18	60.52	60.66	
2•		$Al_2 O_3$	7.39	7.46	8.17	8.08	8.25	8.24	
		B_2O_3	18.75	20.87	22.04	24.39	22.71	22.60	
oduced by	10	Na ₂ O	0.04	0.04	0.04	0.04	0.04	0.04	
materials		K ₂ O	0.01	0.01	0.01	0.01	0.01	0.01	
glass may		MgO	0.16	0.15	0.17	0.17	0.18	0.18	
		CaO	6.91	7.06	7.92	7.90	8.07	8.04	
time. The		SrO	0.01	0.01	0.01	0.01	0.01	0.01	
about 0.1		BaO	0.00	0.00	0.00	0.00	0.00	0.00	
v concen-	15	SnO_2	0.10	0.11	0.17	0.13	0.12	0.12	
	15	ZrO ₂	0.06	0.07	0.11	0.07	0.07	0.08	
npurity in		Fe_2O_3	0.01	0.01	0.01	0.01	0.01	0.01	
lass may									
r embodi-		Total	100.00	100.00	100.00	100.00	100.00	100.00	
	20		25	26	27	28	29	30	
	20	SiO_2	58.20	60.20	60.27	58.75	60.33	60.32	
		Al_2O_3	8.53	8.12	8.08	7.87	8.09	8.07	
		B_2O_3	24.88	23.24	23.30	25.21	23.19	23.22	
		Na_2O	0.04	0.04	0.04	0.03	0.03	0.03	
		K ₂ O	0.01	0.02	0.01	0.01	0.01	0.01	
	25	MgO	0.26	0.30	1.95	2.55	3.04	3.16	
6		CaO	7.89	7.77	6.14	5.36	5.08	4.96	
_		SrO	0.01	0.01	0.01	0.01	0.01	0.01	
65.63		BaO	0.00	0.00	0.00	0.00	0.00	0.00	
9.36		SnO_2	0.11	0.16	0.11	0.11	0.12	0.12	
15.94		ZrO_2^2	0.07	0.12	0.08	0.08	0.09	0.09	
0.04	30	Fe_2O_3	0.01	0.01	0.01	0.01	0.01	0.01	
0.01	_								
0.19		Total	100.00	100.00	100.00	100.00	100.00	100.00	
8.64									
0.01			31	32	33	34	35	36	
0.00									
0.11	35	SiO_2	58.80	60.59	60.69	61.01	60.98	59.86	
0.05	55	MŌ	7.80	016	0 71	0 77	8 1 0	017	

7

The glass may also include at least one fining agent such as SnO₂, CeO₂, As₂O₃, Sb₂O₅, Cl⁻, F³¹, or the like concentrations to aid in the elimination of gaseou sions during melting. In some embodiments, the g comprise up to about 0.7 mol % SnO₂, up to about % CeO₂, up to about 0.5 mol % As₂O₃, and/or up 0.5 mol % Sb₂O₃. In other embodiments, at least or agent may comprise up to about 0.2 mol % SnO₂.

A small amount of ZrO₂ may also also be introd contact of hot glass with zirconia-based refractory in the melter, and thus monitoring its level in the g be important to judging the rate of tank wear over the glass, may in some embodiments, include up to a mol % ZrO₂. The glass may further comprise low trations of Fe₂O₃, as this material is a common imbatch materials. In some embodiments, the gla include up to about 0.5 mol % Fe₂O₃ and, in other ments, up to about 0.2 mol % Fe_2O_3 .

		TABLE	1			SiO ₂	58.20	60.20	60.27	58.75	60.33	60.32
												8.07
	Exemplary	compositio	ons of glass	ses.								23.22
												0.03
		m	ol %									0.01
4	2	2	,	-	6	-						3.16
1	2	3	4	5	6							4.96
												0.01
												0.00
						<u>~</u>						0.12
13.30	15.44	15.43	15.60	15.65		<u>~</u>						0.09
0.04	0.04	0.04	0.04	0.04	0.04	$30 \text{ Fe}_2\text{O}_3$	0.01	0.01	0.01	0.01	0.01	0.01
0.02	0.02	0.02	0.02	0.02	0.01							
0.39	0.39	0.39	0.39	0.21	0.19	Total	100.00	100.00	100.00	100.00	100.00	100.00
8.92	8.72	8.73	8.66	8.75	8.64							
0.21	0.07	0.02	0.01	0.01	0.01		31	32	33	34	35	36
0.00	0.00	0.00	0.00	0.00	0.00							
	0.05	0.05		0.08		25 SiO ₂	58.80	60.59	60.69	61.01	60.98	59.86
							7.89	8.16	8.24	8.27	8.29	8.12
												25.52
	.	0.01	.		.	— — — — — — — — — — — — — — — — — — —						0.05
100.00	100.00	100.00	100.00	100.00	100.00	<u>~</u>						0.01
100.00	100.00	100.00	100.00	100.00	100.00							3.84
7	Q	0	10	11	10	—						2.34
/	0	9	10	11	12	40						
66.14	(())	66.50	CC AE	(7.24	(7.51	- 510						0.01
												0.00
						<u>~</u>						0.12
						~						0.12
						Fe_2O_3	0.01	0.01	0.01	0.01	0.01	0.01
0.19	0.18	0.17	0.17	0.15	0.00	45 Total	100.00	100.00	100.00	100.00	100.00	100.00
8.47	8.17	7.75	7.39	7.07	6.9 0							
0.01	0.01	0.01	0.01	0.01	0.01		31	32	33	34	35	36
0.00	0.00	0.00	0.00	0.00	0.00							
0.10	0.10	0.09	0.12	0.12	0.11	SiO_2	58.80	60.59	60.69	61.01	60.98	59.86
0.04	0.05	0.04	0.07	0.08	0.08	Al_2O_3	7.89	8.16	8.24	8.27	8.29	8.12
0.01	0.01	0.01	0.01	0.01	0.01	$50 B_2O_3$	25.23	23.43	23.85	23.85	23.96	25.52
						Na ₂ O	0.03	0.03	0.04	0.04	0.04	0.05
100.00	100.00	100.00	100.00	100.00	100.00	$K_2 O$	0.01	0.01	0.01	0.01	0.01	0.01
							3.19	3.44	3.67	3.84	3.89	3.84
13	14	15	16	17	18					2.72		2.34
10			1 V	± /	10							0.01
67 54	67 48	67 41	66.80	67 49	67 38	D ₂ O						0.00
												0.00
						<u>~</u>						0.12
						<u>~</u>						0.12
						$\Gamma c_2 O_3$	0.01	0.01	0.01	0.01	0.01	0.01
						TT_ 4 1	100.00	100.00	100.00	100.00	100.00	100.00
						Total	100.00	100.00	100.00	100.00	100.00	100.00
						60						
0.01	0.01	0.01	0.01	0.01	0.01		11			ant	daa 41	-1
0.00	0.00	0.00	0.00	0.00	0.00		high amo		-	-		<i>.</i>
	0.10	0.10	0.09	0.09	0.09	a high	i level c	of intrins	sic or "	native" s	scratch r	resistance
0.10	0.10			0.06	0.06	•						
$\begin{array}{c} 0.10\\ 0.08\end{array}$	0.06	0.06	0.07	0.06	0.00	VV [] [] [] []		AL SHEW	LICIUN	1)V IUII F		
		$\begin{array}{c} 0.06 \\ 0.01 \end{array}$	$\begin{array}{c} 0.07 \\ 0.01 \end{array}$	0.08	0.01		it chemic					
0.08	0.06					- resista	nce is det	ermined	by Knoo	p scratch	threshol	d testing
	1 67.11 9.90 13.30 0.04 0.02 0.39 8.92 0.21 0.00 0.07 0.03 0.01 100.00 7 66.14 9.17 15.81 0.04 0.02 0.19 8.47 0.01 0.04 0.02 0.19 8.47 0.01 0.04 0.01 100.00 13 67.54 7.32 17.94 0.04 0.01 0.15 6.79	12 67.11 65.75 9.90 9.49 13.30 15.44 0.04 0.04 0.02 0.02 0.39 0.39 8.92 8.72 0.21 0.07 0.00 0.00 0.07 0.05 0.03 0.02 0.01 0.01 100.00 100.00 7 8 66.14 66.35 9.17 8.81 15.81 16.27 0.04 0.04 0.02 0.01 0.19 0.18 8.47 8.17 0.01 0.01 0.00 0.00 0.10 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.03 0.02 0.01 0.01 0.02 0.01 0.03 0.02 0.01 0.01 0.02 0.01 0.03 0.02 0.01 0.01 0.02 0.01 0.03 0.02 0.01 0.01 0.02 0.01 0.03 0.02 0.01 <	Exemplary composition 1 2 3 67.11 65.75 65.82 9.90 9.49 9.46 13.30 15.44 15.43 0.04 0.04 0.04 0.02 0.02 0.02 0.39 0.39 0.39 8.92 8.72 8.73 0.21 0.07 0.02 0.00 0.00 0.00 0.01 0.01 0.01 100.00 100.00 100.00 7 8 9 66.14 66.35 66.59 9.17 8.81 8.38 15.81 16.27 16.90 0.04 0.04 0.04 0.02 0.01 0.01 0.19 0.18 0.17 8.47 8.17 7.75 0.01 0.01 0.01 0.10 0.10 0.01 0.10 0.10 0.01 0.10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Exemplary compositions of glasses. mol % 1 2 3 4 5 67.11 65.75 65.82 65.79 65.81 9.90 9.49 9.46 9.41 9.39 13.30 15.44 15.43 15.60 15.65 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.39 0.39 0.39 0.39 0.21 8.92 8.72 8.73 8.66 8.75 0.21 0.07 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00<	Exemplary compositions of glasses. mol $\%$ 1 2 3 4 5 6 67.11 65.75 65.82 65.79 65.81 65.63 9.90 9.49 9.46 9.41 9.39 9.36 13.30 15.44 15.43 15.60 15.65 15.94 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 0.01 0.19 8.92 8.72 8.73 8.66 8.75 8.64 0.21 0.07 0.02 0.03 0.03 0.03 0.05 0.05 0.08 0.11 0.01 0.01 0.03 0.02 0.03 0.03 0.03 0.05 0.01 0.01 0.01 0.01 0.01 0.01 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Instant i $A_{12}O_{3}$ $B_{2}O_{3}$ Exemplary compositions of glasses. mol % 1 2 3 4 5 6 67.11 65.75 65.82 65.79 65.81 65.63 BaO 9.90 9.49 9.46 9.41 9.39 9.36 SnO_2 13.30 15.44 15.60 15.65 15.94 ZrO_2 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 Na ₂ O Na ₂ O	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

loads to determine the onset of lateral cracking; i.e., sus-

9

tained cracks that are greater than twice the width of the original scratch/groove. This onset of lateral cracking is defined as the "Knoop Scratch Threshold." The glasses described herein have a minimum Knoop scratch threshold of about 15 N (Newtons). In some embodiments, the Knoop 5 scratch threshold is at least 20 N and, in other embodiments, at least about 25 N.

Photographs of Knoop scratch test results for glass sample 25 in Table 1 are shown in FIGS. **2**A-**2**F. The glass was not ion exchanged prior to testing. At loads of up to 26 N (FIGS. 2A-2D), no lateral cracking associated with the original scratch 200 is observed. Lateral cracking 202 is observed at a load of 28 N (FIG. 2E), but the degree of lateral cracking **212** is less than twice the width of the original scratch **202**. $_{15}$ The Knoop Scratch Threshold for the glass is reached at a load of 30 N (FIG. 2F), as the lateral observed cracking 214 is greater than twice the width of the original scratch 204. In comparison to the glasses described herein, other alkaline earth borosilicate glasses (Eagle XG® Glass, manu-20 factured by Corning Incorporated) exhibit a Knoop Scratch Threshold of 8-10 N, and ion exchanged alkali aluminosilicate glasses (Gorilla® Glass and Gorilla® Glass 3, manufactured by Corning Incorporated) exhibit Knoop Scratch Thresholds of 3.9-4.9 N and 9.8-12 N. respectively. A method of making the glasses described herein is also provided the method includes providing a glass melt comprising SiO₂, B₂O₃, and at least one of Al₂O₃ and P₂O₅, wherein the glass melt is substantially free of alkali metal oxide modifiers, and down-drawing the glass melt to form ³⁰ the glass. In some embodiments, the step of down-drawing the glass comprises slot-drawing the glass melt and, in other embodiments, fusion-drawing the glass melt.

10

The invention claimed is: **1**. A glass, the glass comprising: about 50 mol % to about 70 mol % SiO_2 ; about 6 mol % to about 10 mol % Al_2O_3 ; about 18 mol % to about 30 mol % B_2O_3 ; up to about 5 mol % MgO; up to about 10 mol % CaO; up to about 5 mol % SrO; and 0.01 mol % to about 0.5 mol % Fe_2O_3 , wherein MgO+CaO+SrO \leq Al₂O₃, and a sum of alkali metal oxide modifiers is less than or equal to about 1 mol %. 2. The glass of claim 1, wherein 4 mol %≤MgO+CaO+

In certain embodiments, the method further includes $_{35}$

 $SrO \leq Al_2O_3$.

3. The glass of claim **1**, wherein the glass has a Young's modulus of less than about 65 GPa.

4. The glass of claim 3, wherein the Young's modulus is less than about 60 GPa.

5. The glass of claim **1**, wherein the glass has a coefficient of thermal expansion of less than about 40×10^{-7} /° C.

6. The glass of claim 5, wherein the coefficient of thermal expansion is less than about 35×10^{-7} /° C.

7. The glass of claim 1, wherein the glass further comprises at least one of SnO₂, CeO₂, As₂O₃, Sb₂O₅, Cl⁻, and 25 F⁻.

8. The glass of claim 1, wherein the glass comprises at least one of:

up to about 0.7 mol % SnO_2 ; up to about 0.7 mol % CeO_2 ; up to about 0.5 mol % As_2O_3 ; and up to about 0.5 mol % Sb_2O_3 . 9. The glass of claim 1, wherein the glass comprises: about 55 mol % to about 70 mol % SiO_2 ; greater than 6 mol % to about 10 mol % Al_2O_3 ; about 18 mol % to about 30 mol % B_2O_3 ; up to about 3 mol % MgO; up to about 10 mol % CaO; and

providing a core glass melt and fusion drawing the core glass melt to form a core glass having a coefficient of thermal expansion that is less than the coefficient of thermal expansion of the clad glass. The clad glass melt is then fusion drawn to form the clad glass layer, thereby surrounding the $_{40}$ core glass. The clad glass layer is under a compressive stress of at least about 40 MPa and, in some embodiments, at least about 80 MPa.

Being substantially free of alkali metals, the glasses described herein are suitable for use in thin film transistor 45 (TFT) display applications. These applications require an alkali-doped and alkali-free interface, since the presence of alkali ions poisons the thin film transistors. Thus, ion exchanged alkali-containing glasses are unsuitable for such applications. Glass laminates that employ the alkali-doped 50 and alkali-free glasses described herein as a clad layer provide a strengthened glass product combined with an interface that is either alkali-doped and alkali-free or doped with a low level (<1 mol %) alkali metals or alkali metal oxides. In some embodiments, the alkali-doped and alkali- 55 metal oxide modifiers. free glasses also have high annealing and strain points to reduce thermal compaction, which is desirable for TFT display substrates. The glasses described herein may also be used in color filter substrates, cover glasses, or touch interfaces in various electronic devices. 60 While typical embodiments have been set forth for the purpose of illustration, the foregoing description should not be deemed to be a limitation on the scope of the disclosure or appended claims. Accordingly, various modifications, adaptations, and alternatives may occur to one skilled in the 65 art without departing from the spirit and scope of the present disclosure or appended claims.

up to about 3 mol % SrO.

10. The glass of claim 9, wherein the glass comprises up to about 0.2 mol % SnO_2 .

11. The glass of claim **10**, wherein the glass forms a clad layer in a glass laminate, the glass laminate comprising a core glass and having a coefficient of thermal expansion that is greater than a coefficient of thermal expansion of the clad layer.

12. The glass of claim **11**, wherein the clad layer is under a compressive stress of at least about 40 MPa.

13. The glass of claim **1**, wherein the glass has a liquidus viscosity of at least 100 kpoise.

14. The glass of claim **1**, wherein the glass is downdrawable.

15. The glass of claim **1**, wherein the glass comprises up to about 0.1 mol % ZrO_2 .

16. The glass of claim 1, wherein the glass is free of alkali

17. The glass of claim **1**, wherein the glass has a Knoop scratch threshold of at least 15 N.

18. The glass of claim 17, wherein the glass has a Knoop scratch threshold of at least 20 N.

19. The glass of claim **1**, wherein the glass forms at least a portion of a color filter substrate, a thin film transistor substrate, a cover glass, or a touch interface. 20. The glass of claim 1, wherein the glass comprises 0 mol % BaO.

21. A glass, comprising: 55 mol $\% \le SiO_2 \le 70$ mol %; 6 mol $\% \le Al_2O_3 \le 10 \mod \%$;

11

 $18 \ mol \ \% \le B_2 O_3 \le 30 \ mol \ \%;$

0 mol %<MgO≤5 mol %; 0 mol %<CaO≤12 mol %;

0 mol %<SrO, wherein 4 mol % \leq (MgO+CaO+SrO) \leq

 $(Al_2O_3+1 mol \%); and$

 $0 \mod \text{M} \leq (Li_2O + Na_2O + K_2O) \leq 0.1 \mod \text{M}.$

22. The glass of claim 21, wherein 4 mol $\% \leq (MgO+CaO+SrO) \leq Al_2O_3$.

23. The glass of claim 22, wherein 4 mol $\% \leq (Li_2O + Na_2O + K_2O + MgO + CaO + SrO) \leq Al_2O_3$.

24. The glass of claim 21, wherein 55 mol $\% \le SiO_2 \le 64.20$ mol %.

25. The glass of claim 24, wherein 20.87 mol $\% \leq B_2 O_3 \leq 30$ mol %.

12

26. The glass of claim 21, where a majority of the B_2O_{3-15} in the glass is in a threefold coordinated state.

27. A glass, comprising: 55 mol % \leq SiO₂ \leq 70 mol %; 6 mol % \leq Al₂O₃ \leq 10 mol %; 31. The glass of claim 30, wherein 4 mol $\% \le (Li_2O + Na_2O + K_2O + MgO + CaO + SrO) \le Al_2O_3$.

32. The glass of claim 30, where a majority of the B_2O_3 in the glass is in a threefold coordinated state.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO. : RE49,307 E APPLICATION NO. DATED INVENTOR(S)

: 16/902663 : November 22, 2022

: Adam James Ellison et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

On page 3, in item (56), in Column 2, under "Other Publications", Line 49, delete "Al.sub.20" and insert -- Al.sub.2O --.

In the Claims

In Column 10, Lines 50-51, in Claim 14, delete "downdrawable." and insert -- down-drawable. --.

Signed and Sealed this Twenty-eighth Day of February, 2023

Page 1 of 1

