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JOHNSON LITHIUM OXYGEN
ELECTROCHEMICAL ENGINE

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a reissue of U.S. Pat. No. 10,218,044,
issued on Feb. 26, 2019 from U.S. application Ser. No.
15/408,991, filed Jan. 18, 2017, which claims priorty to

U.S. Provisional Application No. 62/281,875, filed Jan. 22,
2016, the [disclosure] disclosures of which [is] are herein
incorporated by reference in their entirety.

BACKGROUND OF THE INVENTION

The need for high performance and reliable energy stor-
age 1n the modern society 1s well documented. Lithium
batteries represent a very attractive solution to these energy
needs due to their superior energy density and high perfor-
mance. However, available Li-10n storage materials limit the
specific energy of conventional Li-ion batteries. While
lithium has one of the highest specific capacities of any
anode (3861 mAbh/g), typical cathode materials such as
MnQO,, V,O., LiCoO, and (CF)n have specific capacities
less than 200 mAh/g.

Recently, lithium/oxygen (IL1/0,) or lithium air batteries
have been suggested as a means for avoiding the limitations
of today’s lithtum 1on cells. In these batteries, lithium metal
anodes are used to maximize anode capacity and the cathode
capacity of L1 air batteries 1s maximized by not storing the
cathode active material 1n the battery. Instead, ambient O, 1s
reduced on a catalytic air electrode to form O,>~, where it
reacts with 1" 1ons conducted from the anode. Aqueous
lithium air batteries have been found to sufler from corrosion
of the L1 anode by water and sufler from less than optimum
capacity because of the excess water required for effective
operation.

Abraham and Jiang (J. Electrochem. Soc., 1996, 143 (1),
1-5) reported a non-aqueous L1/O, battery with an open
circuit voltage close to 3 V, an operating voltage of 2.0 to 2.8
V, good coulomb efliciency, and some re-chargeability, but
with severe capacity fade, limiting the lifetime to only a few
cycles. Further, 1n non-aqueous cells, the electrolyte has to
wet the lithium oxygen reaction product 1 order for 1t to be
clectrolyzed during recharge. It has been found that the
limited solubility of the reaction product 1n available organic
clectrolytes necessitates the use of excess amounts of elec-
trolyte to adequately wet the extremely high surface area
nanoscale discharge deposits produced 1n the cathode. Thus,
the required excess electrolyte significantly decreases high
energy density that would otherwise be available in lithium
oxygen cells.

Operation of L1/O, cells depends on the diffusion of
oxygen 1nto the air cathode. Oxygen absorption 1s a function
of the electrolyte’s Bunsen coeflicient (), electrolyte con-
ductivity (o), and wviscosity (). It 1s known that as the
solvent’s viscosity increases, there are decreases 1n lithium
reaction capacity and Bunsen coethicients. Additionally, the
clectrolyte has an even more direct eflect on overall cell
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capacity as the ability to dissolve reaction product 1s crucial.
This problem has persisted 1n one form or another 1n known
batteries.

Indeed, high rates of capacity fade remain a problem for
non-aqueous rechargeable lithrum air batteries and have
represented a significant barrier to their commercialization.
The high fade 1s attributed primarily to parasitic reactions
occurring between the electrolyte and the mossy lithium
powder and dendrites formed at the anode-electrolyte inter-
tace during cell recharge, as well as the passivation reactions
between the electrolyte and the L10, radical which occurs as
an 1mtermediate step i reducing L1,0, during recharge.

During recharge, lithium 1ons are conducted across the
clectrolyte separator with lithium being plated at the anode.
The recharge process can be complicated by the formation
of low density lithium dendrites and lithium powder as
opposed to a dense lithum metal film. In addition to
passivation reactions with the electrolyte, the mossy lithium
formed during recharge can be oxidized in the presence of
oxygen mto mossy lithium oxide. A thick layer of lithium
oxide and/or electrolyte passivation reaction product on the
anode can increase the impedance of the cell and thereby
lower performance. Formation of mossy lithium waith
cycling can also result 1n large amounts of lithium being
disconnected within the cell and thereby being rendered
ineflective.

Lithium dendrites can penetrate the separator, resulting 1n
internal short circuits within the cell. Repeated cycling
causes the electrolyte to break down, 1n addition to reducing
the oxygen passivation material coated on the anode surface.
This results in the formation of a layer composed of mossy
lithium, lithium-oxide and lithtum-electrolyte reaction prod-
ucts at the metal anode’s surface which drives up cell
impedance and consumes the electrolyte, bringing about cell
dry out.

Attempts to use active (non lithium metal) anodes to
climinate dendritic lithtum plating have not been successiul
because of the similarities 1n the structure of the anode and
cathode. In such lithium air “1on” batteries, both the anode
and cathode contain carbon or another electronic conductor
as a medium for providing electronic continuity. Carbon
black 1n the cathode provides electronic continuity and
reaction sites for lithium oxide formation. To form an active
anode, graphitic carbon 1s included 1n the anode for inter-
calation of lithium and carbon black 1s included for elec-
tronic continuity. Unfortunately, the use of graphite and
carbon black 1n the anode can also provide reaction sites for
lithium oxide formation. At a reaction potential of approxi-
mately 3 volts relative to the low voltage of lithium inter-
calation into graphite, oxygen reactions would dominate 1n
the anode as well as 1n the cathode. Applying existing
lithium 10n battery construction techniques to lithium oxy-
gen cells would allow oxygen to diffuse throughout all
clements of the cell structure. With lithium/oxygen reactions
occurring 1 both the anode and cathode, creation of a
voltage potential differential between the two 1s diflicult. An
equal oxidation reaction potential would exist within the two
clectrodes, resulting 1n no voltage.

As a solution to the problem of dendritic lithium plating
and uncontrolled oxygen diffusion, known aqueous and
non-aqueous lithtum air batteries have included a barrier
clectrolyte separator, typically a ceramic material, to protect
the lithum anode and provide a hard surface onto which
lithium can be plated during recharge. However, formation
of a reliable, cost eflective barrier has been dithicult. A
lithium air cell employing a protective solid state lithium 10n
conductive barrier as a separator to protect lithium in a
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lithium air cell 1s described 1n U.S. Pat. No. 7,691,536 of
Johnson. Thin film barriers have limited eflectiveness 1n
withstanding the mechanical stress associated with stripping,
and plating lithium at the anode or the swelling and con-
traction of the cathode during cycling. Moreover, thick
lithium 10n conductive ceramic plates, while offering excel-
lent protective barrier properties, are extremely diflicult to
tabricate, add significant mass to the cell, and are rather
expensive to make.

As 1t relates to the cathode, the dramatic decrease 1n cell
capacity as the discharge rate 1s increased 1s attributed to the
accumulation of reaction product in the cathode. At high
discharge rate, oxygen entering the cathode at 1ts surface
does not have an opportunity to difluse or otherwise tran-
sition to reaction sites deeper within the cathode. The
discharge reactions occur at the cathode surface, resulting 1n
the formation of a reaction product crust that seals the
surface of the cathode and prevents additional oxygen from
entering. Starved of oxygen, the discharge process cannot be
sustained.

Another significant challenge with lithium air cells has
been electrolyte stability within the cathode. The primary
discharge product in lithium oxygen cells 1s [L.1,0,. During
recharge, the resulting lithium oxygen radical, Li0O,, an
intermediate product which occurs while electrolyzing
L1,0,, aggressively attacks and decomposes the electrolyte
within the cathode, causing it to lose 1ts eflectiveness.

High temperature molten salts have been suggested as an

alternative to organic electrolytes 1n non-aqueous lithtum-air
cells. U.S. Pat. No. 4,803,134 of Sammells describes a high
lithium-oxygen secondary cell in which a ceramic oxygen
ion conductor 1s employed. The cell includes a lithium-
containing negative electrode in contact with a lithium 1on
conducting molten salt electrolyte, LiF—Li1Cl—Li1,0, sepa-
rated from the positive electrode by the oxygen 1on con-
ducting solid electrolyte. The 10n conductivity limitations of
available solid oxide electrolytes require that such a cell be
operated 1n the 700° C. range or higher in order to have
reasonable charge/discharge cycle rates. The geometry of
the cell 1s such that the discharge reaction product accumu-
lates within the molten salt between the anode and the solid
oxide electrolyte. The required space 1s an additional source
of impedance within the cell.

TABLE 1

Physical properties of Molten Nitrate Electrolytes

Melt
Temp K (S/cm)
System Mol % ° C. @570K  at Mol %
LINO;—KNO;, 42-58 124 0.687 50.12 mol %
LINO,
LINO;—RbNO, 30-70 148 0.539 50 mol %o
RbNO;
NaNO;—RbNO; 44-56 178 0.519 50 mol %o
RbNO;
LINO;—NaNO; 56-44 187 0.985 49.96 mol %
NaNO;,
NaNO,;—KNO, 46-54 222 0.66 50.31 mol %
NaNO;
KNO;—RbNO, 30-70 290 0.394 70 mol %o
RbNO;

Molten nitrates also offer a viable solution and the physi-
cal properties ol molten nitrate electrolytes are summarized
in Table 1 (taken from Lithium Batteries Using Molten
Nitrate Electrolytes by Melvin H. Miles; Research Depart-
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ment (Code 4T4220D); Naval Air Wartare Center Weapons
Division; China Luke, Calif. 935535-61000).

The electrochemical oxidation of the molten LiNO,
occurs at about 1.1 V vs. Ag+/Ag or 4.5 V vs. Li+/L1. The
clectrochemical reduction of LINO; occurs at about —-0.9V
vs. Ag+/Ag, and thus these two reactions define a 2.0V
electrochemical stability region for molten LiNO, at 300° C.
and are defined as follows:

LINO;—=Li"+NO-+15205+¢™ (Equation 1)

LINO;+2¢™—=LINO,+O (Equation 2)

This work with molten nitrates was not performed with
lithium air cells 1n mind; however, the eflective operating
voltage window for the electrolyte i1s suitable for such an
application. As indicated by the reaction potential line 1n
FIG. 1, applying a recharge voltage of 4.5V referenced to the
lithium anode can cause lithium nitrate to decompose to
lithium nitrite, releasing oxygen. On the other hand, lithium
can reduce LINO, to L1,0 and L1NQO,,. This reaction occurs
when the LiNO; voltage drops below 2.5V relative to
lithium. As long as there 1s dissolved oxygen 1n the elec-
trolyte, the reaction kinetics will favor the lithium oxygen
reactions over LiNO, reduction. Oxide 1ons are readily
converted to peroxide (0,°7) and aggressive superoxide

(O,7) 10ns 1n NalNO; and KNO, melts (M. H. Miles et al., J.
Electrochem. Soc., 127,1761 (1980)).

A need remains for a lithium air cell which overcomes
problems associated with those of the prior art.

BRIEF SUMMARY OF THE INVENTION

A rechargeable lithium air battery comprises a ceramic
separator forming an anode chamber, a molten lithtum anode
contained i1n the anode chamber, an air cathode, and a
non-aqueous electrolyte, wherein the cathode has a tempera-
ture gradient comprising a low temperature region and a
high temperature region, and wherein the temperature gra-
dient provides a tlow system for reaction product produced
by the battery.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description of the invention, will be better understood when
read in conjunction with the appended drawings. For the
purpose of illustrating the invention, there are shown 1n the
drawings embodiments which are presently preferred. It
should be understood, however, that the invention i1s not
limited to the precise arrangements and instrumentalities
shown.

In the drawings:

FIG. 1 1s a diagram depicting electrochemical reaction
potentials 1n molten lithium nitrate at 300° C.;

FIG. 2 1s a schematic of a battery cell according to one
embodiment of the present invention;

FIG. 3 1s a schematic of a battery cell according to another
embodiment of the present invention in discharge;

FIG. 4 1s a schematic of the battery cell of FIG. 3 1n
recharge;

FIG. 5 1s a schematic of a high performance battery cell
according to a further embodiment of the nvention 1n
discharge;

FIG. 6 1s a schematic of a high performance battery cell
of FIG. 5 1n recharge;

FIG. 7 1s a schematic of a battery cell according to a
further embodiment of the invention; and
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FIG. 8 1s an Arrhenius plot showing lithium 10n conduc-
tivities of several solid ceramic electrolytes.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

This invention relates generally to energy storage, and
more particularly to a lithium air electrochemical cell. For
the purposes of this disclosure, the terms lithium air cell,
lithium air electrochemical engine and lithium oxygen bat-
tery are used interchangeably.

The present invention provides a rechargeable lithium air
cell having a high rate of cell charge/discharge with limited
capacity fade, high energy density, high power density, and
the ability to operate on oxygen from ambient air. As such,
it removes significant barriers that have prevented the com-
mercialization of lithium air cells. For example, the forma-
tion of mossy lithium powder and dendrites at the anode-
clectrolyte interface during cell recharge are eliminated by
the use of molten lithium supplied as a flow reactant to the
anode side of a stable solid state ceramic electrolyte. The
battery according to the invention also includes a flow
system for removing reaction product from the cathode.

The reactions of lithium with oxygen are as follows:

2Li+0,—Li,0, E_=3.10 V

41i+0,—2Li,0 E_=2.91V

To avoid problems associated with past approaches to
lithium air cells, a lithium air cell according to the mnvention
may be operated at a wide range of temperatures 1n the range
of 20° C. to 700° C., which include elevated temperatures,
such as the preferred temperatures of about 200° C. to 430°
C., more preferably about 200° to about 250° C. The solvent
in the electrolyte may be selected based on the preferred
operating temperature of the specific battery. Operation at
clevated temperature enables faster kinetics for higher
power density, thus eliminating a major 1ssue associated
with lithium air technology. Further, operation at elevated
temperature also allows for the use of high temperature
organic e¢lectrolytes and inorganic, molten salt electrolyte
solutions that have high electrochemical stability, thus
avoiding another of the major problems that has plagued
conventional approaches to lithium air cells. Selected 1nor-
ganic molten salts have good solubility of lithium/oxygen
reaction products, thus allowing better control of cell kinet-
ICS.

The rechargeable air battery according to the mmvention
contains a ceramic separator which forms an anode chamber,
a molten lithium anode contained 1n the anode chamber, an
air cathode, and a non-aqueous electrolyte. Each of these
components will be described in more detail below.

The cell further comprises a tlow system which 1s pro-
vided by a temperature gradient across the cathode. More
specifically, the cathode has two temperature regions: a high
temperature region (preferably located near the anode,
where the reaction takes place) and a low temperature region
which 1s located further away from the anode. As the
clectrolyte circulates through the cell during discharge, the
reaction product produced by the battery migrates from the
high temperature region to the low temperature region.

The anode chamber 1s preferably formed by a sealed
ceramic enclosure that 1s lithium ion conductive and which
functions as the separator for the battery. Preferably, the
ceramic material 1s stable in contact with lithtum metal and
protects the anode from ambient oxygen and moisture.
Preferred materials include lithium 10n conducting glasses
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such as lithium beta alumina, lithium phosphate glass,
lithium lanthanum zirconium oxide (LLZO), Al,O;:
Li1-La,Zr,0,,, lithum aluminum germanium phosphate
(LAGP), and lithium aluminum titanium phosphate (LATP).
In a preferred embodiment, the anode chamber 1s maintained
at about 20° C. to about 200° C., more preferably at about
175° C. to about 200° C., most preferably about 175° C. to
about 195° C.

The anode comprises metallic lithium 1n a molten state;
lithium has a melting point of about 180° C. The benefit of
the molten lithium anode 1s that 1t limits undesirable dendrite
growth 1n the cell.

The non-aqueous electrolyte 1s chosen for stability in
contact with lithium. Thus, a breach 1n the ceramic enclosure
will not result 1n rapid reactions, particularly because air
ingress into the cell will be controlled. Preferred electrolytes
include molten morganic salts, for example, alkal1 nitrates
such as lithium and sodium nitrate, alkali chlorides and
bromides such as lithium, potasstum and sodium chlorides
and bromides, alkali carbonates such as sodium and lithium
carbonates, as well as sodium nitrate-potassium mnitrate
(NaNO,;—KNO,) eutectic mixtures and silane and siloxane-
based compounds including, for example, hexamethylcyclo-
trisiloxane, octamethylcyclotetrasiloxane, decamethylcyclo-
pentasiloxane, and dodecamethylhexatetrasiloxane with or
without polyethylene oxide groups.

The morganic salt, silane, or siloxane 1n the electrolyte 1s
present in a solvent. The solvent 1s not limited, and may be
selected based on the preferred operating temperature of the
battery. A preferred solvent 1s LiCl—KCI eutectic, which
works at a temperature of 350° C. to 450° C. The tempera-
ture of the electrolyte may be controlled with a heater and 1s
preferably about 200° C. to 450° C.

The air cathode or positive electrode 1s porous so that
oxygen can penetrate through the pores and form lithium
peroxide as the reaction product; electrolyte also flows
through the porous cathode. The cathode 1s preferably
formed from a porous ceramic material which 1s lithium
conductive and which 1s infiltrated or impregnated with a
metal nitrate such as silver mitrate or a carbon material such
as carbon fibers, carbon black, or carbon foam. Preferred
porous ceramic materials include LLZO, LAGP, LATP, and
lithium oxyamions such as lithium carbonate; most preferred
1s LLZO. In another preferred embodiment, the cathode
contains a carbon material, a heat resistance polymer binder
such as polyimide, and a metal oxide catalyst. An exemplary
cathode material of this type contains about 60% by weight
vapor grown carbon fibers, about 30% polyimide binder, and
about 10% manganese dioxide. The cathode may also be
constructed of electrically conductive sintered metal oxide
powder, sintered metal nitride, carbon, or sintered silicon
carbide.

As a preferred example, porous lithium lanthanum zirco-
nium oxide (LLZO) ceramic substrates are prepared by
pressing 10-15 grams of LLZO powder into a disc at 1000
psi. The disc 1s densified by placing 1n a furnace at 1000° C.
for a period of 1 hour. The disc 1s then impregnated with a
metal nitrate such as silver nitrate to form the cathode.

A thermodynamic process 1s employed to remove and
supply electrolyte to cathode reaction sites. In 1ts basic
configuration, a temperature gradient i1s maintained across
the structure of the cathode wetted by the electrolyte. The
active charge/discharge reaction region of the cell forms the
higher temperature region of the gradient. As a result of the
temperature gradient, during discharge, reaction product
accumulated within the electrolyte at the higher temperature
region migrates to the lower temperature region where 1t
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precipitates/solidifies. The configuration of the cell 1s such
that reaction product can accumulate within the lower tem-
perature region physically away from the higher temperature
reaction region of the cell. Accumulation of reaction product
in the lower temperature region prevents 1t from signifi-
cantly aflecting the charge/discharge cell kinetics occurring
in the higher temperature cathode reaction region. Ulti-
mately, the cooled and settled reaction product will become
re-dissolved 1n the electrolyte. This flow system 1s a key
attribute of the inventive batteries.

In an alternative embodiment, the cell contains a pump to
circulate the electrolyte across the temperature gradient.
Such a cell contains a molten or another appropriate elec-
trolyte reservoir and a temperature control system for con-
trolling the relative temperatures of the cathode and the
reservoir. Further, a heating element 1s employed for elec-
trolyte temperature control. The pump system cycles elec-
trolyte between the cathode and the electrolyte reservorr,
which are adjacent to and 1n fluid communication with each
other. Operation 1s such that during discharge, the cathode 1s
maintained at a temperature that 1s elevated above that of the
clectrolyte reservoir. Reaction product dissolved 1n the elec-
trolyte at high temperature in the cathode 1s carried to the
clectrolyte reservoir where it precipitates due to the lower
temperature theremn. In contrast, during charge, heat 1s
supplied to the reservoir to maintain solubility of reaction
product into the electrolyte. During charge, the electrolyte
carries dissolved reaction product from the reservoir to the
cathode, where 1t 1s electrolyzed. Oxygen 1s released and
lithium 10ns are conducted through the ceramic separator
such that lithium metal 1s plated at the anode. Electrolyte
depleted of reaction product circulates back to the reservoir
where 1t dissolves and carries more reaction product to the
cathode as the charge process continues. The configuration
1s such that the reaction product 1s temporarily stored as a
solid 1n the electrolyte reservoir as opposed to the cathode.
Operation 1n this manner enables the cathode to be main-
tained 1 an optimum configuration for maximum charge
and discharge performance.

FIG. 2 1s a schematic drawing of a molten lithium
clectrochemical cell according to an embodiment of the
invention. The cell 1s cylindrical 1n shape with fins running
lengthwise along the cylinder and radiating outward away
from the core of the cell. The basic structure 1s supported by
hollow solid electrolyte cylinder (anode chamber) 2 which
extends the length of the cell and functions as the cell
separator. Molten lithium metal 14 1s contained within
reservoir 18 at the top of the cell and mside annular cavity
4 such that molten lithium 1s free to flow down from
reservoir 18 into annular cavity 4. The top level of the
molten anode 16 1s not expected to totally 111l the headspace
20 of the cell. Electrical heater element 6 runs the length of
the cell and 1s positioned to maintain the lithium 1n a molten
state. Heater 6 1s part of the core structure that forms annular
cavity 4 between the heater and the mner wall of the solid
clectrolyte 2 where molten lithium 14 1s contained. Lithium
14 serves as the anode of the cell. Fined cathode cylinder 8
1s positioned over the outer surface of electrolyte cylinder 2.
The core of the fin 1s shown by 9. Cathode 8 1s a porous
structure containing liquid electrolyte which, due to 1its
finned structure, 1s configured to have a wicking eflect to
maintain distribution of electrolyte therein. The reaction in
the cell occurs at the interface where the cathode touches the
separator, which 1s the hotter (lugh temperature) region of
the cathode. The reaction product will not settle 1 this hot
portion of the cathode, but rather on the colder side of the
cathode (low temperature region). This allows for deeper
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cathode access. The cell preferably operates at 250° C. to
700° C. such that the eutectic salt mixture or other electro-
lyte 1s maintained in a molten state. Fins 10 extend into the
surrounding air to facilitate heat transier to the air such that
heat supplied to the core induces a temperature gradient
radially outward that 1s maintaimned between tips 12 of the
fins 10 and the molten lithium at the core of the cell.

Dissolved reaction product 11 generated during discharge
will preferentially precipitate in the lower temperature
regions of the fins as opposed to the warmer core region.
Molten electrolyte reservoir 1 contains excess electrolyte 3
and electrolyte that has been displaced by reaction product
as 1t 1s produced and deposited within fins 10. Reservoir 1
may be maintained at a temperature that 1s lower than the
core of the cell such that the reaction product preferentially
precipitates therein as well. The temperature of the reservoir
1s controlled by heater element 5. During recharge, reaction
product re-dissolves into the molten salt electrolyte to main-
tain concentration equilibrium as product is electrolyzed and
lithium 1s re-plated at the anode. Heater 5 1s used during
recharge to heat the electrolyte to redissolve reaction prod-
uct. The heat source for core 6 of the cell 1s not shown but
would maintain temperature for operation during both
charge and discharge.

Reservoir 18 supplies lithium 14 to annular cavity 4 so
that the cavity does not become depleted as the lithium 1s
consumed during discharge. Similarly, as lithium 1s reduced
into the annular section during recharge, lithium 1s resup-
plied and accumulated 1n the reservortr.

FIGS. 3 and 4 show expanded views of radial plane cross
section 26 of the cell 1n FIG. 2 and illustrate the operation
of the cell. These Figs. show heater/spacer 6 including heater
clement 7, finned cathode 8, annular lithium cavity 4, solid
clectrolyte cylinder 2 and molten lithtum anode 14. Refer-
ring to FIG. 3, oxygen 47 dissolves into the molten salt
clectrolyte from the cell’s environment. During discharge,
lithium 44 1s oxidized and conducted through electrolyte
separator 2 1nto the molten salt contained within cathode 8,
giving rise to electric current tflow 435 through load 40 to
cathode 8. The electrons 43 oxidize molecular oxygen that
1s dissolved 1n the molten salt electrolyte, producing oxygen
ions 46 to complete the reaction, with the resulting reaction
product being either lithium peroxide (Ii,0, as 21" and
0O,7) and/or lithium oxide (Li,O as 2L.i" and O™) 1ons
suspended 1n the molten salt electrolyte solution. The two
lithium 1ons 42 are anticipated to be individually dispersed
within the electrolyte. The illustration 1s not intended to
convey a diatomic pair bonded to each other. When the
molten salt becomes saturated with reaction product, lithtum
peroxide 48 and/or lithtum oxide begins to precipitate out of
solution.

Heater element 7 located 1n the center region of the cell
maintains the lithtum anode and the electrolyte salt con-
tamned in the cathode 1n a molten state. Because of its
location and because of the loss of heat from the cathode fins
to the air surrounding the cell, a decreasing temperature
exists between the core of the cell 6 and fin tips 12. The
molar equilibrium of dissolved lithium/oxygen reaction
product 1n the molten salt will be lower at the lower
temperature fin tips 12 than at the high temperature cathode
material 45 that 1s closest to the core of the cell. As such,
reaction product 48 will tend to precipitate out of solution 1n
the region of fin tips 12, resulting 1n a buildup of reaction
product 41 1n that location. Although reaction kinetics will
favor the high temperature region, creation of reaction
product 1n high temperature region 14 will cause over
saturation and precipitation of reaction product in lower
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temperature fin tip region 12. Migration to fin tips 12 will
occur because the molar concentration of reaction product in
the salt 1s continuous between the two regions. The salt level
will naturally be uniformly distributed, limited only by mass
transport rate across the concentration gradients of the
dissolved product within the molten salt. Further production
of reaction products 1n the solution in the higher temperature
regions will cause precipitation of reaction product in the
lower temperature region since the increase would cause
over saturation in the low temperature region.

Having the reaction product accumulate in the fin tip
regions of the cell 1s important because precipitation 1n this
region has only very limited adverse impacts on operation of
the cell. The mvention thus avoids over accumulation of
reaction product 1n the active region of the cell which could
cause a reduction of 1onic conductivity and could block
access and diffusion of oxygen to reaction sites.

FI1G. 4 depicts recharge operation of the cell. For recharge,
power source 30 1s connected 1n the circuit 1n place of the
load. Dissolved lithtum/oxygen reaction product 52, 54, 56
1s electrolyzed as electrons 53 are stripped by the power
source and coupled to the anode side of the cell. During the
process, molecular oxygen 57 1s released to the environment
and lithium 1ons 54 are conducted through the solid state
separator 2 to the anode side of the cell where electrons 53
reduce 1t to lithium metal.

As reaction product 58 1s consumed from the molten salt
clectrolyte solution, 1ts molar concentration level n the
clectrolyte eutectic tends lower, thus allowing additional
reaction product precipitant 41 to dissolve into the electro-
lyte. The re-dissolved reaction product naturally maigrates
toward the core region of the cell due to the concentration
gradient created as reaction product in the core region 1is
removed by the recharge process. Continuous dissolving of
reaction product 41 maintains a molar equilibrium concen-
tration level of the reaction product in the electrolyte in fin
tip region 12 until all of discharge reaction product 41 1s
re-dissolved and electrolyzed, whereby the cell will be fully
charged.

FIG. 5 1s a schematic diagram of a high performance
lithium oxygen or lithium air cell according to a further
embodiment of the invention. Lithium reservoir 62 contains
molten lithium 64 at a preferred temperature of 350° C. A
portion 72 of lithium reservoir 62 extends into [reactor]
reaction chamber and molten salt electrolyte veservoir 68
where separator 71 interfaces with the contents of reaction
chamber and molten salt electrolyte reservoir 68. Reservolr
62 optionally includes ullage pressurized gas 66 to ensure
flow of molten lithium into contact with solid state electro-
lyte separator 71. Reservoir 62 maintains the supply 101 of
lithium to separator 71 as the cell 1s discharged. Separator 71
1s a solid lith1um 10n conductive material and may be lithium
beta alumina or lithium lanthanum zirconium oxide (LLZO).
It 1s preferably a solid ceramic and/or a glass electrolyte.
Cathode 98 and embedded current collector 74 are coupled
to the surface of separator 71 on the external side of
reservoir 62. Cathode 98 includes lithtum/oxygen reaction
sites for charge and discharge of the cell. Current collector
74 1s connected to positive terminal 69 which allows elec-
trons 81 to travel. Power is applied to terminals 82. [Reactor]
Reaction chamber and molten salt electrolyte rveservoir 68
contains molten salt electrolyte 78. Pump 73 supplies molter
salt electrolyte [solution] 78 through supply tube 76 to
nozzle 80. Nozzle 80, tube 85 and port 87 comprise a jet
pump whereby fluid supplied by pump 75 creates a low
pressure region that draws air 84 into port 87 such that 1t
flows through conduit 86 to port 87. The fluid 1njection
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process creates a turbulent mixture region of air and molten
clectrolyte. It produces a washing eflect as the resulting
spray 104 exits the jet pump and impinges on cathode 98.
This process creates an electrochemical potential between
the lithitum 1nside reservoir 62 on one side of electrolyte 71
(electrode terminal 70) and the oxygen dissolved and dis-
persed within electrolyte/air mixture washing through cath-
ode 98 on the other side.

Operation of the cell 1s such that molten salt electrolyte
102 washing through cathode 98 dissolves lithium-air reac-
tion products produced therein as the cell 1s discharged.
Oxygen depleted air 99 exits the reactor chamber through
port 100. Air 84 enters the cell at port 91 and passes through
heat exchanger 90, heat exchanger 105 and heat exchanger
92 prior to entering reaction chamber and molten salt
electrolyte reservoir 68. The tlow rate can be controlled by
valve 108. The heat exchangers preheat air 84 to a level such
that 1t enters nozzle 87 near the temperature of molten salt
clectrolyte 78 exiting nozzle 80. Air entering the reaction
chamber and molten salt electrolyte veservoir 68 1s heated
within heat exchangers 90 and 92 by oxygen depleted air 99
exiting the reaction chamber through conduit 88. Air passing
through heat exchanger 105 inside [reactor] reaction cham-
ber and molten salt electrolyte veservoir 68 1s heated by
molten electrolyte salt 78. Extraction of heat from electro-
lyte 78 1n the electrolyte reservoir maintains its temperature
below the temperature of the electrolyte 102 that 1s washing
through cathode 98. Electric heater 96 1s thermally coupled
to separator 71 and supplies energy as needed to maintain
the temperature of cathode 98 above the temperature the
reservoir electrolyte 78 that 1s thermally coupled to heat
exchanger 105. The eflect of the thus maintained tempera-
ture difference 1s that electrolyte 102 washing through
cathode 98 1s raised to a higher temperature than electrolyte
78 that 1s 1n the reservoir. Continuous flow of electrolyte
continuously dissolves and washes away reaction product
being produced 1n cathode 98. On the other hand, when the
clectrolyte leaves cathode 98 and 1s cooled by heat
exchanger 105 1n the reservorr, its saturation limit for
dissolved reaction product decreases, which causes a portion
ol the reaction product to precipitate, 97. The electric heater
94 1s used to control the temperature of the electrolyte. The
discharge process continues as pump 73 resupplies electro-
lyte 78, now depleted of reaction product, to nozzle 80
where 1t entrains more air and carries 1t to cathode 98, 1s
reheated, and dissolves more reaction product as 1t occurs
from lithium air reactions ongoing therein.

FIG. 6 illustrates operation of the cell under recharge
conditions. Power 1s supplied to heater 94 to increase the
solubility level of reaction product 107 in electrolyte 78. The
dissolving of reaction product 107 1n electrolyte 78 increases
with temperature. Pump 75 pumps electrolyte 78 containing
dissolved reaction product to nozzle 80 whereby 1t 1s
sprayed 114 onto cathode 98. Power 1s applied to terminals
82 to electrolyze lithium/air reaction product in cathode 98.
With the extraction of electrons 39 by a positive voltage
applied to terminal 69 relative to terminal 70, reaction
product 1s electrolyzed with oxygen 110 being released to
escape [reactor] reaction chamber and molten salt electro-
lvte reservoir 68 via port 100. It exits the cell through port
[78] 106 after passing through heat exchanger 92 and 90 to
preheat incoming air. During the recharge process, lithium
ions are conducted through solid electrolyte separator 71
into reservoir 62 where 1t 1s reduced to lithium by electron
flow via terminal 70. The recharge process continuously
clectrolyzes dissolved reaction product from molten salt 1n
cathode 98 as reaction product depleted electrolyte 112
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returns to reaction chamber and molten salt electrolyte
reservoir [78] 68, dissolves more reaction product, 107, and
1s pumped back to cathode 98. Molten lithium i1s re-supplied
to reservolr 62 as indicated by arrow 103. Under recharge
condition, valve 108 may optionally be closed since air
intake into the reaction chamber 1s not needed.

In an exemplary cell shown 1 FIG. 7, solid electrolyte
cylinder 2 with terminals 122 and 19 has an inner diameter
of 2.54 ¢cm and length of 50 cm. The volume of lithium
would be 0.253 L (7(2.54(D)/2)°*50 cm(L)=253.35 cm’).
The electrochemical potential for the lithium/oxygen reac-
tion 1s 3.14V. Assuming an under load operating output
voltage of 2.5V to allow for internal impedances, the energy
capacity can be determined considering the Amp-Hour
capacity of lithium being 3,860 Ah/kg (2,084 Ah/ltr). At an
output voltage of 2.5V, the energy available from the cell
would be 9650 Whikg (5210 Wh/ltr). Given the 0.253 L
lithium volume 1n the example, the cell could supply 1.3
kWh of energy.

In a cell operating at 300° C. with NaNO;—KNO, molten
salt eutectic electrolyte, the conductivity of the electrolyte 1s
0.66 S/cm. Similarly, the conductivity of the solid electrolyte
containment cylinder 2 at 300° C. 1s 0.1 S/cm as shown 1n
FIG. 7. Assuming that the thickness 74 in FIG. 7 of the
porous cathode 8 on the surface of the solid cylinder
electrolyte 2 1s 0.2 cm and that the thickness 72 of the solid
clectrolyte 1s 0.1 mm, the area specific resistance of the solid
clectrolyte plus the liquid can be calculated as 0.403 Ohm-
cm” (1/(0.66 S/cm)*0.2 cm+1/(0.1 S/cm)*0.01 cm). Given
the 0.7 Volt allowance for internal IR loss, the net output
current under load would be 1.73 A assuming other polar-
1zation losses are negligible. In such a case, the area specific
power of the cell would be 4.34 Watts. This example cell has
a surface area of 399 cm?(w*2.54*50), therefor its power
output capability would be 1.73 kW.

FIG. 8 1s an Arrhenius plot showing the conductivity of
several solid state 1onic conductive materials that would be
suitable for use as the electrolyte cylinder 2. Impedance line
83 1s for lithium beta alumina (data from J. L. Briant, J.
Electrochem. Soc.: Electrochemical Science And Technol-
ogy; 1834 (1981)) and line 84 1s for lithium phosphate glass
(data from B. Wang, Journal of Non-Crystalline Solids,
Volume 183, Issue 3, 2; 297-306 (1995). Conductivity
values 82 for aluminum oxide doped lithium lanthanum
zircontum oxide (Al,O5:L1-La,Zr,0,,) are from M Koto-
buki, et. al.; Journal of Power Sources 196 7750-7754
(2011)).

Sintered LLZO electrolyte had been demonstrated to be
stable with lithum 1n all solid state batteries. (See T.
Yoshida, et. al.; Journal of The Electrochemical Society,
157-10, A1076-A1079 (2010)). The cyclic voltammogram
of the Li/LLZO/L1 cell showed that the dissolution and
deposition reactions of lithtum occurred reversibly without
any reaction with LLZO. This indicates that a L1 metal anode
can be employed 1n contact with LLZO electrolyte.

In an exemplary embodiment, a 1 KWh battery 1s designed
to operate at a discharge rate of 1 C, 1.e. battery totally
discharged 1n 1 hour. Lithium has a specific energy of 11,580
Wh/kg. If the mass of the oxygen is included, the net energy
density 1s 5,200 Wh/kg. For a 1 kWh battery, 86 g of lithium
would be needed. Lithium has a discharge current capacity
of 3.86 Ah/g. At a discharge rate of 1 C, the required
discharge current would be 332 A (86 g*3.86 Ah/g/1 hr). In
this example, the area of the separator may be defined as 100
cm” and the solid separator as LLZO or other suitable
substitute thereof. In this example the use of a 100 cm?
separator results in a net current density of 3.32 A/cm”. As
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indicated 1n FIG. 8, the lithium 10n conductivity, o, of LLZO
1s approximately 0.1 S/cm. A separator made of this material
and at a thickness, t, of 100 um would have an impedance
of 0.1 Ohm-cm?, (1/0%*t). The output current supplied at 1 C
would have a maximum drop 1n voltage of 0.4V relative to
the cell’s open circuit voltage. The primary reaction product
of the cell 1s L1,0,. The amount of air flow required to
sustain a 1 C discharge rate can be determined from the
required oxygen flow.

The atomic mass of lithium 1s 6.9 g/mole. The primary
discharge reaction for the cell 1s 2L1+40,>11,0,, 1 mole of
oxygen 1s required for per mole of lithium. The number of
moles of lithium 1n the reaction 1s 12.46, (86 g/6.9 g/mole).
Therefore, 6.23 moles or 199.4 grams (6.23 moles *32
grams/mole) of oxygen are required to balance the reaction.
Air 1s 23% oxygen by mass so that the total amount of air
needed for the reaction 1s 866 g, (1994 ¢ O,/(0.23 ¢
O,/gAir). For the 1 C discharge, the air mass tlow rate 1s 866
g/hr or 0.24 g/sec. The density of air is 0.00123 g/cm”. This
gives a volumetric flow rate of 195 cm’/sec.

It will be appreciated by those skilled 1in the art that
changes could be made to the embodiments described above
without departing from the broad inventive concept thereof.
It 1s understood, theretfore, that this invention 1s not limited
to the particular embodiments disclosed, but it 1s mntended to
cover modifications within the spirit and scope of the present
invention as defined by the appended claims.

We claim:

1. A rechargeable lithium air battery comprising a ceramic
separator forming an anode chamber, a molten lithtum anode
contained 1n the anode chamber, an air cathode, a non-
aqueous electrolyte, and an electrolyte reservoir adjacent to
the cathode, wherein the cathode has a temperature gradient
comprising a low temperature region and a high temperature
region, and wherein the temperature gradient provides a
flow system for reaction product produced by the battery.

2. The battery according to claim 1, further comprising a
pump and a temperature control system.

3. The battery according to claim 2, wherein the pump
controls movement of the electrolyte between the cathode
and the electrolyte reservorr.

4. The battery according to claim 2, wherein the tempera-
ture control system controls temperatures of the cathode and
the electrolyte reservorr.

5. The battery according to claim 1, wherein during
discharge the reaction product moves from the high tem-
perature region of the cathode to the low temperature region
of the cathode.

6. The battery according to claim 1, wherein the electro-
lyte comprises a molten inorganic salt.

7. The battery according to claim 1, wherein the electro-
lyte comprises a silane or siloxane compound.

8. The battery according to claim 1, wherein the cathode
comprises a porous ceramic material.

9. The battery according to claim 8, wherein the cathode
1s 1impregnated with a metal nitride or a carbon material.

10. The battery according to claim 1, wherein the cathode
comprises an electrically conductive sintered metal oxide,
metal nitride, carbon, or silicon carbide.

11. The battery according to claim 1, wherein the cathode
comprises carbon, a polymer binder, and a metal oxide.

12. The battery according to claim 8, wherein the porous
ceramic material comprises lithium lanthanum zirconium
oxide.

13. The battery according to claim 1, where the anode
chamber 1s maintained at about 20° C. to 200° C.
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14. The battery according to claim 1, wherein the ceramic
separator comprises a lithium 1on conducting glass.

15. The battery according to claim 14, wherein the lithium
ion conducting glass 1s selected from lithium beta alumina,
lithium phosphate glass, lithium lanthanum zirconium
oxide, Al,O;:L1,La Zr,0O,,, lithium aluminum germanium
phosphate, and lithium aluminum titanium phosphate.

16. The battery according to claim 1, wherein the battery
has an operating temperature of about 200° C. to about 450°
C.

17. A rechargeable lithrum air battery comprising a
ceramic separator forming an anode chamber, a molten
lithium anode and a heater contained in the anode chamber,
an air cathode, and a non-aqueous electrolyte, wherein the
cathode has a temperature gradient comprising a low tem-
perature region and a high temperature region, and wherein
the temperature gradient provides a flow system for reaction
product produced by the battery.

18. A rechargeable lithum air battery comprising a
ceramic separator forming an anode chamber, a molten
lithium anode contained in the anode chamber, an air cath-
ode, and a non-aqueous electrolyte, wherein the cathode has
a temperature gradient comprising a low temperature region
and a high temperature region, the temperature gradient
provides a flow system for reaction product produced by the
battery, wherein the cathode comprises a core adjacent to the
ceramic separator and at least one fin extending radially
outward from the core, and wherein the core 1s the high
temperature region of the cathode and the at least one fin 1s
the low temperature region of the cathode.

19. A rechargeable lithrum air battery comprising a
ceramic separator forming an anode chamber, a molten
lithium anode contained in the anode chamber, an air cath-
ode, a non-aqueous electrolyte, an electrolyte reservoir
adjacent to the cathode, a pump and a temperature control
system, wherein the temperature control system controls
temperatures of the cathode and the electrolyte reservoir, the
temperature of the electrolyte reservoir 1s about 200° C. to
about 450° C., the cathode has a temperature gradient
comprising a low temperature region and a high temperature
region, and wherein the temperature gradient provides a
flow system for reaction product produced by the battery.

20. A rechargeable lithium air battery comprising a
[ithium reservoir. a reaction chamber an air cathode, a
temperature control system, and an electrolyte reservoir
adjacent to the air cathode, wherein the lithium reservoir
includes a cervamic separator and the electrolyte veservoir
contains an inorganic non-aqueous electrolyte, the ceramic
separator extends into the reaction chamber whereby
l[ithium flows into the reaction chamber from the lithium
reservoir and contacts the cevamic separator in the reaction
chamber, the ceramic separator couples lithium to the
inorganic non-aqueous electrolyte supplied from the elec-
trolyte reservoir, and the inorganic non-aqueous electrolyte
couples the veaction chamber to the electrolyte reservoir and
carries reaction product therebetween whereby reaction
product within the veaction chamber is removed.

21. The battery according to claim 20, wherein the
temperatuve control system controls temperaturves of the
cathode and the electrolyte reservoir.

22. The battery according to claim 20, wherein the
cathode comprises a core adjacent to the ceramic separator
and at least one fin extending rvadially outward from the
core.

23. The battery according to claim 22, and wherein the
core is a high temperature region of the cathode and the at
least one fin is a low temperature region of the cathode.
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24. The battery according to claim 20, wherein the
electrolyte comprises a molten inorganic salt.
25. The battery according to clam 20, wherein the elec-

trolyte comprises a silane or siloxane compound.

26. The battery according to claim 20, wherein the
cathode comprises a ceramic material.

27. The battery according to claim 20, whervein the
cathode is impregnated with a metal nitride orv a carbon
material.

28. The battery according to claim 20, whervein the
cathode comprises an electrically conductive sintered metal
oxide, metal nitride, carbon, or silicon carbide.

29. The battery according to claim 20, wherein the
cathode comprises carbon, a polymer binder, and a metal
oxide.

30. The battery according to claim 26, wherein the
ceramic material comprises lithium lanthanum zirconium
oxide.

31. The battery according to claim 20, where the anode
chamber is maintained at about 20° C. to 200° C.

32. The battery according to claim 20, whervein the
ceramic separvator comprises a lithium ion conducting glass.

33. The battery according to claim 32, wherein the lithium
ion conducting glass is selected from lithium beta alumina,
lithium phosphate glass, lithium lanthanum zivconium oxide,
AL O Li La;Zr,0,,, lithium aluminum germanium phos-
phate, and lithium aluminum titanium phosphate.

34. The battery according to claim 20, wherein the battery
has an operating temperature of about 200° C. to about 450°

C.

35. A rechargeable lithium air battery comprising:

a supply of air flow

an air cathode,

a heat exchanger for transferving heat to air flowing to the

aiv cathode from air leaving the air cathode,

a pump for supplying air to the air cathode,

a temperature control system,

a lithium ion conductive solid ceramic electrolyte

a lithium reservoir,

an inorganic electrolyte reservoir

a molten lithium anode contained in the lithium reservoir,

and

an inorganic electrolyte contained within the inorganic

electrolyte reservoir,

wherein lithium flows to the lithium anode from the

lithium veservoir during charge and from the lithium
anode to the lithium rveservoir during rvecharvge, the
solid ceramic electrolyte conducts lithium ions from the
lithium reservoir to the inorganic electrolyte for reac-
tion with oxygen supplied by air flow to the air cathode,
and wherein lithium oxygen reaction product is accu-
mulated within the electrolyte reservoir.

36. The battery according to clam 35, wherein the lithium
oxygen reaction product has at least limited solubility in the
inovganic salt electrolyte.

37. A rechargeable lithium air battery comprising:

a supply of air flow,

a heat exchanger,

a pump,

a cathode,

a temperature control system,

a reaction chamber,

a lithium reservoir,

a molten salt electrolyte reservoir

a molten lithium anode contained in the lithium reservoir,

and
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a molten inorganic salt electrolyte contained within the

molten salt electrolyte reservoir

whevrein lithium is supplied to the reaction chamber from

the lithium reservoir, molten inorganic salt is supplied
to the reaction chamber from the molten salt electrolyte
reservoir and air is supplied to the veaction chamber by
the heat exchanger, the heat exchanger transfers heat
from oxygen-depleted air leaving the cathode to ambi-
ent air flowing to the cathode, and whevein lithium
oxygen reaction product accumulates within the molten
salt electrolyte veservoir.

38. The battery according to clam 37, wherein the reac-
tion chamber surrounds an aiv cathode and a solid ceramic
lithium ion conductive electrolyte, wherein the solid ceramic
lithium ion conductive electrolyte is coupled between the
lithium reservoir and the molten inorganic salt electrolyte,
isolating lithium from the molten inorvganic salt electrolyte,
interfacing lithium to the molten salt electrolyte or cathode,
and conducting lithium ions from the lithium veservoir to the
molten salt electrolyte for reaction with oxygen supplied to
the cathode with air flow from the heat exchanger.

39. A vechargeable lithium air battery comprising:

a supply of oxvgen flow,

a ceramic lithium ion conductive electrolyte,

a pump,

a lithium reservoir

an inorganic electrolyte veservoir,

a molten lithium anode,

a cathode, and

an inorganic electrolyte contained within the electrolyte

reservolr,

wherein the ceramic electrolyte is coupled between the

lithium anode and the cathode, lithium is supplied to
the anode from the lithium reservoir, oxygen is supplied
to the cathode, and lithium ions ave conducted by the
ceramic electrolyte to the cathode, whereby lithium
reacts with oxygen at the cathode, the pump circulates
the electrolyte between the cathode and the reservoir,
and the electrolyte washes reaction product from the
cathode during discharge and supplies reaction prod-
uct to the cathode during vecharge.
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40. A rechargeable lithium air battery comprising:

a supply of oxygen flow,

a cathode,

a cervamic lithium ion conductive electrolyte,

a heat exchanger for transferving heat to air flowing to the
cathode from air leaving the cathode,

a lithium reservoir,

an inorganic electrolyte reservoir

a molten lithium anode,

a pump for supplying air to the cathode, and
an inorganic electrolyte contained within the electrolyte
reservolr,
wherein the ceramic electrolyte is coupled between the
lithium anode and the cathode, lithium is supplied to the
anode from the lithium reservoir, oxygen is supplied to
cathode with air supplied by the pump, and lithium ions are
conducted by the ceramic electrolyte to the cathode,
whereby lithium reacts with oxygen at the cathode, and
wherein lithium oxygen reaction product accumulates within
the inorganic electrolyte reservoir.
41. A rechargeable lithium air battery comprising:
a supply of air flow
an air cathode,
an electrolyte pump,
a temperature control system,
a lithium ion conductive solid ceramic electrolyte
a lithium reservoir,
a molten salt electrolyte veservoir
a molten lithium anode contained in the lithium reservoir,
and
a molten inorganic salt electrolyte contained within the
molten salt electrolyte reservoir,
wherein the solid ceramic electrolyte conducts lithium
ions from the lithium reservoir to the molten inorvganic
salt electrolyte for veaction with oxygen supplied by air
flow to the cathode, and the electrolyte pump promotes
electrolyte flow to contact the cathode and to remove
and carry lithium oxygen reaction product to the elec-
trolyte reservoir.
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