USOORE49148E
(19) United States
12y Reissued Patent (10) Patent Number: US RE49,148 E
Colgrove et al. 45) Date of Reissued Patent: *Jul. 26, 2022
(54) RECLAIMING SPACE OCCUPIED BY (58) Field of Classification Search
DUPLICATED DATA IN A STORAGE CPC GO6F 12/0253; GO6F 12/0261; GO6F

12/0269; GO6F 12/0276

SYSTEM See application file for complete search history.

(71) Applicant: Pure Storage, Inc., Mountain View, CA (56)
(US)

References Cited

U.S. PATENT DOCUMENTS

(72) Inventors: John Colgrove, Los Altos, CA (US);
John Hayes, Mountain View, CA (US); 4,989,134 A 1/1991 Shaw
Ethan Miller, Santa Cruz, CA (US); 5,136,706 A 8/1992 Courts
Cary Sandvig, Palo Alto, CA (US); (Continued)

Joseph S. Hasbani, Palo Alto, CA FOREIGN PATENT DOCUMENTS
(US); Feng Wang, Sunnyvale, CA (US)

WO WO 2013049319 Al * 4/2013 GO6F 3/06
(73) Assignee: Pure Storage, Inc., Mountain View, CA WO WO 2013056220 Al * 4/2013 GOG6F 3/06
(US)
OTHER PUBLICATIONS
(*) Notice: This patent 1s subject to a terminal dis-
claimer. Debnath, B., S. Sengupta and J. L1 “ChunkStash: Speeding Up
Inline Storage Deduplication Using Flash Memory”, Proceedings of
(21) Appl. No.: 15/885,500 the 2010 USENIX Annual Technical Conference (ATC 10), Jun.
23-25, 2010, pp. 1-15.*
(22) Filed: Jan. 31, 2018 (Continued)
Related U.S. Patent Documents Primary Examiner — Luke S Wassum
Reissue of:
(64) Patent No.: 9,251,066 (57) ABSTRACT
Issued: Feb. 2, 2016 A system and method for performing garbage collection. A
Appl. No.: 14/337,709 system 1ncludes a storage medium, a first table including
Filed: Nov. 10, 2014 entriecs which map a virtual address to locations in the
U.S. Applications: storage medium, and a second table with entries which

(63) Continuation of application No. 14/015,308, filed on include a reverse mapping of a physical address 1n a data
Aug. 30, 2013, now Pat. No. 8,886,691, which is a storage medium to one or more virtual addresses. A storage

controller 1s configured to perform garbage collection. Dur-
ing garbage collection, the controller 1s configured to 1den-
t1fy one or more entries 1n the second table which correspond
(51) Inmt. CL
to a segment to be garbage collected. In response to deter-

(Continued)

Go6l 12/92 (2006'02“) mining the first table includes a valid mapping for a virtual
GO6F 3/06 (2006.01) . .
H address included 1n an entry of the one of the one or more
GO6F 16/174 (2019.01) : :
entries, the controller 1s configured to copy data from a first
(52) US. CL location 1dentified 1n the entry to a second location 1n the
CPC ... GO6F 3/0688 (2013.01); GOGF 3/0608 data storage medium, and reclaim the first storage location.
(2013.01); GO6F 3/0641 (2013.01); GO6F
16/1748 (2019.01) 17 Claims, 31 Drawing Sheets
Receiva Hﬁ?ﬂd Request
;
T
Quiery Indexias) and cached
magg_ldlngs

Handle Exception
g24

Yeas

Hit in the
storad indices?
520

Hit in the
cached index?
506

Mo

Yes

Arccess end query page in
the mapping table, | Return E'Edzﬂ Entry
208
i
Return mapping
table entry
210

{

Perform Storags Access
512

US RE49,148 E

(56)

Page 2
Related U.S. Application Data 8,930,307 B2* 1/2015 Colgrove GO6F 3/0608
707/610
continuation of application No. 13/340,119, filed on 2004/0039759 Al 2/2004 Detlefs et al.
Dec. 29, 2011, now Pat. No. 8,527,544, which is a 2004/0078381 Al 4/2004 Blandy et al.
continuation-in-part of application No. 13/250,570, 2004/0111445 AL 6/2004 - Garthwaite et al.
2004/0111718 Al 6/2004 Detlefs
filed on Sep 30,, 2011, now Pat. No. 8,93033073 and 2004/0128329 Al 7/2004 Ben-Yitzhak et al.
a continuation-in-part of application No. 13/208,094, 2004/0162860 Al 8/2004 Detlefs
filed on Aug. 11, 2011, now Pat. No. 8,788,788, and %882;81%2% i 2%88‘51 Eleﬂiifst ;
: o L | ood et al.
a continuation-in-part of application No. 13/211,288, 5005/0149686 Al 72005 Bacon of al
filed on Aug. 16, 2011, now Pat. No. 8,806,160, and 2005/0166028 Al 7/2005 Chung et al.
a continuation-in-part of application No. 13/250,579, 2005/0198079 A1 9/2005 Heeb
filed on Sep. 30, 2011, now Pat. No. 8,793,467, and 2005/0235120 Al 1072005 Dussud
: L. L. 2005/0240943 Al 10/2005 Smith et al.
a continuation-in-part of application No. 13/273,858, 2005/0273567 Al 12/2005 Blandy
filed on Oct. 14, 2011, now Pat. No. 8,589,640. 2005/0278497 Al 12/2005 Pliss et al.
2006/0059453 Al 3/2006 Kuck et al.
References Clited 2006/0092161 Al 5/2006 Meeker
2006/0173939 Al* 82006 Yincoceeeeennn, GO6F 12/0253
U.S. PATENT DOCUMENTS 711/E12.009
2006/0206658 Al* 9/2006 Hendel GO6F 9/544
5355483 A 10/1994 Serlet | 711/6
5,551,003 A /1906 Mattson et al. 2007/0016633 Al* 1/2007 Lindholm GO6F 12/0269
5,561,786 A 10/1996 Morse 711/170
5,652,883 A 7/1997 Adcock 2007/0208790 Al* 9/2007 Reuter GO6F 12/0253
5,751,613 A 5/1998 Doty et al. 707/999.206
5,897,664 A * 4/1999 Nesheim GO6F 12/0284 2008/0155184 Al* 6/2008 Gorobets GO6F 3/0613
711/147 711/103
6,081,665 A 6/2000 Nilsen et al. 2010/0031000 Al* 2/2010 Flynn et al. GO6F 16/9014
6,300,962 B1 10/2001 Wishoff et al. 711/216
0,470,361 Bl 10/2002 Alpern et al. 2011/0231623 Al* 9/2011 GOSS ..ovvvvvvvennnnn, GO6F 12/0253
6,526,422 Bl 2/2003 Flood et al. 711/159
6,500,619 Bl 5/2003 Flood et al. 2011/0276780 Al* 11/2011 Sengupta GOGF 12/0862
6,567,905 B2* 5/2003 Ofisccceue... GOG6F 12/0276 T11/216
707/999.202
6,738,875 B1* 5/2004 Wang GO6F 12/0269
707/999 202 OTHER PUBLICATIONS
6,760,815 Bl 7/2004 Traversat et al.
6,763,440 Bl 7/2004 Traversat et al. ... GO6F 12/0276 Agesen et al., “Mixed-mode Bylecode Execution”, Jun. 2000, 16
| 707/999.202 pages, Sun Microsystems, Inc., Mountain View, CA, USA.
6,804,762 Bl 10/2004 Dussud et al. Larose et al., “A Compacting Incremental Collector and its Perfor-
6,823,351 B1 11/2004 Flood et al. - : : 1 -
_ mance 1n a Production Quality Compiler”, Proceedings of the 1st
6,826,583 B1 11/2004 Flood et al. Infernational S . M M € Oct 1. 1998. 0
6.839.725 B2 1/2005 Agesen et al. nternational Symposium on Memory Management, Oct. 1, :
6,865,585 Bl 3/2005 Dussud ..oooooooin. GOG6F 12/0269 pages, vol. 34, Issue 3, ACM, New York, NY, USA.
T11/E12.011 “Garbage Collection”, Cunningham & Cunningham, Inc., Sep. 27,
6,868,488 B2 3/2005 Garthwaite 2004, retrieved from <http://c2.com/cgl/wiki?GarbageCollection>,
6,901,587 B2 5/2005 Kramskoy et al. pp. 1-7.
gﬂgg é a’;%g E% g; 3882 %exton et al. Edwards, Daniel J., “Artificial Intelligence Project—RLE and MIT
; ; orman - » i
7010.555 B2 3/2006 Blandy et al fg;gputatlimz Center”, Memo 19-LISP II Garbage Collector, Mar.
7,016,923 B2 3/2006 Garthwaite » PP 1o | |
7.017.162 B2 3/2006 Smith et al. Abuaiadh et al., “An Eflicient Parallel Heap Compaction Algo-
7,024,436 B2 4/2006 Kolodner et al. rithm”, Proceedings of the 19th Annual ACM SIGPLAN Confer-
7,031,990 B2 4/2006 Garthwaite ence on Object-oriented Programming, Systems, Languages, and
7,051,056 B2 5/2006 Rodriguez-Rivera Applications, Oct. 2004, p. 224-236, ACM New York, NY, USA.
7,065,617 B2 6/2006 Wang Agesen et al., “An Eflicient Meta-Lock for Implementing Ubiqui-
7,069,280 B2 0/2006 - Garthwaite tous Synchronization”, Apr. 1999, 30 pages, Sun Microsystems
7,337,201 Bl1* 2/2008 Yellin GOGF 12/0276 yTCAOMZdHOT » Abh » oY PAses, YIRS,
T11/118 Inc., Mountain View, CA, USA.
7.412.466 Bl /7008 Garthwaite Agesen, Ole, “GC Points in a Threaded Environment™, Dec. 1998,
7.480.,782 B2 1/2009 Garthwaite 23 pages, Sun Microsystems, Inc., Mountain View, CA, USA.
7,779,054 Bl 8/2010 Printezis et al. Ben-Yitzhak, et al., “An Algorithm for Parallel Incremental Com-
8,417,904 B2* 4/2013 Gossccoeennn, GOOF 12/0253 paction”, Proceedings of the 3rd International Symposium on Memory
7117159 Management, Jun. 20-21, 2002, p. 100-105, ACM, New York, NY,
8,527,544 Bl 9/2013 Colgrove et al. GO6F 3/0608 USA .
707/791 e . .
835 893640 B2 2k 11/2013 Colgrove “““““““ GO6F 3/0608 Appel'5 And‘rewﬂw'ﬂ Slmple Generatlonal Ga'rba'ge COlleCtlon a'nd
T11/156 Fast Allocatlon. , Software—"Practlce & Experience, Sep. 1988, 16
8,788,788 B2* 7/2014 Colgrove GOGF 3/0608 Pages, John Wiley & Sons, Inc., New York, NY, USA.
711/206 Detlets, et al. “Inlining of Virtual Methods”, Proceedings of the 13th
8,793,467 B2* 7/2014 Colgrove GO6F 3/0608 European Conference on Object-Oriented Programming, Jun. 14-18,
711/206 1999, 21 pages, Springer-Verlag, London, UK.
8,806,160 B2* 82014 Colgrove GO6F 3/0608 Flood, et al., “Parallel Garbage Collection for Shared Memory
711/162 Multiprocessors”, Proceedings of the 2001 Symposium on Java™
8,886,691 B2 11/2014 Colgrove et al. GO6F 3/0608 Virtual Machine Research and Technology Symposium, Apr. 2001,
707/818 10 pages, USENIX Association, Berkeley, CA, USA.

US RE49,148 E
Page 3

(56) References Cited
OTHER PUBLICATIONS

Wilson, Paul R.,“Uniprocessor Garbage Collection Techniques”,
Technical Report, University of Texas, Jan. 1994, 14 pages.
Hallenberg, et al., “Combining Region Inference and Garbage
Collection™, Proceedings of the ACM SIGPLAN 2002 Conference
on Programming L.anguage Design and Implementation, Jun. 17-19,
2002, pp. 141-152, ACM, New York, NY, USA.

Hudson, et al.,“Incremental Collection of Mature Objects™, Pro-
ceedings of the International Workshop on Memory Management,
Sep. 17, 1992, 16 pages, Springer-Verlag, London, UK.

Printezis, et al., “A Generational Mostly-Concurrent Garbage Col-
lector”, Technical Report, 2000, 12 pages, Sun Microsystems, Inc.,
Mountain View, CA, USA.

Lieberman, et al.,*A Real-Time Garbage Collector Based on the
Lifetimes of Objects”, Communications of the ACM, Jun. 1983, vol.
26, No. 6, pp. 419-429, ACM, New York, NY, USA.

Detlets, et al., “Garbage-First Garbage Collection™, Proceedings of
the 4th International Symposium on Memory Management, Oct.
24-25, 2004, pp. 37-48, ACM, New York, NY, USA.

Bacon, et al., ““The Metronome: A Simpler Approach to Garbage
Collection 1n Real-Time Systems”, on the Move to Meaningiul
Internet Systems 2003: OTM 2003 Workshops, Nov. 3-7, 2003, pp.
466-478, vol. 2889, Springer Berlin Heidelberg.

Sachindran, et al., “Mark-Copy: Fast Copying GC with Less Space
Overhead”, Proceedings of the 18th Annual ACM SIGPLAN Con-
ference on Object-oriented Programing, Systems, Languages, and
Applications, Oct. 26-30, 2003, 18 pages, ACM, New York, NY,
USA.

* cited by examiner

US RE49,148 L

Sheet 1 of 31

Jul. 26, 2022

U.S. Patent

T T R W W RN WO W N NG L

e dl T N S—— m

dnogsy 1T T g/ | Gazb sy

| o01AS0) BOIAB(] SOIAS(] | SOIAS]
eBeioig |

T Jac e

il

I

(/1 wesAsyng sbriole

nnnnnnnnnnnnnn

L . - r - r i r i rrrr -

SOELIBN]
3 IOMIBN

EQZ 1

4 4 P ¥ F

NN 1

P01 S)BINDOUID

Pel Rheugy
AUoA

ABUY

7] BGO0

v/ 1 d@oauon ebeioie

11111111111111111

061
HIOMIDN

D8l

OFL uoumg

.m et m

AN 00 L waisAg

. IBINAUWIODy 1N
‘,.

T

k L sk e e . . s
1
L

A5] 1euiau)

MICMIEN

AN
//;ia}

ahgioR
B1E(]

.....

- —— ey S N Tk B E..I.Im
|
¥

B0 WHISAS

JSINGWIND BN

SR W e e I .

Q01T wsishg

=)

.ﬂ“f
N (30 SUNIOSULSEY SUOMION

US RE49,148 L

Sheet 2 of 31

Jul. 26, 2022

U.S. Patent

T T R O R L e = o — = = = e

e i e e i e m e ———— = - a—

shuiddely

L
10 sBed

i m\ +x .
sHuiddepy
10 ofie

FOUEE EE CEEC EAE EE NN CEN N EE BN CEN A sk e de m e e e me

soLddEing
JC abe]

M OEEL M N B B B NN N BE BN L B BN BN BE N BN BN BN B BN R B B A N R B R B WL B b g oy b

Mo, i e e e e L

o b [T

BEN ELE LEN L G RS L SRS ol T] o oarw ree mrw rem oarw e AL bk - -

S0
30 2

FEESSS TS S ST SE OIS OUS BB EED ERU B EEE LR OB GHE Sy Barl rer s rmm e W E PR B CEE SR e e e = e = tm Re A = .

TS T FE EF FI BN OrE B FR I f{& BC N BCCEr BCoidm BRI B LN BN N L] Bl e e e = = =g |1|.I.I.I.I.I|-III|_

—— e e e— - Er FrE S FrEm B .a -

LI LZ
ddepy /

:U.i 14 EG M.. N m_w

sSudoeiy /

10 sbed

WL/
sDuddang /
JO Bhe s

—1ET R R B B B B N R B B BN BN B BN BN B BN BN BN B BN BE B B B B B N B N B B B LR Bk B ke b e ke b b e e e

—_ e e e e m —

Ak o o e m o Lwm E aw m wd

| T T T T A T— —_————

:m...“_
sHudgen
TaR=leiin

A e e e e = —
e e e el e — — iy — — —

oL

il V !.niml-m Y
sfuiddein

10 =bed

:I:
soUdden
10 shed

mmgﬁmm& f

Ml M e e ————— e TE WA TE BT Wp R EE R CEF bR Hr B om

'
I
!
:
§
4
]
4
]
E
]
!
1
i
I
i
I
}
I
i
I
[
[
|
|
[
|
I
i
1
1
i
'
L
i

L
1

et msr— s TS T R R ED R B e e e e e e s e R VEE BRSO EEE BRI LN SN BN EEE BN LA BN NN BN o e oA

10 2bhe

—AE e e e . — e —— —— — — ——— —y — =T

e v T e TEr W Y ' rm we v wk

1 |
MEW\ m

sfHuddepy

1o 8beq

- aaE e

T M oTS T AR E L E N e R aa w!

p——

RN ; ————— T T
mmcmﬂmm@ﬂ M “
BoTE / , “
sCuddeyy / u
10 obeg | e _

]
_
N

sPuddeing
10 obe

stlicidey
10 308

4
YA

zBuIddein
10 abed

sBuiddey 7
JO she

|||||||||||||

- b o

————— L M - — e — = = ——— —

ral

Filh
Fa:{ F
(L.
3
E

4
(L.
{3)
hald

NP e e
SECCER R
NP - c | opeid | 6e

r

b
b

—— e g T EFEC] . I CER T

- 4 rmoEma s oA A L Al sk A L L R AN e e e —— —— e o mE W - . -

L TN J.rlll

—_—-

L ok e o b A A A T T p—

a B e L EE EL el R e e -y W A L - e — i

2" ar ax o

- - —— — = = = — —

I s
'

ety / NP < - - | oPPId | b

w TS e o TR R A — = - - - ——

ObfRid | 3

BEE No1 1R I

CONPRId | - - - | OPPRId | B2

- — e

—_————,—,—— e e g ——

EEarErer .

———————— e

|
I
1
!
1
4
.
1
]
L R L L e M e e e = it e = = e o E EE L m o b e e o m e —m — - -

s L W L ——

2Ny PAST

o o e o = T EF BT EF B B W ErEm o g

US RE49,148 L

Sheet 3 of 31

Jul. 26, 2022

U.S. Patent

Ve Dl
- lsnms| ¢ [1z |z]!
b "
p uoMe | .
o o “ snjels | ¢ 8z | 2z
“itha ey _ _ _
92, 9bed 777 / snjeis | ¢ zs | 61
" uoniued snjels & G 81
uoued | oA8T] abed Aoy
WO 4 R —
(e1qe.. Burddeyy) ,
a|qe| Buiddely m
sBurddeyy jo sabegq 0] smeIS | © v et 1
On . m
HOQLEL _m SMEIS “ ¢ g/ | g |
smes| ¢ 85 | Z ||
ezic /. |smmis| ¢ ! [0 |
uohged | [@Aa efed Ao |
0IE
Xopuj
Alewiud

LCn AOY

90¢
Aay

Alanpd

!

¥0¢C
lo]el1suso)

Aoy

|

(A3
sinduj

eled
I9)sanbay

US RE49,148 L

Sheet 4 of 31

Jul. 26, 2022

U.S. Patent

A=)
P, 18RS
011, obed

:

e # 3]
LUCHIHE
L0
S S—

5807 abispy o

bl ™ R

3 m\ b m
uofied

Lopeg

EQ: ,
Lonipied

mmwm\w

 uoniped

- T wr mm o e o b sl e o o

i
’
i
i
i
|
i
!
]
!
I
'
i
t
:
f
I
I
|
|

= i = T EF BN EF B EF S EF BFEE B BF BFEF B e = = = mm omo oy

e e T eSS T . .

sRls | L 86 | Bl
smEls| 8L Z8Z | sl

- R) S A e e B o oem) e e sl e sl e sl e el b BN e eal B LE b bl b ek o odes o

“ i
snEls 6 1L 9 |
[AsT ebed Asy
P i e |
sES AL by
sMEls . L vBL 2
SNEIS | oLL | 7
L A N ml ||||||||||||||||||||||||||| F— — —mm - w _
smels . 7e L0
BAs ebug Kew

—— —_—

v1ig \\
Xaepup |
Adeiiliid 7
DE1I00
LRUIEN

- -y

LL wu“ wﬁwvm

e]

—————— e

17403
JOIRIBUDT)

ADM

I

ey

——— -y,

e 1]

_.
SHIGH}
e

—_——————

US RE49,148 L

Sheet 5 of 31

Jul. 26, 2022

U.S. Patent

(#2960ZC4X 18I0 188 | [27, A9)) UH -

vy Old

' .dv SBuIddepy
| jo obeg

| 1 —..ulm-—zuu |
. sBuiddey

|
D s e e e e e e e

T —w i = ——-

EEH
sBuiddepy

jo abey

I01€ xopuj
Alewlld

L L LN LN N LN N N RO

b — - -

1
=
e ormw T W rT e o

0Z¢€ Xapu|

Alepuocdeg

o

) J__ mm:_mnm_z:m
jo ebed |

sBuiddey
. joebeq |

jo shed

50LE _--xm_u:.‘----
. Arewd

1
Lt e ——— e . —— . - -

0, sbuiddejy
i joobed |

—— — — el — - - - R

W T —-— e L

 jo abed

LT T D T T T T T Ty S S g p—————— h

L8 T L T W1 T] - O B e e e =

.3, sbuiddey
. joafeyg |

GOTE xepuj
Alewind |

L2 A

"_—nmu- —m>m_lu
.26, sBuiddep Jjo abegd

| .Q, sBuiddepy
. Joebeg

.}, SBuddepy |
jo afeq |

0. mm:_n_nmz.-
jo abeg

-
"y

ol M - — ————

'-l l.!
i

efLE xapy|
Aewlig

H v: _m}ﬂl_

«G&Nn [PNS7]

z b~ Ny [PAST

«Na [9A97]

o< o|qe] fuiddey

N

01607
abiai\

SSIIA)
/(SHiH

[\}53
saidon

Xapu|

LT A

90¢
Aoy
Alanp

Q

Y0t
l0jeisuss)

Aoy

ﬁ

20¢E
sinduj
el
lo1sanbay

U.S. Patent Jul. 26, 2022 Sheet 6 of 31 US RE49,148 E

Receive Read Request
S0

aUZ

ii

(uery index(es) and cached
Mappings
504 |

ii

Yas it on Handie Exception
| cached D24
~ Mappings”?
NO
A Hit in the ™ Mo Hit in the
cached index? stored indices?
208 | vel
_
Yes Yes
.................................... A o
ACCEesS and guery page in o ,
the mapping table. » Retum ?,ffx =ntry
FReturn mapping
table entry
510
— _&F

e ¥
Parform Storage Access
212

. P Tl e el el T Tl el e i Sl e el el T e i Tl T el il el .

FiG. 54

U.S. Patent Jul. 26, 2022 Sheet 7 of 31 US RE49,148 E

it L] L L L] [] WL] L]

e T :
;
i

(seneraie Hasnh
- _% _5;‘*:}_—0“

E
Create new mapping table eniry |
532 ¥ |
"""""""""""""""""""""""""""" : T
Access Deduplication E
; i E
E ables
- olore new eniy in association with T i
E cachsd index ; ;
= 534 5 i
I - g i
N |
; // Hit in the vas | whdale dedup E
E dedup tadig? > L-"{%?JE%
” D44 548 E
E |
N E
| No g
| Create new dedup | i
et e — aniry i
| 540 i
5 |
3 |
o e o e o e oo e e e e e o o i o oo o -
\
N
H“-.
1"'-1\
*x.\. |
~ 550

E .

FIG. 5B

U.S. Patent

Jul. 26, 2022 Sheet 8 of 31

Set target size for
encoded values

260

Set default encodings for
fields
2671

Add tuples to list
202

W

Calculate encodad size of
tuples
263

Encoded tuples NG

exceed target size?
564

Yes

New smaller
encoding found?

NO

265

Yes

New encoding

within target size?

266

Write out tuple(s)

267

FIG. 5C

US RE49,148 L

U.S. Patent Jul. 26, 2022 Sheet 9 of 31 US RE49,148 E

"""""""""""""""

(field 23

= T B T S,

; 4877 _=

PR e e e -

FIG. 5D

U.S. Patent Jul. 26, 2022

Sort list of unigue values o be
encoded
L85

hT
T —————

Sef b io zero, and Kio the
THIHTILY Bumbsr of hiis

NECeSEary

Sheet 10 of 31

US RE49,148 L

~et start of first pase to
minimun value
587

s
4

~ind smallest value that s at
least 2° greater than current

~et next pase o
selecied valus

Calcylate folal encoded size
including header and encoded
fisdcls

500

FM ‘h:-‘ E
W encodin
= simalier than best previous .

e encoding?

Jan S -

e BT

s L

Yeas

Remember configuralion

Dacrermeant K by 1

:. -'“'.t‘
QU

T 2 A A

- - LS % 8 Y g o o

FIG. 5k

ol e
283

Use best encoding
identified

US RE49,148 L

Sheet 11 of 31

Jul. 26, 2022

U.S. Patent

L e e e e o ——— = = = ———— s

T T T e e e e e TEE B B BT R ECErmC Py

—— - -

THIE : TIT ; kS w
Side | buiddeyy paieys sjge | Buiddeyy paieys oiqe) Buiddeyy paieysg 1BAS
SEIE Gzl BZIE Y
aige] buiddepy paieus L 8jqe] buiddepy paieys sjqe buiddepy paleus @_,m,.m
S0z . w07 o\
aiqe] bBuddeyy paieys L 2lge) Buiddeyy peieys: ojqe) Buiddeyy paseys IBAST]
17Ty THaE m EHGE _ / .
siqe . siqe | S1e | mpm-ﬁ mem ,
Suiddeyy 12 Buiddepy 19 off . S
- Duitden epio IGGEIN I2PIO | Buicdei 18P0 0O I1BUG
575% SFASD Z75 SN I B
aige | Bulddeyy 2jge | buiddein sige ; Buddern 12A0"
IBMBN FRAREN TOMON] |
- 336E 9poN GOGE opoN E05E SpON

US RE49,148 L

Sheet 12 of 31

Jul. 26, 2022

U.S. Patent

L Old
«LCw A0 .
Lo 1925 Ao | smES I vel | 8. "89] Lz | |
86, S0k uoniped ! [m
72 [OAST] | SRS » o £L 09°""2¢| LZ
«CECy Bbed | smels © 43! & 02| L
- azze /| smas X . i 0| 1z | |
01607 abioyy of | UCHILEd |
._Os i ~am et e m e e s ey
LopLe | .
wolg D | SmES - LLL | 8L°7U19) T |
HHE | [smeyg e o | s ge| zz | |
snjejs S ZeZ L "9L| 22 _
BZCE /| | sSmels -t L 2l 0|z
it S ... SBed obueyfey eneq
028
XapLj
Aepuooeg

AN

90¢€
Aoy

AlenD

0T
lojelausn)

AsY

|

¢0e
sindui
Ble(]
Ja1sanbay

US RE49,148 L

Sheet 13 of 31

Jul. 26, 2022

U.S. Patent

& i

:Qu“_
UoHIE

T T e T e e e W EE EC B EC S W ErEr oo

e 0cg
WAL Xepu| AlBpucoss

il |] *w. o foy

WZET, s L IXSpU] AIBPUCDST 4o
G (BATT 0, UoLEd $8800y

To Merge Logic

e
e e e ot 2 o ot o P e e e e | S0%
]

_ —— e TECEE I SN B S B A e e e e e e e ey e = W BT W B TEN EEE

: T NN T e BEIIL Co Foa AS]
b _mﬁﬁw m mmmw%mmhmiﬁ
Fmﬂum.mmw:mwﬂnmiull 1 .

smelg |z v96 284 R
sniEls. L LAL U vEe ” m
w-mw.@.m-, @ mmm.:o_qm.

1 e & ool ____
|
d | Ll s 27 4 ¥ 7 7 F
i
=1 = r- =a 4 LA LA LS R LT SR LA L SR R, R A P el B b o bl s bl blrchalr e b s mam mmL LS SRS LN LN RN B LR L BEE L e bl e b ek e e e e b e e e e e e e e e TE BT EE BT EE EEE RO L —— i — _—— e m Em ey T NS E N S e e e B e e ek e e = — Il_ t
IRIaUSD
|| £

I
I
i mmw

e e mme— - I
1
I
i K F | 7] |

1

i

Fie mre e s e — e —r—— oy www wr wr -

G255 /
- uoney

;_—_____—____

th

e ...\" hnﬁwu._._
0Lt /1 uopnied
xapuy / |

¢ |
Aleiiag Heyizila 3 B Y- SHEE el-3 R —
; _

5

=3 |
Tt |

U
-
f
{F2
G
\
L
N
[
<

E 4 B F 4 F F 3§ 5 § 5 - B F F ¥ W J)

/
Bt /| SIS
o uoued | UOHE 3

L W N B AN L SN B R Bk R ERE R Be R R SR Ee B Re b md e md sl mem e e sl el e mem e e e e e e e M M e e M e R M M M M M f R M s e s M M M M M M S M em M i s iEm M fEm M GEm e e ey EC WS OTHU S FLF LN PRL LN PRL LES. FLL o LL o e LN o e e

el AT
mﬁmm 2 SNy
sbuey A3y S m

imsonbay |

U.S. Patent

Nooeive Hegd

Jul. 26, 2022 Sheet 14 of 31

O ——
i senerale key for

Reguest

b 1 1 T A b 3713331338311 8313311338173 13383133k

Ganerate Kay for
tst overlay table
962

: Retrieve entry from
L st overlay @hle |
Q04

F R T

mapping tabie
s

etrigve tuple o
mappingg tabie
810

lide , ~ oty vee 1 Madify tuple using
aniry in MNO Sty in F S vevias from 49
1% averlay 17 averlay] Co
tahie? tabla™? i oveilay table
gus N 912 E‘ Hie
y NG
&3 Genarate kay for 2wl
ovarlay table g |
9314
Relrieve entry from
2™ overlay table |
616 ;
N S .
@) ooty
- ’ e ¢ Lt
Return “no valid Yes lids entry No eniry in

tupie” o regquester
J1d

4 1"_"‘ T T T T W W W W Eer e

in 27 overay

table? TR
a0

2" overtay
tahle’

B

Modify tuple using valuest
L from 2™ pverlay table
| 306

FiG 8

US RE49,148 L

2

UM ipie o
reqiesier

US RE49,148 L

Sheet 15 of 31

Jul. 26, 2022

U.S. Patent

0.8 | 62 |
€10 | 97
lBjuiod Aay
~ .6lE, ebed
(a0 | ez | |
z06 | 0z | |
eev | 61 | |
9Ev | Lb | |
. leod Ay |
T .ale, abey
12z | €L |
126 | 2L |
868G | LI |
| vi8 | 6 m
. Jeuiod Ad))
e, ebeg
- B w
oz 9 |
- las | v i
- jsee | Tz |

B

[UICH Aoy

————m - - — = e e - l...l.l-l_l__...l.lllL

,0L¢, abey

«d MEN, [PAS]

u2ye]

0L 9id
L] sz N
[v68 | £Z N 1ML
| 206 | 02 | N
lesv | 6L | T
| lejuiog Aey
e
pig | L1 ..._Twrrr
ez e |
| E¥S | 2L e
- 186s | bk | iTh
Ieulod Asy
. £ 8. @.m.mm-----i-..
| ese | 6 |erT
| g2y 4 |
|99 | ¥ T
86€ .« T |
| IBlied Asy) “
.28, 9beg
(N, PAST]

~ ™Mo ez |

4;;w €19 | o2
—— M 805 | gz |
ST eer | 2L |
. Jaod A9y
. vz, abed
™Mz e]

iiiii ~4» VI8 | 6

T - |ovz | 9
nnnnn 4l 28 | ¥ |
- oo Ay |
© cz.ebeq

s [OAD7]

A AR |

US RE49,148 L

T - e e e e e e e T T N B B T S Er N N S S N N B N B B B e i m ke = = om om R R m AR L W e e e

T

Tor o B Tl ol S O N M N N EEF NN M M BEF M B B B B - = = e o m = e e e R ¢ LA e e e e e e e o - - - ——— — — —

Lk —— i ——

Sheet 16 of 31

n.nl.m 1" mmm?mim |
e e —

:r.nm gmz_._ mu.uvw}mim ,,,_ m Juf d

llllllllllllll
lllll

Jul. 26, 2022
-
E
@
-

o bty (OART

% w,..m.,“m: mﬁ}mlm

- a

WGt
BAT]

ELty

U.S. Patent

U.S. Patent

Jul. 26, 2022 Sheet 17 of 31 US RE49,148 E

- Method 1000

-~

 Allocate space 1o support mapping

table and corresponding ngaxes.
1002

l-b-"
Y

L Dletermine one of more condifions

L for flattening levels of the mapping |
tabis ‘
10{4

' and the mapping as new mappings

are found.
10086

R
|
[
R
L

PN

~ one of tha \\
f""‘ ok v N
conditions for

NG o

M I A e i

tttttttttttttttttt mm‘

H F---.'-'-t-rrt':'--':----“t'-t--ﬂr-'tt-ih-ntﬁ--nttﬂHti‘t—E-itinti----:-'----'::'--:-----'--.'-'-'::'-'r.‘:t-.'-':u'nt--r- ------ &

-

-

. .

- i

-]

- 1

- 1
1

identity one or more greups of
levels for flattening.

1010

il

Produce a new lavel for each group
comprising ine nawest records in
the group.

FIG. 12

Replace the groups with the new
leveis when each node 3 ready. |
1616 j

kil il "

P L T Ha”T K K K R BEC S EE EE CEK EE EE EE BECEE R EE I

Coordinate with other nodes to use
the new levais instead of the
Oroups.

1014

U.S. Patent

a0

Jul. 26, 2022

Raceive a bulk amray task.

Sheet 18 of 31

1102

11111111111
111111

Recsive
an access reguest ™
corresponding to a

new Key's
1110

{5
the new key
already mnsarted
in a mapping
tabie’?
1112

Yes

B . bRk k. kb . kL T L T R R T R I N R N A N

Access the ndexes andg the
mapping tavle with the new key.
1114

. J

. Process the access request with a

poinier corresponaing (o the new
Key,

1148

Sl frar

Store an indication relating a range
of new kays 1o a range of old keys, |
wherain both old and new keys
correspond 1o the reguesst.
11604

Lonvey a response indicating
compietion of the reguest without
prior access of usear data,

1106 E

i

'Set a condition for umaiing one of
- more records in the mapping table

- Corresponding 1o the new keys

replacing the old keys.

1104

aaaaaaa

— ¥

| Access the indexes and the
mapping tabie with an old key
| corresponding to the new key.
1148

- Process the access request with a
pointar corresponding o the old
i- Key.

aaa

FiG 13

US RE49,148 L

U.S. Patent Jul. 26, 2022 Sheet 19 of 31 US RE49,148 E

Storage
; Lievines
(Sl 170a

/ wid /8¢ oD 1760 8L 178 / o 18], oD 176K

R ey Y TR E
i, iy .
e m&"\%ﬂfﬁ;&hﬁ. T W .

* P T T T \
| ! BEEL | :
f T “"ﬁ . Siripe
: Y ' ——
| IRRE / 127035
f ’
i |
| {
| ;
|
Ntghels
12700
L
T
T
SRR
oot
L .
: {1
a , | ; N
------------------- B e - fromsemsmsssennsmsnnans -
***** ma B e - — - + I SRR Em—— \ Page
- S - - FRNSOUNJ N 47347
SRS — S N SERNUSEN - i%f—q?n-%-ﬁ-i 1212
E ! : ! : E =. l : =*! 4E. =. =.
i e A Lo AT

f Data 1230 / Vata 1240

'
F

It v .
’ Mﬂ intra-Davice

i r Y .“" L
V"Tb i i

N

User Dala ey Errar Recovery

r rd L)
....*-.-.'..d. T':

LRy Y S S, sy sl 1

» Data 1250 / Data 1260

':nj-_ R R A a : e e

FTTT1T) Inter-Device mlmnm

P b e g, %,

Ll Frror OO

L--a__ iid sl Metadats

HReaecovery

FiG. 14

U.S. Patent

Jul. 26, 2022

Receive Data for Deduplication

Sheet 20 of 31

US RE49,148 L

1902
Generate fingerprint
1504
identify fingerprint tables to
search
1508
|
Y 1 Yes No |
, Select {able lore Tables? - Write Data
1508 |"' 1522 1524
I I
' !
Search ™. No
¢ cuirent table? -
-
4
Create new
deduplication Entry
1526
Read No
Stored Data? -
| 4
Update Link Table | - Update Mapping Table
1518 1620

FIG. 15

U.S. Patent Jul. 26, 2022 Sheet 21 of 31 US RE49,148 E

, Method 16800

Selscl one oF more storage devices
o use N a storage subsysten.
1002

| 1601
identity for any given data component | T
ane oF more atlripites 10 mainiain o
1604
i identify events for updating the one orp |
wore atinbuies, |
i 1605
e}
i Leterming .
< one of the events has > NG
coourtedy
1500
E
~etrieve corresponding attributes,
1610
Make change 1o fingerprnt location . : s
Make change t:c fiﬁ"‘if__,t,.ip int location Update the attributes.
as indicated e po 1614
1612 e

FiG. 16

U.S. Patent Jul. 26, 2022 Sheet 22 of 31 US RE49,148 E

y Attributes 1700
¥
Attribtites Entry 1701
_______________________________ e e — o
Address Access Rate | Total Accesses | Data Age | Data Size | Device Age

Ll LI T S S e ol

17034 17038 4703C | 17030 17038 | 1703F

T R I e e . L SR Spey B) EL Ty LT 1N

Deduplication Rate | Tolal Deduplications Error Rate | Total Errors © Status
170305 1703 AIXY 17034 0 4703K

FiG 17

A = — — — W Emw = = == — s= Lo oo e o L R R e e e e e e et . L A

- [———

US RE49,148 L

e ke —

bl TP
[]

Sheet 23 of 31

Jul. 26, 2022

U.S. Patent

———— e W B —————— = ————

- a s N ————— = = -_ o —

BPgl A | il _m m_ GZEET Anus
‘ | 2007

- - - e —

O¥ki 9lCe L
=SNGy

o ——

el ————

STET BiE]

1
..l.h__ —r

. | eepdn sige) Buiddepy | u
: | | | n
..................... S e —mnaa |
n | GUBL P :
e — w 6D i | N e e
; X B | i ; A B | . AT
Jovil Ajus | JIRUIBACIN SBLUT GRS | L EPEET AU e - sindus
S— ﬁ B P | S e | m
T) rasistl “ " - @R
Bk ?h_r.m P | BPCOl AnuT
5 | 21807 Sepdn SN | T b AU B

ar —r r--a..__n._____-_‘

olislen] ALY

1
-

e e = e —— = -=

-

\.

)
40
'T-:-

ABmensuonemdrpsg | B e
e T o yd
i OO T HiDO JORUOD L ettt o reeeeeeneen] 4
4 A
M . A B0ET
| e — s Tt ST 1Y
A e — o S | aylezela
aite) Sudden _m fo 0 2081
¥ H o
...................... e rrverte w SRR S— 1cusdeus |
| BEZET Anuz T
| AR S ST BN
‘ e X PU] SSSUPPY |
| _ I A o fEIIA
_ n \ m I o
m — S \ - FOET
AR ST g Awa | A
EIRIZITOIEN e IV I R o] " RS- R IR LI |
ey e ¢ \ e
[BOISALd | - BEEAT AU
o R \
pr -Fm; \
e) b yed peay
m _ .__.|._|I...J . .m |||.M1|._..._|~||“.q||-| = R r ---llH.w_
| et rme e B] SC¥L 1 ¢l A

—_

SNEg RSl 1 X3l
IEOISALA eniin |

| ————— - -

e e -

U.S. Patent Jul. 26, 2022 Sheet 24 of 31 US RE49,148 E

T ER EE S BN EE BT FEN O EE FER ST CER BFL BEN QS FER BN BER BN PN BNE. FEN BN BEN BN FEN BNr FEN BST BN B e e ver mee mm omm owl ow® e e o Sy B Gk ol Ay b rH e v - P ik e S W P 7 A P e el e e e aft b e TER B M EST B W SNET S BN B S IS BNE ES BN CES BEEE ESr SN ESE BFE ET B SN BFE ESE BFE EE BEE EEN BFW CEEN AP EE BN CEEN WSS W CEE AP FER AFL S B SEL G FEN T N B B ed s e e e et S em e e e mmm e et e e = e ey

Caduniication Table 1810

 1d2<a Fingerprint
Ringerprint Tabla

18220 e 1620
Data ; _— / RE

Compenent | v
1602 . *'

™ —

el

' - 18d4g Fingerprint

Fingarprint

. B Table
Fingerprint | | / 1930

Adgorithm
5 1804

B omE e e o] —p TP T BN EEN EPE EEC BFE HSC B E W CESF NS B SPE EN PEL B, PR B PR - - —

Fingerprint | Fingerprint | o
e i i L Pointer 19382 | Stalus 1938y
| 19328 ; 1934s | S

Fingerprint | Fingerprint

': 19370 10340
{ats I’ P e .

Pointer 1836+ Status 1338k

TITTT W ETCEr EECEr O W OEECEr R o —— e e e = =t e = == e =

Compenent

Fingerpnn :

. 1208 : E
Fingerprint | Fingsrprint | oo E

I: - ' . faw i A Y . LS = g - I |

i 1027 1924 Pointer 18381 1 Status 1338 i

! : : |

Fingerprint |
y Table

/ 1948

Bl T = e e o . e e e e o e o o e e o Y = = = T, ~E =N WY L,

 Fingerprint | Fingerprint | Fingerprint | _ . |
E o E P Fointer 1846 1 Status 1848a | 1
. {040a 194da | 1o4mg | Cointerigsta | olatus 1948 |

~ Fingerprint | Fingerprint | Fingerpring

Pl mimbemr A GAGR | Cbedys e
. . . Hoinfer 18480 1 Sialus 1848b
19428 | 1044b 19458 AZERR

I'I*;'h

- ——t e e e e e = ——————

P m— e e e e — L

- Fingerprint | Fingerpring Fingarorint L B , o
: LA | oA B Foimier 1240m | Stalus 18480
| j042m i 1044m 1845m ' |

[
L S ——

- A NS N N L RN AN A e e e e = P U e e e o

|
|
|
|
|
|
|
1
1
k
]
]
1
1
]
L
1
f
3
|
|
1
1
1
b
|
|
|
|
|
|
|
|
|
1
1
1
1
1
|
|
|
|
|
|
|
|
|
1
1
1
1
|
|
|
|
|
|
|
|
|
1
1
1
%
1
|
|
|
|
|
|
|
|
|
1
1
1
1
|
|
|
|
|
|
|
|
|
1
1
1
1
|
|
|
|
|
|
|
|
1
1
1
-

e —— e ——— ———— — kA

U.S. Patent

Determing to use N fingerpring
tablas for dedupiication

|daniify one or more events for
changing a storage strategy for

tapie anfries 2

2006

L identify one or more attributes to

Jul. 26, 2022

Sheet 25 of 31

store and maimntain for aniries

-

r
¥
'
1

E_F b g g B

T " 28y ik ok 2 e 2 e ke o

_— U . -~

Hegister, move, promate,
demois, evict and/or reinsert
anires pased on cofresponding
altributes
20165

SR, |
¥

- visthod 2000

Lipdate attricules as the stored
- dala componenis are aged ang
accesse

2010

I

LIoes
one of the

FlG. 20

avents oogur’y

inspect attributas of one or more
entries within the tables
014

US RE49,148 L

U.S. Patent

P
1

Jul. 26, 2022 Sheet 26 of 31

pu—— . — . —
- _‘\-4\

identily one or more conditions for
aviching an entry from a deduphcation
taple

]
)
n
n
n

Are |
congditions satisfied for

iﬁ—l\i 0

avicting entry?

Mark corresponding data
component as naving baan

FRMOVesd.
2106

Hemove the given entry from the
table
2108

G, 21

US RE49,148 L

Meathod 2100

U.S. Patent Jul. 26, 2022 Sheet 27 of 31 US RE49,148 E

e Matnod 2200

;

&

idanlity one of more conditions {or
| reviewing data for possibie
inclusion in the deduplication e g e e s
tapte (DT
222

Ars
ﬂ&ﬂ_ditif}nﬁ
aatisfied?
2204

------- N

inspec! corresponding atiribufes

37
. Zure

ttttt WO W,

E
Loes
NGO the dala qualify to be ™
inthe D17 L
4258

o

insert the given entyy into the table
f 2218

FiG, 22

US RE49,148 L

Sheet 28 of 31

Jul. 26, 2022

U.S. Patent

XA

#["lllllllllllllll-l_—..lr o

SrasrA erisr A v A LLLd
Xapujp | .« . . XaDU X P
jeraa erman | eosAld | BB |

| - -
A - - —— - - - e = = = = — = = e . I
»
'
.
.
at
SR e e
ot
-

| e | 20¢d
e . - - iudisfurg

JUBUOTWIOT |
" ’ m _. |

3y K
(N
£
™N

)

.
.
M
2

..........................

BOTET AU |

T e - jundieful
e & S— | DEET epel wudeobul4 " 1

| | |
BOZEE Az | 0287 smel wudisBuly | |
" " T
L - jusuodcTs
GLE7 SIGE T MU G181 eige] uonekinpag ” e

f e e e e e - - |||I:Jl.“
|

Ll L) R T N T 1] 885§ F gy ey

W B B el ol T b s B e s sl B mr mr omr a r E Er E EE T R O R L B R L L oF e e] e e e

O0EE UIBISAL - rmes .

U.S. Patent Jul. 26, 2022 Sheet 29 of 31 US RE49,148 E

Read Link Table entry

| CYos
e i - g A More™
s T - . . i
Head viriual address ‘ antries in NE e

from entry
24604

table?
o 2418

)

ook up virtual addrass
N mapping {able
2408 S

el

Yoo

,f
NGO fare virtual\, NO E

Covitual
address vahgy
2400

Virite new entry to
ik tabie

acidresseas Reﬂ'-?-*”‘ﬁ gata plock
2412 241G

2420

A INEW
ehfry empty
2414

Upraie new

ik table entry

Fi(z. 24

U.S. Patent

dem o

— e e e o — A B B P ESE F ESC W ESr N ESC N OSSP WS P S WL B Ee

e o e e e T T T rME ST ECEWIFE FCCE N CCEFEICE S B B ks e = o= o= s s s E omomE omoEEomomEomomEom o= -

———— - —— — 7 = ==

- W R R N N N N B B W B B N NN NN NN NN NN NN NN NN NN NN NN NN e e e e e b e

Jul. 26, 2022

Read naxt ink table entry
2502

¥

Add 1o sorted ist of
aitries for this sagment
25404

-aE o WA SR AR A Fa

' Yeag

Sheet 30 of 31

fore link
tabie entries’?

e e e e e e e e e e g e e ey T PN TEEF TEET THEEG HNT T NN THEN EEN EEN NN BEN BEN BN BN BN BN ENC AW BN ST BN P N N BN RS RN FE B - s e

Ay

T T

Position cursor ai start of segment
sontent gascnptor taids

US RE49,148 L

N
]
Y
o

£ A=
2y

IIIIIIIIIIIII

o e e e e e e e e o — — — =

DEALY

Read nexi segment
content dascripior antry

F
r
1

Y

e EETAR AR AR R T A R e e by

start 2t first entry in sortad list

Y
L2218

B B N N e Bk B ook N e

ook up virtual address in

Addg to sorted st of
entries for this sagment

2a32

e e e e e e e e = e T EEC BT B EFE EEE L L P B FE A - e = == — p= =, = e m e mm s mm s mm mm mom meom moema e

mapping table 4
2518

y
1

I':'il-. ".f x . AE v - ‘I-I‘ﬂ
15 AnnNg M No
ramtoltY e

Ny EE '
e - I -
e

kol d = LT

Add enfry to iist of data o

. Yes

-..,‘1'
'i‘\-‘
L
My

Nore

COpY 10 New segment e

e
e !

Rt N L ISR

T W OEE W N W T W M E L E N E A R

i, 25

20282

NG -
entmies? pe{ List Dmne)

'Idli

e — e T P& PR OET BT W LY

2944

1
m e e ey T T FE B FE B FE B FE B FE R e by oom o m oEr

-_—— T T T T e e e e re e Ee— — I m IT WA IEE R e e mE e im e am o= o=

L]
S e e e e e = T T M N M BN MR BN MR i e e = PR e e e o m = e

U.S. Patent Jul. 26, 2022 Sheet 31 of 31 US RE49,148 E

sef cursor to first entry in
1St
2830

....... ¥ . R :
| Advance cursorio next |
Read ertry &t cursor A Or 1o next Las
R -~ : Eﬂﬁ }f . 4 ntry Egt"} P

<
i
-
rln{u-
T
)
e~
M R !
; A e
& B
4
—3
&
3
o
w—
gy F

L]
f
1
L
)
t
1
"'ﬂﬁ" r ; N

IR e = e — i = =

L o = 2818 ., 2618 - %
E L‘*-LE; E

s 2803 a %

7 | |

! fr"' 1 :

: S Copy data to new data Undate manning ent |
T Tl Sedment e PR ?ESQA d BOY |

2812 St

8 TmmmmmmmmmmT I T

~ L..an antry bfa

e ut}hr“a‘t =2d7
504

—_——————

A, R Eyg e A U EL LN RS W B B N B R B ek ke e ol e e e —— — = i rem m

Daka N e
“edd‘-’ ?m’_ Add new link takle entry
*““”‘7" 2610

?6?6

e = — T

= T TS TS OE A E Tl A S S A BN LR ww N ECE B W FEE BN O e —— i — = — —

[Copy data to new dedup |
: data segmeant T e
2808

TUOTT T e e e e WIS CEER ERE FE OB B B SR A mm - hm — —— —

I'--r-\ﬂ-l-\.l.r-rr'r—'r-lll-.l. e P R Rl bl B Bk bede b E B R B ol Tk b G BE BN WE FEOFM BT R OF ORT E R ST B U S P AT O W T S RS G B B R el B) b e e e e e e e e e e e ey ey ey ey g BT TSN B HN BFL NN BEN PERL BN W JBE. RN BN BEE BN WL B BN B B B b o e e et e e e et e e e asm sm mm om
= T ER Ca R R o bk e e wrh o mn P AR A MR A e

US RE49,148 E

1

RECLAIMING SPACE OCCUPIED BY
DUPLICATED DATA IN A STORAGE
SYSTEM

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 14/015,308, entitled “GARBAGE COLLEC-

TION IN ASTORAGE SYSTEM?”, filed Aug. 30, 2013, now
U.S. Pat. No. 8,886,691, a continuation of U.S. patent
application Ser. No. 13/340,119, entitled “GARBAGE COL-
LECTION IN A STORAGE SYSTEM™, filed Dec. 29, 2011,
now U.S. Pat. No. 8,527,544, a continuation-in-part of U.S.
patent application Ser. No. 13/250,570, entitled “METHOD
FOR REMOVING DUPLICATE DATA FROM A STOR-
AGE ARRAY”, filed Sep. 30, 2011, and a continuation-in-
part of U.S. patent application Ser. No 13/208,094, entitled
“LOGICAL SECTOR MAPPING IN A FLASH STORAGE
ARRAY?”, filed Aug. 11, 2011, now U.S. Pat. No. 8,788,788,
and a continuation-in-part of U S. patent application Ser. No.
13/211,288, entitled “MAPPING IN A STORAGE SYS-
TEM™, filed Aug. 16, 2011, now U.S. Pat. No. 8,806,160,
and a continuation-in-part of U.S. patent application Ser. No.
13/250,579, entitled “VARIABLE LENGTH ENCODING
IN A STORAGE SYSTEM?™, filed Sep. 30, 2011, now U.S.
Pat. No. 8,793,467, and a continuation-in-part of U.S. patent
application Ser. No. 13/273,858, entitled “METHOD FOR
MAINTAINING MULTIPLE FINGERPRINT TABLES IN
A DEDUPLICATING STORAGE SYSTEM?”, filed Oct. 14,
2011, now U.S. Pat. No. 8,589,640, each of the foregoing
applications being incorporated herein by reference 1n their
entirety.

BACKGROUND

1. Field of the Invention

This invention relates to computer networks and, more
particularly, to maintaining a mapping structure in a storage
system.

2. Description of the Related Art

As computer memory storage and data bandwidth
increase, so does the amount and complexity of data that
businesses daily manage. Large-scale distributed storage
systems, such as data centers, typically run many business
operations. A datacenter, which also may be referred to as a
server room, 1s a centralized repository, either physical or
virtual, for the storage, management, and dissemination of
data pertaining to one or more businesses. A distributed
storage system may be coupled to client computers inter-
connected by one or more networks. If any portion of the
distributed storage system has poor performance, company
operations may be mmpaired. A distributed storage system
therefore maintains high standards for data availability and
high-performance functionality.

The distributed storage system comprises physical vol-
umes, which may be hard disks, solid-state devices, storage
devices using another storage technology, or partitions of a
storage device. Software applications, such as a logical

10

15

20

25

30

35

40

45

50

55

60

65

2

volume manager or a disk array manager, provide a means
of allocating space on mass-storage arrays. In addition, this

software allows a system admuinistrator to create units of
storage groups including logical volumes. Storage virtual-
ization provides an abstraction (separation) of logical stor-
age from physical storage 1n order to access logical storage
without end-users i1dentitying physical storage.

To support storage virtualization, a volume manager per-
forms input/output (I/0) redirection by translating incoming
IO requests using logical addresses from end-users 1nto new
requests using addresses associated with physical locations
in the storage devices. As some storage devices may include
additional address translation mechanisms, such as address
translation layers which may be used 1n solid state storage
devices, the translation from a logical address to another
address mentioned above may not represent the only or final
address translation. Redirection utilizes metadata stored 1n
one or more mapping tables. In addition, information stored
in one or more mapping tables may be used for storage
deduplication and mapping virtual sectors at a specific
snapshot level to physical locations. The volume manager
may maintain a consistent view of mapping information for
the virtualized storage. However, a supported address space
may be limited by a storage capacity used to maintain a
mapping table.

The technology and mechanisms associated with chosen
storage disks determines the methods used by a volume
manager. For example, a volume manager that provides
mappings for a granularity level of a hard disk, a hard disk
partition, or a logical unit number (LUN) of an external
storage device 1s limited to redirecting, locating, removing,
duplicate data, and so forth, for large chunks of data. One
example of another type of storage disk 1s a Solid-State Disk
(SSD). An SSD may emulate a HDD interface, but an SSD
utilizes solid-state memory to store persistent data rather
than electromechanical devices as found in a HDD. For
example, an SSD may comprise banks of Flash memory.
Accordingly, a large supported address space by one or more
mapping tables may not be achieved 1n systems comprising
SSDs for storage while utilizing mapping table allocation
algorithms developed for HDDs.

One mmportant process related to data storage 1s that of
garbage collection. Garbage collection 1s a process in which
storage locations are freed and made available for reuse by
the system. In the absence of garbage collection, all storage
locations will eventually appear to be 1n use and 1t will no
longer be possible to allocate storage. Often times, there 1s
significant overhead associated with performing garbage
collection and overall system performance can be adversely
impacted. Consequently, how and when garbage collection
1s performed 1s 1important.

In view of the above, systems and methods for efliciently
performing garbage collection 1n storage devices are
desired.

SUMMARY OF EMBODIMENTS

Various embodiments of a computer system and methods
for performing garbage collection 1n a data storage system
are contemplated.

A system 1s contemplated which includes a storage
medium, a first table including entries which map virtual
addresses to locations 1n the storage medium, and a second
table with entries which include reverse mappings of a
physical address in a data storage medium to one or more
virtual addresses. A data storage controller in the system 1s
configured to perform garbage collection. During garbage

US RE49,148 E

3

collection, the controller 1s configured to identily one or
more entries 1n the second table which correspond to a

segment to be garbage collected. In response to determining
the first table includes a valid mapping for a virtual address
included in an entry of the one of the one or more entries,
the controller 1s configured to copy data from a first location
identified 1n the entry to a second location 1n the data storage
medium, and reclaim the first storage location.

In various embodiments, the storage controller creates a
sorted list of entries from the second table which 1s then used
to build a list of data locations 1n the segment which are
currently 1n use. Having identified locations which remain 1n
use, the controller copies data in these locations to a new
segment. Reclamation of the storage location may be per-
formed at a later time.

Also contemplated are embodiments in which the con-
troller deduplicates data corresponding to locations that are
to be copied to a new segment. I the data can be dedupli-
cated, a new entry 1s added to the second table which maps
a virtual address to the new location. If the deduplicated data
has not yet been written, it 1s first written to a new location.

In some embodiments, data 1n the first table 1s organized
as a plurality of time ordered levels. In such embodiments,
when the controller copies data from the first location to a
second location, it adds a new entry corresponding to the
second location to the first table 1n a newer time-ordered
level than that contaiming the entry corresponding to the first
location. In various embodiments, the controller 1s also
configured to detect and correct errors 1n garbage collected
data that 1s being relocated.

These and other embodiments will become apparent upon
consideration of the following description and accompany-
ing drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a generalized block diagram illustrating one
embodiment of network architecture.

FI1G. 2 15 a generalized block diagram of one embodiment
ol a mapping table.

FIG. 3A 1s a generalized block diagram of one embodi-
ment of a primary index used to access a mapping table.

FIG. 3B 1s a generalized block diagram of another
embodiment of a primary index used to access a mapping
table.

FIG. 4 1s a generalized block diagram of another embodi-
ment of a primary imndex and mapping table.

FIG. SA 1s a generalized flow diagram illustrating one
embodiment of a method for performing a read access.

FIG. 3B 1s a generalized flow diagram illustrating one
embodiment of a method for performing a write operation.

FIG. 3C 1s a generalized flow diagram illustrating one
embodiment of a method for encoding and storing tuples.

FIG. 3D illustrates one embodiment of tuple encoding.

FIG. S5E 1s a generalized tflow diagram 1illustrating one
embodiment of a method for selecting and encoding scheme.

FIG. 6 1s a generalized block diagram of one embodiment
of a multi-node network with shared mapping tables.

FIG. 7 1s a generalized block diagram of one embodiment
of a secondary index used to access a mapping table.

FIG. 8 15 a generalized block diagram of one embodiment
of a tertiary index accessing a mapping table.

FIG. 9 illustrates one embodiment of a method that
utilizes overlay tables.

FIG. 10 1s a generalized block diagram of one embodi-
ment of a flattening operation for levels within a mapping,
table.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 11 1s a generalized block diagram of another embodi-
ment of a flattening operation for levels within a mapping
table.

FIG. 12 1s a generalized flow diagram 1illustrating one
embodiment of a method for flattening levels within a
mapping table.

FIG. 13 1s a generalized flow diagram illustrating one
embodiment of a method for efliciently processing bulk
array tasks within a mapping table.

FIG. 14 1s a generalized block diagram illustrating an
embodiment of a data layout architecture within a storage
device.

FIG. 15 1illustrates one embodiment of a method for
performing deduplication.

FIG. 16 1illustrates one embodiment of a method for
maintaining fingerprints 1 a deduplication table.

FIG. 17 1s a generalized block diagram illustrating one
embodiment of a table entry storing attributes.

FIG. 18 1s a generalized block diagram illustrating one
embodiment of a system for maintaining attributes tables for
data components.

FIG. 19 1s a generalized block diagram illustrating one
embodiment of a deduplication table.

FIG. 20 1illustrates one embodiment of a method for
supporting multiple fingerprint tables.

FIG. 21 1illustrates one embodiment of a method for
eviction from a deduplication table.

FIG. 22 illustrates one embodiment of a method for
iserting an entry into a deduplication table.

FIG. 23 illustrates one embodiment of a system for
maintaining reverse address mappings using a link table.

FIG. 24 illustrates embodiment of a portion of a garbage
collection process.

FIG. 25 illustrates embodiment of a portion of a garbage
collection process.

FIG. 26 1llustrates embodiment of a portion of a garbage
collection process.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments are shown
by way of example 1n the drawings and are herein described
in detail. It should be understood, however, that drawings
and detailed description thereto are not imntended to limit the
invention to the particular form disclosed, but on the con-
trary, the invention is to cover all modifications, equivalents
and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced
without these specific details. In some instances, well-
known circuits, structures, signals, computer program
instruction, and techniques have not been shown 1n detail to
avoild obscuring the present invention.

Referring to FIG. 1, a generalized block diagram of one
embodiment of a network architecture 100 1s shown. As
described further below, one embodiment of network archi-
tecture 100 includes client computer systems 110a-110b
interconnected to one another through a network 180 and to
data storage arrays 120a-120b. Network 180 may be coupled
to a second network 190 through a switch 140. Client
computer system 110c 1s coupled to client computer systems
110a-110b and data storage arrays 120a-120b via network

US RE49,148 E

S

190. In addition, network 190 may be coupled to the Internet
160 or otherwise outside network through switch 150.

It 1s noted that in alternative embodiments, the number
and type of client computers and servers, switches, net-
works, data storage arrays, and data storage devices 1s not
limited to those shown i FIG. 1. At various times one or
more clients may operate oflline. In addition, during opera-
tion, individual client computer connection types may
change as users connect, disconnect, and reconnect to net-
work architecture 100. Further, while the present description
generally discusses network attached storage, the systems
and methods described herein may also be applied to
directly attached storage systems and may include a host
operating system configured to perform one or more aspects
of the described methods. Numerous such alternatives are
possible and are contemplated. A further description of each
of the components shown 1n FIG. 1 1s provided shortly. First,
an overview of some of the features provided by the data
storage arrays 120a-120b 1s described.

In the network architecture 100, each of the data storage
arrays 120a-120b may be used for the sharing of data among
different servers and computers, such as client computer
systems 110a-110c. In addition, the data storage arrays
120a-120b may be used for disk mirroring, backup and
restore, archival and retrieval of archived data, and data
migration from one storage device to another. In an alternate
embodiment, one or more client computer systems 110a-
110c may be linked to one another through fast local area
networks (LANs) 1n order to form a cluster. Such clients
may share a storage resource, such as a cluster shared
volume residing within one of data storage arrays 120a-
120b.

Each of the data storage arrays 120a-120b includes a
storage subsystem 170 for data storage. Storage subsystem
170 may comprise a plurality of storage devices 176a-176m.
These storage devices 176a-176m may provide data storage
services to client computer systems 110a-110c. Each of the
storage devices 176a-176m uses a particular technology and
mechanism for performing data storage. The type of tech-
nology and mechanism used within each of the storage
devices 176a-176m may at least in part be used to determine
the algorithms used for controlling and scheduling read and
write operations to and from each of the storage devices
176a-176m. For example, the algorithms may locate par-
ticular physical locations corresponding to the operations. In
addition, the algorithms may perform input/output (I/0)
redirection for the operations, removal of duplicate data in
the storage subsystem 170, and support one or more map-
ping tables used for address redirection and deduplication.

The logic used in the above algorithms may be 1included
in one or more of a base operating system (OS) 132, a
volume manager 134, within a storage subsystem controller
174, control logic within each of the storage devices 176a-
176m, or otherwise. Additionally, the logic, algorithms, and
control mechanisms described herein may comprise hard-
ware and/or software.

Each of the storage devices 176a-176m may be config-
ured to receive read and write requests and comprise a
plurality of data storage locations, each data storage location
being addressable as rows and columns 1n an array. In one
embodiment, the data storage locations within the storage
devices 176a-176m may be arranged 1nto logical, redundant
storage containers or RAID arrays (redundant arrays of
inexpensive/independent disks).

In some embodiments, each of the storage devices 176a-
176m may utilize technology for data storage that 1s different
from a conventional hard disk drive (HDD). For example,

10

15

20

25

30

35

40

45

50

55

60

65

6

one or more of the storage devices 176a-176m may include
or be further coupled to storage consisting of solid-state
memory to store persistent data. In other embodiments, one
or more of the storage devices 176a-176m may include or be
further coupled to storage using other technologies such as
spin torque transfer technique, magnetoresistive random
access memory (MRAM) technique, shingled disks, mem-
ristors, phase change memory, or other storage technologies.
These different storage techniques and technologies may
lead to differing I/O characteristics between storage devices.

In one embodiment, the included solid-state memory
comprises solid-state drive (SSD) technology. The difler-
ences 1n technology and mechanisms between HDD tech-
nology and SDD technology may lead to differences in
input/output (I/0) characteristics of the data storage devices
176a-176m. A Solid-State Disk (SSD) may also be referred
to as a Solid-State Drive. Without moving parts or mechani-
cal delays, an SSD may have a lower read access time and
latency than a HDD. However, the write performance of
SSDs 1s generally slower than the read performance and may
be significantly impacted by the availability of free, pro-
grammable blocks within the SSD.

Storage array efliciency may be improved by creating a
storage virtualization layer between user storage and physi-
cal locations within storage devices 176a-176m. In one
embodiment, a virtual layer of a volume manager 1s placed
in a device-drniver stack of an operating system (OS), rather
than within storage devices or 1n a network. Many storage
arrays perform storage virtualization at a coarse-grained
level to allow storing of virtual-to-physical mapping tables
entirely 1n memory. However, such storage arrays are unable
to integrate features such as data compression, deduplication
and copy-on-modily operations. Many file systems support
fine-grained virtual-to-physical mapping tables, but they do
not support large storage arrays, such as device groups
173a-173m. Rather, a volume manager or a disk array
manager 1s used to support device groups 173a-173m.

In one embodiment, one or more mapping tables may be
stored 1 the storage devices 176a-176m, rather than
memory, such as RAM 172, memory medium 130 or a cache
within processor 122. The storage devices 176a-176 may be
SSDs utilizing Flash memory. The low read access and
latency times for SSDs may allow a small number of
dependent read operations to occur while servicing a storage
access request from a client computer. The dependent read
operations may be used to access one or more indexes, one
or more mapping tables, and user data during the servicing
of the storage access request.

In one example, I/O redirection may be performed by the
dependent read operations. In another example, inline dedu-
plication may be performed by the dependent read opera-
tions. In yet another example, bulk array tasks, such as a
large copy, move, or zeroing operation, may be performed
entirely within a mapping table rather than accessing storage
locations holding user data. Such a direct map manipulation
may greatly reduce I/O tratlic and data movement within the
storage devices 176a-176m. The combined time for both
servicing the storage access request and performing the
dependent read operations from SSDs may be less than
servicing a storage access request from a spinning HDD.

In addition, the information within a mapping table may
be compressed. A particular compression algorithm may be
chosen to allow identification of individual components,
such as a key within a record among multiple records.
Theretfore, a search for a given key among multiple com-
pressed records may occur. In various embodiments the
search for a given key may be performed without decom-

US RE49,148 E

7

pressing each tuple by comparing the compressed represen-
tation of the key against the compressed information stored
in the relevant fields of the tuple. If a match 1s found, only
the matching record may be decompressed. Compressing the
tuples within records of a mapping table may further enable
fine-grained level mapping. This fine-grained level mapping
may allow direct map manipulation as an alternative to
common bulk array tasks. Further details concerning efli-
cient storage virtualization will be discussed below.
Again, as shown, network architecture 100 includes client
computer systems 110a-110c interconnected through net-

works 180 and 190 to one another and to data storage arrays
120a-120b. Networks 180 and 190 may include a variety of

techniques including wireless connection, direct local area
network (LAN) connections, wide area network (WAN)
connections such as the Internet, a router, storage area
network, Ethernet, and others. Networks 180 and 190 may
comprise one or more LANs that may also be wireless.
Networks 180 and 190 may further include remote direct
memory access (RDMA) hardware and/or software, trans-
mission control protocol/internet protocol (TCP/IP) hard-
ware and/or soltware, router, repeaters, switches, grids,
and/or others. Protocols such as Fibre Channel, Fibre Chan-
nel over Ethernet (FCoE), 1SCSI, and so forth may be used
in networks 180 and 190. Switch 140 may utilize a protocol
associated with both networks 180 and 190. The network
190 may interface with a set of communications protocols

used for the Internet 160 such as the Transmission Control
Protocol (TCP) and the Internet Protocol (IP), or TCP/IP.

Switch 150 may be a TCP/IP switch.

Client computer systems 110a-110c are representative of
any number of stationary or mobile computers such as
desktop personal computers (PCs), servers, server farms,
work-stations, laptops, handheld computers, servers, per-
sonal digital assistants (PDAs), smart phones, and so forth.
Generally speaking, client computer systems 110a-110c
include one or more processors comprising one or more
processor cores. Each processor core includes circuitry for
executing 1nstructions according to a predefined general-
purpose instruction set. For example, the x86 instruction set
architecture may be selected. Alternatively, the Alpha®,
PowerPC®, SPARC®, or any other general-purpose instruc-
tion set architecture may be selected. The processor cores
may access cache memory subsystems for data and com-
puter program 1instructions. The cache subsystems may be
coupled to a memory hierarchy comprising random access
memory (RAM) and a storage device.

Each processor core and memory hierarchy within a client
computer system may be connected to a network interface.
In addition to hardware components, each of the client
computer systems 110a-110c may include a base operating
system (OS) stored within the memory hierarchy. The base
OS may be representative of any of a varniety of operating
systems, such as, for example, MS-DOS®, MS-WIN-
DOWS®, OS/2®, UNIX®, Linux®, Solaris®, AIX®,
DART, or otherwise. As such, the base OS may be operable
to provide various services to the end-user and provide a
software framework operable to support the execution of
various programs. Additionally, each of the client computer
systems 110a-110c may include a hypervisor used to support
virtual machines (VMs). As 1s well known to those skilled
in the art, virtualization may be used in desktops and servers
to fully or partially decouple software, such as an OS, from
a system’s hardware. Virtualization may provide an end-user
with an illusion of multiple OSes running on a same machine
cach having its own resources and access to logical storage

10

15

20

25

30

35

40

45

50

55

60

65

8

entities (e.g., LUNs) built upon the storage devices 176a-
176m within each of the data storage arrays 120a-120b.

Each of the data storage arrays 120a-120b may be used for
the sharing of data among difierent servers, such as the client
computer systems 110a-110c. Each of the data storage arrays
120a-120b includes a storage subsystem 170 for data stor-
age. Storage subsystem 170 may comprise a plurality of
storage devices 176a-176m. FEach of these storage devices
176a-176m may be an SSD. A controller 174 may comprise
logic for handling received read/write requests. A random-
access memory (RAM) 172 may be used to batch operations,
such as received write requests. In various embodiments,
when batching write operations (or other operations) non-
volatile storage (e.g., NVRAM) may be used.

The base OS 132, the volume manager 134 (or disk array
manager 134), any OS drnivers (not shown) and other soft-
ware stored in memory medium 130 may provide function-
ality providing access to files and the management of these
functionalities. The base OS 132 may be a storage operating
system such as NetApp Data ONTAP® or otherwise. The
base OS 132 and the OS drivers may comprise program
instructions stored on the memory medium 130 and execut-
able by processor 122 to perform one or more memory
access operations in storage subsystem 170 that correspond
to received requests. The system shown in FIG. 1 may

generally include one or more file servers and/or block
SErvers.

Each of the data storage arrays 120a-120b may use a
network interface 124 to connect to network 180. Similar to
client computer systems 110a-110c, 1n one embodiment, the
functionality of network interface 124 may be included on a
network adapter card. The functionality of network interface
124 may be implemented using both hardware and software.
Both a random-access memory (RAM) and a read-only
memory (ROM) may be included on a network card imple-
mentation of network interface 124. One or more application
specific integrated circuits (ASICs) may be used to provide
the functionality of network interface 124.

In addition to the above, each of the storage controllers
174 within the data storage arrays 120a-120b may support
storage array functions such as snapshots, replication and
high availability. In addition, each of the storage controllers
174 may support a virtual machine environment that com-
prises a plurality of volumes with each volume including a
plurality of snapshots. In one example, a storage controller
174 may support hundreds of thousands of volumes,
wherein each volume includes thousands of snapshots. In
one embodiment, a volume may be mapped in {ixed-size
sectors, such as a 4-kilobyte (KB) page within storage
devices 176a-176m. In another embodiment, a volume may
be mapped 1n variable-size sectors such as for write requests.
A volume ID, a snapshot ID, and a sector number may be
used to i1dentify a given volume.

An address translation table may comprise a plurality of
entries, wherein each entry holds a virtual-to-physical map-
ping for a corresponding data component. This mapping
table may be used to map logical read/write requests from
cach of the client computer systems 110a-110c¢ to physical
locations 1n storage devices 176a-176m. A “‘physical”
pointer value may be read from the mapping table during a
lookup operation corresponding to a received read/write
request. This physical pointer value may then be used to
locate a physical location within the storage devices 176a-
176m. It 1s noted the physical pointer value may be used to
access another mapping table within a given storage device
of the storage devices 176a-176m. Consequently, one or

US RE49,148 E

9

more levels of indirection may exist between the physical
pointer value and a target storage location.

In another embodiment, the mapping table may comprise
information used to deduplicate data (deduplication table
related information). The imnformation stored in the dedupli-
cation table may include mappings between one or more
calculated hash values for a given data component and a
physical pointer to a physical location in one of the storage
devices 176a-176m holding the given data component. In
addition, a length of the given data component and status
information for a corresponding entry may be stored in the
deduplication table.

Turning now to FIG. 2, a generalized block diagram of
one embodiment of a mapping table 1s shown. As discussed
carlier, one or more mapping tables may be used for 1/0
redirection or translation, deduplication of duplicate copies
of user data, volume snapshot mappings, and so {forth.
Mapping tables may be stored 1n the storage devices 176a-
176m. The diagram shown in FIG. 2 represents a logical
representation of one embodiment of the organization and
storage of the mapping table. Each level shown may include
mapping table entries corresponding to a different period of
time. For example, level “1” may include information older
than information stored 1n level *“2”. Sitmilarly, level “2” may
include information older than information stored in level
“3”. The information stored 1n the records, pages and levels
shown 1n FIG. 2 may be stored in a random-access manner
within the storage devices 176a-176m. Additionally, copies
of portions or all of a given mapping table entries may be
stored iIn RAM 172, in buffers within controller 174, 1n
memory medium 130, and 1n one or more caches within or
coupled to processor 122. In various embodiments, a cor-
responding index may be included 1n each level for map-
pings which are part of the level (as depicted later 1n FIG.
4). Such an 1ndex may include an i1dentification of mapping
table entries and where they are stored (e.g., an 1dentification
of the page) within the level. In other embodiments, the
index associated with mapping table entries may be a
distinct entity, or entities, which are not logically part of the
levels themselves.

Generally speaking, each mapping table comprises a set
of rows and columns. A single record may be stored 1n a
mapping table as a row. A record may also be referred to as
an enfry. In one embodiment, a record stores at least one
tuple including a key. Tuples may (or may not) also include
data fields including data such as a pointer used to 1dentify
or locate data components stored in storage subsystem 170.
It 1s noted that 1n various embodiments, the storage subsys-
tem may include storage devices (e.g., SSDs) which have
internal mapping mechanisms. In such embodiments, the
pointer 1n the tuple may not be an actual physical address per
se. Rather, the pointer may be a logical address which the
storage device maps to a physical location within the device.
Over time, this internal mapping between logical address
and physical location may change. In other embodiments,
records in the mapping table may only contain key fields
with no additional associated data fields. Attributes associ-
ated with a data component corresponding to a given record
may be stored in columns, or fields, 1n the table. Status
information, such as a valid indicator, a data age, a data size,
and so forth, may be stored in fields, such as Field0 to FieldN
shown in FIG. 2. In various embodiments, each column
stores mformation corresponding to a given type. In some
embodiments, compression techniques may be utilized for
selected fields which 1n some cases may result 1n fields
whose compressed representation 1s zero bits 1n length. It 1s
noted that while the {following discussion generally

10

15

20

25

30

35

40

45

50

55

60

65

10

describes the mapping tables as mapping address (e.g.,
virtual to physical addresses), in other embodiments the
tables, methods, and mechanisms may be applied to such
that the key can be a file 1dentifier or an object 1dentifier. For
example, 1n such embodiments the system may be used as a
file server or object server. In various embodiments, the
methods and mechanisms described here may be used to
serve blocks, objects, and files, and dynamically move space
between them. Numerous such embodiments are possible
and are contemplated.

A key 1s an entity 1n a mapping table that may distinguish
one row of data from another row. Each row may also be
referred to as an entry or a record. A key may be a single
column, or 1t may consist of a group of columns used to
identify a record. In some embodiments, a key may corre-
spond to a range of values rather than to a single value. For
example, a key corresponding to a range may be represented
as a start and end of a range, or as a start and length, or 1n
other ways. Additionally, the ranges corresponding to keys
may overlap with other keys, including either ranges or
individual values. In one example, an address translation
mapping table may utilize a key comprising a volume
identifier (ID), an address such as a logical address or virtual
address, a snapshot 1D, a sector number, and so forth. A
given received read/write storage access request may 1den-
tify a particular volume, sector and length. A sector may be
a logical block of data stored 1n a volume. Sectors may have
different sizes on different volumes. The address translation
mapping table may map a volume in sector-size units.

A volume 1dentifier (ID) may be used to access a volume
table that conveys a volume ID and a corresponding current
snapshot ID. This information along with the received sector
number may be used to access the address translation
mapping table. Therefore, in such an embodiment, the key
value for accessing the address translation mapping table 1s
the combination of the volume ID, snapshot ID, and the
recetved sector number. In one embodiment, the records
within the address translation mapping table are sorted by
volume ID, followed by the sector number and then by the
snapshot ID. This ordering may group together different
versions ol data components 1n different snapshots. There-
fore, during a lookup for a storage access read request, a
corresponding data component may be found with fewer
read operations to the storage devices 176a-176m.

The address translation mapping table may convey a
physical pointer value that indicates a location withuin the
data storage subsystem 170 storing a data component cor-
responding to the received data storage access request. The
key value may be compared to one or more key values stored
in the mapping table. In the 1llustrated example, simpler key
values, such as “07, “2”, “12” and so forth, are shown for
case of illustration. The physical pointer value may be stored
in one or more of the fields 1n a corresponding record.

The physical pointer value may include a segment 1den-
tifier (ID) and a physical address 1dentifying the location of
storage. A segment may be a basic unit of allocation i each
of the storage devices 176a-176m. A segment may have a
redundant array of independent device (RAID) level and a
data type. During allocation, a segment may have one or
more of the storage devices 176a-176m selected for corre-
sponding storage. In one embodiment, a segment may be
allocated an equal amount of storage space on each of the
one or more selected storage devices of the storage devices
176a-176m. The data storage access request may correspond
to multiple sectors, which may result 1n multiple parallel
lookups. A write request may be placed n an NVRAM
bufler, such as RAM 172, and a write completion acknowl-

US RE49,148 E

11

edgment may be sent to a corresponding client computer of
the client computers 110a-110c. At a later time, an asyn-
chronous process may flush the buflered write requests to the
storage devices 176a-176m.

In another example, the mapping table shown i FIG. 2
may be a deduplication table. A deduplication table may
utilize a key comprising a hash value determined from a data
component associated with a storage access request. The
initial steps of a deduplication operation may be performed
concurrently with other operations, such as a read/write
request, a garbage collection operation, a trim operation, and
so forth. For a given write request, the data sent from one of
the client computer systems 110a-110¢ may be a data stream,
such as a byte stream. As 1s well known to those skilled 1n
the art, a data stream may be divided into a sequence of
fixed-length or vanable-length chunks. A chunking algo-
rithm may perform the dividing of the data stream into
discrete data components which may be referred to as
“chunks”. A chunk may be a sub-file content-addressable
unit of data. In various embodiments, a table or other
structure may be used to determine a particular chunking
algorithm to use for a given file type or type of data. A file’s
type may be determined by referring to 1ts file name exten-
sion, separate identifying information, the content of the
data 1tsell, or otherwise. The resulting chunks may then be
stored 1n one of the data storage arrays 120a-120b to allow
for sharing of the chunks. Such chunks may be stored
separately or grouped together in various ways.

In various embodiments, the chunks may be represented
by a data structure that allows reconstruction of a larger data
component from 1ts chunks (e.g. a particular file may be
reconstructed based on one or more smaller chunks of stored
data). A corresponding data structure may record 1ts corre-
sponding chunks including an associated calculated hash
value, a pointer (physical and/or logical) to its location in
one of the data storage arrays 120a-120b, and its length. For
cach data component, a deduplication application may be
used to calculate a corresponding hash value. For example,
a hash function, such as Message-Digest algorithm 5 (MD35),
Secure Hash Algorithm (SHA), or otherwise, may be used to
calculate a corresponding hash value. In order to know 1f a
given data component corresponding to a received write
request 1s already stored 1n one of the data storage arrays
120a-120b, bits of the calculated hash value (or a subset of
bits of the hash value) for the given data component may be
compared to bits in the hash values of data components
stored 1n one or more of the data storage arrays 120a-120b.

A mapping table may comprise one or more levels as
shown 1n FIG. 2. A mapping table may comprise 16 to 64
levels, although another number of levels supported within
a mapping table 1s possible and contemplated. In FIG. 2,
three levels labeled Level “1”, Level “2” and Level “N” are
shown for ease of illustration. Each level within a mapping
table may include one or more partitions. In one embodi-
ment, each partition 1s a 4 kilo-byte (KB) page. For example,
Level “N” 1s shown to comprise pages 210a-210g, Level “2”
comprises pages 210h-2107 and Level “1” comprises pages
210k-210n. It 1s possible and contemplated other partition
s1izes may also be chosen for each of the levels within a
mapping table. In addition, 1t 1s possible one or more levels
have a single partition, which 1s the level itsell.

In one embodiment, multiple levels within a mapping
table are sorted by time. For example, in FIG. 2, Level “17
may be older than Level “2”. Similarly, Level “2” may be
older than Level “N”’. In one embodiment, when a condition
for mserting one or more new records 1n the mapping table
1s detected, a new level may be created. In various embodi-

10

15

20

25

30

35

40

45

50

55

60

65

12

ments, when a new level 1s created the number/designation
given to the new level 1s greater than numbers given to levels
that preceded the new level in time. For example, 11 the most
recent level created 1s assigned the value 8, then a newly
created level may be assigned the value 9. In this manner a
temporal relationship between the levels may be established
or determined. As may be appreciated, numerical values
need not be strictly sequential. Additionally, alternative
embodiments may reverse the numbering scheme such that
newer levels have smaller numerical designations. Further,
other embodiments may utilize non-numerical designations
to distinguish between levels. Numerous such embodiments
are possible and are contemplated. Each next older level has
a label decremented by one from a label integer value of a
previous younger level. A separate table not shown may be
used to logically describe the mapping table. For example,
cach entry of the separate table may include a given level ID
and a list of the page 1Ds stored within the given level ID.

By creating a new highest level for an isertion of new
records, the mapping table 1s updated by appending the new
records. In one embodiment, a single level 1s created as a
new highest level and each of the new records 1s iserted
into the signal level. In another embodiment, the new
records may be searched for duplicate keys prior to insertion
into the mapping table. A single level may be created as a
new highest level. When a given record storing a duplicate
key 1s found, each of the records butlered ahead of the given
record may be 1nserted into the single level. The new records
may be buflered 1n a manner to preserve memory ordering,
such as in-order completion of requests. Then another single
level may be created and the remainder of the new records
may be mnserted 1nto this other single level unless another
record storing a duplicate key 1s found. If such a record 1s
found, then the steps are repeated. Existing records within
the mapping table storing a same key value as one of the new
records are not edited or overwritten m-place by the inser-
tion of the new records.

Although the sizes of the levels are 1llustrated as increas-
ing with lower levels being larger than newer levels, the
higher levels may alternate between being larger or smaller
than neighboring levels. The number of newer records to
insert into the mapping table may vary over time and create
the fluctuating level sizes. The lower levels may be larger
than newer levels due to flattening of the lower levels. Two
or more lower levels may be flattened into a single level
when particular conditions are detected. Further details are
provided later.

With no edits in-place for the records stored in the
mapping table, newer records placed in higher levels may
override records storing a same key value located in the
lower levels. For example, when the mapping table is
accessed by a given key value, one or more levels may be
found to store a record holding a key value matching the
given key value. In such a case, the highest level of the one
or more levels may be chosen to provide the information
stored 1n 1ts corresponding record as a result of the access.
Further details are provided later. In addition, further details
about the detected conditions for inserting one or more new
records into the mapping table and the storage of informa-
tion are provided later.

In one embodiment, entries within a given page may be
sorted by key. For example, the entries may be sorted 1n
ascending order according to a key included in the entry.
Additionally, in various embodiments, the pages within a
level may be sorted according to any desired sort order. In
various embodiments, the pages within a level may also be
sorted (e.g., according to key values or otherwise). In the

US RE49,148 E

13

example of FIG. 2, page 210a of Level N includes records
sorted according to key value 1n ascending order. In various
embodiments, one or more columns may be used to store
key values. In the example of FIG. 2, two columns or fields
are shown 1n each tuple for storing key values. Utilizing
such key values, the records then may be sorted 1n a desired
order. Sorting may be performed based on any of the key
values for a records, or any combination of key values for
the record. In the example shown, the first record stores a
key value including O and 8 stored 1n two columns, and the
last record stores a key value including 12 and 33. In this
illustrated example, each sorted record 1n page 210a between
the first and the last record stores a key value between 0 and
12 1n the first column and the records are arranged 1n a
manner to store key values based (at least 1n part) on the first
column 1n an ascending order from 0 to 12. Similarly, page
210b includes sorted records, wherein the first record stores
key values of 12 and 39 and the last record stores key values
of 31 and 19. In this illustrated example, each sorted record
in page 210b between the first and the last record stores a key
value between 12 and 31 1n the first column and the records
are arranged 1n a manner to store key values in an ascending
order from 12 to 31.

In addition to the above, the pages within Level N are
sorted according to a desired order. In various embodiments,
pages within a level may be sorted 1n a manner that retlects
the order 1n which entries within a page are sorted. For
example, pages within a level may be sorted according to
key values 1n ascending order. As the first key value 1n page
210b 15 greater than the last key value in page 210a, page
210b follows page 210a 1n the sort order. Page 210g would
then include entries whose key values are greater than those
included in pages 210a-2101 (not shown). In this manner, all
entries within a level are sorted according to a common
scheme. The entries are simply subdivided into page, or
other, size units. As may be appreciated, other sorting
schemes may be used as desired.

Referring now to FIG. 3A, a generalized block diagram of
one embodiment of a primary index used to access a
mapping table 1s shown. A key generator 304 may receive
one or more requester data inputs 302. In one embodiment,
a mapping table 1s an address translation directory table. A
given received read/write request may 1dentity a particular
volume, sector and length. The key generator 304 may
produce a query key value 306 that includes a volume
identifier (ID), a logical or virtual address, a snapshot 1D,
and a sector number. Other combinations are possible and
other or additional values may be utilized as well. Diflerent
portions of the query key value 306 may be compared to
values stored 1n columns that may or may not be contiguous
within the mapping table. In the shown example, a key value
of “22” 1s used for ease of illustration.

As described earlier, both a chunking algorithm and/or a
segmenting algorithm associated with the key generator 304
may receive data 302 corresponding to a storage access
request. These algorithms may produce one or more data
components and select a hash function to calculate a corre-
sponding hash value, or query key value 306, for each data
component. The resulting hash value may be used to index
the deduplication table.

A primary index 310, as shown i FIG. 3A, may provide
location 1dentifying information for data stored in the stor-
age devices 176a-176m. For example, referring again to
FIG. 2, a corresponding primary index 310 (or portion
thereol) may be logically included 1n each of level <17, level
“2” and level “N”. Again, each level and each corresponding

10

15

20

25

30

35

40

45

50

55

60

65

14

primary index may be physically stored 1n a random-access
manner within the storage devices 176a-176m.

In one embodiment, the primary idex 310 may be
divided into partitions, such as partitions 312a-312b. In one
embodiment, the size of the partitions may range from a 4
kilobyte (KB) page to 256 KB, though other sizes are
possible and are contemplated. Each entry of the primary
index 310 may store a key value. In addition, each entry may
store a corresponding unique virtual page 1dentifier (ID) and
a level 1D corresponding to the key value. Each entry may
store corresponding status information such as validity
information. When the primary index 310 1s accessed with
a query key value, the entries within the index 310 may be
searched for one or more entries which match, or otherwise
correspond to, the key value. Information from the matching
entry may then be used to locate and retrieve a mapping
which i1dentifies a storage location which 1s the target of a
received read or write request. In other words, the index 310
identifies the locations of mappings. In one embodiment, a
hit 1n the 1ndex provides a corresponding page 1D 1dentify-
ing a page within the storage devices 176a-176m storing
both the key value and a corresponding physical pointer
value. The page identified by the corresponding page ID
may be searched with the key value to find the physical
pointer value.

In the example of FIG. 3A, a received request corresponds
to a key “22”. This key 1s then used to access mdex 310. A
search of the index 310 results on a hit to an entry within
partition 312b. The matching entry in this case include
information such as—page 28, and level 3. Based upon this
result, the desired mapping for the request 1s found 1n a page
identified as page 28 within level 3 of the mapping tables.
Using this information, an access may then be made to the
mapping tables to retrieve the desired mapping. If an access
to the primary index 310 requires an access to storage, then
at least two storage accesses would be required 1n order to
obtain a desired mapping. Therefore, in various embodi-
ments as described below, portions of the primary index are
cached, or otherwise stored in a relatively fast access
memory, 1n order to eliminate one access to the storage
devices. In various embodiments, the entire primary index
for the mapping tables 1s cached. In some embodiments,
where the primary index has become too large to cache 1n its
entirety, or 1s otherwise larger than desired, secondary,
tertiary, or other index portions may be used 1n the cache to
reduce its size. Secondary type indices are discussed below.
In addition to the above, 1 various embodiments mapping
pages corresponding to recent hits are also cached for at least
some period of time. In this manner, processes which exhibit
accesses with temporal locality can be serviced more rapidly
(1.e., recently accessed locations will have their mappings
cached and readily available).

Referring now to FI1G. 3B, a generalized block diagram of
one embodiment of a cached primary index used to access
a mapping table 1s shown. Circuit and logic portions corre-
sponding to those of FIG. 3A are numbered identically. The
cached primary index 314 may include copies of informa-
tion stored in each of the primary indexes 310 for the
multiple levels 1n a mapping table. The primary index 314
may be stored 1 one or more of RAM 172, buflers within
controller 174, memory medium 130 and caches within
processor 122. In one embodiment, the primary index 314
may be sorted by key value, though sorting otherwise 1s
possible. The primary mdex 314 may also be divided into
partitions, such as partitions 316a-316b. In one embodiment,
the size of the partitions 316a-316b may be a same size as
the partitions 312a-312b within the primary index 310.

US RE49,148 E

15

Similar to the primary index 310, each entry of the
primary index 314 may store one or more of a key value, a
corresponding unique virtual page identifier (ID), a level ID
corresponding to the key value, and status information such
as valid information. When the primary index 314 1is
accessed with a query key value 306, 1t may convey a
corresponding page ID 1dentiiying a page within the storage
devices 176a-176m storing both the key value and a corre-
sponding pointer value. The page identified by the corre-
sponding page ID may be searched with the key value to find
the pointer value. As shown, the primary index 314 may
have multiple records storing a same key value. Therefore,
multiple hits may result from the search for a given key
value. In one embodiment, a hit with a highest value of a
level ID (or whatever indicator 1s used to identily a youngest
level or most recent entry) may be chosen. This selection of
one hit from multiple hits may be performed by merge logic
not shown here. A further description of the merge logic 1s
provided later.

Turning now to FIG. 4, a generalized block diagram of
another embodiment of a mapping table and primary 1index
used to access the mapping table 1s shown. Circuit and logic
portions corresponding to those of FIG. 3A are numbered
identically. Mapping table 340 may have a similar structure
as the mapping table shown 1n FIG. 2. However, storage of
a corresponding primary index 310 for each level 1s now
shown. A copy of one or more of the primary index portions
310a-3101 may be 1included 1n index copies 330 (e.g., cached
copies). Copies 330 may generally correspond to the cached
index depicted in FIG. 3B. The information in mndex copies
330 may be stored in RAM 172, buflers within controller
174, memory medium 130, and caches within processor 122.
In the embodiment shown, the information 1 primary
indexes 310a-3101 may be stored with the pages ol map-
pings 1n storage devices 176a-176m. Also shown 1s a sec-
ondary mndex 320 which may be used to access a primary
index, such as primary index 3101 shown in the diagram.
Similarly, accessing and updating the mapping table 340
may occur as described earlier.

Mapping table 340 comprises multiple levels, such as
Level “1” to Level “N”. In the 1llustrated example, each of
the levels includes multiple pages. Level “N” 1s shown to
include pages “0” to “D”, Level N-1 1ncludes pages “E” to
“(”, and so forth. Again, the levels within the mapping table
310 may be sorted by time. Level “N” may be younger than
Level “N-1" and so forth. Mapping table 340 may be
accessed by at least a key value. In the 1llustrated example,
mapping table 340 1s accessed by a key value “27” and a
page 1D “32”. For example, in one embodiment, a level 1D
“8” may be used to 1dentily a particular level (or “subtable™)
of the mapping table 340 to search. Having identified the
desired subtable, the page 1D may then be used to 1dentily
the desired page within the subtable. Finally, the key may be
used to i1dentily the desired entry within the desired page.

As discussed above, an access to the cached index 330
may result in multiple hits. In one embodiment, the results
ol these multiple hits are provided to merge logic 350 which
identifies which hit 1s used to access the mapping table 340.
Merge logic 350 may represent hardware and/or software
which 1s included within a storage controller. In one embodi-
ment, merge logic 350 1s configured to 1dentily a hit which
corresponds to a most recent (newest) mapping. Such an
identification could be based upon an identification of a
corresponding level for an entry, or otherwise. In the
example shown, a query corresponding to level 8, page 32,
key 27 1s recerved. Responsive to the query, page 32 of level
8 1s accessed. If the key 27 1s found within page 32 (a hit),

5

10

15

20

25

30

35

40

45

50

55

60

65

16

then a corresponding result 1s returned (e.g., pointer
xF3209B24 1n the example shown). If the key 27 i1s not

found within page 32, then a miss indication 1s returned.
This physical pointer value may be output from the mapping
table 340 to service a storage access request corresponding
to the key value “27”.

In one embodiment, the mapping table 340 supports inline
mappings. For example, a mapping detected to have a
sufliciently small target may be represented without an
actual physical sector storing user data within the storage
devices 176a-176m. One example may be a repeating pat-
tern within the user data. Rather than actually store multiple
copies of a repeated pattern (e.g., a series of zeroes) as user
data within the storage devices 176a-176m, a corresponding
mapping may have an indication marked in the status
information, such as within one of the fields of fieldO to
fieldN 1n the mapping table, that indicates what data value
1s to be returned for a read request. However, there 1s no
actual storage of this user data at a target location within the
storage devices 176a-176m. Additionally, an indication may
be stored within the status information of the primary index
310 and any additional indexes that may be used (not shown
here).

In addition to the above, 1n various embodiments the
storage system may simultaneously support multiple ver-
sions of the data organization, storage schemes, and so on.
For example, as the system hardware and software evolve,
new features may be incorporated or otherwise provided.
Data, indexes, and mappings (for example) which are newer
may take advantage of these new features. In the example of
FIG. 4, new level N may correspond to one version of the
system, while older level N-1 may correspond to a prior
version. In order to accommodate these different versions,
metadata may be stored 1n association with each of the levels
which indicates which version, which features, compression
schemes, and so on, are used by that level. This metadata
could be stored as part of the index, the pages themselves,
or both. When accesses are made, this metadata then indi-
cates how the data 1s to be handled properly. Additionally,
new schemes and features can be applied dynamically
without the need to quiesce the system. In this manner,
upgrading of the system 1s more flexible and a rebuild of
older data to reflect newer schemes and approaches 1s not
necessary.

Turning now to FIG. 5A, one embodiment of a method for
servicing a read access 1s shown. The components embodied
in the network architecture 100 and mapping table 340
described above may generally operate in accordance with
method 500. For purposes of discussion, the steps in this
embodiment are shown in sequential order. However, some
steps may occur 1n a different order than shown, some steps
may be performed concurrently, some steps may be com-
bined with other steps, and some steps may be absent in
another embodiment.

Read and store (write) requests may be conveyed from
one of the clients 110a-110c to one of the data storage arrays
120a-120b. In the example shown, a read request 500 1s
received, and 1 block 502 a corresponding query key value
may be generated. In some embodiments, the request 1tself
may 1nclude the key which 1s used to access the index and
a “generation” of the key 502 1s not required. As described
carlier, the query key value may be a virtual address index
comprising a volume ID, a logical address or virtual address
associated with a received request, a snapshot ID, a sector
number, and so forth. In embodiments which are used for
deduplication, the query key value may be generated using

US RE49,148 E

17

a hash function or other tunction. Other values are possible
and contemplated for the query key value, which 1s used to
access a mapping table.

In block 504, the query key value may be used to access
one or more cached indexes to identify one or more portions
of a mapping table that may store a mapping that corre-
sponds to the key value. Additionally, recently used map-
pings which have been cached may be searched as well. IT
a hit on the cached mappings 1s detected (block 505), the
cached mapping may be used to perform the requested
access (block 512). If there 1s no hit on the cached mappings,
the a determination may be made as to whether or not there
1s a hit on the cached index (block 506). If so, a result
corresponding to the hit 1s used to identity and access the
mapping table (block 508). For example, with the primary
index 310, an entry storing the query key value also may
store a umque virtual page ID that identifies a single
particular page within the mapping table. This single par-
ticular page may store both the query key value and an
associated physical pointer value. In block 508, the ident-
fied potion of the mapping table may be accessed and a
search performed using the query key value. The mapping
table result may then be returned (block 510) and used to
perform a storage access (block 512) that corresponds to the
target location of the original read request.

In some embodiments, an imndex query responsive to a
read request may result 1n a miss. Such a miss could be due
to only a portion of the index being cached or an error
condition (e.g., a read access to a non-existent location,
address corruption, etc.). In such a case, an access to the
stored 1ndex may be performed. If the access to the stored
index results 1n a hit (block 520), then a result may be
returned (block 522) which 1s used to access the mapping
tables (block 508). On the other hand, 11 the access to the
stored index results 1n a miss, then an error condition may
be detected. Handling of the error condition may be done in
any ol a variety of desired ways. In one embodiment, an
exception may be generated (block 524) which i1s then
handled as desired. In one embodiment, a portion of the
mapping table 1s returned in block 510. In various embodi-
ments, this portion 1s a page which may be a 4 KB page, or
otherwise. As previously discussed, the records within a
page may be sorted to facilitate faster searches of the content
included therein.

In one embodiment, the mapping table utilizes traditional
database systems methods for imnformation storage in each
page. For example, each record (or row or entry) within the
mapping table 1s stored one right after the other. This
approach may be used in row-oriented or row-store data-
bases and additionally with correlation databases. These
types of databases utilize a value-based storage structure. A
value-based storage (VBS) architecture stores a unique data
value only once and an auto-generated indexing system
maintains the context for all values. In various embodi-
ments, data may be stored by row and compression may be
used on the columns (fields) within a row. In some embodi-
ments, the techniques used may include storing a base value
and having a smaller field size for the oflset and/or having
a set of base values, with a column 1n a row consisting of a
base selector and an offset from that base. In both cases, the
compression information may be stored within (e.g., at the
start) ol the partition.

In some embodiments, the mapping table utilizes a col-
umn-oriented database system (column-store) method for
information storage in each page. Column-stores store each
database table column separately. In addition, attribute val-
ues belonging to a same column may be stored contiguously,

10

15

20

25

30

35

40

45

50

55

60

65

18

compressed, and densely packed. Accordingly, reading a
subset of a table’s columns, such as within a page, may be
performed relatively quickly. Column data may be of uni-
form type and may allow storage size optimizations to be
used that may not be available in row-oriented data. Some
compression schemes, such as Lempel-Ziv-Welch (LZ) and
run-length encoding (RLE), take advantage of a detected
similarity of adjacent data to compress. Further, as described
more fully below, other compression schemes may encode a
value as a difference from a base value, thus requiring fewer
bits to represent the difference than would be required to
represent the full value. A compression algorithm may be
chosen that allows individual records within the page to be
identified and indexed. Compressing the records within the
mapping table may enable fine-grained mapping. In various
embodiments, the type of compression used for a particular
portion of data may be stored 1n association with the data.
For example, the type of compression could be stored 1n an
index, as part ol a same page as the compressed data (e.g.,
in a header of some type), or otherwise. In this manner,
multiple compression techniques and algorithms may be
used side by side within the storage system. In addition, in
vartous embodiments the type of compression used for
storing page data may be determined dynamaically at the time
the data 1s stored. In one embodiment, one of a variety of
compression techniques may be chosen based at least 1n part
on the nature and type of data being compressed and/or the
expected resource requirements for the compression tech-
nique and the currently available resources 1n the system. In
some embodiments, multiple compression techniques waill
be performed and the one exhibiting the best compression
will then be selected for use 1 compressing the data.
Numerous such approaches are possible and are contem-
plated.

I1 there 1s a match of the query key value 306 found 1n any
of the levels of the mapping table (block 508), then 1n block
510, one or more indications of a hit may be conveyed to the
merge logic 350. For example, one or more hit indications
may be conveyed from levels “1” to “J” as shown 1n FIG. 4.
The merge logic 350 may choose the highest level, which
may also be the youngest level, of the levels “1” to “J”
conveying a hit indication. The chosen level may provide
information stored 1n a corresponding record as a result of
the access.

In block 512, one or more corresponding fields within a
matching record of a chosen page may be read to process a
corresponding request. In one embodiment, when the data
within the page 1s stored in a compressed format, the page
1s decompressed and a corresponding physical pointer value
1s read out. In another embodiment, only the matching
record 1s decompressed and a corresponding physical
pointer value 1s read out. In one embodiment, a full physical
pointer value may be split between the mapping table and a
corresponding target physical location. Therefore, multiple
physical locations storing user data may be accessed to
complete a data storage access request.

Turning now to FIG. 5B, one embodiment of a method
corresponding to a recerved write request 1s shown. Respon-
s1ve 1o a recerved write request (block 530), a new mapping
table entry corresponding to the request may be created
(block 532). In one embodiment, a new virtual-to-physical
address mapping may be added (block 334) to the mapping
table that pairs the virtual address of the write request with
the physical location storing the corresponding data com-
ponent. In various embodiments, the new mapping may be
cached with other new mappings and added to a new highest
level of the mapping table entries. The write operation to

US RE49,148 E

19

persistent storage (block 536) may then be performed. In
various embodiments, writing the new mapping table entry
to the mapping tables 1n persistent storage may not be
performed until a later point 1n time (block 538) which 1s
deemed more eflicient. As previously discussed, 1n a storage
system using solid state storage devices, writes to storage are
much slower than reads from storage. Accordingly, writes to
storage are scheduled in such a way that they minimize
impact on overall system performance. In some embodi-
ments, the msertion of new records 1nto the mapping table
may be combined with other larger data updates. Combining,
the updates 1n this manner may provide for more eflicient
write operations. It 1s noted that in the method of 5B, as with
cach of the methods described herein, operations are
described as occurring in a particular order for ease of
discussion. However, the operations may 1n fact occur 1n a
different order, and in some cases various ones of the
operations may occur simultaneously. All such embodiments
are contemplated.

In addition to the above, deduplication mechanisms may
be used 1n some embodiments. FIG. 3B depicts operations
550 which may generally correspond to deduplication sys-
tems and methods. In the example shown, a hash corre-
sponding to a recerved write request may be generated
(block 540) which 1s used to access deduplication tables
(block 542). If there 1s a hit (block 544) 1n the deduplication
tables (1.e., a copy of the data already exists within the
system), then a new entry may be added to the deduplication
tables (block 548) to reflect the new write. In such a case,
there 1s no need to write the data itself to storage and the
received write data may be discarded. Alternatively, if there
1s a miss 1n the deduplication table, then a new entry for the
new data 1s created and stored in the deduplication tables
(block 546). Additionally, a write of the data to storage 1s
performed (block 536). Further, a new entry may be created
in the index to reflect the new data (block 538). In some
embodiments, 11 a miss occurs during an inline deduplicaton
operation, no insertion i1n the deduplication tables 1s per-
formed at that time. Rather, during an inline deduplication
operation, a query with a hash value may occur for only a
portion of the entire deduplication table (e.g., a cached
portion of the deduplication table). If a miss occurs, a new
entry may be created and stored 1n the cache. Subsequently,
during a post-processing deduplication operation, such as an
operation occurring during garbage collection, a query with
a hash value may occur for the entire deduplication table. A
miss may indicate the hash value 1s a unique hash value.
Therefore, a new entry such as a hash-to-physical-pointer
mapping may be mserted into the deduplication table. Alter-
natively, 11 a hit 1s detected during post-processing dedupli-
cation (1.¢., a duplicate 1s detected), deduplication may be
performed to eliminate one or more of the detected copies.

As mentioned above, various compression schemes may
be used for encoding mapping table related data 1n order to
reduce the amount of storage required. Turning now to FIG.
5C, one embodiment of a method for compressing a set of
tuples 1s shown. This approach may be used to write entries
to a mapping table or other tables. First, a target size for a
set of encoded tuples to be stored (block 560) and default
encoding algorithm (block 3561) may be selected. Subse-
quently, tuples are selected for encoding and storage in the
table based on the selected size and algorithm (block 562).
In such an embodiment, the encoded size of each tuple is
calculated using the currently selected encoding method. If
a tuple being added would cause the currently accumulated
tuples 1n the set to exceed the target size (conditional block
564), the system may try to find a better encoding algorithm

10

15

20

25

30

35

40

45

50

55

60

65

20

for all of the tuples accumulated to this point 1n order to
reduce the total space required for the encoded tuples (block
565). IT a smaller encoding 1s not found (block 565), then the
most recent tuple 1s omitted and the remaining tuples are
written using the current encoding method (block 567). I a
smaller encoding 1s found (block 565), then 1t 1s determined
whether the new smaller encoding 1s within the target size
(block 566). If the new encoding 1s not within the target size,
then the most recently provided tuple may be omitted and
the remaining tuples are encoded and written to the table
using the current encoding method (block 567). If a current
tuple under consideration does not cause the currently
accumulated tuples in the set to exceed the target size
(conditional block 564), then an attempt to add another tuple
may be made (block 562). Similarly, if a new encoding that
meets the requirements 1s found in conditional block 566,
then an attempt to add another tuple may be made (block
562).

FIG. 5D illustrates one embodiment of an approach for
encoding tuples. In the example, original unencoded tuples
584 are depicted, and the tuples as encoded 3580 1in an
encoded page 3568 are depicted. Generally speaking, the
illustrated example represents each field in the table using
one or two values. The first value 1s a base value selector that
1s used to select a base value, and the second value 1s an
oilset from the selected base value. In one embodiment, the
base selector includes b bits and the oflset includes k bits,
where b and k are integers. The values b and k may be
chosen separately for each field, and one or both of b and k
may be zero. For each encoded field, the values of b and k
may be stored, along with up to 2° bases, each of which can
be as many bits as required to represent the base value. IT' b
1s zero, only one base 1s stored. Each field encoded 1n this
way then requires at most b+k bits to encode. The encoder
can consider different values for b and k to minimize the
total encoded size for the field, with larger values of b
typically requiring smaller values of k.

FIG. 3D shows a sample of unencoded tuples 584 and the
resulting encoded page 568. The page includes a header 570,
the first two values of which contain the number of fields n
cach tuple (572) and the number of tuples 1n the page (574).
The header 570 then has one table or set of values for each
field. The table first lists the number of bases for a given field
and then the number of bits k used to encode the offset from
the base. The page then stores each tuple, encoded using the
information in the header. For example, the first value (572)
in the header 570 indicates that there are 3 fields for each
tuple. The second value (574) indicates there are 84 tuples
in the page 568. The following three tables 576 A-576C then
provide base value and encoding information for each of the
three fields. Table 576 A indicates that the first field has 1
base, with 4 bits used to encode the offset. The sole base for
the first field 1s 12 (1.e., b 1s zero). The second table 5768
indicates there are 3 bases for the second field, and 3 bits are
to be used to encode the oflset. The three bases for the
second field 576B are 5, 113, and 203. Finally, the third table
576C 1ndicates the third field has 2 bases, and O bits are used
to encode the oflset.

Looking at the encoded tuples 580, the various values
may be determined. In the example shown, a value 1n a given
row/column of the encoded tuples 580 corresponds to a
value 1n the same row/column of the original tuples. As may
be appreciated, the ordering and location of values in the
figure 1s exemplary only. The actual ordering of values and
corresponding encoded values may vary widely from what
1s depicted. The first field 1n the first tuple 382 1s encoded as
3 because the value 15 (the unencoded value) may be

US RE49,148 E

21

represented as an oflset of 3 from the base of 12 (i.e.,
15-12=3). Note 1n this example there 1s only one base and
b 1s zero. Consequently, there are no bits used to encode the
base selector value for this field. The oflset value 3 1s
encoded using 4 bits, a substantial reduction over typical
encodings that might require 8, 32, or 64 bits. The second
value 1 the first tuple 382A 1s encoded as 1,3. The 1
indicates that base 1 1s selected 1n the table 576B (1.e., select
base 113), and the 3 indicates an oflset of 3 from the base of
113. The value 1 is encoded in 2 bits (2° is the smallest
power of 2 greater than or equal to the number of bases), and
the value 3 1s encoded 1n 3 bits, for a total of 5 bits. Again,
this 1s much smaller than a naive encoding of the field.
Finally, the last field 1s encoded as an index indicating which
base should be used. In this case no bits are used to represent
an oilset. The first tuple has a O here because the stored value
1s 4927, which 1s entry (base) 0 1n the table for the field 576C
in the header 570. The total encoded space for each tuple 1s
thus (0+4)+(2+3)+(1+0)=10 bits, a large reduction over the
unencoded space required.

In various embodiments, 1f the maximum size of a field 1s
increased, as may be done to accommodate larger virtual
addresses or LUN 1dentifiers, there 1s no need to re-encode
a page. At worst, the header may need to be modified slightly
to accommodate larger base values, but this requires mini-
mal effort. In addition, it 1s possible to modily many values
by a fixed amount, as might be done when a range of blocks
1s copied to a new location, by simply modifying the base
without the need to decompress and then re-encode each
aflected tuple.

It 1s noted that there are several different methods to find
optimal, or otherwise desirable, values of b and k for a
particular field. FIG. 5E shows one embodiment of a method
for evaluating and selecting an encoding scheme from
multiple possibilities. In the method shown, each unique
value to be recorded 1n the field 1n the page 1s recorded 1n a
list (block 385). To find a more eflicient encoding, the
method starts with a representation where b 1s zero (one
base) and k 1s sufliciently large (a2 minimum number of bits
necessary) to encode the largest value in the list as a
difference or offset from the minimum value 1n the list
(block 586). The encoder then tries successively smaller
values of k, which result 1n larger values of b (more bases).
As each combination of b and k 1s evaluated, those which
produce encodings deemed better (e.g., smaller) are retained
for comparison against further possible encodings. The
algorithm may then select the encoding that results 1n the
smallest overall size, including both the table 1n the header
and the total space required for the encoded field in the
tuples. For example, starting with the mimimum value as the
base (block 587), the smallest value in the list that 1s at least
2* greater than the current base is found (block 588). If such
a value exists (conditional block 389), then that value 1s
selected as a next base (block 594). If no such value exists
(conditional block 589), then the total encoded size for the
header and encoded fields 1s determined using the currently
selected bases and value of k. If this encoding 1s desirable
(e.g., the smallest so far) (conditional block 591), then this
encoding 1s retained (block 592). Whether the encoding 1s
retained or not, the value of k may be decremented by 1
(block 593) and 11 k 1s greater than or equal to zero
(conditional block 5935), then the process may be repeated by
returning to block 587. If decrementing k results in k falling
below zero, then the process ends and the best encoding
found thus far 1s selected (block 596).

Referring now to FIG. 6, a generalized block diagram of
one embodiment of a multi-node network with shared map-

10

15

20

25

30

35

40

45

50

55

60

65

22

ping tables 1s shown. In the example shown, three nodes
360a-360c are used to form a cluster of mapping nodes. In
one embodiment, each of the nodes 360a-360c may be
responsible for one or more logical unit numbers (LUNSs). In
the depicted embodiment, a number of mapping table levels,
level 1-N, are shown. Level 1 may correspond to the oldest
level, while level N may correspond to the newest level. For
mapping table entries of LUNs managed by a particular
node, that particular node may itself have newer entries
stored on the node 1tself. For example, node 360a 1s shown
to store mapping subtables 362a and 364a. These subtables
362a and 362b may correspond to LUNs for which node
360a 1s generally responsible. Similarly, node 360b 1includes
subtables 362b and 364b which may correspond to LUNSs

managed by that node, while node 360c includes subtables
362c and 364c¢ which may correspond to LUNs managed by
that node. In such an embodiment, these “newer” level
mapping table entries are maintained only by their corre-
sponding managing nodes and are generally not found on
other nodes.

In contrast to the above discussed relatively newer levels,
older levels (1.e., levels N-2 down to level 1) represent
mapping table entries which may be shared by all nodes
360a-360c in the sense that any of the nodes may be storing
a copy of those entries. In the example shown, these older
levels 370, 372, and 374 are collectively 1dentified as shared
tables 380. Additionally, as previously discussed, 1n various
embodiments these older levels are static—apart from merg-
ing or similar operations which are discussed later. Gener-
ally speaking, a static layer 1s one which 1s not subject to
modification (1.e., 1t 1s “fixed”). Given that such levels are
fixed in this sense, an access to any copy of these lower
levels may be made without concern for whether another of
the copies has been, or 1s being, modified. Consequently, any
of the nodes may safely store a copy of the shared tables 380
and service a request to those tables with confidence the
request can be properly serviced. Having copies of the
shared tables 380 stored on multiple nodes 360 may allow
use ol various load balancing schemes when performing
lookups and otherwise servicing requests.

In addition to the above, in various embodiments, the
levels 380 which may be shared may be organized i a
manner which reflects the nodes 360 themselves. For
example, node 360a may be responsible for LUNs 1 and 2,
node 360b may be responsible for LUNs 3 and 4, and node
360c may be responsible for LUNs 5 and 6. In various
embodiments, the mapping table entries may include tuples
which themselves 1dentily a corresponding LUN. In such an
embodiment, the shared mapping tables 380 may be sorted
according to key value, absolute width or amount of storage
space, or otherwise. If a sort of mapping table entries 1n the
levels 380 1s based 1n part on LUN, then entries 370a may
correspond to LUNs 1 and 2, entries 370b may correspond
to LUNs 3 and 4, and entries 370c may correspond to LUNSs
5 and 6. Such an organization may speed lookups by a given
node for a request targeted to a particular LUN by eflectively
reducing the amount of data that needs to be searched,
allowing a coordinator to directly select the node responsible
for a particular LUN as the target of a request. These and
other organization and sort schemes are possible and are
contemplated. In addition, 11 1t 1s desired to move respon-
sibility for a LUN from one node to another, the original
node mappings for that node may be tlushed to the shared
levels (e.g., and merged). Responsibility for the LUN 1s then
transierred to the new node which then begins servicing that
LUN.

US RE49,148 E

23

Referring now to FIG. 7, a generalized block diagram of
one embodiment of a secondary index used to access a
mapping table 1s shown. As described earlier, requester data
inputs 302 may be received by a key generator 304, which
produces a query key value 306. The query key value 306 1s
used to access a mapping table. In some embodiments, the
primary index 310 shown i FIG. 3 may be too large (or
larger than desired) to store in RAM 172 or memory medium
130. For example, older levels of the index may grow very
large due to merging and flattening operations described
later 1n FIG. 10 and FIG. 11. Therefore, a secondary index
320 may be cached for at least a portion of the primary index
instead of the corresponding portion of the primary index
310. The secondary index 320 may provide a more coarse
level of granularity of location identification of data stored
in the storage devices 176a-176m. Therefore, the secondary
index 320 may be smaller than the portion of the primary
index 310 to which it corresponds. Accordingly, the second-
ary index 320 may be stored in RAM 172 or in memory
medium 130.

In one embodiment, the secondary index 320 1s divided
into partitions, such as partitions 322a-322b. Additionally,
the secondary mdex may be organized according to level
with the more recent levels appearing first. In one embodi-
ment, older levels have lower numbers and younger levels
have higher numbers (e.g., a level ID may be incremented
with each new level). Each entry of the secondary index 320
may 1dentify a range of key values. For example, the first
entry shown in the example may identily a range of key
values from O to 12 in level 22. These key values may
correspond to key values associated with a first record and
a last record within a given page of the primary index 310.
In other words, the entry 1n the secondary index may simply
storage an 1dentification of key O and an 1dentification of key
12 to indicate the corresponding page includes entries within
that range. Referring again to FIG. 3A, partition 312a may
be a page and the key values of 1ts first record and 1ts last
record are 0 and 12, respectively. Therefore, an entry within
the secondary index 320 stores the range O to 12 as shown
in FIG. 7. Since remappings are maintained in the levels
within the mapping table, a range of key values may
correspond to multiple pages and associated levels. The
fields within the secondary index 320 may store this infor-
mation as shown 1n FIG. 7. Each entry may store one or
more corresponding unique virtual page 1dentifiers (IDs) and
associated level IDs corresponding to the range of key
values. Each entry may also store corresponding status
information such as validity information. The list of main-
tained page IDs and associated level IDs may indicate where
a given query key value might be stored, but not confirm that
the key value 1s present 1n that page and level. The secondary
index 320 1s smaller than the primary index 310, but also has
a coarse-level of granularity of location identification of data
stored 1in the storage devices 176a-176m. The secondary
index 320 may be sufliciently small to store in RAM 172 or
in memory medium 130.

When the secondary index 320 1s accessed with a query
key value 306, it may convey one or more corresponding
page IDs and associated level IDs. These results are then
used to access and retrieve portions of the stored primary
index. The one or more i1dentified pages may then be
searched with the query key value to find a physical pointer
value. In one embodiment, the level IDs may be used to
determine a youngest level of the identified one or more
levels that also store the query key value 306. A record
within a corresponding page may then be retrieved and a
physical pointer value may be read for processing a storage

10

15

20

25

30

35

40

45

50

55

60

65

24

access request. In the illustrated example, the query key
value 277 1s within the range of keys 16 to 31. The page 1Ds
and level IDs stored 1n the corresponding entry are conveyed
with the query key value to the mapping table.

Referring now to FIG. 8, a generalized block diagram of
one embodiment of a tertiary index used to access a mapping
table 1s shown. Circuit and logic portions corresponding to
those of FIG. 4 are numbered i1dentically. As described
carlier, the primary index 310 shown 1n FIG. 3 may be too
large to store mm RAM 172 or memory medium 130. In
addition, as the mapping table 340 grows, the secondary
index 320 may also become too large to store in these
memories. Therefore, a tertiary index 330 may be accessed
prior to the secondary index 320, which may still be faster
than accessing the primary index 310.

The tertiary index 330 may provide a more coarse level of
granularity than the secondary index 320 of location 1den-
tification of data stored in the storage devices 176a-176m.
Theretfore, the tertiary mdex 330 may be smaller than the
portion of the secondary index 320 to which it corresponds.
It 1s noted that each of the primary index 310, the secondary
index 320, the tertiary index 330, and so forth, may be stored
in a compressed format. The compressed format chosen may
be a same compressed format used to store information
within the mapping table 340.

In one embodiment, the tertiary index 330 may include
multiple partitions, such as partitions 332a, 332b and so
forth. The tertiary index 330 may be accessed with a query
key value 306. In the 1llustrated example, a query key value
306 of “27” 1s found to be between a range of key values
from O to 78. A first entry 1n the tertiary mndex 330 corre-
sponds to this key value range. A column in the tertiary index
330 may indicate which partition to access within the
secondary mdex 320. In the illustrated example, a key value
range of 0 to 78 corresponds to partition 0 within the
secondary index 320.

It 1s also noted a filter (not shown) may be accessed to
determine 1f a query key value 1s not within any one of the
indexes 310-330. This filter may be a probabilistic data
structure that determines whether an element 1s a member of
a set. False positives may be possible, but false negatives
may not be possible. One example of such a filter 1s a Bloom
filter. If an access of such a filter determines a particular
value 1s not 1n the full index 142, then no query 1s sent to the
storage. I an access of the filter determines the query key
value 1s 1n a corresponding index, then 1t may be unknown
whether a corresponding physical pointer value 1s stored in
the storage devices 176a-176m.

In addition to the above, 1n various embodiments one or
more overlay tables may be used to modily or elide tuples
provided by the mapping table in response to a query. Such
overlay tables may be used to apply filtering conditions for
use 1n responding to accesses to the mapping table or during
flattening operations when a new level 1s created. In some
embodiments, the overlay table may be organized as time
ordered levels 1n a manner similar to the mapping table
described above. In other embodiments, they be organized
differently. Keys for the overlay table need not match the
keys for the underlying mapping table. For example, an
overlay table may contain a single entry stating that a
particular volume has been deleted or 1s otherwise inacces-
sible (e.g., there 1s no natural access path to query this tuple),
and that a response to a query corresponding to a tuple that
refers to that volume 1dentifier 1s instead mnvalid. In another
example, an entry in the overlay table may indicate that a
storage location has been freed, and that any tuple that refers
to that storage location 1s invalid, thus invalidating the result

US RE49,148 E

25

of the lookup rather than the key used by the mapping table.
In some embodiments, the overlay table may modity fields
in responses to queries to the underlying mapping table. In
some embodiments, a key range (range of key values) may
be used to efliciently identity multiple values to which the
same operation (eliding or modification) 1s applied. In this
manner, tuples may (eflectively) be “deleted” from the
mapping table by creating an “elide” entry 1n the overlay
table and without modifying the mapping table. In this case,
the overlay table may include keys with no associated
non-key data fields.

Turning now to FIG. 9, one embodiment of a method for
processing a read request 1n a system including mapping and
overlay tables 1s shown. Responsive to a read request being
received (block 900), a mapping table key (block 908) and
first overlay table key (block 902) corresponding to the
request are generated. In this example, access to the overlay
and mapping tables 1s shown as occurring concurrently.
However, 1n other embodiments, accesses to the tables may
be performed non-concurrently (e.g., sequentially or other-
wise separate in time) 1 any desired order. Using the key
generated for the mapping table, a corresponding tuple may
be retrieved from the mapping table (block 910). If the first
overlay table contains an “elide” entry corresponding to the
overlay table key (conditional block 906), any tuple found 1n
the mapping table 1s deemed invalid and an indication to this
ellect may be returned to the requester. On the other hand,
if the overlay table contains a “modity” entry corresponding
to the overlay table key (conditional block 912), the values
in the first overlay table entry may be used to modily one or
more fields in the tuple retrieved from the mapping table
(block 922). Once this process 1s done, a second overlay
table key 1s generated (block 914) based on the tuple from
the mapping table (whether modified or not) and a second
lookup 1s done 1n a second overlay table (block 916) which
may or may not be the same table as the first overlay table.
If an “elide” entry 1s found in the second overlay table
(conditional block 920), the tuple from the mapping table 1s
deemed mvalid (block 918). If a “modity” entry 1s found 1n
the second overlay table (conditional block 924), one or
more fields of the tuple from the mapping table may be
modified (block 926). Such modification may include drop-
ping a tuple, normalizing a tuple, or otherwise. The modified
tuple may then be returned to the requester. If the second
overlay table does not contain a modily entry (conditional
block 924), the tuple may be returned to the requester
unmodified. In some embodiments, at least some portions of
the overlay table(s) may be cached to provide faster access
to their contents. In various embodiments, a detected elide
entry in the first overlay table may serve to short circuit any
other corresponding lookups (e.g., blocks 914, 916, etc.). In
other embodiments, accesses may be performed 1n parallel
and “raced.” Numerous such embodiments are possible and
are contemplated.

Turning now to FIG. 10, a generalized block diagram of
one embodiment of a flattening operation for levels within a
mapping table 1s shown. In various embodiments, a flatten-
ing operation may be performed 1n response to detecting one
or more conditions. For example, over time as the mapping
table 340 grows and accumulates levels due to 1nsertions of
new records, the cost of searching more levels for a query
key value may become undesirably high. In order to con-
strain the number of levels to search, multiple levels may be
flattened 1nto a single new level. For example, two or more
levels which are logically adjacent or contiguous in time
order may be chosen for a flattening operation. Where two
or more records correspond to a same key value, the

10

15

20

25

30

35

40

45

50

55

60

65

26

youngest record may be retained while the others are not
included 1n the new “tlattened” level. In such an embodi-
ment, the newly flattened level will return a same result for
a search for a given key value as would be provided by a
search of the corresponding multiple levels. Since the results
of searches 1n the new flattened level do not change as
compared to the two or more levels 1t replaces, the flattening
operation need not be synchronized with update operations
to the mapping table. In other words, tlattening operations
on a table may be performed asynchronously with respect to
updates to the table.

As previously noted, older levels are fixed in the sense
that their mappings are not modified (i.e., a mapping from A
to B remains unchanged). Consequently, modifications to
the levels being flattened are not being made (e.g., due to
user writes) and synchronization locks of the levels are not
required. Additionally, in a node-based cluster environment
where each node may store a copy of older levels of the
index (e.g., as discussed in relation to FIG. 6), flattening
operations may be undertaken on one node without the need
to lock corresponding levels 1in other nodes. Consequently,
processing may continue in all nodes while flattening takes
place 1 an asynchronous manner on any of the nodes. At a
later point 1n time, other nodes may flatten levels, or use an
already flattened level. In one embodiment, the two or more
levels which have been used to form a flattened level may be
retained for error recovery, mirroring, or other purposes. In
addition to the above, 1n various embodiments, records that
have been elided may not be reinserted 1n to the new level.
The above described flattening may, for example, be per-
formed responsive to detecting the number of levels 1n the
mapping table has reached a given threshold. Alternatively,
the flattening may be performed responsive to detecting the
size of one or more levels has exceeded a threshold. Yet
another condition that may be considered 1s the load on the
system. The decision of whether to flatten the levels may
consider combinations of these conditions in addition to
considering them individually. The decision of whether to
flatten may also consider both the present value for the
condition as well as a predicted value for the condition in the
future. Other conditions for which flattening may be per-
formed are possible and are contemplated.

In the illustrated example, the records are shown simply
as key and pointer pairs. The pages are shown to include four
records for ease of illustration. A level “F” and its next
contiguous logical neighbor, level “F-1" may be considered
for a flattening operation. Level “F” may be younger than
Level “F-17. Although two levels are shown to be flattened
here, it 1s possible and contemplated that three or more
levels may be chosen for tlattening. In the example shown,
Level “F-1" may have records storing a same key value
found 1 Level “F”. Bidirectional arrows are used to identity
the records storing a same key value across the two con-
tiguous levels.

The new Level “New F” includes a key corresponding to
the duplicate key values found mm Level “F” and Level
“F=17. In addition, the new Level “New F” includes a
pointer value corresponding to the youngest (or younger in
this case) record of the records storing the duplicate key
value. For example, each of Level “F” and Level “F-1”
includes a record storing the key value 4. The younger
record 1s 1n Level “F” and this record also stores the pointer
value 512. Accordingly, the Level “F-1"" includes a record
storing the key value 4 and also the pointer value 512, rather
than the pointer value 656 found 1n the older Level “F-1".
Additionally, the new Level “New F” includes records with
unmique key values found between Level “F” and Level

US RE49,148 E

27

“F-1”. For example, the Level “F-1" includes records with
the key and poiter pair of 6 and 246 found 1n Level “F” and
the key and pointer pair of 2 and 398 found in Level “F-1".
As shown, each of the pages within the levels 1s sorted by
key value.

As noted above, 1n various embodiments an overlay table
may be used to modify or elide tuples corresponding to key
values 1n the underlying mapping table. Such an overlay
table(s) may be managed 1n a manner similar to that of the
mapping tables. For example, an overlay table may be
flattened and adjacent entries merged together to save space.
Alternatively, an overlay table may be managed in a manner
different from that used to manage mapping tables. In some
embodiments, an overlay table may contain a single entry
that refers to a range of overlay table keys. In this way, the
s1ze ol the overlay table can be limited. For example, 1f the
mapping table contains k valid entries, the overlay table
(after flattening) need contain no more than k+1 entries
marking ranges as 1invalid, corresponding to the gaps
between valid entries 1n the mapping table. Accordingly, the
overlay table may used to identify tuples that may be
dropped from the mapping table 1 a relatively ethicient
manner. In addition to the above, while the previous dis-
cussion describes using overlay table to elide or modily
responses to requests from the mapping table(s), overlay
tables may also be used to elide or modily values during
flattening operations of the mapping tables. Accordingly,
when a new level 1s created during a flattening operation of
a mapping table, a key value that might otherwise be
inserted into the new level may be elided. Alternatively, a
value may be modified before insertion in the new level.
Such modifications may result 1n a single record correspond-
ing to a given range of key values 1n the mapping table being
replaced (in the new level) with multiple records—each
corresponding to a subrange of the original record. Addi-
tionally, a record may be replaced with a new record that
corresponds to a smaller range, or multiple records could be
replaced by a single record whose range covers all ranges of
the original records. All such embodiments are contem-
plated.

Referring now to FIG. 11, a generalized block diagram of
an embodiment of a flattening operation for levels within a
mapping table 1s shown. As previously discussed, levels may
be time ordered. In the illustrated example, a Level “F”
comprising one or more indexes and corresponding map-
pings 1s logically located above older Level “F-1". Also,
Level “F” 1s located logically below younger Level “F+17.
Similarly, Level “F-2" 1s logically located above younger
Level “F-1" and Level “F+2” 1s logically located below
older Level “F+1”. In one example, levels “F” and “F-1”
may be considered for a flattening operation. Bidirectional
arrows are used to illustrate there are records storing same
key values across the two contiguous levels.

As described earlier, a new Level “New F” includes key
values corresponding to the duplicate key values found in
Level “F” and Level “F-17. In addition, the new Level
“New F” includes a pointer value corresponding to the
youngest (or younger in this case) record of the records
storing the duplicate key value. Upon completion of the
flattening operation, the Level “F” and the Level “F-1" may
not yet be removed from the mapping table. Again, in a
node-based cluster, each node may verily 1t 1s ready to
utilize the new single level, such as Level “New F”, and no
longer use the two or more levels it replaces (such as Level
“F” and Level “F-17"). This verification may be performed
prior to the new level becoming the replacement. In one
embodiment, the two or more replaced levels, such as Level

10

15

20

25

30

35

40

45

50

55

60

65

28

“F” and Level “F-17, may be kept in storage for error
recovery, mirroring, or other purposes. In order to maintain
the time ordering of the levels and their mappings, the new
flattened level F 1s logically placed below vounger levels
(c.g., level F+1) and above the oniginal levels that it replaces

(e.g., level F and level F-1).

Turning now to FIG. 12, one embodiment of a method
1000 for flattening levels within a mapping table 1s shown.
The components embodied 1n the network architecture 100
and the mapping table 340 described above may generally
operate 1n accordance with method 1000. For purposes of
discussion, the steps in this embodiment are shown 1n
sequential order. However, some steps may occur 1 a
different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps,
and some steps may be absent 1n another embodiment.

In block 1002, storage space 1s allocated for a mapping
table and corresponding indexes. In block 1004, one or more
conditions are determined for flattening two or more levels
within the mapping table. For example, a cost of searching
a current number of levels within the mapping table may be
greater than a cost of performing a flattening operation.
Additionally, a cost may be based on at least one of the
current (or predicted) number of levels 1n the structure to be
flattened, the number of entries 1n one or more levels, the
number of mapping entries that would be elided or modified,
and the load on the system. Cost may also include a time to
perform a corresponding operation, an occupation of one or
more buses, storage space used during a corresponding
operation, a number of duplicate entries 1n a set of levels has
reached some threshold, and so forth. In addition, a count of
a number of records within each level may be used to
estimate when a flatteming operation performed on two
contiguous levels may produce a new single level with a
number of records equal to twice a number of records within
a next previous level. These conditions taken singly or 1n any
combination, and others, are possible and are contemplated.

In block 1006, the indexes and the mapping table are
accessed and updated as data 1s stored and new mappings are
found. A number of levels within the mapping table
increases as new records are inserted into the mapping table.
If a condition for flattening two or more levels within the
mapping table 1s detected (conditional block 1008), then in
block 1010, one or more groups of levels are identified for
flattening. A group of levels may include two or more levels.
In one embodiment, the two or more levels are contiguous
levels. Although the lowest levels, or the oldest levels, may
be the best candidates for flattening, a younger group may
also be selected.

In block 1012, for each group a new single level com-
prising the newest records within a corresponding group 1s
produced. In the earlier example, the new single Level “New
F”” includes the youngest records among the Level “F” and
the Level “F+1”.In block 1014, 1n a node-based cluster, an
acknowledgment may be requested from each node within
the cluster to indicate a respective node 1s ready to utilize the
new levels produced by the flattening operation. When each
node acknowledges that 1t can utilize the new levels, n
block 1016, the current levels within the 1dentified groups
are replaced with the new levels. In other embodiments,
synchronization across nodes 1s not needed. In such embodi-
ments, some nodes may begin using a new level prior to
other nodes. Further, some nodes may continue to use the
original level even after newly flattened levels are available.
For example, a particular node may have original level data
cached and used that 1n preference to using non-cached data

US RE49,148 E

29

ol a newly flattened level. Numerous such embodiments are
possible and are contemplated.

Turning now to FIG. 13, one embodiment of a method
1100 for efliciently processing bulk array tasks within a
mapping table 1s shown. Similar to the other described
methods, the components embodied in the network archi-
tecture 100 and the mapping table 340 described above may
generally operate in accordance with method 1100. In addi-
tion, the steps 1n this embodiment are shown 1n sequential
order. However, some steps may occur in a different order
than shown, some steps may be performed concurrently,
some steps may be combined with other steps, and some
steps may be absent in another embodiment.

Storing the information 1n a compressed format within the
mapping table may enable fine-grained mapping, which may
allow direct manipulation of mapping information within the
mapping table as an alternative to common bulk array tasks.
The direct map manipulation may reduce 1/O network and
bus trailic. As described earlier, Flash memory has a low
“seck time”, which allows a number of dependent read
operations to occur 1n less time than a single operation from
a spinning disk. These dependent reads may be used to
perform online fine-grained mappings to integrate space-
saving features like compression and deduplication. In addi-
tion, these dependent read operations may allow the storage
controller 174 to perform bulk array tasks entirely within a
mapping table instead of accessing (reading and writing) the
user data stored within the storage devices 176a-176m.

In block 1102, a large or bulk array task 1s received. For
example, a bulk copy or move request may correspond to a
backup of a dozens or hundreds of virtual machines in
addition to enterprise application data being executed and
updated by the virtual machines. The amount of data asso-
ciated with the received request associated with a move,
branch, clone, or copy of all of this data may be as large as
16 gigabytes (GB) or larger. If the user data was accessed to
process this request, a lot of processing time may be spent
on the request and system performance decreases. In addi-
tion, a virtualized environment typically has less total input/
output (I/0) resources than a physical environment.

In block 1104, the storage controller 174 may store an
indication corresponding to the received request that relates
a range of new keys to a range of old keys, wherein both the
ranges ol keys correspond to the received request. For
example, 11 the received request 1s to copy of 16 GB of data,
a start key value and an end key value corresponding to the
16 GB of data may be stored. Again, each of the start and the
end key values may include a volume 1D, a logical or virtual
address within the recerved request, a snapshot 1D, a sector
number and so forth. In one embodiment, this information
may be stored separate from the information stored in the
indexes, such as the primary imndex 310, the secondary index
320, the tertiary index 330, and so forth. However, this
information may be accessed when the indexes are accessed
during the processing of later requests.

In block 1106, the data storage controller 174 may convey
a response to a corresponding client of the client computer
systems 110a-110c indicating completion of the received
request without prior access of user data. Therefore, the
storage controller 174 may process the received request with
low or no downtime and with no load on processor 122.

In block 1108, the storage controller 174 may set a
condition, an indication, or a flag, or bufler update opera-
tions, for updating one or more records in the mapping table
corresponding to the new keys replacing the old keys in the
mapping table. For both a move request and a copy request,
one or more new records corresponding to the new keys may

10

15

20

25

30

35

40

45

50

55

60

65

30

be 1nserted 1n the mapping table. The keys may be mserted
in a created new highest level as described earlier. For a
move request, one or more old records may be removed
from the mapping table after a corresponding new record has
been inserted 1n the mapping table. Either immediately or at
a later time, the records 1n the mapping table are actually
updated.

For a zeroing or an erase request, an indication may be
stored that a range of key values now corresponds to a series
of binary zeroes. Additionally, as discussed above, overlay
tables may be used to 1dentily key values which are not (or
no longer) valid. The user data may not be overwritten. For
an erase request, the user data may be overwritten at a later
time when the “freed” storage locations are allocated with
new data for subsequent store (write) requests. For an
externally-directed defragmentation request, contiguous
addresses may be chosen for sector reorganization, which
may benefit applications executed on a client of the client
computer systems 110a-110c.

If the storage controller 174 receives a data storage access

request corresponding to one of the new keys (conditional
block 1110), and the new key has already been mserted 1n the
mapping table (conditional block 1112), then 1n block 1114,
the indexes and the mapping table may be accessed with the
new key. For example, either the primary mdex 310, the
secondary index 320, or the tertiary index 330 may be
accessed with the new key. When one or more pages of the
mapping table are identified by the indexes, these 1dentified
pages may then be accessed. In block 1116, the storage
access request may be serviced with a physical pointer value
found 1n the mapping table that 1s associated with the new
key.
If the storage controller 174 receives a data storage access
request corresponding to one of the new keys (conditional
block 1110), and the new key has not already been inserted
in the mapping table (conditional block 1112), then 1n block
1118, the indexes and the mapping table may be accessed
with a corresponding old key. The storage holding the range
of old keys and the range of new keys may be accessed to
determine the corresponding old key value. When one or
more pages ol the mapping table are identified by the
indexes, these identified pages may then be accessed. In
block 1120, the storage access request may be serviced with
a physical pointer value found in the mapping table that 1s
associated with the old key.

Turning now to FIG. 14, a generalized block diagram
illustrating an embodiment of a data layout architecture
within a storage device 1s shown. In one embodiment, the
data storage locations within the storage devices 176a-176m
may be arranged into redundant array ol independent
devices (RAID) arrays. As shown, different types of data
may be stored 1n the storage devices 176a-176k according to
a data layout architecture. In one embodiment, each of the
storage devices 176a-176k 1s an SSD. An allocation unit
within an SSD may include one or more erase blocks within
an SSD.

The user data 1230 may be stored within one or more
pages mcluded within one or more of the storage devices
176a-176k. Within each intersection of a RAID stripe and
one of the storage devices 176a-176k, the stored information
may be formatted as a series of logical pages. Each logical
page may 1n turn iclude a header and a checksum for the
data in the page. When a read 1s 1ssued it may be for one or
more logical pages and the data in each page may be
validated with the checksum. As each logical page may
include a page header that contains a checksum for the page
(which may be referred to as a “media” checksum), the

US RE49,148 E

31

actual page size for data may be smaller than one logical
page. In some embodiments, for pages storing inter-device
recovery data 1250, such as RAID parity information, the
page header may be smaller, so that the parity page protects
the page checksums 1n the data pages. In other embodi-
ments, the checksum 1n parity pages storing inter-device
recovery data 1250 may be calculated so that the checksum
of the data page checksums 1s the same as the checksum of
the parity page covering the corresponding data pages. In
such embodiments, the header for a parity page need not be
smaller than the header for a data page.

The inter-device ECC data 1250 may be parity informa-
tion generated from one or more pages on other storage
devices holding user data. For example, the inter-device

ECC data 1250 may be parity information used 1n a RAID

data layout architecture. Although the stored information 1s
shown as contiguous logical pages in the storage devices
176a-176k, 1t 1s well known 1n the art the logical pages may
be arranged 1n a random order, wherein each of the storage
devices 176a-176k 1s an SSD.

The intra-device ECC data 1240 may include information
used by an intra-device redundancy scheme. An intra-device
redundancy scheme utilizes ECC information, such as parity
information, within a given storage device. This intra-device
redundancy scheme and its ECC information corresponds to
a given device and may be maintained within a given device,
but 1s distinct from ECC that may be internally generated
and maintained by the device itself. Generally speaking, the
internally generated and maintained ECC of the device 1s
invisible to the system within which the device 1s included.

The intra-device ECC data 1240 may also be referred to
as 1ntra-device error recovery data 1240. The intra-device
error recovery data 1240 may be used to protect a given
storage device from latent sector errors (LSEs). An LSE 1s
an error that 1s undetected until the given sector 1s accessed.
Therefore, any data previously stored in the given sector
may be lost. A single LSE may lead to data loss when
encountered during RAID reconstruction after a storage
device failure. The term “sector” typically refers to a basic
unit of storage on a HDD, such as a segment within a given
track on the disk. Here, the term “sector” may also refer to
a basic unit of allocation on a SSD. Latent sector errors
(LSEs) occur when a given sector or other storage unit
within a storage device 1s i1naccessible. A read or write

operation may not be able to complete for the given sector.
In addition, there may be an uncorrectable error-correction
code (ECC) error.

The intra-device error recovery data 1240 included within
a given storage device may be used to increase data storage
reliability within the given storage device. The intra-device
error recovery data 1240 1s 1n addition to other ECC 1nfor-
mation that may be included within another storage device,
such as parity information utilized 1n a RAID data layout
architecture.

Within each storage device, the intra-device error recov-
ery data 1240 may be stored 1in one or more pages. As 1s well
known by those skilled in the art, the intra-device error
recovery data 1240 may be obtained by performing a
function on chosen bits of information within the user data
1230. An XOR-based operation may be used to derive parity
information to store in the intra-device error recovery data
1240. Other examples of intra-device redundancy schemes
include single parity check (SPC), maximum distance sepa-
rable (MDS) erasure codes, interleaved parity check codes

(IPC), hybrid SPC and MDS code (MDS+SPC), and column

10

15

20

25

30

35

40

45

50

55

60

65

32

diagonal parity (CDP). The schemes vary 1in terms of deliv-
ered reliability and overhead depending on the manner the
data 1240 1s computed.

In addition to the above described error recovery infor-
mation, the system may be configured to calculate a check-
sum value for a region on the device. For example, a
checksum may be calculated when information 1s written to
the device. This checksum i1s stored by the system. When the
information 1s read back from the device, the system may
calculate the checksum again and compare it to the value
that was stored originally. If the two checksums differ, the
information was not read properly, and the system may use

other schemes to recover the data. Examples of checksum
functions 1nclude cyclical redundancy check (CRC), MD?3,

and SHA-1.

An erase block within an SSD may comprise several
pages. A page may include 4 KB of data storage space. An
erase block may include 64 pages, or 256 KB. In other
embodiments, an erase block may be as large as 1 megabyte
(MB), and include 256 pages. An allocation unit s1ze may be
chosen 1n a manner to provide both sufliciently large sized
units and a relatively low number of units to reduce over-
head tracking of the allocation units. In one embodiment,
one or more state tables may maintain a state of an allocation
unit (allocated, free, erased, error), a wear level, and a count
ol a number of errors (correctable and/or uncorrectable) that
have occurred within the allocation unit. In one embodi-
ment, an allocation unit 1s relatively small compared to the
total storage capacity of an SSD. Other amounts of data
storage space for pages, erase blocks and other unit arrange-
ments are possible and contemplated.

The metadata 1260 may include page header information,
RAID stripe 1dentification information, log data for one or
more RAID stripes, and so forth. In various embodiments,
the single metadata page at the beginning of each stripe may
be rebuilt from the other stripe headers. Alternatively, this
page could be at a diflerent oflset 1n the parity shard so the
data can be protected by the inter-device parity. In one
embodiment, the metadata 1260 may store or be associated
with particular flag values that indicate this data 1s not to be
deduplicated.

In addition to inter-device parity protection and intra-
device parity protection, each of the pages 1n storage devices
176a-176k may comprise additional protection such as a
checksum stored within each given page. The checksum (8
byte, 4 byte, or otherwise) may be placed inside a page after
a header and before the corresponding data, which may be
compressed. For yet another level of protection, data loca-
tion information may be included 1n a checksum value. The
data in each of the pages may include this information. This
information may include both a virtual address and a physi-
cal address. Sector numbers, data chunk and offset numbers,
track numbers, plane numbers, and so forth may be included
in this mformation as well. This mapping information may
also be used to rebuild the address translation mapping table
if the content of the table 1s lost.

In one embodiment, each of the pages in the storage
devices 176a-176k stores a particular type of data, such as
the data types 1230-1260. Alternatively, pages may store
more than one type of data. The page header may store
information identifying the data type for a corresponding
page. In one embodiment, an intra-device redundancy
scheme divides a device into groups of locations for storage
of user data. For example, a division may be a group of
locations within a device that correspond to a stripe within
a RAID layout. In the example shown, only two stripes,
1270a and 1270b, are shown for ease of illustration.

US RE49,148 E

33

In one embodiment, a RAID engine within the storage
controller 174 may determine a level of protection to use for
storage devices 176a-176k. For example, a RAID engine
may determine to utilize RAID double parity for the storage
devices 176a-176k. The inter-device redundancy data 1250
may represent the RAID double parity values generated
from corresponding user data. In one embodiment, storage
devices 1767 and 176k may store the double parity infor-
mation. It 1s understood other levels of RAID parity pro-
tection are possible and contemplated. In addition, 1n other
embodiments, the storage of the double parity information
may rotate between the storage devices rather than be stored
within storage devices 1767 and 176k for each RAID stripe.
The storage of the double parity information 1s shown to be
stored 1n storage devices 1767 and 176k for ease of illustra-
tion and description. Although each of the storage devices
176a-176k comprises multiple pages, only page 1212 and
page 1220 are labeled for ease of illustration.

Referring now to FIG. 15, one embodiment of a method
for performing deduplication 1s shown. The components
embodied 1n the network architecture 100 described above
may generally operate in accordance with method. For
purposes of discussion, the steps in this embodiment are
shown 1n sequential order. However, some steps may occur
in a different order than shown, some steps may be per-
formed concurrently, some steps may be combined with
other steps, and some steps may be absent in another
embodiment.

In block 1502, one or more given data components for an
operation are received. Such data components may corre-
spond to a received write request, a garbage collection
operation, or otherwise. In various embodiments, data sent
from one of the client computer systems 110a-110c may be
in the form of a data stream, such as a byte stream. As 1s well
known to those skilled in the art, a data stream may be
divided into a sequence of fixed-length or variable-length
data components, or “chunks”, where a “chunk™ 1s a sub-file
content-addressable unmit of data. A chunking algorithm may
perform the dividing of the data stream. In various embodi-
ments, a table may be used to map data corresponding to
particular file types to a most appropriate chunking method.
In some cases a file’s type may be determined by referring
to 1ts file name extension. Alternatively, 1n cases where a file
type corresponding to data 1s not indicated or otherwise
directly known, guesses as to the type of file to which data
corresponds may be made and used to inform the chunking
algorithm used. For example, a guess as to file type could be
based on the data 1n the block or the LUN 1n which the block
1s stored. Other methods for ascertaining a file type to which
data corresponds are possible and are contemplated. The
chunks later may be stored in one of the data storage arrays
120a-120b to allow for sharing of the chunks. Numerous
such embodiments are possible and are contemplated.

Subsequent to recerving the data, a particular fingerprint
algorithm 1504 may be chosen to produce a data component
fingerprint value for a given data component. For example,
a hash tunction, such as some or all of the output bits from
MD35, SHA1, SHA-256, cyclic-redundancy code (CRC), or
otherwise, may be used to calculate a corresponding finger-
print. Generally speaking, in order to know 1f a given data
component corresponding to a received write request may
already be stored in one of the data storage arrays 120a-
120b, a calculated fingerprint for the given data component
may be compared to fingerprints of data components stored
in one or more of the data storage arrays 120a-120b. If there
1s no matching fingerprint, there 1s no copy of the data
component already stored on the system. If at least one

10

15

20

25

30

35

40

45

50

55

60

65

34

fingerprint matches, then there may already be a matching
data component stored on the system. However, in some
embodiments, it 1s also possible that two non-identical data
components have the same fingerprint. Using the generated
fingerprint value for a data component, a search may be
performed to determine 11 there 1s another data component
already present 1n the system that has a matching fingerprint
value. In various embodiments, such fingerprint values may
be stored 1n one or more fingerprint tables within the system.
Accordingly, a determination as to which of the fingerprint
tables to search may be made (block 1506).

Having established which fingerprint tables are to be
searched, one of the tables 1s selected (block 1508) and a
decision 1s made as to whether the selected table 1s searched
(decision block 1510). A number of factors may be consid-
ered when deciding whether to search a given table. For
example, resource usage and performance i1ssues may be
considered. If the table 1s searched, then a matching finger-
print may be found (decision block 13512). In various
embodiments, 11 a matching fingerprint 1s found, then the
corresponding data already stored in the system may be
identical to the received data. However, the matching fin-
gerprint may not be definitive proof that the data itself
matches. Such might be the case where fingerprints collide
or otherwise. Therefore, 11 a matching fingerprint 1s found,
then a determination may be made as to whether further
verification steps are to be performed. Generally speaking,
veritying that data 1s a match entails reading the stored data
(decision block 1514) and comparing the read data to the
received data (decision block 1516). IT the stored data 1s
already contained in memory, there 1s generally no need to
re-read 1t from 1ts stored location. If the data matches, then
the recerved data 1s deemed redundant and a new link 1s
created between the already existing data (e.g., as 1dentified
by a physical address) and the transaction corresponding to
the recerved data. For example, a new link may be created
between a write transaction virtual address and the already
stored data. In one embodiment, both a mapping table and a
link table (to be discussed more fully later) may be used for
storing such newly 1dentified links.

At various steps 1n the process (e.g., blocks 1510, 1512,
1514, and 1516), venfication of a data match has not been
achieved and a determination 1s made as to whether the
search should continue. As noted above, resource and/or
performance 1ssues may be considered when making such a
determination. If more tables are to be searched (decision
block 1522), then one of the tables may be selected (block
1508), and the process repeated. If verification of a data
match 1s not achieved at this time (as 1n blocks 1516 and
1518), then confirmation that the data 1s redundant 1s not
made and the received data i1s written to storage (block
1524). Additionally, a new deduplication entry may be
created (block 1526) as well as updating other tables (block
1520) such as an address mapping table or otherwise.

It 1s noted that while the above discussion describes a
process whereby tables to search are determined (block
1506) prior to proceeding, 1n other embodiments an 1denti-
fication of more than one table may not be made 1n advance.
Rather, identification of a given table for search may be
determined one at a time (or only partially) as needed.
Alternatively, a combination of such approaches may be
used. All such embodiments are contemplated.

In addition to the general method depicted in FIG. 15,
additional processes may be included which serve to
improve the overall deduplication process. In particular,
various attributes may be maintamned which are used to
identiy which fingerprint tables might be searched and

US RE49,148 E

35

whether to search a given identified table. Further, other
attributes may be maintained that are used to determine into
which fingerprint table(s) a given fingerprint 1s stored. For
example, as will be described 1n more detail below, finger-
prints whose data 1s expected to be deduplicated more
frequently may be maintained 1n a fingerprint table which
has a higher prionity for being searched. Alternatively,
fingerprints corresponding to data of a given type may be
placed 1n one fingerprint table rather than another. By storing,
fingerprints within the fingerprint tables 1n such a manner,
system performance and resource usage may be improved.

It 1s noted that in various embodiments the access to

fingerprint tables shown in FIG. 15 may not be performed,
such as when a Bloom filter or other mechanism indicates
the fingerprint 1s not present in the fingerprint tables. Addi-
tionally, 1n some embodiments, an address to which a write
transaction 1s directed may correspond to an address range
which has known attributes. For example, a received write
transaction could be directed to a particular volume which 1s
known to store data unlikely to be deduplicated. For
example, data corresponding to a given database may be
deemed less likely to be deduplicated, while data corre-
sponding to a virtual machine may be deemed more likely to
be deduplicated. For example, a fingerprint table corre-
sponding to a volume including data believed to be more
likely to be deduplicated may be larger than would otherwise
be the case. In various embodiments, a volume table may
include attribute related information that may be used 1n
such a way. In other embodiments, other tables may be used
for storing and maintaining such attribute related informa-
tion. In addition to controlling the selection of fingerprint
tables to be searched, limits on the number of accesses to a
given storage medium may be made. In addition to utilizing
various attributes to limit the fingerprint table search, vari-
ous conditions such conditions as those related to resource
usage and performance may be considered when limiting the
fingerprint table search.

In one embodiment, a deduplication table may be parti-
tioned or otherwise comprise multiple fingerprint tables.
Each entry within a given table has an associated probability
or a range ol probabilities of a corresponding data compo-
nent being deduplicated. In one example, for a received
write request, an mn-line deduplication operation may access
a first fingerprint table with computed fingerprint values
corresponding to one or more data components. If the
computed fingerprint values are not found within the first
fingerprint table, then the in-line deduplication operation
may stop and allow a data component to be written to one
of the storage devices 176a-176m. In another example,
according to a strategy based on the associated attributes, 1f
the computed fingerprint values are not found in the first
fingerprint table, then a subsequent access of a second
fingerprint table may occur. If the computed fingerprint
values are not found 1n the second fingerprint table, then the
in-line deduplication operation may finish for a given data
component and allow the given data component to be
written to one of the storage devices 176a-176m. In one
embodiment, both the first and the second fingerprint tables
may be concurrently accessed. Data components written to
the storage devices 176a-176m may be deduplicated during
a later post-process deduplication operation. In one embodi-
ment, although a post-process deduplication operation may
be performed concurrently with a garbage collection opera-
tion, the accesses for the post-process deduplication opera-
tion may occur similarly as for an in-line deduplication
operation. For example, the first fingerprint table may be

10

15

20

25

30

35

40

45

50

55

60

65

36

accessed before a second fingerprint table. In another
embodiment, the entries of the fingerprint tables may be
accessed concurrently.

As noted above, 1n various embodiments, attributes may
be used to determine where a fingerprint value 1s stored
within multiple fingerprint tables of a larger deduplication
table. FIG. 16 illustrates one embodiment of a method 1600
for using such attributes. Block 1601 generally corresponds
to the establishment of a strategy to be used for the following
steps. This strategy may be determined at system startup
and/or dynamically at any time during system operation. In
some cases, a change 1n strategy may result 1n a change 1n
the nature of the attributes which are maintained. Should
such a change 1n strategy occur, the system may simultane-
ously maintain data and attributes corresponding to multiple
strategies. For example, a change 1n strategy may aflect only
subsequently stored data. In other embodiments, data and
attributes maintained according to a prior strategy may be
rebuilt to conform to a newer strategy. All such embodi-
ments are contemplated. In block 1602, one or more storage
devices may be selected for use 1n a storage subsystem. For
example, one or more storage devices 176a-176m within
one or more of device groups 173-173m may be chosen for
data storage use. In addition, more than one of the storage
data arrays 120a-120b may be chosen for this data storage
use. An amount of storage space and corresponding address
space may be chosen prior to choosing one or more of the
storage devices 176a-176m. The data storage space may be
used for end-user applications executing on client computer
systems 110a-110c, corresponding inter-device parity infor-
mation used in a RAID architecture, corresponding intra-
device redundancy information, header and metadata infor-
mation, and so forth.

In block 1604, one or more corresponding attributes are
identified for a given data component. Examples of such
attributes include a number of accesses to the given data
component, a data component age, a data component size, a
total number of times the given data component has been
deduplicated, a number of times the given data component
has been deduplicated for a given entry in a deduplication
table, an amount and/or type of compression used for the
data component, and so forth. In various embodiments, these
attributes may be maintained and updated over time. For
example, the attributes for a given data component may be
updated responsive to an access of the given data compo-
nent. In some embodiments, the granularity with which such
attributes are maintained and/or updated may vary. For
example, rather than updating attributes on a per data
component basis, attributes corresponding to an i1dentifiable
group of data components such as a volume or subvolume
may be updated. As described earlier, these maintained
attributes may aflect storage efliciency.

In block 1606, one or more events for updating the one or
more attributes are identified. Examples of such events may
include a deduplication operation, receiving a read or a write
request, a garbage collection operation, a trimming opera-
tion, a secure erase operation, an update of attributes cor-
responding to neighboring data components, reaching a
given time threshold, and so forth. If a given event of the
identified events occurs (decision block 1608), one or more
attributes corresponding to the given event may be retrieved
(block 1610). For example, deduplication of a data compo-
nent may be detected. In response, attributes associated with
the data component may be retrieved (block 1610). If the
current algorithm indicates a change in location for a fin-
gerprint, then such a change may be made (block 1612). For
example, 11 a successiul deduplication of a data component

US RE49,148 E

37

results 1n the number of successiul deduplications for that
block reaching or exceeding a given threshold, then the
block may move from being deemed a low(er) deduplicating
block to a high(er) deduplicating block. Such a change may
in turn lead to entering the fingerprint into a table with a
higher deemed probability of deduplication, and potentially
removing the fingerprint from the table 1 which 1t 1s
currently stored. This may be referred to as “promoting” the
fingerprint (entry). Alternatively, an entry corresponding to
a block may be “demoted” if deduplication of the block falls
below a given threshold. In such a case, a corresponding,
fingerprint may be removed from its current table and
entered into one which 1s used for fingerprints having a
lower (predicted) probability of deduplication. For example,
i a given fingerprint table contains the 5% of the total
number of stored data components that have the highest
probability of being deduplicated, and 1t 1s determined (or
predicted) that the likelihood of the data corresponding to
the entry being deduplicated 1s not 1n the top 5%, then the
entry may be moved out 1ts current fingerprint table to a
different fingerprint table. In addition to making any changes
(block 1612), the associated attributes may be updated
(block 1614). It 1s noted that movement of entries between
fingerprint tables need not be based on determined prob-
abilities of deduplication. Any desired algorithm for deter-
mimng which fingerprint table an entry 1s to be stored may
be used.

In addition to moving fingerprints between tables, 1nfor-
mation stored 1n a given entry may be removed from all
fingerprint tables within a deduplication table. This eviction
of an entry may occur if the entry 1s determined from 1its
associated attributes to not be a probable candidate for
deduplication or 11 the block to which the entry refers i1s no
longer valid. For example, an entry that has not been
deduplicated for a given amount of time may be evicted
from the deduplication table. This eviction reduces the total
s1ize of the deduplication table by removing entries corre-
sponding to a data component that have a relatively low
probability of having a duplicate stored in one of the data
storage arrays 120a-120b. It 1s noted that an entry may be
removed from the deduplication table even 1if that entry 1s the
target of multiple virtual block pointers, since such removal
may only preclude future deduplications and will not affect
deduplications that have already occurred.

In one embodiment, when an entry i1s evicted from the
deduplication table, an indication of the eviction may be
written to a corresponding physical location within one of
the data storage arrays 120a-120b. For example, a physical
location within one of the storage devices 176a-176m that
currently stores or 1s going to store a corresponding data
component may be written with the indication. In one
embodiment, both the eviction from the deduplication table
and the marking with a corresponding indication 1n a data
physical storage location may occur during a write request,
a garbage collection operation, a trim operation, a secure
erase operation, and so forth. In such cases, both the entries
in the fingerprint tables and the data components stored
within the storage devices 176a-176m may be already
moving or updating during these operations. Therefore, the
marking of the indication may not introduce a new write
operation.

Turning now to FIG. 17, a generalized block diagram
illustrating one embodiment of an entry storing attributes
1700 1s shown. It 1s noted that while FIG. 4 depicts all of the
attribute data as being stored as part of a single entry, 1n
vartous embodiments the attribute data may in fact be
distributed over multiple locations. In various embodiments,

10

15

20

25

30

35

40

45

50

55

60

65

38

attributes associated with a given block of data and/or
corresponding fingerprint may be used for a variety of
purposes, including where a corresponding fingerprint(s) 1s
to be stored in the deduplication tables. For example, as
discussed above, 1f a given data component 1s determined or
predicted to be highly deduplicated, its fingerprint may be
stored 1n a fingerprint table used for more highly dedupli-
cated data. Similarly, data deemed less likely to be dedu-
plicated has its fingerprint stored 1 a lower probability
fingerprint table. It 1s noted that attributes associated with a
grven fingerprint may be stored anywhere within the system.
For example, such attributes may be stored in association
with corresponding data on a LUN. Additionally, such
attributes may be stored in deduplication tables, copies may
be maintained in a varniety of locations 1n the system, and
otherwise.

As shown 1n the example, entry 1701 may hold an address
1703 A which may be a virtual address or a physical address.
In various embodiments, address 1703A may refer to a
single address, or 1t may refer to a range of addresses. The
entry 1701 may be accessed by a pointer value that matches
the mformation stored in the address field 1703A. The
information stored 1n the remaining fields may correspond to
a given data component corresponding to a physical location
in the storage devices 176a-176m or a virtual address used
by one of the client computer systems 110a-100c. For a
given physical or virtual address the table entry 1701 may
store an access rate 1703B, a total number of accesses
1703C, a data component age 1703D, a data component size
1703E, a corresponding storage device age 1703F, a dedu-
plication rate 1703G, a total number of deduplications
1703H, an error rate 17031 and a total number of errors
1703] for the given component. In addition, a status field
1703K may store an indication of valid data within a
respective entry. For a given physical or virtual address,
other attributes may be included such as a total number of
deduplications for an associated volume and a total number
ol accesses for an associated volume. Although the fields
1703-1712 are shown 1n this particular order, other combi-
nations are possible and other or additional fields may be
utilized as well. The bits storing imnformation for the fields
1703-1712 may or may not be contiguous.

Referring now to FIG. 18, a block diagram 1illustrating one
embodiment of a system 1800 configured to maintain attri-
butes related to deduplication 1s shown. In one embodiment,
an attribute table 1830 may store attribute information that
1s used to determine how much eflort 1s put into deduplica-
tion for a received write transaction (e.g., such as discussed
in relation to FIGS. 15 and 3). Attribute table 1840 may store
attribute information that 1s used to determine where a given
fingerprint 1s stored within the system’s fingerprint tables
(e.g., as discussed i FIG. 3). For example, each of the
entries 1842a-18427 1n table 1840 may comprise the infor-
mation shown 1n attributes table entry 1701. In the example
shown, attribute tables 1830 and 1840 are shown as two
distinct tables for ease of illustration. However, 1t 1s noted
that the attributes described therein may be stored in any
manner within the system and may be spread across multiple
locations. In various embodiments, copies of such attributes
may also be cached or otherwise stored 1in different levels
within a storage hierarchy such that multiple copies of
attribute information may exists simultaneously.

In the embodiment shown, two paths (a read path and a
write path) through various components of the system may
generally be traversed depending on the type of transaction
received. In the example shown, a key 1810 corresponding
to a recerved transaction may be used for further processing

US RE49,148 E

39

in the system. In one embodiment, the key 1810 may
comprise a volume 1dentifier (ID) 1802, a logical or virtual
address 1804, a snapshot ID 1806, a sector number 1808,
and so forth. In various embodiment, each of the previously
discussed storage controllers 170 within the data storage
arrays 120a-120b may support storage array functions such
as snapshots, replication and high availability. In addition,
cach of the storage controllers 170 may support a virtual
machine environment that includes a plurality of volumes
with each volume including a plurality of snapshots. In one
example, a storage controller 170 may support hundreds or
thousands of volumes, wherein each volume includes thou-
sands of snapshots. In one embodiment, a volume may be
mapped 1n fixed-size sectors, such as a 4-kilobyte (KB) page
within storage devices 176a-176m. In another embodiment,
a volume may be mapped 1n variable-size sectors. In such
embodiments, the volume ID 1802, snapshot ID 1806, and
sector number 1808 may be used to identify a given volume.
Accordingly, a given received read or write request may
identify a particular volume, sector and length. Although the
ficlds 1802-1808 are shown in this particular order, other
combinations are possible and other or additional fields may
be utilized as well. The bits storing information for the fields
1802-1808 may or may not be contiguous.

In one embodiment, the key 1810 corresponding to a read
transaction may generally follow a read path, while a key
1810 that 1s part of a write transaction may follow a write
path. As shown, during a read, the key 1810 may be used to
index a mapping table 1820. The mapping table 1820 may
comprise a plurality of entries 1822a-1822¢, wherein each
entry holds a virtual-to-physical mapping for a correspond-
ing data component. In this manner, the mapping table 1820
may be used to map logical read requests from each of the
client computer systems 110a-110c¢ to physical locations 1n
storage devices 176a-176m. It 1s noted that in various
embodiments, identified physical locations (e.g., represented
by a physical address) may be further remapped by storage
1880. As shown, each of the entries 1822a-1822¢g may hold
a virtual index 1824, a corresponding physical index 1826,
and status mformation 1828. Similar to the fields 1802-1808
within the key 1810, the ficlds 1824-1828 are shown 1n a
particular order. However, other combinations are possible
and other or additional fields may be utilized as well. The
physical index 1826 may generally be an 1dentifier (e.g., a
physical pointer or address) used to identily a given physical
location within the storage devices 176a-176m. As described
carlier, the physical index 1826 may include sector numbers,
data chunk and oflset numbers, track numbers, plane num-
bers, a segment 1dentifier (ID), and so forth. In addition, the
status information 1828 may include a valid bit which may
be used to indicate the validity of a corresponding mapping.

In one embodiment, the entries 1822a-1822¢g within the
mapping table 1820 may be sorted such that the sorting 1s
done first by the volume ID 1802, then by the sector number
1808, and then by the snapshot ID 1806. This sorting may
serve to group the entries 1822a-1822¢ corresponding to
different versions of data components within diflerent snap-
shots together. Such an arrangement may lead to fewer read
operations to find a given data component during a lookup
operation for a read request. During a garbage collection
operation, the operation may arrange the data components
within the storage devices 176a-176m 1n a sorted manner,
wherein the sorting 1s done first by the volume 1D 1802, then
by the snapshot ID 1806, and then by the sector number
1808. This may serve to group the data components in
storage devices 176a-176m that are logically adjacent into
physically adjacent locations.

10

15

20

25

30

35

40

45

50

55

60

65

40

In one embodiment, a physical index 1829 may be read
from the mapping table 1820 during a lookup operation
corresponding to a received read request. The physical index
1829 may then be used to locate a physical location within
the storage devices 176a-176m. In some cases, a read
request may include a length that spans multiple sectors.
Therefore, there may be multiple parallel lookups performed
on the mapping table 1820. In addition, there may be
multiple read operations sent to the storage devices 176a-
176m to complete a received read request from one of the
client computer systems 110a-110c.

In addition to the above, the key 1810 may correspond to
a received write request and may follow a write path as
shown. In the example shown, the key 1810 may be con-
veyed to either (or both) of attribute table 1830 and control
logic 1860. In one embodiment, attribute table 1830 stores
attribute 1nformation regarding the storage environment
and/or data stored within the system. In some embodiments,
attribute table 1830 may correspond to a volume table. The
attribute table 1830 may comprise a plurality of entries
1832a-1832h, wherein each entry holds attributes associated
with a virtual address, addresses, or range of addresses.
Generally speaking, attributes may be maintained for a
subset of addresses in the system. However, maintaining
attributes for all addresses 1s contemplated.

When a write request 1s received, control logic 1860 may
receive or otherwise access associated attributes from the
table 1830. In addition, control logic 1860 may receive user
inputs 1850. Received write requests may be placed n a
bufler upon receipt, such as a bufler within a non-volatile
random access memory (NVRAM). When the recerved
write request 1s builered, an acknowledgment may be sent to
the corresponding one of the client computer systems 110a-
110c. At a later time, an asynchronous process may flush the
buflered write operations to the storage devices 176a-176m.
However, deduplication may occur both prior to sending
write requests from the DRAM to the NVRAM and prior to
sending write requests from the NVRAM to the storage
devices 176a-176m. In cases where inline deduplication
detects a copy of the received write data already exists in the
system, the received write data may be discarded.

The user mputs 1850 may include identification of par-
ticular application and corresponding volumes that may
have a high probability of deduplication during the execu-
tion of the identified particular applications. The 1dentified
applications may include storage backup operations, given
virtual machine support applications, development software
producing a particular type of development data, and so
forth. The user mnputs 1850 may include 1dentification of a
range or a pattern of virtual addresses used to identify
corresponding data components with an associated virtual
index that satisfies the range or pattern with respect to a
virtual mdex of a current read/write request. For example, a
given data component may have a high probability of
deduplication if the given data component 1s located near a
data component that 1s currently being deduplicated. A stride
may be used to 1dentily corresponding virtual data compo-
nent indexes. In addition, the user inputs 1850 may include
administrative settings.

Control logic 1860 may comprise deduplication strategy
logic 1862, attributes update logic 1864, table entries move-
ment logic 1866, and mapping table update logic 1868
which 1s configured to update mapping table 1820 (e.g., as
described 1 step 1520 of FIG. 15). The deduplication
strategy logic 1862 may determine, for a search of a dedu-
plication table, a number of lookup operations to use for a
search for both an inline and a post-process deduplication

US RE49,148 E

41

operation. In addition, the deduplication strategy logic 1862
may determine a number of lookup operations to use for
cach given storage medium used to store mformation cor-
responding to the deduplication table. Further details are
provided later.

The attributes update logic 1864 within the control logic
1860 may determine which entries in the tables 1830 and
1840 may be updated during an 1dentified event, such as the
events listed above corresponding to block 414 of method
400. The table entries movement logic 1866 may determine
how entries within a deduplication table (e.g., fingerprint
tables corresponding to the deduplication table) are stored
and moved within the table. In addition, the logic 1866 may
determine a manner for storage and movement of stored data
in physical locations in storage devices 176a-176m. Simi-
larly, the logic 1866 may determine how virtual-to-physical
mappings are performed. For example, the logic 1866 may
perform mappings to group together deduplicated data com-
ponents. It 1s noted that while FIG. 17 (and other figures)
depicts selected arrows as being bidirectional and others as
unidirectional, this 1s not intended to be limiting. In various
embodiments, communication may occur in either or both
directions between any of the components 1n the system.

Referring now to FIG. 19, a generalized block diagram
illustrating one embodiment of a logical representation of a
deduplication table 1910 1s shown. The information stored 1n
the deduplication table 1910 may provide a fast location
identification of data components stored 1n the data storage
arrays 120a-120b. The information stored 1n the deduplica-
tion table 1910 may include mappings between one or more
calculated fingerprint values for a given data component and
a physical pointer to a physical location in one of the storage
devices 176a-176m holding the given data component. In
addition, a length of the given data component and status
information for a corresponding entry may be stored in the
deduplication table 1910.

As described earlier, a chunking/partitioning algorithm
may produce a given data component 1902 from data
corresponding to a received request. A fingerprint algorithm
1904 of multiple fingerprint algorithms may then be selected
and used to produce a data component fingerprint 1906. The
resulting fingerprint value may then be used to access the
deduplication table 1910. In various embodiments, one or
more fingerprint algorithms may be supported and one
fingerprint algorithm may be more complex to perform than
another fingerprint algorithm. Accordingly, the given {in-
gerprint algorithm may consume more computation time
than another. Additionally, some fingerprint algorithms may
produce larger fingerprints than others and consume more
storage space. For example, an MD3 type fingerprint algo-
rithm may be more complex to perform than a CRC32C
fingerprint algorithm. However, there may be fewer colli-
sions, or false matches, associated with the first algorithm.
In another example, the result of the fingerprint algorithm
may be determined by keeping only some of the bits
generated by a function such as MD3S or CRC32C. Keeping
more bits requires more space, but may also reduce the
likelihood of a collision. A collision may cause a read of data
stored 1n persistent storage, such as the storage devices
176a-176m, for a subsequent comparison operation. The
comparison may be performed to verily whether a match
found 1n the deduplication table 1910 corresponds to data
stored 1n persistent storage that matches the value of the
given data component 1902. In addition, read operations for
both data and attributes followed by comparison operations
may be performed to determine which one of multiple
matches may remain 1n persistent storage during deduplica-

10

15

20

25

30

35

40

45

50

55

60

65

42

tion of redundant data. The read operations and the com-
parison operations add processing time to a deduplication
operation.

Switching between a first and a second fingerprint algo-
rithm of multiple fingerprint algorithms may occur when a
strategy for deduplication changes. In one embodiment,
attributes such as those discussed above may be used by
control logic to determine a strategy and changes to a
strategy for deduplication. For example, a first strategy that
utilizes less storage space for fingerprint values, but results
in more collisions, may be chosen. At a later time, a second
strategy may be chosen to replace the first strategy. The
second strategy may utilize more storage space for finger-
print values resulting in fewer collisions. The later time for
such a change in strategy for deduplication may occur
during a given 1dentified event, such as the events described
earlier in FIG. 3, or otherwise.

Deduplication table 1910 may comprise entries for all or
only a portion of the data components stored in one or more
of data storage arrays 120a-120b. In one embodiment, the
deduplication table 1910 may not be complete and therefore
may not have an entry for each stored data component. Also,
one or more entries within the deduplication table 1910 may
be evicted as further described later. In one embodiment, the
fingerprint tables 1920-1940 together comprise some or all
of a deduplication table depending on a chosen implemen-
tation. In other embodiments, the fingerprint tables 1920 and
1930 store copies of information stored 1n fingerprint table
1940. Further, the fingerprint table 1940 may be stored 1n
volatile and/or non-volatile storage within the system (e.g.,
such as storage devices 176a-176m, RAM 172, processor
cache(s), etc.).

In one embodiment, a lookup operation 1nto the dedupli-
cation table 1910 may be controlled by control logic 1 a
storage controller. For example, attribute information may
be used to determine how many of the fingerprint tables
1920-1940 to search. In addition, a type of a storage medium
storing a given fingerprint table may determine how many
iput/output (I/0) accesses may be used to search a given
fingerprint table. For example, a search determined to have
a limited amount of time for lookup may access fingerprint
tables stored 1n a processor cache or a non-persistent storage,
but not access any fingerprint tables stored in persistent
storage. Alternatively, a limited number of I/O accesses may
be allowed to persistent storage. In addition, a lookup may
access only particular portions of the deduplication table
1910 based on an estimated probability of success.

Each entry in the fingerprint table 1940 may comprise one
or more calculated fingerprint values corresponding to a
given data component, such as fingerprints 1942a-1945a 1n
a first entry. Additionally, each of the fingerprints 1942a-
1945a may be calculated from a different fingerprint algo-
rithm. The pointer 1946a may be a physical pointer or
address for a given physical location within the storage
devices 176a-176m. In addition, each entry may comprise
status information, such as the status field 1948a 1n the first
entry. The status information may include a valid bit, a flag
to indicate whether or not a corresponding data component
1s a candidate for deduplication, a length of the correspond-
ing data component, and so forth.

Similar to the storage arrangement 1n the fingerprint table
1940, each entry 1n the fingerprint table 1930 may comprise
one or more calculated fingerprint values corresponding to a
given data component, such as fingerprint values 1932a-
1934a 1n a first entry. In some embodiments, the fingerprint
tables may be inclusive such that some of the fingerprint
values 1932a-1934a stored 1n the fingerprint table 1930 may

US RE49,148 E

43

be copies of one or more of the fingerprint values 1942a-
1945a, 1942b-1945b, 1942m-1945m, and so forth, stored 1n
the fingerprint table 1940. In other embodiments, fingerprint
values stored in one table are exclusive of those stored in
another. All such embodiments are contemplated.

In one embodiment, the fingerprint table 1930 holds a
smaller number of entries than a number of entries 1n the
fingerprint table 1940. In addition, each entry in the finger-
print table 1930 holds less information than an entry in the
fingerprint table 1940. Similarly, the fingerprint table 1920
may hold a smaller number of entries than a number of
entries in the fingerprint table 1930 and each entry in the
fingerprint table 1920 may hold less information than an
entry in the fingerprint table 1930. In other embodiments,
fingerprint table 1930 may not hold a smaller number of
entries than that of fingerprint table 1940. Rather, fingerprint
table 1930 could hold more entries, and each entry could
hold more information. Similarly, fingerprint table 1920
could be larger than one or both of fingerprint table 1930 and
fingerprint table 1940. Although the fields 1922a-1948m
within the fingerprint tables 1920-1940 are shown 1n a
particular order, other combinations are possible and other
or additional fields may be utilized as well. The bits storing
information for the fields 1922a-1948m may or may not be
contiguous.

While fingerprint tables 1920-1940 are shown as tables,
the tables 1920-1940 may be data structures such as a binary
search tree, or an ordered binary tree, comprising a node-
based data structure. In addition, while three fingerprint
tables 1920-1940 are shown, diflerent numbers of finger-
print tables are possible and contemplated. Further, one or
more filters such as a Bloom filter may be included 1n the
deduplication table 1910. In such an embodiment, the filter
may be accessed to quickly determine whether a calculated
data component fingerprint 1906 1s within one or more of the
fingerprint tables. For example, a filter may be configured to
definitively indicate that a data component 1s not stored 1n a
data table. If the filter does not rule out 1ts presence,
deduplication processing may continue or the data compo-
nent may be stored in the data table.

As described earlier, a chosen fingerprint algorithm may
be used to calculate the data component fingerprint 1906.
Subsequently, the data component fingerprint 1906 may be
used to access the deduplication table 1910. The chosen
fingerprint algorithm may be also used to determine which
fingerprint values stored 1n the fingerprint tables 1920-1940
to compare to the data component fingerprint 1906. For
example, the fingerprint table 1920 may store fingerprint
values corresponding to data components predicted to have
a relatively high probability of being deduplicated. In one
embodiment, fingerprint table 1920 may store information
corresponding to the 5% of the total number of stored data
components that have the highest probability of being dedu-
plicated. The probability of deduplication for a given data
component may be based, at least in part, on the attributes
stored 1n the attributes table 640.

The data component fingerprint 1906 may access one or
more tables within deduplication table 1910. If no matching
fingerprint 1s found, then the corresponding data may be
scheduled to be written to one of the storage devices
176a-176m. If a matching fingerprint 1s found, then the data
corresponding to the matching fingerprint may be retrieved
from storage and compared to the recerved write data. If the
data 1s determined to be identical, then a new link for the
stored data 1s created and the write data discarded. If the
retrieved data 1s not identical to the write data or no
matching fingerprint for the write data i1s found, then the

10

15

20

25

30

35

40

45

50

55

60

65

44

write data 1s stored. In both cases, a new virtual to physical
mapping table entry (e.g., 1n table 1820) may be created for
the write as previously discussed.

In one embodiment, the deduplication table 1910 may
store multiple entries for a given data component. For
example, the deduplication table 1910 may store an entry for
a given 4 KB page as well as a separate entry for each 1 KB
block within the given 4 KB page. Alternatively, a lookup
into the deduplication table 1910 may occur at a granularity
of a 512-byte block. If a match 1s found and a duplicate copy
ol data stored in one of the data storage arrays 120a-120b 1s
found and verified, a subsequent lookup of the next con-
tiguous 512 bytes may be performed. If a fingerprint value
match 1s found for this data block and a duplicate copy of
data stored in one of the data storage arrays 120-120b 1is
found and verified, a subsequent lookup of the next con-
tiguous 512 bytes may be performed. This process may be
repeated until no match 1s found. Theretore, deduplication of
data components may be found at a finer granularity while
also still maintaining table entries 1n the deduplication table
1910 for larger sized data components.

For a deduplication table 1910 that supports a finer
granularity of sizes for data components, more fingerprint
value hits may be produced during a lookup operation for a
given recerved write request. For a deduplication table 1910
that supports a more coarse granularity of sizes for data
components, a higher storage efliciency may be achieved
and fewer fingerprint value hits may be produced during a
lookup operation for a given received write request. In some
embodiments, a deduplicated data component may have
neighboring data components that have also been dedupli-
cated. For example, a given 512-byte data component may
have a neighboring 512-byte deduplicated component; thus
forming a 1 KB deduplicated block. In such a case, an entry
may be added to the deduplication table 1910 associated
with the deduplicated 1 KB block. In this manner, data
components and their corresponding entries are eflectively
coalesced to form larger blocks. Alternatively, a table entry
within the deduplication table 1910 corresponding to a
larger data size may be divided to produce multiple table
entries with corresponding smaller data sizes. Such a divi-
sion may produce more fingerprint value hits during a
lookup into the deduplication table 1910.

Both a fingerprint algorithm and a data size or length
corresponding to a table entry within the deduplication table
1910 may be reconsidered. Such reconsideration may occur
periodically, during i1dentified events as described earlier in
FIG. 3, or at any other desired time. As may be appreciated,
making changes to the algorithm(s) used and/or data sizes
used may result in changes to calculation times and may
alter the probability of a collision. For example, increased
data collisions may incur additional read operations of a
persistent storage data location for a data comparison.
Changes 1n the supported data size may result in more
deduplications of smaller blocks or tewer deduplications of
larger blocks. All such ramifications should be taken into
account when making such changes.

In one embodiment, one or more entries within the
deduplication table 1910 may store a first fingerprint value
for a corresponding data component. A second fingerprint
value may be stored with the corresponding data component
in one of the storage devices 176a-176m. In various embodi-
ments, the first fingerprint value 1s a diflerent and smaller
fingerprint value than the second fingerprint value. Diflerent
fingerprint algorithms may be used to compute the first
fingerprint value and the second fingerprint value. In another
example, the first fingerprint value 1s a function of the

US RE49,148 E

45

fingerprint value (e.g., a subset of bits of the fingerprint
value) and the second fingerprint value 1s also a function of
the same fingerprint value (e.g., some or all of the remaining,
bits of the fingerprint value). During a lookup into the
deduplication table 1910, when a subset or an entire value of
the data component fingerprint 1906 matches a first finger-
print value 1n a given table entry, such as fingerprint 19327
in the fingerprint table 1930, a corresponding data storage
location may be read. In embodiments 1n which the first
fingerprint value 1s a subset of bits of the fingerprint value,
a second fingerprint value may be stored 1n this data location
in addition to a corresponding data component. Either a
second fingerprint value different from the data component
fingerprint 1906 or a subset of the data component finger-
print 1906 may be compared to the stored second fingerprint
value. If there 1s a match, then a comparison may be
performed between the stored data component and a data
component value corresponding to a received read/write
request, a garbage collection operation, or otherwise.

In one embodiment, the deduplication table 1910 may be
partitioned 1n a manner to allow one or more nodes 1n a
cluster to process lookup operations for a given partition of
the table. Therefore, deduplication may occur across mul-
tiple nodes to reduce storage space on a given node. A
virtual-to-physical mapping table, such as the mapping table
1820, may refer to data components across multiple nodes
for increased storage efliciency. The deduplication table
1910 may still be stored across storage devices within a
cluster in the cluster and may be repartitioned without
moving any of the stored data. A smaller portion of the
deduplication table 1910, such as the fingerprint tables
1920-1930 may be stored on each node while a larger
portion, such as the fingerprint table 1940, may be parti-
tioned. Each time a node joins or leaves a given cluster, the
deduplication table 1910 may be repartitioned among the
current nodes 1n the given cluster. The deduplication table
1910 may support one deduplication address space across
one or more volumes and snapshots on one or more nodes
in the given cluster. In various embodiments, the dedupli-
cation table 1910 may be divided among several nodes to
increase the eflective cache storage etliciency for a finger-
print lookup operation. This division of the deduplication
table 1910 may occur by fingerprint value, by fingerprint
algorithm, by an estimated probability of success, by a
storage strategy, by a random process, or otherwise.

In one embodiment, an entry is allocated, or registered,
within the deduplication table 1910 when a fingerprint
lookup operation 1nto the deduplication table 1910 results 1n
a miss. This miss may occur during an inline deduplication
operation or a post-process deduplication operation. Addi-
tionally, as previously discussed 1n FIG. 15, on a hit a link
table may be updated that stores links for deduplicated data.
For example, responsive to successiully deduplicating
received write data, a new entry 1s created 1n the link table.
In some embodiments, new table entries may be registered
during a post-process deduplication operation. In other
words, during an inline deduplication operation, a miss
during a fingerprint lookup 1nto the deduplication table 1910
does not produce registration of a table entry. During a
post-process deduplication operation, a miss during a fin-
gerprint lookup into the deduplication table 1910 does
produce registration of a table entry. In one embodiment, a
duplicate copy 1s verified during deduplication by a match-
ing fingerprint value. In another embodiment, a duplicate
copy 1s verified by both a matching fingerprint value and a

5

10

15

20

25

30

35

40

45

50

55

60

65

46

matching value for a corresponding data component.
Numerous such embodiments are possible and are contem-
plated.

Referring now to FIG. 20, one embodiment of a method
2000 for supporting multiple fingerprint tables 1s shown. In
vartous embodiments, the components discussed above,
such as network architecture 100, deduplication table 1910
and fingerprint table(s) 1920 described above may generally
operate 1n accordance with method 2000. For purposes of
discussion, the steps in this embodiment are shown 1n
sequential order. However, some steps may occur 1 a
different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps,
and some steps may be absent 1n another embodiment.

In block 2002, a number N (where N 1s an integer) of
fingerprint tables are determined to be supported and store
values, such as fingerprint values, corresponding to stored
data components. Fach of the N fingerprint tables may have
an associated probability for corresponding data compo-
nents to be deduplicated. One or more of the N fingerprint
tables may be stored on a separate storage medium from the
other fingerprint tables. One or more of the N fingerprint
tables with the higher associated probabilities of deduplica-
tion may be stored in a higher level of a memory hierarchy
than the remainder of the N fingerprint tables. For example,
one or more of the N fingerprint tables may be stored 1n
RAM 172, whereas the remainder of the N fingerprint tables
may be stored 1n persistent storage in storage devices
176a-176m. In some embodiments, copies of one or more of
the N fingerprint tables may be stored in a higher level of the
storage hierarchy. Therefore, there may be two copies of the
one or more N fingerprint tables on separate storage media.

In block 2006, one or more events are identified {for
changing (or reevaluating) a storage strategy or arrangement
for entries within the N fingerprint tables. Examples of such
events may include a garbage collection operation, a prun-
ing/trimming operation, a secure erase operation, a recon-
struct read operation, a given stage 1n a read/write pipeline
for a recerved read/write request, a recerved batch operation
that accesses physical locations within persistent storage, a
received batch operation that transforms or relocates data
components within the persistent storage.

In block 2008, one or more attributes corresponding to
data components stored in the persistent storage are 1denti-
fied for storage. The attributes may be used to change a
storage strategy or arrangement for entries within the N
fingerprint tables. Examples of such attributes include at
least those discussed above in relation to FIG. 17. In block
2010, one or more of the stored attributes may be updated as
data components are aged or accessed. In one embodiment,
a given period of time and each data storage access may be
included as an event with the events described regarding
block 2006. If one of the identified events occurs (decision
block 2012), then 1n block 2014 one or more of the attributes
corresponding to one or more stored data components are
read for inspection. In block 2016, based on the attributes
that are read, one or more entries within the N fingerprint
tables may be moved from one fingerprint table to another.
Additionally, entries may be reordered within a given fin-
gerprint table based on their corresponding attributes. For
example, the entries may be sorted by one or more stored
fingerprint values for ease of lookup. One or more entries
may be promoted from a lower-level fingerprint table to a
higher-level fingerprint table, wheremn entries within the
higher-level fingerprint table correspond to stored data com-
ponents that have a higher probability of being deduplicated
based on their attributes.

US RE49,148 E

47

In addition to the above, one or more entries within the N
fingerprint tables may be evicted from the fingerprint table
1920 altogether. This eviction of one or more entries may
occur when a determination 1s made based on associated
attributes that the one or more entries correspond to stored
data components with a low probability of being dedupli-
cated. In addition, based on associated attributes, entries
within the N fingerprint tables may be evicted 1n order to
prevent deduplication among data components with a large
number of references, to remove entries that cause false
matches, or collisions, during a deduplication operation, and
to remove entries that no longer have a valid physical
address for the data component to which they refer.

As described earlier, for each entry that 1s evicted, in one
embodiment, an indication of the eviction may be written to
a corresponding physical location within one of the data
storage arrays 120a-120b. In another embodiment, an 1ndi-
cation of the eviction may be written 1n an associated entry
ol another data structure. A stored indication may allow for
reevaluation at a later time of a given evicted data compo-
nent. The associated attributes may be read and used to
determine whether the given evicted data component may
now have a probability of being deduplicated above a given
threshold. IT 1t 1s determined the given evicted data compo-
nent has a probability of being deduplicated above a given
threshold, then a corresponding entry may be allocated in
one of the N fingerprint tables.

Referring now to FIG. 21, one embodiment of a method
2100 for eviction from a deduplication table 1s shown. In
block 2102, one or more conditions are 1dentified for evict-
ing an entry from a deduplication table. Here, eviction refers
to removing information stored in a given entry from the
entire deduplication table. If a deduplication table includes
multiple fingerprint tables, such as tables 1920-1940, infor-
mation stored within a given entry may be removed and no
longer be stored in any of the fingerprint tables. In various
embodiments, data that 1s deemed to have a relatively low
probability of being deduplicated may have 1ts entry
removed from the deduplication table(s). This eviction may
in turn reduce the size of the deduplication table and reduce
an amount of effort required to maintain the table.

In the example shown, the 1dentified conditions for use in
determining eviction may include one or more of a size of
the deduplication table reaching a given threshold, a given
data component has a predicted probability of being dedu-
plicated that falls below a given threshold, a given data
component has a history of being deduplicated that falls
below a given threshold, a given data component with an
associated large number of references 1s 1dentified as being
removed from a deduplication operation, a given data com-
ponent reaches a given threshold for a number of false
matches (collisions), and a given data component does not
have a valid physical address. One or more attributes, such
as the attributes discussed above may be used to determine
whether eviction may occur and to i1dentify one or more
entries within a deduplication table for eviction. In various
embodiments, eviction may also occur during garbage col-
lection operations.

If conditions are satisfied for evicting a given entry 1n a
deduplication table (decision block 2104), then a corre-
sponding data component may be marked as being removed
from the table (block 2106). In one embodiment, an indi-
cation of the eviction may be written to a corresponding
physical location within one of the data storage arrays
120a-120b, and the given entry in the deduplication table

10

15

20

25

30

35

40

45

50

55

60

65

48

may be deallocated (block 2108). A stored indication may
allow for reevaluation at a later time of a given evicted data
component.

Turning now to FIG. 22, one embodiment of a method
2200 for iserting an entry imto a deduplication table is
shown. In block 2202, one or more conditions are identified
for reviewing a data component which does not currently
have an entry i1n the deduplication table. In one embodiment,
one condition for performing such a review may be mitiation
of a garbage collection operation. Other examples of con-
ditions may include the occurrence of events i1dentified 1n
block 1606 in method 1600, the conditions discussed in
relation to method 2000, or otherwise. The timing of such a
review may be set in a manner to minmimize or otherwise
reduce the impact on other system operations.

If conditions are satisfied for reviewing a data component
(decision block 2204), then corresponding attributes for the
given data component may be read and inspected (block
2206). For example, one or more attributes such as those
discussed above may be used to determine whether 1nsertion
may occur. In various embodiments, metadata within the
system 1ndicates whether a corresponding data component
does or does not have a corresponding entry in the dedu-
plication table. A given data component/entry may qualify
for msertion 1n the deduplication table when one or more
conditions for 1ts exclusion are no longer valid, such as the
conditions described above regarding block 2102 of method
2100. The attributes of a corresponding data component may
change over time and allow the data component to have an
associated entry in the deduplication table again.

If a given evicted entry qualifies to be reinserted 1n the
deduplication table (decision block 2208), then an entry 1n
the deduplication table 1s allocated for a corresponding data
component (block 2210) and any markings that indicate the
data component does not have an entry 1n the deduplication
table may be removed or mnvalidated.

Referring now to FIG. 23, a generalized block diagram
illustrating one embodiment of a system 2300 for maintain-
ing reverse address mappings using a link table 2310 1s
shown. As described above, virtual-to-physical mapping
information may be stored in mapping table 1820. In addi-
tion, address-mapping information may be stored in each
page of data within each of the storage devices 176a-176m.
Each of the data storage arrays 120a-120b supports multiple
virtual addresses in requests from each of the client com-
puter systems 110a-110c¢ referencing a same, single physical
address. For example, a first virtual address corresponding to
client 110a and a second virtual address corresponding to
client 110b may reference a same data component or a same
data block identified by a same given physical address. In
this example, the first virtual address may have a value of
“VX”. The second virtual address may have a value of
“VY”. The same given physical address may have a value of
“PA”. These values are arbitrary and chosen to simplify the
illustrated example. The mapping table 1820 may store
mapping information such as “VX-to-PA” and “VY-to-PA”.

Over time, the first virtual address, “VX”, may later be
included 1n a write request from client 110a with modified
data. The new modified data may be written to one or more
of the storage devices 176a-176m. The new information for
the physical block may be stored in a physical location
identified by a new physical address diflerent from the given
physical address. For example, the new physical address
may have a value “PB”, which 1s diflerent from the value
“PA” of the given physical address. A new virtual-to-
physical mapping may be stored in a mapping table 1820,
such as “VX-to-PB”. The given physical address, “PA”, still

US RE49,148 E

49

has a link to one virtual address, which 1s the second virtual
address corresponding to client 110b, or “VY-to-PA” stored
in the table 1820. Subsequently, the second virtual address,
“VY”, may later be included 1n a wnite request from client
110b with modified data. Again, the new modified data may
be written to one or more of the storage devices 176a-176m.
The new information for the physical block may be stored 1n
a physical location identified by a new physical address
different from the given physical address. For example, the
new physical address may have a value “PC”, which 1s
different from the value “PA” of the given physical address.
A new virtual-to-physical mapping may be stored mn a
corresponding table 1820, such as “VY-to-PC”. The given
physical address, “PA”, now has no links to it. A garbage
collection operation may deallocate the physical block cor-
responding to the given physical address “PA” due to a count
of zero currently valid links and/or other corresponding
status information.

A problem may occur during garbage collection 11 inline
deduplication causes no update of mapping information. For
example, when a write request from client 100a to virtual
address VX occurs, no matching fingerprint value 2306 may
be found in the fingerprint table 1920 during an inline
deduplication operation. Consequently, mapping may be
stored 1n the mapping table 1820, such as “VX-to-PA”, and
a physical data block may be scheduled to be written to the
physical address “PA”. In addition, the mapping information
“VX-to-PA” may be written with the data in the physical
location 1dentified by physical address “PA”. Alternatively,
the mapping information may be stored 1n a corresponding
log 1n a storage device, wherein the log corresponds to
multiple physical locations such as the location 1dentified by
the physical address A. In one embodiment, at this time, an
entry may be registered in the deduplication table 1910
corresponding to this write request. In another embodiment,
an entry may be registered 1n the deduplication table 1910
corresponding to this write request during a post-process
deduplication operation. Regardless of when an entry 1is
registered 1n the deduplication table 1910, a corresponding,
entry may exist in the deduplication table 1910 when a write
request 1s received from client 110b to virtual address VY.

When the write request from client 100b to virtual address
“VY” 1s recerved, a matching fingerprint value 2306 may be
found i the deduplication table 1910 corresponding to
physical address PA and a match of the data verified. In such
a case, a mapping may be stored 1n the table 1820, such as
“VY-to-PA”. As a write of the data 1s not performed, the
mapping information “VY-to-PA” 1s not written with the
data 1n the physical location i1dentified by physical address
“PA”. Subsequently, a later write request from client 100a to
virtual address “VX” may occur with new modified data. No
matching fingerprint value 2306 may be found in the dedu-
plication table 1910 during an inline deduplication opera-
tion, and a corresponding mapping stored 1n the table 1820,
such as “VX-to-PB”. In this case, the mapping information
“VX-to-PB” may be written with the data in the physical
location 1dentified by the physical address “PB”.

When the garbage collector 1s executed, the application
may 1nspect both the physical location i1dentified by the
physical address “PA” and the table 1820. The garbage
collector may find the mapping information, “VX-to-PA”,
stored with (or otherwise in association with) the corre-
sponding page i1dentified by the physical address “PA”.
However, no valid corresponding entry in the table 1820
storing the same mapping information “VX-to-PA” 1s found.
In addition, no other valid links to the physical address “PA”
may be found, although virtual address “VY” 1s referencing,

10

15

20

25

30

35

40

45

50

55

60

65

50

physical address “PA”. Therefore, a count of links to the
physical address “PA” 1s erroneously determined to be zero.
The garbage collector may then deallocate the physical
location 1dentified by the physical address “PA”. Conse-
quently, the link corresponding to the mapping “VY-to-PA”
1s broken and data corruption may have occurred.

In order to avoid the above problem without scheduling a
data write request to the storage devices 176a-176m, a link
table 2310 may be used. Although scheduling a write request
to update the mapping information from (“VX-to-PA”) to
(“VX-to-PA”, “VY-t0-PA”) stored in the physical location
identified by the physical address “PA” may prevent broken
links, the benefit of the mline deduplication operation would
be reduced and write amplification of SSDs may be
increased. Therefore, 1n order to address at least these 1ssues,
the link table 2310 may be utilized to hold reverse mapping
information. The link table 2310 may comprise a plurality of
entries 2320a-2320¢g. Fach of the entries 2320a-2320g may
include a physical index 2324 that identifies a physical
location 1n the storage devices 176a-176m. In addition, one
or more virtual indexes 2326a-2326] may be included to
provide reverse mapping mformation. The status informa-
tion 2328 may indicate whether a corresponding entry stores
one or more valid reverse mappings.

In one embodiment, the link table 2310 has an entry
allocated or updated when an 1nline deduplication operation
determines a duplicate copy exists 1n storage for a corre-
sponding data component 2302. A corresponding physical
index 2337 found during the inline deduplication operation
may be used to update the link table 2310. Referring to the
above example, the link table 2310 may be updated with the
reverse mapping information “PA-to-VY” during processing
of the write request from client 110b to virtual address
“VY”. When the garbage collector 1s executed, it may
inspect both the physical location i1dentified by the physical
address “PA”, the mapping table 1820 and the link table
2310. The garbage collector may find the mapping informa-
tion, “VX-to-PA”, stored 1n the corresponding page identi-
fied by the physical address “PA”. A valid corresponding
entry 1n the table 1820 storing the same mapping informa-
tion, “VX-t0o-PA”, may not be found. However, the garbage
collector may access the link table 2310 with the physical
address “PA” and find a valid entry with the reverse mapping
information “PA-to-VY”. Therefore, a count of links to the
physical address “PA” 1s one, or nonzero. Accordingly, the
garbage collector does not deallocate the physical location
identified by the physical address “PA” and the problem
discussed above 1s avoided. In another embodiment, the data
corresponding to “PA” 1s stored in one location and the
mapping information “VX to PA” and “VY to PA” stored in
another location. In yet another embodiment, the data cor-
responding to “PA” 1s stored 1n one location and the map-
pings “VX to PA” and “VY to PA” are stored 1n a link table,
but not adjacent to one another. Instead, they may be stored
in a table with a structure similar to that described 1n FIG.
4, with the key for both mapping entries being the physical
address “PA” (or based at least in part on the “PA”). For
example, 1n such a table, “VX to PA” may be stored in Level
N-2 and “VY to PA” stored in Level N. A lookup of “PA”
in the table would then return both mappings.

In addition to the above, during garbage collection the
physical location identified by the physical address “PA”
may be updated with the mapping information “VY-to PA”
due to the valid entry in the link table 2310. Given such an
update, the entry in the link table 2310 may be deallocated.
If the table 1820 1s ever lost, the mapping information stored
in the physical locations in the storage devices 176a-176m

US RE49,148 E

51

and the reverse mapping information stored in the link table
2310 may be used to rebuild the table 1820. In one embodi-
ment, the deduplication table 2310, or a portion of the table
2310, may be organized in a same manner as that of the
mapping table 1820. Additionally, the link table 2310 may

also be organized in a same manner as the mapping table
1820.

As described above, when an 1nline deduplication opera-
tion determines a duplicate copy of data 1s stored in the
system, corresponding mapping information may be stored
in each of the table 1820 and the link table 2310 with no
write of the data to storage. These steps coordinate with
garbage collection that frees physical locations in the per-
sistent storage. The coordination may be relatively coarse
since freeing physical locations may be performed later and
batched separately from garbage collection migrating physi-
cal blocks within a corresponding one of the storage devices
176a-176m. Since migration may occur prior to deallocation
of physical locations during garbage collection, when a
physical block 1s moved a new physical location for data
may have stored mapping information updated with 1ts own
physical address and updates stored in the mapping table
1820. Both corresponding log areas and page header infor-
mation may be updated. Afterward, the table 1820 may be
updated with the new physical addresses. Following this, the
deduplication table 1910 and then the link table 2310 may be
updated with the new physical addresses. This update
removes links to the old physical addresses.

If the deduplication table 1910 or the link table 2310
contains old references, then the corresponding physical
locations may be cleaned once more before 1t 1s freed. The
deduplication table 1910 may not be as compressible as the
table 1820, since the fingerprint value and physical pointer
pairs may be random or more random than the entries 1n the
table 1820. Further, the deduplication table 1910 may be less
cacheable, since the fingerprint values may be random and
table 1910 1s indexed by fingerprint values. Regarding the
table 1820, entries corresponding to 1dle data, such as 1n idle
volumes, may be kept out of caches. Such factors result in
more read operations for a deduplication operation. There-
fore, the multiple fingerprint tables 1920-1940 are used and
allow one or more smaller tables to be cached. In one
embodiment, the tables corresponding to data components
with a higher probability being deduplicated may be
accessed during inline deduplication. The other tables may
be accessed during post-process deduplication, such as dur-
ing garbage collection.

FIG. 24 1llustrates one embodiment of a portion of a
garbage collection process that may, for example, be used 1n
a storage system that supports deduplication. In the example
shown, an entry 1n the link table 1s read (block 2402) and a
virtual address read from the entry (block 2404). Using at
least a portion of the virtual address, an access of the
mapping table 1s performed (block 2406) and a determina-
tion made as to whether there exists a valid address mapping,
for the virtual address (decision block 2408). If there 1s a
valid mapping, then a new link table entry 1s updated to
include the mapping (block [2406] 2410), and a determina-
tion made as to whether there are further virtual addresses to
check in the current link table entry (decision block [2408]
2412). If so, then the process continues with block [2410]
2406. It there 1s no valid mapping for the virtual address
(decision block 2408), the process continues with block
2412. Once there are no further virtual addresses to check
for the current link table entry (decision block 2412), then a
determination 1s made as to whether the new entry 1s empty
(1.e., no valid mappings have been found that correspond to

10

15

20

25

30

35

40

45

50

55

60

65

52

the current link table entry (decision block 2414). If the new
entry 1s empty, then the currently allocated block corre-
sponding to the current link table entry may be reclaimed
(block 2416). Otherwise, the new entry 1s written to the link
table (block 2420). If there are more link table entries to
examine (decision block 2418), then the process may pro-
ceed with block 2402. In addition to reclaiming storage, this
process may serve to consolidate link table mapping entries
into fewer entries.

Turning now to FIG. 25 and FIG. 26, further embodi-
ments and details regarding a garbage collection mechanism
are described. Generally speaking, the following describes a
garbage collection method whereby log entries and content
blocks are examined. Blocks which are identified as still
being i1n use are written to a new segment, while the
remaining blocks are reclaimed. For each block in the
segment, we see 1 there are any valid logical or virtual
addresses that reference it. This 1s done by reading the link
table and looking up each virtual address to see if 1t’s still a
valid reference. It so, the reference 1s added to a list of valid
references for this block. We also check the “direct” map-
ping entry that we get from the log entries 1n the segment
itself. Again, if this virtual address mapping is still valid, we
add 1t to the list of valid pointers for this block.

In addition to the above, the garbage collector can (op-
tionally) attempt to find more duplicates for this block
clsewhere 1n the system by referencing deduplication tables.
If any are found, the logical addresses for them are added to
the list of valid references. FIG. 25 depicts one embodiment
of a method for 1dentifying blocks which are still 1n use. In
the example shown, a list of currently valid blocks 1s
generated by examining link table entries and mapping table
entries. The upper block 2530 shown 1n FIG. 25 corresponds
to examination ol the link table and segment content
descriptor table, while the lower block 2540 corresponds to
examination of the mapping table.

In various embodiments, the segment content descriptor
table for a given segment 1includes mappings which refer to
blocks within the given segment. In various embodiments,
the segment content descriptor table 1s accurate at the time
the segment 1s written. However, after the segment 1s
written, writes to virtual addresses corresponding to blocks
that are stored 1n the segment may be received and the new
write data stored 1n a segment other than the given segment.
These new writes in turn cause new entries to be added to the
mapping table (e.g., table 340 or table 1820) for those virtual
addresses. These newer entries 1n the mapping table will
supercede the previous entries. While the mapping table 1s
updated to reflect these new writes, the segment content
descriptor table for the original segment 1s not updated.
Rather, the segment content descriptor table for the new
segment which stores the new write data reflects the new
mapping. Consequently, there will now exist multiple seg-
ment content descriptor tables which include a mapping for
a given virtual address. However, as will be discussed 1n
greater detail below, during garbage collection an access to
the mapping table may be used to identily that the mapping
in the original segment content descriptor table 1s out of
date.

In this example, garbage collection 1s performed by going
through segments 1n the log data which contains mapping
entries and content blocks (which may be compressed)
themselves. The mapping entries 1 the log may include
mapping table entries, deduplication table entries, and link
table entries. In the embodiment of FIG. 25, the method
includes building a sorted list of link table entries for a
segment. As shown, the method begins with an access to the

US RE49,148 E

53

link table (block 2500), link table entries are read from the
link table (block 2502), and added to a sorted list of entries
for the given segment (block 2504). IT more link table entries
remain (conditional block 2506), the process continues at
block 2502 by adding more entries to the sorted list. In
various embodiments, the link table i1s ordered by segment
number and then logical address, and content blocks within
a segment are ordered by logical address. Consequently, the
content blocks in the segment may be traversed in the same
order as they occur 1n the link table. In alternative embodi-
ments, the system may scan several segments and order the
list of entries by logical address.

When 1t 1s determined that there are no further link table
entries to be processed for the current segment (conditional
block 2506), examination of the content descriptor table 1s
initiated (block 2508). In various embodiments, processing
may include utilization of a control structure such as a
database type cursor for traversing records in the table. In
such an embodiment, the cursor may be positioned at the
start of the segment content descriptor table (block 2508).
Those skilled 1n the art will appreciate other methods for
traversing such content are possible, utilizing different types
of control structures. Such alternative methods for traversal
are contemplated herein.

Subsequent to positioning the cursor at the beginning of
he content descriptor table, the next segment content
escriptor entry 1s read (block 2510), which 1s then added to
he sorted list of entries for the segment (block 2512). If
here are more segment content descriptor entries (condi-
tional block 2514), then the next entry 1s read (block 2510).
If there are no further segment content descriptor entries
(conditional block 2514), the sorted list to be used 1n further
processing may be deemed complete, and processing con-
tinues 1 lower block 2540.

While the steps 1 block 23530 are shown as operating on
a single segment, alternative embodiments may scan mul-
tiple segments using similar steps, and combine the results
into a single sorted list to be processed 1 lower block 2540.

Lower block 2540 begins by examining the sorted list
created by upper block [2540] 2430. In the embodiment
shown, the first entry in the sorted list 1s accessed (block
2516). A virtual address included 1n the list entry 1s then used
as part ol a query to the mapping table (e.g., mapping table
1820 of FIG. 18). If a valid mapping 1s 1dentified for the
virtual address in the mapping table (conditional block
2520) and the mapping corresponds to the data 1n the current
segment, then the corresponding block 1s determined to be
in use and the entry 1s added to a list of entries which identily
blocks to be copied to a new segment (block 2524) and
processing continues at block 2522. I there 1s no match
found 1n the mapping table (conditional block 2520), then
the entry 1s not added to the list of blocks to be copied, and
processing continues at block 2522. If there are more entries
to be processed 1n the list (conditional block 2522), then the
next virtual address 1s used 1n a query to the mapping table
(block 2520). Once there are no further entries to process
(conditional block 2522), the list of current blocks which
will be copied to a new segment 1s complete.

Having identified those blocks which remain 1n use, the
reclamation process may proceed as depicted 1n FIG. 26. In
the embodiment of FIG. 26, an upper block 2630 and lower
block 2640 are shown. Generally speaking, the upper block
2630 depicts the process of writing current blocks to a new
segment. In various embodiments, the upper block 2630
may be performed without the lower block 2640. Lower
block 2640 illustrates an embodiment in which deduplica-
tion may be performed as part of the garbage collection

10

15

20

25

30

35

40

45

50

55

60

65

54

process. As will be discussed below, 1n such an embodiment
current blocks are first deduplicated betfore being written to
a new segment.

In block 2600 of FIG. 26, a cursor 1s set to a first entry 1n
the list created as described above 1n FIG. 25 and the first

entry read (block 2602). As discussed above, the list

includes an 1dentification of blocks which are 1n use and are
to be written to a new segment. Further, as noted above,
vartous embodiments may utilize other control structures
than a database type cursor. In an embodiment in which
multiple segments were scanned 1n block 2530, the system
may maintain multiple cursors (e.g., one cursor per seg-
ment). In an embodiment 1 which deduplication i1s not
performed as part of the garbage collection process, pro-
cessing may proceed (as shown by the dashed line) from
block 2602 to block 2612 where the identified block 1s
copied to the new data segment (block 2612) and a new
mapping table entry created (block 2614). However, in

embodiments 1n which deduplication 1s performed, process-
ing proceeds from block 2602 to block 2604.

In conditional block 2604, the currently 1identified block 1s
deduplicated. Deduplication may be performed as described
above. I no duplicates are identified, then processing may
proceed with block 2612 where the data 1s copied to the new
data segment. However, if 1t determined that the current
block can be deduplicated, then a further determination may
be made (conditional block 2606) as to whether the corre-
sponding data has already been written (1.e., this 1s not the
first instance of the data seen during this process 2640. If the
data has not yet been written, then the data 1s written to a
new data segment. In various embodiment, data which 1s
deduplicated as part of the garbage collection process may
be written to a different segment than data which 1s not
deduplicated. However, 1t 1s noted that such segregation 1s
not required. Subsequent to writing the data to a new
segment (block 2608), a new link table entry 1s created to
map the data’s new location to a virtual address (block
2610), and the mapping table updated to include a corre-
sponding virtual to physical address mapping entry (block
2614). If in conditional block 2606 it 1s determined that
deduplicated data has already been written to a new data
segment, then processing bypasses block 2608 and proceeds
with the new link table entry creation (block 2610). New
entries written to the link table and mapping table may
supercede existing entries 1n those tables.

Subsequent to updating the mapping table (block 2614),
a determination 1s made as to whether this 1s the last entry
in the list of blocks to be copied to a new segment (block
2616), 11 so then segments built as part of the process(es)
2630 and 2640 are written to storage (block 2620). In an
alternative embodiment, an output segment 1s queued to be
written as soon as 1t 1s full, rather than waiting until all of the
entries 1n the list are processed. It there are further entries to

process, then the cursor 1s advanced to the next entry (block
2618), and the next entry read (block 2602). Blocks 1denti-

fied m FIG. 25 and FIG. 26 as not being in use may be
reclaimed. The method of FIG. 25 and FIG. 26 may be
repeated for all of the blocks 1n the segment(s) being garbage
collected. Alternatively, garbage collection may combine
multiple segments 1n block 2530 and process the combined
result 1n blocks 2540, 2630, and 2640.

In various embodiments, old segments (the ones that were
garbage collected) are resubmitted to a queue for garbage
collection. They aren’t necessarily marked as being mnvalid
at this time. Rather, a segment may be marked as mvalid
when the review of the segment reveals no valid informa-

US RE49,148 E

3

tion. Under normal circumstances, this may happen when an
already-cleaned segment 1s submitted to a cleaner.

It 1s noted that 1f garbage collection does not run to
completion (e.g., crashes 1n the midst of a garbage collection
process), garbage collection may be run again on a partially-
collected segment. Blocks from an old segment that were
written out to a new segment will not be garbage collected
again, since they are no longer valid i the old segment.
Blocks that were not written out, but should have been, will
be garbage collected as normal. Accordingly, a separate
process 1s not needed to determine 11 there has been an error
in garbage collection, and a “roll back™ of garbage collection
will not be needed. Instead, the same process for garbage
collection may be run on segments that may have few valid
blocks, and a segment marked as invalid when an entire
census finds no currently valid information in the segment.

It 1s also noted that in various embodiments multiple
segments may be garbage collected concurrently. Such an
approach may permit blocks from multiple segments to be
sorted into fewer new segments, and possibly create mul-
tiple “new” segments i1n order to group related blocks
together 1 different segments. “Related” blocks could be,
for example, related 1n that they compress well when com-
pressed together or they are likely to be accessed together.
As noted above, deduplicated blocks may be placed 1n a
separate segment because such blocks will typically live
longer than blocks that aren’t referenced multiple times.

Still further, garbage collection may be used for other
processes at the same time as eliminating unreferenced data
blocks. For example, it may be used to change segment
geometry by creating larger or smaller segments, segments
spread across a different number of drives, or otherwise.
This may be accomplished by having the destination seg-
ment be a different “shape” from the source segment(s).
Garbage collection may also be used to rebuild segments
that have been damaged by media failure. For example,
when an attempt to read a damaged block fails, the block
may be rebuilt using redundancy in the original segment.

In various embodiments, garbage collection may be opti-
mized 1n a variety of ways. First, selection of a segment to
submit for garbage collection may be optimized. In one
embodiment, it 1s not necessary to scan an entire segment to
determine 11 it 1s a good candidate. Rather, the process may
use the log entries at the front of the segment and see what
fraction are still valid. An estimate of how many dedupli-
cated blocks are 1in the segment can be made by traversing
a small range of the link table. In both cases, this may
provide an estimate of how many blocks may be recovered
if garbage collection 1s run. It 1s possible to remember the
result of multiple runs of this kind of scan and project how
tull a segment 1s likely to be at some future time.

It 1s noted that the above-described embodiments may
comprise soiftware. In such an embodiment, the program
instructions that implement the methods and/or mechanisms
may be conveyed or stored on a computer readable medium.
Numerous types of media which are configured to store
program 1nstructions are available and include hard disks,
floppy disks, CD-ROM, DVD, flash memory, Program-
mable ROMs (PROM), random access memory (RAM), and
various other forms of volatile or non-volatile storage.

In various embodiments, one or more portions of the
methods and mechanisms described herein may form part of
a cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services
according to one or more various models. Such models may
include Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). In IaaS,

10

15

20

25

30

35

40

45

50

55

60

65

56

computer infrastructure 1s delivered as a service. In such a
case, the computing equipment i1s generally owned and
operated by the service provider. In the PaaS model, sofit-
ware tools and underlying equipment used by developers to
develop software solutions may be provided as a service and
hosted by the service provider. SaaS typically includes a
service provider licensing soitware as a service on demand.
The service provider may host the software, or may deploy
the software to a customer for a given period of time.
Numerous combinations of the above models are possible
and are contemplated.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the
above disclosure 1s fully appreciated. It 1s intended that the
following claims be interpreted to embrace all such varia-
tions and modifications.

What 1s claimed 1s:

1. A [computing] storage system comprising:

[a data storage medium] one or more storage devices:

[a data storage controller] the storage system configured

to:
determine that a current segment within the [data
storage medium] one or more storage devices is in
use by identifying a valid mapping of a location 1n
the current segment to one or more virtual addresses,
including:
creating a sorted list of potentially valid entries from
a first table comprising entrvies mapping an
address of a location in the one or more storage
devices to one or more virtual addresses; and
creating a list of valid entries using the sorted list of
potentially valid entries and a second table com-
prising entries mapping a virtual address to a
location in the one ov more storage devices;
copy data from the location in the current segment to a
new storage location in the [data storage medium]
one or more storage devices; and
reclaim the location 1n the current segment.

2. The storage system as recited in claim 1, wherein [the
data storage controller is further configured to] identifving
the valid mapping of a location in the curvent segment to one
or more virtual addvesses further comprises:

identifying one or more entries in [a] the first table

[comprising a plurality of entries, wherein each of the
one or more entries of the first table comprises a reverse
mapping of an address of a location in the data storage
medium to one or more virtual addresses; determine
that the first table includes a valid mapping for a virtual
address]; and

[determine] determining the mapping is valid responsive

to determining the first table includes at least one valid
mapping for a virtual address.

3. The storage system as recited in claim 1, wherein the
[data storage controller] storage system is further configured
to maintain [a] ke second table [comprising a plurality of
entries, wherein each of the plurality of entries of the second
table maps a virtual address to a location in the data storage
medium] using multi-level shared tables.

4. The storage system as recited 1n claim 1, wherein prior
to copying the data from the location to the new location,
[the method further comprises deduplicating] the data is
deduplicated.

5. The storage system as recited in claim 4, wherein the
[data storage controller] storage system is configured to copy

US RE49,148 E

S7

the data from the location to the new location 1n further
response to determining the data has not yet been copied to
the new location.

6. The storage system as recited in claim 1, wherein the
first table 1s organized as a plurality of time ordered levels, s
cach level comprising a plurality of entries.

7. A method for use in a [computing] storage system that
includes one or more storage devices, the method compris-
ng:

determining that a current segment within [a data storage

medium] the one or more storage devices is in use by

identifying a valid mapping of a location 1n the current

segment to one or more virtual addresses, including:

creating a sorted list of potentially valid entries from a
first table comprising entries mapping an address of
a location in the one or more storage devices to one 1°
or more virtual addresses; and

creating a list of valid entries using the sorted list of
potentially valid entries and a second table compris-
ing entries mapping a virtual address to a location in
the one or more storage devices;, 20

copying data from the location 1n the current segment to

a new storage location in the [data storage medium] ore

or more storage devices, and

reclaiming the location in the current segment.

8. The method as recited in claim 7, [further comprising] -
wherein identifying the valid mapping of a location in the
curvent segment to one or more virtual addresses further
comprises:

identifying one or more entries in [a] the first table

[comprising a plurality of entries, wherein each of the
one or more entries of the first table comprises a reverse
mapping ol an address of a location in the data storage
medium to one or more virtual addresses;

determining that the first table includes a valid mapping

for a virtual address]; and 35
determining the mapping 1s valid responsive to determin-

ing the first table includes at least one valid mapping for

a virtual address.

9. The method as recited 1n claim 8, further comprising
maintaining [a] tke second table [comprising a plurality of
entries, wherein each of the plurality of entries of the second
table maps a virtual address to a location 1n the data storage
medium] using multi-level sharved tables.

10. The method as recited 1n claim 8, wherein the first
table 1s organized as a plurality of time ordered levels, each 5
level comprising a plurality of entries.

11. The method as recited 1n claim 7, wherein prior to
copying the data from the location to the new location, the
method further comprises deduplicating the data.

12. The method as recited in claim 11, further comprising s,
copying the data from the location to the new location 1n
turther response to determining the data has not yet been
copied to the new location.

10

58

13. A non-transitory computer readable storage medium
[comprising] with program instructions stored thereon,
wherein said program instructions are executable to:

determine that a current segment within [a data storage

medium] onre or more storage devices is in use by

identifying a valid mapping of a location 1n the current

segment to one or more virtual addresses, including:

creating a sorted list of potentially valid entries from a
fivst table comprising entries mapping an address of
a location in the one or more storage devices to one
or more virtual addresses; and

creating a list of valid entries using the sorted list of
potentially valid entries and a second table compris-
ing entries mapping a virtual address to a location in
the one or more storage devices;,

copy data from the location 1n the current segment to a

new storage location in the [data storage medium] ore
or more storage devices, and

reclaim the location 1n the current segment.

14. The non-transitory computer readable storage medium
as recited in claim 13, wherein [said program instructions
are further executable to] identifving the valid mapping of a
location in the current segment to one or more virtual
addrvesses further comprises:

identifying one or more entries in [a] tke first table

[comprising a plurality of entries, wherein each of the
one or more entries of the first table comprises a reverse
mapping ol an address of a location 1n the data storage
medium to one or more virtual addresses; determine
that the first table includes a valid mapping for a virtual
address]; and

[determine] determining the mapping is valid responsive

to determining the first table includes at least one valid
mapping for a virtual address.

15. The non-transitory computer readable storage medium
as recited in claim 14, wherein said program instructions are
further executable to maintain [a] tke second table [com-
prising a plurality of entries, wherein each of the plurality of
entries of the second table maps a virtual address to a
location in the data storage medium] wusing multi-level
shared tables.

16. The non-transitory computer readable storage medium
as recited in claim [14] /3, wherein said program instruc-
tions are further executable to organize the first table as a
plurality of time ordered levels, each level comprising a
plurality of entries.

17. The non-transitory computer readable storage medium
as recited 1n claim 13, wherein prior to copying the data from
the location to the new location, the program instructions are
further executable to deduplicate the data.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

