USOORE49042E
(19) United States
12y Reissued Patent (10) Patent Number: US RE49,042 E
Clare et al. 45) Date of Reissued Patent: Apr. 19, 2022
(54) DATA REPLICATION BETWEEN (38) Field of Classification Search
DATABASES WITH HETEROGENIOUS DATA CPC .. GO6F 3/065; GO6F 11/2094; GO6F 11/2097:

GO6F 16/277; GO6F 2201/80; GO6F
2201/82; GO6F 17/30575; GO6F 11/1451
See application file for complete search history.

PLATFORMS

(71) Applicant: PAYPAL, INC., San Jose, CA (US)

(56) References Cited
(72) Inventors: Steve Clare, San Jose, CA (US); Liana

Sanoyan, Sunnyvale, CA (US); Jian U.S. PATENT DOCUMENTS
Huang, San Jose, CA (US); Suresh

_ 7,870,476 B2* 1/2011 Dorwart ................ GO6F 17/246
Appavu, San Jose, CA (US); Sandip 715/200
Das, Sunnyvale, CA (US); Paul 7,885,938 Bl* 2/2011 Greene ... GOGF 11/1469
Kazakov, San Jose, CA (US); 707/674
Prabhagaran Subramaniam, Chennai 8,433,867 B2* 4/2013 Eastman ............. GO6F 11/1451
_ . " . 707/646
(IN); Mutharasan Nainar, Chennai 8,442,950 B2*  5/2013 D’SOUZA wevvrveen..... GOGF 16/22
(IN); Chirag Todarka, San Jose, CA T07/665
(US) 8,533,194 B1* 9/2013 Ravid ....ccoeee...... GO6N 99/005
707/736
(73) Assignee: PayPal, Inc., San Jose, CA (US) 8,700,567 B2* 4/2014 Watanabe ............. GO6F 17/302
707/609
: 9,471,607 B2* 10/2016 Abed .........ceeennnn. GO6F 16/21
(21) Appl. No.: 17/083,137 9,606,877 B2* 3/2017 McHugh ............ GOGF 11/1471
_ 10,552,451 B2* 2/2020 Brodt .................... GO6F 16/252
(22) Filed: Oct. 28, 2020 11,036,752 B2*  6/2021 Hyde ....corvonn..... GOG6F 16/2365
2007/0156793 Al* 7/2007 D’Souza ............ GO6F 11/1458
Related U.S. Patent Documents 707/999 204
Reissue of: 2012/0221532 Al* 8/2012 Watanabe ......... GO6F 17/30165
(64) Patent No.: 10,078,556 | 707/687
Issued: Sep. 18, 2018 (Continued)
Appl. No.: 14/841,154 Primary Examiner — Rachna S Desai
Filed: Aug. 31, 2015 (74) Attorney, Agent, or Firm — Haynes and Boone, LLP
(51) Inmt. CL (57) ABSTRACT
Goot 17/00 (2019.01) A system and method for data replication for databases using
Gool’ 11/14 (2006.01) an intermediary server, the imntermediary server choosing the
GO6F 3/06 (2006.01) order 1n which databases are replicated, the utilities used for
GO6F 16727 (2019.01) cach of the steps in the data replication process, the timing
) US. Cl of the replication, and/or the timing each step of the data
(52) e replication process 1s performed.
CPC .......... GO6I' 11/1451 (2013.01); GO6F 3/065
(2013.01); GO6F 16/27 (2019.01) 20 Claims, 7 Drawing Sheets

400

V™

410
Maintain Incremental Cache On Source

Database
L

410 I

Determing A Rout For Data Replication

e —

430 Cause source database to create
incrementat

440

Extract Incremental Cache

450
Store Extracted Cache On Local Cache

45ﬂTr:arlsfr:lrm Extracted Cache Into

Canonical Data Fermat

470
Load Local Cache to Target Database

480
Lipdate Target Database Using Target

Database Cache

490 Validate




US RE49,042 E
Page 2

(56)

2012/0239612 Al*
2013/0159249 Al*
2014/0188797 Al*

2016/0342485 Al* 11/2016 McHugh .............

2018/0157559 Al* 6/2018 Nallathambi

References Cited

U.S. PATENT DOCUM

7/2014 Araki ...

* cited by examiner

9/2012 George .................

6/2013 Dewall ...............

iiiiiiiiii

ttttttttttt

GO6F 16/254

707/602

GOOF 11/1662

707/610

GOO6F 17/30575

707/624

GOO6F 11/1471
GOOF 16/28



US RE49,042 E

Sheet 1 of 7

Apr. 19, 2022

U.S. Patent

U-X¢T  U-perTu-gel u-Z2el u-1¢l

A PN

X1l

Vil

L OI4

{Xel

0c1

el (11

CPeld-Eel Z-ZET Z-TET

Lk T T

111

m-J...i-I.L- ¥

SB2IA( U3

e L TR TR

ian

00T



US RE49,042 E

Sheet 2 of 7

Apr. 19, 2022

U.S. Patent

 90C 30V44ILNI

AJOMLIN OL

AHdOMLIN

1 20¢

L1C

IAEA ASIA

¢ Dl

ST¢ MNITSNOILLVOINNININGD

5S4

1917

A9VHOLS

| (A N4

 YTC

d0553004dd

AdOWAEIN

eld

|soz

PR

TOYLNOD dOSHNI

O/l olany

1Nd1N0O/1NdNI

1ic

AV1dsid

00¢



US RE49,042 E

Sheet 3 of 7

Apr. 19, 2022

U.S. Patent

& Ol

;
14

e
m | .,..!,....... S . - - .\....1\. N ™
m .,.rf, N o7 d PN
Nmm " ,..,..,/ x._.......‘. \..\\ N._”.m : AR Y
\ “ P / | LI
: N \ - 7 b
N\ N s M.\ b
_ N ™ \ y __ - *
..._........r 5\ .\.g\ | i
/ /
YR / Mjrz aTve
\ _,,,, \x / I/
/
aspe NS e m YA
2 \ /
BEyE \ ﬂ m \,/ Zhe _ /7
\ y /7
ePe R, / ehé | %\
\ 3 m Tve—"/4
v iV | /4
Vi g | m £
‘. | |
Wi
: | ! “
| OVt
-l -
| .
. m m
| | ]
| |
m TZE | He
1€ | | e !
S T L. i 01¢
3 w 0zE o I 1

00%



U.S. Patent Apr. 19, 2022 Sheet 4 of 7 US RE49,042 E

400

410

Maintain Incremental Cache On Source
Database

410

Determine A Rout For Data Replication

430 Cause source database to create
incremental .

440

Extract Incremental Cache

450
Store Extracted Cache On Local Cache

460
Transform Extracted Cache Into

Canonical Data Format

470
Load Local Cache to Target Database

480
Update Target Database Using Target

Database Cache

450 Validate

FIG. 4



U.S. Patent Apr. 19, 2022 Sheet 5 of 7 US RE49,042 E

500

510

Determine Source Database and Target
Databases

Determine Server Order

Determine Utility Usage Order

540
Implement Server Order and Utility

Usage Order

FIG. 5



U.S. Patent Apr. 19, 2022 Sheet 6 of 7 US RE49,042 E

600

610

Measure Resources on Source and
Target Database

620

Determine if Resource Usage Is Below A
Threshold

630

Below?

640 o
Conduct Replication Process

FIG. 6



U.S. Patent Apr. 19, 2022 Sheet 7 of 7 US RE49,042 E

700

Maintain Log

720
Determine Characteristics Of A New

Data Replication

730

Filter Log For One Or More
Characterstics

740
Determine Data Replication Rout Based

Filtered Results

FIG. 7



US RE49,042 E

1

DATA REPLICATION BETWEEN
DATABASES WITH HETEROGENIOUS DATA
PLATFORMS

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

BACKGROUND

Field of the Invention

The present invention generally relates to replicating data
between databases using different database platforms and
more specifically using an intermediary server to manage
data replication.

Related Art

Entities that deal with large amounts of data often main-
tain several databases using different database platiorms.
Because different database platforms offer different advan-
tages with regards to costs, use of resources, toolsets, and
other differences, it 1s beneficial to maintain redundant data
over multiple databases with differing platforms. For
example, an entity may use one database platform {for
production, another database platform for a certain func-
tionality such as a full text search, and yet another database
platform for data analytics. One or more of the databases
will often be updated with new information before one or
more other databases. For example, the production database
will often be updated 1n real time with new mnformation. To
maintain the redundant data, the other databases are updated
with the new data that the production database receives.
Updates can be done through data replication. The up-to-
date databases, such as the production database, can be used
to replicate the new data on other databases.

However, when replicating data over databases with dii-
ferent data platforms, replicating data from one database to
another can be resource intensive and costly. Therefore a
system and method that manages the data replication based
on resource availability and cost efliciency would be ben-
eficial.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 1s a block diagram of an exemplary networked
system suitable for implementing one or more processes for
replicating data between database servers using diflerent
database platforms.

FIG. 2 1s a block diagram of an exemplary computer
system suitable for implementing one or more embodiments.

FIG. 3 1s a simplified block diagram illustrating an
exemplary system conducting a data replication managed by
an mtermediary server.

FI1G. 4 1s a simplified diagram of an exemplary method for
replicating data between databases with heterogeneous data
platforms according to some embodiments

FIG. § 1s a simplified diagram 1llustrating an exemplary
rule based method for determining a replication route.

FIG. 6 1s a simplified diagram of an exemplary method for
dynamically determiming when to begin one or more pro-
cesses for replication.

FI1G. 7 1s a simplified diagram of an exemplary method for
selecting one or more utilities for data replication according
to some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

Embodiments of the present disclosure and their advan-
tages are best understood by referring to the detailed
description that follows. It should be appreciated that like
reference numerals are used to identily like elements illus-
trated 1n one or more of the figures, wherein showings

therein are for purposes of illustrating embodiments of the
present disclosure and not for purposes of limiting the same.

DETAILED DESCRIPTION

In the following description, specific details are set forth
describing some embodiments consistent with the present
disclosure. It will be apparent, however, to one skilled 1n the
art that some embodiments may be practiced without some
or all of these specific details. The specific embodiments
disclosed herein are meant to be 1llustrative but not limiting.
One skilled 1n the art may realize other elements that,
although not specifically described here, are within the
scope and the spirit of this disclosure. In addition, to avoid
unnecessary repetition, one or more features shown and
described i1n association with one embodiment may be
incorporated into other embodiments unless specifically
described otherwise or 1f the one or more features would
make an embodiment non-functional.

In some embodiments, a system and method for homog-
emzing, updating, and/or replicating data over one or more
different databases 1s disclosed. Because different database
platiorms are better suited for certain jobs and have different
price points, data tables are often stored redundantly in
different databases with various types of database platforms.
For example 1t may be cheaper to do certain jobs on a
Hadoop® platform than on an Oracle® or Teradata® data-
base. Additionally some database platforms or other plat-
forms, such as Hadoop®, have capabilities that other data-
bases platforms do not, such as the ability to perform map
reduce. Thus, 1t may be beneficial to have data held redun-
dantly on multiple databases with different platforms and/or
over different file system platforms.

In some embodiments, to ensure the information on a
source database 1s redundantly held by one or more data-
bases, changes to one database may be replicated on the
other databases. The database with the data being replicated
may sometimes be referred to as the source database and the
database receiving the replicated data may be referred to as
the target database. In some embodiments, a source database
may maintain or create an incremental or the delta (change)
to the database. The incremental may be copies of all the
changes and new entries that are made to one or more data
tables held on or stored 1n a database. For example, there
may be an Oracle® database being updated with the new
data entries and the delta or incremental may be a copy of
the changes. There may be other older data entries in the
Oracle® database that were not changed, and this informa-
tion may not be part of the incremental. In some embodi-
ments, the incremental may be maintained on a non-transi-
tory computer readable medium. In some embodiments, the
non-transitory computer readable medium may be a cache of
the source database. In some embodiments, the incremental
may be created and/or stored in response to 1nstructions
from an intermediary server that may manage the replication
ol data between databases.

In some embodiments, the intermediary server may
extract the incremental from the source database and load 1t
on the target database. In some embodiments, the interme-
diary server may store the extracted incremental on a
memory of the server and then load the extracted incremen-
tal onto one or more target databases from the memory of the




US RE49,042 E

3

intermediary server. In some embodiments, when the incre-
mental 1s extracted from the source database, the interme-
diary server may transiorm the data into another data format.
In some embodiments, the memory that the incremental 1s
held 1n may be a cache of the intermediary server. In some
embodiments, when loading the incremental onto the target
database, the incremental may be loaded 1n a cache of the
target database.

In some embodiments, the target database may apply the
incremental to one or more data tables in the target database
such that the data in the target database matches the source
database. In some embodiments, the source database may
have a data table where some of the information 1s old and
the some of the information 1s new. The incremental may be
characterized by the new information in the source database.
The target database may have a redundant copy of the old
information 1n the source database. When the incremental 1s
applied to the target database, the target database may be
updated to have the same old and new information as the
source database. In some embodiments, the target database
may apply the incremental upon mstruction from the inter-
mediary server.

In some embodiments, there may be several utilities for
cach of the data replication processes. For example, each of
the following processes may each have several utilities
capable of performing each process: creating/maintaining an
incremental on the source database, extracting the incremen-
tal from the source database, loading the incremental into a
target database, and applying the incremental to the data
tables of the target database.

In some embodiments, the intermediary server may deter-
mine which utility 1s used for each of the processes and
when they are used. In some embodiments, the intermediary
server may determine the order 1n which target databases are
updated and which databases to use as source databases. For
example, a target database, after having an incremental
applied to 1t, may be used as a source database for another
target database.

In some embodiments, the intermediary server may
schedule data replication between databases based on the
availability of resources in one or more databases. The
intermediary server may monitor resources such as CPU
usage, number ol processes being run on one or more
databases, cache availability, utility availability, memory
arability, and/or the like. In some embodiments, the inter-
mediary server may instruct the source or target database to
conduct one or more of the processes for data replication
when one or more of the monitored resources meet one or
more criteria. In some embodiments, the criteria may be
predetermined.

In some embodiments, the technique and/or utilities used
for each of the data replication processes may be based on
predetermined rules provided to and/or programmed 1nto the
intermediary server. For example, there may be five utilities
capable of the extraction process. The rules may dictate
which utility to attempt first and which utility to attempt next
in the event a utility fails or 1s unavailable. This may
similarly apply for the other processes used for data repli-
cation such as the processes for maintaining/creating the
incremental, loading the incremental, and applying the
incremental.

In some embodiments, the intermediary server may
choose the utilities and data replication order for server 1n
the most etlicient method or most eflicient method available.

In some embodiments, the intermediary server may
attempt to optimize the data replication for cost, time,
resource usage, and/or the like. The intermediary server may

10

15

20

25

30

35

40

45

50

55

60

65

4

optimize for cost through determining the most cost eflicient
order 1n which replication 1s performed on target servers,
determining which target servers to use as source servers
alter data replication 1s performed, determining which utili-
ties are used for each of the processes of data replication, and
so forth.

In some embodiments, the intermediary server may
receive resource readings from the source and target servers
and use the resource readings to determine an optimum time
and/or choice of utilities to use for data replication.

In some embodiments, the intermediary may maintain a
log for each data replication performed. The log may main-
tain information regarding the data replication. The infor-
mation may include characteristics of the incremental data
(e.g. number of entries, file format, size, and/or the like), the
databases participating in the data replication, the utilities
used and/or attempted for the data replication, failures of any
utility, the run time of the utilities, amount of resources from
the database each utility used, and/or the like. In some
embodiments, the mtermediary server may use the log to
continue to optimize the data replication process by identi-
tying which utilities failed the least, ran the fastest, used the
least resources, and/or the like. The intermediary server may
use the characteristics of an incremental for replication to
filter the log file. In this manner, the intermediary server may
optimize data replication using a dataset from the log file
that 1s more likely to be relevant to the incremental being
replicated.

In some embodiments, the intermediary server may be
configured to provide an intuitive graphical user interface
(GUI) for which a user may interact with to instruct the
intermediary server to schedule a replication and/or perform
and adhoc replication instance. In some examples, the GUI
may provide the capability of dragging and dropping 1cons
to instruct the intermediary server to conduct a data repli-
cation. The drag and drop icons may represent databases.
The dragged and dropped 1con may be the source database
and the 1con being dropped on may be the target database.

In some embodiments, a system includes an imntermediary
server configured to conduct a data replication. The server
may perform the steps of determining the available extrac-
tion utilities for extracting an incremental from a source
database; determining an optimal extraction utility from the
available extraction utilities; using the optimal extraction
utility to extract the incremental onto the intermediary
server; determining the available loading utilities for a target
database server; determining an optimal loading utility from
the available loading utilities; loading the incremental from
the mtermediary server to the target database; and causing
t
C

"y

e target database to update a data table stored 1n the target
atabase with the incremental.

In some embodiments, a computer implemented method
of data replication includes the steps of selecting a first
extraction utility from a plurality of extraction utilities based
on a data format used on a source database; using the first
extraction utility to extract the incremental onto an interme-
diary server; selecting a first loading utility from a plurality
of loading utilities based on a data format used on a target
database; using the first loading utility to load the incremen-
tal from the mtermediary server to the target database; and
causing the target database to update a data table stored 1n
the target database with the incremental.

In some embodiments, a system includes a source data-
base storing a first data table having old information and new
information, the source database configured to create an
incremental based on the new imnformation. The system may
also include a target database storing a second data table




US RE49,042 E

S

having the old information. The target database may be
configured to update the second data table with the incre-
mental when the mcremental 1s loaded 1nto the target data-
base such that the second data table contains both the old
information and new information. The system may also
include an intermediary server with hardware memory and
a processor. The processor may be configured to extract the
incremental from the source database onto the hardware
memory and load the incremental from the hardware
memory into a target database.

While the various examples disclosed herein focus on
particular aspects regarding data replication using an inter-
mediary server, 1t will be understood that the various inven-
tive principles and embodiments disclosed herein can be
applied to other types of arrangements as well. For example,
there may be multiple source databases with different incre-
mental data but used to update a target database.

Reference throughout the specification to “‘various
embodiments,” “some embodiments,” “one embodiment,”
“an embodiment,” “various examples,” “one example,” “an
example,” or “some examples” means that a particular
feature, structure, or characteristic described 1n connection
with the embodiment or example 1s included 1n at least one
embodiment. Thus, appearances of these are not necessarily
all referring to the same embodiment. Furthermore, the
particular features, structures or characteristics may be com-
bined 1n any suitable manner 1n one or more embodiments.

According to an embodiment, a computer program prod-
uct can comprise¢ a non-transitory machine readable
medium. The non-transitory machine readable medium may
have computer readable and executable code for instructing
one or more processors to perform any of the methods
disclosed herein.

Beginning with FIG. 1, a block diagram 1s shown of a
networked system 100 suitable for implementing one or
more processes for replicating data between database servers
using different database platforms. System 100 may com-
prise or implement a plurality of servers and/or software
components that operate to perform various operations.
Exemplary servers may include, for example, stand-alone
and enterprise-class servers operating a server OS such as a
MICROSOFT® OS, a UNIX® OS, a LINUX® OS,
Solaris® OS, Oracle Linux® OS or other suitable server-
based OS. It can be appreciated that the servers illustrated in
FIG. 1 may be deployed 1in other ways and that the opera-
tions performed and/or the services provided by such servers
may be combined or separated for a given implementation
and may be performed by a greater number or fewer number
of servers. One or more servers may be operated and/or
maintained by the same or different entities.

In some embodiments, system 100 may include servers
110, which may be composed of one or more servers, such
as servers 111, 112, 113, and 114-11x. Server 110 may be a
data replication server that serves as an intermediary
between databases during replication. System 100 may
include database 130-1 which may be made of one or more
servers, such as servers 131-1, 132-1, 133-1, and 134-1-
13x-1. System 100 may also include additional databases
130-2 through 130-n which may each be made of one or
more servers, such as servers 131-2-13x-2 and 131-n-13x-n.
As shown i FIG. 1, x represents the last server and n
represents the last database of system 100, indicating the
expandability of system 100.

In some embodiments, each of the databases 130-1-130-n
may implement one or more database platforms and/or {ile
system platforms including, but not limited to, MySQL,
NoSQL, Oracle, Teradata, Hadoop, and/or other platforms.

bl S 4 4

10

15

20

25

30

35

40

45

50

55

60

65

6

For example, database 130-1 may be an Oracle database,
database 130-2 may use the Hadoop platiorm, and 130-3
(not shown) may be a Teradata database. System 100 may
operate with more or less than the number of servers and
databases shown 1n FIG. 1. In some embodiments, database
130-2 instead of being databases, may be one or more
computing devices implementing a distributed file system,
such as Hadoop.

In some embodiments, system 100 may include one or
more client devices 140 that may be used to communicate
with and/or provide instructions to one or more devices in
system 100. Client devices 140 may be implemented using,
any appropriate hardware and software. For example, 1n one
embodiment, client devices 140 may be implemented as a
personal computer (PC), a smart phone, personal digital
assistant (PDA), laptop computer, smart watch, and/or other
types ol computing devices capable of transmitting, receiv-
ing, and/or creating machine-readable data, such as an
1IPhone™ from Apple™. In some embodiments, one or more
of the servers within system 100 may double as one or more
of client devices 140.

Client devices 140 may include one or more applications
which may be used, for remotely accessing and communi-
cating with one or more of the servers of system 100. Client
devices 140 may provide a convenient interface to permit a
user to interact with client devices 140. Client devices 140
may further include other applications as may be desired 1n
particular embodiments to provide desired features to client
devices 140. For example, other applications may include
security applications for implementing client-side security
features, programmatic client applications for interfacing
with appropriate APIs over a network, such as network 120
discussed 1n more detail below, or other types of applica-
tions.

In some embodiments, client devices 140 may include
communication applications with associated interfaces that
enable client devices 140 to communicate within system
100.

Client devices 140 may include screens capable of dis-
playing information and/or content. Some examples of dis-
plays and screens which one or more of client devices 140
may include, but are not limited to, mobile device displays,
monitors, e-1nk displays, projection displays, or any other
suitable display technologies.

Client devices 140 may 1nclude one or more input/output
devices (e.g., a keypad, a keyboard, a touch sensitive com-
ponent, a microphone, a camera, gyroscope, accelerometer,
and the like). In some examples, the display of client devices
140 may be a touch screen that doubles as one of the
input/output devices. User devices 140 may monitor user
input on the touch screen, on any other touch-sensitive
device (e.g., a touchpad on a laptop), and/or other 1put
components (e.g., an accelerometer) and may recognize user
input for association with user instructions.

As shown, client devices 140, severs 110, and databases
130-1-130-n may be interconnected by one or more net-
works 120. Networks 120 may be implemented as a single
network or a combination of multiple networks. For
example, 1n various embodiments, network 120 may include
the Internet or one or more intranets, landline networks,
wireless networks, other appropriate types of networks and
a combination thereof. In some embodiments, networks 120
may include devices that serve as a middle tier between one
or more of client devices 120 and the servers of system 100.
In some embodiments, one or more of the servers of system
100 may serve as the middle tier. The middle tier may be
used to prevent direct internet traffic and/or direct network



US RE49,042 E

7

connections between on or more client device 140 and one
or more server of system 100.

FIG. 2 1s a block diagram of a computer system 200
suitable for implementing one or more embodiments of the
present disclosure. In various implementations, a client
device may comprise a personal computing device (e.g.,
smart phone, a computing tablet, a personal computer,
laptop, PDA, Bluetooth device, key FOB, badge, etc.)
capable of communicating with a network. A database or
server may utilize a network computing device (e.g., a
network server) capable of communicating with the net-
work. It should be appreciated that each of the devices
discussed herein may be implemented as computer system
200 1n a manner as follows.

Computer system 200 includes a bus 202 or other com-
munication mechamsm for communicating information
data, signals, and information between various components
of computer system 200. Components include an iput/
output (I/O) component 204 that processes a user action,
such as selecting keys from a keypad/keyboard, selecting
one or more buttons or links, performing a gesture, etc., and
sends a corresponding signal to bus 202. I/O component 204
may also include a display 211 and a cursor control 213
(such as a keyboard, keypad, mouse, etc.). An optional audio
input/output component 205 may also be included to allow
a user to use voice for mputting information by converting
audio signals. Audio I/O component 205 may allow the user
to hear audio. A transceiver or network interface 206 may
transmit and receive signals between computer system 200
and other devices, such as another user device, a merchant
server, or a payment provider server via a network. In one
embodiment, the transmission 1s wireless, although other
transmission mediums and methods may also be suitable. A
processor 212, which may be a combination of multiple
processors including, but not limited to, a micro-controller,
digital signal processor (DSP), or other processing compo-
nent, processes these various signals, such as for display on
computer system 200 or transmission to other devices via a
communication link 218. Processor 212 may also control
transmission ol information and/or instructions to other
devices.

Components of computer system 200 may also include a
system memory component 214 (e.g., RAM), a static storage
component 216 (e.g., ROM), and/or a disk dnive 217.
Computer system 200 may perform specific operations by
processor 212 and other components by executing one or
more sequences ol instructions contained in system memory
component 214. Logic may be encoded in a computer
readable medium, which may refer to any medium that
participates 1n providing instructions to processor 212 for
execution. Such a medium may take many forms, including
but not limited to, non-volatile media, volatile media, and
transmission media. In various implementations, non-vola-
tile media includes optical or magnetic disks, volatile media
includes dynamic memory, such as system memory compo-
nent 214, and transmission media includes coaxial cables,
copper wire, and fiber optics, including wires that comprise
bus 202. In some embodiments, the logic may be encoded 1n
non-transitory computer readable medium. In some
examples, transmission media may take the form of acoustic
or electromagnetic waves, such as those generated during
radio, optical, and infrared data communications.

Some common forms of computer readable media
includes, for example, tloppy disk, tlexible disk, hard disk,
magnetic tape, any other magnetic medium, CD-ROM, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, RAM, PROM,

10

15

20

25

30

35

40

45

50

55

60

65

8

EEPROM, FLASH-EEPROM, SSD, any other memory chip
or cartridge, or any other medium from which a computer 1s
adapted to read.

In various embodiments of the present disclosure, execu-
tion of istruction sequences to practice the present disclo-
sure may be performed by computer system 200. In various
other embodiments of the present disclosure, a plurality of
computer systems 200 coupled by commumnication link 218
to the network (e.g., such as a LAN, WLAN, PTSN, and/or
various other wired or wireless networks, including tele-
communications, mobile, and cellular phone networks) may
perform 1nstruction sequences to practice the present dis-
closure in coordination with one another.

Retferring now to FIG. 3, FIG. 3 1s a simplified block
diagram 1llustrating a system 300 conducting a data repli-
cation between source database 310 and target database 330
managed by an intermediary server 320 according to some
embodiments.

As shown, source database 310 may include a data table
311 that may be held or stored in non-transitory computer
readable media. Database 310 may be receiving updates
and/or changes to data tables 311 from one or more devices
over network connect 340. Source database 310 may main-
tain data space 312 for maintaining or putting an incremental
and/or for staging. The incremental may be indicative of the
changes to data table 311 by the one or more devices over
network connection 340. Staging refers to a storage area that
may be used to temporarily store data, such as the incre-
mental. The staging area may be regularly erased, such as
whenever a new extraction and/or loading occurs.

The incremental may be data that represents the “delta” or
changes to one or more of the tables 1n the database. In some
examples, the incremental may represent the change to one
or more tables in the database with respect to a temporal
reference point. The incremental may represent the differ-
ence between data held on the database at a first temporal
reference point, such as a historical time point, and a second
temporal reference point, such as another historical time
point or current time. For example, an incremental may be
copies ol changes to the database since the last time the
database was replicated. In this example, the first temporal
time point would be the time of the last replication and the
second temporal time point would be current time. In some
examples, the incremental may be exact copies ol any
changes made to the data held in the database or new data
held 1n the database. In some examples the incremental may
be the differences in the information between one or more
tables held 1n a first database and a second database. In some
examples the incremental may not maintain the differences
that are a result of databases using different platforms and/or
data formats.

In some examples, the non-transitory computer readable
media for data space 312 may be different from the non-
transitory computer readable media maintaining table 311.
For example, database 310 may maintain the table 1n a first
non-transitory computer readable media with large data
storage capacity, such as one or more hard drive disks
(HDD), and the data space 312 may be stored in a second
separate non-transitory computer readable medium with a
faster read and/or write ability than the first non-transitory
computer readable media, such as a RAID array, solid state
drive (SSD), RAM, FLASH memory, and/or the like. In
some embodiments, table 311 may be held 1n disk space and
data space 312 may be space on memory or cache. However,
in some embodiments, both the data table 311 and data space
312 may share the same non-transitory computer readable
media.




US RE49,042 E

9

In some embodiments, the incremental held or written to
cache may be maintained temporarily until one or more
replications have occurred. In some embodiments, the non-
transitory computer readable media used for cache and/or
memory may lose 1ts contents when it loses power. In some
embodiments, the non-transitory computer readable media
used for maintaining data table 311 may retain 1ts contents
irrespective of power. In some embodiments, the non-
transitory compute readable media maintaining the cache
may have a separate or backup power supply to ensure the
data 1s not lost during a power outage. Target sever 330 may
be similar to sever 310 and also have a table 331 and a data
space 332.

In some embodiments, the cache may be distinguished
from normal disk space based on how the memory is treated.
For example, a system may have programmed cache to be
wiped or enable data stored in the cache to be overwritten
alter a certain period of time, such as 90 days. In some
examples, the cache may be 1n a different format than the
normal disk space.

Intermediary server 320 may maintain an extraction space
321 for extracting and/or holding an incremental from one or
more databases. The extraction space 321 may also be used
to load data from the extraction space to a database, such as
database 330. Extraction space 321 may be space for data in
one or more non-transitory computer readable media of
intermediary server 320. In some embodiments, extraction
space 321 may be a cache of server 320.

As depicted 1n FI1G. 3, an exemplary data replication route
1s shown using incremental creation path 341, extraction
path 342, loading path 343, and application path 344. Path
as described herein references any mechanism and/or utility
that may be used for moving and/or copying data from one
place to another as part of a replication. This may include
optional ways of moving and/or copying data within a single
non-transitory computer readable media and/or from one
non-transitory computer readable media to another. A data
replication route, as discussed herein, 1s the combination of
paths used for replicating at least a part of a table 1n one
database to another database. The number of paths 1n a route
may have fewer paths than depicted 1n FIG. 3. For example,
a route may have fewer paths by skipping the extraction
from data space 312 to extraction space 321 and instead
going directly from data space 312 to data space 332 using
path 345. In some examples, the route may have fewer paths
by having a different starting points and end destinations.

Similarly there may be more paths 1n a data replication
route. For example, a route may include replicating data
from database 310 to another database (not shown) includ-
ing a path to and from imtermediary server 320 and then
replicating from the other database to database 331, which
may also include a path to and from intermediary server 320.

Also, shown in FIG. 3, there may be several alternative
paths 341a, 341b, 342a, 342b, 343a, 343b, 344a, and 344b
that could have been tried or available for conducting the
data replication between database 310 and 330. For
example, there may be several alternative methods of estab-
lishing an incremental on data space 312 (incremental
creation path), each representing a path, such as 341a and
341b. One or more paths for establishing an incremental
may be one or more techniques of change data capture
(CDC), such as using time stamps, version numbers, status
indicators, triggers, transaction logs and/or the like or a
combination thereof. Each of these options may represent a
path. The time stamp technique for CDC may use a time-
stamp 1n the data tables to determine when a certain entry
was changed and/or added to the table. When the time stamp

10

15

20

25

30

35

40

45

50

55

60

65

10

1s after a certain time point, such as the last time replication
was conducted, that entry may be copied to data space 312
as part of a table representing changes to table 311. CDC
using version numbers work 1n a similar manner. The data
entries may be given a version number, and when one or
more entries are added or changed, those entries may be
updated to a current version number. Any entry with a
current version number may represent changes to data table
311.

Status 1ndicator based CDC uses a Boolean data type to
indicate whether an entry in the database i1s new. For
example, 0 can be used to indicate no change and 1 used to
indicate change. Note that using time stamps and version
numbers provides a level of granularity in CDC that 1s not
possible when using the status indicators for CDC. A trans-
action log 1s a log that records any actions conducted on the
data table, and the log can be scanned to determine which
data table entries have been changed and/or are new.
Another techmique for creating the incremental includes
copying any changes and or new entries to a data table on
data space 312 as they occur (in real time or near real time)
on data table 311.

Similarly to having multiple incremental creation paths,
there may also be several paths for extracting, loading, and
applying the incremental. Some of the paths are dependent
on the database platform used. For example, some utilities
for extracting data from a Teradata database include, but are
not limited to, Teradata Parallel Transporter (TPT) export,
Teradata fastexport, Teradata ODBC selector, copyFroml o-
cal, WebHDFS REST API based utility, Call-Level Interface
(CLI) selector, and/or the like. There may also be different
incremental application utilities 1ncluding, but not limited
to, insert, isert not exist, insert ignore, replace, insert
update, and/or the like. Similar to the extraction utilities,
there are many different incremental load and application
utilities available and may depend on the database platform.
All the different extract, CDC, load, and incremental appli-
cation utilities for any database platform are contemplated
herein and may be considered paths of a data replication
route.

Similarly there are many diflerent utilities for loading and
applying an incremental. Some exemplary utilities for load-
ing include, but are not limited to, TPT stream, TPT load,
Teradata {fastload, Oracle SQL Loader, copyToLocal,
WebHDFES REST API based utility, and/or the like. There
are also may be different incremental application utilities,
including, but not limited to, mnsert, msert not exist, mnsert
ignore, replace, sert update, and the like. Similar to the
extraction utilities, there are many different incremental load
and application utilities available and may depend on the
database platform. All the different load and application
utilities for any database platform are contemplated herein
and are considered as load and application paths of a data
replication route.

Referring now to FIG. 4, FIG. 4 1s a simplified diagram
of a method 400 for replicating data between databases with
heterogenecous data platforms according to some embodi-
ments. In some embodiments, method 400 may be 1mple-
mented by or as part of a system such as system 100 of FIG.
1 and/or system 300 of FIG. 3. For example, in some
embodiments, method 400 may be performed by server 111
of FIG. 1 and/or intermediary server 320 of FIG. 3. Accord-
ing to some embodiments, method 400 may include one or
more of the processes 310-380 which may be implemented,
at least 1n part, in the form of executable code stored on a
non-transitory, tangible, machine readable media that when
run on one or more processors (e.g., the processor 212 of




US RE49,042 E

11

FIG. 2) may cause the one or more processors to perform
one or more of the processes 310-380.

For the sake of clarity, method 400 1s discussed herein as
being performed by a single server; however, method 400
may be implemented on several servers and/or devices with
the performance of one or more of the processes being split
and/or shared among multiple servers and/or devices.

At process 410, the server may receive instructions to
replicate tables or data from a source database, such as
database 130-1 of FIG. 1, to a target database, such as
database 130-2 of FIG. 1. In some examples, the istructions
may be received from a client device, such as one of client
devices 140. In some examples, the instructions may be
received as part of a script or configuration on the server. In
some examples the instructions may be received from a user
through one or more input/output devices that are part of the
SErver.

In some embodiments, the source database may maintain
one or more data tables that are regularly updated by adding
new data entries and/or changing existing data entries. In
some embodiments, the target database may maintain one or
more data tables that are at least partially redundant to one
or more of the data tables 1n the source database. The
redundant data tables 1n the target database may be used to
maintain the same information as the data table 1n the source
database, but 1n a different data format. In some embodi-
ments, the source and target database may be implementing,
different database platforms and/or data tables. In this man-
ner, the redundant data tables within the target database may
contain the same information, but in difterent data formats.

At process 420, the server may determine a route for data
replication from the source database to the target database.
The route may choose the specific paths used for replicating
the data. The paths may include the incremental creation
path, extraction path, loading path, and application path as
described above. Each path may be chosen based on numer-
ous factors, such as the cost of each path, availability of each
path, ethiciency of each path, the data format of the target
database, the resources being used on the source and/or
target database, and/or the like. In some embodiments,
multiple options for a path may be specified in case one or
more paths are unavailable. In some examples, the server
may determine an order of paths to attempt until all path
options have been exhausted. Furthermore, 1n some embodi-
ments, the server may also determine the schedule of when
cach path in the route 1s conducted. In some embodiments,
as part of determining the route, the server may determine
which source database 1s to be used for data replication and
when, a method and/or time for establishing an incremental
cache 1n the source database, which extraction and load
utilities to use for extracting and loading the incremental,
which utilities to attempt first, and/or the like.

At process 430, the server may begin implementing data
replication using the route determined at process 420 by
instructing and/or causing the source database to store an
incremental on a computer readable media. Instructions to
store the incremental on a compute readable media may
include instructions on how to identily the incremental,
when to store/create the incremental on the computer read-
able media, which computer readable media to store the
incremental on, the technique used for storing the incremen-
tal, and how often the incremental 1s updated. Identifying the
incremental may include a temporal reference point. For
example, the server may request that the incremental be
based on the last time a data replication was conducted. The
server may provide a time of day and/or specity a situation
for when the incremental should be created or updated. For

10

15

20

25

30

35

40

45

50

55

60

65

12

example, the server may instruct the incremental to be
created at the end of a business day. As another example, the
server may 1nstruct the incremental to be created/updated
whenever database resources permit. Some databases have
costs based on the number of processing cores the database
1s equipped with. As such, it 1s 1n the interest of the owner
of such a database to ensure that all cores on the database are
running at full processing capacity at all times for cost
elliciency. Therefore, the server may instruct the database to
create/update an incremental whenever the database 1s not
running at full processing capacity.

The server may also instruct the database on where the
incremental should be stored in the database. For example,
the server may instruct the server to store the incremental on
a cache of the server. The server may also set the priority of
the cache. Higher levels of priority reduce the likelihood that
the cache 1s deleted when the server needs to free up cache
for other processes. In some embodiments, the server may
set the priority to the highest level so that the incremental 1s
not lost before it has been extracted.

The server may also instruct the database with the specific
technique and/or utilities used to create and/or store the
incremental. For example, the one or more methods of CDC
discussed above 1n relation to FIG. 3 may be used.

At process 440, the server may extract the incremental
from the source database. The server may choose the extrac-
tion utility used for extracting the incremental from the
source database and/or the time and/or triggering event for
the extraction. For example, some utilities for extracting
data from a Teradata database include, but are not limited to,
Teradata Parallel Transporter (TPT) extractor, Call-Level
Interface (CLI) selector, TPT fast extract, TPT stream,
and/or the like. The extraction utilities used for extracting
the incremental may be based on one or more factors, such
as the availability of the utility, the number of entries in the
incremental, the resources available on the database, and/or
the like. In some embodiments, the server may maintain
and/or access a {file that lists the extraction utilities that are
available for a database based on the platform the database
uses.

At process 4350, the server may store the incremental on
one or more non-transitory computer readable media. For
example, the incremental may be held on local cache of the
server. In some examples the incremental may be held on a
Hadoop cluster. The server may choose the cache type based
on the constraints caused by the technique and/or utility used
for extraction, the source database file format, and/or the
target database file format. In some embodiments, the cache
type may be determined by the server when determining the
route for data replication at process 420.

At process 460, the server may transform the data
extracted at process 450 1nto a different file format. In some
embodiments, the server may canonize the data. In some
embodiments, the server may transform the data into a
format based on the target database for replication. For
example, the server may transform the data receirved from an
Oracle database to a Hadoop Distributed File System
(HDFS) compatible format. In some examples, the HDFS
may be 1n canonical data format. In some examples, the
specific HDFS format may be used because the target
database 1s compatible with that file format or may have
utilities for converting from that HDFS file format to a
format of the target database. In some embodiments, the
HDEFS file format may be used as the canonical data format
because many databases platforms have utilities for inte-
grating with Hadoop. Hadoop 1s a powertul open source
platform for parallel computing, and therefore, many utili-




US RE49,042 E

13

ties have been developed to integrate Hadoop with other
database platforms. However, any other file formats may be
used as the canomical data format including file formats for
any current and/or future database platforms. Canonical, as
used herein, may also be referred to as standardize and/or
normalize. In some embodiments, when the target database
1s using the same data platform as the source database, the
server may maintain the incremental in 1ts original form
because the incremental would already be 1n a compatible
format.

At process 470, the server may load the incremental to a
target database. The server may select a loading utility or
technique based on the availability of the utility, availability
of resources on the database, the route determined at process
420, the data format of the incremental, and/or the like.
Some exemplary loading techniques include, but are not
limited to, fast load, bulk load, stream, and/or the like. Each
database platform may have 1ts own set of utilities for
loading the incremental that are different from other data-
base platforms. The availability for loading the incremental
may also depend on the format of the incremental. For
example, 11 the incremental 1s 1n HDFS and being moved to
a Teradata database, a subset of the utilities for loading the
incremental may be compatible with HDFS.

Additionally, in some examples, the availability of a
utility may depend on the number of concurrent instances
that utility can be run and the number being run at the time
of loading. The number of concurrent instances may some-
times be referred to as slots. For example, the target database
may have five slots of bulk loading available and all five
slots may be 1n use. In this scenario, the bulk loading utility
would not be available, and the server could either wait for
another slot to be available or use another loading utility.
The server may also determine where the target database
stores the incremental. For example, the server may cause
the target database to store the incremental 1n a cache of the
target database.

At process 480, the server may cause the target database
to apply the incremental to one or more of the tables held on
the target database. The server may determine which tables
and the utilities used for applying the incremental to the
tables 1 the target database. Some exemplary utilities
include, but are not limited to, 1nsert, insert not exist, insert
update, 1insert 1gnore, replace, delete insert, delete and/or the
like. In some examples, the server may determine the utility
that 1s used to apply the incremental based on which utilities
are available, how resource intensive the application utility
1s (€.g. processing power, memory use, how long the utility
will take, efliciency, and/or the like), whether the utility 1s
capable of applying the incremental, whether the utility 1s
available, and/or the like. In some embodiments, the server
may cause the database to attempt the most eflicient appli-
cation utility and if 1t errors, use the next most eflicient
utility.

At process 490, the server may validate that the incre-
mental was correctly applied to the target database. In some
examples, the server may validate the tables 1n the source
database with the target database based on the number of
entries. The server may check to make sure that both tables
have the same number of table entries. In some examples,
the server may compare a checksum or a hash of the
information held 1n both databases for validation.

FI1G. 5 1llustrates a rule based method 500 for determining,
a data replication route when replicating data according to
some embodiments. In some embodiments, method 500 may
be implemented as part of process 420 of FIG. 4.

10

15

20

25

30

35

40

45

50

55

60

65

14

At process 510, the server may determine the source and
target databases for replication. In some examples, the
server may determine the database platform being used on
the source database and the target database. In some
examples, there may be several target databases each using
different database platforms than the source database and/or
cach other.

At process 520, the server may determine an order 1n
which database and/or data are replicated and which data-
bases and/or data are used as source databases and/or data
based on predetermined rules. In some examples, the pre-
determined rules may be preprogrammed into the server. In
some examples, the predetermined rules may be part of a file
that the server uses to determine the order 1n which servers
are to be replicated.

In some examples, the predetermined rules may specity a
priority level or a ranking for each database. The priority
level and/or ranking may represent or be indicative of the
cost, availability, and/or importance of the server. Based on
the rules, the server may attempt to limit the use of a higher
ranked and/or priority level server for data replication and
maximize the use of a lower ranked and/or priority level
server. For example, the source database may be the highest
priority of all databases that are part of the replication
process, including the target databases. The server, based on
this ranking, may attempt to use the source database to
replicate to the lowest ranked target database and then use
the target database as the source database for all other
databases. In this manner, the highest ranked database 1is
used efliciently rather than having the highest ranked data-
base used for replicating every target database.

In some embodiments, the rules may have a cost and/or a
ranking for data replication from any one server to another
server. The server may then optimize the order of data
replication for cost. For example, the source database may
be A and there may be target databases B, C, and, D. The
rules may specity that the cost of data replication between
databases A and B, C, or D 1s 10. The rules may also specity
that the cost for data replication between databases B and C
or D 1s 5 and that the cost between databases C and D 1s 3.
In this example, the server may determine that the cheapest
route 1s to first replicate from database A to database C and
then from databases C to databases B and D. In some
embodiment, the rules may instruct the server replicate to
the lowest ranked or cheapest database first. In some
embodiments, the server may implement a cost efliciency
algorithm to determine and/or estimate the cheapest route
for replication on all the target databases.

At process 530, the system may determine the utility
usage order for one or more of the replication processes (e.g.
creation, extraction, load, and application of the incremen-
tal). For example, there may be several utilities that may be
used for having a source database create/maintain an incre-
mental, extract the incremental from the source database,
load the incremental on a target database, and/or apply the
incremental to the tables of a target database. These utilities
may use different levels of processing power and may have
limited availability. The predetermined rules on the server
may determine which utilities to attempt first and the order
in which utilities are attempted in case of failure. For
example, when applying the incremental from a cache of the
target database to the table, the server may instruct the target
database to first attempt an 1nsert utility. In the event that the
isert utility fails to apply the incremental, the server may
attempt the next utility, such as an insert not exist utility.
There may be numerous reasons that cause a utility to fail,
and the server may maintain a log of these failures. For




US RE49,042 E

15

example, a utility may fail when the utility has a limited
number of concurrencies and all the concurrencies are in
use. In some situations, the utility may not be able to apply
the incremental with certain utilities because of the charac-
teristics of the incremental and/or utility. For example, the
insert utility may only work 11 the fields in the incremental
are empty 1n the corresponding fields of the target database
table. In some examples, the server may 1nstruct a database
to apply an incremental by attempting to use each utility in
the order provided by the rules until the incremental has
been successiully applied to the table or all of the utilities
have failed. At process 540, the system may implement the
data replication order determined in process 520 using the
utility usage order determined at process 530.

FIG. 6 illustrates a method 600 for dynamically deter-
miming when to begin one or more processes for replication,
such as the one or more processes of FIG. 4.

Atprocess 610, the server may monitor the resource usage
of source and/or target database for data replication. The
server may monitor resources such as available memory
and/or processor usage. The available resources may be
periodically provided by the source and/or target databases
either automatically or upon request from the server.

In some embodiments, the server may also maintain a log
of the monitored resources and attach a time and date stamp
to each log entry. In this manner, the log may be used to
predict future resource availability.

At process 620, the server may determine whether the
resources of the source and/or target databases are below a
threshold for conducting one or more of the data replication
processes. In some examples, the server may have a prede-
termined threshold for each database and/or process. For
example, the threshold may be that the database be under
90% processor usage before beginning any data replication
process. In another example, the threshold may be that the
database be under 90% processor usage before attempting to
extract an incremental.

At process 630, 1f the system determines that the
resources are not below the threshold, the server may go
back to process 610 for monitoring the resources of the
database. On the other hand, if the server determines that the
resources are below a threshold, the system may continue to
process 640 and conduct one or more of the replication
Processes.

FI1G. 7 illustrates a method 700 for selecting one or more
utilities for data replication according to some embodiments.
In some examples, method 700 may be implemented by one
or more systems or servers, such as system 300 or interme-
diary server 320 of FIG. 3. For ease of reference, the method
1s described as being performed by a single server. However
the method may be performed by any suitable device or
devices 1n concert.

At process 710, the server may maintain a log whenever
a data replication 1s performed. The log may be held on the
server or 1n a separate database. The log may maintain
statistical 1nformation regarding every step of the data
replication process and the characteristics of the databases
participating 1n the data replication. For example, the log
may record the size of the data being replicated, the servers
being used in the data replication process, the data formats,
the date and time of the data replication, the system
resources of the databases involved (e.g. processor use,
available memory, available cache, applications running,
utilities running, etc.), what utilities are used for data rep-
lication, whether a utility failed or succeed and the reason,
the length of time it took for the data replication, the length
of time each utility took to conduct 1ts function (e.g. 1ncre-

10

15

20

25

30

35

40

45

50

55

60

65

16

mental creation, extraction, loading, application), how much
resources a utility used when executed, the efliciency of the
utility, and/or the like.

At process 720, the server may determine the character-
istics indicative of a new data replication job. This may
include 1nformation about the databases involved, the
resource available for each database, the size of the data
replication, the data format of the source and target data-
bases, time of day, and/or the like. In some examples, the
server may determine these characteristics by monitoring the
databases involved. In some embodiments, the server may
request resource usage information from one or more of the
databases.

At process 730, the server may then filter the log for one
or more characteristics. For example, the server may filter
the log for data replications with a size equal to or greater
than the data replication size of the new data replication. The
server may further filter results based on data format,
database types, and/or the like. For example, the server may
filter results based on the data format of the target database
and the source database.

At process 740, the server may select a data replication
route from the filtered results based on one or more criteria.
For examples, the server may select the fastest data repli-
cation route among the filtered results or the replication
route with the least number of errors. In some examples, the
server may have rules regarding data replication, as dis-
cussed above, and the server may select a route based on the
rules. For example, the rules may limit the amount of
resources a utility can take up when executed, time of day
when certain utilities can be executed, and/or the like.

While the above method 1s referenced with determining
an entire data replication route, the above method may be
modified for selecting a specific path in the data replication
route. For example, when the server 1s selecting a utility for
extracting data from a database, the server may filter a log
for previous extractions with a similar signature (e.g. data-
base type, file type, resource signature of the database,
and/or the like). The server may select a utility from the
filtered log based on one or more criteria (e.g. speed, error,
elliciency, failure rate, etc.).

Where applicable, various embodiments provided by the
present disclosure may be implemented using hardware,
software, or combinations of hardware and software. Also,
where applicable, the various hardware components and/or
soltware components set forth herein may be combined 1nto
composite components comprising soitware, hardware, and/
or both without departing from the spirit of the present
disclosure. Where applicable, the various hardware compo-
nents and/or software components set forth herein may be
separated mto sub-components comprising software, hard-
ware, or both without departing from the scope of the
present disclosure. In addition, where applicable, 1t 1s con-
templated that software components may be implemented as
hardware components and vice-versa.

Additionally, the above examples are described 1n relation
to a source database, intermediary server, and target data-
base. These devices/systems may be interchangeable com-
bined and/or merged such that some of the processes per-
formed by each system may be performed by another
system. In some embodiments, some of the system may be
completely merged 1nto another system such that the other
does not exist, for example all of the function of the
intermediary server may be performed by and merged into
the source database. Although the methods discussed above




US RE49,042 E

17

are discussed separately, the steps discussed 1n each of those
methods may be interchanged with and/or added to each
other.

Software, 1n accordance with the present disclosure, such
as program code, utilities, and/or data, may be stored on one
or more computer readable media. It 1s also contemplated
that software 1dentified herein may be implemented using,
one or more general purpose or specific purpose computers
and/or computer systems, networked and/or otherwise.
Where applicable, the ordering of various steps described
herein may be changed, omitted, combined into composite
steps, and/or separated into sub-steps to provide features
described herein.

The foregoing disclosure i1s not intended to limit the
present disclosure to the precise forms or particular fields of
use disclosed. As such, it 1s contemplated that various
alternate embodiments and/or modifications to the present
disclosure, whether explicitly described or implied herein,
are possible in light of the disclosure. Having thus described
embodiments of the present disclosure, persons of ordinary
skill in the art will recognize that changes may be made 1n
form and detail without departing from the scope of the
present disclosure. Thus, the present disclosure 1s limited
only by the claims.

What 1s claimed 1s:

1. A system for data replication between databases with
heterogeneous data platforms comprising:

a non-transitory memory; and

one or more hardware processors coupled to the non-

transitory memory and configured to read instructions

from the non-transitory memory to cause the system to

perform operations comprising:

determining available extraction utilities for extracting
an incremental from a source database;

determining a first extraction utility from the available
extraction utilities:

using the first extraction utility to extract the incremen-
tal from the source database and load the incremental
onto a first server;

determining available loading utilities for a target data-
base;

determining a first loading utility from the available
loading utilities;

loading the incremental from the first server to the
target database; and

causing the target database to update a data table 1n the
target database with the incremental, the updating
comprising repeatedly attempting to update the data
table with the incremental using an unattempted
application utility from a plurality of application
utilities until the data table 1s updated or there are no
more unattempted application utilities, wherein the
unattempted application utility 1s chosen based on a
cost of using the unattempted application utility.

2. The system of claim 1, wherein the unattempted
application utility 1s chosen from the plurality of application
utilities that have not been attempted based on a prepro-
grammed order.

3. The system of claim 1, further comprising selecting the
target database from a plurality of databases based on a cost
of using the target database.

4. The system of claim 1, further comprising selecting the
target database from a plurality of databases based on a
processor usage of the target database.

5. A computer implemented method of data replication,
the method comprising:

10

15

20

25

30

35

40

45

50

55

60

65

18

selecting a first extraction utility from a plurality of
extraction utilities based on a data format used on a
source database, wherein selecting the first extraction
utility 1s based at least 1n part on a second extraction
utility being unavailable, and wherein the second
extraction utility 1s unavailable because there are no
available slots on the source database for the second
extraction utility;

extracting an incremental from the source database and
loading the incremental onto a server using the first
extraction utility;

selecting a first loading utility from a plurality of loading
utilities based on a data format used on a target data-
base;

loading the incremental from the server to the target

database using the first loading utility; and
causing the target database to update a data table on the
target database with the incremental, the updating com-
prising repeatedly attempting to update the data table
with the incremental using an unattempted application
utility from a plurality of application utilities until the
data table 1s updated or there are no more unattempted
application utilities, wherein the unattempted applica-
tion utility 1s chosen based on a cost of using the
unattempted application utility.
6. The computer implemented method of claim 5, wherein
selecting the first extraction utility 1s based on an efliciency
of the first extraction utility.
7. The computer implemented method of claim 5, wherein
selecting the first loading utility 1s based at least 1n part on
a third loading utility failing to load the incremental.
8. The computer implemented method of claim 5, the
method further comprising transforming the extracted incre-
mental from a first data format used on the source database
to a second data format used on the target database before
loading the incremental on target database.
9. A system for data replication comprising:
a source database storing a first data table having first
information received prior to a time point and second
information received after the time point, the source
database configured to create an incremental based on
the second information;
a target database storing a second data table having the
first information, the target database configured to
update the second data table with the incremental when
the incremental 1s loaded in the target database such
that the second data table contains both the first and
second mformation, the updating including repeatedly
attempting to update the second data table with the
incremental using an unattempted application utility
from a plurality of application utilities until the second
data table 1s updated or there are no more unattempted
application utilities; and
a server including one or more hardware processors
configured to execute instructions to cause the server to
perform operations comprising:
extracting the incremental from the source database and
loading the incremental onto a non-transitory
memory;

selecting the target database from a plurality of data-
bases based on a cost of using the target database;
and

loading the incremental from the non-transitory
memory onto the target database.

10. The system of claim 9, wherein the source database 1s
configured by the server to create the incremental.




US RE49,042 E

19

11. The system of claim 9, wherein the target database 1s
configured by the server to update the second data table with
the 1ncremental.

12. The system of claim 9, wherein the source database
turther comprises a first cache that the incremental 1s stored
in when created.

13. The system of claim 12, wherein the target database
turther comprises a second cache that the incremental is
stored 1n when loaded onto the target database.

14. The system of claim 9, wherein the incremental 1s
stored on a Hadoop® cluster when extracted from the source
database.

15. The system of claim 9, wherein the operations further
comprise transforming the incremental from a first data
format to a second data format.

16. The system of 15, wherein the first data format 1s a
data format of the source database and the second data
format 1s a Hadoop Distributed File System (HDFS) format.

17. The system ol 9, wherein the unattempted application
utility 1s chosen from the plurality of application utilities
based on a preprogrammed order.

18. The system ol 9, wherein the unattempted application
utility 1s chosen based on a cost of using the unattempted
application utility.

19. The system of 9, wherein the cost of using the target
database 1s based on a processor usage of the target database.

20. The system of 9, wherein the extracting of the
incremental from the source database includes selecting a
first extraction utility from a plurality of extraction utilities
based on a data format used on the source database.

% x *H % o

10

15

20

25

30

20



	Front Page
	Drawings
	Specification
	Claims

