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1
MAPPING IN A STORAGE SYSTEM

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 13/211,288, entitled “MAPPING IN A STOR-

AGE SYSTEM™, filed Aug. 16, 2011, the entirety of which
1s incorporated herein by reference

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to computer networks and, more
particularly, to maintaining a mapping structure in a storage
system.

2. Description of the Related Art

As computer memory storage and data bandwidth
increase, so does the amount and complexity of data that
businesses daily manage. Large-scale distributed storage
systems, such as data centers, typically run many business
operations. A datacenter, which also may be referred to as a
server room, 1s a centralized repository, either physical or
virtual, for the storage, management, and dissemination of
data pertaining to one or more businesses. A distributed
storage system may be coupled to client computers inter-
connected by one or more networks. If any portion of the
distributed storage system has poor performance, company
operations may be mmpaired. A distributed storage system
therefore maintains high standards for data availability and
high-performance functionality.

The distributed storage system comprises physical vol-
umes, which may be hard disks, solid-state devices, storage
devices using another storage technology, or partitions of a
storage device. Software applications, such as a logical
volume manager or a disk array manager, provide a means
of allocating space on mass-storage arrays. In addition, this
software allows a system administrator to create units of
storage groups including logical volumes. Storage virtual-
1zation provides an abstraction (separation) of logical stor-
age from physical storage 1n order to access logical storage
without end-users 1dentitying physical storage.

To support storage virtualization, a volume manager per-
forms input/output (1I/0O) redirection by translating incoming

I/0 requests using logical addresses from end-users into new
requests using addresses associated with physical locations
in the storage devices. As some storage devices may include
additional address translation mechanisms, such as address
translation layers which may be used 1n solid state storage
devices, the translation from a logical address to another
address mentioned above may not represent the only or final
address translation. Redirection utilizes metadata stored 1n
one or more mapping tables. In addition, information stored
in one or more mapping tables may be used for storage
deduplication and mapping virtual sectors at a specific
snapshot level to physical locations. The volume manager
may maintain a consistent view of mapping information for
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2

the virtualized storage. However, a supported address space
may be limited by a storage capacity used to maintain a

mapping table.

The technology and mechanisms associated with chosen
storage disks determines the methods used by a volume
manager. For example, a volume manager that provides
mappings for a granularity level of a hard disk, a hard disk
partition, or a logical unit number (LUN) of an external
storage device 1s limited to redirecting, locating, removing,
duplicate data, and so forth, for large chunks of data. One
example of another type of storage disk 1s a Solid-State Disk
(SSD). An SSD may emulate a HDD interface, but an SSD
utilizes solid-state memory to store persistent data rather
than electromechanical devices as found 1n a HDD. For
example, an SSD may comprise banks of Flash memory.
Accordingly, a large supported address space by one or more
mapping tables may not be achieved 1n systems comprising
SSDs for storage while utilizing mapping table allocation
algorithms developed for HDDs.

In view of the above, systems and methods for efliciently
performing storage virtualization for data stored among a
plurality of solid-state storage devices are desired.

SUMMARY OF THE INVENTION

Various embodiments of a computer system and methods
for efliciently managing mapping tables 1n a data storage
system are contemplated.

In one embodiment, a data storage subsystem coupled to
a network receives read and write requests on the network
from a client computer. The data storage subsystem com-
prises a plurality of data storage locations on a device group
including a plurality of storage devices. The data storage
subsystem further comprises at least one mapping table
comprising a plurality of levels sorted by time. In one
embodiment, each level stores one or more tuples, each of
the tuples including one or more values that may be used as
lookup keys. In addition, each of the tuples may include data
values that are associated with the key values. In one
embodiment, the mapping table 1s a wvirtual-to-physical
address translation table. In another embodiment, the map-
ping table 1s a deduplication table. The data storage subsys-
tem further comprises a data storage controller configured to
create a new highest level (voungest level) to be added to the
plurality of levels in response to detecting a condition for
iserting one or more new tuples nto the mapping table.
Additionally, 1n response to detecting a flattening condition,
a data storage controller 1s configured to 1dentity a group of
two or more adjacent levels of the plurality of levels for
flattening which are logically adjacent 1n time. A new level
1s created and one or more records stored within the group
are stored 1n the new level, 1n response to detecting each of
the one or more records stores a unique key among keys
stored within the group. Embodiments are contemplated 1n
which the new level 1s maintained with the flattened levels.
Also contemplated are embodiments wherein the new level
replaces the flattened levels.

Also contemplated are embodiments the data storage
controller 1s further configured to msert one or more second
records stored within the group into the new level, i
response to detecting each of the one or more second records
corresponds to two or more records storing a same non-
unique key within the group, and 1s 1n a younger level of the
two or more adjacent levels.

Also contemplated are embodiments wherein only a
youngest level of the plurality of levels may be updated with
new mapping table entries. Additionally, flatteming opera-
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tions on the mapping table need not be synchronized with
such updates to the mapping table.

These and other embodiments will become apparent upon
consideration of the following description and accompany-
ing drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a generalized block diagram illustrating one
embodiment of network architecture.

FI1G. 2 15 a generalized block diagram of one embodiment
ol a mapping table.

FIG. 3A 1s a generalized block diagram of one embodi-
ment of a primary mndex used to access a mapping table.

FIG. 3B 1s a generalized block diagram of another
embodiment of a primary index used to access a mapping
table.

FI1G. 4 1s a generalized block diagram of another embodi-
ment of a primary mdex and mapping table.

FIG. 5A 1s a generalized flow diagram 1illustrating one
embodiment of a method for performing a read access.

FIG. 3B 1s a generalized flow diagram illustrating one
embodiment of a method for performing a write operation.

FIG. 6 15 a generalized block diagram of one embodiment
of a multi-node network with shared mapping tables.

FIG. 7 1s a generalized block diagram of one embodiment
ol a secondary index used to access a mapping table.

FIG. 8 15 a generalized block diagram of one embodiment
of a tertiary index accessing a mapping table.

FIG. 9 illustrates one embodiment of a method that
utilizes overlay tables.

FIG. 10 1s a generalized block diagram of one embodi-
ment of a flattening operation for levels within a mapping,
table.

FIG. 11 1s a generalized block diagram of another embodi-
ment of a flattening operation for levels within a mapping
table.

FIG. 12 1s a generalized flow diagram illustrating one
embodiment of a method for flattening levels within a
mapping table.

FIG. 13 1s a generalized flow diagram illustrating one
embodiment of a method for efliciently processing bulk
array tasks within a mapping table.

FIG. 14 1s a generalized block diagram illustrating an
embodiment of a data layout architecture within a storage
device.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments are shown
by way of example 1n the drawings and are herein described
in detail. It should be understood, however, that drawings
and detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the con-
trary, the invention 1s to cover all modifications, equivalents
and alternatives falling within the spirit and scope of the
present mvention as defined by the appended claims.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced
without these specific details. In some instances, well-
known circuits, structures, signals, computer program
instruction, and techniques have not been shown in detail to
avoid obscuring the present invention.
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Retferring to FIG. 1, a generalized block diagram of one
embodiment of a network architecture 100 1s shown. As
described further below, one embodiment of network archi-
tecture 100 1includes client computer systems 110a-110b
interconnected to one another through a network 180 and to
data storage arrays 120a-120b. Network 180 may be coupled
to a second network 190 through a switch 140. Client
computer system 110c 1s coupled to client computer systems
110a-110b and data storage arrays 120a-120b via network
190. In addition, network 190 may be coupled to the Internet
160 or otherwise outside network through switch 150.

It 1s noted that in alternative embodiments, the number
and type of client computers and servers, switches, net-
works, data storage arrays, and data storage devices 1s not
limited to those shown 1n FIG. 1. At various times one or
more clients may operate oflline. In addition, during opera-
tion, individual client computer connection types may
change as users connect, disconnect, and reconnect to net-
work architecture 100. Further, while the present description
generally discusses network attached storage, the systems
and methods described herein may also be applied to
directly attached storage systems and may include a host
operating system configured to perform one or more aspects
of the described methods. Numerous such alternatives are
possible and are contemplated. A further description of each
of the components shown 1n FIG. 1 1s provided shortly. First,
an overview ol some of the features provided by the data
storage arrays 120a-120b 1s described.

In the network architecture 100, each of the data storage
arrays 120a-120b may be used for the sharing of data among
different servers and computers, such as client computer
systems 110a-110c. In addition, the data storage arrays
120a-120b may be used for disk mirroring, backup and
restore, archival and retrieval of archived data, and data
migration Irom one storage device to another. In an alternate
embodiment, one or more client computer systems 110a-
110c may be linked to one another through fast local area
networks (LANs) in order to form a cluster. Such clients
may share a storage resource, such as a cluster shared
volume residing within one of data storage arrays 120a-
120b.

Each of the data storage arrays 120a-120b includes a
storage subsystem 170 for data storage. Storage subsystem
170 may comprise a plurality of storage devices 176a-176m.
These storage devices 176a-176m may provide data storage
services to client computer systems 110a-110c. Each of the
storage devices 176a-176m uses a particular technology and
mechanism for performing data storage. The type of tech-
nology and mechanism used within each of the storage
devices 176a-176m may at least 1n part be used to determine
the algorithms used for controlling and scheduling read and
write operations to and from each of the storage devices
176a-176m. For example, the algorithms may locate par-
ticular physical locations corresponding to the operations. In
addition, the algorithms may perform input/output (I/0)
redirection for the operations, removal of duplicate data in
the storage subsystem 170, and support one or more map-
ping tables used for address redirection and deduplication.

The logic used in the above algorithms may be included
in one or more of a base operating system (OS) 132, a
volume manager 134, within a storage subsystem controller
174, control logic within each of the storage devices 176a-
176m, or otherwise. Additionally, the logic, algorithms, and
control mechanisms described herein may comprise hard-
ware and/or soitware.

Each of the storage devices 176a-176m may be config-
ured to receive read and write requests and comprise a
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plurality of data storage locations, each data storage location
being addressable as rows and columns in an array. In one
embodiment, the data storage locations within the storage
devices 176a-176m may be arranged into logical, redundant
storage containers or RAID arrays (redundant arrays of
inexpensive/independent disks).

In some embodiments, each of the storage devices 176a-
176m may utilize technology for data storage that 1s different
from a conventional hard disk drive (HDD). For example,
one or more of the storage devices 176a-176m may include
or be further coupled to storage consisting of solid-state
memory to store persistent data. In other embodiments, one
or more of the storage devices 176a-176m may include or be
turther coupled to storage using other technologies such as
spin torque transier technique, magnetoresistive random
access memory (MRAM) technique, shingled disks, mem-
ristors, phase change memory, or other storage technologies.
These different storage techmiques and technologies may
lead to differing I/O characteristics between storage devices.

In one embodiment, the included solid-state memory
comprises solid-state drive (SSD) technology. The difler-
ences 1n technology and mechanisms between HDD tech-
nology and SDD technology may lead to differences in
input/output (I/0) characteristics of the data storage devices
176a-176m. A Solid-State Disk (SSD) may also be referred
to as a Solid-State Drive. Without moving parts or mechani-
cal delays, an SSD may have a lower read access time and
latency than a HDD. However, the write performance of
SSDs 1s generally slower than the read performance and may
be significantly impacted by the availability of free, pro-
grammable blocks within the SSD.

Storage array elliciency may be improved by creating a
storage virtualization layer between user storage and physi-
cal locations within storage devices 176a-176m. In one
embodiment, a virtual layer of a volume manager 1s placed
in a device-driver stack of an operating system (OS), rather
than within storage devices or 1n a network. Many storage
arrays perform storage virtualization at a coarse-grained
level to allow storing of virtual-to-physical mapping tables
entirely in memory. However, such storage arrays are unable
to integrate features such as data compression, deduplication
and copy-on-modily operations. Many {file systems support
fine-grained virtual-to-physical mapping tables, but they do
not support large storage arrays, such as device groups
173a-173m. Rather, a volume manager or a disk array
manager 1s used to support device groups 173a-173m.

In one embodiment, one or more mapping tables may be
stored 1 the storage devices 176a-176m, rather than
memory, such as RAM 172, memory medium 130 or a cache
within processor 122. The storage devices 176a-176 may be
SSDs utilizing Flash memory. The low read access and
latency times for SSDs may allow a small number of
dependent read operations to occur while servicing a storage
access request from a client computer. The dependent read
operations may be used to access one or more mdexes, one
or more mapping tables, and user data during the servicing
of the storage access request.

In one example, /O redirection may be pertormed by the
dependent read operations. In another example, inline dedu-
plication may be performed by the dependent read opera-
tions. In yet another example, bulk array tasks, such as a
large copy, move, or zeroing operation, may be performed
entirely within a mapping table rather than accessing storage
locations holding user data. Such a direct map manipulation
may greatly reduce 1/0 tratlic and data movement within the
storage devices 176a-176m. The combined time for both
servicing the storage access request and performing the
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dependent read operations from SSDs may be less than
servicing a storage access request from a spinning HDD.

In addition, the information within a mapping table may
be compressed. A particular compression algorithm may be
chosen to allow identification of individual components,
such as a key within a record among multiple records.
Theretfore, a search for a given key among multiple com-
pressed records may occur. I a match 1s found, only the
matching record may be decompressed. Compressing the
tuples within records of a mapping table may further enable
fine-grained level mapping. This fine-grained level mapping
may allow direct map manipulation as an alternative to
common bulk array tasks. Further details concerning efli-
cient storage virtualization will be discussed below.

Again, as shown, network architecture 100 includes client
computer systems 110a-110c interconnected through net-
works 180 and 190 to one another and to data storage arrays
120a-120b. Networks 180 and 190 may include a variety of
techniques including wireless connection, direct local area
network (LAN) connections, wide areca network (WAN)
connections such as the Internet, a router, storage area
network, Ethernet, and others. Networks 180 and 190 may
comprise one or more LANs that may also be wireless.
Networks 180 and 190 may further include remote direct
memory access (RDMA) hardware and/or software, trans-
mission control protocol/internet protocol (TCP/IP) hard-
ware and/or soltware, router, repeaters, switches, grids,
and/or others. Protocols such as Fibre Channel, Fibre Chan-
nel over Ethernet (FCoE), 1SCSI, and so forth may be used
in networks 180 and 190. Switch 140 may utilize a protocol
associated with both networks 180 and 190. The network
190 may interface with a set of communications protocols
used for the Internet 160 such as the Transmission Control

Protocol (TCP) and the Internet Protocol (IP), or TCP/IP.
Switch 150 may be a TCP/IP switch.

Client computer systems 110a-110c are representative of
any number of stationary or mobile computers such as
desktop personal computers (PCs), servers, server farms,
workstations, laptops, handheld computers, servers, per-
sonal digital assistants (PDAs), smart phones, and so forth.
Generally speaking, client computer systems 110a-110c¢
include one or more processors comprising one Or more
processor cores. Each processor core includes circuitry for
executing 1nstructions according to a predefined general-
purpose instruction set. For example, the x86 instruction set
architecture may be selected. Alternatively, the Alpha®,
PowerPC®, SPARC®, or any other general-purpose mstruc-
tion set architecture may be selected. The processor cores
may access cache memory subsystems for data and com-
puter program 1instructions. The cache subsystems may be
coupled to a memory hierarchy comprising random access
memory (RAM) and a storage device.

Each processor core and memory hierarchy within a client
computer system may be connected to a network interface.
In addition to hardware components, each of the client
computer systems 110a-110c may include a base operating
system (OS) stored within the memory hierarchy. The base

OS may be representative of any of a varnety of operating
systems, such as, for example, MS-DOS®, MS-WIN-

DOWS®, 0O5/2®, UNIX®, Linux®, Solaris®, AIX®,
DART, or otherwise. As such, the base OS may be operable
to provide various services to the end-user and provide a
software framework operable to support the execution of
various programs. Additionally, each of the client computer

systems 110a-110c may include a hypervisor used to support
virtual machines (VMs). As 1s well known to those skilled
in the art, virtualization may be used in desktops and servers
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to fully or partially decouple software, such as an OS, from
a system’s hardware. Virtualization may provide an end-user
with an illusion of multiple OSes running on a same machine
cach having 1ts own resources and access to logical storage
entities (e.g., LUNs) built upon the storage devices 176a-
176m within each of the data storage arrays 120a-120b.

Each of the data storage arrays 120a-120b may be used for
the sharing of data among different servers, such as the client
computer systems 110a-110c. Each of the data storage arrays
120a-120b includes a storage subsystem 170 for data stor-
age. Storage subsystem 170 may comprise a plurality of
storage devices 176a-176m. Each of these storage devices
176a-176m may be an SSD. A controller 174 may comprise
logic for handling recetved read/write requests. A random-
access memory (RAM) 172 may be used to batch operations,
such as received write requests. In various embodiments,
when batching write operations (or other operations) non-
volatile storage (e.g., NVRAM) may be used.

The base OS 132, the volume manager 134 (or disk array
manager 134), any OS dnivers (not shown) and other soft-
ware stored 1 memory medium 130 may provide function-
ality providing access to files and the management of these
tfunctionalities. The base OS 132 may be a storage operating
system such as NetApp Data ONTAP® or otherwise. The
base OS 132 and the OS drivers may comprise program
instructions stored on the memory medium 130 and execut-
able by processor 122 to perform one or more memory
access operations 1n storage subsystem 170 that correspond
to received requests. The system shown in FIG. 1 may
generally include one or more file servers and/or block
SErvers.

Each of the data storage arrays 120a-120b may use a
network interface 124 to connect to network 180. Similar to
client computer systems 110a-110c, 1n one embodiment, the
functionality of network interface 124 may be included on a
network adapter card. The functionality of network interface
124 may be implemented using both hardware and software.
Both a random-access memory (RAM) and a read-only
memory (ROM) may be included on a network card imple-
mentation of network intertace 124. One or more application
specific mtegrated circuits (ASICs) may be used to provide
the functionality of network interface 124.

In addition to the above, each of the storage controllers
174 within the data storage arrays 120a-120b may support
storage array functions such as snapshots, replication and
high availability. In addition, each of the storage controllers
174 may support a virtual machine environment that com-
prises a plurality of volumes with each volume including a
plurality of snapshots. In one example, a storage controller
174 may support hundreds of thousands of volumes,
wherein each volume includes thousands of snapshots. In
one embodiment, a volume may be mapped in fixed-size
sectors, such as a 4-kilobyte (KB) page within storage
devices 176a-176m. In another embodiment, a volume may
be mapped in variable-size sectors such as for write requests.
A volume ID, a snapshot ID, and a sector number may be
used to 1dentify a given volume.

An address translation table may comprise a plurality of
entries, wherein each entry holds a virtual-to-physical map-
ping for a corresponding data component. This mapping
table may be used to map logical read/write requests from
cach of the client computer systems 110a-110c¢ to physical
locations 1n storage devices 176a-176m. A “‘physical”
pointer value may be read from the mapping table during a
lookup operation corresponding to a received read/write
request. This physical pointer value may then be used to
locate a physical location within the storage devices 176a-
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176m. It 1s noted the physical pointer value may be used to
access another mapping table within a given storage device
of the storage devices 176a-176m. Consequently, one or
more levels of indirection may exist between the physical
pointer value and a target storage location.

In another embodiment, the mapping table may comprise
information used to deduplicate data (deduplication table
related information). The imnformation stored in the dedupli-
cation table may include mappings between one or more
calculated hash values for a given data component and a
physical pointer to a physical location 1n one of the storage
devices 176a-176m holding the given data component. In
addition, a length of the given data component and status
information for a corresponding entry may be stored in the
deduplication table.

Turning now to FIG. 2, a generalized block diagram of
one embodiment of a mapping table 1s shown. As discussed
carlier, one or more mapping tables may be used for I/O
redirection or translation, deduplication of duplicate copies
of user data, volume snapshot mappings, and so {forth.
Mapping tables may be stored in the storage devices 176a-
176m. The diagram shown in FIG. 2 represents a logical
representation of one embodiment of the organization and
storage of the mapping table. Each level shown may include
mapping table entries corresponding to a different period of
time. For example, level “1” may include information older
than information stored 1n level “27. Stmilarly, level “2” may
include information older than information stored in level
“3”. The information stored in the records, pages and levels
shown 1n FIG. 2 may be stored in a random-access manner
within the storage devices 176a-176m. Additionally, copies
of portions or all of a given mapping table entries may be
stored in RAM 172, in buflers within controller 174, 1n
memory medium 130, and 1n one or more caches within or
coupled to processor 122. In various embodiments, a cor-
responding index may be included 1n each level for map-
pings which are part of the level (as depicted later 1n FIG.
4). Such an 1ndex may include an i1dentification of mapping
table entries and where they are stored (e.g., an identification
of the page) within the level. In other embodiments, the
index associated with mapping table entries may be a
distinct entity, or entities, which are not logically part of the
levels themselves.

Generally speaking, each mapping table comprises a set
of rows and columns. A single record may be stored 1n a
mapping table as a row. A record may also be referred to as
an entry. In one embodiment, a record stores at least one
tuple including a key. Tuples may (or may not) also include
data fields including data such as a pointer used to 1dentity
or locate data components stored in storage subsystem 170.
It 1s noted that 1n various embodiments, the storage subsys-
tem may include storage devices (e.g., SSDs) which have
internal mapping mechanisms. In such embodiments, the
pointer 1n the tuple may not be an actual physical address per
se. Rather, the pointer may be a logical address which the
storage device maps to a physical location within the device.
Over time, this internal mapping between logical address
and physical location may change. In other embodiments,
records in the mapping table may only contain key fields
with no additional associated data fields. Attributes associ-
ated with a data component corresponding to a given record
may be stored in columns, or fields, 1n the table. Status
information, such as a valid indicator, a data age, a data size,
and so forth, may be stored in fields, such as Field® to
FieldN shown in FIG. 2. In various embodiments, each
column stores information corresponding to a given type. In
some embodiments, compression techniques may be utilized
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for selected fields which 1n some cases may result 1n fields
whose compressed representation 1s zero bits 1n length.

A key 1s an entity 1n a mapping table that may distinguish
one row of data from another row. Each row may also be
referred to as an entry or a record. A key may be a single
column, or it may consist of a group of columns used to
identify a record. In some embodiments, a key may corre-
spond to a range of values rather than to a single value. Akey
corresponding to a range may be represented as a start and
end of a range, or as a start and length, or 1n other ways. The
ranges corresponding to keys may overlap with other keys,
cither ranges or individual values. In one example, an
address translation mapping table may utilize a key com-
prising a volume identifier (ID), a logical or virtual address,
a snapshot ID, a sector number, and so forth. A given
received read/write storage access request may identily a
particular volume, sector and length. A sector may be a
logical block of data stored 1n a volume. Sectors may have
different sizes on different volumes. The address translation
mapping table may map a volume in sector-size units.

A volume 1dentifier (ID) may be used to access a volume
table that conveys a volume ID and a corresponding current
snapshot ID. This information along with the recerved sector
number may be used to access the address translation
mapping table. Therefore, in such an embodiment, the key
value for accessing the address translation mapping table 1s
the combination of the volume ID, snapshot ID, and the
recetved sector number. In one embodiment, the records
within the address translation mapping table are sorted by
volume ID, followed by the sector number and then by the
snapshot ID. This ordering may group together different
versions of data components 1n different snapshots. There-
fore, during a lookup for a storage access read request, a
corresponding data component may be found with fewer
read operations to the storage devices 176a-176m.

The address translation mapping table may convey a
physical pointer value that indicates a location within the
data storage subsystem 170 storing a data component cor-
responding to the received data storage access request. The
key value may be compared to one or more key values stored
in the mapping table. In the 1llustrated example, simpler key
values, such as “07, “2”, “12” and so forth, are shown for
case of 1llustration. The physical pointer value may be stored
in one or more of the fields 1n a corresponding record.

The physical pointer value may include a segment 1den-
tifier (ID) and a physical address 1dentifying the location of
storage. A segment may be a basic unit of allocation 1n each
of the storage devices 176a-176m. A segment may have a
redundant array of independent device (RAID) level and a
data type. During allocation, a segment may have one or
more of the storage devices 176a-176m selected for corre-
sponding storage. In one embodiment, a segment may be
allocated an equal amount of storage space on each of the
one or more selected storage devices of the storage devices
176a-176m. The data storage access request may correspond
to multiple sectors, which may result in multiple parallel
lookups. A write request may be placed in an NVRAM
builer, such as RAM 172, and a write completion acknowl-
edgment may be sent to a corresponding client computer of
the client computers 110a-110c. At a later time, an asyn-
chronous process may flush the builered write requests to the
storage devices 176a-176m.

In another example, the mapping table shown i FIG. 2
may be a deduplication table. A deduplication table may
utilize a key comprising a hash value determined from a data
component associated with a storage access request. The
initial steps of a deduplication operation may be performed
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concurrently with other operations, such as a read/write
request, a garbage collection operation, a trim operation, and
so forth. For a given write request, the data sent from one of
the client computer systems 110a-110¢ may be a data stream,
such as a byte stream. As 1s well known to those skilled 1n
the art, a data stream may be divided into a sequence of
fixed-length or variable-length chunks. A chunking algo-
rithm may perform the dividing of the data stream into
discrete data components which may be referred to as
“chunks”. A chunk may be a sub-file content-addressable
unit of data. In various embodiments, a table or other
structure may be used to determine a particular chunking,
algorithm to use for a given file type or type of data. A file’s
type may be determined by referring to its file name exten-
sion, separate identilying information, the content of the
data 1itself, or otherwise. The resulting chunks may then be
stored 1n one of the data storage arrays 120a-120b to allow
for sharing of the chunks. Such chunks may be stored
separately or grouped together in various ways.

In various embodiments, the chunks may be represented
by a data structure that allows reconstruction of a larger data
component from i1ts chunks (e.g. a particular file may be
reconstructed based on one or more smaller chunks of stored
data). A corresponding data structure may record 1ts corre-
sponding chunks including an associated calculated hash
value, a pointer (physical and/or logical) to 1its location in
one of the data storage arrays 120a-120b, and 1ts length. For
cach data component, a deduplication application may be
used to calculate a corresponding hash value. For example,
a hash function, such as Message-Digest algorithm 5 (MD35),
Secure Hash Algorithm (SHA), or otherwise, may be used to
calculate a corresponding hash value. In order to know 1f a
given data component corresponding to a received write
request 1s already stored 1n one of the data storage arrays
120a-120b, bits of the calculated hash value (or a subset of
bits of the hash value) for the given data component may be
compared to bits in the hash values of data components
stored 1n one or more of the data storage arrays 120a-120b.

A mapping table may comprise one or more levels as
shown 1n FIG. 2. A mapping table may comprise 16 to 64
levels, although another number of levels supported within
a mapping table 1s possible and contemplated. In FIG. 2,
three levels labeled Level “17°, Level “2” and Level “N” are
shown for ease of illustration. Each level within a mapping
table may include one or more partitions. In one embodi-
ment, each partition 1s a 4 kilo-byte (KB) page. For example,
Level “N” 1s shown to comprise pages 210a-210g, Level “2”
comprises pages 210h-2107 and Level “1” comprises pages
210k-210n. It 1s possible and contemplated other partition
s1izes may also be chosen for each of the levels within a
mapping table. In addition, 1t 1s possible one or more levels
have a single partition, which 1s the level itsellf.

In one embodiment, multiple levels within a mapping
table are sorted by time. For example, 1n FIG. 2, Level “1”
may be older than Level “2”. Similarly, Level “2” may be
older than Level “N”. In one embodiment, when a condition
for 1nserting one or more new records 1n the mapping table
1s detected, a new level may be created. In various embodi-
ments, when a new level 1s created the number/designation
grven to the new level 1s greater than numbers given to levels
that preceded the new level in time. For example, 11 the most
recent level created 1s assigned the value 8, then a newly
created level may be assigned the value 9. In this manner a
temporal relationship between the levels may be established
or determined. As may be appreciated, numerical values
need not be strictly sequential. Additionally, alternative
embodiments may reverse the numbering scheme such that
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newer levels have smaller numerical designations. Further,
other embodiments may utilize non-numerical designations
to distinguish between levels. Numerous such embodiments
are possible and are contemplated. Each next older level has
a label decremented by one from a label integer value of a
previous younger level. A separate table not shown may be
used to logically describe the mapping table. For example,
cach entry of the separate table may include a given level 1D
and a list of the page IDs stored within the given level ID.

By creating a new highest level for an insertion of new
records, the mapping table 1s updated by appending the new
records. In one embodiment, a single level 1s created as a
new highest level and each of the new records i1s mserted
into the single level. In another embodiment, the new
records may be searched for duplicate keys prior to insertion
into the mapping table. A single level may be created as a
new highest level. When a given record storing a duplicate
key 1s found, each of the records bullered ahead of the given
record may be inserted into the single level. The new records
may be bullered in a manner to preserve memory ordering,
such as in-order completion of requests. Then another single
level may be created and the remainder of the new records
may be inserted into this other single level unless another
record storing a duplicate key 1s found. If such a record 1s
tound, then the steps are repeated. Existing records within
the mapping table storing a same key value as one of the new
records are not edited or overwritten in-place by the inser-
tion of the new records.

Although the sizes of the levels are illustrated as increas-
ing with lower levels being larger than newer levels, the
higher levels may alternate between being larger or smaller
than neighboring levels. The number of newer records to
insert into the mapping table may vary over time and create
the fluctuating level sizes. The lower levels may be larger
than newer levels due to flattening of the lower levels. Two
or more lower levels may be flattened nto a single level
when particular conditions are detected. Further details are
provided later.

With no edits in-place for the records stored in the
mapping table, newer records placed in higher levels may
override records storing a same key value located in the
lower levels. For example, when the mapping table 1is
accessed by a given key value, one or more levels may be
found to store a record holding a key value matching the
given key value. In such a case, the highest level of the one
or more levels may be chosen to provide the information
stored 1n 1ts corresponding record as a result of the access.
Further details are provided later. In addition, further details
about the detected conditions for inserting one or more new
records into the mapping table and the storage of informa-
tion are provided later.

In one embodiment, entries within a given page may be
sorted by key. For example, the entries may be sorted 1n
ascending order according to a key included in the entry.
Additionally, 1n various embodiments, the pages within a
level may be sorted according to any desired sort order. In
various embodiments, the pages within a level may also be
sorted (e.g., according to key values or otherwise). In the
example of FIG. 2, page 210a of Level N includes records
sorted according to key value 1n ascending order. In various
embodiments, one or more columns may be used to store
key values. In the example of FIG. 2, two columns or fields
are shown 1n each tuple for storing key values. Utilizing
such key values, the records then may be sorted 1n a desired
order. Sorting may be performed based on any of the key
values for a records, or any combination of key values for
the record. In the example shown, the first record stores a
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key value including 0 and 8 stored in two columns, and the
last record stores a key value including 12 and 33. In this
illustrated example, each sorted record in page 210a between
the first and the last record stores a key value between 0 and
12 1n the first column and the records are arranged 1n a
manner to store key values based (at least 1n part) on the first
column 1n an ascending order from 0 to 12. Similarly, page
210b includes sorted records, wherein the first record stores
key values of 12 and 39 and the last record stores key values
of 31 and 19. In this illustrated example, each sorted record
in page 210b between the first and the last record stores a key
value between 12 and 31 1n the first column and the records
are arranged 1n a manner to store key values 1n an ascending
order from 12 to 31.

In addition to the above, the pages within Level N are
sorted according to a desired order. In various embodiments,
pages within a level may be sorted 1n a manner that retlects
the order 1n which entries within a page are sorted. For
example, pages within a level may be sorted according to
key values 1n ascending order. As the first key value 1n page
210b 15 greater than the last key value in page 210a, page
210b follows page 210a 1n the sort order. Page 210g would
then include entries whose key values are greater than those
included 1n pages 210a-2101 (not shown). In this manner, all
entries within a level are sorted according to a common
scheme. The entries are simply subdivided into page, or
other, size units. As may be appreciated, other sorting
schemes may be used as desired.

Referring now to FIG. 3A, a generalized block diagram of
one embodiment of a primary index used to access a
mapping table 1s shown. A key generator 304 may receive
one or more requester data iputs 302. In one embodiment,
a mapping table 1s an address translation directory table. A
given received read/write request may identify a particular
volume, sector and length. The key generator 304 may
produce a query key value 306 that includes a volume
identifier (ID), a logical or virtual address, a snapshot 1D,
and a sector number. Other combinations are possible and
other or additional values may be utilized as well. Diflerent
portions of the query key value 306 may be compared to
values stored 1n columns that may or may not be contiguous
within the mapping table. In the shown example, a key value
of “22” 1s used for ease of 1illustration.

As described earlier, both a chunking algorithm and/or a
segmenting algorithm associated with the key generator 304
may receive data 302 corresponding to a storage access
request. These algorithms may produce one or more data
components and select a hash function to calculate a corre-
sponding hash value, or query key value 306, for each data
component. The resulting hash value may be used to index
the deduplication table.

A primary index 310, as shown 1 FIG. 3A, may provide
location 1dentifying information for data stored i1n the stor-
age devices 176a-176m. For example, referring again to
FIG. 2, a corresponding primary index 310 (or portion
thereol) may be logically included 1n each of level “17, level
“2” and level “N”. Again, each level and each corresponding
primary index may be physically stored 1n a random-access
manner within the storage devices 176a-176m.

In one embodiment, the primary mdex 310 may be
divided 1nto partitions, such as partitions 312a-312b. In one
embodiment, the size of the partitions may range from a 4
kilobyte (KB) page to 256 KB, though other sizes are
possible and are contemplated. Each entry of the primary
index 310 may store a key value. In addition, each entry may
store a corresponding unique virtual page 1dentifier (ID) and
a level 1D corresponding to the key value. Each entry may
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store corresponding status information such as validity
information. When the primary index 310 1s accessed with
a query key value, the entries within the index 310 may be
searched for one or more entries which match, or otherwise
correspond to, the key value. Information from the matching 5
entry may then be used to locate and retrieve a mapping
which identifies a storage location which 1s the target of a
received read or write request. In other words, the index 310
identifies the locations of mappings. In one embodiment, a
hit 1n the index provides a corresponding page 1D 1dentify- 10
ing a page within the storage devices 176a-176m storing
both the key value and a corresponding physical pointer
value. The page identified by the corresponding page 1D
may be searched with the key value to find the physical
pointer value. 15

In the example of FIG. 3A, a received request corresponds
to a key “22”. This key 1s then used to access index 310. A
search of the mdex 310 results on a hit to an entry within
partition 312b. The matching entry in this case include
information such as—page 28, and level 3. Based upon this 20
result, the desired mapping for the request 1s found 1n a page
identified as page 28 within level 3 of the mapping tables.
Using this information, an access may then be made to the
mapping tables to retrieve the desired mapping. If an access
to the primary index 310 requires an access to storage, then 25
at least two storage accesses would be required 1n order to
obtain a desired mapping. Therefore, 1n various embodi-
ments as described below, portions of the primary index are
cached, or otherwise stored 1n a relatively fast access
memory, in order to eliminate one access to the storage 30
devices. In various embodiments, the entire primary 1ndex
for the mapping tables 1s cached. In some embodiments,
where the primary index has become too large to cache 1n its
entirety, or 1s otherwise larger than desired, secondary,
tertiary, or other index portions may be used 1n the cache to 35
reduce its size. Secondary type indices are discussed below.
In addition to the above, 1 various embodiments mapping
pages corresponding to recent hits are also cached for at least
some period of time. In this manner, processes which exhibit
accesses with temporal locality can be serviced more rapidly 40
(1.e., recently accessed locations will have their mappings
cached and readily available).

Referring now to FIG. 3B, a generalized block diagram of
one embodiment of a cached primary index used to access
a mapping table 1s shown. Circuit and logic portions corre- 45
sponding to those of FIG. 3A are numbered 1dentically. The
cached primary index 314 may include copies of informa-
tion stored imn each of the primary indexes 310 for the
multiple levels 1n a mapping table. The primary index 314
may be stored 1n one or more of RAM 172, buflers within 50
controller 174, memory medium 130 and caches within
processor 122. In one embodiment, the primary index 314
may be sorted by key value, though sorting otherwise 1s
possible. The primary index 314 may also be divided into
partltlons such as partitions 316a-316b. In one embodiment, 55
the size of the partitions 316a-316b may be a same size as
the partitions 312a-312b within the primary index 310.

Similar to the primary index 310, each entry of the
primary index 314 may store one or more of a key value, a
corresponding unique virtual page identifier (ID), a level ID 60
corresponding to the key value, and status information such
as valid information. When the primary index 314 is
accessed with a query key value 306, 1t may convey a
corresponding page ID identifying a page within the storage
devices 176a-176m storing both the key value and a corre- 65
sponding pointer value. The page identified by the corre-
sponding page ID may be searched with the key value to find
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the pointer value. As shown, the primary index 314 may
have multiple records storing a same key value. Therefore,
multiple hits may result from the search for a given key
value. In one embodiment, a hit with a highest value of a
level ID (or whatever indicator 1s used to 1dentify a youngest
level or most recent entry) may be chosen. This selection of
one hit from multiple hits may be performed by merge logic
not shown here. A further description of the merge logic 1s
provided later.

Turning now to FIG. 4, a generalized block diagram of
another embodiment of a mapping table and primary index
used to access the mapping table 1s shown. Circuit and logic
portions corresponding to those of FIG. 3A are numbered
identically. Mapping table 340 may have a similar structure
as the mapping table shown 1n FIG. 2. However, storage of
a corresponding primary index 310 for each level 1s now
shown. A copy of one or more of the primary 1index portions
310a-3101 may be included 1n index copies 330 (e.g., cached
copies). Copies 330 may generally correspond to the cached
index depicted in FIG. 3B. The information in index copies
330 may be stored in RAM 172, buflers within controller
174, memory medium 130, and caches within processor 122.
In the embodiment shown, the information 1n primary
indexes 310a-3101 may be stored with the pages of map-
pings 1n storage devices 176a-176m. Also shown 1s a sec-
ondary index 320 which may be used to access a primary
index, such as primary index 3101 shown in the diagram.
Similarly, accessing and updating the mapping table 340
may occur as described earlier.

Mapping table 340 comprises multiple levels, such as
Level “1” to Level “N”. In the i1llustrated example, each of
the levels mcludes multiple pages. Level “N” 1s shown to
include pages “0” to “D”, Level N-1 includes pages “E” to
“G”, and so forth. Again, the levels within the mapping table
310 may be sorted by time. Level “N” may be younger than
Level “N-1" and so forth. Mapping table 340 may be
accessed by at least a key value. In the 1llustrated example,
mapping table 340 1s accessed by a key value “27” and a
page ID “32”. For example, in one embodiment, a level 1D
“8” may be used to 1dentily a particular level (or “subtable™)
of the mapping table 340 to search. Having identified the
desired subtable, the page 1D may then be used to identity
the desired page within the subtable. Finally, the key may be
used to i1dentily the desired entry within the desired page.

As discussed above, an access to the cached index 330
may result in multiple hits. In one embodiment, the results
of these multiple hits are provided to merge logic 350 which
identifies which hit 1s used to access the mapping table 340.
Merge logic 350 may represent hardware and/or software
which 1s included within a storage controller. In one embodi-
ment, merge logic 350 1s configured to 1dentity a hit which
corresponds to a most recent (newest) mapping. Such an
identification could be based upon an identification of a
corresponding level for an entry, or otherwise. In the
example shown, a query corresponding to level 8, page 32,
key 27 1s recerved. Responsive to the query, page 32 of level
8 1s accessed. If the key 27 1s found within page 32 (a hat),
then a corresponding result 1s returned (e.g., pointer
xF3209B24 1n the example shown). If the key 27 i1s not
found within page 32, then a miss indication 1s returned.
This physical pointer value may be output from the mapping
table 340 to service a storage access request corresponding
to the key value “27”.

In one embodiment, the mapping table 340 supports inline
mappings. For example, a mapping detected to have a
sufliciently small target may be represented without an
actual physical sector storing user data within the storage
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devices 176a-176m. One example may be a repeating pat-
tern within the user data. Rather than actually store multiple
copies ol a repeated pattern (e.g., a series of zeroes) as user
data within the storage devices 176a-176m, a corresponding
mapping may have an indication marked in the status
information, such as within one of the fields of fieldO to
ficldN 1n the mapping table, that indicates what data value
1s to be returned for a read request. However, there 1s no
actual storage of this user data at a target location within the
storage devices 176a-176m. Additionally, an indication may
be stored within the status information of the primary index
310 and any additional indexes that may be used (not shown
here).

In addition to the above, in various embodiments the
storage system may simultaneously support multiple ver-
sions of the data organization, storage schemes, and so on.
For example, as the system hardware and software evolve,
new features may be incorporated or otherwise provided.
Data, indexes, and mappings (for example) which are newer
may take advantage of these new features. In the example of
FIG. 4, new level N may correspond to one version of the
system, while older level N-1 may correspond to a prior
version. In order to accommodate these different versions,
metadata may be stored 1n association with each of the levels
which indicates which version, which features, compression
schemes, and so on, are used by that level. This metadata
could be stored as part of the index, the pages themselves,
or both. When accesses are made, this metadata then indi-
cates how the data 1s to be handled properly. Additionally,
new schemes and features can be applied dynamically
without the need to quiesce the system. In this manner,
upgrading of the system 1s more flexible and a rebuild of
older data to reflect newer schemes and approaches 1s not
necessary.

Turning now to FIG. SA, one embodiment of a method for
servicing a read access 1s shown. The components embodied
in the network architecture 100 and mapping table 340
described above may generally operate in accordance with
method 500. For purposes of discussion, the steps in this
embodiment are shown 1n sequential order. However, some
steps may occur 1n a different order than shown, some steps
may be performed concurrently, some steps may be com-
bined with other steps, and some steps may be absent in
another embodiment.

Read and store (write) requests may be conveyed from
one of the clients 110a-110c to one of the data storage arrays
120a-120b. In the example shown, a read request 500 1s
received, and 1 block 502 a corresponding query key value
may be generated. In some embodiments, the request itself
may 1nclude the key which 1s used to access the index and
a “generation” of the key 502 1s not required. As described
carlier, the query key value may be a virtual address 1index
comprising a volume ID, a logical address or virtual address
associated with a received request, a snapshot ID, a sector
number, and so forth. In embodiments which are used for
deduplication, the query key value may be generated using
a hash function or other function. Other values are possible
and contemplated for the query key value, which 1s used to
access a mapping table.

In block 504, the query key value may be used to access
one or more cached indexes to identily one or more portions
of a mapping table that may store a mapping that corre-
sponds to the key value. Additionally, recently used map-
pings which have been cached may be searched as well. IT
a hit on the cached mappings 1s detected (block 505), the
cached mapping may be used to perform the requested
access (block 512). If there 1s no hit on the cached mappings,
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the a determination may be made as to whether or not there
1s a hit on the cached index (block 506). If so, a result
corresponding to the hit 1s used to identily and access the
mapping table (block 508). For example, with the primary
index 310, an entry storing the query key value also may
store a unique virtual page ID that identifies a single
particular page within the mapping table. This single par-
ticular page may store both the query key value and an
associated physical pointer value. In block 508, the 1dent-
fied potion of the mapping table may be accessed and a
search performed using the query key value. The mapping
table result may then be returned (block 510) and used to
perform a storage access (block 512) that corresponds to the
target location of the original read request.

In some embodiments, an index query responsive to a
read request may result 1n a miss. Such a miss could be due
to only a portion of the immdex being cached or an error
condition (e.g., a read access to a non-existent location,
address corruption, etc.). In such a case, an access to the
stored 1mndex may be performed. If the access to the stored
index results 1n a hit (block 520), then a result may be
returned (block 522) which 1s used to access the mapping
tables (block 508). On the other hand, if the access to the
stored index results 1n a miss, then an error condition may
be detected. Handling of the error condition may be done in
any ol a variety of desired ways. In one embodiment, an
exception may be generated (block 3524) which 1s then
handled as desired. In one embodiment, a portion of the
mapping table 1s returned in block 510. In various embodi-
ments, this portion 1s a page which may be a 4 KB page, or
otherwise. As previously discussed, the records within a
page may be sorted to facilitate faster searches of the content
included therein.

In one embodiment, the mapping table utilizes traditional
database systems methods for information storage in each
page. For example, each record (or row or entry) within the
mapping table 1s stored one right after the other. This
approach may be used in row-oriented or row-store data-
bases and additionally with correlation databases. These
types of databases utilize a value-based storage structure. A
value-based storage (VBS) architecture stores a unique data
value only once and an auto-generated indexing system
maintains the context for all values. In various embodi-
ments, data may be stored by row and compression may be
used on the columns (fields) within a row. In some embodi-
ments, the techniques used may include storing a base value
and having a smaller field size for the offset and/or having
a set of base values, with a column 1n a row consisting of a
base selector and an offset from that base. In both cases, the
compression information may be stored within (e.g., at the
start) of the partition.

In some embodiments, the mapping table utilizes a col-
umn-oriented database system (column-store) method for
information storage 1n each page. Column-stores store each
database table column separately. In addition, attribute val-
ues belonging to a same column may be stored contiguously,
compressed, and densely packed. Accordingly, reading a
subset of a table’s columns, such as within a page, may be
performed relatively quickly. Column data may be of uni-
form type and may allow storage size optimizations to be
used that may not be available in row-oriented data. Some
compression schemes, such as Lempel-Ziv-Welch (LZ) and
run-length encoding (RLE), take advantage of a detected
similarity of adjacent data to compress. A compression
algorithm may be chosen that allows individual records
within the page to be i1dentified and indexed. Compressing
the records within the mapping table may enable fine-
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grained mapping. In various embodiments, the type of
compression used for a particular portion of data may be
stored 1n association with the data. For example, the type of
compression could be stored 1n an index, as part of a same
page as the compressed data (e.g., 1n a header of some type),
or otherwise. In this manner, multiple compression tech-
niques and algorithms may be used side by side within the
storage system. In addition, 1n various embodiments the type
of compression used for storing page data may be deter-
mined dynamically at the time the data 1s stored. In one
embodiment, one of a variety of compression techniques
may be chosen based at least 1n part on the nature and type
of data being compressed. In some embodiments, multiple
compression techniques will be performed and the one
exhibiting the best compression will then be selected for use
in compressing the data. Numerous such approaches are
possible and are contemplated.

If there 1s a match of the query key value 306 found 1n any
of the levels of the mapping table (block 508), then 1n block
510, one or more 1ndications of a hit may be conveyed to the
merge logic 350. For example, one or more hit indications
may be conveyed from levels “17” to “J” as shown 1n FIG. 4.
The merge logic 350 may choose the highest level, which
may also be the youngest level, of the levels “1” to “I”
conveying a hit indication. The chosen level may provide

information stored in a corresponding record as a result of
the access.

In block 512, one or more corresponding fields within a
matching record of a chosen page may be read to process a
corresponding request. In one embodiment, when the data
within the page 1s stored in a compressed format, the page
1s decompressed and a corresponding physical pointer value
1s read out. In another embodiment, only the matching
record 1s decompressed and a corresponding physical
pointer value 1s read out. In one embodiment, a full physical
pointer value may be split between the mapping table and a
corresponding target physical location. Therefore, multiple
physical locations storing user data may be accessed to
complete a data storage access request.

Turning now to FIG. 5B, one embodiment of a method
corresponding to a recerved write request 1s shown. Respon-
s1ve to a received write request (block 530), a new mapping
table entry corresponding to the request may be created
(block 532). In one embodiment, a new virtual-to-physical
address mapping may be added (block 334) to the mapping
table that pairs the virtual address of the write request with
the physical location storing the corresponding data com-
ponent. In various embodiments, the new mapping may be
cached with other new mappings and added to a new highest
level of the mapping table entries. The write operation to
persistent storage (block 336) may then be performed. In
various embodiments, writing the new mapping table entry
to the mapping tables in persistent storage may not be
performed until a later point 1n time (block 538) which 1s
deemed more eflicient. As previously discussed, 1n a storage
system using solid state storage devices, writes to storage are
much slower than reads from storage. Accordingly, writes to
storage are scheduled in such a way that they minimize
impact on overall system performance. In some embodi-
ments, the isertion of new records 1nto the mapping table
may be combined with other larger data updates. Combiming,
the updates in this manner may provide for more eflicient
write operations. It 1s noted that in the method of 5B, as with
cach ol the methods described herein, operations are
described as occurring in a particular order for ease of
discussion. However, the operations may in fact occur 1n a
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different order, and in some cases various ones of the
operations may occur simultaneously. All such embodiments
are contemplated.

In addition to the above, deduplication mechanisms may
be used 1n some embodiments. FIG. 3B depicts operations
550 which may generally correspond to deduplication sys-
tems and methods. In the example shown, a hash corre-
sponding to a recerved write request may be generated
(block 540) which 1s used to access deduplication tables
(block 542). If there 1s a hit (block 544) in the deduplication
tables (1.e., a copy of the data already exists within the
system), then a new entry may be added to the deduplication
tables (block 548) to retlect the new write. In such a case,
there 1s no need to write the data itself to storage and the
received write data may be discarded. Alternatively, if there
1s a miss 1n the deduplication table, then a new entry for the
new data 1s created and stored in the deduplication tables
(block 546). Additionally, a write of the data to storage 1s
performed (block 536). Further, a new entry may be created
in the index to reflect the new data (block 538). In some
embodiments, 1I a miss occurs during an inline deduplica-
tion operation, no insertion 1 the deduplication tables 1s
performed at that time. Rather, during an inline deduplica-
tion operation, a query with a hash value may occur for only
a portion of the entire deduplication table (e.g., a cached
portion of the deduplication table). If a miss occurs, a new
entry may be created and stored 1n the cache. Subsequently,
during a post-processing deduplication operation, such as an
operation occurring during garbage collection, a query with
a hash value may occur for the entire deduplication table. A
miss may indicate the hash value 1s a unique hash value.
Therefore, a new entry such as a hash-to-physical-pointer
mapping may be mserted into the deduplication table. Alter-
natively, 11 a hit 1s detected during post-processing dedupli-
cation (1.e., a duplicate 1s detected), deduplication may be
performed to eliminate one or more of the detected copies.

Referring now to FIG. 6, a generalized block diagram of
one embodiment of a multi-node network with shared map-
ping tables 1s shown. In the example shown, three nodes
360a-360c arec used to form a cluster of mapping nodes. In
one embodiment, each of the nodes 360a-360c may be
responsible for one or more logical unit numbers (LUNSs). In
the depicted embodiment, a number of mapping table levels,
level 1-N, are shown. Level 1 may correspond to the oldest
level, while level N may correspond to the newest level. For
mapping table entries of LUNs managed by a particular
node, that particular node may itsell have newer entries
stored on the node 1tself. For example, node 360a 1s shown
to store mapping subtables 362a and 364a. These subtables
362a and 362b may correspond to LUNs for which node
360a 15 generally responsible. Similarly, node 360b 1includes
subtables 362b and 364b which may correspond to LUNSs
managed by that node, while node 360c includes subtables
362c and 364c which may correspond to LUNs managed by
that node. In such an embodiment, these “newer” level
mapping table entries are maintained only by their corre-
sponding managing nodes and are generally not found on
other nodes.

In contrast to the above discussed relatively newer levels,
older levels (1.e., levels N-2 down to level 1) represent
mapping table entries which may be shared by all nodes
360a-360c in the sense that any of the nodes may be storing
a copy of those entries. In the example shown, these older
levels 370, 372, and 374 are collectively 1dentified as shared
tables 380. Additionally, as previously discussed, in various
embodiments these older levels are static—apart from merg-
ing or similar operations which are discussed later. Gener-
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ally speaking, a static layer 1s one which 1s not subject to
modification (1.e., 1t 1s “fixed”). Given that such levels are
fixed in this sense, an access to any copy of these lower
levels may be made without concern for whether another of
the copies has been, or 1s being, modified. Consequently, any
of the nodes may safely store a copy of the shared tables 380
and service a request to those tables with confidence the
request can be properly serviced. Having copies of the
shared tables 380 stored on multiple nodes 360 may allow
use of various load balancing schemes when performing
lookups and otherwise servicing requests.

In addition to the above, 1n various embodiments, the
levels 380 which may be shared may be organized in a
manner which reflects the nodes 360 themselves. For
example, node 360a may be responsible for LUNs 1 and 2,
node 360b may be responsible for LUNs 3 and 4, and node
360c may be responsible for LUNs 5 and 6. In various
embodiments, the mapping table entries may include tuples
which themselves 1dentily a corresponding LUN. In such an
embodiment, the shared mapping tables 380 may be sorted
according to key value, absolute width or amount of storage
space, or otherwise. If a sort of mapping table entries 1n the
levels 380 1s based 1n part on LUN, then entries 370a may
correspond to LUNs 1 and 2, entries 370b may correspond
to LUNSs 3 and 4, and entries 370c may correspond to LUNs
5 and 6. Such an organization may speed lookups by a given
node for a request targeted to a particular LUN by eflectively
reducing the amount of data that needs to be searched,
allowing a coordinator to directly select the node responsible
for a particular LUN as the target of a request. These and
other organization and sort schemes are possible and are
contemplated. In addition, 1t 1t 1s desired to move respon-
sibility for a LUN from one node to another, the original
node mappings for that node may be flushed to the shared
levels (e.g., and merged). Responsibility for the LUN 1s then
transierred to the new node which then begins servicing that
LUN.

Referring now to FIG. 7, a generalized block diagram of
one embodiment of a secondary index used to access a
mapping table 1s shown. As described earlier, requester data
inputs 302 may be received by a key generator 304, which
produces a query key value 306. The query key value 306 1s
used to access a mapping table. In some embodiments, the
primary index 310 shown in FIG. 3 may be too large (or
larger than desired) to store in RAM 172 or memory medium
130. For example, older levels of the index may grow very
large due to merging and flattening operations described
later 1n FIG. 10 and FIG. 11. Therefore, a secondary index
320 may be cached for at least a portion of the primary index
instead of the corresponding portion of the primary index
310. The secondary index 320 may provide a more coarse
level of granularity of location identification of data stored
in the storage devices 176a-176m. Therefore, the secondary
index 320 may be smaller than the portion of the primary
index 310 to which 1t corresponds. Accordingly, the second-
ary index 320 may be stored in RAM 172 or in memory
medium 130.

In one embodiment, the secondary index 320 1s divided
into partitions, such as partitions 322a-322b. Additionally,
the secondary mdex may be organized according to level
with the more recent levels appearing first. In one embodi-
ment, older levels have lower numbers and younger levels
have higher numbers (e.g., a level ID may be incremented
with each new level). Each entry of the secondary index 320
may 1dentily a range of key values. For example, the first
entry shown in the example may identily a range of key
values from O to 12 in level 22. These key values may
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correspond to key values associated with a first record and
a last record within a given page of the primary index 310.
In other words, the entry 1n the secondary index may simply
store an 1dentification of key O and an identification of key
12 to indicate the corresponding page includes entries within
that range. Referring again to FIG. 3A, partition 312a may
be a page and the key values of 1ts first record and 1ts last
record are O and 12, respectively. Therefore, an entry within
the secondary index 320 stores the range O to 12 as shown
in FIG. 7. Since remappings are maintained in the levels
within the mapping table, a range of key values may
correspond to multiple pages and associated levels. The
fields within the secondary index 320 may store this infor-
mation as shown in FIG. 7. Each entry may store one or
more corresponding unique virtual page 1identifiers (IDs) and
associated level IDs corresponding to the range of key
values. Each entry may also store corresponding status
information such as validity information. The list of main-
tained page 1Ds and associated level IDs may indicate where
a given query key value might be stored, but not confirm that
the key value 1s present 1n that page and level. The secondary
index 320 1s smaller than the primary index 310, but also has
a coarse-level of granularity of location 1dentification of data
stored 1n the storage devices 176a-176m. The secondary
index 320 may be suiliciently small to store in RAM 172 or
in memory medium 130.

When the secondary index 320 1s accessed with a query
key value 306, it may convey one or more corresponding
page IDs and associated level IDs. These results are then
used to access and retrieve portions of the stored primary
index. The one or more i1dentified pages may then be
searched with the query key value to find a physical pointer
value. In one embodiment, the level IDs may be used to
determine a youngest level of the identified one or more
levels that also store the query key value 306. A record
within a corresponding page may then be retrieved and a
physical pointer value may be read for processing a storage
access request. In the illustrated example, the query key
value 27 1s within the range of keys 16 to 31. The page IDs
and level IDs stored in the corresponding entry are conveyed
with the query key value to the mapping table.

Referring now to FIG. 8, a generalized block diagram of
one embodiment of a tertiary index used to access a mapping
table 1s shown. Circuit and logic portions corresponding to
those of FIG. 4 are numbered i1dentically. As described
carlier, the primary index 310 shown 1n FIG. 3 may be too
large to store mm RAM 172 or memory medium 130. In
addition, as the mapping table 340 grows, the secondary
index 320 may also become too large to store 1n these
memories. Therefore, a tertiary mndex 330 may be accessed
prior to the secondary index 320, which may still be faster
than accessing the primary index 310.

The tertiary index 330 may provide a more coarse level of
granularity than the secondary index 320 of location 1den-
tification of data stored in the storage devices 176a-176m.
Therefore, the tertiary index 330 may be smaller than the
portion of the secondary index 320 to which 1t corresponds.
It 1s noted that each of the primary index 310, the secondary
index 320, the tertiary index 330, and so forth, may be stored
in a compressed format. The compressed format chosen may
be a same compressed format used to store information
within the mapping table 340.

In one embodiment, the tertiary index 330 may include
multiple partitions, such as partitions 332a, 332b and so
forth. The tertiary index 330 may be accessed with a query
key value 306. In the illustrated example, a query key value
306 of “27” 1s found to be between a range of key values
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from O to 78. A first entry 1n the tertiary index 330 corre-
sponds to this key value range. A column 1n the tertiary index
330 may indicate which partition to access within the
secondary index 320. In the illustrated example, a key value
range of 0 to 78 corresponds to partition 0 within the
secondary index 320.

It 1s also noted a filter (not shown) may be accessed to
determine 11 a query key value 1s not within any one of the
indexes 310-330. This filter may be a probabilistic data
structure that determines whether an element 1s a member of
a set. False positives may be possible, but false negatives
may not be possible. One example of such a filter 1s a Bloom
filter. IT an access of such a filter determines a particular
value 1s not 1n the full index 142, then no query 1s sent to the
storage. If an access of the filter determines the query key
value 1s 1n a corresponding index, then it may be unknown
whether a corresponding physical pointer value 1s stored in
the storage devices 176a-176m.

In addition to the above, 1n various embodiments one or
more overlay tables may be used to modily or elide tuples
provided by the mapping table in response to a query. Such
overlay tables may be used to apply filtering conditions for
use 1n responding to accesses to the mapping table or during,
flattening operations when a new level 1s created. In various
embodiments, other hardware and/or software may be used
to apply filtering conditions. In some embodiments, the
overlay table may be organized as time ordered levels 1n a
manner similar to the mapping table described above. In
other embodiments, they may be organized differently. Keys
for the overlay table need not match the keys for the
underlying mapping table. For example, an overlay table
may contain a single entry stating that a particular volume
has been deleted or 1s otherwise naccessible (e.g., there 1s
no natural access path to query this tuple), and that a
response to a query corresponding to a tuple that refers to
that volume 1dentifier 1s instead invalid. In another example,
an entry in the overlay table may indicate that a storage
location has been freed, and that any tuple that refers to that
storage location 1s invalid, thus invalidating the result of the
lookup rather than the key used by the mapping table. In
some embodiments, the overlay table may modily fields 1n
responses to queries to the underlying mapping table. In
some embodiments, a single key may represent a range of
values to efhiciently i1dentily multiple values to which the
same operation (eliding or modification) 1s applied. In this
manner, tuples may (eflectively) be “deleted” from the
mapping table by creating an “elide” entry 1n the overlay
table and without modifying the mapping table. In this case,
the overlay table may include keys with no associated
non-key data fields.

Turning now to FIG. 9, one embodiment of a method for
processing a read request 1n a system including mapping and
overlay tables 1s shown. Responsive to a read request being
received (block 900), a mapping table key (block 908) and
first overlay table key (block 902) corresponding to the
request are generated. In this example, access to the overlay
and mapping tables 1s shown as occurring concurrently.
However, in other embodiments, accesses to the tables may
be performed non-concurrently (e.g., sequentially or other-
wise separate 1in time) 1 any desired order. Using the key
generated for the mapping table, a corresponding tuple may
be retrieved from the mapping table (block 910). If the first
overlay table contains an “elide” entry corresponding to the
overlay table key (conditional block 906), any tuple found 1n
the mapping table 1s deemed invalid and an 1ndication to this
cllect may be returned to the requester. On the other hand,
if the overlay table contains a “modily” entry corresponding
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to the overlay table key (conditional block 912), the values
in the first overlay table entry may be used to modily one or
more fields in the tuple retrieved from the mapping table
(block 922). Once this process 1s done, a second overlay
table key 1s generated (block 914) based on the tuple from
the mapping table (whether modified or not) and a second
lookup 1s done 1n a second overlay table (block 916) which
may or may not be the same table as the first overlay table.
If an “elide” entry i1s found in the second overlay table
(conditional block 920), the tuple from the mapping table 1s
deemed mvalid (block 918). If a “modily” entry 1s found 1n
the second overlay table (conditional block 924), one or
more fields of the tuple from the mapping table may be
modified (block 926). Such modification may mclude drop-
ping a tuple, normalizing a tuple, or otherwise. The modified
tuple may then be returned to the requester. It the second
overlay table does not contain a modily entry (conditional
block 924), the tuple may be returned to the requester
unmodified. In some embodiments, at least some portions of
the overlay table(s) may be cached to provide faster access
to their contents. In various embodiments, a detected elide
entry in the first overlay table may serve to short circuit any
other corresponding lookups (e.g., blocks 914, 916, etc.). In
other embodiments, accesses may be performed 1n parallel
and “raced.” Numerous such embodiments are possible and
are contemplated.

Turning now to FIG. 10, a generalized block diagram of
one embodiment of a flattening operation for levels within a
mapping table 1s shown. In various embodiments, a flatten-
ing operation may be performed 1n response to detecting one
or more conditions. For example, over time as the mapping
table 340 grows and accumulates levels due to 1nsertions of
new records, the cost of searching more levels for a query
key value may become undesirably high. In order to con-
strain the number of levels to search, multiple levels may be
flattened 1nto a single new level. For example, two or more
levels which are logically adjacent or contiguous 1n time
order may be chosen for a flattening operation. Where two
or more records correspond to a same key value, the
youngest record may be retained while the others are not
included 1n the new “tlattened” level. In such an embodi-
ment, the newly flattened level will return a same result for
a search for a given key value as would be provided by a
search of the corresponding multiple levels. Since the results
of searches 1n the new flattened level do not change as
compared to the two or more levels 1t replaces, the flattening
operation need not be synchronized with update operations
to the mapping table. In other words, flattening operations
on a table may be performed asynchronously with respect to
updates to the table.

As previously noted, older levels are fixed in the sense
that theirr mappings are not modified (1.e., a mapping from A
to B remains unchanged). Consequently, modifications to
the levels being flattened are not being made (e.g., due to
user writes) and synchronization locks of the levels are not
required. Additionally, 1n a node-based cluster environment
where each node may store a copy of older levels of the
index (e.g., as discussed 1n relation to FIG. 6), flattening
operations may be undertaken on one node without the need
to lock corresponding levels 1n other nodes. Consequently,
processing may continue in all nodes while flattening takes
place 1 an asynchronous manner on any of the nodes. At a
later point 1n time, other nodes may flatten levels, or use an
already flattened level. In one embodiment, the two or more
levels which have been used to form a flattened level may be
retained for error recovery, mirroring, or other purposes. In
addition to the above, 1n various embodiments, records that
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have been elided may not be reinserted 1n to the new level.
The above described flattening may, for example, be per-
formed responsive to detecting the number of levels 1n the
mapping table has reached a given threshold. Alternatively,
the flattening may be performed responsive to detecting the
size of one or more levels has exceeded a threshold. Yet
another condition that may be considered 1s the load on the
system. The decision of whether to flatten the levels may
consider combinations of these conditions in addition to
considering them individually. The decision of whether to
flatten may also consider both the present value for the
condition as well as a predicted value for the condition 1n the
tuture. Other conditions for which flattening may be per-
formed are possible and are contemplated.

In the illustrated example, the records are shown simply
as key and pointer pairs. The pages are shown to include four
records for ease of illustration. A level “F” and its next
contiguous logical neighbor, level “F-1" may be considered
for a flattening operation. Level “F” may be younger than
Level “F-17. Although two levels are shown to be flattened
here, i1t 1s possible and contemplated that three or more
levels may be chosen for flattening. In the example shown,
Level “F-1" may have records storing a same key value
found i Level “F”. Bidirectional arrows are used to identily
the records storing a same key value across the two con-
tiguous levels.

The new Level “New F” includes a key corresponding to
the duplicate key values found mm Level “F” and Level
“F-=17”. In addition, the new Level “New F” includes a
pointer value corresponding to the youngest (or younger in
this case) record of the records storing the duplicate key
value. For example, each of Level “F” and Level “F-17
includes a record storing the key value 4. The younger
record 1s 1n Level “F” and this record also stores the pointer
value 512. Accordingly, the Level “F-1"" includes a record
storing the key value 4 and also the pointer value 512, rather
than the pointer value 656 found in the older Level “F-17.
Additionally, the new Level “New F” includes records with
unique key values found between Level “F” and Level
“F-1”. For example, the Level “F-1" includes records with
the key and pomter pair of 6 and 246 found 1n Level “F” and
the key and pointer pair of 2 and 398 found 1n Level “F-1".
As shown, each of the pages within the levels 1s sorted by
key value.

As noted above, 1in various embodiments an overlay table
may be used to modify or elide tuples corresponding to key
values 1n the underlying mapping table. Such an overlay
table(s) may be managed 1n a manner similar to that of the
mapping tables. For example, an overlay table may be
flattened and adjacent entries merged together to save space.
Alternatively, an overlay table may be managed in a manner
different from that used to manage mapping tables. In some
embodiments, an overlay table may contain a single entry
that refers to a range of overlay table keys. In this way, the
s1ze ol the overlay table can be limited. For example, 1t the
mapping table contains k valid entries, the overlay table
(after flattening) need contain no more than k+1 entries
marking ranges as invalid, corresponding to the gaps
between valid entries 1n the mapping table. Accordingly, the
overlay table may used to identify tuples that may be
dropped from the mapping table 1 a relatively ethicient
manner. In addition to the above, while the previous dis-
cussion describes using an overlay table to elide or modity
responses to requests from the mapping table(s), overlay
tables may also be used to elide or modity values during
flattening operations of the mapping tables. Accordingly,
when a new level 1s created during a tlattening operation of
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a mapping table, a key value that might otherwise be
inserted mto the new level may be elided. Alternatively, a
value may be modified before insertion in the new level.
Such modifications may result in a single record correspond-
ing to a given range of key values 1n the mapping table being
replaced (in the new level) with multiple records—each
corresponding to a subrange of the original record. Addi-
tionally, a record may be replaced with a new record that
corresponds to a smaller range, or multiple records could be
replaced by a single record whose range covers all ranges of
the original records. All such embodiments are contem-
plated.

Referring now to FIG. 11, a generalized block diagram of
an embodiment of a flattening operation for levels within a
mapping table 1s shown. As previously discussed, levels may
be time ordered. In the illustrated example, a Level “F”
comprising one or more mdexes and corresponding map-
pings 1s logically located above older Level “F-1". Also,
Level “F” 1s located logically below younger Level “F+17.
Similarly, Level “F-2" 1s logically located above younger
Level “F-1" and Level “F+2” 1s logically located below
older Level “F+1”. In one example, levels “F” and “F-1”
may be considered for a flattening operation. Bidirectional
arrows are used to illustrate there are records storing same
key values across the two contiguous levels.

As described earlier, a new Level “New F” includes key
values corresponding to the duplicate key values found in
Level “F” and Level “F-1". In addition, the new Level
“New F” includes a pointer value corresponding to the
youngest (or younger in this case) record of the records
storing the duplicate key value. Upon completion of the
flattening operation, the Level “F” and the Level “F-1" may
not yet be removed from the mapping table. Again, in a
node-based cluster, each node may verily 1t 1s ready to
utilize the new single level, such as Level “New F”, and no
longer use the two or more levels it replaces (such as Level
“F” and Level “F-17). This verification may be performed
prior to the new level becoming the replacement. In one
embodiment, the two or more replaced levels, such as Level
“F” and Level “F-17, may be kept in storage for error
recovery, mirroring, or other purposes. In order to maintain
the time ordering of the levels and their mappings, the new
flattened level F 1s logically placed below yvounger levels
(e.g., level F+1) and above the oniginal levels that it replaces
(e.g., level F and level F-1).

Turning now to FIG. 12, one embodiment of a method
1000 for flattening levels within a mapping table 1s shown.
The components embodied 1n the network architecture 100
and the mapping table 340 described above may generally
operate 1n accordance with method 1000. For purposes of
discussion, the steps in this embodiment are shown 1n
sequential order. However, some steps may occur 1 a
different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps,
and some steps may be absent 1n another embodiment.

In block 1002, storage space 1s allocated for a mapping
table and corresponding indexes. In block 1004, one or more
conditions are determined for flattening two or more levels
within the mapping table. For example, a cost of repeatedly
searching a current number of levels within the mapping
table 1n response to user requests may be greater than a cost
of performing a flattening operation. Additionally, a cost
may be based on at least one of the current (or predicted)
number of levels 1n the structure to be flattened, the number
ol entries 1n one or more levels, the number of mapping
entries that would be elided or modified, and the load on the
system. Cost may also include a time to perform a corre-
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sponding operation, an occupation ol one or more buses,
storage space used during a corresponding operation, a
number of duplicate entries in a set of levels has reached
some threshold, and so forth. In addition, a count of a
number of records within each level may be used to estimate
when a flattening operation performed on two contiguous
levels may produce a new single level with a number of
records equal to twice a number of records within a next
previous level. These conditions taken singly or i any
combination, and others, are possible and are contemplated.

In block 1006, the indexes and the mapping table are
accessed and updated as data 1s stored and new mappings are
found. A number of levels within the mapping table
increases as new records are inserted into the mapping table.
If a condition for flattening two or more levels within the
mapping table 1s detected (conditional block 1008), then in
block 1010, one or more groups of levels are i1dentified for
flattening. A group of levels may include two or more levels.
In one embodiment, the two or more levels are contiguous
levels. Although the lowest levels, or the oldest levels, may
be the best candidates for flattening, a younger group may
also be selected.

In block 1012, for each group a new single level com-
prising the newest records within a corresponding group 1s
produced. In the earlier example, the new single Level “New
F”” includes the youngest records among the Level “F” and
the Level “F+1”. In block 1014, 1n a node-based cluster, an
acknowledgment may be requested from each node within
the cluster to indicate a respective node 1s ready to utilize the
new levels produced by the flattening operation. When each
node acknowledges that 1t can utilize the new levels, in
block 1016, the current levels within the i1dentified groups
are replaced with the new levels. In other embodiments,
synchronization across nodes 1s not needed. In such embodi-
ments, some nodes may begin using a new level prior to
other nodes. Further, some nodes may continue to use the
original level even after newly flattened levels are available.
For example, a particular node may have original level data
cached and used that 1n preference to using non-cached data
ol a newly flattened level. Numerous such embodiments are
possible and are contemplated.

Turning now to FIG. 13, one embodiment of a method
1100 for efliciently processing bulk array tasks within a
mapping table 1s shown. Similar to the other described
methods, the components embodied in the network archi-
tecture 100 and the mapping table 340 described above may
generally operate in accordance with method 1100. In addi-
tion, the steps in this embodiment are shown 1n sequential
order. However, some steps may occur in a different order
than shown, some steps may be performed concurrently,
some steps may be combined with other steps, and some
steps may be absent 1n another embodiment.

Storing the information 1n a compressed format within the
mapping table may enable fine-grained mapping, which may
allow direct manipulation of mapping information within the
mapping table as an alternative to common bulk array tasks.
The direct map manipulation may reduce I/O network and
bus trailic. As described earlier, Flash memory has a low
“seck time”, which allows a number of dependent read
operations to occur 1n less time than a single operation from
a spinning disk. These dependent reads may be used to
perform online fine-grained mappings to integrate space-
saving features like compression and deduplication. In addi-
tion, these dependent read operations may allow the storage
controller 174 to perform bulk array tasks entirely within a
mapping table istead of accessing (reading and writing) the
user data stored within the storage devices 176a-176m.
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In block 1102, a large or bulk array task 1s received. For
example, a bulk copy or move request may correspond to a
backup of a dozens or hundreds of virtual machines in
addition to enterprise application data being executed and
updated by the virtual machines. The amount of data asso-
ciated with the received request associated with a move,
branch, clone, or copy of all of this data may be as large as
16 gigabytes (GB) or larger. If the user data was accessed to
process this request, a lot of processing time may be spent
on the request and system performance decreases. In addi-
tion, a virtualized environment typically has less total input/
output (I/0) resources than a physical environment.

In block 1104, the storage controller 174 may store an
indication corresponding to the received request that relates
a range ol new keys to a range of old keys, wherein both the
ranges ol keys correspond to the received request. For
example, 11 the received request 1s to copy of 16 GB of data,
a start key value and an end key value corresponding to the
16 GB of data may be stored. Again, each of the start and the
end key values may include a volume ID, a logical or virtual
address within the recerved request, a snapshot 1D, a sector
number and so forth. In one embodiment, this information
may be stored separate from the information stored in the
indexes, such as the primary imndex 310, the secondary index
320, the tertiary index 330, and so forth. However, this
information may be accessed when the indexes are accessed
during the processing of later requests.

In block 1106, the data storage controller 174 may convey
a response to a corresponding client of the client computer
systems 110a-110c indicating completion of the received
request without prior access of user data. Therefore, the
storage controller 174 may process the received request with
low or no downtime and with no load on processor 122.

In block 1108, the storage controller 174 may set a
condition, an indication, or a flag, or bufler update opera-
tions, for updating one or more records 1n the mapping table
corresponding to the new keys replacing the old keys in the
mapping table. For both a move request and a copy request,
one or more new records corresponding to the new keys may
be 1nserted 1n the mapping table. The keys may be mserted
in a created new highest level as described earlier. For a
move request, one or more old records may be removed
from the mapping table after a corresponding new record has
been mserted in the mapping table. Either immediately or at
a later time, the records 1n the mapping table are actually
updated.

For a zeroing or an erase request, an indication may be
stored that a range of key values now corresponds to a series
of binary zeroes. Additionally, as discussed above, overlay
tables may be used to 1dentily key values which are not (or
no longer) valid. The user data may not be overwritten. For
an erase request, the user data may be overwritten at a later
time when the “freed” storage locations are allocated with
new data for subsequent store (write) requests. For an
externally-directed defragmentation request, contiguous
addresses may be chosen for sector reorganization, which
may benefit applications executed on a client of the client
computer systems 110a-110c.

If the storage controller 174 receives a data storage access
request corresponding to one of the new keys (conditional
block 1110), and the new key has already been mserted 1in the
mapping table (conditional block 1112), then 1n block 1114,
the indexes and the mapping table may be accessed with the
new key. For example, either the primary mmdex 310, the
secondary index 320, or the tertiary index 330 may be
accessed with the new key. When one or more pages of the
mapping table are 1dentified by the indexes, these 1dentified
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pages may then be accessed. In block 1116, the storage
access request may be serviced with a physical pointer value
found 1n the mapping table that 1s associated with the new
key.

If the storage controller 174 recerves a data storage access
request corresponding to one of the new keys (conditional
block 1110), and the new key has not already been inserted
in the mapping table (conditional block 1112), then 1n block
1118, the indexes and the mapping table may be accessed
with a corresponding old key. The storage holding the range
of old keys and the range of new keys may be accessed to
determine the corresponding old key value. When one or
more pages ol the mapping table are identified by the
indexes, these i1dentified pages may then be accessed. In
block 1120, the storage access request may be serviced with
a physical pointer value found in the mapping table that 1s
associated with the old key.

Turning now to FIG. 14, a generalized block diagram
illustrating an embodiment of a data layout architecture
within a storage device 1s shown. In one embodiment, the
data storage locations within the storage devices 176a-176m
may be arranged into redundant array of independent
devices (RAID) arrays. As shown, different types of data
may be stored 1n the storage devices 176a-176k according to
a data layout architecture. In one embodiment, each of the
storage devices 176a-176k 1s an SSD. An allocation unit
within an SSD may include one or more erase blocks within
an SSD.

The user data 1230 may be stored within one or more
pages included within one or more of the storage devices
176a-176k. Within each intersection of a RAID stripe and
one of the storage devices 176a-176k, the stored information
may be formatted as a series of logical pages. Each logical
page may 1n turn include a header and a checksum for the
data 1n the page. When a read is 1ssued 1t may be for one or
more logical pages and the data in each page may be
validated with the checksum. As each logical page may
include a page header that contains a checksum for the page
(which may be referred to as a “media” checksum), the
actual page size for data may be smaller than one logical
page. In some embodiments, for pages storing inter-device
recovery data 1250, such as RAID panty information, the
page header may be smaller, so that the parity page protects
the page checksums 1n the data pages. In other embodi-
ments, the checksum 1n parity pages storing inter-device
recovery data 1250 may be calculated so that the checksum
of the data page checksums 1s the same as the checksum of
the parity page covering the corresponding data pages. In
such embodiments, the header for a parity page need not be
smaller than the header for a data page.

The mter-device ECC data 1250 may be parity informa-
tion generated from one or more pages on other storage
devices holding user data. For example, the inter-device
ECC data 1250 may be parity information used 1n a RAID
data layout architecture. Although the stored immformation 1s
shown as contiguous logical pages in the storage devices
176a-176k, 1t 1s well known 1n the art the logical pages may
be arranged 1n a random order, wherein each of the storage
devices 176a-176k 1s an SSD.

The intra-device ECC data 1240 may include information
used by an intra-device redundancy scheme. An intra-device
redundancy scheme utilizes ECC information, such as parity
information, within a given storage device. This intra-device
redundancy scheme and its ECC information corresponds to
a given device and may be maintained within a given device,
but 1s distinct from ECC that may be internally generated
and maintained by the device itself. Generally speaking, the
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internally generated and maintained ECC of the device 1s
invisible to the system within which the device 1s included.

The intra-device ECC data 1240 may also be referred to
as intra-device error recovery data 1240. The intra-device
error recovery data 1240 may be used to protect a given
storage device from latent sector errors (LSEs). An LSE 1s
an error that 1s undetected until the given sector 1s accessed.
Therefore, any data previously stored in the given sector
may be lost. A single LSE may lead to data loss when
encountered during RAID reconstruction after a storage
device failure. The term “sector” typically refers to a basic
unit of storage on a HDD, such as a segment within a given
track on the disk. Here, the term “sector” may also refer to
a basic unit of allocation on a SSD. Latent sector errors
(LSEs) occur when a given sector or other storage unit
within a storage device 1s i1naccessible. A read or write
operation may not be able to complete for the given sector.

In addition, there may be an uncorrectable error-correction
code (ECC) error.

The intra-device error recovery data 1240 included within
a given storage device may be used to increase data storage
reliability within the given storage device. The intra-device
error recovery data 1240 1s 1n addition to other ECC 1nfor-
mation that may be included within another storage device,
such as parity information utilized 1n a RAID data layout
architecture.

Within each storage device, the intra-device error recov-
ery data 1240 may be stored in one or more pages. As 1s well
known by those skilled in the art, the intra-device error
recovery data 1240 may be obtamned by performing a
function on chosen bits of information within the user data
1230. An XOR-based operation may be used to derive parity
information to store in the intra-device error recovery data
1240. Other examples of intra-device redundancy schemes
include single parity check (SPC), maximum distance sepa-
rable (MDS) erasure codes, interleaved parity check codes
(IPC), hybrid SPC and MDS code (MDS+SPC), and column
diagonal parity (CDP). The schemes vary in terms of deliv-
ered reliability and overhead depending on the manner the
data 1240 1s computed.

In addition to the above described error recovery infor-
mation, the system may be configured to calculate a check-
sum value for a region on the device. For example, a
checksum may be calculated when information 1s written to
the device. This checksum is stored by the system. When the
information 1s read back from the device, the system may
calculate the checksum again and compare it to the value
that was stored originally. If the two checksums difler, the
information was not read properly, and the system may use

other schemes to recover the data. Examples of checksum
functions include cyclical redundancy check (CRC), MD?3,

and SHA-1.

An erase block within an SSD may comprise several
pages. A page may include 4 KB of data storage space. An
erase block may include 64 pages, or 256 KB. In other
embodiments, an erase block may be as large as 1 megabyte
(MB), and include 256 pages. An allocation unit size may be
chosen 1n a manner to provide both sufliciently large sized
units and a relatively low number of units to reduce over-
head tracking of the allocation units. In one embodiment,
one or more state tables may maintain a state of an allocation
unit (allocated, free, erased, error), a wear level, and a count
of a number of errors (correctable and/or uncorrectable) that
have occurred within the allocation unit. In one embodi-
ment, an allocation unit 1s relatively small compared to the
total storage capacity of an SSD. Other amounts of data
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storage space for pages, erase blocks and other unit arrange-
ments are possible and contemplated.

The metadata 1260 may include page header information,
RAID stripe identification information, log data for one or
more RAID stripes, and so forth. In various embodiments,
the single metadata page at the beginning of each stripe may
be rebuilt from the other stripe headers. Alternatively, this
page could be at a different oflset 1n the parity shard so the
data can be protected by the inter-device parity. In one
embodiment, the metadata 1260 may store or be associated
with particular flag values that indicate this data 1s not to be
deduplicated.

In addition to inter-device parity protection and intra-
device parity protection, each of the pages 1n storage devices
176a-176k may comprise additional protection such as a
checksum stored within each given page. The checksum (8
byte, 4 byte, or otherwise) may be placed inside a page after
a header and before the corresponding data, which may be
compressed. For yet another level of protection, data loca-
tion information may be included 1n a checksum value. The
data in each of the pages may include this information. This
information may include both a virtual address and a physi-
cal address. Sector numbers, data chunk and offset numbers,
track numbers, plane numbers, and so forth may be included
in this information as well. This mapping information may
also be used to rebuild the address translation mapping table
if the content of the table 1s lost.

In one embodiment, each of the pages in the storage
devices 176a-176k stores a particular type of data, such as
the data types 1230-1260. Alternatively, pages may store
more than one type of data. The page header may store
information identifying the data type for a corresponding
page. In one embodiment, an intra-device redundancy
scheme divides a device into groups of locations for storage
of user data. For example, a division may be a group of
locations within a device that correspond to a stripe within
a RAID layout. In the example shown, only two stripes,
1270a and 1270b, are shown for ease of illustration.

In one embodiment, a RAID engine within the storage
controller 174 may determine a level of protection to use for
storage devices 176a-176k. For example, a RAID engine
may determine to utilize RAID double parity for the storage
devices 176a-176k. The inter-device redundancy data 1250
may represent the RAID double parity values generated
from corresponding user data. In one embodiment, storage
devices 1767 and 176k may store the double parity infor-
mation. It 1s understood other levels of RAID parity pro-
tection are possible and contemplated. In addition, 1n other
embodiments, the storage of the double parity information
may rotate between the storage devices rather than be stored
within storage devices 1767 and 176k for each RAID stripe.
The storage of the double parity information is shown to be
stored 1n storage devices 1767 and 176k for ease of illustra-
tion and description. Although each of the storage devices
176a-176k comprises multiple pages, only page 1212 and
page 1220 are labeled for ease of 1illustration.

It 1s noted that the above-described embodiments may
comprise soltware. In such an embodiment, the program
instructions that implement the methods and/or mechanisms
may be conveyed or stored on a computer readable medium.
Numerous types ol media which are configured to store

program 1nstructions are available and include hard disks,
floppy disks, CD-ROM, DVD, flash memory, Program-

mable ROMs (PROM), random access memory (RAM), and
various other forms of volatile or non-volatile storage.
In various embodiments, one or more portions of the

methods and mechanisms described herein may form part of
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a cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services
according to one or more various models. Such models may
include Infrastructure as a Service (laaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). In IaaS,
computer inirastructure 1s delivered as a service. In such a
case, the computing equipment i1s generally owned and
operated by the service provider. In the PaaS model, sofit-
ware tools and underlying equipment used by developers to
develop software solutions may be provided as a service and
hosted by the service provider. SaaS typically includes a
service provider licensing soitware as a service on demand.
The service provider may host the software, or may deploy
the software to a customer for a given period of time.
Numerous combinations of the above models are possible
and are contemplated.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the
above disclosure 1s fully appreciated. It 1s intended that the

following claims be interpreted to embrace all such varia-
tions and modifications.

What 1s claimed 1s:
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mserted—tte—the—rew—tevel 21. A computer system comprising:
R =R ORI OSSR SOt ettt i—t—fstlres a data storage medium;
ComPEsHIe-a-overlav—table—and-where IOt a deduplication table;

4 ' ratretty-ot-a-stre-recora-as-determaed 25 a cached portion of entries in the deduplication table
by-the-overiay—table: o | | stored in a cache, wherein a number of entries in the
e e R e T cached portion is less than all the entries in the
S OO RGOS Ca arICas T Hr PHf T O rot ronTot deduplication table; and

preciotecaumber-of Shtfres fre-pevw—teveh a data storage controller coupled to the data storage

A—iHetRoa—tor-tse—Hi—a—sterase—systei—tre—ietgeoa 30

medium, wherein the data storage controller comprises
e . - " _ a controller storage medium comprising compuiter pro-

R _ o T T i_' i T gram instructions, that, when executed, cause the data

storage controller to carry out the steps of:

s > ; . L ] i T 15 generate a hash corresponding to a write request;
o to dateat SR i j before a subsequent search of all the entries in the

_ deduplication table, search, in the cache, only the
lasole oo pdioacns 1o cached portion of the entries in the deduplication

Fres table to determine whether the hash matches an
syeatHre—a—rew—tevelH-the—plaralitr—ottevels—ane 40 entry in the cached portion of the entries in the
e S iy S G m e ek e E o ' -, - i deduplfcatfon f(lblé?;

sroup—thate—tre—pew—level—ta—response—to—detectne in response to determining that the hash does not match

L OTES-StOres—A-tHITeHE an entry in the cached portion, write the data asso-

ey-anrong-ieys-stored-withtthe-grotp: ciated with the write request and store a new dedu-

sreri-atteast-onc-recora-correspeonarmeo-to-aranee-ot 45 plication table entry for the data in the cache;

et .' +he-grouptareplaces : THre-HRew—Tex perform the subsequent search of all the entries in the

Oy-aprirarty-orrecoras-correspoatiigto-storanges deduplication table including the entries in the
Mﬁmﬂ' | | cached portion; and

- FOE—RS—FeE T OB WO OOyt based on the subsequent search and in response to

FohZesTIeYeroT e pratanty orreversmaypeapadeawit S0 determining that the hash matches one of the entries

. o in the deduplication table, perform a deduplication

| T _ T . operation to eliminate one or more detected copies.

- = A 22. The computer system as rvecited in claim 21, wherein
the subsequent searvch of all of the entries in the deduplica-
tion table is performed during a post-processing deduplica-

e 5|E|'-‘EEE] ey o | . ' tion operation.

23. The computer system as rvecited in claim 22, wherein

aerfe sl ot e GRS - TR the post-processing deduplication operation is a garbage
FOROT agneat-to-pudates—to—the—manpine—table ¢ collection operation.
I aiaa- ot erd—p—aat e - —hrereti—is 24. The computer system as vecited in claim 21, wherein

spense—to—deteetne—the—Hattenne—econditton—the—methoc the data storage controller is further configured to:
' ' ' re—OF—ere—Seeeta—teeards based on the subsequent search and in response to deter-
' re—te mining that the hash does not match any of the entries
65 in the deduplication table, perform the write operation
ST that stores the new deduplication table entry into the
deduplication table.




US RE49.011 E

33

25. The computer system as recited in claim 24 wherein
performing the write operation that stoves the new dedupli-
cation table entry in the deduplication table is combined
with other write operations.
26. The computer system as rvecited in claim 21, wherein
the new deduplication table entry is a hash-to-phvsical
pointer mapping.
27. A method for use in a storage system, the method
COMpPriSing:
generating a hash corresponding to a write request,
before a subsequent searvch of all the entries in the
deduplication table, search, in the cache, only a cached
portion of the entries in a deduplication table to
determine whether the hash matches an entry in the
cached portion, wherein the number of entries in the
cached portion is less than all the entries in the
deduplication table, and wherein the cached portion is
stored in the cache;
in response to determining that the hash does not match
an entry in the cached portion, writing the data asso-
ciated with the write request and stoving a new dedu-
plication table entry for the data in the cache;

performing the subsequent search of all the entries in the
deduplication table including the entries in the cached
portion; and

based on the subsequent search and in vesponse to deter-

mining that the hash matches one of the entries in the
deduplication table, performing a deduplication opera-
tion to eliminate one or more detected copies.

28. The method as recited in claim 27, wherein the
subsequent search of all of the entries in the deduplication
table is performed during a post-processing deduplication
operation.

29. The method as recited in claim 28, wherein the
post-processing deduplication operation is a garbage col-
lection operation.

30. The method as vecited in claim 27, further comprising:

based on the subsequent search and in response to deter-

mining that the hash does not match any of the entries
in the deduplication table, perform the write operation
that storves the new deduplication table entry into the
deduplication table.

31. The method as rvecited in claim 30, wherein perform-
ing the write operation that storves the new deduplication
table entry in the deduplication table is combined with other
write operations.

32. The method as recited in claim 27, wherein the new
deduplication table entry is a hash-to-physical pointer map-

ping.
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33. A computer program product disposed upon a non-
transitory computer readable storage medium, the computer
program product comprising computer program instric-
tions, that, when executed, cause a computer to carry out the

steps of:
generate a hash corresponding to a write request;
before a subsequent search of all the entries in the
deduplication table, search, in the cache, only a cached
portion of the entries in a deduplication table to
determine whether the hash matches an entry in the
cached portion, whervein the number of entries in the
cached portion is less than all the entries in the
deduplication table, and wherein the cached portion is
stored in the cache;
in response to determining that the hash does not match
an entry in the cached portion, write the data associ-
ated with the write request and storing a new dedupli-
cation table entry for the data in the cache; and

perform the subsequent seavch of all the entries in the
deduplication table including the entries in the cached
portion; and

based on the subsequent search and in response to deter-

mining that the hash matches one of the entries in the
deduplication table, perform a deduplication operation
to eliminate one or movre detected copies.

34. The computer program product of claim 33, wherein
the subsequent seavch of all of the entries in the deduplica-
tion table is performed during a post-processing deduplica-
tion operation.

35. The computer program product of claim 34, wherein
the post-processing deduplication operation is a garbage
collection operation.

36. The of computer program product claim 33, wherein
the program instructions are further executable by the
processor to.

based on the subsequent search and in response to deter-

mining that the hash does not match any of the entries
in the deduplication table, perform the write operation
that stores the new deduplication table entry into the
deduplication table.

37. The computer program product of claim 36, wherein
performing the write operation that stoves the new dedupli-
cation table entry in the deduplication table is combined
with other write operations.

38. The computer program product of claim 33, wherein
the new deduplication table entry is a hash-to-physical
pointer mapping.
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