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(57) ABSTRACT

A method and apparatus for use 1n 1mpr0v1ng the linearity
characteristics of MOSFET devices using an accumulated
charge sink (ACS) are disclosed. The method and apparatus

are adapted to remove, reduce, or otherwise control accu-
mulated charge 1 SOI MOSFETs, thereby vyielding

improvements 1n FET performance characteristics. In one
exemplary embodiment, a circuit having at least one SOI
MOSFET is configured to operate 1n an accumulated charge
regime. An accumulated charge sink, operatively coupled to

the body of the SOI MOSFFET, eliminates, removes or
otherwise controls accumulated charge when the FET 1s

operated 1n the accumulated charge regime, thereby reduc-
ing the nonlinearity of the parasitic ofl-state source-to-drain
capacitance of the SOI MOSFET. In RF switch circuits
implemented with the improved SOI MOSFET devices,
harmonic and intermodulation distortion 1s reduced by
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METHOD AND APPARATUS FOR USE IN
IMPROVING LINEARITY OF MOSFETS
USING AN ACCUMULATED CHARGE SINK

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough

indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

This application is a reissue of U.S. application Ser. No.
15/707,970, filed Sep. 18, 2017, now U.S. Pat. No. 10,153,
763, which 1s a continuation application of co-pending and
commonly assigned U.S. application Ser. No. 14/845,134,

“Method and Apparatus for use in Improving Linearity of
MOSFETs using an Accumulated Charge Sink”, filed Sep. 3,

2015, now U.S. Pat. No. 9,780,775, which 1s a continuation
application of and commonly assigned U.S. application Ser.
No. 13/850,251, “Method and Apparatus for use in Improv-
ing Linearity of MOSFETs using an Accumulated Charge
Sink”, filed Mar. 25, 2013, [issuing on Sep. 8, 2015 as] now
U.S. Pat. No. 9,130,564, which application Ser. No. 13/850,
251 1s a continuation application of commonly assigned U.S.
application Ser. No. 13/412,529, “Method and Apparatus for
use i Improving Linearity of MOSFETs Using an Accu-
mulated Charge Sink™, filed Mar. 5, 2012, [issuing on Mar.
26, 2013 as] row U.S. Pat. No. 8,405,147, which application
Ser. No. 13/412,529 1s a Continuation of commonly
assigned U.S. application Ser. No. 13/053,211, “Method and
Apparatus for use m Improving Linearity of MOSFETs
Using an Accumulated Charge Sink”, filed Mar. 22, 2011,
[issuing Mar. 6, 2012 as] now U.S. Pat. No. 8,129,787,
which application Ser. No. 13/033,211 1s a divisional appli-
cation of commonly assigned U.S. application Ser. No.
11/484,370, “Method and Apparatus for use in Improving
Linearity of MOSFETs Using an Accumulated Charge
Sink”, filed Jul. 10, 2006, [issuing Mar. 22, 2011 as] now
U.S. Pat. No. 7,910,993; and application Ser. No. 11/484,
370 (U.S. Pat. No. 7,910,993) claims the benefit of priority
under 35 U.S.C. § 119 (e) to commonly-assigned U.S.
Provisional Application No. 60/698,523, filed Jul. 11, 2005,
entitled “Method and Apparatus for use in Improving Lin-
carity ol MOSFETs using an Accumulated Charge Sink™;
and [this application] U.S. application Ser. No. 15/707,970

is also a continuation of commonly assigned [pending] U.S.
application Ser. No. 15/419,898 filed Jan. 30, 2017, which 1s

a continuation application of commonly assigned U.S. appli-
cation Ser. No. 13/948,094 filed Jul. 22, 2013 (U.S. Pat. No.
9,608,619 1ssued Mar. 28, 2017), which 1s a continuation
application of commonly assigned U.S. application Ser. No.
13/028,144 filed Feb. 15, 2011 (U.S. Pat. No. 8,954,902
issued Feb. 10, 2015), which 1s a divisional of commonly
assigned U.S. application Ser. No. 11/520,912 filed Sep. 14,
2006 (U.S. Pat. No. 7,890,891 1ssued Feb. 15, 2011), which
1s a continuation-in-part of U.S. application Ser. No. 11/484,
3770, filed Jul. 10, 2006 (U.S. Pat. No. 7,910,993 1ssued Mar.
22,2011), and which application Ser. No. 11/520,912 [appli-
cation] claims priority to U.S. provisional applications
60/718,260 filed Sep. 15, 2005 and 60/698,523 filed Jul. 11,
2005; and [this Continuation application] U.S. applicatior
Ser. No. 15/707,970 1s also related to U.S. application Ser.
No. 11/881,816 filed Jul. 26, 2007 which 1s a CIP of
application Ser. No. 11/520,912 and a CIP of application
Ser. No. 11/484,370; and the contents of all of the above
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cited provisional applications, pending applications, and
issued patents, including their associated appendices, are
hereby incorporated by reference herein in their entirety.

BACKGROUND

1. Field

The present invention relates to metal-oxide-semiconduc-
tor (MOS) field effect transistors (FETs), and particularly to
MOSFFETs 1fabricated on Semiconductor-On-Insulator
(“SOI”) and Semiconductor-On-Sapphire (“SOS”) sub-
strates. In one embodiment, an SOI (or SOS) MOSFET 1s

adapted to control accumulated charge and thereby improve
linearity of circuit elements.

2. Description of Related Art

Although the disclosed method and apparatus for use 1n
improving the linearity of MOSFETs are described herein as
applicable for use 1n SOI MOSFETs, 1t will be appreciated
by those skilled 1n the electronic device design arts that the
present teachings are equally applicable for use 1n SOS
MOSFETs. In general, the present teachings can be used 1n
the mmplementation of MOSFETs using any convenient
semiconductor-on-insulator technology, including silicon-
on-insulator technology. For example, the inventive MOS-
FETs described herein can be implemented using compound
semiconductors on insulating substrates. Such compound
semiconductors include, but are not limited to, the follow-
ing: Silicon Germamum (S1Ge), Gallium Arsenide (GaAs),
Indium Phosphide (InP), Galllum Nitride (GaN), Silicon
Carbide (51C), and II-VI compound semiconductors, includ-
ing Zinc Selenide (ZnSe) and Zinc Sulfide (ZnS). The
present teachings also may be used in implementing MOS-
FETs fabricated from thin-film polymers. Organic thin-film
transistors (OTFTs) utilize a polymer, conjugated polymers,
oligomers, or other molecules to form the isulting gate
dielectric layer. The present inventive methods and appara-
tus may be used in implementing such OTFTs.

It will be appreciated by those skilled 1n the electronic
design arts that the present disclosed method and apparatus
apply to virtually any insulating gate technology, and to
integrated circuits having a tloating body. As those skilled 1n
the art will appreciate, technologies are constantly being
developed for achieving “floating body” implementations.
For example, the mventors are aware of circuits imple-
mented 1n bulk silicon wherein circuit implementations are
used to “float” the body of the device. In addition, the
disclosed method and apparatus can also be implemented
using silicon-on-bonded water implementations. One such
silicon-on-bonded watfer technique uses “direct silicon
bonded” (DSB) substrates. Direct silicon bond (DSB) sub-
strates are fabricated by bonding and electrically attaching a
film of single-crystal silicon of differing crystal orientation
onto a base substrate. The present disclosure therelfore
contemplates embodiments of the disclosed method and
apparatus 1mplemented 1 any of the developing floating
body implementations. Therefore, references to and exem-
plary descriptions of SOI MOSFETs herein are not to be
construed as limiting the applicability of the present teach-
ings to SOI MOSFETs only. Rather, as described below 1n
more detail, the disclosed method and apparatus find utility
in MOSFETs implemented in a plurality of device technolo-
gies, including SOS and silicon-on-bonded water technolo-
g1es.
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As 1s well known, a MOSFET employs a gate-modulated
conductive channel of n-type or p-type conductivity, and 1s
accordingly referred to as an “NMOSFET” or “PMOSFET”,
respectively. FIG. 1 shows a cross-sectional view of an
exemplary prior art SOI NMOSFET 100. As shown in FIG.
1, the prior art SOI NMOSFET 100 includes an insulating
substrate 118 that may comprise a buried oxide layer,
sapphire, or other insulating material. A source 112 and drain
116 of the NMOSFET 100 comprise N+ regions (1.e.,
regions that are heavily doped with an “n-type” dopant
material) produced by 10on implantation into a silicon layer
positioned above the insulating substrate 118. (The source
and drain of PMOSFETs comprise P+ regions (1.¢., regions
heavily doped with “p-type” dopant material)). The body
114 comprises a P- region (1.e., a region that 1s lightly doped
with a “p-type” dopant), produced by 1on implantation, or by
dopants already present 1n the silicon layer when it 1s formed
on the insulating substrate 118. As shown 1 FIG. 1, the
NMOSFET 100 also includes a gate oxide 110 positioned
over the body 114. The gate oxide 110 typically comprises
a thin layer of an insulating dielectric material such as S10,,.
The gate oxide 110 electrically insulates the body 114 from
a gate 108 positioned over the gate oxide 110. The gate 108
comprises a layer of metal or, more typically, polysilicon.

A source terminal 102 1s operatively coupled to the source
112 so that a source bias voltage “Vs” may be applied to the
source 112. A drain terminal 106 1s operatively coupled to
the drain 116 so that a drain bias voltage “Vd” may be
applied to the drain 116. A gate terminal 104 1s operatively
coupled to the gate 108 so that a gate bias voltage “Vg” may
be applied to the gate 108.

As 1s well known, when a voltage 1s applied between the
gate and source terminals of a MOSFET, a generated electric
field penetrates through the gate oxide to the transistor body.
For an enhancement mode device, a positive gate bias
creates a channel 1n the channel region of the MOSFET body
through which current passes between the source and drain.
For a depletion mode device, a channel 1s present for a zero
gate bias. Varying the voltage applied to the gate modulates
the conductivity of the channel and thereby controls the
current flow between the source and drain.

For an enhancement mode MOSFET, for example, the
gate bias creates a so-called “inversion channel™ in a channel
region of the body 114 under the gate oxide 110. The
inversion channel comprises carriers having the same polar-
ity (e.g., “P” polarity (i.e., hole carriers), or “N” polarity
(1.e., electron carriers) carriers) as the polarity of the source
and drain carriers, and it thereby provides a conduit (i.e.,
channel) through which current passes between the source
and the drain. For example, as shown 1n the SOl NMOSFET
100 of FIG. 1, when a sufliciently positive voltage 1s applied
between the gate 108 and the source 112 (1.e. a positive gate
bias exceeding a threshold voltage V), an inversion chan-
nel 1s formed 1n the channel region of the body 114. As noted
above, the polarity of carriers in the inversion channel 1s
identical to the polarity of carriers in the source and drain.
In this example, because the source and drain comprise
“n-type” dopant material and therefore have N polarity
carriers, the carriers 1n the channel comprise N polarity
carriers. Similarly, because the source and drain comprise
“p-type” dopant material in PMOSFETSs, the carriers 1n the
channel of turned on (i.e., conducting) PMOSFETSs comprise
P polarity carriers.

Depletion mode MOSFETs operate similarly to enhance-
ment mode MOSFETs, however, depletion mode MOSFETs
are doped so that a conducting channel exists even without
a voltage being applied to the gate. When a voltage of
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appropriate polarity 1s applied to the gate the channel 1is
depleted. This, 1n turn, reduces the current flow through the
depletion mode device. In essence, the depletion mode
device 1s analogous to a “normally closed” switch, while the
enhancement mode device i1s analogous to a “normally
open’” switch. Both enhancement and depletion mode MOS-
FETs have a gate voltage threshold, V ,, at which the
MOSFET changes from an off-state (non-conducting) to an
on-state (conducting).

No matter what mode of operation an SOI MOSFET
employs (1.e., whether enhancement or depletion mode),
when the MOSFET 1s operated in an off-state (1.e., the gate
voltage does not exceed V , ), and when a suilicient nonzero
gate bias voltage 1s applied with respect to the source and
drain, an “accumulated charge” may occur under the gate.
The “accumulated charge™, as defined 1n more detail below
and used throughout the present application, 1s similar to the
“accumulation charge” described 1n the prior art literature 1n
reference to MOS capacitors. However, the prior art refer-
ences describe “accumulation charge” as referring only to
bias-induced charge existing under a MOS capacitor oxide,
wherein the accumulation charge 1s of the same polarity as
the majority carriers of the semiconductor material under the
capacitor oxide. In contrast, and as described below in more
detail, “accumulated charge” i1s used herein to refer to
gate-bias induced carriers that may accumulate 1n the body
of an off-state MOSFFET, even if the majority carriers in the
body do not have the same polanity as the accumulated
charge. This situation may occur, for example, 1n an ofi-state
depletion mode NMOSFFET, wherein the accumulated
charge may comprise holes (1.e., having P polarity) even
though the body doping 1s N- rather than P-.

For example, as shown 1n FIG. 1, when the SOI NMOS-
FET 100 1s biased to operate in an ofl-state, and when a
suflicient nonzero voltage 1s applied to the gate 108, an
accumulated charge 120 may accumulate in the body 114
underneath and proximate the gate oxide 110. The operating
state of the SOI NMOSFET 100 shown 1n FIG. 1 1s referred
to herein as an “accumulated charge regime” of the MOS-
FET. The accumulated charge regime 1s defined in more
detail below. The causes and eflects of the accumulated
charge in SOI MOSFETs are now described 1n more detail.

As 1s well known, electron-hole pair carriers may be
generated 1n MOSFET bodies as a result of several mecha-
nisms (e.g., thermal, optical, and band-to-band tunneling
clectron-hole pair generation processes). When electron-
hole pair carriers are generated within an NMOSFET body,
for example, and when the NMOSFET 1s biased imn an
ofl-state condition, electrons may be separated from their
hole counterparts and pulled 1nto both the source and drain.
Over a period of time, assuming the NMOSFET continues to
be biased in the ofi-state, the holes (resulting from the
separated electron-hole pairs) may accumulate under the
gate oxide (1.e., forming an “accumulated charge™) under-
neath and proximate the gate oxide. A similar process (with
the behavior of electrons and holes reversed) occurs in
similarly biased PMOSFET devices. This phenomenon 1s
now described with reference to the SOI NMOSFET 100 of
FIG. 1.

When the SOI NMOSFET 100 1s operated with gate,
source and drain bias voltages that deplete the channel
carriers 1n the body 114 (1.e., the NMOSFET 100 1s 1n the
ofl-state), holes may accumulate underneath and proximate
the gate oxide 110. For example, 1f the source bias voltage
Vs and the drain bias voltage Vd are both zero (e.g.,
connected to a ground contact, not shown), and the gate bias
voltage Vg comprises a sufliciently negative voltage with
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respect to ground and with respect to V,,, holes present in
the body 114 become attracted to the channel region proxi-
mate the gate oxide 110. Over a period of time, unless
removed or otherwise controlled, the holes accumulate
underneath the gate oxide 110 and result 1n the accumulated
charge 120 shown 1n FIG. 1. The accumulated charge 120 15
therefore shown as positive “+” hole carriers mn FIG. 1. In
the example given, Vg 1s negative with respect to Vs and Vd,
so electric field regions 122 and 124 may also be present.
Accumulated Charge Regime Defined

The accumulated charge 1s opposite 1n polarity to the
polarity of carriers in the channel. Because, as described
above, the polarity of carriers 1n the channel 1s 1dentical to
the polarity of carriers 1n the source and drain, the polarity
of the accumulated charge 120 1s also opposite to the
polarity of carriers in the source and drain. For example,
under the operating conditions described above, holes (hav-
ing “P” polarity) accumulate in off-state NMOSFETs, and
clectrons (having “N” polarity) accumulate in ofl-state
PMOSFFETs. Therefore, a MOSFET device 1s defined herein
as operating within the “accumulated charge regime”” when
the MOSFET 1s biased to operate in an ofl-state, and when
carriers having opposite polarity to the channel carriers are
present 1n the channel region. Stated in other terms, a
MOSFET 1s defined as operating within the accumulated
charge regime when the MOSFET 1s biased to operate 1n an
oll-state, and when carriers are present 1n the channel region
having a polarlty that 1s opposite the polarity of the source
and drain carriers.

For example, and referring again to FIG. 1, the accumu-
lated charge 120 comprises hole carriers having P or “+”
polarity. In contrast, the carriers in the source, drain, and
channel (1.e., when the FET is in the on-state) comprise
clectron carriers having N or “-"" polarity. The SOI NMOS-
FET 100 is theretfore shown in FIG. 1 as operating 1n the
accumulated charge regime. It 1s biased to operate 1n an
ofl-state, and an accumulated charge 120 1s present in the
channel region. The accumulated charge 120 1s opposite 1n
polarity (P) to the polarity of the channel, source and drain
carriers (N).

In another example, wherein the SOI NMOSFET 100
comprises a depletion mode device, V,, 1s negative by
definition. According to this example, the body 114 com-
prises an N- region (as contrasted with the P- region shown
in FIG. 1). The source and drain comprise N+ regions
similar to those shown 1n the enhancement mode MOSFET
100 of FIG. 1. For Vs and Vd both at zero volts, when a gate
bias Vg 1s applied that 1s sufliciently negative relative to V,
(for example, a Vg that 1s more negative than approximately
-1 V relative to V), the depletion mode NMOSFET 1s
biased into an ofl-state. If biased in the ofi-state for a
suiliciently long period of time, holes may accumulate under
the gate oxide and thereby comprise the accumulated charge
120 shown in FIG. 1.

In other examples, Vs and Vd may comprise nonzero bias
voltages. In some embodiments, Vg must be sufliciently
negative to both Vs and Vd (in order for Vg to be sufliciently
negatwe to V,,, Tor example) 1n order to bias the NMOSFET
in the ofl-state. Those skilled in the MOSFET device design
arts shall recognize that a wide variety of bias voltages may
be used to practice the present teachings. As described below
in more detail, the present disclosed method and apparatus
contemplates use 1 any SOI MOSFET device biased to
operate 1n the accumulated charge regime.

SOI and SOS MOSFETs are often used 1n applications 1n
which operation within the accumulated charge regime
adversely affects MOSFET performance. As described
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below 1n more detail, unless the accumulated charge 1s
removed or otherwise controlled, 1t detrimentally aflects
performance of SOI MOSFETs under certain operating
conditions. One exemplary application, described below 1n

more detail with reterence to the circuits shown in FIGS. 2B
and 5A, 1s the use of SOI MOSFETs 1n the implementation

of radio frequency (RF) switching circuits. As described
below with reference to FIGS. 2B and 5A 1in more detail, the
inventors have discovered that unless the accumulated
charge 1s removed or otherwise controlled, under some
operating conditions, the accumulated charge adversely
allects the linearity of the SOI MOSFET and thereby
increases harmonic distortion and imntermodulation distortion
(IMD) caused by the MOSFET when used in the implemen-

tation of certain circuits. In addition, as described below 1n
more detail, the inventors have discovered that removal or
control of the accumulated charge improves the drain-to-
source breakdown voltage (1.e., the “BVDSS”) characteris-
tics of the SOI MOSFETs.

Therefore, 1t 1s desirable to provide techniques for adapt-
ing and improving SOI (and SOS) MOSFETs, and circuits
implemented with the improved SOI MOSFETSs, 1n order to
remove or otherwise control the accumulated charge, and
thereby significantly improve SOI MOSFET performance. It
1s desirable to provide methods and apparatus for use 1n
improving the linearity characteristics in SOI MOSFETs.
The improved MOSFETs should have improved linearity,
harmonic distortion, intermodulation distortion, and BVDSS
characteristics as compared with prior art MOSFETSs, and
thereby 1mprove the performance of circuits implemented
with the improved MOSFETs. The present teachings provide
such novel methods and apparatus.

SUMMARY

Apparatuses and methods are provided to control accu-
mulated charge in SOI MOSFETs, thereby improving non-
linear responses and harmonic and intermodulaton distortion
cllects 1n the operation of the SOI MOSFETs.

In one embodiment, a circuit having at least one SOI
MOSFET is configured to operate 1n an accumulated charge
regime. An accumulated charge sink (ACS), operatively
coupled to the body of the SOI MOSFET, receives accu-
mulated charge generated in the body, thereby reducing the
nonlinearity of the net source-drain capacitance of the SOI
MOSFET.

In one embodiment, the ACS comprises a high impedance
connection to the MOSFET body, with an exemplary imped-
ance greater than 10° ohm.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a cross-sectional view of an exemplary prior art
SOI NMOSFET.

FIG. 2A 1s a simplified schematic of an electrical model
showing the ofl-state impedance characteristics of the exem-
plary prior art SOI NMOSFET of FIG. 1.

FIG. 2B 1s a schematic of an exemplary simplified RF
switching circuit 1mplemented using prior art SOI MOS-
FETs such as the prior art SOI NMOSFET of FIG. 1.

FIGS. 3A and 3B are simplified schematic diagrams of a
top view of an improved SOI NMOSFET adapted to control
accumulated charge 1n accordance with the present teach-
Ings.

FIG. 3C 1s a cross-sectional perspective schematic of an
improved SOI NMOSFET adapted to control accumulated
charge showing gate, source, drain and accumulated charge
sink (ACS) terminals.
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FIG. 3D 1s a simplified top view schematic of an
improved SOI NMOSFET adapted to control accumulated
charge having an accumulated charge sink (ACS) electri-
cally coupled to a P+ region.

FIG. 3E 1s a simplified top view schematic of an improved

SOI SOI NMOSFET adapted to control accumulated charge

and showing a cross-sectional view line A-A' taken along
approximately a center of the SOI NMOSFET.
FIG. 3F 1s a cross-sectional view of the improved SOI

NMOSET of FIG. 3E taken along the A-A' view line of FIG.
3E.

FIG. 3G 1s a cross-sectional view of the improved SOI
NMOSET of FIGS. 3A-3B.

FIG. 3H 1s a simplified top view schematic of an SOI
NMOSFET illustrating a region of increased threshold volt-
age that can occur 1 prior art MOSFETs and in some
embodiments of the improved SOI MOSFET due to manu-
facturing processes.

FIG. 31 1s a plot of inversion channel charge as a function
of applied gate voltage when a region of increased threshold
voltage 1s present in an SOI MOSFET.

FI1G. 3] 1s a simplified top view schematic of an improved
SOI NMOSFET adapted to control accumulated charge and
configured 1n a “I-gate” configuration.

FIG. 3K 1s a simplified top view schematic of an
improved SOI NMOSFET adapted to control accumulated
charge and configured 1n an “H-gate™ configuration.

FIG. 4A 1s a simplified schematic of an improved SOI
NMOSFET adapted to control accumulated charge embod-
ied as a four terminal device.

FIG. 4B 1s a simplified schematic of an improved SOI
NMOSFET adapted to control accumulated charge, embod-
led as a four terminal device, wherein an accumulated
charge sink (ACS) terminal 1s coupled to a gate terminal.

FIG. 4C 1s a simplified schematic of an improved SOI
NMOSFET adapted to control accumulated charge, embod-
led as a four terminal device, wherein an accumulated
charge sink (ACS) terminal 1s coupled to a gate terminal via
a diode.

FIG. 4D 1s a simplified schematic of an improved SOI
NMOSFET adapted to control accumulated charge, embod-
led as a four terminal device, wherein an accumulated
charge sink (ACS) terminal 1s coupled to a control circuit.

FIG. 4E 1s a simplified schematic of an exemplary RF
switch circuit implemented using the four terminal ACC
NMOSFET of FIG. 4D, wherein the ACS terminal 1s driven
by an external bias source.

FIG. 4F 1s a sumplified schematic of an improved SOI
NMOSFET adapted to control accumulated charge, embod-
led as a four terminal device, wherein an accumulated
charge sink (ACS) terminal 1s coupled to a clamping circuait.

FIG. 4G 1s a simplified schematic of an improved SOI
NMOSFET adapted to control accumulated charge, embod-
led as a four terminal device, wherein an accumulated
charge sink (ACS) terminal 1s coupled to a gate terminal via
a diode 1n parallel with a capacitor.

FIG. 4H shows plots of the off-state capacitance (C,_ )
versus applied drain-to-source voltages for SOI MOSFETs
operated in the accumulated charge regime, wherein a {first
plot shows the ofl-state capacitance C_,of a prior art SOI
MOSFET, and wherein a second plot shows the ofl-state
capacitance C_ - of the improved ACC SOI MOSFET made
in accordance with the present teachings.

FIG. SA 1s a schematic of an exemplary prior art single
pole, single throw (SPST) radio frequency (RF) switch
circuit.
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FIG. 5B 1s a schematic of an RF switch circuit adapted for
improved performance using accumulated charge control,

wherein the gate of a shunting SOI NMOSFET 1s coupled to
an accumulated charge sink (ACS) terminal.

FIG. 5C 1s a schematic of an RF switch circuit adapted for
improved performance using accumulated charge control,
wherein the gate of a shunting SOI NMOSFET 1s coupled to
an accumulated charge sink (ACS) terminal via a diode.

FIG. 5D 1s a schematic of an RF switch circuit adapted for
improved performance using accumulated charge control,
wherein the accumulated charge sink (ACS) terminal 1s
coupled to a control circuit.

FIG. 6 1s a schematic of an RF switch circuit including
stacked MOSFETs, adapted for improved performance
using accumulated charge control, wherein the accumulated
charge sink (ACS) terminals of the shunting stacked MOS-
FETs are coupled to a control signal.

FIG. 7 shows a flowchart of an exemplary method of
improving the linearity of an SOI MOSFET device using an
accumulated charge sink i1n accordance with the present
disclosure.

FIG. 8 shows a simplified circuit schematic of an exem-
plary embodiment of an RF switch circuit made in accor-
dance with the present disclosure, wherein the RF switch
circuit includes drain-to-source resistors between the drain
and source of the ACC MOSFETs.

FIG. 9 shows a simplified schematic of an exemplary
single-pole double-throw (SPDT) RF switch circuit made 1n
accordance with the present disclosure, wherein drain-to-
source resistors are shown across the switching ACC SOI
MOSFETs.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

As noted above, those skilled in the electronic device
design arts shall appreciate that the teachings herein apply
equally to NMOSFETs and PMOSFETs. For simplicity, the
embodiments and examples presented herein for 1llustrative
purposes include only NMOSFFETSs, unless otherwise noted.
By making well known changes to dopants, charge carriers,
polarity of bias voltages, etc., persons skilled in the arts of
clectronic devices will easily understand how these embodi-
ments and examples may be adapted for use with PMOS-
FETs.

Non-Linearity and Harmonic Distortion Effects of Accumu-
lated Charge 1n an SOI NMOSFET

As described above in the background, no matter what
mode of operation the MOSFET employs (1.e., enhancement
mode or depletion mode), under some circumstances, when
a MOSFFET 1s operated in an off-state with a nonzero gate
bias voltage applied with respect to the source and drain, an
accumulated charge may occur under the gate. According to
the present teachings, as described above when the MOS-
FET 1s 1n an ofi-state, and when carriers are present in the
channel region having a polanty that 1s opposite the polarity
of the source and drain carriers, the MOSFET 1s defined
herein as operating 1n the accumulated charge regime.

According to the present teachings, the inventors have
observed that, when used 1n certain circuit implementations,
MOSFETs operating i the accumulated charge regime
exhibit undesirable non-linear characteristics that adversely
impact circuit performance. For example, as described
below 1n more detail with reference to FIG. 2A, the accu-
mulated charge 120 (FIG. 1) adversely aflects the linearity

of off-state SOI MOSFETs, and more specifically, it
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adversely aflects the linearity of contributing capacitances to
the drain-to-source capacitance (Cds). For an SOI MOSFET

operating 1n an off-state, Cds 1s referred to as C gz 'The
contributing capacitances to C_. are described below in
reference to FIG. 2A for bias conditions wherein the gate
bias Vg 1s provided by a circuit having an impedance that 1s
large compared to the impedances of the contributing
capacitances. As described below with reference to FIGS.
2B and SA, this, 1n turn, adversely aflects harmonic distor-
tion, intermodulation distortion, and other performance
characteristics of circuits implemented with the SOI MOS-
FETs. These novel observations, not taught or suggested by
the prior art, may be understood with reference to the
clectrical model shown 1 FIG. 2A.

FIG. 2A 1s a simplified schematic of an electrical model
200 showing the ofl-state impedance (or conversely, con-
ductance) characteristics of the exemplary prior art SOI
NMOSFET 100 of FIG. 1. More specifically, the model 200
shows the impedance characteristics from the source 112 to
the drain 116 when the NMOSFET 100 1s operated in the

ofl-state. Because the drain-to-source ofl-state impedance
characteristic of the NMOSFET 100 1s primarily capacitive
in nature, it 1s referred to herein as the drain-to-source
off-state capacitance (C_gz). For the exemplary description
herein, the gate 108 1s understood to be biased at a voltage
Vg by a circuit (not shown) that has an impedance that 1s
large compared to the impedances of the contributing
capacitances described i1n reference to FIG. 2A. Persons
skilled 1n the electronic arts will understand how this exem-
plary description may be modified for the case wherein the
impedance of the circuit providing the Vg bias 1s not large
compared to the impedances of the contributing capaci-
tances.

As shown 1n FIG. 2A, the junction between the source 112
and the body 114 (i.e., a source-body junction 218) of the
ofl-state NMOSFET 100 can be represented by a junction
diode 208 and a junction capacitor 214, configured as
shown. Similarly, the junction between the drain 116 and the
body 114 (1.e., the drain-body junction 220) of the ofl-state
NMOSFET 100 can be represented by a junction diode 210
and a junction capacitor 216, configured as shown. The body
114 1s represented simply as an impedance 212 that 1s
present between the source-body junction 218 and the
drain-body junction 220.

A capacitor 206 represents the capacitance between the
gate 108 and the body 114. A capacitor 202 represents the
capacitance between the source 112 and the gate 108, and
another capacitor 204 represents the capacitance between
the drain 116 and the gate 108. A substrate capacitance due
to the electrical coupling between the source 112 and the
drain 116 (through the insulating substrate 118 shown 1n
FIG. 1) 1s taken to be negligibly small in the exemplary
description set forth below, and therefore 1s not shown 1n the
clectrical model 200 of FIG. 2A.

As described above, when the NMOSFET 100 i1s 1n the
ofl-state, and when the accumulated charge 120 (FIG. 1) 1s
not present in the body 114 (1.e., the NMOSFET 100 1s not
operating within the accumulated charge regime), the body
114 1s depleted of charge carriers. In this case the body
impedance 212 1s analogous to the impedance of an 1nsu-
lator, and the electrical conductance through the body 114 1s
very small (1.e., the NMOSFET 100 1s in the ofi-state).
Consequently, the principal contributions to the drain-to-
source off-state capacitance C_are provided by the capaci-
tors 202 and 204. The capacitors 202 and 204 are only

slightly voltage dependent, and therefore do not significantly
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contribute to a nonlinear response that adversely aflects
harmonic generation and intermodulation distortion charac-
teristics.

However, when the NMOSFET 100 operates within the
accumulated charge regime, and the accumulated charge 120
1s therefore present 1n the body 114, mobile holes compris-
ing the accumulated charge produce p-type conductivity
between the source-body junction 218 and the drain-body
junction 220. In effect, the accumulated charge 120 produces
an 1mpedance between the source-body junction 218 and the
drain-body junction 220 that 1s significantly less than the
impedance between the junctions in the absence of the
accumulated charge. If a Vds voltage 1s applied between the
drain 116 and the source 112, the mobile holes redistribute
according to the electrical potentials that result within the
body 114. DC and low-irequency current flow through the
SOI NMOSFET 100 1s prevented by the diode properties of
the source-body junction 218 and the drain-body junction
220, as represented by the junction diodes 208 and 210,
respectively. That 1s, because the junction diodes 208 and
210 are anti-series (1.e., “back-to-back™) 1n this case, no DC
or low-Irequency currents flow through the SOl NMOSFET
100. However, high-frequency currents may flow through
the SOI NMOSFET 100 via the capacitances of the source-
body junction 218 and the drain-body junction 220, as
represented by the junction capacitors 214 and 216, respec-
tively.

The junction capacitors 214 and 216 are voltage depen-
dent because they are associated with junctions between
n-type and p-type regions. This voltage dependence results
from the voltage dependence of the width of the depletion
region of the junction between the n-type and p-type regions.
As a bias voltage 1s applied to the NMOSFFET, the width of
the depletion region of the junction between the n-type and
p-type regions 1s varied. Because the capacitance of the
junction depends on the width of the junction depletion
region, the capacitance also varies as a function of the bias
applied across the junction (1.e., the capacitance 1s also
voltage dependent).

Further, the capacitors 202 and 204 may also have a
voltage dependence caused by the presence of the accumu-
lated charge 120. Although the complex reasons for this
voltage dependence are not described in detail herein, per-
sons skilled 1n the arts of electronic devices shall understand
that electric field regions (e.g., electric field regions 122 and
124 described above with reference to FIG. 1) may be
allected by the response of the accumulated charge and 1ts
response to an applied Vds, thereby causing a voltage
dependence of capacitors 202 and 204. An additional non-
linear eflect may occur due to a direct capacitance (not
shown) between the source 112 and the drain 116. Although
this direct capacitance would usually be expected to be
negligible for most SOI MOSFETs, it may contribute for
SOI MOSFETs having very short spacing between the
source and drain. The contribution of this direct capacitance
to C,z 1s also voltage-dependent in the presence of an
accumulated charge, for reasons that are analogous to the
voltage dependencies of the capacitors 202 and 204 as
described above.

The voltage dependencies of the junction capacitors 214
and 216, the gate-to-source and gate-to-drain capacitors 202,
204, respectively, and the direct capacitance (not shown),
cause nonlinear behavior 1n off-state capacitance C_.of the
MOSFET when AC voltages are applied to the NMOSFET
100, thereby producing undesirable generation of harmonic
distortions and intermodulation distortion (IMD). The rela-
tive contributions of these eflects are complex, and depend
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on fabrication processes, biases, signal amplitudes, and
other variables. However, those skilled in the electronic
device design arts shall understand from the teachings herein
that reducing, removing, or otherwise controlling the accu-
mulated charge provides an overall improvement in the
nonlinear behavior of C_. In addition, because the body
impedance 212 1s significantly decreased 1n the presence of
the accumulated charge 120, the magnitude ot C_ - may be
increased when the FET operates in the accumulated charge
regime. Reducing, removing, or otherwise controlling the
accumulated charge also mitigates this eflect.

In addition, the accumulated charge does not accumulate
in the body 1n an 1nstant as soon as the FET transitions from
an on-state (conducting state) to an ofl-state (non-conduct-
ing state). Rather, when the FET transitions from the on-
state to the ofl-state, it begins to accumulate charge 1n the
body of the MOSFET, and the amount of accumulated
charge increases over time. The accumulation of the accu-
mulated charge therefore has an associated time constant
(1.e., 1t does not instantly reach a steady-state level of
accumulated charge). The accumulated charge accumulates

slowly 1n the FET body. The depleted FET has a C_;

associated with 1t which i1s increased with an increasing
amount ol accumulated charge. In terms of FET perfor-
mance, as the C_, increases with an increasing amount of
accumulated charge 1n the FET body, drift occurs in the FET
insertion loss (1.e., the FET becomes more “lossy”), 1solation
(the FE'T becomes less 1solating) and insertion phase (delay
in the FET 1s increased). Reducing, removing, or otherwise
controlling the accumulated charge also mitigates these
undesirable dnft effects.

The mventors have observed that the nonlinear behavior
of the MOSFET oft-state capacitance C,_ - adversely attects
the performance of certain circuits implemented with the
prior art SOI MOSFETs. For example, when an RF switch
1s 1implemented using the prior art SOI MOSFETs, such as
the prior art SOI NMOSFET 100 of FIG. 1, the above-
described non-linear ofl-state characteristics of the prior art
MOSFETs adversely affect the linearity of the switch. As
described below in more detail, RF switch linearity 1s an
important design parameter 1n many applications. Improved
switch lineanty leads to improved suppression of harmonic
and 1ntermodulation (IM) distortion of signals processed by
the switch. These improved switch characteristics can be
critically important 1n some applications such as use 1n
cellular communication devices.

For example, the well known GSM cellular communica-
tion system standard imposes stringent linearity, harmonic
and intermodulation suppression, and power consumption
requirements on front-end components used to implement
GSM cell phones. One exemplary GSM standard requires
that all harmonics of a fundamental signal be suppressed to
below -30 dBm at frequencies up to 12.75 GHz. If harmon-
ics are not suppressed below these levels, reliable cell phone
operation can be significantly adversely impacted (e.g.,
increased dropped calls or other communication problems
may result due to harmonic and mtermodulation distortion
of the transmit and receive signals). Because the RF switch-
ing function 1s generally implemented 1n the cell phone
front-end components, improvements in the RF switch lin-
carity, harmonic and intermodulation suppression, and
power consumption performance characteristics 1s highly
desirable. A description of how the non-linear behavior of
the off-state capacitance C,, of the prior art MOSFETSs
adversely aflects these RF sw1tch characteristics 1s now
described with reference to FIG. 2B.
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Harmonic Distortion Effects on RF Switch Circuits Imple-
mented Using Prior Art SOI MOSFETs

FIG. 2B illustrates an exemplary simplified RF switch
circuit 250 implemented using prior art MOSFETs such as
the prior art SOI NMOSFET 100 described above with
reference to FIG. 1. A detailed description of the operation
and 1mplementation of RF switch circuits 1s provided 1n
commonly assigned U.S. Pat. No. 6,804,502 which 1s hereby
incorporated herein by reference 1n 1ts entirety for 1ts teach-
ings on RF switch circuits. As shown 1n FIG. 2B, the prior

art RF switch 250 includes a single “pass™ or “switching”
MOSFET 254 operatively coupled to five shunting MOS-

FETs 260a-260¢c.

The MOSFET 254 acts as a pass or switching transistor
and 1s configured, when enabled, to selectively couple an RF
input signal (applied to its drain, for example) to an RF
antenna 258 via a transmission path 256. The shunting
MOSFETs, 260a-260¢, when enabled, act to alternatively
shunt the RF input signal to ground. As 1s well known, the
switching MOSFET 254 1s selectively controlled by a first
switch control signal (not shown) coupled to its gate, and the
shunting MOSFETs, 260a-260¢ are similarly controlled by
a second switch control signal (not shown) coupled to their
gates. The switching MOSFET 234 1s thereby enabled when
the shunting MOSFETs 260a-260¢ are disabled, and vice
versa. As shown 1n the exemplary embodiment of the RF
switch 250 of FIG. 2B, the switching MOSFET 254 1s
ecnabled by applying a gate bias voltage of +2.5V (via the
first switch control signal). The shunting MOSFETs 260a-
260¢ are disabled by applying a gate bias voltage of 2.5V
(via the second switch control signal).

When the switch 250 1s configured in this state, the RF
signal 252 propagates through the switching MOSFET 254,
through the transmaission path 256, and to the antenna 258.
As described above with reterence to FIG. 2A, when the
shunting MOSFETS 260a-260¢ comprise prior art SOI (or
SOS) MOSFETs, such as the SOl NMOSFET 100 (FIG. 1),
an accumulated charge can occur i the SOI MOSFET
bodies (1.e., when the SOI MOSFETSs operate in the accu-
mulated charge regime as described above). The accumu-
lated charge can produce nonlinear behavior in the ofi-state
capacitance C_ -of the SOl MOSFETs when AC voltages are
applied to the MOSFFETs.

More specifically, when the accumulated charge 1s present
in the channel regions of the off-state SOI MOSFETSs
260a-260c¢ 1t responds to variations 1n the RF signals applied
to their respective drains. As the time varying RF signal
propagates along the transmission path 256, the RF signal
applies time varying source-to-drain bias voltages to the SOI
MOSFETs 260a-260¢. The time varying source-to-drain
bias voltages creates movement of the accumulated charge
within the channel regions of the SOI MOSFETs 260-260¢.
The movement of the accumulated charge within the chan-
nel regions of the SOI MOSFETSs causes variations in the
drain-to-source oil-state capacitance of the SOI MOSFETs
260a-260c. More specifically, the movement of the accu-
mulated charge within the channel regions causes a voltage
dependence of the drain-to-source ofl-state capacitance as
described above with reference to FIG. 2A. The voltage
dependent variations 1n the ofl-state capacitance of the SOI
MOSFETs 260a-260¢ 1s the dominant cause of harmonic
distortion and IMD of the RF signal as it propagates through
the RF switch 250.

As noted above, harmonic distortion and IMD of the RF
signal 1s a major disadvantage of the prior art RF switch
circuits 1mplemented using the prior art SOI MOSFET
devices. For many applications, harmonics and IMD of the
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RF signal must be suppressed to levels that heretofore have
been diflicult or impossible to achieve using prior art SOI
MOSFET devices. In GSM devices, for example, at a
maximum operating power of +35 dBm, prior art switches
typically have only a 6 dB margin to the GSM third order
harmonics suppression requirement of less than =30 dBm.
Very low even order harmonic distortion is also desirable in
GSM systems as the second order harmonic of the GSM
transmit band also resides 1n the DCS receive band. Sup-
pression of odd order (e.g., third order) harmonics of the RF
signal, however, 1s desirable and improvements 1n that
regard are needed.

In addition, as 1s well known, presence of an accumulated
charge 1n the bodies of floating body (e.g., SOI) MOSFETSs
can also adversely aflect the drain-to-source breakdown
voltage (BVDSS) performance characteristics of the floating
body MOSFETs. As 1s well known, floating-body FETs
demonstrate drain-to-source breakdown voltage problems,
also known as BVDSS, wherein the drain-to-source “punch-
through™ voltage 1s reduced by a parasitic bipolar action.
The parasitic bipolar action 1s caused when holes are gen-
erated in the channel and the holes have nowhere to dissipate
(1.e., because the body 1s floating, the holes have no means
for escaping the body). As a consequence, the potential of
the MOSFET body 1s increased, which eflectively reduces
the threshold voltage. In turn, this condition causes the
MOSFET device to experience increased leakage, thereby
generating more holes in the body, and thereby exacerbating
the BVDSS problem (as a result of this positive feedback
condition).

The present disclosed method and apparatus for improv-
ing linearity of SOI (and SOS) MOSFFET devices overcomes
the above-described disadvantages of the prior art. Once the
accumulated charge 1s recognized as a major source of
harmonic distortion, IMD and compression/saturation in
ofl-state SOI MOSFET devices, and in circuits (such as RF
circuits) implemented with these devices, it becomes clear
that reduction, removal, and/or control of the accumulated
charge improves the harmonic suppression characteristics of
these devices. In addition, reduction, removal, and/or control
of the accumulated charge also improve the BVDSS pertor-
mance characteristics by preventing the parasitic bipolar
action from occurring. Improvements 1 BVDSS lead to
consequent improvements in device linearity. Several exem-
plary structures and techniques for controlling the accumu-
lated charge in SOI MOSFFETs are described in detail in the
next section.

Method and Apparatus for Improving the Linearity of MOS-
FETs Using Accumulated Charge Sinks (ACS)—Overview

As described below 1n more detail, the present disclosure
describes methods and apparatuses for improving semicon-
ductor device linearity (e.g., reducing adverse harmonic
distortion and IMD eflects) in SOI MOSFETs. In one
exemplary embodiment, the method and apparatus improves
the linearity and controls the harmonic distortion and IMD
ellects of the MOSFET devices by reducing the accumulated
charge 1n the bodies of the MOSFET devices. In one
embodiment, the present method and apparatus reduces or
otherwise controls the accumulated charge in the MOSFET
bodies using an accumulated charge sink (ACS) that 1s
operatively coupled to the MOSFET body. In one embodi-
ment, the present method and apparatus entirely removes all
of the accumulated charge from the bodies of the MOSFET
devices. In one described embodiment, the MOSFET 1s
biased to operate 1n an accumulated charge regime, and the
ACS 1s used to entirely remove, reduce, or otherwise con-
trol, the accumulated charge and thereby reduce harmonic
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distortions and IMD that would otherwise result. Linearity 1s
also 1mproved 1n some embodiments by removing or oth-
erwise controlling the accumulated charge thereby improv-
ing the floating body MOSFET BVDSS characteristics.

As noted 1n the background section above, persons skilled
in the electronic device design and manufacture arts shall
appreciate that the teachings herein apply equally to MOS-
FETs fabricated on Semiconductor-On-Insulator (“SOI”)
and Semiconductor-On-Sapphire (“SOS”) substrates. The
present teachings can be used in the implementation of
MOSFETs using any convenient semiconductor-on-insula-
tor technology. For example, the inventive MOSFETs
described herein can be implemented using compound semi-
conductors fabricated on msulating substrates, such as GaAs
MOSFETs. As noted above, the present method and appa-
ratus may also be applied to silicon-germanium (S1Ge) SOI
MOSFETs. For simplicity, the embodiments and examples
presented herein for illustrative purposes include only
NMOSFETs, unless otherwise noted. By making well
known changes to dopants, charge carriers, polarity of bias
voltages, etc., persons skilled 1n the electronic device design
arts will easily understand how these embodiments and
examples may be adapted for use with PMOSFETs.

As noted above, the present disclosure 1s particularly
applicable to FETs and associated applications benefiting
from a tully depleted channel when the FET 1s operated 1n
the off-state, wherein an accumulated charge may result. The
disclosed method and apparatus for use 1n improving the
linearity of MOSFETs also finds applicability for use with
partially depleted channels. As known to those skilled 1n the
art, the doping and dimensions of the body vary widely. In
an exemplary embodiment, the body comprises silicon hav-
ing a thickness of approximately 100 angstroms to approxi-
mately 2,000 angstroms. In a further exemplary embodi-
ment, dopant concentration within the FET bodies ranges
from no more than that associated with intrinsic silicon to
approximately 1x10"® active dopant atoms per cm’, result-
ing 1n fully-depleted transistor operation. In a further exem-
plary embodiment, dopant concentration within the FET
bodies ranges from 1x10'® to 1x10'” active dopant atoms
per cm> and/or the silicon comprising the body ranges from
a thickness of 2000 angstroms to many micrometers, result-
ing in partially-depleted transistor operation. As will be
appreciated by those skilled in the electronic design and
manufacturing arts, the present disclosed method and appa-
ratus for use in 1improving linearity of MOSFETSs can be used
in MOSFETs implemented in a wide variety of dopant
concentrations and body dimensions. The present disclosed
method and apparatus therefore 1s not limited for use in
MOSFETs implemented using the exemplary dopant con-
centrations and body dimensions as set forth above.

According to one aspect of the present disclosure, accu-
mulated charge within a FET body 1s reduced using control
methodologies and associated circuitry. In one embodiment
all of the accumulated charge 1s removed from the FET
body. In other embodiments, the accumulated charge 1s
reduced or otherwise controlled. In one embodiment, holes
are removed from the FET body, whereas in another
embodiment, electrons are removed from the FET body, as
described below in more detail. By removing holes (or
clectrons) from the FET body using the novel and nonob-
vious teachings of the present disclosure, voltage mduced
variations in the parasitic capacitances of the ofl-state FETs
are reduced or eliminated, thereby reducing or eliminating
nonlinear behavior of the off-state FETs. In addition, as
described above with reference to FIG. 2A, because the
body impedance 1s greatly increased when the accumulated
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charge 1s reduced or controlled, there 1s a beneficial overall
reduction in the magnitude of the FET ofl-state capacitances.
Also, as described above, removing or otherwise controlling
the accumulated charge 1n floating body MOSFETs
improves the BVDSS characteristics of the FET and thereby
improves the linearity of the floating body MOSFET.

Accumulated charge control not only facilitates a benefi-
cial overall reduction in the FET off-state capacitance C,_
(as described above with reference to FIG. 2A and below
with reference to FIG. 4H), it also facilitates a reduction in
C, 4 variations that can occur over time in the presence of a
time varying V . bias voltage. Thus, a reduction of unde-
sirable harmonics generation and intermodulation distortion
in RF switch circuits 1s obtained using SOI MOSFETs made
in accordance with the present disclosure. Improved SOI
MOSFET power handling, linearity, and performance are
achieved by devices made 1n accordance with the present
teachings. While the methods and apparatuses of the present
disclosure are capable of fully removing accumulated charge
from the FET bodies, those skilled 1n the electronic device
design arts shall appreciate that any reduction of accumu-
lated charge 1s beneficial.

Reductions 1n harmonics and intermodulation distortion
are generally beneficial 1n any semiconductor system, either
bulk semiconductor or semiconductor-on-insulator (SOI)
systems. SOI systems include any semiconductor architec-
ture employing semiconductor-containing regions posi-
tioned above an underlying insulating substrate. While any
suitable 1nsulating substrate can be used 1n a SOI system,
exemplary msulating substrates include silicon dioxide (e.g.,
a buried oxide layer supported by a silicon substrate, such as
that known as Separation by Implantation of Oxygen (SI-
MOX)), bonded water (thick oxide), glass, and sapphire. As
noted above, 1n addition to the commonly used silicon-based
systems, some embodiments of the present disclosure may
be 1mplemented using silicon-germanium (S1Ge), wherein
the S1Ge 1s used equivalently in place of Si.

A wide variety of ACS implementations and structures
can be used to practice the present disclosed method and
apparatus. In accordance with one embodiment of the pres-
ent method and apparatus, an ACS 1s used to remove or
otherwise control accumulated charge (referenced as 120 1n
FIG. 1 described above) from the MOSFETs when the
MOSFETs are configured to operate in the accumulated
charge regime. By adapting the SOI (or SOS) MOSFETs 1n
accordance with the present teachings, improved Accumu-
lated Charge Control (ACC) MOSFETs are realized. The
ACC MOSFFETs are useful in improving performance of
many circuits, mcluding RF switching circuits. Various
characteristics and possible configurations of the exemplary
ACC MOSFFETs are described 1n detail below with reference
to FIGS. 3A-3K. This section also describes how the exem-
plary ACS implementations of the present disclosure differ
from the body contacts of the prior art.

The ACC MOSFET 1s shown schematically embodied as
a four-terminal device in FIG. 4A. FIGS. 4B-4G show
various exemplary simple circuit configurations that can be
used 1n removing the accumulated charge from the ACC
MOSFET when 1t operates in an accumulated charge
regime. The operation of the simplified circuit configura-
tions 1s described 1n more detail below with reference to
FIGS. 4A-4G. The improvement in off-state capacitance C,
of the ACC MOSFETs, as compared with the ofl-state
capacitance of the prior art SOI MOSFFETs, 1s described
below with reference to FIG. 4H.

The operation of various exemplary RF switch circuits
implemented using the ACC MOSFETs of the present
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disclosure 1s described below with reference to the circuit
schematics of FIGS. 3B-5D. Further, an exemplary RF
switch circuit using stacked ACC MOSFETs (for increased
power handling) of the present disclosure 1s described below
with reference to FIG. 6. An exemplary method of improv-
ing the linearity of an SOI MOSFET using an accumulated
charge sink (ACS) 1s described with reference to FIG. 7.

Finally, exemplary fabrication methods that may be used to
manufacture the ACC MOSFET are described. The various
exemplary ACS implementations and structures that can be
used to practice the disclosed method and apparatus are now
described with reference to FIGS. 3A-3K.

Controlling Accumulated Charge Using an Accumulated
Charge Sink (ACS)

FIGS. 3A and 3B are simplified schematic diagrams of a
top view of an Accumulated Charge Control (ACC) SOI
NMOSFET 300 adapted to control accumulated charge 120
(FIG. 1) 1 accordance with the present disclosure. In the
exemplary embodiment, a gate contact 301 1s coupled to a
first end of a gate 302. A gate oxide (not shown in FIG. 3A
but shown 1n FIG. 1) and a body 312 (shown 1n FIG. 3B) are
positioned under the gate 302. In the exemplary NMOSFET
300 shown, a source 304 and a drain 306 comprise N+
regions. In the exemplary embodiment, the ACC NMOS-
FET 300 includes an accumulated charge sink (ACS) 308
comprising a P- region. The ACS 308 1s coupled to and 1s
in electrical communication with the body 312 which also
comprises a P— region. An electrical contact region 310
provides electrical connection to the ACS 308. In some
embodiments, the electrical contact region 310 comprises a
P+ region. As shown in FIG. 3A, the electrical contact
region 310 1s coupled to and 1s 1n electrical communication
with the ACS 308.

Those skilled in the arts of electronic devices shall
understand that the electrical contact region 310 may be
used to facilitate electrical coupling to the ACS 308 because
in some embodiments 1t may be diflicult to make a direct
contact to a lightly doped region. In addition, 1n some
embodiments the ACS 308 and the electrical contact region
310 may be coextensive. In another embodiment, the elec-
trical contact region 310 comprises an N+ region. In this
embodiment, the electrical contact region 310 functions as a
diode connection to the ACS 308, which prevents positive
current tlow into the ACS 308 (and also prevents positive
current flow into the body 312) under particular bias con-

ditions, as described below 1n more detail.
FIG. 3B i1s an alternative top view of the ACC SOI

NMOSFET 300 of FIG. 3A, illustrating the ACC NMOS-
FET 300 without 1ts gate contact 301, gate 302, and gate
oxide being visible. This view allows the body 312 to be
visible. FIG. 3B shows the coupling of the ACS 308 to one
end of the body 312. In one embodiment, the body 312 and
the ACS 308 comprise a combined P- region that may be
produced by a single ion-implantation step. In another
embodiment, the body 312 and ACS 308 comprise separate
P— regions that are coupled together.

As 15 well known to those skilled 1n the electronic device

design arts, 1n other embodiments, the ACC NMOSFET 300
of FIGS. 3A and 3B can be implemented as an ACC

PMOSFET simply by reversing the dopant maternials used to
implement the various FET component regions (i.e., replace
p-type dopant material with n-type dopant material, and vice
versa). More specifically, in an ACC PMOSFFET, the source
and drain comprise P+ regions, and the body comprises an
N- region. In this embodiment, the ACS 308 also comprises
an N- region. In some embodiments of the ACC PMOSFET,

the electrical contact region 310 may comprise an N+
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region. In other embodiments of the ACC PMOSFETs, the
region 310 comprises a P+ region, which functions as a
diode connection to the ACS 308 and thereby prevents
current flow into the ACS 308 under particular bias condi-
tions.
Prior Art Body Contacts Distinguished from the Disclosed
ACS

According to the present disclosure, the ACS 308 used to
implement ACC SOI MOSFETs includes novel features 1n
structure, function, operation and design that distinguish 1t
from the so-called “body contacts (also sometimes referred
to as “body ties”, usually when the “body contact” 1s directly
connected to the source) that are well known 1n the prior art.

Exemplary references relating to body contacts used in
prior art SOI MOSFETs include the following: (1) F.
Hameau and O. Rozeau, Radio-Frequency Circuits Integra-
tion Using CMOS SOI 0.25 um Technology,” 2002 RF IC
Design Workshop Europe, 19-22 Mar. 2002, Grenoble,
France; (2) J. R. Cricci et al., “Silicon on Sapphire MOS
Transistor,” U.S. Pat. No. 4,053,916, Oct. 11, 1977; (3) O.
Rozeau et al., “SOI Technologies Overview for Low-Power
Low-Voltage Radio-Frequency Applications,” Analog Inte-
grated Circuits and Signal Processing, 25, pp. 93-114, Bos-
ton, Mass., Kluwer Academic Publishers, November 2000;
(4) C. Tinella et al., “A High-Performance CMOS-SOI
Antenna Switch for the 2.5-5-GHz Band, “IEEE Journal of
Solid-State Circuits, Vol. 38, No. 7, July, 2003; (5) H. Lee
et al., “Analysis of body blas cliect w1th PD- SOI for analog
and RF applications,” Solid State Electron Vol. 46, pp.
1169-1176, 2002; (6) J.-H. Lee, et al., j.f'ect of Body
Structure on Analog Performance of SOI NMOSFETs,”
Proceedings, 1998 IEEE International SOI Conference, 3-8
Oct. 1998, pp. 61-62; (7) C. F. Edwards, et al., The Effect of
Body Contact Series Resistance on SOI CMOS Amplifier
Stages,” IEEE Transactions on Electron Devices, Vol. 44,
No. 12, December 1997 pp. 2290-2294; (8) S. Maeda, et al.,
Substrate-bias Effect and Source-drain Breakdown Charac-
teristics 1 Body-tied Short-channel SOI MOSFET’ s,”
IEEE Transactions on FElectron Devices, Vol. 46, No. 1,
January 1999 pp. 151-158; (9) F. Assaderath et al.,
“Dynamic Threshold-voltage MOSFET (DTMOS) for
Ultra-low Voltage VLSI,” IEEE Transactions on E

Electron

Devices, Vol. 44, No. 3, March 1997, pp. 414-422; (10) G.
O. Workman and J. G. Fossum, “A Comparative Analysis of
the Dynamic Behavior of BTG/SOI MOSFETs and Circuits
with Distributed Body Resistance,” IEEE Transactions on
Electron Devices, Vol. 45, No. 10, October 1998 pp. 2138-
2145; and (11) T.-S. Chao, et al., “High-voltage and High-
temperature Applications of DTMOS with Reverse Schottky
Barrier on Substrate Contacts,” IEEE Electron Device Let-
ters, Vol. 25, No. 2, February 2004, pp. 86-88.

As described herein, applications such as RF switch
circuits, may use SOI MOSFETSs operated with off-state bias
voltages, for which accumulated charge may result. The SOI
MOSFETs are defined herein as operating within the accu-
mulated charge regime when the MOSFETs are biased 1n the
ofl-state, and when carriers having opposite polarity to the
channel carriers are present in the channel regions of the
MOSFETs. In some embodiments, the SOI MOSFETs may
operate within the accumulated charge regime when the
MOSFETs are partially depleted yet still biased to operate 1n
the ofl-state. Significant benefits in 1mproving nonlinear
cellects on source-drain capacitance can be realized by
removing or otherwise controlling the accumulated charge
according to the present teachings. In contrast to the dis-
closed techniques, none of the cited prior art teach or suggest
ACS methods and apparatuses that are uniquely usetul for
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removing or controlling accumulated charge. Nor are they
informed regarding problems caused by the accumulated
charge such as nonlinear eflects on the off-state source-drain
capacitance C_. Consequently, the prior art body contacts
described 1n the references cited above differ greatly (in
structure, function, operation and design) from the ACSs
described with reference to FIGS. 3A-4D.

In one example, the ACS 308 operates eflectively to
remove or otherwise control the accumulated charge from

the SOI NMOSFET 300 using a high impedance connection
to and throughout the body 312. High impedance ACSs may
be used because the accumulated charge 120 1s primarily
generated by phenomena (e.g., thermal generation) that take
a relatively long period of time to produce significant
accumulated charge. For example, a typical time period for
producing non-negligible accumulated charge when the
NMOSFET operates in the accumulated charge regime 1s
approximately a few milliseconds or greater. Such relatively
slow generation of accumulated charge corresponds to very
low currents, typically less than 100 nA/mm of transistor
width. Such low currents can be eflectively conveyed even
using very high impedance connections to the body. Accord-
ing to one example, the ACS 308 1s implemented with a
connection having a resistance of greater than 10° ohms.
Consequently, the ACS 308 1s capable of effectively remov-
ing or otherwise controlling the accumulated charge 120
even when implemented with a relatively high impedance
connection, relative to the low impedance prior art body
contacts.

In stark contrast, the prior art teachings of body contacts
described 1n the references cited above require low 1mped-
ance (high efliciency) access to the body regions of SOI
MOSFETs for proper operation (see, €.g., references (3) (6),
and (7) above). A principal reason for this requirement 1s that
the prior art body contacts are primarily directed to reducing,
the adverse eflects on SOI MOSFET functions caused by
much faster and more eflective electron-hole pair generation
processes than occur when the FET i1s operated in the
accumulated charge regime. For example, in some prior art
MOSFETs not operated i the accumulated charge regime,
clectron-hole pair carriers are generated as a result of impact
ionization. Impact 1onization produces electron-hole pairs at
a much faster rate than occurs when the FET 1s operated 1n
the accumulated charge regime.

The relative rates for electron-hole pair generation by
impact 1onization versus the pair generation processes caus-
ing accumulated charge can be estimated from the roll-off
frequencies for the two phenomena. For example, reference
(3) cited above indicates roll-ofl frequencies for impact
ionization effects in the range of 10° Hz. In confrast, a
roll-off frequency for the accumulated charge eflects has
been observed to be in the range of 10° Hz or less, as
indicated by recovery times for odd harmonics. These obser-
vations indicate that the ACS 308 can effectively control
accumulated charge using an impedance that 1s at least 100
times larger than required of prior art body contacts used in
controlling 1mpact 1omzation charge, for example. Further,
because 1mpact 1onization primarily occurs when the SOI
MOSFET operates 1 an on-state, the eflects of impact
ionization can be amplified by on-state transistor operation.
Low mmpedance body contacts to and throughout a body
region 1s even more critical 1n these environments 1n order
to control the effects of 1impact ionization under the on-state
conditions.

In stark contrast, the ACS 308 of the present teachings
removes or otherwise controls the accumulated charge only
when the ACC SOI MOSFET operates 1n the accumulated
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charge regime. By definition, the FET 1s 1n the ofl-state 1n
this regime, so there 1s no requirement to remove impact
ionization as amplified by an on-state FET. Therefore, a high
impedance ACS 308 1s pertectly adequate for removing the
accumulated charge under these operating conditions. The
prior art requirements for low impedance body connections
results 1n numerous problems of implementation that are
overcome by the present teachings, as described below 1n
more detail.

In addition, the ACS 308 may be implemented with much
lower source-to-drain parasitic capacitance as compared to
the body contacts of the prior art. The above-described low
impedance connection to the SOI MOSFET body required
of the prior art body contacts necessitates proximity of the
contacts to the entire body. This may require a plurality body
contact “fingers” that contact the body at different locations
along the body. The low impedance connection to the body
also necessitates proximity of the prior art body contacts to
the source and drain. Because ol parasitic capacitances
produced by such body contacts, the cited prior art refer-
ences teach away from the use of such structures for many
high frequency applications such as RF. In stark contrast, the
ACS 308 of the present disclosure may be positioned a
selected distance away from the source 304 and the drain
306, and the ACS 308 may also be coupled to the body 312
at a first distal end of the body 312 (shown 1n FIGS. 3A and
3B). Arranged 1n this manner, the ACS 308 makes minimal
contact (as compared to the prior art body contacts that may
contact the body at many locations along the body) with the
body 312. This configuration of the ACS 308 with the
MOSFET eliminates or greatly reduces the parasitic capaci-
tances caused by a more proximate positioning of the ACS
308 relative to the source, drain, and body. Further, the ACS
308 may be implemented in SOI MOSFETSs operated with a
depleted channel. In general, the cited prior art references
teach away from the use of body contacts for this environ-
ment (see, e.g., relerence (3), cited above).

Further, because impact 1onization hole currents are much
larger (1n the range of 5,000 nA per mm body width) than for
accumulated charge generation (less than approximately 100
nA per mm body width), the prior art does not teach how to
cllectively implement very large body widths (1.e., much
greater than approximately 10 um). In contrast, the ACS 308
of the present disclosed device may be implemented in SOI
MOSFETs having relatively large body widths. This pro-
vides improvements 1n on-state conductance and transcon-
ductance, msertion loss and fabrication costs, particularly
for RF switch devices. According to the prior art teachings
cited above, larger body widths adversely aflect the eflicient
operation of body contacts because their impedances are
necessarily thereby increased. Although the cited prior art
suggests that a plurality of fingers may be used to contact the
body at different locations, the plurality of fingers adversely
allects parasitic source-to-drain capacitances, as described
above.

For these reasons, and for the reasons described below 1n
more detail, the present disclosure provides novel MOSFET
devices, circuits and methods that overcome the limitations
according to the prior art teachings as cited above.

FIG. 3C 1s a cross-sectional perspective schematic of an
ACC SOI NMOSFET 300' adapted to control accumulated
charge 1n accordance with the disclosed method and appa-
ratus. In the example shown 1n FIG. 3C, the ACC NMOS-
FET 300' includes four terminals that provide electrical
connection to the various FET component regions. In one
embodiment, the terminals provide means for connecting
external integrated circuit (IC) elements (such as metal
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leads, not shown) to the various FET component regions.
Three of the terminals shown in FIG. 3C are typically
available 1 prior art FE'T devices. For example, as shown 1n
FIG. 3C, the ACC NMOSFET 300’ includes a gate terminal
302' that provides electrical connection to the gate 302.
Similarly, the ACC NMOSFET 300' includes source and
drain terminals 304', 306' that provide electrical connection
to the source 304 and drain 306, respectively. As 1s well
known in the electronic design arts, the terminals are
coupled to their respective FET component regions (i.e.,
gate, drain and source) via so-called “ohmic” (i.e., low
resistance) contact regions. The manufacturing and struc-
tural details associated with the coupling of the various FET
terminals to the FET component regions are well known 1n

the art, and therefore are not described 1n more detail here.
As described above with reference to FIGS. 3A and 3B,

the ACC NMOSFET 300' 1s adapted to control accumulated
charge when the NMOSFET operates in the accumulated
charge regime. To this end, 1n the exemplary embodiment
shown 1n FIG. 3C, the ACC NMOSFET 300' includes a
fourth terminal that provides electrical connection to the
body 312, and thereby facilitates reduction (or other control)
of the accumulated charge when the FET 300' operates in the
accumulated charge regime. More specifically, and referring
again to FIG. 3C, the ACC NMOSFET includes a “body”
terminal, or Accumulated Charge Sink (ACS) terminal 308'.
The ACS terminal 308' provides an electrical connection to
the ACS 308 (not shown 1n FIG. 3C, but shown 1n FIGS. 3A
and 3B) and to the body 312. Although the ACS terminal
308' 1s shown 1n FIG. 3C as being physically coupled to the
body 312, those skilled 1in the electronic design arts shall
understand that this depiction 1s for illustrative purposes
only. The direct coupling of the ACS terminal 308' to the
body 312 shown in FIG. 3C illustrates the electrical con-
nectivity (i.e., not the physical coupling) of the terminal 308
with the body 312. Similarly, the other terminals (1.e.,
terminals 302', 304" and 306') are also shown 1n FIG. 3C as
being physically coupled to their respective FET component
regions. These depictions are also for illustrative purposes
only.

In most embodiments, as described above with reference
to FIGS. 3A-3B, and described further below with reference
to FIGS. 3D-3K, the ACS terminal 308' provides the elec-
trical connection to the body 312 via coupling to the ACS
308 via the electrical contact region 310. However, the
present disclosure also contemplates embodiments where
the coupling of the ACS terminal 308' 1s made directly to the
body 312 (1.e., no mntermediate regions exist between the
ACS terminal 308' and the body 312).

In accordance with the disclosed method and apparatus,
when the ACC NMOSFET 300' 1s biased to operate 1n the
accumulated charge regime (1.e., when the ACC NMOSFET
300' 1s 1n the ofl-state, and there 1s an accumulated charge
120 of P polarity (i.e., holes) present 1n the channel region
of the body 312), the accumulated charge 1s removed or
otherwise controlled via the ACS terminal 308'. When
accumulated charge 120 1s present in the body 312, the
charge 312 can be removed or otherwise controlled by
applying a bias voltage (V, ({or “body”) or V , - (ACS bias
voltage)) to the ACS terminal 308'. In general, the ACS bias
voltage V .. applied to the ACS terminal 308' may be
selected to be equal to or more negative than the lesser of the
source bias voltage Vs and drain bias voltage Vd. More
specifically, 1n some embodiments, the ACS terminal 308’
can be coupled to various accumulated charge sinking
mechanisms that remove (or “sink™) the accumulated charge
when the FET operates 1n the accumulated charge regime.
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Several exemplary accumulated charge sinking mechanisms
and circuit configurations are described below with refer-

ence to FIGS. 4A-3D.
Similar to the prior art NMOSFET 100 described above

with reference to FIG. 1, the ACC SOI NMOSFET 300' of 5

FIG. 3C can be biased to operate 1n the accumulated charge
regime by applying specific bias voltages to the various
terminals 302', 304', and 306'. In one exemplary embodi-
ment, the source and drain bias voltages (Vs and Vd,
respectively) are zero (1.e., the terminals 304" and 306' are
connected to ground). In this example, if the gate bias
voltage (Vg) applied to the gate terminal 302' 1s sufliciently
negative with respect to the source and drain bias voltages,
and with respect to V,, (for example, 1t V, 1s approximately

zero, and 1if Vg 1s more negative than approximately —1 V),
the ACC NMOSFET 300' operates in the ofl-state. If the

ACC NMOSFET 300' continues to be biased in the off-state,
the accumulated charge (holes) will accumulate in the body
312. Advantageously, the accumulated charge can be
removed from the body 312 via the ACS terminal 308'. In
some embodiments, as described below 1n more detail with
reference to FI1G. 4B, the ACS terminal 308’ 1s coupled to the
gate terminal 302' (thereby ensuring that the same bias
voltages are applied to both the gate (Vg) and the body
(shown 1n FIG. 3C as “Vb” or “V 7).

However, those skilled in the electronics design arts shall
appreciate that a myriad of bias voltages can be applied to
the four device terminals while still employing the tech-
niques of the present disclosed method and apparatus. As
long as the ACC SOI NMOSFET 300' 1s biased to operate
in the accumulated charge regime, the accumulated charge
can be removed or otherwise controlled by applying a bias
voltage V , . to the ACS terminal 308', and thereby remove
the accumulated charge from the body 312.

For example, in one embodiment wherein the ACC
NMOSFET 300' comprises a depletion mode device, V,;, 1s
negative by definition. In this embodiment 1f both the Vs and
Vd bias voltages comprise zero volts (1.e., both terminals
tied to circuit ground node), and a gate bias Vg applied to the
gate terminal 302' 1s sufliciently negative to V_, (for
example, Vg 1s more negative than approximately -1 V
relative to V , ), holes may accumulate under the gate oxide
110 thereby becoming the accumulated charge 120. In this
example, 1n order to remove the accumulated holes (1.e., the
accumulated charge 120) from the FET body 312, the
voltage V , - applied to the ACS 308 may be selected to be
equal to or more negative than the lesser of Vs and Vd.

In other examples, the source and drain bias voltages, Vs
and Vd, respectively, may comprise voltage other than zero
volts. According to these embodiments, the gate bias voltage
Vg must be sulliciently negative to both Vs and Vd (1n order
for Vg to be sufliciently negative to V,, for example) 1n
order to bias the NMOSFET 1n the off-state. As described
above, 1 the NMOSFET 1s biased 1n the ofi-state for a
sulliciently long time period (approximately 1-2 ms, for
example) an accumulated charge will accumulate under the
gate oxide. In these embodiments, as noted above, 1n order
to remove the accumulated charge 120 from the body 312,
the ACS bias voltage V , . applied to the ACS terminal 308’
may be selected to be equal to or more negative than the
lesser of Vs and Vd.

It should be noted that, in contrast to the examples
described above, the prior art body contacts are implemented
largely for purposes of mitigating the adverse eflects caused
by mmpact 1omization. Consequently, the prior art body
contacts are typically tied to the source of the MOSFET. In
order to eflectively control, reduce, or entirely remove the
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accumulated charge 1n an NMOSFET, V , . should, i the
exemplary embodiments, be equal to or more negative than
the lesser of Vs and Vd. Those skilled in the electronic
device design arts shall appreciate that different Vs, Vd, Vg
and V , . bias voltages may be used when the ACC MOS-
FET comprises a PMOSFET device. Because the prior art
body contacts are typically tied to the source, this 1mple-
mentation cannot be effected using the prior art body contact
approach.

FIG. 3D 1s a simplified schematic diagram of a top view
of an ACC SOI NMOSFET 300" adapted to control accu-
mulated charge 120 (FIG. 1) in accordance with the present
disclosure. FIG. 3D shows the ACC NMOSFET 300" with-
out 1ts gate contact 301, gate 302, and gate oxide being
visible. The ACC NMOSFET 300" of FIG. 3D 1s very
similar 1 design to the ACC NMOSFET 300 described
above with reference to FIGS. 3A and 3B. For example,
similar to the ACC NMOSFET 300, the ACC NMOSFET
300" includes a source 304 and drain 306 comprising N+
regions. The ACC NMOSFET 300" also includes an accu-
mulated charge sink (ACS) 308 comprising a P— region. As
shown 1n FIG. 3D, the P- region that comprises the ACS 308
abuts (1.e., 1s directly adjacent) the body 312, which also
comprises a P— region. Similar to the ACC NMOSFET 300,
the ACC NMOSFET 300" includes an electrical contact
region 310 that provides electrical connection to the ACS
308. As noted above, 1n some embodiments, the electrical
contact region 310 comprises a P+ region. In another
embodiment, the electrical contact region 310 may comprise
an N+ region (which thereby prevents positive current tlow
into the body 312 as noted above) As shown 1n FIG. 3D, the
clectrical contact region 310 1s formed 1n the ACC NMOS-
FET 300" directly adjacent the ACS 308. The ACC SOI
NMOSFET 300" functions to control accumulated charge
similarly to the operation of the ACC NMOSFETs described
above with reference to FIGS. 3A-3C.

FIG. 3E 1s a simplified schematic diagram of a top view
of an ACC SOI NMOSFET 300™ adapted to control accu-
mulated charge in accordance with the present disclosure.
The ACC NMOSFET 300™ 1s very similar 1n design and
function to the ACC NMOSFETs described above with
reference to FIGS. 3A-3D. FIG. 3E shows a dashed cross-
sectional view line A-A' taken along the approximate center
of the NMOSFET 300". This cross-sectional view 1s used
herein to describe structural and performance characteristics
of some exemplary prior art MOSFETS and some embodi-
ments of the ACC NMOSFET that may occur as a result of
the fabrication processes. Details of this cross-sectional
view A-A' are now described with reference to FIG. 3F.

View line A-A' slices through the following component
regions ol the ACC NMOSFET 300™: the P+ electrical
contact region 310, the ACS 308 (shown 1n FIG. 3E, but not
shown 1n FIG. 3F), a P+ overlap region 310', a gate oxide
110, and a poly-silicon gate 302. In some embodiments,
during the fabrication process, when the region 310 1s doped
with p-type dopant matenal, proximate the P- body region,
some additional P+ doping may be implanted (.e., the
p-type dopant material may overlap) into the P+ overlap
region 310" of the poly-silicon gate 302. In some embodi-
ments, such overlapping 1s performed intentionally to ensure
that all of the gate oxide 110 1s completely covered by the
P+ region (i.e., to ensure that no gap exists on the edge of
the oxide 110 between the gate 302 and the P+ region 310).
This, in turn, aids 1 providing a minimum impedance
connection between the P+ region 310 and the body 312.

Although the present teachings encompass such embodi-
ments described above, those skilled 1n the electronic device
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design and manufacturing arts shall recognize that such
low-resistance connections are not required. Therefore, dis-
advantages associated with the embodiment shown 1n FIG.
3H, as described below in more detail, can be overcome by
using other embodiments described herein (for example, the
embodiments 300 and 300"" described below with reference
to FIGS. 3G and 3], respectively), in which gaps are
intentionally implemented between the P+ region 310 and
the body 312. In one exemplary embodiment, the P+ overlap
region 310' overlaps the oxide 110 by approximately 0.2-0.7
microns. Those skilled 1n the MOSFET design and manu-
facturing arts shall appreciate that other overlap region
dimensions can be used in practicing the present disclosed
method and apparatus. In some embodiments, as shown 1n
FIG. 3F, for example, the remaining area over the gate oxide
110 and over the P- body 1s doped with n-type dopant
material (1.e., 1t comprises an N+ region).

Referring again to FIG. 3F, owing to the presence of the
P+ overlap region 310' over the gate oxide 110, over the
body 312, and proximate an edge 340 of the poly s1licon
gate 302, an increased threshold voltage region is created 1n
the NMOSFET 300"™. More specifically, due to the P+
doping (in the P+ overlap region 310') proximate the edge
340 of the gate 302 over the channel region of the body 312,
a region of increased threshold voltage 1s formed 1n that
region of the MOSFET 300™. The eflects of the region of
increased threshold voltage are now described 1n more detail
with reference to FIGS. 3H and 31.

FIG. 31 shows a plot 380 of inversion channel charge
versus applied gate voltage for an ACC NMOSFFET. The plot
380 shown i FIG. 31 illustrates one eflect of the above-
described increased threshold voltage that can occur 1n prior
art MOSFETs, and in some embodiments of the present
ACC NMOSFETs due to certain manufacturing processes.
As described 1n more detail below, the increased threshold
voltage region, shown in FIG. 3H and described in more
detail below, also occurs 1n prior art MOSFET designs due
to the proximity of body ties to the FET body. As described
below 1n more detail with reference to FIG. 3], for example,
the present disclosed method and apparatus can be used to

reduce or eliminate the region of increased threshold voltage
found 1n some prior art SOI MOSFET designs.

FIG. 3H shows one embodiment of an ACC NMOSFET
without 1ts gate contact, gate, and gate oxide being visible.
The MOSFET region of increased threshold voltage
described above with reference to FIGS. 3E and 3F i1s shown
in FIG. 3H as occurring 1n the region encompassed by the
cllipse 307. As will be well understood by those skilled 1n
the electronic design and manufacturing arts, for the reasons
set forth above with reference to FIGS. 3E and 3F, due to the
increased threshold voltage, the region 307 of the ACC
MOSFET shown 1n FIG. 3H eflectively “turns on™ after the
rest of the ACC MOSFFET channel region.

The increased threshold voltage can be reduced by reduc-
ing the size of the region 307. Eliminating the region 307
altogether eliminates the threshold wvoltage increase.
Because the threshold voltage increase can increase har-
monic and intermodulation distortion of the “on™ state
MOSFET, eliminating this effect improves MOSFET per-
formance. The increased threshold voltage also has the
detrimental eflect of increasing the MOSFET on-resistance
(1.., the resistance presented by the MOSFET when it 1s 1n
the on-state (conducting state), which detrimentally impacts
the MOSFET 1nsertion loss.

In one exemplary embodiment, as shown, for example in
the embodiments of the ACC NMOSFET 300 described

above with reference to FIGS. 3A and 3B, and as described
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below 1n more detail with reference to the cross-sectional
view of the ACC MOSFET 300 of FIG. 3G, the detrimental
cllects associated with threshold voltage increase are miti-
gated or overcome by positioning the P+ region 310 a
selected distance away from an edge of the poly-silicon gate
302. This approach 1s shown both in the top view of the ACC
MOSFET 300 of FIG. 3A, and 1n the cross-sectional view of
the ACC MOSFET 300 shown 1n FIG. 3G. As shown 1n the
cross-sectional view of the ACC MOSFET 300 of FIG. 3G,
the P+ region 310 does not extend all the way to the edge
340 of the poly-silicon gate 302. This 1s 1n stark contrast to
the embodiment 300" shown in FIG. 3F, where the P+
region 310" extends all the way to the gate edge 340. By
positioning the P+ region 310 a distance away from the gate
edge 340 as shown 1n the embodiment 300 of FIG. 3G, no
P+ region 1s positioned proximate the poly-silicon gate 302
(1.e., there 1s no P+ region present 1n the poly-silicon gate
302).

This configuration of the P+ region 310 eliminates or
greatly reduces the problems associated with threshold volt-
age 1ncrease as described above. As described above with
reference to FIGS. 3A and 3B, and with reference to the
comparisons to the prior art body contact references, the
relatively high impedance of the ACS 308 P- region (shown
in FIG. 3A) between the P+ region 310 and the gate 302 does
not adversely aflect the performance of the ACC NMOSFET
300. As described above, the accumulated charge can be
cellectively removed even using a relatively high impedance
ACS connection.

In another exemplary embodiment, as described below
with reference to FIG. 3], the threshold voltage increase 1s
removed by positioning the P+ region 310 (and the ACS
308) a distance away from the body 312. Because the
clectrical connectivity between the ACS 308 and the body
312 has relatively high impedance when the small region of
P+ 310 is positioned a distance away from the body 312, this
approach 1s never taught or suggested by the body contact
prior art references (which require low impedance contacts
as described above). This mmproved embodiment 1is
described next with reference to FIG. 31.

FIG. 3] 1s a simplified top view schematic of another
embodiment of an ACC SOI NMOSFET 300"" adapted to
control accumulated charge and configured 1n a “I-gate”
configuration. FIG. 3] shows the ACC NMOSFET 300""
without 1ts gate contact 301, gate 302, and gate oxide being
visible. The gate (not shown in FIG. 3J) and the body 312
are configured as “supporting” members of the “I-gate”
configured ACC MOSFET 300"" (i.e., they comprise the
“bottom™ portion of the “I-shaped” FET). These “support-
ing” members “support” the “supported” member of the
T-gate configured MOSFET 300", which comprises the ACS
308 as shown 1n FIG. 3] (i.e., the ACS 308 comprises the
“top” portion of the “I-shaped” FET). As shown 1n FIG. 31,
the ACC NMOSFET 300"" includes a small P+ region 310
conjomed to an ACS 308. As shown in FIG. 3], the P+
region 310 (and thus the ACS external electrical connection)
1s disposed a selected distance away from the body 312. The
total impedance of the electrical connection from the body
312, through the ACS 308, and to the P+ region 310 is
increased by positioning the P+ region 310 a selected
distance away from the body 312. However, as described
above, the present ACC NMOSFET 300" works perfectly
well to remove accumulated charge even using relatively
high impedance ACS connections. For the reasons described
above with reference to FIGS. 3A and 3B, due to the nature
of the accumulated charge when the NMOSFET 300"

operates 1n the accumulated charge regime, the ACC
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NMOSFET 300"" does not require low impedance ACS
clectrical connections 1n order to remove accumulated
charge from the body 312. Rather, an ACS connection of
relatively large impedance may be used in practicing the
present teachings, with corresponding improvements in
NMOSFET performance as described above (e.g., reduc-
tions 1n parasitic capacitance as compared with prior art low
impedance body contacts). However, 1n other embodiments,
if desired, a low impedance ACS connection may be used to
practice the disclosed method and apparatus for use in
improving linearity characteristics of SOI MOSFETs.

Moreover, as described above with reference to FIG. 3H,
the embodiment of FIG. 3] improves device performance
owing to the fact that the small P+ region 310 1s positioned
a distance away from the body 312. Because the small P+
region 310 1s positioned a distance away from the body 312,
the threshold voltage increase 1s reduced or entirely elimi-
nated, together with the consequent adverse performance
ellects described above.

FIG. 3K 1s a simplified top view schematic of another
embodiment of an ACC SOI NMOSFET 300™" adapted to
control accumulated charge and configured 1 an “H-gate”
configuration. FIG. 3K shows the ACC NMOSFET 300"
without its gate contact 301, gate 302, and gate oxide being

visible. With the exception of some structural differences
described herein, the ACC NMOSFET 300™" 1s very similar

in design and function to the ACC NMOSFETs described
above with reference to FIGS. 3A-3D and 3J. As shown 1n
FIG. 3K, the ACC NMOSFET 300"" includes two ACSs,
308 and 308", disposed at opposite ends of the H-gate ACC
NMOSFET 300"". P+ regions 310 and 310" are formed to
abut their respective ACSs, 308 and 308", and provide
clectrical contact thereto. In accordance with the disclosed
method and apparatus, as described above, when the ACC
NMOSFET 300™" 1s biased to operate in the accumulated
charge regime, the accumulated charge 1s removed or oth-
erwise controlled via the two ACSs 308 and 308".

It shall be understood by those skilled 1n the electronic
device design arts that although the 1llustrated embodiment
shows the ACSs 308 and 308" extending approximately the
entire width of the ACC NMOSFET 300™", the ACSs 308
and 308" may also comprise much narrower (or wider)
regions, and still function perfectly well to remove or
otherwise control the accumulated charge. Also, 1n some
embodiments, 1t 15 not necessary that the impedance of the
ACS 308 matches the impedance of the ACS 308". It will
turther be understood by the skilled person that the ACSs
308 and 308" may comprise diflerent sizes and configura-
tions (1.e., rectangular, square, or any other convenient
shape), and may also be positioned at various distances away
from the body 312 (1.e., not necessarily the same distance
away from the body 312). As described above with reference
to FIG. 3], when the ACS 308 1s positioned a selected
distance away from the body 312, the problems associated
with threshold voltage increase are reduced or eliminated.
Four-Terminal ACC MOSFET Devices—Simple Circuit
Configurations

The SOI NMOSFET 300 of FIGS. 3A and 3B may be
implemented as a four terminal device, as illustrated sche-
matically in FIG. 4A. As shown 1n the improved ACC SOI
NMOSFET 300 of FIG. 4A, a gate terminal 402 1s electri-
cally coupled to the gate contact 301 (e.g., FIG. 3A) and 1s
analogous to the gate terminal 302' shown 1 FIG. 3C. The

gate contact 301 1s electrically coupled to the gate 302 (e.g.,
FIGS. 3A and 3C). Similarly, a source terminal 404 is
clectrically coupled to the source 304 (e.g., FIGS. 3A-3C)

and 1s analogous to the source terminal 304' of FIG. 3C.

10

15

20

25

30

35

40

45

50

55

60

65

26

Similarly, a drain terminal 406 1s electrically coupled to the
drain 306 (e.g., FIGS. 3A-3C) and 1s analogous to the drain

terminal 306' of FIG. 3C. Finally, the ACC NMOSFET 300
includes an ACS terminal 408 that 1s electrically coupled to
the ACS 308 (e.g., see FIGS. 3A-3B, and FIGS. 3D, 3]-3K)
via the region 310. Those skilled 1n the electronic design and
manufacturing arts shall understand that the region 310 may
be used 1n some embodiments to facilitate electrical cou-
pling to the ACS 308 because, 1n some embodiments, 1t may
be diflicult to make a direct contact to a lightly doped region
(1.e., the ACS 308). The ACS terminal 408 1s analogous to
the ACS terminal 308' shown in FIG. 3C.

The ACC SOI NMOSFET 300 of FIG. 4A may be
operated using various techniques and implemented 1n vari-
ous circuits 1n order to control accumulated charge present
in the FET when 1t 1s operating 1n an accumulated charge
regime. For example, 1n one exemplary embodiment as
shown 1n FI1G. 4B, the gate and ACS terminals, 402 and 408,
respectively, are electrically coupled together. In one
embodiment of the simplified circuit shown in FIG. 4B, the
source and drain bias voltages applied to the terminals 404
and 406, respectively, may be zero. If the gate bias voltage
(Vg) applied to the gate terminal 402 1s sufliciently negative
with respect to the source and drain bias voltages applied to
the terminals 404 and 406, and with respect to the threshold
voltage V,,, ({or example, if V , 1s approximately zero, and
i Vg 1s more negative than approximately -1 V) the ACC
NMOSFET 300 operates in the accumulated charge regime.
As described above with reference to FIG. 3C, for example,
when the MOSFET operates in this regime, accumulated
charge (holes) may accumulate 1n the body of the NMOS-
FET 300.

Advantageously, the accumulated charge can be removed
via the ACS terminal 408 by connecting the ACS terminal
408 to the gate terminal 402 as shown. This configuration
ensures that when the FET 300 1s 1n the ofl-state, 1t 1s held
in the correct bias region to eflectively remove or otherwise
control the accumulated charge. As shown in FIG. 4B,
connecting the ACS terminal 408 to the gate ensures that the
same bias voltages are applied to both the gate (Vg) and the
body (shown 1n FIG. 3C as “Vb” or “V ,.~.”). Because the
bias voltage V , .. 1s the same as the gate voltage Vg 1n this
embodiment, the accumulated charge 1s no longer trapped
below the gate oxide (by attraction to the gate bias Vg)
because it 1s conveyed to the gate terminal 402 via the ACS
terminal 408. The accumulated charge 1s thereby removed
from the body via the ACS terminal 408.

In other exemplary embodiments, as described above with
reference to FIG. 3C, for example, Vs and Vd may comprise
nonzero bias voltages. According to these examples, Vg
must be sufliciently negative to both Vs and Vd 1n order for
Vg to be suthiciently negative to V,, to turn the NMOSFET
300 off (1.e., operate the NMOSFET 300 in the ofi-state).
When so biased, as described above, the NMOSFET 300
may enter the accumulated charge regime and thereby have
accumulated charge present in the body. For this example,
the voltage V , ~. may also be selected to be equal to Vg by
connecting the ACS terminal 408 to the gate terminal 402,
thereby conveying the accumulated charge from the body of
the ACC NMOSFET, as described above.

In another exemplary embodiment, as described above,
the ACC NMOSFET 300 comprises a depletion mode
device. In this embodiment, the threshold voltage, V , 1s, by
definition, less than zero. For Vs and Vd both at zero volts,
when a gate bias Vg sufliciently negative to V , 1s applied to
the gate terminal 402 (for example, Vg more negative than
approximately —1 V relative to V), holes may accumulate
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under the gate oxide and thereby comprise an accumulated
charge. For this example, the voltage V ,.. may also be
selected to be equal to Vg by connecting the ACS terminal
408 to the gate terminal 402, thereby conveying the accu-
mulated charge from the ACC NMOSFET as described
above.

In some embodiments of the improved ACC SOI NMOS-
FET 300, such as that described above with reference to

FI1G. 4B, when the FET 1s biased on, diodes formed at the

edge of the device (such as described above with reference
to the interface between the ACS 308 and the drain 304 (and

the source 306) as shown 1n FIG. 3D) may become forward
biased thereby allowing current to tlow into the source and
drain regions. In addition to wasting power, this may 1ntro-
duce nonlinearity into the NMOSFET. The nonlinearity
results because the current that flows as a result of the
torward biased interface diodes comprises nonlinear current.
As Vgs and Vgd are reduced 1n that region of the device, the
on resistance Ron at the edge of the device 1s increased. As
1s well known, and for the reasons set forth above, if the
interface diodes formed at the edge of the device become
forward biased, the device on-state characteristics are con-
sequently dramatically adversely affected. Those skilled 1n
the electronic device design arts shall understand that the
configuration shown in FIG. 4B limits application of a gate
bias voltage Vgs to approximately 0.7 Volts. The simplified
circuit shown 1n FIG. 4C can be used to overcome these
problems.

Another exemplary simplified circuit using the improved
ACC SOI NMOSFET 300 1s shown 1in FIG. 4C. As shown
in FIG. 4C, 1n this embodiment, the ACS terminal 408 may
be electrically coupled to a diode 410, and the diode 410
may, i turn, be coupled to the gate terminal 402. This
embodiment may be used to prevent a positive current tlow
into the MOSFET body 312 caused by a positive Vg-to-Vs
(or, equivalently, Vgs, where Vgs=Vg—Vs) bias voltage, as
may occur, for example, when the SOI NMOSFET 300 1s
biased into an on-state condition.

As with the device shown 1n FI1G. 4B, when biased off, the
ACS terminal voltage V , . comprises the gate voltage plus
a voltage drop across the diode 410. At very low ACS
terminal current levels, the voltage drop across the diode 410
typically also 1s very low (e.g., <<500 mV, for example, for
a typical threshold diode). The voltage drop across the diode
410 can be reduced to approximately zero by using other
diodes, such as a OV1 diode, for example. In one embodi-
ment, reducing the voltage drop across the diode 1s achieved
by increasing the diode 410 width. Additionally, maintaiming,
the ACS-to-source or ACS-to-drain voltage (whichever bias
voltage of the two bias voltages 1s lower) increasingly
negative, also improves the linearity of the ACC MOSFET
device 300.

When the SOI NMOSFET 300 1s biased 1n an on condi-
tion, the diode 410 1s reverse-biased, thereby preventing the
flow of positive current into the source and drain regions.
The reverse-biased configuration reduces power consump-
tion and improves linearity of the device. The circuit shown
in FIG. 4C therefore works well to remove accumulated
charge from the ACC MOSFFET body when the FET 1s 1n the
ofl-state and 1s operated 1n the accumulated charge regime.
It also permits almost any positive voltage to be applied to
the gate voltage Vg. This, 1n turn, allows the ACC MOSFET
to eflectively remove accumulated charge when the device
operates 1n the ofl-state, yet assume the characteristics of a
floating body device when the device operates 1n the on-
state.
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With the exception of the diode 410 used to prevent the
flow of positive current into the ACS terminal 408, exem-
plary operation of the simplified circuit shown 1n FIG. 4C 1s
the same as the operation of the circuit described above with
reference to FIG. 4B.

In yet another embodiment, the ACS terminal 408 may be
coupled to a control circuit 412 as 1llustrated 1n the simpli-
fied circuit of FI1G. 4D. The control circuit 412 may provide
a selectable ACS bias voltage V , . that selectively controls
the accumulated charge (i.e., the accumulated charge 120
described above with reference to FIG. 1). As shown 1n FIG.
4D, rather than having a local circuit provide the ACS bias
voltage V , - (e.g., as dertved from the gate voltage Vg), in
some embodiments the ACS bias voltage V .. 1s produced
by a separate source that 1s independent of the ACC MOS-
FET device 300. In the case of a switch (as described below
in more detail with reference to FIG. 4E), the ACS bias
voltage V , . should be driven from a source having a high
output impedance. For example, such a high output imped-
ance source can be obtained using a large series resistor 1n
order to ensure that the RF voltage 1s divided across the
MOSFET and that the ACS bias voltage V , .. has Vds/2
“riding” on 1t, similarly to the gate voltage. This approach 1s
described in more detail below with reference to FIG. 4E.

It may be desirable to provide a negative ACS bias voltage
V , ~<to the ACS terminal 408 when the SOI NMOSFET 300
1s biased into an accumulated charge regime. In this exem-
plary embodiment, the control circuit 412 may prevent
positive current tlow into the ACS terminal 408 by selec-
tively maintaining an ACS bias voltage V .. that 1s consis-
tently negative with respect to both the source and drain bias
voltages. In particular, the control circuit 412 may be used
to apply an ACS bias voltage that 1s equal to or more
negative than the lesser of Vs and Vd. By application of such
an ACS bias voltage, the accumulated charge 1s thereby
removed or otherwise controlled.

In the exemplary embodiment of the simplified circuit
shown 1n FIG. 4D, the source and drain bias voltages applied
to the terminals 404 and 406, respectively, may be zero. If
the gate bias voltage (Vg) applied to the gate terminal 402
1s sufliciently negative with respect to the source and drain
bias voltages applied to the terminals 404 and 406, and with
respect to V,,, (for example, 1 V, 1s approximately zero,
and 1 Vg 1s more negative than approximately -1 V) the
ACC NMOSFET 300 operates i the accumulated charge
regime, and the accumulated charge (holes) may accumulate
in the body of the ACC NMOSFET 300. Advantageously,
the accumulated charge can be removed via the ACS termi-
nal 408 by connecting the ACS terminal 408 to the control
circuit 412 as shown. In order to ensure that the accumulated
charge 1s conveyed from the body of the ACC NMOSFET
300, the ACS bias voltage V , . that 1s applied to the ACS
terminal 408 should be equal to or more negative than the
gate voltage and more negative than the lesser of Vs and Vd.
Because the accumulated charge 120 1s conveyed to the bias
voltage V , . applied to the ACS terminal 408 by the control
circuit 412, the accumulated charge does not remain trapped
under the gate oxide due to attraction to the gate bias voltage
Vg.

In other embodiments, Vs and Vd may comprise bias
voltages that are other than zero. According to these
examples, Vg must be sufliciently negative to both Vs and
Vd 1n order for Vg to be sufliciently negative to V. 1n order
to bias the NMOSFET 300 1n the off-state. This allows the
accumulation of accumulated charge under the gate oxide.
For this example, the ACS bias voltage V ,.. may be
selected to be equal to or more negative than the lesser of Vs
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and Vd by connecting the ACS terminal 408 to the control
circuit 412 to provide selected ACS bias voltages, thereby

conveying the accumulated charge from the ACC NMOS-
FET 300.
In other embodiments, 1f the ACC NMOSFET 300 of FIG.

4D comprises a depletion mode device, V , 1s, by definition,
less than zero. For Vs and Vd both at zero volts, when a gate
bias Vg suthiciently negative to V,, 1s applied (for example,
Vg more negative than approximately —1 V relative to V , ),
holes may accumulate under the gate oxide. For this
example, the ACS bias voltage V .. that 1s applied to the
ACS terminal 408 may also be selected to be equal to or
more negative than the lesser of Vs and Vd by connecting,
the ACS terminal 408 to the control circuit 412 and thereby
provide the desired ACS bias voltages V .. that are neces-

sary to remove the accumulated charge from the ACC
NMOSFET 300.

As described above, 1n one embodiment, instead of hav-

ing the control circuit 412 provide a bias to the ACS terminal
408 as shown 1n FIG. 4D, the ACS terminal 408 can be

driven by a separate bias source circuit, as shown, for
example, 1n the embodiment of FIG. 4E. In one exemplary
circuit implementation, as exemplified 1n the circuit of FIG.
4E, 1n an RF switch circuit, the separate V .. source has a
high output impedance element 403 which ensures that the
RF voltage 1s divided across the ACC NMOSFET 300, and
which further ensures that the voltage applied to the ACS
terminal 408 has Vds/2 applied thereon, similar to the
voltage Vgs that 1s applied to the gate terminal 402. In one
exemplary embodiment, an inverter 405 1s configured 1n
series with the high output impedance element 403 and
supplied by GND and -V ,, . In one exemplary embodiment,
-V 55 18 readily derived from a convenient positive voltage
supply. It could, however, comprise an even more negative
voltage for improved linearity (i.e., 1t can be independent of
the gate voltage).

In another embodiment, the circuit shown in FIG. 4C can
be modified to include a clamping circuit configured in
series with an ACS terminal 408. Such an exemplary
embodiment 1s shown 1n FIG. 4F. Under certain operating
conditions, current that flows out of the ACC NMOSFET
300, conveying the accumulated charge from the body of the
ACC NMOSFET 300, via the ACS terminal 408 1s sufli-
ciently high such that it causes problems in the biasing
circuitry (1.¢., under some conditions the ACS current 1s so
high that the biasing circuitry cannot adequately sink the
current flowing out of the body of the ACC NMOSFET 300).
As shown 1n the circuit of FIG. 4F, one exemplary embodi-
ment solves this problem by interrupting the flow of ACS
current out of the body of the ACC NMOSFET 300, and
thereby returning the ACC NMOSFET 300 to a floating
body condition.

In one exemplary circuit, as shown in FIG. 4F, a deple-
tion-mode FET 421 1s configured in series between the ACS
terminal 408 and a diode 410. In this exemplary circuit, the
depletion-mode FET 421 includes a gate terminal that 1s
clectrically connected to the FET s source terminal. In this
configuration, the depletion-mode FET 421 functions to clip
or limit the current that flows from the ACS terminal 408
when the ACC MOSFET operates in the accumulated charge
regime. More specifically, the depletion-mode FET 421
enters saturation upon reaching a predefined threshold. The
current leaving the body of the ACC MOSFET 1is thereby
limited by the saturation current of the FET 421. In some
embodiments, the predefined saturation threshold may
optionally be adjusted to change the point at which clamping
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occurs, such as by selecting a higher threshold voltage,
which results 1n a lower maximum current and earlier
clamping.

In some embodiments, such as for example 1n an RF
switch circuit, the gate terminal 402 and the ACS terminal
408 follow Vds at half the rate (Vds/2) of Vds. At high Vds
excursions, Vgs may approach the threshold voltage Vth,
resulting in increased Ids leakage current. In some cases,
such a leakage current exits the ACS terminal 408 and can
overwhelm associated circuitry (e.g., a negative voltage
generator). Hence, the circuit shown 1 FIG. 4F solves or
otherwise mitigates these problems. More specifically, by
coupling the FET 421 in series between the ACS terminal
408 and the diode 410, the current that exits the ACS
terminal 408 1s limited to the saturation current of the FET
421.

In yet another exemplary embodiment, the simplified
circuit shown i FIG. 4C can be modified to include an AC
shorting capacitor placed 1n parallel with the diode 410. The
simplified circuit of FIG. 4G can be used to compensate for
certain undesirable nonlinearities present in a full circuit
application. In some embodiments, due to parasitics present
in the MOSFFET layout, nonlinearity characteristics existing
in the diode 410 of FIG. 4C may introduce undesirable
nonlinearities 1n a full circuit implementation. As the diode
1s 1n place to provide DC bias conditions and 1s not intended
to have any AC signals across 1t, it may be desirable 1n some
embodiments to take steps to mitigate the effects of any AC
signal present across the diode 410.

As shown 1n the simplified circuit of FIG. 4G, the circuit
of FIG. 4C has been modified to include an AC shorting
capacitor 423 wherein the AC shorting capacitor 423 1is
configured 1n parallel across the diode 410. The AC shorting
capacitor 423 1s placed 1n parallel with the diode 410 to
ensure that nonlinearities of the diode 410 are not excited by
an AC signal. In some exemplary circuits, such as 1n an RF
switch, the AC shorting capacitor 423 does not impact the
higher level full circuit, as the gate terminal 402 and the ACS
terminal 408 typically have the same AC signal applied (1.¢e.,
AC equipotential).

In some circuit embodiments, body nodes of a multi-
finger FET implementation may be connected to one another
(using, for example, metal or silicon), overlapping the
source fingers. On another side of the FET implementation,
gate nodes may be are connected to one another (using, for
example, metal or silicon) overlapping the drain fingers. As
a result of this FE'T implementation, additional capacitance
may result between the source and body (S-B), and further
additional capacitance may result between the drain and gate
(D-G). These additional capacitances may degrade the sym-
metry of the intrinsic device. Under AC excitation, this
results 1n the gate terminal following the drain terminal more
closely, and the body terminal following the source terminal
more closely, which eflectively creates an AC signal across
the diode 410, which can excite nonlinearities of the diode
410 as described above. Using the exemplary embodiment
shown 1 FIG. 4G, parasitic nonlinear excitation due to the
overlapping fingers 1s mitigated.

Improved C%ﬁr Performance Characteristics of ACC MOS-
FETs Made in Accordance with the Present Disclosed
Method and Apparatus

FIG. 4H 1s a plot 460 of the off-state capacitance (C, g
versus an applied drain-to-source voltage of an SOI MOS-
FET when an AC si1gnal 1s applied to the MOSFET (the plot
460 1s relevant to an exemplary 1 mm wide MOSFET,
though similar plots result using wider and narrower
devices). In one embodiment, a gate voltage equals 2.5
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Volts+Vd/2, and Vs equals 0. A first plot 462 shows the
off-state capacitance C_ . ot a typical prior art NMOSFET
operating within the accumulated charge regime and thereby
having an accumulated charge as described above with
reference to FIG. 1. As shown in FIG. 4H, the ofi-state
capacitance C_ . shown 1n plot 462 of the prior art FET 1s
Voltage-dependent (1.e., 1t 1s nonlinear) and peaks when
Vd=0 Volts. A second plot 464 illustrates the ofl-state
capacitance C_ ot an improved ACC SOl MOSFE'T made in
accordance with the present teachings, wherein the accumu-
lated charge 1s conveyed from the ACC MOSFET, thereby
reducing, controlling and/or eliminating the accumulated
charge from the ACC MOSFET body. As shown 1n FIG. 4H,
the ofl-state capacﬂance C,#shown 1n plot 464 of the ACC
SOI MOSFET 1s not Voltage dependent (1.e., 1t 1s linear).
As described above with reference to FIG. 2A, by con-
trolling, reducing or eliminating the accumulated charge, the
impedance 212 of the NMOSFET body 312 (FIG. 3C, and
shown as the MOSFET body 114 in the electrical model of

FIG. 2A) 1s increased to a very large value. This increase 1n
the impedance 212 of the MOSFET body reduces the

contribution to C_,caused by the impedance ot the junctions
218 and 220 (FIG 2A), thereby reducmg the overall mag-
nitude of C, . and the nonlinear eftects associated with the
impedances of the junctions 218 and 220. Plot 464 illustrates
how the present teachings advantageously reduce both the
nonlinearity and overall magnitude of the ofl-state capaci-
tance C_ . of the MOSFET. The reduced nonlinearity and
magnitude of the off-state capacitance C,_, improves the
performance of circuits using MOSFFETs operating in an
accumulated charge regime, such as RF switching circuits.

Exemplary RF switching circuits implemented with the
ACC MOSFETs described above with reference to FIGS.

4A-4G are now described with reference to FIGS. 5A-5D.
Exemplary Improved Performance RF Switch Implementa-
tions Using ACC SOI MOSFETs 1 Accordance with the
Present Teachings

FIG. 5A shows a schematic diagram of a single pole,
single throw (SPST) RF switch circuit 500 1n accordance
with prior art. The RF switch circuit 500 1s one example of
a general class of well-known RF switch circuits. Similar RF
switch circuits are described in the following co-pending
and commonly assigned U. S. Applications and Patent:
Provisional Application No. 60/651,736, filed Feb. 9, 2005,
entitled “UNPOWERED SWITCH AND BLEEDER CIR-
CUIT:” application Ser. No. 10/922,135, filed Aug. 18,
2004, pending, which 1s a continuation apphcatlon of apph-
cation Ser. No. 10/267,531, filed Oct. 8, 2002, which 1ssued
Oct. 12, 2004 as U.S. Pat. No 6,804,502, entltled “SWITCH
CIRCUIT AND METHOD OF SWITCHING RADIO FRE-
QUENCY SIGNALS”. Application Ser. No. 10/267,331,
filed Oct. 8, 2002, which 1ssued Oct. 12, 2004 as U.S. Pat.
No. 6,804,502 claims the benefit of U.S. Provisional Appli-
cation No. 60/328,353, filed Oct. 10, 2001. All of the
above-cited applications and 1ssued patent set forth above
are hereby incorporated by reference herein as 1f set forth 1n
tull for their teachings on RF switch circuits including SOI
MOSFET switch circuits.

Referring again to FIG. 5A, a switching SOl NMOSFET
506 1s adapted to receive an RF mnput signal “RFin” at an
input terminal 502. The switching SOI MOSFET 506 is
clectrically coupled to selectively couple the RFin 1nput
signal to an output terminal 504 (i.e., thereby convey an RF
output signal Riout at the output terminal 504). In the
exemplary embodiment, the switching SOI NMOSFET 506
1s controlled by a first control signal C1 that 1s conveyed by
a control line 512 through a gate resistor 510 (optionally

10

15

20

25

30

35

40

45

50

55

60

65

32

included for suppression of parasitic RF coupling). The
control line 512 1s electrically coupled to a control circuit
520, which generates the first control signal C1.

Referring again to FIG. 5A, a shunting SOI NMOSFET
508 15 adapted to recerve the RF mput signal RF1n at 1ts drain
terminal, and to selectively shunt the put signal RFin to
ground via an optional load resistor 518. The shunting SOI
NMOSFET 508 1s controlled by a second control signal C1x
which 1s conveyed by a control line 516 through a gate
resistor 514 (optionally included for suppression of parasitic
RF coupling and for purposes of voltage division). The
control line 516 1s electrically coupled to the control circuit
520, which generates the second control signal C1x.

The terms “switching” and “shunting”, as pertains to the
transistors shown 1n FIG. SA and also described below with
reference to the RF switch circuits of FIGS. 5B-5D, 6, 8, and
9, are used interchangeably herein with the terms “switch”
and “shunt”, respectively. For example, the switching tran-
sistor 5306 (and all of 1ts analogous switching transistors
described below 1n FIGS. 5B-3D, 6, 8, and 9) 1s also referred
to herein as the “switch” transistor. Similarly, the shunting
transistor 508 (and all of its analogous shunting transistors
described below 1n FIGS. 5B-3D, 6, 8, and 9) 1s also referred
to herein as the “shunt” transistor. The terms “switch™ and
“switching” (and similarly the terms “shunt” and *“‘shunt-
ing”’), when used to describe the RF switch circuit transis-
tors, are used interchangeably herein. Further, as described
below 1n more detail with reference to FIG. 6, those skilled
in the RF switching design and fabrication arts shall recog-
nize that although the switch and shunt transistors are shown
in FIGS. 5A-5D and FIG. 9 as comprising a smgle MOS-
FET, it shall be understood that they may comprise transistor
groupings comprising one or more MOSFET transistors.

It will also be appreciated by those skilled 1n RF switch
circuits that all of the exemplary switch circuits may be used
“bi-directionally,” wherein the previously described input
ports function as output ports, and vice versa. That 1s,
although an exemplary RF switch may be described herein
as having one or more input ports (or nodes) and one or more
output ports (or nodes), this description 1s for convenience
only, and 1t will be understood that output ports may, 1n some
applications, be used to mnput signals, and input ports may,
in some applications, be used to output signals. The RF
switch circuits described with reference to FIGS. 2B, 4E,
5A-5D, 6, 8 and 9 are described herein as having “input™ and
“output” ports (or “nodes”) that input and output RF signals,
respectively. For example, as described below in more detail
with reference to FIG. 9, RF input node 905 and RF input
node 907 are described below as mputting RF signals RF1
and RF2 respectively. RFC common port 903 1s described
below as providing an RF common output signal. Those
skilled 1n the RF switch circuit design arts shall recognize
that the RF switch 1s bidirectional, and that the previously
described input ports function perfectly well as output ports,
and vice versa. In the example of the RF switch of FIG. 9,
the RFC common port can be used to mput an RF signal
which 1s selectively output by the RF nodes 905 and 907.

Referring again to FIG. 5A, the first and second control
signals, C1 and C1x, respectively, are generated so that the
switching SOI NMOSFET 506 operates in an on-state when
the shunting SOI NMOSFET 508 operates in an oil-state,
and vice versa. These control signals provide the gate bias
voltages Vg to the gate terminals of the NMOSFETs 506 and
508. When either of the NMOSFETs 506 or 508 1s biased to
select the transistor ofl-state, the respective Vg must com-
prise a sulliciently large negative voltage so that the respec-
tive NMOSFET does not enter, or approach, an on-state due
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to the time varying applied voltages of the RF input signal
RF1in. The maximum power of the RF 1nput signal RFin 1s
thereby limited by the maximum magnitude of the gate bias
voltage Vg (or, more generally, the gate-to-source operating,
voltage, Vgs) that the SOI NMOSFETs 506 and 508 can
reliably sustain. For RF switching circuits such as those
exemplified herein, the magnitude of Vgs(max)=IVgl+IVds
(max)/2|, where Vds=Vd-Vs, and Vds(max) comprises the
maximum Vds due to the high-power mput signal voltage
levels associated with the RF mnput signal RFin.

Exemplary bias voltages for the switching and shunting
SOI NMOSFETs 506 and 508, respectively, may include the
following: with V,, approximately zero volts, Vg, for the
on-state, of +2.5 'V, and Vg, for the ofl-state, of -2.5 V. For
these bias voltages, the SOI NMOSFETs may eventually
operate 1n an accumulated charge regime when placed mnto
their oflf-states. In particular, and as described above with
reference to FI1G. 2B, when the switching NMOSFET 506 1s
in the on-state, and thc shunting NMOSFET 508 1s biased in
the ofl-state, the output signal RFout may become distorted
by the ncnlmcar behavior of the ofl capacitance C_ . of the
shunting NMOSFET 508 caused by the accumulated charge.
Advantageously, the improved ACC MOSFETs made in
accordance with the present teachings can be used to
improve circuit performance, especially as it 1s adversely
allected by the accumulated charge.

FIG. 5B 1s a schematic of an improved RF circuit 501
adapted for higher performance using the present accumus-
lated charge reduction and control techniques. The switch
circuit 501 diflers from the prior art circuit 300 (FIG. SA) 1n
that the shunting NMOSFET 508 is replaced by a shunting
ACC NMOSFFET 528 made in accordance with the present
teachings. The shunting ACC NMOSFET 528 1s analogous
to the ACC NMOSFET described above with reference to
FIGS. 4A and 4B. Similarly, the gate, source, drain and ACC
terminals of the shunting ACC NMOSFET 528 are analo-
gous to the respective terminals of the ACC NMOSFET 300.
With the exception of the improved switch performance
afforded by the improved shunting ACC NMOSFET 528,
the operation of the RF switch circuit 501 1s very similar to
the operation of the RF switch circuit 500 described above
with reference to FIG. SA.

Exemplary bias voltages for the switching NMOSFET
526 and the shunting ACC NMOSFET 528 may include:
with V, approximately zero, Vg, for the on-state, of +2.5 'V,
and Vg, for the ofl-state, of -2.5 V. For these bias voltages,
the SOI NMOSFETSs may operate 1n an accumulated charge
regime when placed into the off-state. However, when the
switching NMOSFET 526 1s 1n the on-state and the shunting
ACC NMOSFET 528 i1s in the ofl-state, the output signal
RFout at the output terminal 505 will not be distorted by
nonlinear behavior of the off-state capacitance C_ . of the
improved shunting ACC NMOSFET 3528 due to the accu-
mulated charge. When the shunting ACC NMOSFET 528
operates 1n the accumulated charge regime, the accumulated
charge 1s removed via the ACS terminal 508'. More specifi-
cally, because the gate terminal 502' of the shunting ACC
NMOSFET 528 1s connected to the ACS terminal 508', the
accumulated charge 1s removed or otherwise controlled as
described above 1n reference to the simplified circuit of FIG.
4B. The control of the accumulated charge improves per-
formance of the switch 501 by improving the linearity of the
ofl transistor, shunting ACC NMOSFET 528, and thereby
reducing the harmonic and intermodulation distortion of the
RF output signal Riout generated at the output terminal 505.

FIG. 5C 1s a schematic of another embodiment of an
improved RF switch circuit 502 adapted for higher perfor-
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mance using the accumulated charge control techniques of
the present disclosure. The switch circuit 502 differs from

the prior art circuit 300 (FIG. 5A) 1n that the NMOSFET 508
1s replaced by an ACC NMOSFET 528 made 1n accordance
with the present teachings. The ACC NMOSFET 528 1s
analogous to the ACC NMOSFET 300 described above with
reference to FIGS. 4A and 4C. Similarly, the gate, source,
drain and ACC terminals of the ACC NMOSFET 528 are
analogous to the respective terminals of the ACC NMOS-
FETs 300 described above with reference to FIGS. 4A and

4C. With the exception of the improved switch performance
afforded by the improved ACC NMOSFET 528, the opera-
tion of the switch circuit 502 1s very similar to the operations
of the switch circuits 500 and 501 described above with
reference to FIGS. 5A and 5B, respectively.

Exemplary bias voltages for the NMOSFET 526 and the
ACC NMOSFET 528 may include the following: with V,
approximately zero volts, Vg, for the on-state, of +2.5 V, and
Vg, for the ofi-state, ol —2.5 V. For these bias voltages, the
SOI NMOSFETs 526, 528 may operate in an accumulated
charge regime when placed into an oil-state. However, when
the NMOSFET 526 1s 1n the on-state and the ACC NMOS-
FET 528 1s 1n the ofl-state, the output signal RFout will not
be distorted by nonlinear behavior of the ofl-state capaci-
tance C_ . of the ACC NMOSFET 3528 due to the accumu-
lated chargc. Because the gate terminal 502" of the ACC
NMOSFET 528 1s connected to the ACS terminal 508' via a
diode 509, the accumulated charge 1s entirely removed,
reduced or otherwise controlled, as described above with
reference to FIG. 4C. Similar to the improved switch 501
described above with reference to FIG. 5B, control of the
accumulated charge improves performance of the switch
502 by improving the linearity of the off transistor, 528, and
thereby reducing the harmonic and intermodulation distor-
tion of the RF output signal Riout output of the RF output
terminal 505. Connection of the diode 509 as shown may be
desired 1n some embodiments for suppression of positive
current tlow 1nto the ACC NMOSFET 528 when it 1s biased
into an on-state, as described above with reference to FIG.
4C.

FIG. 5D 1s a schematic of another embodiment of an
improved RF switch circuit 503 adapted for higher pertor-
mance using the present accumulated chargc control tech-

niques. The switch circuit 503 differs from the prior art
circuit 500 (FIG. 5A) 1n that the NMOSFET 508 of FIG. 5A

1s replaced by an ACC NMOSFET 528 made 1n accordance
with the present teachings. The ACC NMOSFET 528 1s
analogous to the ACC NMOSFET described above with
reference to FIGS. 4A and 4D. With the exception of the
improved switch performance aflorded by the improved
ACCNMOSFET 528, the operation of the switch circuit 503
1s very similar to the operations of the switch circuits 500,
501 and 3502 described above with reference to FIGS.
5A-5C, respectively.

Exemplary bias voltages for the NMOSFET 526 and the
ACC NMOSFET 328 may include the tollowing: with V ,
approximately zero volts, Vg, for the on-state, of +2.5 V, and
Vg, for the off-state, of —2.5 V. For these bias voltages, the
SOI NMOSFETs 526, 528 may operate in an accumulated
charge regime when placcd into the ofi-state. However,
when the NMOSFET 526 1s in the on-state and the ACC
NMOSFET 528 15 1n the ofl-state, the output signal RFout
produced at the output terminal 505 will not be distorted by
the nonlinear behavior ot the ofi-state capacitance C 4ot the
ACC NMOSFET 528 due to the accumulated charge. When
the NMOSFET 3528 operates in the accumulated charge
regime, the accumulated charge 1s removed via the ACS
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terminal 508'. More specifically, because the ACS terminal
508' of the ACC NMOSFET 528 1s electrically coupled to
the control circuit 520 via the control line 517 (1.e., con-
trolled by the control signal “C2” as shown), the accumu-
lated charge can be eliminated, reduced or otherwise con-
trolled by applying selected bias voltages to the ACS
terminal 508' as described above with reference to FIG. 4D.
Those skilled 1n the arts of electronic circuit design shall
understand that a wide variety of bias voltage signals can be
applied to the ACS terminal for the purpose of reducing or
otherwise controlling the accumulated charge. The specific
bias voltages may be adapted for use 1n a particular appli-
cation. The control of the accumulated charge improves
performance of the switch 503 by improving the linearity of
the ofl-state transistor, 328, and thereby reducing the har-
monic and intermodulation distortion of the RF output signal
Riout generated at the output terminal 505.

In the circuits described above with respect to FIGS.
5B-5D, the switching SOI MOSFETs 526 are shown and
described as implemented using SOI MOSFETs of the prior
art (1.¢., they do not comprise ACC MOSFETSs and therefore
do not have an ACS terminal). Those skilled 1n the electronic
device design arts shall understand and appreciate that 1n
other embodiments of the disclosed method and apparatus,
the prior art switching SOI MOSFETSs 526 may be replaced,
as desired or required, by ACC SOI MOSFETs made 1n
accordance with the present disclosure. For example, 1n
some embodiments of RF switches implemented using the
ACC MOSFET of the present teachings, the RF switch
comprises a single-pole double-throw RF switch. In this
embodiment, the switching SOI MOSFETs (e.g., analogous
to the switching SOI MOSFETs 526 described above with
reference to FIGS. 5B-5D) may comprise ACC SOI MOS-
FETs. Such an implementation prevents nonlinear behavior
of the off-state switching SOI MOSFETs (which 1s turned off
when it 1s not selected as an mput “pole”) from detrimentally
allecting the output of the RF signal as switched through the
selected “pole”. Implementation of the RF switches using
switching ACC MOSFETSs reduces the magnitude, drift, and
Voltage dependency ot the off capacitance C, -0t the switch-
ing transistors. Consequently, and as descnbed above 1n
more detail, the switch performance characteristics, such as
1its 1solation, 1nsertion loss and drift characteristics, are also
improved. This implementation 1s described 1n more detail
below with reference to the RF switch circuit shown in FIG.
9. Many other examples will be apparent to those skilled 1n
the arts of electronic circuits.

For example, as set forth above, although the exemplary
RF switches have been described as being implemented

using ACC SOI NMOSFET devices, they can also be
implemented using ACC SOI PMOSFET devices. Further,
although single-pole single-throw, and single-pole double-
throw RF switches have been described above as examples
of RF switches implemented in accordance with the present
teachings, the present application encompasses any variation
of single-pole multi-throw, multi-pole single-throw, and
multi-pole multi-throw RF switch configurations. Those
skilled 1n the RF switch design and fabrication arts shall
recognize and appreciate that the present teachings can be
used 1in implementing any convenient RF switch configura-
tion design.
Exemplary RF Switch Implementation Using Stacked Tran-
s1stors

In the exemplary embodiments of RF switch circuits

described above, the switch circuits are implemented using
a single SOI NMOSFET (e.g., the single SOI NMOSFET

506 of FIG. 5A, and the single SOl NMOSFET 526 of FIGS.
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5B-5D) that selectively couples or blocks (i.e., electrically
opens the circuit connection) the RF 1nput signal to the RF
output. Sumilarly, 1n the exemplary embodiments described
above with reference to FIGS. 5A-5D, a single SOI NMOS-
FET (e.g., the single SOI NMOSFET 508 of FIG. 5A, and
ACC SOI NMOSFET 528 of FIGS. 5B-5D) 1s used to shunt
(FE'T 1n the on-state) or block (FET in the ofi-state) the RF
iput signal to ground. Commonly assigned U.S. Pat. No.
6,804,502, entitled “SWITCH CIRCUIT AND METHOD
OF SWITCHING RADIO FREQUENCY SIGNALS”,
issued Oct. 12, 2004, describes RF switch circuits using SOI
NMOSFETs implemented with stacked transistor groupings
that selectively couple and block RF signals.

One example of how stacked NMOSFETs may be imple-
mented 1n accordance with the teachings of the present
disclosure 1s illustrated 1n FIG. 6. An RF switch circuit 600
1s analogous to the RF switch circuit 503 of FIG. 5D,
wherein the single SOI NMOSFET 526 1s replaced by a
stack of SOI NMOSFETs 602, 604 and 606. Similarly, the
single ACC SOI NMOSFET 528 1s replaced by a stack of
ACC SOI NMOSFETs 620, 622 and 624. The control signal
C2 1s provided to the ACS terminals of the ACC SOI
NMOSFETs 620, 622 and 624 via optional resistors 626,
628, and 630, respectively. The resistors 626, 628, and 630
may optionally be included in order to suppress parasitic RF
signals between the stacked ACC SOI NMOSFETs 620,
622, and 624, respectively. The RF switch circuit 600
operates analogously to the operation of the RF switch
circuit 503 described above with reference to FIG. 5D.

Three stacked ACC SOI NMOSFETs are shown 1n each
ACC NMOSFET stack 1n the exemplary stacked RF switch
circuit 600 of FIG. 6. A plurality of three ACC NMOSFETSs
1s shown {for illustrative purposes only, however, those
skilled 1n the integrated circuit design arts will understand
that an arbitrary plurality may be employed according to
particular circuit requirements such as power handling per-
formance, switching speed, etc. A smaller or larger plurality
of stacked ACC NMOSFETs may be included 1n a stack to
achieve a desired operating performance.

Other stacked RF switch circuits, adapted for accumu-
lated charge control, analogous to the circuits described
above with reference to FIGS. 5B-3D, may also be
employed. Implementations of such circuits shall be obvious
from the teachings above to those skilled 1n the electronic
device design arts, and therefore are not described further
herein. Moreover, 1s shall be obvious to those skilled 1n the
clectronic device design arts that, although a symmetrically
stacked (1.e., having an equal number of shunting and
switching transistors) RF switch 1s shown 1n the stacked RF
switch of FIG. 6, the present inventive ACC method and
apparatus 1s not so limited. The present teachings can be
applied 1n implementing both symmetrically and asymmetri-
cally stacked (having an unequal number of shunting and
switching transistors) RF switches. The designer will readily
understand how to use the ACC MOSFETs of the present
disclosure 1n 1implementing asymmetrical, as well as sym-
metrical, RF switch circuits.

Exemplary Method of Operation

FIG. 7 illustrates an exemplary method 700 of improving
the linearity of an SOI MOSFET having an accumulated
charge sink (ACS) in accordance with the present disclosure.
The method 700 begins at a STEP 702, whereat an ACC SOI
MOSFET having an ACS terminal 1s configured to operate
in a circuit. The ACS terminal may be operatively coupled
to the gate of the SOI MOSFET (as described above with
reference to FIGS. 4B, 4C, 5B and 5C), or to a control circuit
(as described above with reference to FIGS. 4D and 5D). In
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other embodiments, the ACS terminal may be operatively
coupled to any convenient accumulated charge sinking
mechanism, circuit, or device as 1s convenient to the circuit
or system designer. The method then proceeds to a step 704.

At the STEP 704, the ACC SOI MOSFET 1s controlled, at
least part of the time, so that 1t operates in an accumulated
charge regime. In most embodiments, as described above,
the ACC MOSFET 1s operated 1n the accumulated charge
regime by applying bias voltages that place the FET 1n an
ofl-state condition. In one exemplary embodiment, the ACC
SOI MOSFET comprises an ACC SOI NMOSFET that 1s
configured as part of a shunting circuit of an RF switch.
According to this exemplary embodiment, the SOI NMOS-
FET may be operated in an accumulated charge regime after
the shunting circuit 1s placed 1nto an ofl-state by applying a
negative bias voltage to the gate terminal of the ACC
NMOSFET.

The method then proceeds to a STEP 706, whereat the
accumulated charge that has accumulated in the channel
region of the ACC MOSFET 1s removed or otherwise
controlled via the ACS terminal. In this embodiment, the
accumulated charge 1s conveyed to another circuit terminal
and 1s thereby reduced or otherwise controlled. One such
exemplary circuit terminal that can be used to convey the
accumulated charge from the MOSFET body comprises a
gate terminal of the ACC MOSFET (see, e.g., the description
above with reference to FIGS. 4B, 4C, 5B and 5C). Another
exemplary circuit terminal that can be used to remove or
otherwise control the accumulated charge comprises the
terminal of a control circuit (see, e.g., FIGS. 4D and 5D). As
described 1n more detail above, removing or otherwise

controlling the accumulated charge 1n the ACC MOSFET
body improves the linearity of the off-state ACC MOSFET,
which reduces the harmonic distortion and IMD of signals

aflected by the ACC MOSFET, and which, 1n turn, improves

circuit and system performance. In RF switch circuits,
improvements (1n both linearity and magnitude) are made to
the off capacitance of shunting ACC MOSFET devices,
which, 1n turn, improves the performance of the RF switch
circuits. In addition to other switch performance character-

1stics, the harmonic and intermodulation distortions of the
RF switch are reduced using the ACC method and apparatus
of the present teachings.

FIGS. 8 and 9 show schematics of additional exemplary
embodiments ol RF switching circuits made 1n accordance

with the disclosed method and apparatus for use 1n 1mprov-
ing linearity of MOSFETs having an ACS. As described 1n

more detail below with reference to FIGS. 8 and 9, in some
exemplary embodiments of RF switch circuits made 1n
accordance with the present disclosure, 1t may be desirable
to 1nclude drain-to-source resistors, Rds, and thereby
improve some switch performance characteristics when the
switch 1s used 1n a particular application. These exemplary
RF switch circuits are now described in more detail.
Exemplary RF Switch Implementations Using Stacked
Transistors Having Source to Drain Resistors

FIG. 8 shows one exemplary embodiment of an RF switch
circuit 800 made 1n accordance with the present disclosure.
As shown i1n FIG. 8, some embodiments of RF switches
made 1n accordance with the present disclosure may include
drain-to-source (R , ) resistors electrically connected to the
respective sources and drains of the ACC MOSFETs. For
example, the exemplary switch 800 of FIG. 8 includes
drain-to-source R, resistors 802, 804, and 806 clectrically
connected to the respective sources and drains of the shunt-
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ing ACC SOI NMOSFETs 620, 622, and 624, respectively.
Motivation for use of the drain-to-source R ,_resistors 1s now
described.

As shall be appreciated by skilled persons from the
present teachings, removal of the accumulated charge via the

ACS terminal causes current to flow from the body of the
ACC SOI MOSFET. For example, when a hole current flows
from the body of an ACC SOI MOSFET wvia the ACS, an
equal electron current tlows to the FET source and/or drain.
For some circuits (e.g., the RF switch circuit of FIG. 8), the
sources and/or drains of the ACC SOI NMOSFETSs are
connected to other SOI NMOSFFETs. Because off-state SOI
NMOSFETs have a very high impedance (e.g., 1n the range
of 1 Gohm for a 1 mm wide SOI NMOSFET), even a very
small drain-to-source current (e.g., in the range of 1 nA) can
result in an unacceptably large drain-to-source voltage Vds
across the ACC SOI NMOSFET 1n satistaction of Kirch-
hofl’s well known current and voltage laws. In some
embodiments, such as that shown in the RF switch circuits
of FIGS. 8 and 9, such resultant very large drain-to-source
voltages Vds undesirably impacts reliability and linearity of
the ACC SOI NMOSFET. The drain-to-source resistors R
provide a path between the ACC FET drain and source
whereby currents associated with controlling the accumu-
lated charge may be conducted away from the sources and
drains of ACC SOI NMOSFETs when implemented 1n series
with high impedance elements such as other ACC SOI
NMOSFETs.

Exemplary operating voltages for the NMOSFETs 602-
606 of FIG. 8, and the ACC NMOSFETs 620-624, may
include the following: V, approximately zero volts, Vg, for
the on-state, of +2.5 V, and Vg, for the ofl-state, of -2.5 V.,
In an exemplary embodiment, the ACC SOI NMOSFET 622
of FIG. 8 may have a width of 1 mm, and an electron-hole
pair generation rate for accumulated charge producing a
current of 10 pA/um for operation 1n the accumulated charge
regime. For the electron current supplied equally by the
source and drain, and an mmpedance of the ACC SOI
NMOSFETs 620 and 622 on the order of 1 Gohm, then an
unacceptable bias of =5 V would result on the source and
drain of the ACC SOI NMOSFET 622 without the presence
of R ,_resistors 802 and 806. This bias voltage would also be
applied to the mterior nodes of the ACC SOI NMOSFETSs
620 and 624.

Even currents smaller than the exemplary currents may

produce adverse aflects on the operation of the RF switching
circuit 800 by reducing Vgs and/or Vgd of the ACC SOI

MOSFETs 620-624 in the ofl-state, thereby reducing the
power handling capability and reliability of the circuit by
increasing leakage (e.g., when either Vgs or Vgd approaches
V), by increasing hot-carrier damage caused by excess
leakage, etc. Linearity of the MOSFETs 1s also degraded by
reducing Vgs and/or Vgd when either value approaches V ;.

Exemplary values for the R ,_ resistors 802 to 806 may be
selected 1n some embodiments by selecting a value approxi-
mately equal to the resistance of the gate resistors 632-636
divided by the number of ACC SOI NMOSFETs 1n the stack
(1n the exemplary embodiment, there are three ACC FETs 1n
the stack). More generally, the value of the R ,_ resistors may

be equal to the gate resistor value divided by the number of
ACC SOI NMOSFFETs 1n the stack. In one example, a stack

of eight ACC SOI NMOSFETSs may have gate resistors of 80
kohm and R ,_ resistors of 10 kohm.

In some embodiments, the R, resistors may be selected
so that they do not adversely aflect switch performance
characteristics, such as, for example, the insertion loss of the

switch 800 due to the off-state ACC SOI NMOSFETs. For
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example, for a net shunt resistance greater than 10 kohm, the
insertion loss 1s increased by less than 0.02 dB.

In other embodiments, the R, resistors may be imple-
mented 1n circuits comprising a single ACC SOI MOSFET
(as contrasted with the stacked shunting configuration exem-

plified 1n FIG. 8 by the shunting ACC FETs 620, 622 and

624). For example, such circuits may be desirable 11 there are
other high-impedance elements configured 1n series with an
ACC SOI MOSFET that may cause a significant bias voltage
to be applied to the source or drain as a result of the current
flow created when removing or otherwise controlling accu-
mulated charge. One exemplary embodiment of such a
circuit 1s shown in FIG. 9.

FIG. 9 shows an exemplary single-pole double-throw
(SPDT) RF switch circuit 900 made 1n accordance with the
present teachings. As shown in FIG. 9, a DC blocking
capacitor 904 1s connected to a first RF mput node 905 that
receives a first RF input signal RF1. Similarly, a DC
blocking capacitor 906 1s connected to a second RF input
node 907 that receives a second RF input signal RF2.
Further, a DC blocking capacitor 902 1s electrically con-
nected to an RF common output node 903 that provides an
RF common output signal (RFC) selectively conveyed to the
node RFC 903 by the switch circuit 900 from either the first
RF 1mput node 905 or the second RF input node 907 (i.e.,
RFC either outputs RF1 or RF2, depending upon the opera-
tion of the switch as controlled by the control signals C1 and
C1x described below 1n more detail).

A first control signal C1 1s provided to control the
operating states of the ACC SOI NMOSFETSs 526 and 528"
(1.e., C1 selectively operates the FETs 1n the on-state or the

O'T-State) Similarly, a second control signal C1x 1s provided
to control the operatmg states of the ACC SOI NMOSFETs

528 and 526'. As 1s well known, and as described for
example 1n the above incorporated commonly assigned U.S.
Pat. No. 6,804,502, the control signals C1 and Clx are
generated so that the ACC SOI NMOSFETs 526 and 528" are
in an on-state when the ACC SOI NMOSFETs 528 and 526
are 1n an oil-state, and vice versa. This configuration allows
the RF switch circuit 900 to selectively convey either the
signal RF1 or RF2 to the RF common output node 903.

A first ACS control signal C2 1s configured to control the
operation of the ACS terminals of the SOl NMOSFETs 526
and 528'. A second ACS control signal C2x 1s configured to
control the ACS terminals of the ACC SOI NMOSFETs 528
and 526'. The first and second ACS control signals, C2 and
C2x, respectively, are selected so that the ACSs of the

associated and respective NMOSFETs are appropnately
biased 1n order to eliminate, reduce, or otherwise control
their accumulated charge when the ACC SOI NMOSFETs
operate 1n an accumulated charge regime.

As shown 1n the RF switch circuit 900 of FIG. 9, in some
embodiments, an R, resistor 908 1s electrically connected
between the source and drain of the switching ACC NMOS-
FET 526. Similarly, 1n some embodiments, an R, resistor
910 1s electrically connected between the source and drain of
the switching ACC NMOSFET 526'. According to this
example, the circuit 900 1s operated so that either the
shunting ACC NMOSFET 528 or the shunting ACC NMOS-
FET 528' operate in an on-state at any time (1.e., at least one
of the input signals RF1 at the node 905 or RF2 at the node
907 1s always conveyed to the RFC node 903), thereby
providing a low-impedance path to ground for the node 905
or 907, respectively. Consequently, either the R . resistor
908 or the R ;. resistor 910 provides a low-impedance path
to ground from the RF common node 903, thereby prevent-
ing voltage bias problems caused as a result of ACC current
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flow 1nto the nodes 903, 905 and 907 that might otherwise
be caused when using the DC blocking capacitors 902, 904
and 906.
Additional Exemplary Benefits A
FETs of the Present Disclosure

As described above, presence of the accumulated charge
in the bodies of the SOI MOSFETSs can adversely aflect the
drain-to-source breakdown voltage (BVDSS) performance
characteristics of the floating body MOSFETs. This also has
the undesirable effect of worsening the linearity of ofl-state
MOSFETSs when used 1n certain circuits such as RF switch-
ing circuits. For example, consider the shunting SOI NMOS-
FET 528 shown 1n FIG. 9. Further consider the case wherein
the shunting NMOSFET 528 1s implemented with a prior art
SOI NMOSFET, rather than with the ACC NMOSFET made
in accordance with the present teachings. Assume that the
RF transmission line uses a 350-ohm system. With small
signal 1nputs, and when the NMOSFET 3528 operates 1n an
ofl-state, the prior art ofl-state shunting NMOSFET 528 may
introduce harmonic distortion and/or mtermodulation dis-
tortion in the presence of multiple RF signals This will also
introduce a noticeable loss of signal power.

When sufliciently large signals are mput that cause the

NMOSFET 528 to enter a BVDSS regime, some of the RF
current 1s clipped, or redirected through the NMOSFET 528
to ground, resulting 1n a loss of signal power. This current
“clipping” causes compression behavior that can be shown,
for mstance, 1n a RF switch “Pout vs. Pin” plot. This 1s
frequently characterized by P1 dB, wherein the insertion
loss 1s 1ncreased by 1.0 dB over the small-signal 1nsertion
loss. This 1s an obvious indication of nonlinearity of the
switch. In accordance with the present disclosed method and
apparatus, removing, reducing or otherwise controlling the
accumulated charge increases the BVDSS point. Increases
to the BVDSS point of the NMOSFET 528 commensurately
increases the large-signal power handling of the switch. As
an example, for a switch, doubling the BVDSS voltage of
the ACC NMOSFFET increases the P1 dB point by 6 dB. This
1s a significant accomplishment as compared with the prior
art RF switch designs.

In addition, as described above 1n more detail, presence of
the accumulated charge in SOI MOSFET body adversely
impacts the magnitude of Cofl and also takes time to form
when the FET 1s switched from an on-state to an ofl-state. In
terms of switch performance, the nonlinearity of C_.
adversely impacts the overall switch linearity performance
(as described above), and the magnitude ot C_. adversely
allects the small-signal performance parameters such as
insertion loss, msertion phase (or delay), and 1solation. By
reducing the magnitude of C_, using the present disclosed
method and apparatus, the switch (1implemented with ACC
MOSFETs) has reduced insertion loss due to lowered para-
sitic capacitance, reduced insertion phase (or delay), again
due to lowered parasitic capacitance, and increased 1solation
due to less capacitive feedthrough.

The ACC MOSFET also improves the drift characteristic
of SOI MOSFETs as pertains to the driit of the small-signal
parameters over a period of time. As the SOI MOSFET takes
some time to accumulate the accumulated charge when the
switch 1s off, the C_, capacitance 1s initially fairly small.
However, over a period of time while operated in the

accumulated charge regime, the off-state capacitance C,_
increases toward a final value. The time 1t takes for the
NMOSFET to reach a full accumulated charge state depends
on the electron-hole pair (EHP) generation mechanism.
Typically, this time period 1s on the order of approximately
hundreds of milliseconds for thermal EHP generation at

Torded by the ACC MOS-
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room temperature, for example. During this charge-up time
period, the 1nsertion loss and insertion phase increase. Also,
during this time period, the isolation decreases. As 1s well
known, these are undesirable phenomena in standard SOI
MOSFET devices. These problems are alleviated or other-
wise mitigated using the ACC NMOSFETs and related
circuits described above.

In addition to the above-described benefits atforded by the
disclosed ACC MOSFET method and apparatus, the dis-
closed techniques also allow the implementation of SOI
MOSFETs having mmproved temperature performance,
improved sensitivity to Vdd vaniations, and improved sen-
sitivity to process variations. Other improvements to the
prior art SOI MOSFETs atforded by the present disclosed
method and apparatus will be understood and appreciated by
those skilled in the electronic device design and manufac-
turing arts.

Exemplary Fabrication Methods

In one embodiment of the present disclosure, the exem-
plary RF switches described above may be implemented
using a fully insulating substrate semiconductor-on-insula-
tor (SOI) technology. Also, as noted above, 1n addition to the
commonly used silicon-based systems, some embodiments
of the present disclosure may be implemented using silicon-
germanium (S1Ge), wherein the S1Ge 1s used equivalently 1n
place of silicon.

In some exemplary embodiments, the MOSFET transis-
tors of the present disclosure may be implemented using
“Ultra-Thin-Silicon (UTS1)” (also referred to herein as
“ultrathin silicon-on-sapphire”) technology. In accordance
with UTS1 manufacturing methods, the transistors used to
implement the inventive methods disclosed heremn are
formed 1n an extremely thin layer of silicon in an msulating
sapphire wafer. The {fully insulating sapphire substrate
enhances the performance characteristics of the inventive
RF circuits by reducing the deleterious substrate coupling
ellects associated with non-insulating and partially insulat-
ing substrates. For example, mnsertion loss improvements
may be realized by lowering the transistor on-state resis-
tances and by reducing parasitic substrate conductance and
capacitance. In addition, switch 1solation 1s improved using
the fully insulating substrates provided by UTS1 technology.
Owing to the fully msulating nature of silicon-on-sapphire
technology, the parasitic capacitance between the nodes of
the RF switches 1s greatly reduced as compared with bulk
CMOS and other traditional integrated circuit manufactur-
ing technologies.

Examples of and methods for making silicon-on-sapphire
devices that can be mmplemented 1n the MOSFETs and
circuits described herein, are described in U.S. Pat. No.
5,416,043 (“Minimum charge FET fabricated on an ultrathin
s1licon on sapphire water™); U.S. Pat. No. 5,492,857 (*“High-
frequency wireless communication system on a single ultra-
thin silicon on sapphire chip™); U.S. Pat. No. 5,572,040
(“High-frequency wireless communication system on a
single ultrathin silicon on sapphire chip”); U.S. Pat. No.
5,596,205 (“High-frequency wireless communication sys-
tem on a single ultrathin silicon on sapphire chip”); U.S. Pat.
No. 5,600,169 (“Minimum charge FET fabricated on an
ultrathin silicon on sapphire wafer”); U.S. Pat. No. 3,663,
570 (“High-frequency wireless communication system on a
single ultrathin silicon on sapphire chip”); U.S. Pat. No.
5,861,336 (“High-frequency wireless communication sys-
tem on a single ultrathin silicon on sapphire chip™); U.S. Pat.
No. 5,863,823 (“Self-aligned edge control in silicon on
insulator”); U.S. Pat. No. 3,883,396 (*High-frequency wire-
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sapphire chip”); U.S. Pat. No. 5,895,957 (“Minimum charge
FET fabricated on an ultrathin silicon on sapphire water”);
U.S. Pat. No. 5,920,233 (*Phase locked loop including a
sampling circuit for reducing spurious side bands™); U.S.
Pat. No. 5,930,638 (*Method of making a low parasitic
resistor on ultrathin silicon on insulator”); U.S. Pat. No.

5,973,363 (“CMOS circuitry with shortened P-channel
length on ultrathin silicon on 1insulator”); U.S. Pat. No.
5,973,382 (“Capacitor on ultrathin semiconductor on insu-
lator’); and U.S. Pat. No. 6,057,555 (*High-frequency wire-
less communication system on a single ultrathin silicon on
sapphire chip”). All of these referenced patents are incor-
porated herein in their entirety for their teachings on ultra-
thin silicon-on-sapphire integrated circuit design and fabri-
cation.

Similarly to other bulk and SOI CMOS processes, an SOS

enhancement mode NMOSFET, suitable for some embodi-
ments of the present disclosure, may, 1n some embodiments,
be fabricated with a p-type implant into the channel region
with n-type source and drain regions, and may have a
threshold voltage of approximately +3500 mV. The threshold
voltage 1s directly related to the p-type doping level, with
higher doping resulting in higher thresholds. Similarly, the
SOS enhancement mode PMOSFET may, 1n some exem-
plary embodiments, be implemented with an n-type channel
region and p-type source and drain regions. Again, the
doping level defines the threshold voltage with higher dop-
ing resulting in a more negative threshold.

In some exemplary embodiments, an SOS depletion-
mode NMOSFET, suitable for some embodiments of the
present disclosure, may be fabricated by applying the p-type
channel-implant mask to the n-type transistor, resulting 1n a
structure that has n-type channel, source, and drain regions
and a negative threshold voltage of approximately —500 mV.
Similarly, 1n some exemplary embodiments, a suitable
depletion-mode PMOSFET may be implemented by apply-
ing the n-type channel-implant mask to the p-type transistor,
resulting 1n a structure that has p-type channel, source, and
drain regions and a positive threshold voltage of approxi-
mately +500 mV.

As noted in the background section above, the present
ACC MOSFET apparatus can also be implemented using
any convenment semiconductor-on-insulator technology,
included, but not limited to, silicon-on-insulator, silicon-on-
sapphire, and silicon-on-bonded water technology. One such
silicon-on-bonded wafer technique uses “direct silicon
bonded” (DSB) substrates. Direct silicon bond (DSB) sub-
strates are fabricated by bonding and electrically attaching a
film of single-crystal silicon of differing crystal ornientation
onto a base substrate. Such implementations are available
from the Silicon Genesis Corporation headquartered 1n San
Jose, Calif. As described at the Silicon Genesis Corporation
website (publicly available at “www.sigen.com™), silicon-
on-bonded wafer techniques include the so-called Nano-
Cleave™ bonding process which can be performed at room
temperature. Using this process, SOI walers can be formed
with materials having substantially different thermal expan-
sion coetlicients, such as 1in the manufacture of Germanium-
on-Insulator waters (GeOl). Exemplary patents describing
silicon-on-bonded water implementations are as follows:
U.S. Pat. No. 7,056,808, 1ssued Jun. 6, 2006 to Henley, et al.;
U.S. Pat. No. 6,969,668, 1ssued Nov. 29, 2005 to Kang, et
al.; U.S. Pat. No. 6,908,832, 1ssued Jun. 21, 2005 to Farrens
et al.j U.S. Pat. No. 6,632,724, 1ssued Oct. 14, 2003 to
Henley, et al. and U.S. Pat. No. 6,790,747/, 1ssued Sep. 14,
2004 to Henley, et al. All of the above-cited patents are




US RE48,944 E

43

incorporated by reference herein for their teachings on
techniques and methods of fabricating silicon devices on

bonded walers.

A reference relating to the fabrication of enhancement-
mode and depletion-mode transistors i SOS 15 “CMOS/
SOS/LSI Switching Regulator Control Device,” Orndortt,
R. and Butcher, D., Solid-State Circuits Conference, Digest
of Technical Papers 1978 IEEE International, Volume XXI,
pp. 234-235, February 1978. The “Orndorfl” reference 1s
hereby incorporated in 1ts entirety herein for its techniques
on the fabrication of enhancement-mode and depletion-
mode SOS transistors.

EXEMPLARY RESULTS—APPENDIX A

Exemplary results that can be obtained using the disclosed
method and apparatus for use in improving the linearity of
MOSFETs are described in the attached Appendix A,
entitled “Exemplary Performance Results of an SP6T
Switch Implemented with ACC MOSFETSs”. The contents of
Appendix A are hereby incorporated by reference herein in
its entirety. The results shown 1n detail in Appendix A are
now brietly described. As noted 1n the attached Appendix A,
the measured results are provided for a single pole, six throw
(SP6T) RF switch. Those skilled 1n the art of RF switch
circuit design shall understand that the results can be
extended to any practical RF switch configuration, and
therefore are not limited to the exemplary SP6T switch for
which results are shown.

Slides 2-7 of Appendix A show harmonic performance
versus Input Power for prior art devices and for ACC
MOSFET devices made in accordance with the present
disclosed method and apparatus. Switch circuits 1mple-
mented with the ACC MOSFET of the disclosed method and
apparatus have a third harmonic response that rises at a 3:1
slope (cube of the input) versus input power on the log scale.
Those skilled 1n the electronic device design arts shall
appreciate that no mput-power dependent dynamic biasing
occurs with the improved RF switch designs made 1n
accordance with the present disclosure. In contrast, prior art
floating body FET harmonics disadvantageously do not
tollow a 3:1 slope. This 1s disadvantageous for small-signal
third-order distortions such as IM3.

As shown 1n the attached Appendix A, at a GSM maxi-
mum iput power of +35 dBm, the 3fo 1s improved by 14
dB. This 1s shown in detail 1n slide number 3 of the attached
Appendix A. Improvements in third order harmonic distor-
tion 1s also applicable to all odd order responses, such as, for
example, 57 order responses, 7 order responses, etc.

Similar to 31o, the second order response of the improved
ACC MOSFET-implemented RF switch follows a 2:1 slope
(square of the input) whereas the prior art RF switch does
not. This results 1n 1improved 210 and IM2 performance at
low 1mput power, and roughly the same performance at +35
dBm.

Slide numbers 6 and 7 of the attached Appendix A treat
the performance under non 50-ohm loads. In this case, the
load represents a 5:1 mismatch wherein the load impedance
can be of any convenient value that results 1n a reflection
coellicient magnitude of %4. In the case of SOI MOSFETs,
reflection coeflicients that result in higher voltages cause the
most severe problems. At 5:1 VSWR, the voltage can be
1.667x higher. Those skilled in the art may wview this
similarly by sweeping the mput power up to higher voltages
which equate to the mismatch conditions.

The slides provided i Appendix A illustrate that the
improved RF switch, implemented with ACC MOSFETSs
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made 1n accordance with the present disclosed method and
apparatus, has improved large voltage handling capabilities
as compared to the prior art RF switch implementations. As
shown 1n the slides, the harmonics are approximately 20 dB
at the worst mismatch phase angle. Transient harmonics are
also shown. Those skilled 1n the art shall observe that the
standard SP6T switch 31o overshoots by several dB before
reaching a final value. The improved SP6T switch made in
accordance with the present disclosed method and apparatus
does not exhibit such a time-dependency.

Slide number 8 of the Appendix A shows insertion loss
performance results achieved using the improved SP6T RF
switch of the present teachings. It can be observed that the
improved SP6T switch has slightly improved insertion loss
(IL) performance characteristics. Slide number 9 of Appen-
dix A shows that 1solation 1s also slightly improved using the
present improved SP6T RF switch.

Slide number 10 of the Appendix A shows IM3 perfor-
mance which 1s a metric of the slightly nonlinear behavior
of the RF switch. The IM3 performance 1s shown versus
phase again due to a load mismatch 1n the system under test.
As can be observed by reviewing Slide number 10 of the
Appendix A, the performance of the improved SP6T RF
switch 1s improved by 27 dB.

Finally, Slide number 11 of the Appendix A 1s a summary
table which also includes IM2 data. Slide number 11 shows
almost 20 dB improvement for a low frequency blocker and
11 dB for a high frequency blocker. In one exemplary
application wherein the SP6T may be used, all IM products
must fall below —-105 dBm. The improved SP6T switch 1s
the only RF switch manufactured at the time of filing the
present application meeting this requirement.

A number of embodiments of the present inventive con-
cept have been described. Nevertheless, it will be under-
stood that various modifications may be made without
departing from the scope of the inventive teachings. For
example, 1t should be understood that the functions
described as being part of one module may 1n general be
performed equivalently 1n another module. Also, as
described above, all of the RF switch circuits can be used 1n
bi-directionally, with output ports used to mput signals, and
vice versa. Furthermore, the present inventive teachings can
be used 1n the implementation of any circuit that will benefit
from the removal of accumulated charge from MOSFET
bodies. The present teachings will also find utility 1n circuits
wherein ofl-state transistors must withstand relatively high
voltages. Other exemplary circuits iclude DC-to-DC con-
verter circuits, power amplifiers, and similar electronic
circuits.

Accordingly, 1t 1s to be understood that the concepts
described herein are not to be limited by the specific
illustrated embodiments, but only by the scope of the
appended claims.

What 1s claimed 1s:

1. A Radio Frequency (RF
the steps of:

providing an RF input port;

configuring the RF input port to receive an RF signal;

providing an RF output port;

providing a switch transistor grouping having a first node

and second node;

coupling the first node of the switch transistor grouping to

the RF input port;

coupling the second node of the switch transistor group-

ing to the RF output port;

providing a shunt transistor grouping having a first node

and a second node, the shunt transistor grouping com-

) switching method comprising
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prising one or more accumulated charge control N-type
MOSFETs (ACC N-MOSFET) wherein each of the one

or more ACC-NMOSFETs comprises:

a gate, drain, source and a gate oxide layer, where the
gate oxide layer 1s positioned between the gate and
a body; and

an accumulated charge sink (ACS) region connected to
the body;

coupling the first node of the shunt transistor grouping to

the RF input port;

coupling the second node of the [switch] siunt transistor

grouping to ground;

in a first state:

(a) enabling the switch transistor grouping and dis-
abling the shunt transistor grouping thereby passing
the RF 1nput signal from the RF input port to the RF
output port;

(b) biasing each of the one or more [ACC-MOSFETs]
ACC N-MOSFETs to operate mm an accumulated
charge regime;

(c) for each of the one or more ACC N-MOSFETs:
applying a bias voltage, to the ACS region to control
or to remove accumulated charge from the body via
the ACS region, wherein the bias voltage 1s negative
with respect to ground, the drain and the source;

in a second state:

(d) enabling the shunt transistor grouping and disabling,
the switch transistor grouping, thereby 1solating the
RF input port from the RF output port.

2. The RF switching method of claim 1 used in an RF
switching circuit.

3. The RF switching method of claim 2, wherein the RF
switching circuit 1s implemented inside a cellular commu-
nication device.

4. The RF switching method of claiam 3, wherein the
cellular communication device 1s a GSM cell phone.

5. The RF switching method of claam 3, wherein the
cellular communication device 1s used 1n a cellular commu-
nication system where the harmonics are at a level below
—-30 dBm.

6. The RF switching method of claim 2, wherein steps
(b)-(¢) are for improving linearity, harmonic and intermodu-
lation suppression, and power consumption performance
characteristics of the RF switching circuit.

7. The RF switching method of claim 1, further compris-
ing the step of fabricating the one or more ACC N-MOS-
FETs on direct silicon bond substrates by bonding and
clectrically attaching a film of single-crystal silicon onto a
base isulating substrate or on an 1nsulating layer on a base
silicon substrate.

8. The RF switching method of claim 1, wherein all the
steps are 1mplemented on a single die.

[9. The RF switching method of claim 1, wherein all the
steps are implemented on a single die.}

10. The RF switching method of claim 1, further com-
prising the step ol connecting drain-to-source resistors to the
one or more ACC N-MOSFET:; the drain-to-source resistors
providing a conduction path between corresponding one or
more ACC-N-MOSFETs’ drains and sources.

11. The RF switching method of claim 10, further com-
prising the step of coupling a gate resistor to each gate of
cach of the one or more ACC N-MOSFETs.

12. A Radio Frequency (RF) switching method compris-
ing the steps of:

providing a first RF port;

configuring the first RF port to receive or output a first RF

signal;
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providing a second RF port;

configuring the second RF port to receive or output a
second RF signal;

providing an RF common port;

providing a first switch transistor grouping having a first
node and a second node, the first switch transistor
grouping comprising a {irst one or more accumulated
charge control N-type MOSFETs (ACC N-MOSFETs),
wherein each of the first one or more ACC-NMOSFETs
COMPrises:

a first gate, first drain, first source and a first gate oxide
layer positioned between the first gate and a first
body; and

a first accumulated charge sink (ACS) region connected
to the first body;

coupling the first node of the first switch transistor group-
ing to the first RF port;

coupling the second node of the first switch transistor
grouping to the RF common port;

providing a second switch transistor grouping having a
first node and a second node, the second switch tran-
sistor grouping comprising a second one or more ACC
N-MOSFETs, wherein each of the second one or more
ACC N-MOSFETSs comprises:

a second gate, second drain, second source and a
second gate oxide layer positioned between the sec-
ond gate and a second body; and

a second accumulated charge sink (ACS) region con-
nected to the second body;

coupling the first node of the second switch transistor
grouping to the second RF port;

coupling the second node of the second switch transistor
grouping to the RF common port;

in a first state:

(a) enabling the first switch transistor grouping and
disabling the second switch ftransistor grouping,

thereby electrically coupling the first RF port with

the RF common port and 1solating the second RF
port from the RF common port;

(b) biasing each of the second one or more ACC
N-MOSFETs to operate in an accumulated charge
regime;

(c) for each of the second one or more ACC N-MOS-

FETs: applying a second bias voltage, to the second
ACS region to control or to remove accumulated
charge from the second body via the second ACS
region, wherein the second bias voltage 1s negative
with respect to ground, the second drain and the
second source:

in a second state:

(d) enabling the second switch transistor grouping and
disabling the first switch transistor grouping thereby
clectrically coupling the second RF port with the RF
common port and 1solating the first RF port from the
REF common port;

(¢) biasing each of the first one or more ACC N-MOS-
FETs to operate in an accumulated charge regime;

(1) for each of the first one or more ACC N-MOSFETs:
applying a first bias voltage, to the first ACS region
to control or to remove accumulated charge from the

first body via the first ACS region, wherein the first
bias voltage 1s negative with respect to ground, the

first drain and the first source.
13. The RF switching method of claim 12 used 1n an RF

switching circuit.
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14. The RF switching method of claim 13, wherein the RF
switching circuit 1s 1implemented inside a cellular commu-
nication device.

15. The RF switching method of claim 14, wherein the
cellular communication device 1s a GSM cell phone. 5
16. The RF switching method of claim 14, wherein the
cellular communication device 1s used 1n a cellular commu-

nication system.

17. The RF switching method of claim 12, wherein steps
(b)-(c) and (e)-(1) are for improving linearity, harmonic and 10
intermodulation suppression, and power consumption per-
formance characteristics of the RF switching circuit.

18. The RF switching method of claim 12, further com-
prising the step of fabricating the first and the second one or
more ACC N-MOSFETSs on direct silicon bond substrates by 15
bonding and electrically attaching a film of single-crystal
silicon onto a base insulating substrate or on an insulating
layer on a base silicon substrate.

G e x Gx ex
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