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CRYPTOGRAPHIC SYSTEM USING
PAIRING WITH ERRORS

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE 10O RELATED
APPLICATIONS

Morve than one reissue application has been filed for the
reissue of U.S. Pat. No. 9,246,675. The reissue applications
are U.S. application Ser. No. 16/678,335 (the present appli-
cation and a divisional rveissue), Ser. No. 16/675,838 (a
divisional rveissue), and Ser. No. 15/881,531 (granted as U.S.
Pat. No. RE 47 841FE1), all of which are veissue applications
of U.S. Pat. No. 9,246,675.

US. Pat. No. 9,246,675, which issued on Jan. 26, 2016,
is the National Stage of International Application No. PC1/
CN2013/074053 filed on Apr. 11, 2013, which claims benefit
under 35 U.S.C. § 119(e) of Provisional U.S. Patent Appli-
cation No. 61/623,272, filed on Apr. 12, 2012, the disclo-

sures of which are hereby incorporated by reference in their
entireties.

The present disclosure claims priority to the U.S. provi-
sional patent application with Ser. No. 61/623,2°72, entitled
“New methods for secure communications and secure infor-

mation systems”, filed Apr. 12, 2012 and PCT application
with the same ftitle and the PCT number PCT/CN2013/

074053 filed on Apr. 11, 2013, which 1s incorporated herein
by reference 1n 1ts entirety and for all purposes.

BACKGROUND

This mvention 1s related to the construction of crypto-
graphic systems, in particular, key exchange (KE) systems,
key distribution (KD) systems and identity-based-encryp-
tion (IBE) systems, which are based on essentially the same
mathematical principle, pairing with errors.

In our modern communication systems like Internet, cell
phone, and etc, to protect the secrecy of the information
concerned, we need to encrypt the message. There are two
different ways to do this. In the first case, we use symmetric
cryptosystems to perform this task, where the sender uses
the same key to encrypt the message as the key that the
receiver uses to decrypt the message. Symmetric systems
demand that the sender and the receiver have a way to
exchange such a shared key securely. In an open commu-
nication channel without any central authority, like wireless
communication, this demands a way to perform such a key
exchange (KE) 1n the open between two parties. In a system
with a central server, like a cell phone system within one cell
company, this demands an eflicient and scalable key distri-
bution (KD) system such that any two users can derive a
shared key via the key distribution (KD) system established
by the central server. Therefore it 1s important and desirable
that we have secure and eflicient KE systems and KD
systems. The first KE system was proposed by Diflie and
Hellman [DiHe], whose security 1s based on the hardness of
discrete logarithm problems. This system can be broken by
future quantum computers as showed 1n the work of Shor
|SHO)]. There are many key-distribution systems including
the system using pairing over quadratic forms [BSHKVY],
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and the one based on bilinear paring over elliptic curves by
Boneh and Boyen (1in U.S. Pat. No. 7,590,236). But the

existing systems have either the problem of computation
clliciency or scalability. For instance, the bilinear paring
over elliptic curves 1s very computationally intensive.

In the second case, we use asymmetric systems, namely
public key cryptographic systems, for encryption, where the
receiver has a set of a public key and a private key, and the
sender has only the public key. The sender uses the public
key to encrypt messages, the receiver uses the private key to
decrypt the messages and only the entity who has the private
key can decrypt the messages. In an usual public key system,
we need to make sure the authenticity of the public keys and
therefore each public key needs to have a certificate, which
1s a digital signature provided by a trusted central authority.
The certificate 1s used to verity that the public key belongs
to the legitimate user, the receiver of a message. To make
public key encryption system fully work, we need to use
such a system, which 1s called a public key infrastructure
(PKI) system.

In 1984, Shamir proposed another kind of public key
encryption system [SHA]. In this new system, a person or an
entity’s public key 1s generated with a public algorithm from
the information that can identify the person or the entity
umquely. For example, 1n the case of a person, the infor-
mation may include the person’s name, residential address,
birthday, finger print information, e-mail address, social
security number and etc. Since the public key 1s determined
by the public information that can identify the person, this
type of public key cryptosystem 1s called an identity-based
encryption (IBE) system.

There are a few Identity-based-encryption (IBE) public
key cryptosystems, and currently, the (best) one being
practically used 1s the IBE system based on bilinear paring
over elliptic curves invented by Boneh and Franklin (1in U.S.
Pat. No. 7,113,594). In IBE systems, a sender encrypts a
message for a given receiver using the receiver’s public key
based on the 1dentity of the receiver. The receiver decrypts
the message using the receiver’s private key. The receiver
obtains the private key from a central server, which has a
system to generate and distribute the IBE private key for the
legitimate user securely. An IBE system does not demand
the sender to search for the receiver’s public key, but rather,
a sender 1 an IBE system derives any receiver’s corre-
sponding public key using an algorithm on the information
that 1dentifies the recerver, for example, an email address, an
ID number or other information. Current IBE systems are
very complicated and not eflicient 1n terms of computations,
since the bilinear paring over elliptic curves 1s very com-
putationally intensive. These systems based on pairing over
clliptic curves can also be broken efhiciently if we have a
quantum computer as showed 1n the work of Shor [SHO].
There are also constructions based on lattices, but those are
also rather complicated systems for applications [ABB]
[ABVV W] [BKPW]. Therefore it 1s important and desirable
that we have secure and eflicient IBE systems.

Clearly, there are still needs for more eflicient and secure
KE, KD and IBE systems for practical applications.

BRIEF SUMMARY OF THE INVENTION

This invention first contains a novel method for two
parties A and B to perform an secure KE over an open
communication channel. This method 1s based on the com-
putation of pairing of the same bilinear form 1n two diflerent
ways but each with different small errors. In the KE process,
cach users will choose a private matrix S ,, S, respectively
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with small entries following certain error distributions
secretly and a public matrix M randomly. Then each user
will compute the multiplication of the user’s secret matrix
with the publicly chosen matrix but with small errors,
exchange the new matrices, and then perform the computa-
tion of pairing of S, and S, over the same bilinear form
based on M 1n two diflerent ways but each with diflerent
small errors. This kind of mathematical computation 1s
called pairing with errors. The shared key 1s derived from the
pairings with a rounding technique. This method can be
viewed as an extension of the idea of the learning with errors

(LWE) problem discovered by Regev 1n 2005 [Reg]. The

security of this system depends the hardness of certain
lattice problem, which can be mathematically proven hard
| D1L1]. This system 1nvolves only matrix multiplication and
therefore 1s very eflicient. Such a system can also resist the
future quantum computer attacks.

This mvention second contains a novel method to build a
KD system with a central server or authority. In this system,
the central server or authority assigns each user 1 a public ID
as a matrix A, with small entries or establish the ID of each
user as a matrix A, with small entries following certain error
distributions with the information that can identify the user
uniquely, and, 1n a secure way, gives each user a private key
based on certain multiplication of this ID matrix with the
central server or authority’s secret master key M, another
matrix, but with small errors. Then any two users in the
system will compute the pairing of the two ID matrices of
the users with the same bilinear form based on the master
key matrix M 1 two different ways but each with different
small errors to derive a shared key between these two users
with certain rounding technique. This method can be viewed
as an extension of the 1dea of the learning with error problem
discovered by Regev i 2005 [Reg|. The security of this
system depends on the hardness of the problem related to
pairing with errors. This system involves only matrix mul-
tiplication and therefore 1s very eflicient.

This mvention third contains a novel method to build a
IBE system with a central server or authority. In this system,
the central server or authority assigns each user 1 a public 1D
A, as a matrix with small entries following certain certain
error distributions or establish the ID of each user as a matrix
with small entries following certain certain error distribu-
tions with the information that can identify the user
uniquely. Each user 1s given by the central server or author-
ity a private key S, based on certain multiplication of this ID
matrix with the central server or authority’s master private
key S, another matrix, but with errors related to one part of
the master public key M, another matrix. The central server
or authority will establish another half of the mater key as
the multiplication of M and S with small errors, which we
call M,. Then any user who wishes to send the user 1 a
message 1n the system will compute public key of 1 which
consists of M and a paring of M and A, of the bilinear form
based on the master secret key matrix S, then encrypt the
message using the encryptlon system based on the MLWE
problem, and the user 1 will use the secret key S, to decrypt
the message. This method can be viewed as an extension of
the 1dea of the learming with error problem discovered by
REGEV 1n 2005. The security of this system depends the
harness of certain lattice problem, which can be mathemati-
cally proven hard. This system involves only matrix multi-
plication and therefore 1s very eflicient.

In our constructions, we can replace matrices by elements
in 1deal lattice, and we can also use other type of rounding
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techniques. We can also build the system in a distributed
way where several servers can work together to build KD

and IBE systems.

In short, we use the same mathematical principle of paring
with errors, which can be viewed as an extension of the 1dea
of the LWE problem, to build secure and more etlicient KE,
KD and IBE systems.

Though this invention has been described with specific
embodiments thereof, it 1s clear that many variations, alter-
natives, modifications will become apparent to those who
are skilled in the art of cryptography. Therelore, the pre-
ferred embodiments of the invention as set forth herein, are
intended to be 1llustrative, not limiting. Various changes may
be made without departing from the scope and spirit of the
invention as set forth herein and defined 1n the claims. The
claims 1n this invention are based on the U.S. provisional
patent application with Ser. No. 61/623,272, enftitled “New
methods for secure communications and secure information
systems”, filed Apr. 12, 2012, only more technical details are

added.

DETAILED DESCRIPTION OF TH.
INVENTION

(1]

1.1 The Basic Idea of Pairing with Errors

The learning with errors (LWE) problem, introduced by
Regev 1n 2005 [Reg], and 1ts extension, the ring learning
with errors (RLWE) problem [LPR] have broad application
in cryptographic constructions with some good provable
secure properties. The main claim 1s that they are as hard as
certain worst-case lattice problems and hence the related
cryptographic constructions.

A LWE problem can be described as follows. First, we
have a parameter n, a (prime) modulus ¢q, and an error
probability distribution n on the fimite ring (field) F_ with q
clements. To simplily the exposition, we will take g to be a
odd prime and but we can also work on any whole number
except that we may need to make slight modifications.

In F_, each element is represented by the set {—(q—1)/
2,...,0,...,(q-1)/2}. In this exposition, by “an error”
distribution, we mean a distribution we mean a distribution
such that there 1s a high probability we will select an
clement, which 1s small. There are many such selections and
the selection directly affect the security of the system. One
should select good error distribution to make sure the system
works well and securely.

LetIL,, on F_be the probability distribution obtained by
selecting an element A 1n F_ " randomly and uniformly,
choosing e el according to «, and outputting (A, <A,
S>+e), where + 1s the addition that 1s performed n F_. An
algorithm that solves the LWE problem with modulus g and
error distribution x, if, for any S in F_”, with an arbitrary
number of independent samples from I , it outputs S (with
high probability).

To achieve the provable security of the related crypto-
graphic constructions based on the LWE problem, one
chooses q to be specific polynomial tunctions of n, that 1s g
1s replaced by a polynomial functions of n, which we will
denote as q(n), K to be certain discrete version of normal
distribution centered around O with the standard deviation
o=0qg=Vn, and elements of F , are represented by integers in
the range [-(q 1)/2, (q 1)/2)], which we denote as K.

In the original encryption system based on the LWE
problem, one can only encrypt one bit a time, therefore the
system 1s rather ineflicient and 1t has a large key size. To
turther improve the efliciency of the cryptosystems based on
the LWE problem, a new problem, which 1s a LWE problem
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based on a quotient ring of the polynomial ring F_[x] [LPR],
was proposed. This 1s called the nng LWE (RLWE) prob-
lem. In the cryptosystems based on the RLWE problem, their
security 1s reduced to hard problems on a subclass of lattices,
the class of 1deal lattices, instead of general lattices.

Later, a new variant of LWE was proposed in [ACPS].
This vaniant of the LWE problem 1s based on the LWE
problem. We will replace a vector A with a matrix A of size
mxn, and S also with a matrix of size nx1, such that they are
compatible to perform matrix multiplication AxS. We also
replace ¢ with a compatible matrix of size mx1. We will
work on the same finite field with q elements.

To simplify the exposition, we will only present, in detail,
for the case where A 1s a square matrices of the size nxn and,
S and ¢ of the size nx1.

Let Il , over F_ be the probability distribution obtamned
by selecting an nxn matrix A, whose each entry are chosen
in F_ uniformly and independently, choosing e as a nxl
vector over F_ with entries chosen according to certain error
distribution ¥, , for example, each entries follows an error
distribution n independently, and outputting (A, AxS+e),
where + 1s the addition that i1s performed in F_ ™. An
algorithm that solves a LWE with modulus q and error
distribution x,,, 1f, for any vector S in F *, with any number
of independent sample(s) from Il , it outputs S (with high
probability).

For the case that we choose a small S, namely entries of
S are chosen independently according to also the error
distribution k,, we call this problem a small LWE problem
(SLWE). If we further impose the condition A to be sym-
metric, we call it a small symmetric LWE problem
(SSLWE). If we choose the secret S randomly and indepen-
dently from the set—z,. .., 0,1 ..., z with z a fixed small
positive integer, we call such a problem uniformly small
LWE problem (USLWE).

For practical applications, we can choose S and ¢ with
different kind of error distributions.

Due to the results in [ACPS], we know If the secret S’s
coordinates and the error €’s entries are sampled 1ndepen-
dently from the LWE error distribution x_, the correspond-
ing LWE problem 1s as hard as LWE with a uniformly
random secret S. This shows that the SLWE problem 1s as
hard as the corresponding LWE problem. The same 1s true
for the case of the RLWE problem that 1f one can solve the
Ring LWE problem with a small secret namely the element
S being small, then one can solve it with an uniform secret.

We further extend the problem to a full matrix form.

LetIIg, > over F be the probability distribution obtained
by selecting an nxn matrix A, whose each entry are chosen
in F_ uniformly and independently, choosing e as a nxn
matrix over F_ with entries following certain error distribu-
tion K, 2, for example, an distribution chosen according to the
error distribution n independently, and outputting (A, AxS+
e), where + 1s the addition that is performed in F_*. An
algorithm that solves a LWE with modulus g and error
distribution K2, 1, for any nxn matrix S n F_ ", with any
number ot independent sample(s) from I, ,, 1t outputs S
(with a high probability).

We call this problem matrix LWE problem (MLWE). For
the case where we choose a small S, namely entries of S also
tollows the error distribution k. 2, we call this problem a

¥7 2

small MLWE problem (SMLWE). If we further impose the
condition A to be symmetric, we call 1t a small symmetric
MLWE problem (SSMLWE). If we choose the secret S
randomly and independently from the set -z, ., 0,
1...,zwith z a fixed small positive integer, we call such

a problem uniformly small MLWE problem (USMLWE). It
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1s clear the MLWE problem 1s nothing but put n LWE
problem together and sharing the same matrices. Therefore
it 1s as hard as the corresponding LWE problem.

We can use different error distributions for S and e.

The mathematical principle behind our construction

comes Irom the fact of associativity of matrices multiplica-
tions of three matrices A, B and C:

AxBxC=(AxB)xC=Ax(BxC).

Such a product can be mathematically viewed as computing
the bilinear paring of the row vectors of A with column
vectors of C.

For two matrices A and B with small entries following
certain error distributions, for example, with entries follow-
ing some error distributions, instead of computing this
product directly, we can first compute

AB+E .
then compute

(AB+E ,)C or (AB+E ,)C+E ,,
or we will compute
BC+E,

then compute

A(BC+E,) or (AB+E ,)C+E .,

T 1 T 1 N B

where E ,, E,, E .. E;~ are matrices with small entries
following the same (or different) error distributions. Then
we have two way to compute the product ABC with small
errors or differences between these two matrices. We call
such a computation pairing with errors. All our constructions
depends on such a paring with errors and on the fact that the
two different paring are close to each other if A and C are
also small.

We can mathematically prove the theorem that an MLWE
problem 1s as hard as the corresponding LWE problem with
the same parameters. This provides the foundation of the
provable security ol our constructions
1.2 The Construction of the New KE
Paring with Errors

Two parties Alice and Bob decide to do a key exchange
(KE) over an open channel. This means that the communi-
cation of Alice and Bob are open to anyone including
malicious attackers. To simplify the exposition, we will
assume 1n this part all matrices mvolves are nxn matrices.
But they do not have to be like this, and they can be matrices
of any sizes except that we need to choose the compatible
s1zes such that the matrix multiplications performed are well
defined.

Their key change protocol will go step by step as follows.

(1) Alice and Bob will first publicly select F_, n and a nxn

matrix M over F_ uniformly and randemlyj Where q 1S
of size of a pelynemlal of n, for example g=~n>, and an
error distribution K,2 to be a distribution over nxn
matrices over F_, for example, a distribution that each
component are independent and each component fol-
low certain error distribution like the discrete error
distribution K, as 1n the case of LWE, namely a discrete
normal dlstrlbutlen over F_ center around O with stan-
dard dewviation apprommately vn. All the information
above 1s public. They jointly and publicly choose a
small (prime) mteger t (t<<n).

(2) Then each party chooses 1ts own secret S, (1=A, B) as

a nxn matrix chosen according to the error distribution

Systems Based on
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K,2, € also as a nxn matrix following the error distri-
bution. For Alice, she computes

MA:MSA‘FtﬂA?

where t 1s a small 1integer (t<<n).
For Bob, he computes

MB:MrSB‘FtﬂB.

(3) Both parties exchange M., 1n the open communication
channel. This means both M, (i=A, B) are public, but
keep S, and e, (1=A, B), secret.

(4) Alice computes:

KA:SrAXMB:SfAMrSB+tSIAE?B.
Bob computes:
KBZMIAXSBZS;-MISB+'[EAFA SB

(5) Both of them will perform a rounding technique to
derive the shared key as follows:

(a) Bob will make a list T, of all positions of the entries
of K, such that these entries are in the range of
[-(q-1)/4, (q-1)/4] and a list T, of all positions
which are not in the range of [-(gq-1)/4, (gq-1)/4].

Then Bob will send to Alice the list T,.

(b) Then each party will compute the residues of these
entries modular t 1n T, and for the entries notin T |,
which 15 1n T,, they will add (q-1)/2 to each entry
and compute the residue modular q first (into the
range of [—-(q—1)/4, (q—1)/4]) then the residue modu-
lar t. That gives a shared key between these two
users.

The reason that Alice and Bob can derive from K , and K,
a shared secret to be the exchanged key via certain rounding
techniques as 1n the case above 1s exactly that e, and S, are
small, therefore K , and K are close. We call this system a
SMLWE key exchange protocol. We can derive the provable
security of this more eflicient system [Dili].

In term of both communication and computation efli-
ciency, the new system 1s very good. The two parties need
to exchange n” entries in F ,» and each perform 2n°° com-
putations (with Strassen fast matrix multiplication [STR]) to
derive n” bits if t=2.

S. and e, can follow different kind of error distributions.

We can prove the theorem that if we choose the same
system parameters, namely n and g, the matrix SLWE key
exchange protocol 1s provably secure 11 the error distribution
1s properly chosen [Dili1]. The proof relies on the math-
ematical hardness of the following pairing with error prob-
lem.

Assume that we are given

(1) an nxn matrix M, a prime integer g, a small positive
integer t, and an error distribution K, and;

MIA:MSIA‘H:'BA
and

MIB:MFS IB‘H:'EB:

(2)

where e, a nx1 vector follows the error distribution ¥
and the entries of nx1 vectors also tollows the same

error distribution;
(3) and the fact that

1s 1n the range of [-(q-1)/4, (q—1)/4] or not;
the problem 1s to find an algorithm to dernive

K'=(8')’xMp=(8' )’ M'S'z+t<8' s,e5>
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8
modular t if K'; 1s 1n the range of [-(g-1)/4, (q-1)/4],
otherwise K' +(q—1)/2 first modular q then modular t, with
a high probability. We call such a problem a pairing with
error problem (PEP).

The prootf follows from the fact that the SMLWE problem
1s as hard as the SLWE problem, since the matrix version can
be viewed as just assembling multiple SLWE samples 1nto
one matrix SLWE sample.

We note here that we can choose also rectangular matrix
for the construction as long as we make sure the sizes are
matching in terms of matrix multiplications, but parameters
need to be chosen properly to ensure the security.

Similarly we can build a key exchange system based on
the ring learning with errors problem (RLWE) [LPR], we
will a vanant of the RLWE problem described in [LNV].

For the RLWE problem, we consider the rings R=7[x]/1
(X), and R_=R/qR, where f(x) 1s a degree n polynomial in
Z[x], Z 1s the ring of integers, and g 1s a prime integer. Here
q 1s an odd (prime) and elements in Z_=F _=7/q are repre-
sented by elements: —-(q-1)/2,...,-1,0,1, ..., (g-1)/2,
which can be viewed as elements 1n 2 when we talk about
norm of an element. Any element in R _, 1s represented by a
degree n polynomial, which can also be viewed as a vector
with 1ts corresponding coeflicients as 1ts entries. For an
clement

|

a(X)=ap+a X+ ... +a, X',

we define

|a|=maxla,l,

the 1_ norm of the vector (a5, a,, ..., a,_;) and we treat this
vector as an element 1n Z” and a, an element 1n 7. We can
also choose g to be even positive number and things need
slight modification.

The RLWE,_. problem is parameterized by an polyno-
mial 1(x) of degree n, a prime number q and an error
distribution X over R_. It is detined as follows.

Let the secret s be an element in R , a uniformly chosen
random ring element. The problem 1s to find s, given any
polynomial number of samples of the pair

(a;,b~a;xs+e;),

where a, 1s uniformly random in R_ and ¢; 1s selected
following certain error distribution X.

The hardness of such a problem 1s based on the fact that
the b, are computationally indistinguishable from uniform in
R . One can show [LPR] that solving the RLWE .. problem
above 1s known to give us a quantum algorithm that solves
short vector problems on 1deal lattices with related param-
cters. We believe that the latter problem 1s exponentially

hard.

We will here again use the facts in [ACPS], [LPR] that the
RLWE, . problem 1s equivalent to a variant where the
secret s 1s sampled from the error distribution X rather than
being uniform in R and the error element €; are multiples of
some small integer t.

To derive the provable security, we need consider the
RLWE problem with specific choices of the parameters.

We choose 1(x) to be the cyclotomic polynomial x”+1 for

n=2", a power of two;

The error distribution ¢ 1s the discrete Gaussian distribu-

tion D, for some n>>o>w(Viogn)>1;

q=1 (mod 2n) and q a polynomial of n and g=n’;

t a small prime and t<<n<<q.

We can also use other parameters for practical applications.
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There are two key facts in the RLWE,__ setting defined

above, which are needed for our key exchange system.
(1) The length of a vector drawn from a discrete Gaussian
of with standard deviation a 1s bounded by on, namely,

Pr(|[X|on)s27,

for X chosen according to X.
(2) The multiplication 1n the ring R increases from the

norms of the constituent elements 1n a reasonable scale,
that 1s,

IXXY (mod (x))|=n[X[[[[Y]],

for X, Y € R _ and the norm 1s the 1, norm defined above.

With the RLWE, . setting above, we are now ready to

have two parties Alice and Bob to do a key exchange over

an open channel. It goes step by step as follows.
(1) Alice and Bob will first publicly select all the param-
eters for the RLWE, . including q(=n> or similar
polynomial functions of n), n, f{(x) and . In addition,
they will select a random element M over R _ uniformly.
All the information above 1s public.

(2) Then each party chooses 1ts own secret s, as an element
in R according to the error distribution ¥, and e,
independently also as an element following the error
distribution v, but jointly choose a small prime 1nteger

t (t<<n) For Alice, she computes

M =Ms +te ,,

where t 1s a small integer (t<<n).
For Bob, he computes

MB:MSB_l-teB'

(3) Both parties exchange M,. This means both M, are
public, but certainly keep s, and e, secret.
(4) Alice computes:

KA:SAXMB:SAMSB+1:&ESA.

Bob computes:

KB:MAXSB:SAMSB-FteASB'

(5) Both of them will perform a rounding technique to

derive the shared key as follows:

(a) Bob will then make a list of size n, and this list
consists of pairs 1 the form of (1, j), where
i=0, . . ., n-1, and j=1 if the X’ coeflicient of K, is
in the range of [-(q-1)/4, (q—1)/4], otherwise 1=0.

(b) Then Bob will send this list to Alice. Then each waill
compute the residue of the corresponding entries
modular t 1n the following way:
for an element of the list (1, 1),

1) if =1, each will compute the 1-th entry of K , and
K - modular t respectively;

2) 11 =0, each will add (q—1)/2 to the 1-th entry of K ,
and K, modular q back to range of [-(gq-1)/4,
(q—1)/4], then compute the residues modular t.

We can use different distributions for s, and e,.

That will give a shared key between these two users. We
call this system a RLWE key exchange system. We can
deduce that there 1s a very low probability of failure of this
key exchange system. We note here that the commutativity
and the associativity of the ring R play a key role i this
construction.

In terms of security analysis, we can show the provable
security of the system following the hardness of the
F[I;\ET]E‘T .. problem by using a similar PEP over the ring R |

1L.1].
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Assume that we are given

a random element M in R_, prime integers t, q and the
error distribution X with parameters selected as 1n the
RLWE, . above;

M =Ms +te, and M=Ms.+te,, where ¢, follows the
error distribution X and s, also follows the error distri-
bution y;

and the fact that (K;),, the coefficients x* of K .=M ,x
5= ,Ms_+te s, 15 1n the range of [-(q-1)/4, (q-1)/4]
or noft;

the problem 1s to find an algorithm to denve K5 (or K )
modular t or K;+(q-1)/2 (or K ,+(q—1)/2) modular q (into
the range of [-(q-1)/4, (q—-1)/4]) and then modular t with a
high probability. We call such a problem a pairing with error
problem over a ring (RPE).

It 1s nearly a parallel extension of the proof of the
provable security of the case of SLWE key exchange system
to the RLWE key exchange system. We conclude that the
RLWE key exchange system 1s provable secure based on the
hardness of the RLWE, . problem.

With the same parameters q and n, this system can be very
ellicient due to the possibility doing fast multiplication over
the ring R using FF1 type of algorithms.

1.3 The Construction of the New KD Systems Based on
Paring with Errors

Over a large network, key distribution among the legiti-
mate users 1s a critical problem. Often, in the key distribu-
tion systems, a difficult problem 1s how to construct a
system, which 1s truly eflicient and scalable. For example, 1n
the case of the constructions of [BSHKVY], the system can
be essentially understood as that the master key of a central
server 1s a symmetric matrix M of size nxn and each user’s
identity can be seen as a row vector H, of size n. The central
server gives each user the secret H xM. Then two users can
derive the shared key as HxMxH . The symmetric property
of M ensures that

H,xMxH "=H 'xMxH,.

However, large number of users can collaborate to derive the
master key. If one can collect enough (essentially n) H.xM,
which then can be used to find the master key M and
therefore break the system.

We will build a truly scalable key distribution system
using the pairing with error with a trusted central server,
which can be viewed as a combination of the 1dea above and
the 1dea of the LWE.

We work again over the finite field F _, whose elements are
represented by —(q-1)/2, ..., 0, ..., (g-1)2. We choose
g=n" or other similar polynomial function of n, we choose
again K 2 to be an error distribution over the space of nxn
matrices, for example, an distribution each component are
independent, and each component follows error distribution
K, the discrete distribution as 1n the case of LWE, namely
a discrete normal distribution over F_ centered around O with
standard deviation approximately & The choice of these
parameters can be modified.

The key distribution system 1s set up step by step as
follows.

(1) We have a central server, which will select a symmet-

ric randomly chosen nxn matrix S, as a master key,
whose entries are in F :

S=S".

(2) For each user index as 1, the central server gives 1t a
(1n general not symmetric) matrix A, (as an ID) with
small entries following error distribution ¥ 2. The ID
matrix of each user 1s public and 1t can also be
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generated with information that can identily the user
like email address, name and etc.

(3) For each user, the central server distribute securely a
secret:

E~AS+te;,

where ¢, 1s a matrix (not symmetric) selected following

certain error distribution, such as K, 2. This 1s kept
private for each user.

To obtain a secret key shared between the user 1 and the
user 1, the user 1 computes

K,~E;xA/~ASA +te,A;

=y 2

and the user | computes

K =Ax(E)=ASA+tAe ~ASA +tAe/.

This 1s possible because the IDs are public. They then can
use the following simple rounding method to derive a shared
key between the two users.

When the user 1 wants to establish a shared key with the
user 1, the user 1 will collect all the entries (including
their positions in the matrix) in K; that are in the range
of (-(g-1)/4, (q-1)/4), namely those entries which are
closer to O than (gq-1)/2. Then user 1 will send to the
user 1 a list of the positions of the entries 1n the matrix
(only the position not the values of the entries them-
selves) that are randomly selected from the collection,
which 1s tagged by 0, and a list of entries not in the list
tagged by 0. Then the user 1 will select the same entries
in its own matrix H xA . Now they have a shared list of
common entry positions, therefore the corresponding
entries of the matrix. Then each user will compute the
residue of these entries modular t tagged by 1 and
compute the residue of the sum of each of these entries
tagged by O with (g-1)/2 to build a new identical
ordered list of values, which will be their shared secret
key.

Because S symmetric, we have that

ASA=AS'AS,
therefore the user | derives

ASA A A

il e

The difference between the results computed by the two
users 1s:

XA’ ~AXE ~A SA" +te, A’ ~(A,SA” +tA£")

— f I
=te;A"~tAe’.

This difference is small since t is small and e,A" and A.e/
are small, which 1s due to the fact that e,, €, A; and A, are all
small. This allows us to get a common key for 1 and 7 by
certain rounding techniques and therefore build a key dis-
tribution system.

Since the error terms for both matrices, te,A and te/ A,
are small, the corresponding selected entries with tag 1 1n
ASA; (without the error terms) are essentially within the
range of [(-(q-1)/4, (q—1)/4] or very close. Therefore the
error terms will not push those selected terms in A,SA; over
either (-(q-1)/2 or (q-1)/2), that 1s when added the error
terms, those selected entries will not need any further
modular q operation but just add them as integers, since each
clement 1s represented as an integer in the range of [(—(g-
1)/2(gq-1)/2)]. The same argument goes with entries tagged
by 0. These ensures that the process give a shared key
between these two users.
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From the way matrices K,, K; are constructed, we know
that each entry of K, and K, tollows unitorm distribution.
Therefore we expect that each time the size of the first list
selected by the user j from the matrix K, should be around
n”. Therefore this system can provide the shared secret with
enough bits if we choose proper n.

Also we can build a version of this system with none
symmetric matrices, 1n this case, the central serve needs to
compute more matrices like A S+e and A ‘S+e'. Then it is
possible, we can do the same kind of key distribution. This
system again 1s less eflicient.

On the other hand, since the RLWE problem can be
viewed as a specialized commutative version of matrix-
based LWE since an element in the ring can be view as a
homomorphism on the ring. We can use the RLWE to build
a key distribution in the same way.

Now let us look at why this key distribution 1s scalable.
Clearly each user will have a pair A, and E=A S+te,, and
many users together can get many pairs, then to find the
secret master key S 1s to solve the corresponding MLWE
problem, except that, 1n this case, we 1impose the symmetric
condition on the secret S. It 1s not dithicult to argue again that
this problem 1s as hard as a LWE problem, since given a
LWE problem, we can convert 1t also mto such a MLWE
problem with symmetric secret matrix. Therefore, it 1s easy
to see that this system 1s indeed scalable.

In terms of the provable security of the system, the
situation 1s similar to the work done 1n the paper [Dil1]. We
can give a provable security argument along the same line.

As we said before, since RLWE can be viewed as a special
case MLWE, we will use the RLWE to build a very simple
key distribution system.

We will choose the ring R _to be F_[x]/x"+1. To ensure the
provable security, we need to choose parameter properly n,
q, properly, for example n=2* g=1 mod(2n)[LPR]. For
provable secure systems, we assume that we will follow the
conventional assumptions on these parameters, and the
assumption on the error distribution like v in [LPR].

This construction 1s essentially based on the systems of
above. We assume that we have a ring R_ with a properly
defined learning with error problem on the ring R with error
distribution X. The problem i1s defined as follows:

We are given a pair (A, E), where

E=AxS+te',

A, S where ¢' are elements 1n R, t 1s small mteger, €' 1s an
error element following the distribution of , S 1s a fixed
clement and A 1s select randomly following uniform distri-
bution, and the problem 1s to find the secret S.

With a central server, we can build a simple key distri-

bution system as follows.

(1) The central server will also select a random element M
in R tollowing uniform distribution.

(2) For each user, the central server will assign an public
ID as A,, where A, should be 1n the form of a chosen
small element in R _, namely following an error distri-
bution like .

(3) Each member 1s given a secret key by the central
Server:

S =MA +te.,

where e, tfollows an error distribution 7.

(4) If two user 1 and 1 wants to build a shared key, one user,
say 1 can use the ID matrix of j, namely A , the 1ts secret
key to build a shared key with ;1 by computing

K,~AxS~AMA +tAe;,
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and 7 can use 1ts secret key to build a shared key with
1 by computing
K,=A;xS,~A,MA +tA.e;

At

then derive the shared key with the rounding technique
as follows:
(a) 1 will then make a list of size n, and this list

consists of pairs 1 the form of (a, b), where

a=0, . . ., n—1, and b=1 1f the x“ coeflicient of K,
1s 1in the range of [-(q-1)/4, (q—1)/4], otherwise
b=0.

(b) 1 will send this list to 7. Then each will compute
the residue of the corresponding entries modular t
in the following way:
for an element of the list (a, b),

1) 1t b=1, each will compute the a-th entry of K,
and K; modular t respectively:;

2) 1 b=0, each will add (gq—1)/2 to the a-th entry
of K; and K, modular q back to range of [-(q-
1)/4, (q—1)/4], then compute the residues modu-
lar t.

Since A, and ¢; are small elements in R , we have A xe, 1s
also small. This ensures that we indeed have a shared secret
key. This, therefore, gives an key-distribution system.

Here we use very much the fact that in a RLWE problem
that the multiplication 1s commutative. The key feature of
our construction 1s that 1t 1s stmple and straight forward. The
provable security of the system 1s also straightforward.

1.4 the Construction of the New IBE Systems Based on
Paring with Errors

We will first build a new public key encryption based on
MLWE. To build an encryption system, we choose similar
parameter g=n- or n* or similar polynomial functions of n,
we choose again K, 2 to be an error distribution, for example
the error distribution with each component are independent,
and each component follow the same discrete distribution K,
as 1n the case of LWE, namely a discrete normal distribution
over IF_ center around 0 with standard deviation approxi-
mately vn. Surely we can also select high dimensional
(Gaussian distribution, which should be very convenient for
the purpose to provable security. We select this simple
distribution to simplily the argument concerning the validity
of the encryption system. We can surely choose other
parameters.

With such a setting, we can build an encryption system as
in the case of the MLWE problem as follows:

(1) We select an nxn matrix S, whose entries are small
following an error distribution K 2, for example, each
entries independently and randomly follows the distri-
bution ¥,

(2) In the setting of the MLWE, we will derive one output
pair (A, E), where

E=AxS+e,
or

E=AxS+te,

and t 1s small, t<<n, and they form the public key of our
encryption system. Here ¢ follow certain error dis-
tributions, for example the distribution we use above.

(3) S 15 the private key of the cryptosystem.

(4) A message 1n 1s represented as nxn matrix with binary
entries of 0, 1 or nxn matrix with entries 1n the range
modular t, namely 0, 1 . . ., t-1.

(35) A sender chooses a nxn small matrix B similar to S
namely following an error distribution K, 2, for example,
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cach entries independently and randomly follows the
distribution K. Then the sender compute the encrypted
message as:

(D{,D5)=(BxA+e,,BxE+e,+m (q/2)),
or

(D, D5)=(BxA+te . BxE+te,+m,

where e, and e, are error matrices selected indepen-
dently following some error distribution like e.
(6) To decrypt, the legitimate, 1n the first case, computes

D>-DxS=(BE+e,+m(q/2)-(BA+e)S)=eE+e,—e, S+
m(q/2),

where everything 1s done in F_, and we can check on
cach entry of the matrix, 1t it 1s near 0, we output O,
and 11 1t 1s near (q-1)/2, we output 1, or we divide
them by (q-1)/2 performed as a real number division
and round them to 0 or 1 and the output will be the
plaintext m; or in the second case, the legitimate user
computes

D5>-DxS=(BE+te,+m-({BA+te)S)=teE+te,—teS+m,

then modular t. This will be the plaintext m.
A, B, e, can follow different error distributions.
With large n, the output can give us the right plaintext
with as high probability as demanded. The reason we could
decrypt with high probability comes from the following.

D->-DxS=BE+e,+m(q/2)-(BA+e)S
=Bx(AxS+e)+e,+m(q/2)-(BA+e)xS

=Bxe+e,—exS+miq/2)

Bxe+e,—e, xS can be viewed as a error terms, which 1s
determined by the distribution of the following random
variable. With proper choice of parameters, like in the case
of KE or KD systems, the decryption process will surely
return the right answer when n 1s large enough. The same
argument goes with the second case.

One key point of this new method 1s that on average, we
can do the encryption much faster in terms of per bit speed
because we can use fast matrix multiplication [CW] to speed
up the computation process.

We note here that since matrix multiplication 1s not
commutative, when we multiply two elements, the order 1s
very important, unlike the case of the RLWE related sys-

tems.
We can also use the same 1dea 1n the nng LWE (RLWE)

[LPR] to do encryption, where all the elements are in the
ring R , and we have

E=AxS+te,

t 1s small positive mteger and the entries of S 1s also small
tollowing error distribution K, 2. We encrypt a message as

(D 1 ,DQ)Z(BA+‘[61 ,BE+‘E62+H1) .
Then we decrypt by computing

(BE+te>+m-B(AS+te | ))(mod t).

This works because

DE—D 1% SZBE+‘[EQ+H1— (BA‘H:l Cy ) Ny
=Bx(AxS+te)+te>+m—-(BA+te )xS

=tBxe+te,—te, xS+m



US RE48,643 E

15

Since the error terms are small, by modular t, we certainly
should get back the original plaintext.

For the MLWE problem, we surely need to choose the
distribution accordingly when we need to obtain the prov-
able security of the system.

There are several versions of identity-based encryption
systems based on lattice related problems including the
LWE problem [ABB], [ABVV W], [BKPW]. But they all
look rather complicated. We can use the MLWE to build an
identity-based encryption system.

With a central server, we can build a simple identity-based
encryption system as follows.

(1) The central server will first select a secret nxn matrix

S as the secret master key, where S 1s selected as a small
clement following certain error distribution K 2 like
error distributions like 1n KE and KD systems.

(2) The central server will also select a random element M
following uniform distribution or similar distribution,
but make sure that M has an inverse. If we could not
find one first time, we will try again till we find one. We
have a high probability of success to find such a M
when q 1s large. Then the central serve will compute

M ,=MS-+te,

where e 1s small following certain error distribution K 2.

(3) Then the central server will publicize M and M, as the
master public key.

(4) For each user, the central server will assign an public
ID as A, where A, 1s small following certain error
distribution K 2, and 1t can be generated from 1informa-
tion that can identify the user.

(5) Each member 1s given a secret key:

S~SAA+tM'e,

where €.’s entries are small following the error distri-
bution n. Surely this 1s the same as given

MS,=MSA +te,,

since M 1s public.

(6) Anyone can use the ID, namely A, and the master
public key to build a new public key for the user with
ID A, which 1s given as the pair (A,, B,), where

A=M
and

B, =M, A ~MSA +teA,,

and 1t 1s used as the public key to encrypt any message
use the MLWE encryption system above.
This gives an 1dentity based encryption system.
S, A, e, ¢ can also follow diflerent error distributions.
Since A, and e are small, we have A xe 1s also small. W
also have that

=M(SA+tM'e)-MSA +te A,
=MSA+tMM e, )-MSA +te A,

Since ¢, A, and ¢, are small, e-A ¢, 1s also small and te,—tA e,
1s also small. Therefore S, 1s a solution to a MLWE problem
with the pair (A, B,) as the problem input. Therefore S, 1s
indeed a secret key that could be used for decryption.
Therefore the construction works. We need to choose param-
cters properly to ensure security.

10

15

20

25

30

35

40

45

50

55

60

65

16

The key feature of our construction 1s that it 1s stmple and
straight forward. The provable security of the system 1s also
straightforward.

we can extend this construction using the RLWE problem.
We will choose the ring R to be F_[x]/x"+1. 'To ensure the
provable security, we need to choose parameter properly n,
q, properly, namely n=2", g=1 mod(2n)[LPR]. But we can
select other parameters for secure applications.

This construction 1s directly based on the encryption
systems ol the RLWE[LPR], namely, we assume that we
have a ring R with a properly defined learming with error
problem on the ring R. The problem 1s defined as follows:
we are given a pair (A, E), where

E=AxS+te’,

A, S where ¢’ are elements 1n R, t 1s small integer, €' 1s an
error element following an error distribution X, S 1s a fixed
clement and A 1s select randomly following uniform distri-
bution, and the problem 1s to find the secret S. We also know
that one can build a public key encryption systems using the
RLWE problem|[LLPR], where A, and E serve as the public
key, and the secret S, which needs to be small, serves as the
private key. We can use the fact that in a nng-LWE problem
that the multiplication 1s commutative.

With a central server, we can build a simple 1dentity-based

encryption system as follows.

(1) The central server will first select a secret S 1n R as the
secret master key, where S 1s a selected small element
follow certain error distributions %.

(2) The central server will also select a random element M
in R following uniform distribution and make sure that
M has an 1inverse. If we could not find one first time, we
will try again till we find one. We have a high prob-
ability of success to find such a M when q 1s large. Then
the central serve will computer

M ,-MS-te,

where ¢ 1s small and follows error distribution .

(3) Then the central server will publicize M and M, as the
master public key.

(4) For each user, the central server will assign an public
ID as A;, where A, 1s a small element in R, and 1t
follows error distribution v.

(5) Each member 1s given a secret key:

S,=SA+tMle,

where e, small element in R, and 1t follow certain error
distribution X. Surely this i1s the same as given

MS,=MSA +te,,

since M 1s public.

(6) Anyone can use the 1D, namely A, and the master
public key to build a new public key for the user with
ID A, which 1s given as the pair (A, B,), where

A~=M

I

and

B =AM ,=A MS+tA e=MSA +A_e,

and 1t 1s used as the public key to encrypt any message.
This gives an 1dentity based encryption system.
The small elements like S, A, e, e, can follow di
error distributions.

Terent
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Since A, and e are small elements 1n R, we have A xe 1s
also small. We have that

=M(SA+iM'e)-MSA +A te
—MSA +tMM~le)-MSA +A te

which 1s due to the fact that this 1s a commutative ring. Since
¢, A, and ¢, are small, e-A ¢, 15 also small and te—tA ¢, 1s also
small. Therefore S, 1s a solution to a ring LWE problem with
the pair (A, B,) as the problem mput. Therefore S, 1s indeed
a secret key that could be used for decryption.

We can build easily a hierarchical IBE system using
similar procedure, where each user can server as a central
Server.

The key feature of our construction 1s that 1t 1s simple,
straight forward and eflicient. The provable security of the
system 1s also straightiforward.

In the all the systems above using pairing with errors over
the ring, one may use polynomials in the form of

F(x)=IT1,(x)+g(x),

where each 1, g(x) 1s a extremely sparse matrix with very
few terms, for example, 2 or 3 terms none-zero. Using this
kind of polynomial can speed up the encryption and decryp-
tion computations.
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The mvention claimed 1s:

[1. Method for establishing a key exchange over an open
channel between a first party A and a second party B,
comprising;

(1) openly selecting, by Party A and Party B together,
parameters, n, q and small whole number t, (t<<n),
where g 1s an odd prime, and an error distribution K, >
to be a distribution over nxn matrix over F_, a nxn
matrix M over F_ uniformly and randomlyj Where q 1S
of size of a polynomlal of n like n°, and elements of F _
are represented by integers 1n the range | (q—l)/2
(q-1)/2)]:

(2) choosing, by each of the parties privately, its own
secret matrix S, (1=A, B) a nxn matrix chosen according,
to the error distribution K, 2, and error matrix e, (1=A,
B) as a nxn matrix following the error distribution K 2;
computing by a processor of the Party A

MAZMSA+‘[EA,

where t 1s a small integer (t<<n);
computing by the Party B

MB:MISB+1:€B?

(3) Both of the parties exchange M. 1n the open commu-
nication channel;

(4) computing by the Party A:

K =S ,xMp=S’ M’S,+tS ex;

computing by the Party B:

Kp=M’ xS z=S" M'Sp+te’ ,Sp;

(5) performing by both the Party A and the Party B a
rounding technique to derive the shared key, compris-
ng:

(a) making by the Party B a list T, ot all positions of the
entries of K5 such that these entries are 1n the range
of [-(g-1)/4, (g—1)/4] and a list T, of all positions
which are not 1n the range of [-(q-1)/4, (g-1)/4].
then sending by the Party B to the Party Athe list T,

(b) computing by each of the parties privately the
residues of these entries modular t in T, and for the
entries not in T, which 1s in T,, adding (q-1)/2 to
cach entry and computing the residue modular q first
(into the range of [-(q-1)/4, (g—1)/4]) then the
residue modular t, which gives a shared key between
the two parties.]
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[2. The method according to claim 1, wherein q is a
polynomial function of degree 2 or higher, or a similar
function, and x 2 1s the a distribution that each component
are independent and each component follow certain error
distribution like the discrete error distribution K, namely a
discrete normal distribution over F_ center around 0 with
standard deviation approximately Vn, or a similar distribu-
tion. ]

[3. The method according to claim 1, wherein the matrices
1s rectangular as long as the matrix multiplication is com-
patible and the parameters are adjusted accordingly.]

[4. The method according to claim 1, wherein the matrices
are replaced with elements of the ring R_=F_[x]/f(x) with
f(x)=x"+1 and the parameters is adjusted accordingly.]

[5. The method according to claim 1, wherein the round-
ing technique is replaced with a similar technique.]

[6. The method according to claim 1, wherein the matrices
are replaced with elements ot the ring R_=F [x]/f(x) with
f(x)=x_+1, the parameters 1s adjusted accordingly, and the
polynomial elements used are selected in the form of 1(x)
=111 (x)+g(x), where each {, g(x) 1s a sparse matrix with
very few terms terms none-zero.]

[7. Method, for a central server, building a key distribu-
tion (KD) system, comprising:

(1) selecting, by the central server, parameters select
parameters, n, ¢ and small whole number t, (t<<n),
where g 1s an odd prime, q 1s of size of a polynomial
of n like n° and elements of F , are represented by
integers 1n the range [-(gq-1)/2, (q-1)/2)], an error
distribution K, 2 a distribution over nxn matrix over F_;
and selecting by the central server a symmetric ran-
domly chosen nxn matrix S over I as a master key:,

(2) giving, by the central server, to each user index as 1,
a general matrix A, as an 1D with small entries follow-
ing error distribution K 2, where the ID matrix of each
user 1s public and the central server have also a choice
to generate the ID with information that can 1dentity the
user;

(3) distributing, by the central server, for each user
securely a secret:

E~AS+te;,

where e, 1s a matrix selected following error distribu-
tion K, 2 and this 1s kept private for each user;
obtaining a secret key shared between the User 1 and the
User 1 comprising:
computing by a process of the User 1:

K,~E,xA=A,SA +te,A;

=y 2

and computing by a processor of the User j

K =Ax(E)=AS'A A=A SA“+Ae/;

Ij’

then the two users deriving a shared key between the two
users using the following simple rounding method,
comprising:
when the User 1 wants to establish a shared key with the
user 1, collecting by the user 7 all the entries (1includ-
ing their positions in the matrix) in K, that are in the
range ol (-(q-1)/4, (g—1)/4), namely those entries
which are closer to O than (q-1)/2; sending by the
User 1 to the user1 a list of the positions of the entries
in the matrnix (only the position not the values of the
entries themselves) that are randomly selected from
the collection, which 1s tagged by O, and a list of
entries not in the list tagged by O; then selecting by
the user 1 the same entries in its own matrix E;xA
which gives them a shared list of common entry
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positions, therefore the corresponding entries of the
matrix; then computing by each of the users the
residue of the entries modular t lagged by 1 and
compute the residue of the sum of each of the entries
tagged by O with (q—1)/2, which build a new 1den-
tical ordered list of values, their shared secret key.}

[8. The method according to claim 7, wherein q is a
polynomial function of degree 2 or higher, or a similar
function, ¥ 2 1s the a distribution that each component are
independent and each component follow certain error dis-
tribution like the discrete error distribution K, namely a
discrete normal distribution over F_ center around 0 with
standard deviation approximately Vn or a similar distribu-
tion. J

[9. The method according to claim 7, wherein the matrices
are replaced with elements of the ring R_=F_[x]/f(x) with
f(x)=x"+1 and the parameters is adjusted accordingly.}

[10. The method according to claim 7, wherein the
procedure for two users 1 and ] to dertve a shared key 1s
modified such that the roles of i and j and exchanged.]

[11. The method according to claim 7, wherein several
central servers to work together to build a distributed KD
system.}

[12. The method according to claim 7, wherein the
matrices are replaced with elements of the ring R _=F_[x]/f
(x) with 1(x)=x_ _+1, the parameters 1s adjusted accordingly,
and the polynomial elements used are selected in the form of
t(x)=I11f(x)+g(x), where each t,, g(x) 1s a sparse matrix with
very few terms terms none-zero.]

[13. Method, for a central, building an identity-based
encryption system, comprising:

(1) selecting by the central server parameters, n, q and

small whole number t, (t<<n), where g 1s an odd prime,
q is of size of a polynomial of n like n° and elements
ot F_ are represented by integers in the range [-(q-1)/2,
(q—1)/2)], and an error distribution K, 2 to be a distribu-
tion over nxn matrix over F _; and selecting by the
central server a secret nxn matrix S as the secret master
key, where S 1s selected as a small element following
certain error distribution K 2;

(2) selecting by the central server a random element M
following uniform distribution, but making sure that M
has an iverse: when the central server could not find
one first time, 1t tries again till 1t finds one; then
computing by the central server

M ,=MS-+te,

where ¢ 1s small following certain error distribution K 2;

(3) then publicizing by the central server M and M, as the
master public key;

(4) assigning by the central server for each user mndexed
by 1 an public ID as A, where A, 1s small following
certain error distribution K 2, and the central server has
can generate A, from information that can identity the
user 1;

(5) processing by a processor and giving by the central
server for each user, namely, the User 1, a secret key:

S, =SA+tMle,

where e,’s entries are small following the error distri-
bution K;
(6) then establishuing by anyone using the 1D, A, and the
master public key, a new public key for the user with
ID A, which 1s given as the pair (A, B,), where
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A~=M

I

and

B~M,A=MSA +teA,

and using by anyone as the public key to encrypt any
message use the MLWE encryption system.]

[14. The method according to claim 13, wherein q is a
polynomial function of degree 2 or higher, or a similar
function, K 2 1s the a distribution that each component are
independent and each component follow certain error dis-
tribution like the discrete error distribution K, namely a
discrete normal distribution over F  center around 0 with
standard deviation approximately & or a similar distribu-
tion.]

[15. The method according to claim 7, wherein the
matrices 1s rectangular as long as the matrix multiplication
is compatible and the parameters are adjusted accordingly .}

[16. The method according to claim 13, wherein the
matrices are replaced with elements of the ring R_=F_[x]/T
(x) with 1(x)=x"+1 and the parameters 1s adjusted accord-
ingly.]

[17. The method according to claim 13, wherein several
central servers to work together to build a distributed IBE
system. ]

[18. The method according to claim 13, wherein the
procedure 1s extended further to build a hierarchical IBE
system, where each user servers as a lower level central
server. ]

[19. The method according to claim 13, wherein the
matrices are replaced with elements of the ring R =F_[x]/f
(x) with 1(x)=x_ +1, the parameters 1s adjusted accordingly,
and the polynomial elements used are selected 1n the form of
t(x)=I11.(x)+g(x), where each 1, g(x) 1s a sparse matrix with
very few terms terms none-zero.]

20. A method for establishing a shaved key between two
parties, Party A and Party B, over an open communication
channel, comprising:

selecting, by Party A and Party B, a matrix vow size v, a

matrix column size ¢ and a finite field F comprising a
first prime number g of elements, wherein the first
prime number g comprises a value approximately equal
to a polynomial of the matrix row size or column size;
selecting, by Party A and Party B, an error distribution K
over the finite field F;

generating, by Party A and Party B, a public matvix M
comprising values of random elements of the finite field
F in accovdance with a uniform distrvibution, wherein a
size of the public matrix M comprises the matvix row
size ¥ rows by the matrix column size ¢ columns;
selecting, by Party A and Party B, a whole number t,
wherein the whole number t is less than the matrix row
size v or matrix column size c;

generating, at Party A, entries of a private matrix S
comprising values of elements in the finite field F
chosen according to the selected error distribution K,
wherein a size of the private matvix S comprises the
matrix column size ¢ vows by a selected number Sc
columns;
selecting, at Party A, entries of an errvor matrix e com-
prising values of elements in the finite field F chosen
according to the selected error distribution K, wherein
a size of the ervrvor matrix e comprises the matrix row
size ¥ rows by the selected number Sc columns;

determining, at Party A, a product matrix vesulting from
multiplving the public matrvix M times the private
matvix;
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determining, at Party A, a scalar error matrix vesulting
from multiplying the whole number t times the errvor
matrix e;

determining, at Party A, a first exchange matrix Ma
vesulting from adding the scalav error matrix to the
product matrix;
sending the first exchange matrix Ma to Party B in
exchange for a second exchange matrix Mb;

determining, at Party A, a key matrix Ka resulting from
multiplying a transpose of the private matrvix S times
the second exchange matrix Mb,; and

applving, at Party A, a rounding method to each entry of

the key matrix Ka to genervate the sharved key.

21. The method of claim 20, wherein the errvor matrix e
comprises values of elements in the finite field F chosen
according to a second ervor distribution that is not the
selected ervor distribution K.

22. The method of claim 20, wherein the rounding method
comprises.:

determining an interval matrix according to values of the

entries of the key matrix Ka by:
determining a plurality of numbered intervals of elements
of the finite field F;

determining, for each entry of the key matrix Ka, a
numbered interval of the plurality of numberved inter-
vals the value of the entry belongs to; and

assigning, for each entry of the key matrix Ka, each

respective determined numbered interval to an entry of
the interval matrix corresponding to the entry of the key
matrix Ka; and

sending, to the networked computer, the interval matrix;

and

applving each entry in the interval matrix to round each

corresponding entry of the key matrix Ka to generate
the shaved key.

23. The method of claim 20, wherein the rounding method
comprises.

determining a plurality of numbered intervals of elements

of the finite field F;

receiving an interval matrix from the networked com-

puter; and

applyving each entry in the interval matrix to vound each

corresponding entry of the key matrix Ka to generate
the shaved key.

24. The method of claim 20, wherein the rounding method
comprises, at Party A:

determining an interval matrix according to values of the

entries of the key matrix Ka by:
determining a plurality of numbered intervals of elements
of the finite field F;

determining, for each entry of the key matrix Ka, a
numbered interval of the plurality of numbered inter-
vals the value of the entry of the key matrix Ka belongs
to; and

assigning, for each entry of the key matrix Ka, each

respective determined numbered interval to an entry of
the interval matrix covvesponding to the entry of the key
matrix Ka; and

for the entry of the key matvix Ka, if an interval value in

the corresponding entry of the interval matrix does not
correspond to a first numbered interval of the plurality
of numbered intervals:

adding, to the value of the entry in the key matrix Ka, a

fixed value V of elements of a numbered interval, of the
plurality of numbered intervals, corresponding to the
interval value to form a sum;
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determining a first residue of the sum modulo the first
prime number q; and

determining a second rvesidue of the first vesidue modulo
the whole number t;

Jor the entry of the key matrix Ka, if the corresponding
value in the interval matrix does correspond to the first
number of the interval numbers.

determining a second residue of the first residue modulo
the whole number t.

25. The method of claim 24, wherein each numbered

interval assigned to the interval matvix comprises a value of

zero or one.

26. The method of claim 24, wherein the first numbered
interval comprises an interval of approximately half of the
elements of the finite field F.

27. The method of claim 24, wherein the first numbered
interval comprises elements comprising values in the range
|—(the first prime number q—1)/4, (the first prime number
qg-1)/4].

28. The method of claim 24, wherein the fixed value V

comprises (the first prime number q—1)/2.
29. The method of claim 20, wherein the rounding method
comprises.

determining a plurality of numbered intervals of elements
of the finite field I;

receiving an interval matvix from the networked com-
puter;

Jor the entry of the key matvix Ka, if an interval value in
the corresponding entry of the interval matrix does not
correspond to a first numbered interval of the plurality
of numbered intervals:

adding, to the value of the entry in the key matrix Ka, a
fixed value V of elements of a numbered interval, of the
plurality of numbered intervals, corresponding to the
interval value to form a sum;

determining a first vesidue of the sum modulo the first
prime number q; and

determining a second rvesidue of the first vesidue modulo
the whole number t;

Jor the entry of the key matrix Ka, if the corresponding
value in the interval matrix does correspond to the first
number of the interval numbers:

determining a second residue of the first residue modulo
the whole number t.

30. The method of claim 29, wherein each numbered

interval assigned to the interval matvix comprises a value of

zero or one.

31. The method of claim 29, wherein the first numbered
interval comprises an interval of approximately half of the
elements of the finite field F.

32. The method of claim 29, wherein the first numbered

interval comprises elements comprising values in the range
| —(the first prime number q—1)/4, (the first prime number
g—-1)/14].

33. The method of claim 29, wherein the fixed value V
comprises (the first prime number g—1)/2.

34. The method of claim 20, wherein the first prime
number g comprises a value approximately equal to a cube
of the matrix vow size v or the matrix column size c.

35. The method of claim 20, wherein the evror distvibution
K comprises a discrete novmal distribution over the finite
field F having a standavd deviation approximately equal to
a square voot of the matrix row size v or the matrix column
size c.

36. The method of claim 20, wherein the evror distribution
K comprises a Gaussian distrvibution.
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37. The method of claim 20, wherein the finite field F

comprises elements with values comprising [—(the first
prime number qg-1)/2, (the first prime number g—-1)2].

38. The method of claim 20, wherein the matrix row sizer
equals the matrix column size c.

39. The method of claim 38, wherein each matvix com-
prises an element of a ring of the form R_=F_|x]//(x),
wherein f(x)=x"+1.

40. The method of claim 39, wherein polynomial elements
are selected in the form of [1If.(x)]|+g(x), wherein g(x) and
each f.(x) comprise a sparse polynomial with few non-zero
ferms.

41. The method of claim 20, wherein the first prime
number q is a polynomial function of degree two or higher
of the matrix row size v or the matrix column size ¢, and

wherein the ervor distribution K is a distribution such that

each matrix entry is independent and each matrix entry

Jollows a discrete normal distribution over the finite
field F, centeved around zero, with a standard deviation
of approximately a squarve root of the matrix vow sizer
or the matrix column size c.

42. A method for establishing a shared key between two
parties, Party A and Party B, over an open communication
channel, comprising:

selecting, by Party A and Party B, a matvix row size ¥, a

matrvix column size ¢ and a finite field F comprising a
first prime number g of elements, wherein the first
prime number g comprises a value approximately equal
to a polynomial of the matrix row size or column size.
selecting, by Party A and Party B, an ervor distribution K
over the finite field F;

generating, by Party A and Party B, a public matrix M
comprising values of random elements of the finite field
F in accorvdance with a uniform distrvibution, wherein a
size of the public matrix M comprises the matvix row
size v vows by the matrix column size ¢ columns;
selecting, by Party A and Party B, a whole number t,
whevrein the whole number t is less than the matrix row
size ¥ or matrix column size c;

generating, at Party A, entries of a private matrix S
comprising values of elements chosen according to the
selected error distribution K, wherein a size of the
private matvix S comprises the matvix vow size ¥ rows
by a selected number Sc columns;
selecting, at Party A, entries of an errvor matvix e com-
prising values of elements chosen according to the
selected error distribution K, wherein a size of the error
matrvix e comprises the matrix column size ¢ rows by the
selected number Sc columns;
determining, at Party A, a product matrix rvesulting from
multiplying a transpose of the public matrix M times
the private matrix S;

determining, at Party A, a scalar error matrix vesulting
from multiplying the whole number t times the error
matrix e;

determining, at Party A, a first exchange matrix Ma
resulting from adding the scalav error matrix to the
product matrix;
sending the first exchange matrix Ma to Party B, in
exchange for a second exchange matrix Mb;

determining, at Party A, a key matrix Ka resulting from
multiplying the second exchange matvix Mb times the
private matrix S;

applving, at Party A, a rounding method to each entry of

the key matrix Ka to genervate the sharved key.
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43. The method of claim 42, wherein the error matrix e
comprises values of elements in the finite field I’ chosen
according to a second ervor distrvibution that is not the
selected error distribution K.

44. The method of claim 42, wherein the rounding method
comprises.

determining an interval matvix accovding to values of the
entries of the key matrix Ka by:

determining a plurality of numbered intervals of elements
of the finite field F;

determining, for each entry of the key matrix Ka, a
numbered interval of the plurality of numberved inter-
vals the value of the entry belongs to; and

assigning, for each entry of the key matrix Ka, each
respective determined numbered interval to an entry of
the interval matrix corrvesponding to the entry of the key
matrix Ka; and

sending, to the networked computer, the interval matrix;
and

applving each entry in the interval matrix to vound each
corresponding entry of the key matrix Ka to generate
the sharved key.

45. The method of claim 42, wherein the rounding method

comprises.

determining a plurality of numbered intervals of elements
of the finite field F;

receiving an interval matvix from the networked com-
puter; and

applying each entry in the interval matvix to vound each
corresponding entry of the key matrix Ka to generate
the shared key.

46. The method of claim 42, wherein the rounding method

comprises, at Party A:

determining an interval matvix according to values of the
entries of the key matrix Ka by:

determining a plurality of numbered intervals of elements
of the finite field F;

determining, for each entry of the key matrix Ka, a
numbered interval of the plurality of numbered inter-
vals the value of the entry of the key matrix Ka belongs
to; and

assigning, for each entry of the key matrix Ka, each
respective determined numbered interval to an entry of
the interval matrix corresponding to the entry of the key
matrix Ka; and

for the entry of the key matvix Ka, if an interval value in
the corresponding entry of the interval matrix does not
correspond to a first numbered interval of the plurality
of numbered intervals:

adding, to the value of the entry in the key matrix Ka, a
fixed value V of elements of a numbered interval, of the
plurality of numbered intervals, corresponding to the
interval value to form a sum;

determining a first residue of the sum modulo the first
prime number q; and

determining a second residue of the first residue modulo
the whole number t;

Jor the entry of the key matrix Ka, if the corresponding
value in the interval matrix does correspond to the first
number of the interval numbers:

determining a second residue of the first vesidue modulo
the whole number t.
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48. The method of claim 46, wherein the first numbered

interval comprises an interval of approximately half of the
elements of the finite field F.

49. The method of claim 46, wherein the first numbered
interval comprises elements comprising values in the range
|-(the first prime number q—1)/4, (the first prime number
g—-1)4].

50. The method of claim 46, wherein the fixed value V
comprises (the first prime number g—1)/2.

51. The method of claim 42, wherein the rounding method
comprises, at Party A:

determining a plurality of numbered intervals of elements

of the finite field F;

receiving an interval matrix from the networked com-

puter;

for the entry of the key matrix Ka, if an interval value in

the corresponding entry of the interval matrix does not
correspond to a first numbered interval of the plurality
of numbered intervals:

adding, to the value of the entry in the key matrix Ka, a

fixed value V of elements of a numbered interval, of the
plurality of numbered intervals, corresponding to the
interval value to form a sum;

determining a first vesidue of the sum modulo the first
prime number g; and

determining a second vesidue of the first vesidue modulo
the whole number t;

for the entry of the key matrvix Ka, if the corresponding
value in the interval matrix does correspond to the first
number of the interval numbers:

determining a second rvesidue of the first residue modulo
the whole number t.

52. The method of claim 51, wherein each numbered

interval assigned to the interval matvix comprises a value of

Zerp OF ORne.

53. The method of claim 51, wherein the first numbered
interval comprises an interval of approximately half of the
elements of the finite field F.

54. The method of claim 51, wherein the first numbered

interval comprises elements comprising values in the range
|-(the first prime number q-1)/4, (the first prime number
g—-1)4].

55. The method of claim 51, wherein the fixed value V
comprises (the first prime number q—1)/2.

56. The method of claim 42, wherein the first prime
number g comprises a value approximately equal to a cube
of the matrix vow size v or the matrix column size c.

57. The method of claim 42, wherein the evvor distribution

50 K comprises a discrete normal distribution over the finite

field F having a standavd deviation approximately equal to

a square voot of the matrix row size v or the matrix column

Ssize c.

58. The method of claim 42, wherein the error distribution

55 K comprises a Gaussian distribution.

60

59. The method of claim 42, wherein the finite field F

comprises elements with values comprising |—(the first

prime number g—1)/2, (the first prime number g—1)/2].

60. The method of claim 42, wherein the matrix row sizer
equals the matrix column size c.
61. The method of claim 60, wherein each matrix com-

prises an element of a ring of the form R_=F_[x]//(x),

wherein f(x)=x"+1.
62. The method of claim 61, wherein polynomial elements

47. The method of claim 46, wherein each numbeved 65 arve selected in the form of [LIf (x)]+g(x), wherein g(x) and

interval assigned to the interval matvix comprises a value of
zero or one.

each 1.(x) comprise a sparse polynomial with few non-zero
lerms.
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63. The method of claim 42, wherein the first prime

number q is a polynomial function of degree two or higher
of the matrix vow size v or the matrix column size c, and
wherein the evvor distribution K is a distribution such that
each matrix entry is independent and each matrix entry
follows a discrete normal distribution over the finite
field F, centered arvound zero, with a standard deviation
of approximately a square root of the matrix vow sizer
or the matrix column size c.
64. A key distribution system for generating a shared key
between uservs, comprising:
a central server in open communication with a plurality
of users,
the central sevver comprising at least one processovr, and

a non-transitory computer-readable storage medium in
operable communication with the processor, wherein
the computer-readable storage medium comprising
computer-executable instructions that, when executed,
cause the at least one processor to:

select a matrix size n and a finite field F comprising a fivst
prime number q of elements, and an evvor distribution
K over the finite field I, wherein the first prime number
g comprises a value approximately equal to a polyno-
mial of the matrvix size;

generate a master key matrix S comprising values of
random elements of the finite field F in accordance with
a uniform distribution, whervein the master key matrix S
is selected to be a symmetric matrix and wherein a size
of the master key matrix S comprises the matrix size n
rows by the matrix size n columns;

select a whole number t, wherein the whole number t is
less than the matrvix size n;

generate a respective ID matrix for each of a plurality of
users, wherein each respective 1D matrix comprises
values of elements in the finite field F chosen according
to the selected ervor distrvibution K, wherein a size of
the 1D matrix comprises the matrix size n vows by the
matrix size n columns;
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generate a respective error matrix e for each of the ,,

plurality of users, wherein each vespective error matvix
e comprises values of elements in the finite field F
chosen according to the selected errvor distribution K,
wherein a size of the respective error matvix e com-
prises the matrix size n vows by the matrix size n
columns;

28

determine a respective product matrix for each of the
plurality of users resulting from multiplying the vespec-
tive ID matrix by the master key matrix S;

determine a respective scalar evror matrvix for each of the
plurality of users vesulting from multiplying the whole
number t times the respective error matrix e;

determine a rvespective exchange matrvix I for each of the
plurality of users resulting from adding the vespective
scalar errvor matrix to the vespective product matrix;

send to each of the plurality of users the rvespective
exchange matrix I, such that a User A and a User B of
the plurality of users each generate the shaved key

based on the respective exchange matrices for each
user.

65. The system of claim 64, wherein each matrix com-
prises an element of a ring of the form R_=F_[x][//(x),
wherein f(x)=x"+1.

66. The system of claim 65, wherein polynomial elements
are selected in the form of [1If.(x)]|+g(x), wherein g(x) and
each 1.(x) comprise a sparse polynomial with few non-zero
lerms.

67. The system of claim 64, wherein the first prime
number q is a polynomial function of degree two or higher
of the matrix size n, and whevrein the error distribution K is
a distribution such that each matrvix entry is independent and
each matrix entry follows a discrete normal distvibution over
the finite field F, centered arvound zevo, with a standarvd
deviation of approximately a square root of the matrvix size
n.

68. The system of claim 64, wherein the error matrix e
comprises values of elements in the finite field F chosen
according to a second error distribution that is not the
selected ervor distribution K.

69. The system of claim 64, wherein the first prime
number g comprises a value approximately equal to a cube
of the matrix size n.

70. The system of claim 64, wherein the error distribution
K comprises a discrete novmal distribution over the finite

field F having a standavd deviation approximately equal to

a square voot of the matrix size n.

71. The system of claim 64, wherein the error distribution
K comprises a Gaussian distvibution.

72. The system of claim 64, wherein the finite field F
comprises elements with values comprising |—(the first
prime number g—1)/2, (the first prime number g—1)/2].
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