(19) United States

12 Reissued Patent
Simister et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE48596E

US RE48.596 E
Jun. 15, 2021

(54) INTERFACE ENGINE PROVIDING A
CONTINUOUS USER INTERFACE

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: James Bret Simister, San Francisco,
CA (US); Adam G. Wolff, San
Francisco, CA (US); Max David
Carlson, San Francisco, CA (US);

Christopher Kimm, San Francisco, CA
(US); David T. Temkin, San Francisco,

CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(21) Appl. No.: 16/776,438

(22) Filed: Jan. 29, 2020

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 7,954,066
Issued: Mar. 31, 2011
Appl. No.: 11/178.,222
Filed: Jul. 8, 2005

U.S. Applications:
(63) Continuation of application No. 13/907,321, filed on
May 31, 2013, now abandoned, which i1s an

(Continued)
(51) Inmnt. CL
GO6K 15/00 (2006.01)
GO6F 3/0481 (2013.01)
GO6F 8/38 (2018.01)

(52) U.S. CL

CPC GO6I' 3/0481 (2013.01); GO6F 8/38
(2013.01)
(58) Field of Classification Search
CPC e, GO6F 3/0481; GO6F 8/38
(Continued)
(36) References Cited

U.S. PATENT DOCUMENTS

5,481,665 A 1/1996 COkada
5,533,183 A * 7/1996 Henderson et al. 715/854
(Continued)

Primary Examiner — Dennis G Bonshock
(74) Attorney, Agent, or Firm — Hanley, Flight &
Zimmerman

(57) ABSTRACT

An 1nterface engine provides animated views in a user
interface. The interface engine directs the operation of a
rendering environment to create an interface in a rendering,
area. The interface engine includes views, layouts, anima-
tors, and constraints. Views identily child views and
resources for display in the rendering area. In response to
events, such as user inputs, a view modifies 1tself by calling
layouts, animators, and constraints. A layout manages the
attributes of a view’s child views, including child view
position and size. An animator modifies the view’s appear-
ance over a specified period of time. A constraint 1mposes
limits on view properties. In one implementation, an Internet
site delivers an interface engine to a browser to supply
content and a user interface. A presentation server compiles
an interface engine description and specified resources into
an iterface engine. The presentation server delivers the
interface engine to the browser, which executes the interface
engine using a plug-in—eliminating excessive interiace
updates found 1n traditional HTML pages.

44 Claims, 13 Drawing Sheets

):?0

Views

_d

Layouts

72

US REA48,596 E

Page 2

(60)

(58)

(56)

Related U.S. Application Data

application for the reissue of Pat. No. 7,954,066,

which 1s a continuation of application No. 10/092,
360, filed on Mar. 5, 2002, now Pat. No. 6,957,392.

Provisional application No. 60/034,671, filed on Jan.
16, 2002.
Field of Classification Search
USSP O e e e, 715/798, 746
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
5,546,943 A 8/1996 Gould
5,555,368 A 0/1996 Orton
5,682,469 A 10/1997 Linnett
5,764,226 A 6/1998 Consolatti
5,867,166 A 2/1999 Myhrvold
5,995,102 A * 11/1999 Rosenetal. 715/856
6,057,834 A * 5/2000 Pickovero..eeiiiiinin, 715/846
6,065,057 A * 5/2000 Rosenetal. 700/229
6,111,578 A 8/2000 Tesler

0,124,864
0,179,713
6,308,208
6,377,281
0,388,005
6,448,980
0,496,842
0,509,898
6,563,503
6,611,208
0,626,954
0,630,943
6,636,220
6,727,915
0,732,170
6,751,620
6,766,299
0,785,667
0,795,063
6,854,120
6,957,392

2002/0070978

2002/0089530

A

1

1 L 1 L 1 L 3 L 3 L 1 L
r r r r r r r

o

veliveliveNvsNovlveliveNveRooRovlvellve

%

O
N N
-

B2 *
Bl *
B2 *
B2 *
Bl *
B2 *
Al*

Al*

* cited by examiner

9/2000
1/2001
10/2001
4/2002
5/2002
9/2002
12/2002
1/2003
5/2003
8/2003
9/2003
10/2003
10/2003
4/2004
5/2004
6/2004
7/2004
8/2004
9/2004
2/2005
10/2005
6/2002

7/2002

Madden

James et al.eenni. 463/42

Jung et al. 709/224

Rosenbluth

Linnett

Kumar

Lyness

Chietalc.coovvinvnninnnn. 345/440

Comair

Szeliski et al. 345/473

Kamachi et al. 715/236

Nason

Szeliski et al. 345/475

Coleman

Miyake et al. 709/223

Orbanes et al. 707/10

Bellomo et al. 704/276

Orbanes et al. GO6F 3/0346

Kato .oovvveviiiieiviiiieininannn, 399/81

loetal. ...ooovvvvvivninl. 719/311

Simiuster et al. 715/746

Wishoft GO6F 8/38
715/811

Markel HO4N 21/854
715/719

U.S. Patent Jun. 15, 2021 Sheet 1 of 13 US RE48,596 E

10

12 /
14

Rendering
Environment

Rendering

Area

Interface
Engine

Fig. 1

70

71

Views

72
74

._.I SN ﬁ
Constraints 75

Fig. 3

U.S. Patent Jun. 15, 2021 Sheet 2 of 13 US RE48,596 E

14

g

30

32 Media

Video

Viewing
Screen

36

48

Planner
52

54
Calendar
.56

U.S. Patent Jun. 15, 2021 Sheet 3 of 13 US RE48,596 E

14

i

30

39 Media a4

Planner
52

50
Gontacts
56

U.S. Patent Jun. 15, 2021 Sheet 4 of 13 US RE48,596 E

86
a8
82 Mus: Screen
usic View
View
Media
80 View 100
Video Button
View View
88 102
Slider
View
Canvas 103

View

90 :

View .
View
84 92

Lists

.
Planner
View 04
Contacts

36

Calendar
View

Fig. 4A

U.S. Patent Jun. 15, 2021 Sheet 5 of 13 US RE48,596 E

View
i-1 22
124
@
i1 26 |
12
@

132
Layout
134

40 Animator Animator
»-| Constraint

1

142 136 138

144
g, 48

146

120

1952

- .
8 150 Animator

148

Animator

Animator

- -

130

U.S. Patent Jun. 15, 2021 Sheet 6 of 13 US RE48,596 E

Set View

Attributes

200

212

Yes
202 210
Call Call 206
a
Call Layout Constraint(s) Animator(s)
204 211
. _ 208
Layout Constrain Animate
Child Views Attribute View

U.S. Patent Jun. 15, 2021 Sheet 7 of 13 US RE48,596 E

230

230

230

232 234 7236 238
rgec | [] [[] [

U.S. Patent Jun. 15, 2021 Sheet 8 of 13 US RE48,596 E

270

|dentify Animator

260 |dentify Layout

Provide Layout
Parameter(s)

Provide Animation

Parameter(s) ere

262

FIG. 7 ' FIG. 8

Receive Anhimation

Parameter(s) 320

325

Animate Interval?

Perform Animation
Operation

322

327
Generate Property Value
More
Animation
Operations?
No 329

Forward Property Value

Fig. 10A Fig. 10B

U.S. Patent Jun. 15, 2021 Sheet 9 of 13 US RE48,596 E

Select 300
Child View
Change |-302 cal 306
Child View e
Attributes Animator(s)
308
Animate
Child View
312
Yes More
Child Views?
No

Fig. 9

U.S. Patent Jun. 15, 2021 Sheet 10 of 13 US RE48,596 E

330
/

332 334 336

Dat'a / Presentation Client

Media Server

Rendering
Platform

Fig. 11

351 / 350
Application Server

352 354 358

Presentation Web
Server Server

Database

Management

360

356
Database

362

Fig. 12

HTTP client

U.S. Patent Jun. 15, 2021 Sheet 11 of 13 US RE48,596 E

390

3
Data /
Media

39

Media
Transcoder

392

Interface Engine
Description
Interface
Compiler

94
8

Interface 402
Engine

Rendering 404
Piatform

Fig. 13

U.S. Patent Jun. 15, 2021 Sheet 12 of 13 US RE48,596 E

430
Receive Request for Content
. .. | r432
Access Interface Engine Description in
Response to Request

Access Data and/or Media in 436

Response to Request and/or Interface
Engine Description

Compile to Create Executable Code 438
for Interface Engine

Transmit Executable Code for 440
Interface Engine to Client Rendering
Environment

. . 42
Executing at Client Rendering 4
Environment

Fig. 14

U.S. Patent Jun. 15, 2021 Sheet 13 of 13 US RE48,596 E

500
/

510
Processing 205 Main

Unit Memory

525

Portable
Storage
Medium

Graphics

Subsystem Peripheral(s)

550 530 540
Mass Input
Storage Control
520 560 570

Fig. 15

US RE48,596 E

1

INTERFACE ENGINE PROVIDING A
CONTINUOUS USER INTERFACE

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CLAIM OF PRIORITY

Morve than one reissue application has been filed for the

reissue of U.S. Pat. No. 7,954,066. This application 1s ar
application for reissue of U.S. Patent No. 7,954,066, entitled
“Interface Engine Providing a Continuous User Interface,”
issued May 31, 2011, and is a continuation of U.S. patent
application Ser. No. 13/907,321, entitled “Interface Engine
Providing a Continuous User Interface,’ filed May 31,
2013, which is an application for reissue of U.S. Pat. No.
7,954,006, entitled “Interface Engine Providing a Continu-
ous User Interface,” issued May 31, 2011, which was a
continuation application of U.S. patent application Ser. No.
10/092,360, entitled “Interface Engine Providing a Continu-
ous User Interface,” filed Mar. 5, 2002 now U.S. Pat. No.
6,957,392, incorporated herein by reference, which claims
the benefit of U.S. Provisional Application No. 60/349,671,
entitled “Interactive System,” filed Jan. 16, 2002, mcorpo-
rated herein by reference.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This Application 1s related to U.S. patent application titled
“Presentation Server,” by Eric D. Bloch, Max David Carl-
son, Christopher Kimm, J. Bret Simister, Oliver W. teele,
David T. Temkin and Adam G. Wolfl, filed on the same day
as the present application and incorporated herein by refer-
ence.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention 1s directed to interfaces for com-
puter systems.

2. Description of the Related Art

Graphical user iterfaces have become heavily integrated
in many aspects of people’s lives. People constantly interact
with these interfaces in their every day business and pleasure
activities. Example interfaces include computer operating
systems and applications, Internet sites, personal digital
assistants, and cellular telephones.

Graphical interfaces should provide users with a continu-
ous 1nteractive experience, much like people experience 1n
their everyday interactions with other people and physical
objects. People experience a physical object’s characteristics
smoothly transitioning from one state to the next through a
continuum of itermediate states. When a spring 1s com-
pressed, a person sees the fluid transitions the spring makes
from the decompressed state to the compressed state. Peo-
ple’s physical world experiences also lead them to expect
that changes 1n one object can interrupt and alter the state of
another object. This 1s seen when a baseball bat breaks while
striking a ball-—causing the ball to change 1ts position and
the bat to alter 1t’s form and position through a fluid
continuum of adjustments.

10

15

20

25

30

35

40

45

50

55

60

65

2

Traditional user interfaces, however, provide users with
discrete displays that transition from one predefined state to

another—{failing to show any display states between the
beginning state and end state. If a user calls for the size of
a displayed icon to be expanded, traditional interfaces only
display the fully expanded i1con without showing a gradual
progression of the icon’s dimension changes. Additionally,
the 1con’s 1instantaneous transition cannot respond to a user’s
cllorts to interrupt or reverse the operation. This 1s not how
people interact with their surroundings. Imagine i1t the
above-mention spring transitioned from decompressed to
fully compressed without having any intermediate states.
A user’s iterface to an Internet site through a network
browser 1s one of the least continuous interfaces. Traditional
browsers receive network content i descriptive HIML
pages. Browsers alter HIML page displays by making
network requests for updated HTML pages. This results in
significant periods of time elapsing between display
updates—prohibiting Internet sites from delivering display
updates 1n a continuous fashion.
The ability to deliver a continuous user interface 1s
seriously hampered by the lack of suitable interface devel-
opment tools. Traditional development tools only allow
developers to employ predefined displays that sharply tran-
sition between discrete states. The predefined displays are
based on prewritten scripts for each display that developers
cannot control. Individual pre-coded components of a sys-
tem may exhibit some continuous behavior, but this 1s
limited to these components and not supported as a frame-
work for the enftire system. In some 1nstances, a developer
writes a custom script to provide a more continuous inter-
face for a display, but the developer’s efforts are limited
solely to that one display—making the developer’s scripting
of a complete continuous nterface with many displays too
difficult and expensive to achieve.

SUMMARY OF THE INVENTION

The present invention, roughly described, provides for
cllectively implementing a continuous user interface. In one
implementation, the interface provides a user with displays
that transition fluidly, interact seamlessly with other on-
screen displays, and respond in real time to user input
interruptions.

In one example, the interface provides a window that
alters 1ts properties 1n response to another window’s prop-
erties changing. The windows can each alter diflerent prop-
erties, such as one window changing position in response to
the other window expanding. The windows’respective tran-
sitions occur 1n fluid motion that brings the transitions to life
for the user. The interface allows a user to 1interact via mouse
or keyboard to reverse either window transition in mid-
stream. The interface projects the fluid transitions of the
interrupted window 1n response to the user’s input, so the
user feels like he or she 1s interacting with a real world
object.

Underlying the user interface 1s an interface engine with
a modular architecture crafted to support continuous user
interfaces. The interface engine 1s constructed from a frame-
work of modular control elements that drive interface opera-
tion. Developers create an interface by selecting control
clements and specifying the desired display operations,
instead of scripting custom code to control each display
operation. The selected control elements are responsible for
generating display transitions that are fluid, interruptible,
and adaptable based on the operation parameters a developer
provides.

US RE48,596 E

3

In one implementation, the framework of modular control
clements includes views and attribute modifiers. Views are
responsible for displaying visual interface graphics. Each
view 1s capable of supporting child views and resources,
such as graphical window displays and media content and
more basic components such as buttons and graphical
objects. In response to system events, such as user inputs, a
view modifies itself using a set of attribute modifiers that are
available to all of the views.

One set of attribute modifiers includes layouts, animators,
and constraints. A layout manages the attributes of a view’s
chuld views, including child view position and size. An
ammator modifies a view’s appearance over a specified
period of time. A constraint imposes limits on a view
attribute 1n response to a detected event, such as the modi-
fication of another view attribute. For example, one view
may constrain itself to being centered within another view—
making the display transitions of the views interrelated.

An example view provides a planning program interface
with a main view that contains child views for a calendar and
contacts list. A user clicks an on-screen button with a mouse
to prompt changes in the planming program’s interface. In
response to the user iput, the main view calls a layout to
rearrange the positions of the calendar and contacts list. The
main view, calendar, and contacts list each call respective
ammators and constraints to make specified appearance
adjustments. The called layouts, ammmators, and constraints
drive the interface platiorm to display the appearance and
arrangement transitions as fluid continuums.

Developers can employ the above-described views and
attribute modifiers to create an endless number of engines
for driving continuous interfaces. In one instance, develop-
ers are provided with existing views, layouts, animators, and
constraints to fit together when bwlding an interface. In
other istances, developers are also allowed to create custom
views that call the provided layouts, animators, and con-
straints—enabling developers to build a highly customized
interface without scripting individual display transitions.
Additionally, a developer’s custom views can work in con-
cert with other views provided by a system or created by
other developers.

A developer’s interface engine description 1s compiled
into an operating interface engine and delivered to a ren-
dering platform, such as a computer system. In one imple-
mentation, an Internet site delivers an interface engine to a
browser plug-in instead of providing only descriptive
HTML pages—enabling the browser’s users to access net-
work resources 1n a continuous interface environment.

Internet site designers and desktop application designers
are only two examples of developers that benefit from the
ability to construct modular interface engines. The benefits
of easily providing continuous user interfaces i1s not limited
to the Internet and desktop applications identified above.
The modular interface engine architecture has applicability
to any user interface environment. For example, video game
systems and simulation systems could be greatly enhanced
in further embodiments of the present invention.

The present invention can be accomplished using hard-
ware, software, or a combination of both hardware and
software. The software used for the present mvention 1s
stored on one or more processor readable storage media
including hard disk drives, CD-ROMs, DV Ds, optical disks,
floppy disks, tape drives, RAM, ROM or other suitable
storage devices. In alternative embodiments, some or all of
the software can be replaced by dedicated hardware 1nclud-
ing custom integrated circuits, gate arrays, FPGAs, PLDs,
and special purpose computers.

10

15

20

25

30

35

40

45

50

55

60

65

4

These and other objects and advantages of the present
invention will appear more clearly from the following
description 1n which the preferred embodiment of the inven-
tion has been set forth 1n conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram of a system providing a
continuous user interface in accordance with the present
invention.

FIGS. 2A and 2B show a rendering area with an interface
driven by an interface engine in accordance with the present
invention.

FIG. 3 shows a set of interface engine building blocks
employed by a developer to implement an interface engine
for providing a continuous user interface.

FIG. 4A shows an interface engine view structure for the
interface displayed in the rendering area in FIGS. 2A and
2B.

FIG. 4B depicts a block diagram for one embodiment of
an interface engine view.

FIG. 5 1llustrates one version of a sequence of operations
carried out by an interface engine to change view attributes.

FIGS. 6 A-6C show an exemplar animation of resources in
a rendering area.

FIG. 7 shows one version of a sequence ol operations
carried out by an interface engine to call an animator.

FIG. 8 depicts one version of a sequence of operations
carried out by an interface engine to call a layout.

FIG. 9 illustrates one version of a sequence of operations
carried out by an interface engine layout.

FIGS. 10A and 10B show one version a sequence of
operations carried out by an interface engine animator.

FIG. 11 depicts a block diagram for one implementation
of a system for generating and executing an interface engine.

FIG. 12 shows a block diagram for one embodiment of a
network-based system for generating and executing an inter-
face engine.

FIG. 13 shows one implementation of components for a
presentation server.

FIG. 14 illustrates one version of a sequence of operations
performed to provide a resource environment with an inter-
face engine.

FIG. 15 shows a block diagram for one embodiment of
components 1n a computing system that can be used to
implement the present invention.

DETAILED DESCRIPTION

FIG. 1 shows a system 10 for providing a continuous user
interface 1n accordance with the present invention. Render-
ing environment 12 renders resources in system 10 and
delivers the rendered resources to rendering area 14 for
display—providing an interface for users of system 10.
Interface engine 16 directs the rendering of resources by
rendering environment 12. Resources are graphical ele-
ments, including vector graphics, bitmaps, and streaming
media. One example of rendering environment 12 is the
Flash Player from Macromedia. Those skilled in the art
recognize that alternate embodiments of system 10 employ
other rendering environments.

As will be explained below, interface engine 10 has a
novel modular architecture that enables system 10 to deliver
a continuous interface that responds to user inputs in real
time. In one embodiment, system 10 shows users the con-
tinuous animation of resources 1n rendering area 14, instead
of showing only discrete snap shots of different resource

US RE48,596 E

S

displays. For example, a user sees the opening of a window
unfold over time, instead of immediately seeing a fully
opened window.

The power of a continuous user interface 1s also 1llustrated

by a user’s ability to interrupt and change the course of 5

resource animations, with the result being a smooth transi-
tion 1n the resource display. For example, while a resource
display 1s being ammated to expand 1n rendering area 14, a
user command can interrupt the expansion to begin an
alternate animation, such as a constriction. System 10 shows
the user the continuous cumulative affect of the expansion
amimation and constriction animation—diflering signifi-
cantly from traditional interfaces that would only show a
discrete snapshot of the expanded resource and a discrete
snapshot of the constricted resource.

In one implementation, a unique set of building blocks
provides a framework for developers to utilize 1n creating
interface engine 16. As will be explained in greater detail
below, this framework allows developers to employ objects
that drive the smooth transition of resource states—elimi-
nating the need for developers to write separate customized
scripts for displaying each resource. The framework’s build-
ing blocks can be utilized for displaying many different
resources—allowing developers to create continuous dis-
play transitions by merely specitying beginning display
conditions, desired ending display conditions, and the tran-
sition duration. The building blocks offload the user from
constructing low level scripts to carry out resource anima-
tion and layouts.

FIG. 2A depicts an example interface displayed on ren-
dering area 14. Resource 30 1s a canvas providing a graphi-
cal backdrop for Media resource 32 and Planner resource 48,
which provide graphical backdrops for their respective child
resources. Rendering area 14 displays Calendar resource 50,
[1sts resource 52, Contacts resource 54, and Notes resource
56 within Planner resource 48. Calendar resource 30 dis-
plays a calendar for a selected month. Lists resource 32
shows a list of action 1tems. Contacts resource 54 displays
a listing of contact information for different individuals and
entities. Notes resource 56 displays a user’s personal notes.

Rendering area 14 displays Music resource 34 and Video
resource 36 inside Media resource 32. Music resource 34
displays a set of graphics (not shown) related to selecting
and playing music. Within Video resource 36, rendering area
14 displays resources for Viewing Screen 38, Shider 42, and
Button 40. Viewing Screen resource 38 displays a selected
video clip. Button resource 40 displays a button used to start
and stop the video clip 1n Viewing Screen resource 38. Slider
resource 42 displays a volume level indicator for the video
clip in Viewing Screen resource 38. Inside Slider 42, ren-
dering area 14 displays Slide Button resource 44, which
allows a user to set the video clip’s volume.

FIG. 3 shows one implementation of a building block
framework developers can use to create a continuous inter-
face engine that drives the interface shown i FIG. 2A.
Building block set 70 includes view set 71 and attribute
modifier set 72. FIG. 3 provides an overview ol the rela-
tionship between views and attribute modifiers. More details
regarding views and attribute modifiers are provided below
with reference to later numbered figures.

Each view 1n view set 71 1dentifies one or more resources
for displaying 1in a rendering area, such as the resources
shown 1in FIG. 2A. Each view has a set of attributes,
including a resource 1dentifier, that define the view’s opera-
tion. For example, attributes dictate the view’s appearance,
the conditions for altering the view’s appearance, and the
mechanism for altering the view’s appearance. As a view’s

10

15

20

25

30

35

40

45

50

55

60

65

6

appearance changes, so does the display of its identified
resource 1n rendering area 14. Another set of view attributes
identifies child views that are associated with the view. For
example, Media resource 32 and Planner resource 48 1n FIG.
2A are driven by child views of the view driving Canvas
resource 30.

A view calls attribute modifiers 1n set 72 to alter view
attributes in response to events, such as a user mput or an
attribute change in the view or another view. For example,
il a user 1ssues a command to expand the display of a view’s
resource, the view calls an attribute modifier 1n set 72 to
change appearance related attributes in the view. In another
example, a view 1n rendering area 14 1s expanded and this
expansion signals a second view to shrink. The second view
calls an attribute modifier to carry out the shrinking transi-
tion. In further embodiments, developers can design their
own views for inclusion 1n view set 71.

In one embodiment, attribute modifier set 72 includes
three types of attribute modifiers—Ilayouts 73, animators 74,
and constraints 75. Layout set 73 includes multiple layouts
that can each be called by any of the views 1n set 71 to alter
the view’s child views. Anmimator set 74 includes multiple
amimators that can be called by any view 1n set 71 to animate
the view’s appearance. Constraint set 75 includes multiple
constraints that can each be called by any of the views 1n set
71 to modily a view attribute 1n response to the state of
another attribute changing. In a further embodiment, a view
can call an attribute modifier to modily an attribute 1n
another view. In one implementation, developers can design
their own attribute modifiers for inclusion 1n set 72.

Framework 70 significantly benefits interface engine
developers by eliminating the need for them to write scripts
to perform attribute modification. Developers can employ
the building blocks 1n framework 70 to define the operation
of views at a high level-—dentitying the desired attribute
modifiers, the magnitude of modification desired, and the
modification time period. The views, 1n conjunction with the
attribute modifiers, are fully responsible for implementing
the specified modifications.

FIG. 4A shows a view structure 1n one embodiment of
interface engine 16 for generating the interface shown on
rendering area 14 1n FIG. 2A. Interface engine 16 1s formed
by a set of interrelated views that direct the operation of
rendering environment 12. Fach view identifies one or more
resources for display in rendering arca 14. Some views also
identily one or more child views for display within render-
ing arca 14.

Canvas view 80 1dentifies bitmap resource 30, which
provides a background display for the interface shown in
rendering area 14. Canvas view 80 also identifies two child
views—Media view 82 and Planner view 84. Media view 82
and Planner view 84 1dentily Media resource 32 and Planner
resource 48, respectively. Media view 82 1dentifies two child
views, Music view 86 and Video view 88, that identily

Music resource 34 and Video resource 36, respectively.

Video view 88 1dentifies 3 child views, Screen view 98,
Button view 100, and Slider view 102. These child views
identily Viewing Screen resource 38, Button resource 40,
and Slider resource 42, respectively. Slider view 102 1den-
tifies child Slide Button view 103, which identifies Slide
Button resource 44. Planner view 84 1dentifies four child
views, Notes view 90, Lists view 92, Contacts view 94, and
Calendar view 96—identiiying Notes resource 56, Lists
resource 52, Contacts resource 54, and Calendar resource
50, respectively.

US RE48,596 E

7

FIG. 4A only shows one example of an interface engine
view structure. Those skilled in the art recognize that
interface engine 16 can employ many different views to
create diflerent interfaces.

FIG. 4B shows one embodiment of view 120 within
interface engine 16, such as the views shown in FIG. 3. View

120 has a set of attributes, including child view set 122,
property set 124, function set 126, and resource set 128.
Property set 124 specifies properties that define the appear-
ance of view 120. In one implementation, property set 124
includes properties for the view’s rendering area position,
height, width, rotation, and transparency.

In one embodiment, resource set 128 contains a single
resource. In one 1mplementation, view 120 provides a
pointer to resource 128. In an alternate implementation,
view 120 contains resource 128. In further embodiments,
view 120 identifies multiple resources.

Child view set 122 identifies child views that are associ-
ated with view 120. In one implementation, view 120 names
a set of child views that are to be displayed within view 120
in rendering area 14. In an alternate embodiment, the child
views 1n set 122 do not need to be displayed entirely within
view 120. The child views are allowed to extend outside
view 120 without being clipped by view 120. Although view
120 1s shown as 1dentifying child views 122, a view 1s not
required to identity child views.

Function set 126 contains functions that respond to events
occurring within system 10, such as user inputs. Function set
126 includes a variety of functions for modifying view 120
and child views 122. Functions directly alter view attributes
or call attribute modifiers within interface engine 16 to make
attribute modifications. As explained above, the attribute
modifiers reside outside of view 120, so other views 1n the
interface engine can utilize the same attribute modifiers.
This modular architecture facilitates interface engine 16
providing a conftinuous user interface. Greater details
regarding this feature are explained below.

The attribute modifiers 1n interface engine 16 include
layouts, animators, and constraints, as explained above with
reference to FIG. 3. A layout modifies one or more attributes
of a view’s child views. In one embodiment, the child views
are associated with the view calling the layout. In alternate
embodiments, the child views are associated with a diflerent
view. In one example, a layout vertically aligns a view’s
chuld views. An animator animates a view property. In one
implementation, interface engine 16 has animators for modi-
tying view position, height, width, rotation, and transpar-
ency over a specified period of time. A constraint 1s called
to modily an attribute of one view in response to the value
ol another attribute. In some 1nstances, the attribute trigger-
ing the constraint 1s associated with a different view than the
attribute being modified. An example constraint sets the
position property of one child view with respect to the
position of another child view. In one embodiment, the
attribute modifiers of mterface engine 16 employ floating
point calculation to enhance graphical display quality. FIG.
4B and the above description only illustrate examples of the
layouts, ammmators and constraints that can be included 1n
embodiments of interface system 16. Those skilled 1n the art
will recognize that many more are possible.

View 120 calls animators 146, 148, and 150 to modily
properties 1n property set 124. View 120 calls layout 130 to
modily the attributes of child views 122. View 120 calls
constraints 140, 142, and 144 to set values for properties 1n
property set 124 1n response to changes in attributes in
interface engine 16.

10

15

20

25

30

35

40

45

50

55

60

65

8

In one implementation of interface engine 16, layouts call
ammators. FIG. 4B shows layout 130 calling animators 132
and 134. In one example, a layout calls a set of animators to
amimate a layout change over a period of time. In another
example, a layout calls a set of animators to determine
property changes for a set of child views between an 1nitial
orientation and a final orientation. For instance, animators
are usetul for determining child view positions in non-linear
layouts.

In a further implementation of interface engine 16, an
amimator calls other animators to modily view properties.
This 1s illustrated 1n FIG. 4B, by animator 150 calling
ammators 152 and 154 and amimator 134 calling animators
136 and 138. An example of an animator calling other
animators arises when a view calls an animator to change the
view’s position in multiple dimensions. In this example, the
primary amimator calls one animator to make vertical posi-
tion changes and another animator to make horizontal posi-
tion changes. The primary animator provides the combined
vertical and horizontal position changes to the view.

Interface engine 16 employs the view architecture shown
in FIG. 4B to modity the interface shown 1n FIG. 2A to have
the appearance shown in FIG. 2B. Interface engine 16
directs rendering environment 12 to move Slide Button
resource 44, shrink and move Calendar resource 50, and
expand and move Contacts resource 54.

Slide Button view 103 calls an animator (not shown) to
move the position of Slide Button view 103 to the right.
Calendar view 96 calls a set of animators (not shown) to
shrink 1ts height. Contacts view 94 calls a set of animators
(not shown) to increase its height. Planner view 84 calls a
layout (not shown) to rearrange the position of Calendar
view 96 and Contacts view 94.

The actions taken by the above-referenced views to
change the interface display on rendering area 14 are initi-

ated by functions in the referenced views. For example,
Slide Button view 103 has a function that responds to a user
clicking on Slide Button resource 44 and moving 1t. Simi-
larly, Planner view 84, Contacts view 94, and Calendar view
96 have functions that respond to a user calling for: (1)
Calendar resource 50 to be shrunk, (2) Contacts resource 54
to be expanded, and (3) the positions of Contracts resource
54 and Calendar resource 50 to be exchanged. Greater
details about the internal operations of views, layouts, and
amimators are provided below.

FIG. 5 shows a sequence of operations carried out by one
embodiment of interface engine 16 for changing the attri-
butes of view 120. View 120 mitially executes functions to
set view attributes (step 200). Example attribute settings
include determining and setting view properties 124, adding
chuld views 122, deleting child views 122, duplicating child
views 122, attaching resource 128, unloading resource 128,
setting constraints on view properties, and releasing con-
straints on view properties.

In one embodiment, the following property setting func-
tions are available i view 120: (1) setProp—setting a
desired value for a property; (2) getProp—identifying a
current value for a property; (3) setPropRelative—setting a
value for a property relative to a reference view; (4) get-
PropRelative—identitying a value for a property relative to
a reference view; (5) setVisible—setting a view to be visible
or hidden; (6) getMouse—identifying a position ol a mouse
cursor; (/) bringloFront—setting a child view to be the front
most view within a set of child views; (8) setScale—setting
a scale for a view’s height or width; and (9) addToProp—
adding a value to a property.

US RE48,596 E

9

In setting a property constraint, view 120 identifies the
constraint, a property to constrain, and an offset for the
constraint to apply. In one embodiment, the offset limits a
view’s property relative to another view. For example, view
120 limits a child button view’s position to be within a
specified distance from the right edge of its parent view. In
alternate embodiments, view 120 provides different param-
cters to the constraint. For example, view 120 may provide
a parameter specilying the view to be constrained, 11 view
120 1s not the constrained view.

After setting the attributes, view 120 responds to events
(step 212). An event 1s an occurrence that causes view 120
to change an attribute value. One example of an event 1s a
user input, such as clicking and moving a mouse. Another
example 1s the changing value of an object’s attribute 1n
interface engine 16, such as an attribute change 1n a view.
View 120 determines which layout, animator, or constraint
to call in response to the event. In some 1nstances, the view
calls a combination of layouts, animators, and constraints. In
one embodiment, view 120 calls an animator 1n response to
a user input and calls a layout and/or constraint in response
to an attribute value change.

The operation of view 120 1s event driven. If no event
occurs, view 120 maintains its current state (step 212). If an
event 1s detected, view 120 calls the appropriate layout (step
202), constraint (step 212), animator (step 206), or a com-
bination thereof. A called layout lays out child views 122
(step 204). Called amimators animate view 120 (step 208). A
called constraint sets a value for an attribute, such as a
property. As part of the layout, ammmation, and constraint
steps (steps 204, 208, and 211), view 120 receives new
values for the view’s attributes from the called layout,
ammators, and/or constraints. In one example, view 120
uses these attribute values to update the corresponding
properties of the view’s resource.

When view 120 calls a constraint (step 210), a function
calls the constraint and i1dentifies the property being con-
strained and an acceptable constraint offset, as described
above for setting a constraint. When new attributes are not
within a tolerable range, the constraint resets the attributes
to acceptable values. Greater details regarding layouts and
amimators are provided below.

Although FIG. 5 shows step 212 being repeated after
layout call step 202, animate call step 206, and constraint
call step 210, the event determination (step 212) i1s not
delayed until all ammmation, constraint, and layout is com-
plete. Layouts, animations, and constraints can occur over a
specified period of time. During this time, view 120 still
recognizes and responds to view changing events, which are
detected 1n step 212.

FIGS. 6 A-6C show a view change that can be performed
by interface engine 16 in accordance with the present
invention. This change exemplifies the fluid transitions
provided by interface engine 16. FIG. 6 A shows view 230
with child views 232, 234, 236, and 238. An event calls for
view 230 to be constricted with a horizontal child view
arrangement, as shown in FIG. 6C. View 230 calls an
ammator to adjust 1ts height and a layout to change the
arrangement of child views 232, 234, 236, and 238. Interface
engine 16 1s able to continuously enhance view 230 by
displaying many intermediate versions of view 230, such as
the intermediate version shown in FIG. 6B. This enables
interface engine 16 to make smooth transitions between
view states.

As will be explained below, view 230 can set the period
of time for an anmimator or layout to carry out changes 1n
attribute values. This allows interface 16 to display many

10

15

20

25

30

35

40

45

50

55

60

65

10

small changes to the height of view 230. This also allows
small changes in child view layouts to be displayed. The
layout responsible for arranging child views 232, 234, 236,
and 238 calls animators to determine position changes for
these child views over the same period of time that view
height 1s animated. The called animators provide new posi-
tion values for each child view along a path from the child
view’s position 1n FIG. 6A to the child view’s position in
FIG. 6C. The continuous position changes are displayed 1n

a rendering area to provide the user with a fluid view of the
layout change from FIG. 6A to FIG. 6C. FIG. 6B provides

a snapshot of one such display.

Interface engine 16 obtains further enhancement from the
independent operation of amimators, as shown i FIG. 5.
FIG. S shows a view employing multiple animators simul-
taneously (steps 206 and 208). The view 1s able to call a new
amimator whenever an event calls for ammation, regardless
of whether previously called animators have completed their
amimation. The view accumulates the animation from the
newly called animators and previously called animators—
making the view’s intermediate displays reflect real-time
cllects of user inputs. In alternate embodiments, a view can
dictate that a later called layout or animator override a
previous layout or ammator or be queued behind the previ-
ously called layout or animator.

FIG. 7 shows one implementation of a sequence of
operations performed by a view when calling an animator
(step 206, FIG. 5). The view identifies the animator (step
260) and provides the animator with parameters (step 262).
In one embodiment, steps 260 and 262 are performed by a
single function. In an alternate embodiment, steps 260 and
262 are performed separately.

In one implementation, the view provides parameters
identifying the following: (1) prop—identitying a property
to animate; (2) from—identifying the starting value for the
property; (3) to—identifying the ending value for the prop-
erty; (4) duration—identifying the duration of the property’s
ammation; and (5) isRelative—indicating whether the called
ammator 1s applied to the property relatively. In alternate
embodiments, an animator does not require all of these
parameters or may include additional parameters. For
example, one animator does not require the “from” param-
cter. As another example, a parameter specifies whether to
accumulate the values from the called anmimator with other
animators.

When an animator calls other animators 1 one embodi-
ment, the view 1s required to provide parameters for the
primary amimator and the animators it calls. In alternate
embodiments, this 1s not required.

FIG. 8 shows one version of a sequence ol operations
performed by a view when calling a layout (step 202, FIG.
5). The view 1dentifies the layout (step 270) and provides the
layout with parameters (step 272). In one embodiment, steps
270 and 272 are performed by a single function. In an
alternate embodiment, steps 270 and 272 are performed
separately.

One example of a layout parameter includes an indicator
of the child views to be eflected by the layout. This can be
achieved by listing the views to be laid out or the views to
be 1gnored by the layout. Another example parameter 1s a
layout duration time period—identifying the time a layout 1s
to use 1n performing 1ts adjustment of child view attributes.
In alternate implementations, no parameters need to be
supplied—eliminating the need for step 272.

The process for calling a constraint (step 210, FIG. §5) 1s
essentially the same as shown 1in FIGS. 7 and 8 for calling

US RE48,596 E

11

ammators and layouts. The difference 1s that the view
employs the previously described constraint parameters.

FIG. 9 shows a sequence of operation performed by a
layout 1n one implementation of interface engine 16 to
layout one or more child views (step 204, FIG. 5). The
layout selects a child view (step 300) and changes the child
view’s attributes 1n accordance with the layout (step 302).
For example, the layout may change the properties of the
chuld view to modity 1ts size and position. In some embodi-
ments, the layout also calls one or more animators (step
306), as described above. The called animators amimate the
chuld view (step 308). In one embodiment, the animators
provide new property values that the layout substitutes into
the child view’s property set.

After processing the child view, the layout determines
whether any child views remain to be processed (step 312).
IT not, the layout 1s complete. Otherwise, the layout selects
a new child view and repeats the above-described process
shown 1n FIG. 9. As described above, multiple layouts can
be 1n progress at the same time and layouts can make sets of
continuous changes to child view attributes over a specified
duration. The flow charts i FIGS. 5 and 9 show linear
processes for the convenience of illustration. In operation,
however, multiple layout operations can be 1n progress, with
the process steps described mm FIGS. 5 and 9 being per-
formed.

FIG. 10A 1llustrates a sequence of operations performed
by an animator 1n one embodiment of interface engine 16 to
ammate a view (step 208, FIG. 5 and step 308, FI1G. 9). The
called amimator receives a set of animation parameters, as
described above (step 320). The selected amimator then
performs an animation operation (step 322)—calculating a
new property value and returning the new value. The view,
layout, or animator that called the animator receives the new
value. In the case of a view, in one embodiment, the new
property value 1s added to or written over a present property
value.

In one example, a view calls an amimator to increase the
view’s height. The amimator calculates an increment of the
height increase and passes 1t back to the view, which
incorporates the new value into the view’s property set. The
s1ize ol the increment 1s based on the animation duration
appearing 1n the animation parameters and an animation
interval of interface engine 16. FIG. 10B 1illustrates the effect
of the animation interval, by showing the steps for performs-
ing amimation (step 322) in one embodiment. The animator
waits for a signal in interface engine 16 that an animation
interval has expired (step 325)—indicating that the animator
should provide the next property value. When the animator
interval signal 1s detected, the animator generates the next
property value (step 327) and forwards the value to the
property’s view (step 329).

The called animator determines whether more animation
operations are required for the view (step 323, FIG. 10A). In
one embodiment, the anmimator makes this determination by
determining whether the end property value specified 1n the
anmimation parameters has been reached. If the end value has
not been reached, the above-described animation process
from FIG. 10A 1s repeated. Otherwise, the amimation 1is
complete.

In one embodiment, a view receives values from many
ammators during the same time period. In one 1nstance, the
view recerves values from multiple animators for the same
property during overlapping time periods. As discussed
above for the layout process, multiple sets of continuous
property value changes can be received by a view and
reflected 1 a display, during overlapping animation dura-

10

15

20

25

30

35

40

45

50

55

60

65

12

tions. This capability enables a continuous interface to
fluidly adapt to interruptions 1n a current display transition.
A user can mftroduce an event that causes a new animation
to begin, even though a prior animation 1s not complete.
Both animators co-exist—giving the rendering area display
a tluid transition, mstead of showing the user discrete screen
snapshots. The ability of interface engine 16 to handle
multiple layouts and constraints in parallel further enhances
this benefit.

FIG. 11 shows one implementation of a system 330 for
generating and executing interface engine 16. In system 330,
presentation server 334 creates interface engine 16 by com-
piling an interface engine description (not shown) and
speciflied data and media 332. Presentation server 334 then
delivers the interface engine to client rendering platiorm
336, which includes a rendering environment and rendering
area.

FIG. 12 presents one embodiment of a network-based
system 350 for generating and executing interface engine
16. Application server 351 supports presentation server 354
and database management system 3352. In one embodiment,
application server 351 hosts an Internet site that delivers
content 1n the form of an interface engine in accordance with
the present mvention. Presentation server 354 1s similar to
presentation server 334, except presentation server 334
retrieves data and media from database 356 through data-
base management system 352.

Presentation server 354 generates and delivers an inter-
face engine 1n accordance with the present invention 1in
response to a request from HTTP client 362. In one embodi-
ment, HI'TP client 362 and application server 351 commu-
nicate over network 360 through web server 358. Once the
interface engine reaches HT'TP client 362 it operates within
plug-in 364. In one implementation, plug-in 354 provides a
rendering environment, such as a Macromedia Flash Player
environment.

FIG. 13 shows components in one implementation of a
presentation server. Presentation server 390 includes inter-
face engine description 392, which describes an interface
engine in accordance with the present invention. Those
skilled 1n the art will recognize that description 392 can be
written 1n many different programming languages, including
XML and other proprietary languages. Description 392 also
specifies data and media 394 to be employed by the interface
engine as resources.

Media transcoder 398 converts the specified data and
media 394 1nto a format that can be mcorporated into the
interface engine. Interface compiler 396 combines the out-
put of media transcoder 398 and description 392 and com-
piles them to generate interface engine 402. Presentation
server 390 delivers interface engine 402 to rendering plat-
form 404.

In one embodiment, interface compiler 396 generates
interface engine 402 in the form of a .swi file for operation
in a Marcomedia Flash Player rendering environment in
platiorm 404. Those skilled in the art will recognize that
many other rendering environments and file formats are
suitable for embodiments of the present invention. Those
skilled 1n the art also recognize that methods of compiling
files 1nto .swi formats for operation in a Flash Player are well
known.

FIG. 14 shows a sequence of operations performed by a
presentation server 390 to provide an interface engine.
Presentation server 390 receives a request for content from
a rendering platform, such as HT'TP client 362. In response
to the request, presentation server 390 access interface
engine description 392 (step 432). Presentation server 390

US RE48,596 E

13

also accesses data and media 394 specified by description
392 and/or the rendering platform request (step 436).

Presentation server 390 compiles the description 392 and
data and media 394 to create executable code for interface
engine 402 (step 438). Presentation server 390 then trans-
mits the executable code for interface engine 402 to a client
rendering environment in rendering platform 404 (step 440).
In one embodiment, this rendering environment 1s plug-in
364 in HT'TP client 362 1n FIG. 12. The rendering environ-
ment then executes the code for interface engine 402 (step
442).

Greater details regarding application servers, presentation
servers, and their operation appear in U.S. patent application
Ser. No. 10/092,010, entitled, “Presentation Server,” and
filed on the same day as the present application. This
application 1s incorporated herein by reference.

FIG. 15 illustrates a high level block diagram of general
purpose computer system 3500. System 3500 may be
employed 1n embodiments of the present invention to pro-
vide the functionality of a rendering environment and area,
an 1nterface engine, a presentation server, and an application
server. Accordingly, computer system 500 may be employed
for performing a number of processes, ncluding those
described above with reference to FIGS. 1-14.

Computer system 500 contains processing unit 5035, main
memory 510, and interconnect bus 525. Processing unit 505
may contain a single microprocessor or a plurality of micro-
processors for configuring computer system 500 as a mul-
tiprocessor system. Processing umit 5035 1s employed in
conjunction with a memory or other data storage medium
containing application specific program code structions to
implement the functionality of a rendering environment and
area, an 1nterface engine, a presentation server, an applica-
tion server, a view, or an attribute modifier.

Main memory 510 stores, 1n part, instructions and data for
execution by processing unit 505. If a process, such as the
processes described with reference to FIGS. 1-14, 1s wholly
or partially implemented in software, main memory 310 can
store the executable 1nstructions for implementing the pro-
cess when the computer 1s 1n operation. For example, main
memory 310 can store program code instructions employed
by a rendering environment and area, an interface engine, a
presentation server, an application server, a view, and an
attribute modifier. In one implementation, main memory 510
includes banks of dynamic random access memory (DRAM)
as well as high speed cache memory.

In one implementation, computer system 500 further
includes mass storage device 520, peripheral device(s) 530,
portable storage medium drive(s) 540, input control device
(s) 370, graphics subsystem 350, and output display 360. In
alternate 1mplementations, computer system 500 does not
include all of the devices shown 1n FIG. 13.

For purposes of simplicity, all components 1n computer
system 500 are shown in FIG. 13 as being connected via bus
525. However, computer system 500 may be connected
through one or more data transport means in alternate
implementations. For example, processing umt 505 and
main memory 510 may be connected via a local micropro-
cessor bus, and mass storage device 520, peripheral device
(s) 530, portable storage medium drive(s) 540, and graphics
sub-system 550 may be connected via one or more input/
output busses.

Mass storage device 520 1s a non-volatile storage device
for storing data and instructions for use by processing unit
505. Mass storage device 520 can be implemented in a
variety of ways, including a magnetic disk drive or an
optical disk drive. In software embodiments of the present

10

15

20

25

30

35

40

45

50

55

60

65

14

invention, mass storage device 320 stores the instructions
executed by computer system 300 to perform processes such
as those described with reference to FIGS. 1-14.

Portable storage medium drive 540 operates 1n conjunc-
tion with a portable non-volatile storage medium to input
and output data and code to and from computer system 500.
Examples of such storage mediums include tloppy disks,
compact disc read only memories (CD-ROM), memory
sticks, and integrated circuit non-volatile memory adapters
(1.e. PC-MCIA adapter). In one embodiment, the instructions
for enabling computer system 500 to execute processes,
such as those described with reference to FIGS. 1-14, are
stored on such a portable medium, and are 1nput to computer
system 500 via portable storage medium drive 540.

Peripheral device(s) 530 may include any type of com-
puter support device, such as an input/output interface, to
add additional functionality to computer system 500. For
example, peripheral device(s) 530 may include a commu-
nications controller, such as a network interface card or
integrated circuit, for interfacing computer system 500 to a
communications network or point-to-point links with other
devices. Instructions for enabling computer system 300 to
perform processes, such as those described with reference to
FIGS. 1-14, may be downloaded into the computer system’s
main memory 510 over a communications network. Com-
puter system 500 may also interface to a database manage-
ment system over a communications network or other
medium that 1s supported by peripheral device(s) 530.

Input control device(s) 570 provide a portion of the user
interface for a user of computer system 300. Input control
device(s) 570 may include an alphanumeric keypad for
inputting alphanumeric and other key information, a cursor
control device, such as a mouse, a trackball, stylus, or cursor
direction keys. In order to display textual and graphical
information, computer system 500 contains graphics sub-
system 550 and output display 560. Output display 560 can
include a cathode ray tube display or liquid crystal display.
Graphics subsystem 550 receives textual and graphical
information, and processes the imformation for output to
output display 560.

The components contained 1n computer system 500 are
those typically found 1n general purpose computer systems.
In fact, these components are intended to represent a broad
category of such computer components that are well known
in the art.

The process steps and other functions described above
with respect to embodiments of the present invention may be
implemented as software instructions. More particularly, the
process steps described with reference to FIGS. 1-14 may be
implemented as software instructions. For one software
implementation, the soiftware includes a plurality of com-
puter executable nstructions for implementation on a gen-
eral purpose computer system. Prior to loading 1nto a general
purpose computer system, the software instructions may
reside as encoded information on a computer readable
medium, such as a magnetic floppy disk, magnetic tape, and
compact disc read only memory (CD—ROM). In one hard-
ware 1implementation, circuits may be developed to perform
the process steps and other functions described herein.

The foregoing detailed description of the invention has
been presented for purposes of illustration and description.
It 1s not intended to be exhaustive or to limit the mvention
to the precise form disclosed. Many modifications and
variations are possible 1n light of the above teaching. The
described embodiments were chosen 1n order to best explain
the principles of the mnvention and 1ts practical application to
thereby enable others skilled in the art to best utilize the

US RE48,596 E

15

invention 1 various embodiments and with various modi-
fications as are suited to the particular use contemplated. It
1s intended that the scope of the invention be defined by the
claims appended hereto.

We claim:

1. A method for providing an interface, comprising:

sending a request for network content from a network
browser to a server via a network:

receiving an interface engine in response to said request,
said interface engine including executable code having
instructions to render a set of views 1n a user interface,
cach view having a set of attributes associated there-
with, and 1nstructions to modily each view through one
or more attribute modifiers associated with each view,
wherein said attribute modifiers include layouts, con-
straints and animators:

providing the user interface 1n said network browser using
said interface engine;

receiving a request to change an appearance of at least one
particular 1tem of multiple 1items displayed 1n said user
interface, wherein the one particular item 1s associated
with a first view from the set of views; and

in response to said request, changing the appearance of
said one particular item 1n said user interface using said
executable code of said interface engine to provide a
continuous fluid transition of the appearance of said
one particular item with a result that was not predeter-
mined prior to said request, said continuous fluid tran-
sition 1s performed by calling said one or more attribute
modifiers for said first view and moditying said first
view 1n response to said one or more attribute modifi-
Crs.

2. A method according to claim 1, wherein:

said changing of appearances includes altering a property
of a container in response to changing a property of
another container.

3. A method according to claim 1, wherein:

said changing of appearances includes altering a position
of one container in response to a different container
expanding.

4. A method according to claim 1, wherein:

said changing appearances 1s performed by multiple ani-
mators.

5. A method according to claim 1, wherein:

said request to change appearances includes a request to
change a position of a first item of said multiple 1tems
displayed in said user interface.

6. A method according to claim 1, wherein:

said request to change appearances includes a request to
change a size of a first item of said multiple 1tems
displayed in said user interface.

7. A method according to claim 1, wherein:

said request to change includes a request to change an
appearance of a first item with respect to other items of
said multiple 1tems displayed 1n said user interface; and

said changing appearances includes changing said appear-
ance of said first item with respect to said other items.

8. A method for providing an interface, comprising:

receiving content via a network;

displaying said content 1n a network browser, said dis-
played content includes a particular item, said dis-
played content provides a user interface;

receiving a request to change said particular item dis-
played 1n said network browser from a first visual state
to a second visual state, said requested change was not
predetermined prior to said request to change; and

10

15

20

25

30

35

40

45

50

55

60

65

16

implementing said requested change by providing con-
tinuous fluid transitions for said particular item from
said first visual state to said second visual state, said
continuous fluid transitions are performed by a method
comprising calling one or more attribute modifiers for
said particular 1tem and modifying said particular item
in response to said one or more attribute modifiers, said
attribute modifiers includes layouts, constraints and
animators, said implementing said requested change
includes making one or more changes to appearances of
multiple 1tems 1n a coordinated manner and showing
intermediate steps of said changes to appearances of
said multiple 1tems, said multiple items 1ncludes said
particular item.

9. A method according to claim 8, wherein:

said implementing said requested change includes alter-
ing a property of one container 1n response to changing
a property of diflerent container; and

said multiple 1tems includes said one container and said
different container.

10. A method according to claim 8, wherein:

said changes are performed by multiple animators.

11. A method according to claim 8, wherein:

said request to change includes a request to change an
appearance of said particular item with respect to other
items of said multiple items displayed in said user
interface.

12. A method according to claim 8, wherein:

said user interface comprises a set of user interface 1tems
that can be manipulated by a user, said user interface
items include said particular item.

13. A method for providing an interface, comprising:

recerving content and an interface engine via a network,
said interface engine including executable code having
istructions to render a plurality of views 1n a display,
cach view having a plurality of attributes associated
therewith, and instructions to modily each view
through one or more attribute modifiers associated with
each view, wherein said attribute modifiers include
layouts, constraints and animators;

displaying said content in a network browser, said content
includes a particular item, said particular item 1s asso-
ciated with a first view of the plurality of views;

recerving a first request to change the appearance of said
particular item displayed 1n said network browser from
a first visual state to a second visual state;

implementing said {irst request to change by using the
interface engine to provide a first set of continuous fluid
transitions for said particular item from said first visual
state toward said second visual state, said continuous
fluid transitions being performed by calling said one of
more attribute modifiers associated with the first view
and moditying the appearance accordingly;

receiving a second request to change the appearance of
said particular 1tem during said first set of continuous
fluid transitions;

interrupting said {first set of continuous fluid transitions
before completing said first set of continuous fluid
transitions 1n response to said second request; and

implementing said second request to change by using the
interface engine to provide a second set of continuous
fluid transitions for said particular 1item, said continu-
ous fluid transitions being performed by calling said
one or more attribute modifiers associated with the first
view and modifying the appearance accordingly.

US RE48,596 E

17

14. A method according to claim 13, wherein:

said content includes a user interface comprising a set of
user interface items that can be manipulated by a user,
said user interface items include said particular item.
15. A method for providing an interface, comprising:
receiving content and an interface engine via a network,
said interface engine including executable code having
istructions to render a plurality of views in a user
interface, each view having a plurality of attributes
associated therewith, and instructions to modify each
view through one or more attribute modifiers associated
with each view, wherein said attribute modifiers
include layouts, constraints and animators;
displaying said content 1n a network browser, said content
includes the user interface comprising a set ol user
interface items that can be manipulated by a user;

receiving a request to change a first user interface item of
sald set of user interface items, said first user interface
item 1s associated with a first view of the plurality of
VIEWS;

implementing said request to change by using the inter-
face engine to provide continuous fluid transitions for
said first user interface item from a first visual state to
a second visual state, said continuous fluid transitions
being performed by calling said one of more attribute
modifiers associated with the first view and moditying
the appearance accordingly; and

changing one or more additional user interface items of

said set of user interface items 1n response to said
request to change said first user interface item, said
implementing said requested change and said changing
one or more additional user interface items includes
using the mterface engine to make one or more changes
to appearances of said first user interface item and said
one or more additional user interface items in a coor-
dinated manner and showing intermediate steps of said
changes to appearances of said first user interface item
and said one or more additional user interface items.

16. A method according to claim 15, wherein:

said continuous fluid transitions for said first user inter-

face item are performed by multiple anmimators.

17. One or more norn-transitory processor readable stor-
age devices having code embodied on said one or more
processor readable storage devices, said code for program-
ming one or more processors to perform a method compris-
ng:

accessing an interface engine description; and

compiling said interface engine description to create an

interface engine, said user mterface engine implements
a user interface in a network browser, said user inter-
face includes a set of interface items, said interface
engine includes code to change a particular item dis-
played as part of said user interface from a first visual
state to a second visual state and implements said
change by providing continuous fluid transitions for
said particular item from said first visual state to said
second visual state, said continuous fluid transitions are
performed by a method comprising calling one or more
attribute modifiers for said particular item and modi-
ftying said particular item in response to said one or
more attribute modifiers, said attribute modifiers
includes layouts, constraints and animators, said imple-
menting said change includes making one or more
changes to appearances ol multiple 1tems 1n a coordi-
nated manner and showing mtermediate steps of said
changes to appearances of said multiple 1tems, said
multiple 1tems includes said particular item, and said

5

10

15

20

25

30

35

40

45

50

55

60

65

18

changing of said particular item from said first visual
state to said second visual state 1s not a predetermined
change.

18. One or more non-transitory processor readable stor-
age devices according to claim 17, wherein:

said implementing said requested change includes alter-

ing a property of one container 1n response to changing
a property of diferent container; and

said multiple items includes said one container and said

different container.

19. One or more non-transitory processor veadable stor-
age devices having code embodied on said one or more
processor readable storage devices, said code for program-
ming one or more processors to perform a method compris-
Ing:

sending a request for network content from a network

browser to a server via a network;

receiving an interface engine in response to said request,

said interface engine including executable code having
instructions to render a set of views in a user interface,
each view having a set of attributes associated there-
with, and instructions to modify each view through one
or movre attribute modifiers associated with each view,
wherein said attribute modifiers include layouts, con-
straints and animators;

providing the user interface in said network browser

using said interface engine;
receiving a request to change an appearance of at least
one particular item of multiple items displaved in said
user interface, whevein the one particular item is
associated with a first view from the set of views,; and

in response to said request, changing the appearance of
said one particular item in said user interface using
said executable code of said interface engine to provide
a continuous fluid transition of the appearance of said
one particular item with a vesult that was not prede-
termined prior to said request, said continuous fluid
transition is performed by calling said one or more
attribute modifiers for said first view and modifyving
said first view in response to said one or movre attribute
modifiers.

20. One or more non-transitory processor readable stor-
age devices according to claim 19, wherein:

said changing of appearances includes altering a prop-

erty of a container in response to changing a property
of another container.

21. One or more non-transitory processor readable stor-
age devices according to claim 19, wherein:

said changing of appearances includes alteving a position

of one container in response to a different container
expanding.

22. One or more non-transitory processor readable stor-
age devices according to claim 19, wherein:

said changing appearances is performed by multiple

animators.

23. One or more non-transitory processor readable stor-
age devices according to claim 19, wherein:

said request to change appearances includes a request to

change a position of a first item of said multiple items
displaved in said user interface.

24. One or more non-transitory processor readable stor-
age devices according to claim 19, wherein:

said request to change appearances includes a request to

change a size of a first item of said multiple items
displaved in said user interface.

25. One or more non-transitory processor readable stor-
age devices according to claim 19, wherein:

US RE48,596 E

19

said rvequest to change includes a request to change an
appearance of a first item with vespect to other items of
said multiple items displaved in said user interface;
and

said changing appearances includes changing said 2
appearance of said first item with rvespect to said other
items.

26. One or more non-transitory processor readable stor-

age devices having code embodied on said one or more

processor readable storage devices, said code for program- 10
ming one or more processors to perform a method compris-
Ing:

receiving content via a network;

displaying said content in a network browser, said dis-

plaved content includes a particular item, said dis-
plaved content provides a user interface;

receiving a request to change said particular item dis-

plaved in said network browser from a first visual state
to a second visual state, said requested change was not >
predetermined prior to said request to change; and
implementing said rvequested change by providing con-
tinuous fluid transitions for said particular item from
said first visual state to said second visual state, said
continuous fluid transitions arve performed by a method 25
comprising calling one or more attribute modifiers for
said particular item and modifving said particular item
in response to said one or movre attribute modifiers, said
attribute modifiers includes layouts, constraints and
animators, said implementing said requested change 30
includes making one or move changes to appearances
of multiple items in a coordinated manner and showing
intermediate steps of said changes to appearvances of
said multiple items, said multiple items includes said
particular item. 35

27. One or more non-transitory processor rveadable stor-
age devices according to claim 26, wherein:

said implementing said vequested change includes alter-

ing a property of one container in vesponse to changing

a property of different container; and 40
said multiple items includes said one container and said

different container.

28. One or more non-transitory processor readable stor-
age devices according to claim 26, wherein:

said changes are performed by multiple animators. 45

29. One or more non-transitory processor rveadable stor-
age devices according to claim 26, wherein.

said request to change includes a vequest to change an

appearance of said particular item with vespect to other
items of said multiple items displayed in said user 50
interface.

30. One or more non-transitory processor rveadable stor-
age devices according to claim 26, wherein:

said user interface comprises a set of usev interface items

that can be manipulated by a usev, said user interface 55
items include said particular item.

31. One or more non-transitory processor readable stor-
age devices having code embodied on said one or more
processor readable storage devices, said code for program-
ming one or more processors to perform a method compris- 60
Ing.:

receiving content and an interface engine via a network,

said interface engine including executable code having
instructions to render a plurality of views in a display,
each view having a plurality of attributes associated 65
therewith, and instructions to modify each view through
one or more attribute modifiers associated with each

20

view, wherein said attribute modifiers include lavouts,
constraints and animators;

displaving said content in a network browser, said content
includes a particular item, said particular item is
associated with a first view of the plurality of views;

receiving a first request to change the appearance of said
particular item displayed in said network browser from
a first visual state to a second visual state;

implementing said first vequest to change by using the
interface engine to provide a first set of continuous fluid
transitions for said particular item from said first visual
state toward said second visual state, said continuous
fluid transitions being performed by calling said one of
movre attribute modifiers associated with the first view
and modifving the appearance accordingly;

receiving a second request to change the appearance of
said particular item during said first set of continuous
fluid transitions;

interrupting said first set of continuous fluid transitions

before completing said first set of continuous fluid
transitions in response to said second rvequest; and
implementing said second request to change by using the
interface engine to provide a second set of continuous
fluid transitions for said particular item, said continu-
ous fluid transitions being performed by calling said
one or move attribute modifiers associated with the fivst
view and modifyving the appearance accordingly.
32. One or more non-transitory processor readable stor-
age devices according to claim 31, wherein:
said content includes a user interface comprising a set of
user interface items that can be manipulated by a user,
said user interface items include said particular item.
33. One or more non-transitory processor readable stor-
age devices having code embodied on said one ov more
processor readable storage devices, said code for program-
ming one or more processors to perform a method compris-
Ing:
receiving content and an interface engine via a network,
said interface engine including executable code having
instructions to render a plurality of views in a user
interface, each view having a plurality of attributes
associated thervewith, and instructions to modify each
view through one or more attribute modifiers associ-
ated with each view, wherein said attribute modifiers
include layouts, constraints and animators,
displaving said content in a network browser, said content
includes the user interface comprising a set of user
interface items that can be manipulated by a user;
receiving a request to change a first user interface item of
said set of user interface items, said first user interface
item is associated with a first view of the plurality of
views;
implementing said rvequest to change by using the inter-
Jace engine to provide continuous fluid transitions for
said first user interface item from a first visual state to
a second visual state, said continuous fluid transitions
being performed by calling said one of more attribute
modifiers associated with the first view and modifving
the appearance accordingly; and
changing one or more additional user interface items of
said set of user interface items in response to said
request to change said first user interface item, said
implementing said vequested change and said changing
one or more additional user interface items includes
using the interface engine to make one or more changes
to appearances of said first user interface item and said
one or more additional user interface items in a coor-

US RE48,596 E

21

dinated manner and showing intermediate steps of said
changes to appearances of said first user interface item
and said one or more additional user interface items.

34. One or more non-transitory processor readable stor-
age devices according to claim 33, wherein: d

said continuous fluid transitions for said first user inter-

Jace item are performed by multiple animators.

35. One or more non-transitory processor readable stor-
age devices comprising framework code embodied on said
one or movre processor readable storage devices, said code
for programming one or more processors to:

receive content via a network;

provide said received content for display by a network

browser, said content for display to include a particular

item, wherein said content for display is associated
with a user interface;

receive a user request to change said particular item

displaved in said network browser from a first visual
state to a second visual state, said requested change
was not predetermined prior to said request to change;
and

implement said rvequested change by providing one or

movre continuous fluid transitions for said particular
item from said first visual state to said second visual .
state, said implementing said requested change to
include making one ov more changes to appearances of
multiple items in a coovdinated manner and showing
intermediate steps of said changes to appearances of
said multiple items, said multiple items to include said -,
particular item;

said framework code further to include code to perform

said continuous fluid transitions, where the code to
perform said continuous fluid transitions is to specify
one or more attribute modifiers for said particular item 45
to modify said particular item in vesponse to said one

or movre attribute modifiers, said attribute modifiers to
include layouts, constraints, and animators, the ani-
mators to specify modification of the appearance of the
content for display over time, where the code to per- ,,
Jorm said continuous fluid transitions is to call said one

or more attribute modifiers and to modify said particu-
lav item in vesponse to the call of said one or more
attribute modifiers.

36. The one or more non-transitory processor readable -
storage devices of claim 35, wherein the content is media
conitenti.

37. The one or more non-transitory processor readable
storage devices of claim 35, wherein the content is streaming
media content.

10

15

22

38. The one or more non-transitory processor veadable
storage devices of claim 35, whervein the content is video
content.

39. The one or more non-transitory processor readable
storage devices of claim 35, wherein the content is music
conient.

40. One or more non-transitory processor readable stor-
age devices comprising code embodied on said one or more

processor readable storage devices, said code for program-

ming one ov more processors to.
provide an interface engine with a modular architecture
crafted to support continuous userv interfaces to be
displayed in a network browser;

said interface engine to provide for one or more continu-

ous fluid tramsitions for a particular item of content
from a first visual state to a second visual state based
on a real time user input, said continuous fluid transi-
tion to include making one or more changes to appear-
ances of multiple items in a coovdinated manner and
showing intermediate steps of said changes to appear-
ances of said multiple items, said multiple items to
include said particular item, wherve said one or more
changes were not predetermined prior to said real time
user input;

said interface engine further to include code to perform

said continuous fluid transitions, where the code to
perform said continuous fluid transitions is to provide
one or more attribute modifiers and is to modify said
particular item in rvesponse to one or more values
associated with said one or more attribute modifiers,
said attribute modifiers to include layouts, constraints,
and animators, the animators to specify modification of
the appearance of the displaved content over time,
whevre the code to perform said continuous fluid tran-
sitions is to call said one ov more attribute modifiers
and to modify said particular item in response to the
call of said one or more attribute modifiers.

41. The one or more non-transitory processor readable
storage devices of claim 40, wherein the particular item of
content is media content.

42. The one or more non-transitory processor readable
storage devices of claim 40, wherein the particular item of
content is streaming media content.

43. The one or more non-transitory processor rveadable
storage devices of claim 40, wherein the particular item of
content is video content.

44. The one or more non-transitory processor readable
storage devices of claim 40, wherein the particular item of
content 1s music content.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

