USOORE48589E
(19) United States
12y Reissued Patent (10) Patent Number: US RE48.589 E
Garrod et al. 45) Date of Reissued Patent: Jun. 8, 2021
(54) SHARING AND DECONFLICTING DATA 5,548,749 A 8/1996 Kroenke et al.
CHANGES IN A MULTIMASTER DATABASE 5,708,828 A 1/1998 Coleman
SYSTEM 5,765,171 A 6/1998 Gehani et al. GOGF 16/27
5,774,717 A 6/1998 Porcaro
: : : 5,806,074 A 9/1998 Souder et al.
(71) Applicant: Palantir Technologies, Inc., Palo Alto, 5845300 A 12/1998 cilfn:f “
CA (US) 5,870,761 A 2/1999 Demers et al.
(72) Inventors: John Kenneth Garrod, Palo Alto, CA (Continued)
(US); John Antonio Carrino, Palo FOREIGN PATENT DOCUMENTS
Alto, CA (US); Katherine Brainard, N N
East Orange, NJ (US); Jacob Scott, AU 2011279270 9/2015
Berkeley, CA (US); Allen Chang, AU 2013251186 11/2015
Mountain View, CA (US) (Continued)
(73) Assignee: gaAla(IIljtiSI; Technologies Inc., Palo Alto, OTHER PURI ICATIONS

U.S. Appl. No. 14/518,757, filed Oct. 20, 2014, Oflice Action, dated
Dec. 1, 2015.

(22) Filed: Aug. 19, 2015 (Continued)
Related U.S. Patent Documents

(21) Appl. No.: 14/830,420

Primary Examiner — Fred O Ferris, 111
Reissue of: . _ -
(74) Attorney, Agent, or Firm — Christine E. Orich;

(64) Patent No.: 8,515,912 _ _
Tssued: Aug. 20, 2013 Hickman Becker Bingham Ledesma LLP
Appl. No.: 12/836.801
Filed: Jul. 15, 2010 (57) ABSTRACT

A computer-based method and system for sharing and
(51) Imt. Cl. decontlicting data changes amongst a plurality of replication

GO6F 16723 (2019.01) sites. In a particular embodiment, data changes at sites to
(52) US. Cl. data objects are tracked by each site on a per-data object
C.PC sesnee s GO6F 16/2329 (2019.01) basis using per-data object version vectors. In another par-
(58) ggz(ljd of Clasmﬁcatlt();loggalr;g,os 72 GOGE 16/9320 ticular embodiment, data changes at sites to links connecting
S S oo 707/610 TWO data objects are tracked by each site on a per-link set

basis using per-link set version vectors. In another particular
embodiment, per-object version vectors are used to detect a
(56) References Cited contlict resulting from concurrent changes at two or more
sites 1n which one of the concurrent changes includes an
object resolution change.

See application file for complete search history.

U.S. PATENT DOCUMENTS

4,881,179 A 11/1989 Vincent
5,241,625 A 8/1993 Epard et al. 8 Claims, 7 Drawing Sheets

100

SITE 101

DECONFLICTION LOGIC 120

A

—
ﬁ

COPY 111

__.-—-""'."

SITE 102 SITE 103

DECCNFLICTION LOGIC 12 | DECONFLICTION LOGIC 120

o~ > ot >

h ——
\H.-'--—-__

A
\

COPY 112 | COPY 113
_____,.«-‘

/
\

US RE48,589 E

Page 2
(56) References Cited 7,880,921 B2 2/2011 Dattilo et al.
7,941,336 Bl 5/2011 Robin-Jan
U.S. PATENT DOCUMENTS 7,953,710 B2* 5/2011 Novik GOGF 17/30578
707/662
5,943,676 A 8/1999 Boothby 7,958,147 Bl 6/2011 Turner et al.
5978475 A 11/1999 Schneier et al. 7,962,495 B2 6/2011 Jain et al.
5999911 A 12/1999 Berg et al. 7,962,848 B2 6/2011 Bertram
6,065,026 A 5/2000 Cornelia et al. 7,966,199 Bl 6/2011 Frasher
6,098,078 A 8/2000 Gehani et al. GO6F 16/27 8,001,465 B2 8/2011 Kudrolli et al.
707/6 10 8,001,482 B2 8/2011 Bhattiprolu et al.
6,101,479 A /2000 Shaw 8,010,507 B2 8/2011 Poston et al.
6,190,053 Bl 2/2001 Stahlecker et al. 8,015,151 B2~ 9/2011 Lier et al.
6,202,085 Bl 3/2001 Benson et al. 8,073,857 B2 12/2011 Sreekanth
6,216,140 B1* 4/2001 Kramerccccocernn. 715/234 8,117,022 B2 2/2012 Linker
6,232,971 Bl 5/2001 Haynes 8,132,149 B2 3/2012 Shenfield et al.
6,237,138 Bl 5/2001 Hameluck et al. 8,190,893 B2 52012 Benson et al.
6,240,414 Bl 5/2001 Beizer et al. 8,191,005 B2 5/2012 Baier et al.
6,243,706 Bl 6/2001 Moreau et al. 8,196,184 B2 6/2012 Amirov et al.
6,279,018 Bl 82001 Kudrolli et al. 8,225,201 B2 7/2012 Michael
6,289,338 Bl 9/2001 Stoffel et al. 8,239,668 Bl ~ 82012 Chen et al.
6,317,754 Bl1* 11/2001 Pengccccoovvvviivvinnnn, 707/610 8,271,948 B2 9/2()?2 :.':11021 et al.
6,370,538 Bl 4/2002 Lamping et al. 8,290,838 Bl 10/2012 Thakur et al.
6,374,252 Bl 4/2002 Althoff et al. 8,290,990 B2 10/2012 Drath et al.
6,430,305 Bl 8/2002 Decker 8,301,904 Bl 10/2012 Gryaznov
6,463,404 B1 10/2002 Appleby 8,302,855 B2 11/2012 Ma et al.
6,523,019 B1 2/2003 Borthwick 8,312,367 B2 11/2012 Foster
6,523,172 B1 2/2003 Martinez-Guerra et al. 8,312,546 B2 11/2012 " Alme
6,539,381 Bl 3/2003 Prasad et al. GO6F 16/27 8,516,060 Bl 11/20._2 Snyder et al.
6,539,538 Bl 3/2003 Brewster et al. 8,380,659 B2 22013 Zunger
6,560,620 Bl 5/2003 Chingcccoovvvvvcvvennn, 715/229 8,392,550 B2 3/2013 Goulet et al.
6,640,231 Bl 10/2003 Andersen et al. 8,442,940 Bl 5/2013 Falett: et al.
6,642,945 Bl 11/2003 Sharpe 8,489,623 B2 7/2013 Jain et al.
6,665,683 Bl 12/2003 Meltzer 8,515912 B2 82013 Garrod
6.725.240 Bl 4/2004 Asad et al. 8,527,461 B2 9/2013 Ducott, III et al.
6,748,481 Bl 6/2004 Parry et al. 8,527,949 B1 ~ 9/2013 Pleis et al.
6,807,569 B1 10/2004 Bhimani et al. 8,560,494 Bl 10/2013 Downing
6,816,941 B1 11/2004 Carlson et al. 8,620,641 B2 12/2013 Farnsworth et al.
6,850,317 B2 2/2005 Mullins et al. 8,646,080 B2 2/2014 Williamson et al.
6,877,137 Bl 4/2005 Rivette et al. 8,682,696 Bl 3/2014 Shanmugam
6,944,777 Bl 9/2005 Belani et al. 8,688,573 Bl 4/2014 Ruknoic et al.
6944821 Bl 9/2005 Bates et al. 8,688,749 B1 4/2014 Ducott, III et al.
6.967.580 Bl 11/2005 Peters 8,689,182 B2 4/2014 Leithead et al.
6,978.419 Bl 12/2005 Kantrowitz 8,726,379 Bl 5/2014 Stiansen et al.
7,017,046 B2 3/2006 Doyle et al. 8,732,574 B2 52014 Buur et al.
7,027,974 B1 4/2006 Busch et al. 8,782,004 B2 7/2014 Ducott
7,072,911 B1 7/2006 Doman 8,799,313 B2 82014 Satlow
7,086,028 Bl 82006 Davis et al. 8,807,948 B2 82014 Luo et al.
7,089,541 B2 82006 Ungar 8,838,538 Bl 9/2014 Landau et al.
7,167,877 B2 1/2007 Balogh et al. 8,886,601 Bl 11/2014 Landau et al.
7.174.377 B2 2/2007 Bernard et al. 8,903,717 B2 12/2014 Ellot
7,194,680 Bl 3/2007 Roy et al. 8,930,874 B2 1/2015 Duff et al.
7,213,030 Bl 5/2007 Jenkins 8,930,897 B2 1/2015 Nassar
7,225,468 B2 5/2007 Waisman et al. 8,938,686 Bl 1/2015 Erenrich et al.
7.237,192 Bl 6/2007 Stephenson et al. 8,984,390 B2 32015 Aymeloglu et al.
7.240.330 B2 7/2007 Fairweather 9,009,827 Bl 4/2015 Albertson et al.
7302.708 B2 11/2007 Kovarik 9,021,260 Bl 4/2015 Falk et al.
7392254 Bl 6/2008 Jenkins 9,058,315 B2 6/2015 Buir et al.
7,437,664 B2* 10/2008 Borsonocccceeeerennn. 715/234 9,165,100 B2 IO/ZOTS Begur et al.
7,441,182 B2 10/2008 Beilinson et al. 9,189,492 B2 11/2015 Ducott
7,441,219 B2 10/2008 Perry et al. 9,286,373 B2 3/2016 Elliot et al.
7,523,146 B2 4/2009 Holt et al. 9,501,552 B2 11/2016 McGrew
7,530,105 B2 5/2009 Gilbert et al. 9,569,070 Bl 2/2017 Ma et al.
7,533,069 B2 5/2009 Fairweather 2001/0021936 Al 9/2001 Bertram
7.596.285 B2 9/2009 Brown et al. 2002/0032677 Al 3/2002 Morgenthaler et al.
7,627,812 B2 12/2009 Chamberlain et al. 2002/0095360 A1 7/2002 Joao
7,634,717 B2 12/2009 Chamberlain et al. 2002/0103705 Al 82002 Brady
7664.829 B2 2/2010 Yamamoto et al. 2002/0112157 Al 82002 Doyle et al.
7,676,788 B1* 3/2010 Ousterhout et al. 717/106 2002/0196229 Al 12/2002 Chen et al.
7.685.083 B2 3/2010 Fairweather 2003/0036927 Al 2/2003 Bowen
7707.178 B2 4/2010 Prahlad et al. 2003/0055825 Al 3/2003 Chen et al.
7.716,140 Bl 5/2010 Nielsen et al. 2003/0061132 Al 3/2003 Mason et al.
7,730,396 B2 6/2010 Chidlovskii et al. 2003/0084017 Al 5/2003 Ordille
7,765,489 Bl 7/2010 Shah 2003/0088654 Al 5/2003 Good et al.
7,770,032 B2 8/2010 Nesta et al. 2003/0093755 Al 5/2003 O’Carroll
7,770,100 B2 82010 Chamberlain et al. 2003/0126102 A1 7/2003 Borthwick
7,801,871 B2 9/2010 Gosnell 2003/0028560 Al 9/2003 Kudrolli et al.
7,805,408 B2 9/2010 Padgett et al. 2003/0172053 Al 9/2003 Fairweather
7,818,297 B2 10/2010 Peleg et al. 2003/0177112 A1 9/2003 Gardner
7,877,421 B2 1/2011 Berger et al. 2003/0182313 Al 9/2003 Federwisch et al.

US RE48,589 E

Page 3
(56) References Cited 2007/0185850 A1 8/2007 Walters et al.
2007/0220067 Al 9/2007 Suriyanarayanan et al.
U.S. PATENT DOCUMENTS 2007/0220328 Al 9/2007 Liu et al.
2007/0233756 Al 10/2007 D’Souza et al.

2004/0034570 Al 2/2004 Davis 2007/0245339 Al 10/2007 Bauman et al.
2004/0044648 A1l 3/2004 Anfindsen et al. 2007/0284433 Al 12/2007 Domenica et al.
2004/0044992 Al 3/2004 Muller et al. 2007/0294766 Al 12/2007 Mir et al.
2004/0078451 Al 4/2004 Dietz et al. 2007/0299697 Al 12/2007 Friedlander et al.
2004/0083466 Al 4/2004 Dapp et al. 2007/0299887 Al 12/2007 Novik et al.
2004/0103124 Al 5/2004 KupKovac..cocovevnn... 707/203 2008/0005188 Al* /2008 Li ... GO6F 17/30174
2004/0103147 Al 5/2004 Flesher et al. 2008/0016155 Al 1/2008 Khalatian
2004/0111390 Al* 6/2004 Saito et al.cccoeveevene.... 707/1 2008/0027981 Al 12008 Wahl
2004/0153418 Al 87004 Hanweck 2008/0033753 Al* 2/2008 Canda etal.c.cceoee...... 705/2
2004/0205492 Al 10/2004 Newsome 2008/0086718 Al1* 4/2008 Bostick et al. 717/120
2004/0221223 Al 11/2004 Yu et al. 2008/0091693 Al 4/2008 Murthy
2004/0236688 A1 11/2004 Bozeman 2008/0109714 Al 5/2008 Kumar et al.
2004/0236711 Al 11/2004 Nixon et al. 2008/0140387 Al 6/2008 Linker
2004/0250124 Al 12/2004 Chesla et al. 2008/0141117 Al 6/2008 King et al.
2004/0250576 Al 12/2004 Flanders 2008/0148398 Al 6/2008 Mezack et al.
2005/0010472 A1 1/2005 Quatse et al. 2008/0168135 Al 7/2008 Redlich et al.
2005/0028094 Al 2/2005 Allyn 2008/0172607 Al 7/2008 Baer
2005/0034107 A1 2/2005 Kendall et al. 2008/0177782 Al 7/2008 Poston et al.
2005/0039116 Al 2/2005 Slack-Smith 2008/0186904 Al 82008 Koyama et al.
2005/0039119 Al 2/2005 Parks et al. 2008/0189240 Al 8/2008 Mullins et al.
2005/0044187 Al 2/2005 Jhaveri et al. 2008/0201580 Al 82008 Savitzky et al.
2005/0050537 Al 3/2005 Thompson et al. 2008/0228467 Al 9/2008 Womack et al.
2005/0091186 Al 4/2005 Flish 2008/0229422 Al 9/2008 Hudis et al.
2005/0091420 A1 4/2005 Snover et al. 2008/0235575 Al 9/2008 Weiss
2005/0097061 Al 5/2005 Shapiro et al. 2008/0243951 Al 10/2008 Webman et al.
2005/0108063 Al 5/2005 Madill et al. 2008/0249820 Al 10/2008 Pathria
2005/0125715 Al 6/2005 Franco et al. 2008/0276167 Al 11/2008 Michael
2005/0183005 A1 8/2005 Denoue et al. 2008/0281580 Al 11/2008 Zabokritski
2005/0193024 Al 9/2005 Beyer et al. 2008/0288475 Al 11/2008 Kim et al.
2005/0229256 A2 10/2005 Banzhof 2008/0313132 Al 12/2008 Hao et al.
2005/0267865 Al 12/2005 Bird et al. 2008/0313243 Al 12/2008 Poston et al.
2006/0026561 Al 2/2006 Bauman et al. 2008/0320299 Al 12/2008 Wobber et al.
2006/0031779 Al 2/2006 Theurer et al. 2009/0024946 A1 12009 Gotz
2006/0036568 A1 2/2006 Moore et al. 2009/0024962 Al 1/2009 Gotz
2006/0045470 Al 3/2006 Poslinski et al. 2009/0031401 Al 1/2009 Cudich et al.
2006/0053097 Al 3/2006 King et al. 2009/0043801 Al 2/2009 LeClair
2006/0053170 Al 3/2006 Hill et al. 2009/0089651 Al 4/2009 Herberger et al.
2006/0059423 Al 3/2006 Lehmann et al. 2009/0103442 Al 4/2009 Douville
2006/0069912 A1 3/2006 Zheng et al. 2009/0106178 Al 4/2009 Chu
2006/0074866 Al 4/2006 Chamberlain et al. 2009/0112678 A1 4/2009 Luzardo
2006/0080139 Al 4/2006 Mainzer 2009/0112745 Al 4/2009 Stefanescu
2006/0106879 Al 5/2006 Zondervan et al. 2009/0150868 Al 6/2009 Chakra et al.
2006/0129746 Al 6/2006 Porter 2009/0164934 A1 6/2009 Bhattiprolu et al.
2006/0136513 Al 6/2006 Ngo et al. 2009/0172821 Al 7/2009 Daira et al.
2006/0143075 Al 6/2006 Carr et al. 2009/0177962 Al 7/2009 Gusmorino et al.
2006/0155654 Al 7/2006 Plessis et al. 2009/0187546 A1~ 7/2009 Whyte et al.
2006/0155945 A1 7/2006 McGarvey 2009/0199090 A1* 82009 Poston et al. 715/255
2006/0178915 Al /2006 Chao 2009/0199106 Al 8/2009 Jonsson et al.
2006/0190497 Al 82006 Inturi et al. 2009/0216562 Al 8/2009 Faulkner et al.
2006/0206866 Al 9/2006 Eldrige et al. 2009/0228507 Al 9/2009 Jain et al.
2006/0218637 A1 9/2006 Thomas et al. 2009/0228701 A1 9/2009 Lin
2006/0224579 Al 10/2006 Zheng 2009/0248757 A1 10/2009 Havewala et al.
2006/0242204 Al 10/2006 Karas et al. 2009/0249178 Al 10/2009 Ambrosino et al.
2006/0265377 Al 11/2006 Raman et al. 2009/0249244 Al 10/2009 Robinson et al.
2006/0265417 Al 11/2006 Amato et al. 2009/0254970 Al 10/2009 Agarwal et al.
2006/0265747 Al 11/2006 Judge 2009/0271343 A1 10/2009 Vaiciulis et al.
2006/0271526 Al 11/2006 Charnock et al. 2009/0281839 Al 11/2009 Lynn et al.
2006/0277460 Al 12/2006 Forstall et al. 2009/0282068 Al 11/2009 Shockro et al.
2007/0000999 A1 1/2007 Kubo et al. 2009/0287470 Al 11/2009 Farnsworth et al.
2007/0005707 Al 1/2007 Teodosiu et al. 2009/0307049 Al 12/2009 Elliott et al.
2007/0018986 A1 1/2007 Hauser 2009/0313463 Al 12/2009 Pang et al.
2007/0026373 Al 2/2007 Suriyanarayanan et al. 2009/0319891 Al 12/2009 MacKinlay
2007/0043686 Al 2/2007 Teng et al. 2009/0328222 Al 12/2009 Helman et al.
2007/0061752 Al 3/2007 Cory 2010/0004857 Al 1/2010 Pereira et al.
2007/0074169 Al 3/2007 Chess et al. 2010/0011000 Al 1/2010 Chakra et al.
2007/0078872 Al 4/2007 Cohen 2010/0011282 Al 1/2010 Dollard et al.
2007/0112714 Al 5/2007 Fairweather 2010/0057622 Al 3/2010 Faith et al.
2007/0112887 Al 5/2007 Liu et al. 2010/0070842 Al 3/2010 Aymeloglu et al.
2007/0113164 Al 5/2007 Hansen et al. 2010/0070844 A1 3/2010 Aymeloglu et al.
2007/0130217 A1 6/2007 Linyard et al. 2010/0076813 Al 3/2010 Ghosh et al.
2007/0136095 Al 6/2007 Weinstein 2010/0077481 Al 3/2010 Polyakov et al.
2007/0168516 Al 7/2007 Liu et al. 2010/0098318 Al 4/2010 Anderson
2007/0168871 Al 7/2007 Jenkins 2010/0100963 Al 4/2010 Mahaffey
2007/0174760 Al 7/2007 Chamberlain et al. 2010/0122152 Al 5/2010 Chamberlain et al.
2007/0180075 Al 8/2007 Chasman et al. 2010/0145909 A1 6/2010 Ngo

US RE48,589 E

Page 4
(56) References Cited 2013/0263019 A1 10/2013 Castellanos et al.
2013/0275446 Al 10/2013 Jain et al.
U.S. PATENT DOCUMENTS 2013/0276799 A1 10/2013 Davidson
2013/0288719 Al 10/2013 Alonzo
2010/0169137 A1 7/2010 Jastrebski et al. 2013/0346444 Al 12/2013 Makkar et al.
2010/0204983 Al 82010 Chung et al. 2014/0040182 Al 2/2014 Gilder et al.
2010/0223260 A1 9/2010 Wu 2014/0040714 Al 2/2014 Siegel et al.
2010/0235915 A1 9/2010 Memon et al. 2014/0059683 Al 2/2014 Ashley
2010/0238174 Al 9/2010 Haub et al. 2014/0081652 A1 3/2014 Klindworth
2010/0262688 Al 10/2010 Hussain et al. 2014/0089339 Al 3/2014 Siddiqui et al.
2010/0262901 A1~ 1072010 DiSalvo 2014/0114972 Al 4/2014 Ducott et al.
2010/0280851 Al 11/2010 Merkin 2014/0123279 Al 5/2014 Bishop et al.
2010/0306285 Al 12/2010 Shah et al. 2014/0129518 Al 5/2014 Ducott et al
2010/0306722 Al 12/2010 LeHoty et al. 5014/0199936 Al 52014 Richards of al
2010/0313119 Al 12/2010 Baldwin et al. - . - Adlds b dal.
2010/0313239 Al 12/2010 Chakra et al. 2014/0143009 Al 5/2014 Brice et al
5010/0330801 Al 122010 Rouh 2014/0149130 A1 5/2014 Getchius
2011/0010342 Al 1/2011 Chen et al. 2014/0208281 Al 7/2014 Ming
2011/0047540 A1 2/2011 Williams et al. 2014/0222793 Al 82014 Sadkin et al.
2011/0060910 A1 3/2011 Gormish et al. 2014/0244284 A1 8/2014 Smith
2011/0074788 Al 3/2011 Regan et al 2014/0358829 Al 12/2014 Hurwitz
2011/0093327 Al 4/2011 Fordyce et al. 2014/0366132 Al 12/2014 Stiansen et al.
2011/0099133 Al 4/2011 Chang et al. 2015/0026622 Al 1/2015 Roaldson et al.
2011/0107196 Al 5/2011 Foster 2015/0046481 A1 2/2015 Elliot
2011/0145187 Al 6/2011 Himmelsbach et al. 2015/0073954 Al 3/2015 Braff
2011/0161409 Al 6/2011 Nair 2015/0074050 Al 3/2015 Landau et al.
2011/0173093 Al 7/2011 Psota et al. 2015/0089353 Al 3/2015 Folkening
2011/0179048 Al 7/2011 Satlow 2015/0100559 Al 4/2015 Nassar
2011/0208565 Al 8/2011 Ross et al. 2015/0100907 Al 4/2015 Erenrich et al.
20110219450 AL 972011 McDougal et al. 2015/0106379 Al 4/2015 Elliot et al
2011/0225482 Al 9/2011 Chan et al, .) o |
2011/0246229 Al 10/2011 Pacha 2015/0142766 A1~ 52015 Jam et al.
2011/0258216 Al 10/2011 Supakkul et al. 2015/0186485 Al 7/2015 Tappan et al.
7012/00048904 Al 1/2012 Butler 2015/0212663 Al 7/2015 Papale et al.
2012/0005159 Al 1/2012 Wang et al. 2015/0235334 Al 8/2015 Wang et al.
2012/0016849 A1 1/2012 Garrod et al. 2015/0254220 Al 9/2015 Burr et al.
2012/0022945 Al 1/2012 Falkenborg et al. 2015/0261847 Al 0/2015 Ducott et al.
2012/0023075 Al 1/2012 Pulfer et al. 2016/0019257 Al 12016 Ducott
2012/0036106 Al 2/2012 Desal et al. 2016/0062555 Al 3/2016 Ward et al.
2012/0059853 Al 3/2012 Jagota 016/0008176 Al 49016 Corvelli of al
2012/0065987 Al 3/2012 Farooq et al. ! : o etverl et
2012/0084117 Al 4/2012 Tavares et al. 2016/0110369 AL 472016 Cervelli et al.
2012/0084184 Al 4/2012 Raleigh 2016/0162519 A1 6/2016 Stowe et al.
2012/0110633 Al 5/2012 An et al. 2017/0068716 Al 3/2017 Richards et al.
2012/0110674 Al 5/2012 Belani et al.
2012/0136839 A1 5/2012 Eberlein et al. FOREIGN PATENT DOCUMENTS
2012/0188252 Al 7/2012 Law
2012/0191446 Al 7/2012 Binsztok et al. CA 666364 1/2015
2012/0197657 Al 8/2012 Prodanovic CA 21806954 9/2017
2012/0197660 Al 82012 Prodanovic CN 10172053 1 6/5010
o 8 1m0 o, N b o
1 1 1 _ * CN 102054015 5/2014
2012/0221553 Al 8/2012 Wittmer et al DE 102014204840 0/7014
2012/0226590 Al 9/2012 Love et al. DE 10701421562 1 29015
2012/0254129 Al 10/2012 Wheeler et al. Ep 0816068 1/1006
2012/0266245 Al 10/2012 McDougal et al. Ep 1647008 412006
2012/0284670 Al 11/2012 Kashik et al. mp 1 672 577 6/7006
2012/0304150 Al 11/2012 Leithead et al. mp 2772013 0/7014
2012/0304244 Al 11/2012 Xie et al Ep 4772014 /7014
2012/0323829 Al 12/2012 Stokes et al. Ep > 77R0R6 9/7014
2013/0006655 A1 1/2013 Van Arkel et al. mp 5911078 /7015
2013/0006668 Al 1/2013 Van Arkel et al. Ep 7003505 39016
2013/0016106 Al 1/2013 Yip et al Ep 3002601 47016
20-3?0067017 Al 3//“20_3 Carriere et al. EP 3009943 4/2016
2013/0086482 Al 4/2013 Parsons -
2013/0091084 Al 4/2013 Lee](3}% 32223;‘; 2;%862
2013/0097482 Al 4/2013 Marantz et al. GR 5513007 10/2014
2013/0124193 Al 5/2013 Holmberg CR 5518745 4/7015
2013/0124567 Al 5/2013 Balinsky et al. NT. 5013306 /2015
2013/0139268 Al 5/2013 An et al. WO WO 01/025906 4/7001
38%{81232; i; g//gg% élh‘ilﬂoltﬂ Tt ?1* WO WO 2001/088750 11/2001
1 1 1 anot et al. WO WO 2003/060751 7/2003
2OT3/0166480 Ath 6/20i“3 Popescu et al. WO WO 2007/133206 11/2007
2013/0173540 Al 7/2013 Qian et al. WO WO 2008/064707 5/7008
2013/0191336 A1 7/2013 Ducott et al. WO WO 2008/113059 9/2008
2013/0191338 A1 7/2013 Ducott, III et al. WO WO 2010/030913 3/2010
2013/0251233 Al 9/2013 Yang et al. WO WO 2010/030914 3/2010
2013/0262527 Al 10/2013 Hunter et al. WO WO 2011/071833 6/2011
2013/0262528 Al 10/2013 Foit WO WO 2011/161565 12/2011

US RE48,589 E
Page 5

(56) References Cited
FORFEIGN PATENT DOCUMENTS

1/2012
9/2012

WO WO 2012/009397
WO WO 2012/119008

OTHER PUBLICATIONS

U.S. Appl. No. 14/675,716, filed Mar. 31, 2015, Final Oflice Action,

dated Dec. 24, 2015.

U.S. Appl. No. 14/076,385, filed Nov. 11, 2013, Final Oflice Action,
dated Jan. 25, 2016.

U.S. Appl. No. 13/657,684, filed Oct. 22, 2012, Oflice Action, dated
Aug. 25, 2014.

U.S. Appl. No. 14/156,208, filed Jan. 15, 2014, Oflice Action, dated
Mar. 9, 2015.

U.S. Appl. No. 14/156,208, filed Jan. 15, 2014, Notice of Allow-
ance, dated Feb. 12, 2016.

U.S. Appl. No. 14/156,208, filed Jan. 15, 2014, Interview Summary,
dated Sep. 17, 215.

U.S. Appl. No. 14/334,232, filed Jul. 17, 2014, Notice of Allowance,
dated Nov. 10, 2015.

U.S. Appl. No. 12/836,801, filed Jul. 15, 2010, Notice of Allowance,
dated Apr. 16, 2013.

U.S. Appl. No. 13/076,804, filed Mar. 31, 2011, Notice of Allow-
ance, dated Aug. 26, 2013.

U.S. Appl. No. 13/076,804, field Mar. 31, 2011, Advisory Action,
dated Jun. 20, 2013.

U.S. Appl. No. 13/355,726, filed Jan. 23, 2012, Notice of Allow-
ance, dated Apr. 28, 2014.

U.S. Appl. No. 13/355,726, filed Jan. 23, 2012, Office Action, dated
Mar. 25, 2014.

U.S. Appl. No. 13/686,750, filed Nov. 27, 2012, Oflice Action, dated
Mar. 13, 2013.

U.S. Appl. No. 14/156,208, filed Jan. 15, 2015, Oflice Action, dated
Mar. 9, 2015.

U.S. Appl. No. 14/286,485, filed May 23, 2014, Notice of Allow-
ance, dated Jul. 29, 2015.

U.S. Appl. No. 14/286,485, filed May 23, 2014, Pre-Interview
Office Action, dated Mar. 12, 2015.

U.S. Appl. No. 13/076,804, filed Mar. 31, 2011, Final Oflice Action,
dated Apr. 12, 2013.

U.S. Appl. No. 14/156,208, filed Jan. 15, 20135, Final Office Action,
dated Aug. 11, 2015.

U.S. Appl. No. 14/473,860, filed Aug. 9, 2014, Notice of Allowance,
dated Jan. 5, 2015.

U.S. Appl. No. 13/657,684, filed Oct. 22, 2012, Notice of Allow-
ance, dated Mar. 2, 2015.

U.S. Appl. No. 13/657,684, filed Oct. 22, 2012, Oflice Action, dated
Aug. 28, 2014.

U.S. Appl. No. 14/076,385, filed Nov. 11, 2013, Final Oflice Action,
dated Jan. 22, 2015.

U.S. Appl. No. 14/518,757, filed Oct. 20, 2014, First Office Action
Interview, dated Apr. 2, 2015.

U.S. Appl. No. 14/518,757, filed Oct. 20, 2014, Final Oflice Action,
dated Jul. 20, 2015.

U.S. Appl. No. 14/286,485, filed May 23, 2014, First Office Action
Interview, dated Apr. 30, 2015.

U.S. Appl. No. 14/076,385, filed Nov. 11, 2013, Oflice Action, dated
Jun. 2, 2015.

U.S. Appl. No. 14/334,232, filed Jul. 17, 2015, Oflice Action, dated
Jul. 10, 2015.

Dell Latitude D600 2003, Dell Inc., http://www.dell.com/downloads/
global/products/latit/en/spec_latit d600_en.pdf.

Dou et al., “Ontology Translaation on the Semantic Web 2005,
Springer-Verlag, Journal on Data Semantics II Lecture Notes In
Computer Science, vol. 3350, pp. 35-37.

Fidge, Colin J., “Timestamps 1n Message-Passing Systems,” K.
Raymond (Ed.) Proc. of the 11”* Australian Computer Science
Conference (ACSC 1988), pp. 56-66.

Holliday, JoAnne, “Replicated Database Recovery using Multicast
Communication,” IEEE 2002, pp. 11.

Lamport, “Time, Clocks and the Ordering of Events in a Distributed
System,” Communications of the ACM, Jul. 1978, vol. 21, No. 7,
pp. 558-565.

Loeliger, Jon, “Version Control with Git,” O’Reilly, May 2009, pp.
330.

Mattern, F. “Virtual Time and Global States of Distributed Sys-
tems,” Cosnard, M., Proc. Workshop on Parallel and Distributed
Algorithms, Chateau de Bonas, France:Elsevier, 1989, pp. 215-226.
O’Sullivan, Bryan, “Making Sense of Revision Control Systems,”
Communications of the ACM, Sep. 2009, vol. 52, No. 9, pp. 57-62.
OWL Web Ontology Language Reference Feb 04, W3C, http://
www.w3.org/ TR/owl-ref/.

Parker, Jr. et al., “Detection of Mutual Inconsistency in Distributed
Systems,” IEEE Transactions in Software Engineering, May 1983,
vol. SE-9, No. 3, pp. 241-247.

Claims for European Patent Application No. 13152370.6 dated Jun.
2013, 5 pages.

Claims for Australian Patent Application No. 2012238282 dated
Jan. 2014, 5 pages.

Claims for Australian Patent Application No. 2012238282 dated
Jun. 2014, 4 pages.

Claims for International Patent Application No. PCT/US2011/
043794 dated Jan. 2013, 6 pages.

Claims for International Patent Application No. PCT/US2011/
043794 dated Feb. 2012, 6 pages.

Claims for Canadian Patent Application No. 2666364 dated Oct.
2013, 7 pages.

Official Communication for European Patent Application No.
13152370.6 dated Jun. 3, 2013.

Oflicial Communication for Canadian Patent Application No. 2666364
dated Oct. 3, 2013.

International Search Report & Written Opinion for Patent Applica-
tion No. PCT/US2011/043794 dated Feb. 24, 2012.

Official Communication for Australian Patent Application No.
2012238282 dated Jun. 6, 2014,

Official Communication for Australian Patent Application No.
2012238282 dated Jan. 30, 2014.

Wiritten Opinion and Search Report for International Patent Appli-
cation No. PCT/US2011/043794 dated Jan. 24, 2013.

Symantec Corporation, “E-Security Begins with Sound Security
Policies,” Announcement Policies, Jun. 14, 2001.

Official Communication for European Patent Application No.
15156004.2 dated Aug. 24, 2015.

Official Communication for FEuropean Patent Application No.
15155845.9 dated Oct. 6, 2015.

Official Communication for Canadian Patent Application No. 2806954
dated Jan. 15, 2016.

Official Communication for FEuropean Patent Application No.
14159175.0 dated Feb. 4, 2016.

Abbey, Kristen, “Review of Google Docs,” May 1, 2007, pp. 2.
Klemmer et al., “Where Do Web Sites Come From? Capturing and
Interacting with Design History,” Association for Computing Machin-
ery, CHI 2002, Apr. 20-25, 2002, Minneapolis, MN, pp. 8.
Altmanninger et al.,, “A Categorization for Conflicts 1n Model
Versioning,” Elektrotechnik & Informationstechnik (2011), 128/11-
12: 421-426.

Official Communication for Furopean Patent Application No.
15190307.7 dated Feb. 19, 2016.

Official Communication for European Patent Application No.
15188106.7 dated Feb. 3, 2016.

Official Communication for Australian Patent Application No.
2014201506 dated Feb. 27, 2015.

Palantir, “Extracting and Transforming Data with Kite,” Palantir
Technologies, Inc., Copyright 2010, pp. 38.

Official Communication for Netherlands Patent Application No.
2012438 dated Sep. 21, 2015.

Snaglt, “Snaglt Online Help Guide,” <http://download.techsmith.
com/snagit/docs/onlinehelp/enu/snagit_help.pdf>, TechSmith Corp.,
Version 8.1, printed Feb. 7, 2007, pp. 284.

“GrabUp—What a Timesaver!” <http://atlchris.com/191/grabup/>,
Aug. 11, 2008, pp. 3.

US RE48,589 E
Page 6

(56) References Cited
OTHER PUBLICATIONS

Palermo, Christopher J., “Memorandum,” [Disclosure relating U.S.

Appl. No. 13/916,447, filed Jun. 12, 2013, and related applications],
Jan. 31, 2014 1n 3 pages.

Microsoft, “Registering an Application to a URI Scheme,” <http://
msdn.microsoit.com/en-us/library/aa767914.aspx>, printed Apr. 4,
2009 1n 4 pages.

Official Communication for New Zealand Patent Application No.

622497 dated Jun. 19, 2014.
Delicious, <http://delicious.com/> as printed May 15, 2014 1n 1

page.
Kwout, <http://web.archive.org/web/20080905 132448/ http://www.
kwout.com/> Sep. 5, 2008, pp. 2.

Schroder, Stan, “15 Ways To Create Website Screenshots,” <http://

mashable.com/2007/08/24/web-screenshots/>, Aug. 24, 2007, pp. 2.
(Glaab et al., “EnrichNet: Network-Based Gene Set Enrichment

Analysis,” Bioimnformatics 28.18 (2012): pp. 1451-1457.
Oflicial Communication for New Zealand Patent Application No.

622404 dated Mar. 20, 2014.
Conner, Nancy, “Google Apps: The Missing Manual,” May 1, 2008,

pp. 15.
FireEye, <http://www.fireceye.com/> Printed Jun. 30, 2014 in 2

pages.

Official Communication for New Zealand Patent Application No.
622473 dated Jun. 19, 2014,

Geiger, Jonathan G., “Data Quality Management, the Most Critical
Initiative You Can Implement”, Data Warchousing, Management
and Quality, Paper 098-29, SUGI 29, Intelligent Solutions, Inc.,
Bounder, CO, pp. 14, accessed Oct. 3, 2013.

Baker et al., “The Development of a Common Enumeration of
Vulnerabilities and Exposures,” Presented at the Second Interna-
tional Workshop on Recent Advances in Intrusion Detection, Sep.
7-9, 1999, pp. 35.

Johnson, Maggie, “Introduction to YACC and Bison”.

Microsoft Windows, “Microsoft Windows Version 2002 Print Out
2,7 2002, pp. 1-6.

Snaglt, “Snaglt 8.1.0 Print Out,” Software release date Jun. 15,
2006, pp. ©.

Gu et al.,, “Record Linkage: Current Practice and Future Direc-
tions,” Jan. 15, 2004, pp. 32.

Palantir, “Kite,” https://docs.palantir.com/gotham/3.11.1.0/
adminreference/datasources. 11 printed Aug. 30, 2013 1n 2 pages.
Official Communication for Netherlands Patent Application No.
2011729 dated Aug. 13, 2015.

Official Communication for Great Britain Patent Application No.
1413935.6 dated Jan. 27, 2015.

Wang et al ., “Research on a Clustering Data De-Duplication Mecha-
nism Based on Bloom Filter,” IEEE 2010, 5 pages.

Hur et al., “SciMiner: web-based literature mining tool for target
identification and functional enrichment analysis,” Bioimformatics
25.6 (2009): pp. 838-840.

Nitro, “ITrick: How to Capture a Screenshot As PDF, Annotate, Then
Share It,”” <http://blog. mtropdf.com/2008/03/04/trick-how-to-capture-
a-screenshot-as-pdf-annotate-1t-then-share/>, Mar. 4, 2008, pp. 2.
Nivas, Tuli, “Test Harness and Script Design Principles for Auto-
mated Testing of non-GUI or Web Based Applications,” Perfor-
mance Lab, Jun. 2011, pp. 30-37.

Official Communication for Israel Patent Application No. 198253
dated Nov. 24, 2014.

Hua et al., “A Multi-attribute Data Structure with Parallel Bloom
Filters for Network Services”, HIPC 2006, LNCS 4297, pp. 277-
288, 2006.

Lee et al., “A Data Mining and CIDF Based Approach for Detecting
Novel and Distributed Intrusions,” Lecture Notes 1n Computer
Science, vol. 1907 Nov. 11, 2000, pp. 49-65.

Morrison et al., “Converting Users to Testers: An Alternative

Approach to Load Test Script Creation, Parameterization and Data
Corellation,” CCSC: Southeastern Conference, JCSC 28, 2, Dec.

2012, pp. 188-196.

Waters et al., “Building an Encrypted and Searchable Audit Log,”
Published Jan. 9, 2004, 11 pages, http://www.parc.com/content/
attachments/building encrypted_searchable 5059 parc.pdf.
Schneier et al., “Cryptographic Support for Secure Logs on Untrusted
Machines,” The Seventh USENIX Security Symposium Proceed-
ings, USENIX Press, Jan. 1998, pp. 53-62, https://www.schneler.
com/paper-secure-logs.pdf.

Official Communication for FEuropean Patent Application No.
12181585.6 dated Sep. 4, 2015.

Galliford, Miles, “Snaglt Versus Free Screen Capture Software:
Critical Tools for Website Owners,” <http://www.subhub.com/
articles/free-screen-capture-software>, Mar. 27, 2008, pp. 11.
Crosby et al., “Efficient Data Structures for Tamper-Evident Log-
ging,” Department of Computer Science, Rice University, 2009, pp.
17.

Ferreira et al., “A Scheme for Analyzing Electronic Payment
Systems,” Basil 1997.

Ofhicial Communication for Canadian Patent Application No. 2831660
dated Jun. 9, 2015.

Online Tech Tips, “Clip2Net—Share files, folders and screenshots
easily,” <http://www.online-tech-tips.com/free-software-downloads/
share-files-folders-screenshots/>, Apr. 2, 2008, pp. 5.

Official Communication for Australian Patent Application No.
2014201507 dated Feb. 27, 2015.

FireEye—Products and Solutions Overview, <http://www fireeye.
com/products-and-solutions> Printed Jun. 30, 2014 1n 3 pages.
Official Communication for New Zealand Patent Application No.
622414 dated Mar. 24, 2014.

Official Communication for Netherlands Patent Application No.
2013306 dated Apr. 24, 2015.

VirusTotal—About, <http://www.virustotal.com/en/about/> Printed
Jun. 30, 2014 1in 8 pages.

Palantir, “Kite Data-Integration Process Overview,” Palantir Tech-
nologies, Inc., Copyright 2010, pp. 48.

Official Communication for European Patent Application No.
14158958.0 dated Apr. 16, 2015.

Chaudhuri et al., “An Overview of Business Intelligence Technol-
ogy,” Communications of the ACM, Aug. 2011, vol. 54, No. 8.
Official Communication for New Zealand Patent Application No.
628161 dated Aug. 25, 2014.

Oflicial Communication for European Patent Application No.
14189344.6 dated Feb. 29, 2016.

Palantir, “The Repository Element,” https://docs.palantir.com/gotham/
3.11.1.0/dataguide/kite _config file.04 printed Aug. 30, 2013 in 2
pages.

Official Communication for New Zealand Patent Application No.
622513 dated Apr. 3, 2014.

Official Communication for Great Britain Patent Application No.
1404486.1 dated Aug. 27, 2014.

Palantir, “Kite Operations,” Palantir Technologies, Inc., Copyright
2010, p. 1.

Official Communication for European Patent Application No.
14158977.0 dated Apr. 16, 2015.

Official Communication for Great Britain Patent Application No.
1404479.6 dated Aug. 12, 2014.

Official Communication for Great Britain Patent Application No.
1404499 .4 dated Aug. 20, 2014.

JetScreenshot.com, “Share Screenshots via Internet in Seconds,”
<http://web.archive.org/web/20130807164204/http://www etscreenshot.
com/>, Aug. 7, 2013, pp. 1.

Kokossi et al., “D7-Dynamic Ontoloty Management System (Design),”
Information Societies Technology Programme, Jan. 10, 2002, pp.
1-27.

“Remove a Published Document or Blog Post,” Sharing and Col-
laborating on Blog Post.

Bluttman et al., “Excel Formulas and Functions for Dummies,”
20035, Wiley Publishing, Inc., pp. 280, 284-286.

Official Communication for Great Britain Patent Application No.
1404489.5 dated Aug. 27, 2014.

Schneier et al., “Automatic Event Stream Notarization Using Digi-
tal Signatures,” Security Protocols, International Workshop Apr.
1996 Proceedings, Springer-Verlag, 1997, pp. 155-169, https://
schneler.com/paper-event-stream.pdf.

US RE48,589 E
Page 7

(56) References Cited
OTHER PUBLICATIONS

Niepert et al., “A Dynamic Ontology for a Dynamic Reference
Work”, Jomnt Conference on Digital Libraries, Jun. 17 22, 2007,
Vancouver, British Columbia, Canada, pp. 1-10.

Zheng et al., “Goeast: a web-based software toolkit for Gene
Ontology enrichment analysis,” Nucleic acids research 36.suppl 2
(2008): pp. W385-W363.

Palantir, https://docs.palantir.com/gotham/3.11.1.0/datagmide/baggage/
KiteSchema.xsd printed Apr. 4, 2014 1n 4 pages.

Warren, Christina, “TUAW Faceofl: Screenshot apps on the firing
line,” <http://www.tuaw.com/2008/05/05/tuaw-faceoft-screenshot-
apps-on-the-firing-line/>, May 5, 2008, pp. 11.

Official Communication for New Zealand Patent Application No.
622473 dated Mar. 27, 2014.

Palantir, “Write a Kite Configuration File in Eclipse,” Palantir
Technologies, Inc., Copyright 2010, pp. 2.

Official Communication for Australian Patent Application No.
2013251186 dated Mar. 12, 2015.

Official Communication for New Zealand Patent Application No.
622497 dated Mar. 26, 2014.

Official Communication for European Patent Application No.
14158977.0 dated Jun. 10, 2014.

Anonymous, “BackTult _ JD Edwards One World Version Control
System,” printed Jul. 23, 2007 in 1 page.

Ma et al., “A New Approach to Secure Logging,” ACM Transac-
tions on Storage, vol. 5, No. 1, Article 2, Published Mar. 2009, 21

pages.

Wollrath et al., “A Distributed Object Model for the Java System,”
Conference on Object-Oriented Technologies and Systems, Jun.
17-21, 1996, pp. 219-231.

Miklau et al., “Securing History: Privacy and Accountability 1n
Database Systems,” 3 rd Biennial Conference on Innovative Data
Systems Research (CIDR), Jan. 7-10, 2007, Asilomar, California,
pp. 387-396.

Notice of Acceptance for Australian Patent Application No. 2013251186
dated Nov. 6, 2015.

Microsoft, “Using the Clipboard,” <http://msdn.microsoft.com/en-
us/library/ms649016.aspx>, printed Jun. 8, 2009 1n 20 pages.
Official Communication for Canadian Patent Application No. 2666364
dated Jun. 4, 2012.

Snaglt, “Snaglt 8.1.0 Print Out 2,” Software release date Jun. 15,
20006, pp. 1-3.

Official Communication for New Zealand Patent Application No.
622389 dated Mar. 20, 2014.

O’Reilly.com, http://oreilly.com/digitalmedia/2006/01/01/mac-0s-x-
screenshot-secrets.html published Jan. 1, 2006 in 10 pages.
Official Communication for European Patent Application No.
14159629.6 dated Jul. 31, 2014,

“A Tour of Pinboard,” <http://pinboard.in/tour> as printed May 15,
2014 1n 6 page.

Kahan et al., “Annotea: an Open RDF Infrastructure for Shared Web
Annotations”, Computer Networks, Elsevier Science Publishers
B.V.,, vol. 39, No. 5, dated Aug. 5, 2002.

Oflicial Communication for New Zealand Patent Application No.
622484 dated Apr. 2, 2014.

FEuropean Claims application No. 11807426.9-1951, dated Nov.
2016, 7 pages.

European Patent Office, “Search Report” in application No. 11807426.
9-1951, dated Nov. 15, 2016, 8 pages.

Parker et al., “Detection of Mutual Inconsistency in Distributed
System”, IEEE, vol. SE-9, No. 3, dated May 1, 1983, 8 pages.
Saito et al., “Optimustic Replication” Technical Report, dated Sep.
2003, 52, pages.

Parker Jr. et al., “Detection of Mutual Inconsistency in Distributed
Systems”, IEEE vol. SE-9, No. 3, dated May 1983, 8 pages.
Oflicial Communication for Canadian Patent Application No. 2,826,905
dated Oct. 17, 2016.

Anonymous, “Record Linkage—Wikipedia”, dated Apr. 26, 2011,
https://en.wikipedia.org/w/index.php?title=Record linkage&oldid=
426069016, 5 pages.

European Patent Oflice, Search Opinion, Application No. EP-13 152

370.6, dated Jun. 3, 2013, 8 pages.

European Claims 1n application No. EP-13 152 370.6, dated Jun.
2013, 5 pages.

European Patent Office, “Search Report™ in application No. 11 807
426.9-1217, dated May 16, 2018, 7 pages.

European Claims 1n application No. 11 807 426.9-1217, dated May
2018, 7 pages.

IP Australia, AU Patent Examination Report, Application No.
2012/238282, dated Jun. 6, 2014.

IP Australia, AU Patent Examination Report, Application No.
2012/2838282, dated Jan. 30, 2014.

O’Sullivan B, et al., “Making Sense of Revision-Control Systems”,
Communications of the ACM, vol. 52, No. 9, dated Sep. 2009, pp.
57-62.

Ries et al., “Locking Granularity Revisited”, ACM Transactions on
Database Systems, ACM, New York, NY, US vol. 4, No. 2, dated
Jun. 1, 1979, 18 pages.

Reiher, Peter et al., “Resolving File Conflicts in the Ficus File
System”, USENIX, The Advanced Computing Systems Associa-
tion, dated Aug. 17, 1995, pp. 1-13.

Ratner, David, “Selective Replication: Fine-Grain Control of Rep-
licated Files”, dated 1995, 97 pages.

Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority, or the
Declaration received in Application No. PCT/US11/43794 dated
Feb. 24, 2012 (9 pages).

Current Claims of PCT Application No. PCT/US11/43794 dated
Feb. 2012 (6 pages).

The International Bureau of WIPO Switzerland, “Written Opinion
and Search Report”, in application No. PCT/US2011/043794 dated
Jan. 24, 2013, 5 pages.

Current Claims 1n application No. PCT/US2011/043794 dated Jan.
2013, 6 pages.

U.S. Appl. No. 13/076,804, filed Mar. 31, 2011, Final Oflice Action.
U.S. Appl. No. 13/686,750, filed Nov. 27, 2012, Notice of Allow-
ance.

European Search Report, EP Application No. 13152370.6-1951,
dated Jun. 3, 2013, 8 pages.

Claims from EP Application No. 13152370.6, dated Jun. 2013, 5
pages.

D. Scott Parker, Jr. et al., “Detection of Mutual Inconsistency in

Distributed Systems” IEEE Transactions in Software Engineering,
XP 000654801, May 1993, 8 pages.

* cited by examiner

U.S. Patent Jun. 8, 2021 Sheet 1 of 7 US RE48.589 E

FIG. 1
100
SITE 101 |
DECONFLICTION LOGIC 120 .
|

e L ., 1

COPY 111

SITE 102 | | SITE 103
| L DECONFLICTION LOGIC 120 | | DECONFLICTION LOGIC 120
| I B
BT e G
i : COPY 113
J D —

U.S. Patent Jun. 8, 2021 Sheet 2 of 7 US RE48.589 E

FIG. 2

200

PROPERTIES 203

- = = 1

| | LINK SET 204
| 1]

|

|

DATA
OBJECT

U.S. Patent Jun. 8, 2021 Sheet 3 of 7 US RE48.589 E

FIG. 3

305
| Make change to local copy of data object l/
Increment local logical clock in version | 310
vector for data object

315

300

Share change with other sites

End

U.S. Patent Jun. 8, 2021 Sheet 4 of 7 US RE48.589 E

FIG. 4 ([Stat)
400 ____}__ o

Receive update for data object

:

Compare version vector for the data object
in the update with local version vector for the
data object

405

410

415
N Concurrent Yes
| Versions? I
-y Deconflict concurrent
Incorporate or discard | — 440 changes "\ 420

update i

Make local change to data
object N\ 425

:

Update No

incorporated?

Merge version vectors only; ,f 450 I
do not increment local
logical clock

L i m

| Increment local logical clock
| and share change 435

U.S. Patent Jun. 8, 2021 Sheet 5 of 7 US RE48.589 E

<1, 0, 0> Site 101 Site 102 |<1, 0, 0> Site 103
Type: Persan Type: Person <1,0,0>
IName: J.S. Name: J.S. Type: Person
Name J.S.
<2, 0, 0> <2, 0, 0>
Type: Person Type: Person .
Name John Smith 507 Name: John Smith <2,0,0>
— Type: Person
Name: John Smith
505 — _ _
509
513 511
| <2, 1, 0> 515 <2, 0, 1>
| Type: Person 517] Type: Person
Name: John Smith o1 Name: John Smith
Phone#: 999-993C |Address: 123 Peach
<2,2, 1> 591 597 | <2, 1, E> o
Type: Person Type: Person
J, Name: John Smith 923 2 Name: John Smith
3 Phonet#: 998-9999 Phone#: 999-9999
T Address: 123 Peach Address: 123 Peach
<2,2, 62> 531 N\ <2, 2, 2>
Type: Person Type: Person
Name: John Smith | YName: John Smith
Phone#: 999-0999 Phone#: 999-9999
Address: 123 Peach | | Address: 123 Peach

U.S. Patent Jun. 8, 2021 Sheet 6 of 7 US RE48.589 E

Site A Site B
- _
<,0, 0> <1, 0, 0>
Data Object.& Data Object X
«1,0,0> 1,0,00
Data Object Y Data Object Y
603 605
<2, 0, 0> 507 500 <1, 0, 0> |
LD—ata _Object X Link Set XY
<2, 0, 0> I I <2,0,0>
Data Object X 611 613 Data Object X
<1, 0, 0> <1,0, 0>
Data Object Y Data Object Y

<1, 0, 0> <1, 0, 0>
Link Set X-Y Link Set X-Y

S —]|T]

US RE48,589 L

07!
¢l
NI
MUOMLIN

gy THOMIEN
-
-~
&
™~
3

2 9z
7 p,
y—
g
—
g
<
=
o’
-
97/
el
HIAYIS

U.S. Patent

- 007

0L

3IIA30
JOVd01S

JOVAddLN
NOILVOINNWNQD

snd

¥0.L

d40SS400¥d

90/
AHOWEN

NIVIA

917z
108.LNOD
d0SdHMNO

JOIAIA LOdNI

4%
AV 1dSI0

. Ol

US RE48,589 E

1

SHARING AND DECONFLICTING DATA
CHANGLES IN A MULTIMASTER DATABASE
SYSTEM

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

TECHNICAL FIELD

The present disclosure generally relates to distributed
computing systems and, in particular, to sharing and decon-
fliction of data changes 1n a multi-master database system.

BACKGROUND

In a multimaster database system, data is stored in a group
of databases, data changes may be made to any member of
the group, and data changes made to one member are
propagated to the rest of the group. Multimaster database
systems typically employ either a “synchronous” or an
“asynchronous” replication scheme for propagating a
change made to one database to the rest of the databases 1n
the group.

In synchronous multimaster replication, each change 1s
applied to all databases 1n the group immediately or to none
of the databases 1f one or more of the databases 1n the group
cannot accept the change. For example, one of the databases
may be oflline or unavailable. Synchronous multimaster
replication 1s typically achieved using a two-phase commit
protocol.

In contrast, 1n “asynchronous” multimaster replication, a
change made to a database 1s immediately accepted by the
database but propagation of the change to other databases 1n
the group may be deferred. Because propagation of changes
may be deferred, 11 one or more of the databases 1n the group
are unavailable, the available databases can still accept
changes, queuing the changes locally until they can be
propagated. For this reason, multimaster database systems
employing an asynchronous replication strategy are consid-
ered to be more highly available than multimaster database
systems employing a synchronous replication strategy.
However, asynchronous replication raises the possibility of
conflicts that occur as a result of concurrent database
changes.

A contlict can arise 1 a multimaster database system
when the same data i1s changed 1n two different databases
betore either one of those changes can be propagated to the
other. For example, assume that in database A data repre-
senting a particular person’s eye color 1s changed to
“brown”, and after that change but before that change can be
propagated to database B data in database B representing the
particular person’s eye color 1s changed to “green”. Without
additional information, 1t 1s unclear which change 1s the
“correct” change that should be adopted by all databases 1n
the system.

Multimaster database systems employing an asynchro-
nous replication scheme typically provide mechanisms for
“decontlicting” conflicts. As used herein, the term “decon-
flict”, refers generally to detecting and resolving a contlict
such that a resolution of the conflict 1s eventually adopted by
all databases 1n the system. In some cases, the multimaster
database system may be able to decontlict automatically

10

15

20

25

30

35

40

45

50

55

60

65

2

without requiring user mtervention. In other cases, user
intervention may be required to determine which of the
concurrent changes should be adopted.

In multimaster database systems employing asynchronous
replication, when conflicts are detected has an enormous
cllect on the integrity of database data. For example, some
database systems may support “object resolution”. Object
resolution mmvolves a user or an automated computing pro-
cess determining that two or more separate data objects
actually represent the same real-world entity and mnvoking a
function of the database system so that the separate data
objects are resolved into a single data object. For example,
assume there are two separate data objects, one having a
name property value of “John Smith”, the other having a
name property value of “J. S.””. A user may decide that these
two data objects both represent the same real-world person.
Accordingly, 1n a database system that supports object
resolution, the user may ivoke a function of the database
system so that the two separate data objects are resolved to
a single data object having a name property value of “John
Smith” or “J.S.” as selected by the user resolving the objects
together.

In multimaster database systems employing asynchronous
replication, it would be desirable to detect as a conflict
concurrent changes that include an object resolution change.
For example, assume that in database A, User 1 changed the
hair color property of a data object representing a person
named “J.S.” from “brown” to “blonde”. Further assume
that before the hair color change made by User 1 can be
propagated from database A to database B that User 2
changes database B by resolving together the data object
representing “J.S.” with another data object representing a
person named “John Smith”. It would be desirable for the
multimaster database system to detect these two concurrent
changes as a contlict as User 2 may not have decided to
resolve “I.S.” and “John Smith” together 1f User 2 had
known that John Smith’s hair color was changed by User 1.
Similarly, User 1 may not have decided to change the hair
color of “J.5.” had User 1 known that User 2 resolved “J.S.”
and “John Smith” together.

What 1s a needed then 1s a multimaster database system
employing asynchronous replication that detects contlicts
resulting from concurrent changes 1n a manner that is 1 line
with user expectations and that handles the deconfliction and
propagation of such changes appropriately. Embodiments of
the present invention fulfill these and other needs.

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therefore,
unless otherwise indicated, 1t should not be assumed that any

of the approaches described in this section quality as prior
art merely by virtue of their inclusion 1n this section.

BRIEF DESCRIPTION OF DRAWINGS

The present invention 1s illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1 illustrates a multimaster database system for use 1n
sharing and decontlicting data changes amongst a plurality
of replication sites according to an embodiment of the
invention.

FIG. 2 illustrates an object-centric conceptual data model
according to an embodiment of the invention.

US RE48,589 E

3

FIG. 3 1llustrates a method for sharing a data change to a
data object 1n a multimaster database system using per-
object version vectors, according to an embodiment of the
invention.

FIG. 4 illustrates a method for detecting and decontlicting,
a conflict involving concurrent changes to a data object
using per-object version vectors, according to an embodi-
ment of the invention.

FI1G. 35 illustrates an example of detecting and decontlict-
ing a contlict involving concurrent changes to a data object
using per-object version vectors according to an embodi-
ment of the invention.

FIG. 6 illustrates an example of sharing data changes
using per-link set version vectors according to an embodi-
ment of the invention.

FIG. 7 illustrates a computer system with which an
embodiment may be implemented.

DETAILED DESCRIPTION

Introduction

Referring to the figures, exemplary embodiments of the
invention will now be described. The exemplary embodi-
ments are primarily described with reference to block dia-
grams or flowcharts. As to the flowcharts, each block within
the flowcharts represents both a method step and an appa-
ratus element for performing the method step. Depending
upon the implementation, the corresponding apparatus ele-
ment may be configured 1n hardware, software, firmware, or
combinations thereof.

Further, in the following description, for the purposes of
explanation, numerous specific details are set forth 1n order
to provide a thorough understanding of the present inven-
tion. It will be apparent, however, that the present invention
may be practiced without these specific details. In other
instances, block diagrams include well-known structures
and devices 1n order to avoid unnecessarily obscuring the
present mvention.

Overview

According to one or more embodiments of the present
invention, a multimaster database system and computer-
based method therein provide sharing and deconfliction of
data changes amongst a plurality of replication sites.

In a particular embodiment, data changes at sites to data
objects are tracked by each site on a per-data object basis
using per-data object version vectors. The method includes
a first computing device at a first site making a change to a
data object. The first computing device shares the change to
the data object with one or more other sites. A second
computing device at a second site recerves an update reflect-
ing the change to the data object made by the first computing
device at the first site. The update includes an 1dentification
of the data object, data reflecting the change to the data
object, and a version vector for the data object at the first
site. The second computing device obtains a version vector
for the data object at the second site and compares the
version vector of the data object at the first site to the version
vector of the data object at the second site to determine
whether the two version vectors are identical, ordered, or
concurrent. Based on this comparison, the second site either
attempts to automatically deconftlict the two versions of the
data object if, according to their version vectors, they are
concurrent, or automatically incorporates the received
update into the second site’s copy of the data object if,

10

15

20

25

30

35

40

45

50

55

60

65

4

according to their version vectors, the version of the data
object at the second site 1s ordered before the version
received 1n the update.

In another particular embodiment, data changes at sites to
links connecting two data objects are tracked on a per-link
set basis using per-link set version vectors. The method
includes a first computing device at a first site making a
change to a set of links connecting two data objects. The first
computing device shares the change to the link set with one
or more other sites. A second computing device at a second
site recerves an update reflecting the change to the link set
made by the first computing device at the first site. The
update includes an 1identification of the link set and a version
vector for the link set at the first site. The second computing
device obtains a version vector for the link set at the second
site and compares the version vector for link set at the first
site to the version vector of the link set at the second site to
determine whether the two version vectors are identical,
ordered, or concurrent. Based on this comparison, the sec-
ond site either attempts to automatically decontlict the two
versions of the link set 11, according to their version vectors,
they are concurrent, or automatically incorporates the
received update into the second site’s copy of the link set if,
according to their version vectors, the version of the link set
at the second site 1s ordered before the version received 1n
the update.

In another particular embodiment, per-object version vec-
tors are used to detect a contlict resulting from concurrent
changes at two or more sites in which at least one of the
concurrent changes includes an object resolution change.
The method 1ncludes a first computing device at a first site
of the plurality of sites resolving two or more data objects
together via an object resolution feature of a database system
or database application. The first computing device shares
the resolution change with one or more other sites of the
plurality of sites. A second computing device receives an
update reflecting the resolution change made by the first
computing device at the first site. The update includes an
identification of each of the two or more data objects that
were resolved together, and, for each of the two or more data
objects, a version vector of the data object at the first site.
The second computing device obtains, for each of the two or
more data objects, a version vector of the data object at the
second site. The second computing device compares, for
cach of the two or more data objects, the version vector of
the data object at the first site to the version vector of the data
object at the second site to determine whether the two
versions are 1dentical, ordered, or concurrent. In response to
the second computing device determining that the version
vector of at least one data object of the two or more data
objects at the first site 1s concurrent with the version vector
of the at least one data object at the second site, the second
computing device determines that the resolution change
made by the first computing device at the first site contlicts
with the version of the at least one data object at the second
site.

Other embodiments include, without limitation, a com-
puter-readable non-transitory medium that includes proces-
sor-executable istructions that enable a processing unit to
implement one or more aspects of the disclosed methods as
well as a system configured to implement one or more
aspects of the disclosed methods.

Multimaster Database System with Decontliction Engine

FIG. 1 1illustrates a multimaster database system 100 for
use 1n sharing and decontlicting data changes amongst a
plurality of replication sites according to an embodiment of
the invention. In one embodiment, sites 101, 102, and 103

US RE48,589 E

S

are coupled through one or more data networks such as the
Internet, one or more wide area networks (WANSs), one or
more local area networks (LANs), one or more network
communication buses, or some combination thereof. It 1s not
necessary that a highly or continuously available data net-
work exist between replication sites and the data network(s)
connecting any two sites may only be periodically available.
In another embodiment, one or more of the sites are not
connected to any other site in the system and data 1is
transported to and from these sites manually using portable

media or a portable media device as such as a Compact Disc
(CD), a Dagital Versatile Disc (DVD), Universal Serial Bus

(USB) flash device, etc.

Each site 101, 102, and 103 may comprise one or more
networked computing devices such as one or more work-
station computers, server computers, laptop computers,
mobile computing devices, or combinations thereol con-
nected to each other via one or more data networks. Further,
while only three sites are shown i FIG. 1, multimaster
database system 100 may comprise many hundreds or even
many thousands of geographically distributed sites.

According to one embodiment, each site 101, 102, and
103 each have copies 111, 112, and 113 of the same body of
data. The body of data may be, for example, one or more
tables 1n a relational database. However, embodiments of the
invention are not limited to relational databases and any type
of database capable of supporting the conceptual data model
described herein may be used. Non-limiting examples of
types of databases capable of supporting the conceptual data
model described herein include relational databases, hierar-
chical databases, and object-oriented databases.

With respect to that particular body of data, site 101 may
be configured to asynchronously propagate to site 102
changes made to copy 111, and asynchronously propagate to
site 103 changes made to copy 111. Similarly, site 102 may
be configured to asynchronously propagate to site 101
changes made to copy 112, and asynchronously propagate to
site 103 changes made to copy 212. Site 103 may be
configured to asynchronously propagate to both sites 101
and 102 changes made to copy 113. However, 1t 1s not
necessary that each site be configured to propagate to every
other site changes made to its copy of the body of data. In
other words, a full-meshed multimaster site topology 1s not
required to implement embodiments of the invention and
partially-meshed or cascading multimaster topologies may
be used.

As system 100 employs an asynchronous replication
scheme, each copy 111, 112, and 113 of the body of data 1s
loosely consistent with the other copies. That 1s, each copy
may diverge from time to time such that at any given
moment one copy’s view of the body of data may be
different from another copy’s view of the body of data. In the
absence of new changes, the copies are expected to even-
tually become consistent with one another. Thus, as well as
being loosely consistent with one another, the copies 112,
112, 113, etc. can also be said to be eventually consistent.

Each site 101, 102, and 103 has deconfliction logic 120
for receiving remote changes to the body of data from other
sites, detecting conflicts, decontlicting detected contlicts
cither automatically or with user assistance, and sharing
local changes to the body of data with other sites. Decon-
fliction logic 120 may be implemented as one or more
computer software programs, one or more field program-
mable logics, hard-wired logic, or a combination thereof. In
one embodiment, deconfliction logic 120 1s a soltware
component of a database management system such as those
commercially available from the Oracle Corporation of

10

15

20

25

30

35

40

45

50

55

60

65

6

Redwood Shores, Calif. and the Microsoft Corporation of
Redmond Wash. In another embodiment, decontliction logic
120 1s software component of a web-based, server-based or
desktop application that uses a database management system
for performing the decontliction techmques described
herein. In yet another embodiment, decontliction logic 120
1s 1mplemented 1 part by a web-based, server-based or
desktop application and 1n part by a database management
system.

As used herein, the term “change”, unless otherwise
apparent from the surrounding text, refers to an addition,
edit, or deletion to a copy of the body of data at a site. A
change can be 1nitiated by a user or a computing process. In
addition, a change can also be initiated by deconfliction
logic 120 1n response to receiving notification of a previous
change made at a site diflerent from the site receiving the
notification.

As used herein, the term “update”, unless otherwise
apparent from the surrounding text, refers to nformation
about a change that 1s sent from the site that made the change
to another site. Each change may result 1n an update being
received by every other site so that the other sites can
incorporate the change into their respective copies of the
body of data. Reception of an update at a site may raise a
contlict with the receiving site’s copy of the body of data.
Techniques implemented by decontliction logic 120 for
detecting and decontlicting conflicts in various scenarios are
described 1n greater detail below.

Object-Centric Data Model

In one embodiment, the body of data, of which each site
101, 102, and 103 maintains a copy of, 1s conceptually
structured according to an object-centric data model. It
should be understood that this conceptual data model 1s
independent of any particular database data model that may
be used for storing a copy of the body of data at a site. For
example, each object of the conceptual data model may
correspond to one or more rows 1n a relational database or
an entry 1 Lightweight Directory Access Protocol (LDAP)
database.

FIG. 2 1llustrates an object-centric conceptual data model
200 according to an embodiment. Model 200 1s centered on
the notion of a data object 201. At the highest level of
abstraction, data object 201 1s a container for information
representing things in the world. For example, data object
201 can represent an entity such as a person, a place, an
organization, or other noun. Data object 201 can represent an
event that happens at a point 1n time or for a duration. Data
object 201 can represent a document or other unstructured
data source such as an e-mail message, a news report, or a
written paper or article. At a minimum, each data object 201
1s associated with a unique identifier that uniquely 1dentifies
the data object within system 100. Each data object 201 may
also have a type (e.g., Person, Event, or Document) and a
display name which may be the value of a particular
property of the data object.

Each data object 201 may have one or more properties
203. Properties 203 are attributes of the data object 201 that
represent individual data items. At a minimum, each prop-
erty 203 of a data object 201 has a type and a value. Diflerent
types of data objects may have different types of properties.
For example, a Person data object might have an Eye Color
property and an Event object might have a Date property. In
one embodiment, the set of data object types and the set of
property types for each type of data object supported by the
system 100 are defined according to a pre-defined or user-
defined ontology or other hierarchical structuring of knowl-
edge through sub-categorization of object types and property

US RE48,589 E

7

types according to their relevant and/or cognitive qualities.
In addition, data model 200 may support property multi-
plicity. In particular, a data object 201 may be allowed to
have more than one property 203 of the same type. For
example, a Person data object might have multiple Address
properties or multiple Name properties.

Each link 202 represents a connection between two data
objects 201. In one embodiment, the connection 1s either
through a relationship, an event, or through matching prop-
erties.

A relationship connection may be asymmetrical or sym-
metrical. For example, Person data object A may be con-
nected to Person data object B by a Child Of relationship
(where Person data object B has an asymmetric Parent Of
relationship to Person data object A), a Kin Of symmetric
relationship to Person data object C, and an asymmetric
Member Of relationship to Organization data object X. The
type of relationship between two data objects may vary
depending on the types of the data objects. For example,
Person data object A may have an Appear In relationship
with Document data object Y or have a Participate In
relationship with Event data object E.

As an example of an event connection, two Person data
objects may be connected by an Airline Flight data object
representing a particular airline flight 11 they traveled
together on that flight, or by a Meeting data object repre-
senting a particular meeting 1f they both attended that
meeting. In one embodiment, when two data objects are
connected by an event, they are also connected by relation-
ships, 1n which each object has a specific relationship to the
event, such as, for example, an Appears In relationship.

As an example of a matching properties connection, two
Person data objects representing a brother and a sister, may
both have an Address property that indicates where they live.
It the brother and the sister live 1n the same home, then their
Address properties likely contain similar, if not identical
information. In one embodiment, a link between two data
objects may be established based on similar or matching
properties of the data objects.

The above are just some examples of the types of con-
nections that may be represented by a link and other types
of connections may be represented. Thus, 1t should be
understood that embodiments of the mvention are not lim-
ited to any particular types of connections between data
objects. For example, a document might contain two difler-
ent tagged entities. A link between two data objects may
represent a connection between these two entities through
their co-occurrence within the same document.

Each data object 201 can have multiple links with another
data object 201 to form a link set 204. For example, two
Person data objects representing a husband and a wite could
be linked through a Spouse Of relationship, a matching
property (Address), and an event (Wedding).

In one embodiment, data model 200 supports object
resolution. As mentioned above, object resolution 1includes a
user or an automated computing process determiming that
two or more separate data objects 201 actually represent the
same real-world entity and imnvoking a function of the system
100 at a site 101, 102, 103, etc. so that the separate data
objects appear to users of the system 100 as 1f they were a
single data object. In one embodiment, when one data object
201 1s resolved together with another data object 201 the
properties and links of one data object are copied to the other
data object and then deleted from the data object from which
they were copied. However, both data objects are still
retained by the system. As well as facilitating the ability to
un-resolve data objects that were previously resolved

10

15

20

25

30

35

40

45

50

55

60

65

8

together, retaining data objects after resolving them together
facilitates detection and decontliction of conflicts as
described 1n greater detail below.

Per-Data Object Version Vectors

A version vector 1s known mechanism for tracking
changes 1n distributed systems. However, version vectors
are typically employed on a per-site basis. That 1s, with
typical implementations ol version vectors in distributed
systems, each site uses a single version vector to track all
changes made to the copy of the database maintained by that
site.

In accordance with an embodiment of the invention, in
order to track and to decontlict changes to the body of data,
each site 101, 102, 103, etc. maintains version vectors on a
per-data object basis. By doing so, conflicts mmvolving
changes to properties of data objects and conflicts involving
object resolution changes can be appropnately detected and
decontlicted as explained 1n greater detail below.

In one embodiment, each site maintains one version
vector for each data object managed by the system. Thus, for
a system having m sites managing n data objects, each site
will maintain n version vectors for a total of m*n version
vectors maintained by all m sites. Each version vector may
contain up to m elements, one for each of the m sites. Each
clement of a version vector holds a value representing a
logical clock for the associated data object at the site
corresponding to the element. In a practical embodiment, to
conserve data storage space, data maintained at a site
representing a version vector may not represent all m
elements, but instead some subset of the m elements. For
example, elements of a version vector that have a default
value may not be represented.

Each site has, 1n each version vector that the site main-
tains, 1ts own logical clock value as one of the elements. This
logical clock value represents the version of the associated
data object at the site maintaiming the version vector. Each
other element 1n the version vector represents the site’s best
guess based on the updates the site has recerved of the
version of the associated data object at the site correspond-
ing to the other element.

In one embodiment, each element of a version vector 1s
set to some 1itial value (e.g., zero). When a site changes one
or more properties of a data object 1n a database transaction
against the site’s copy of the body of data, the site incre-
ments 1ts own logical clock 1n the version vector associated
with the data object by a fixed value (e.g., one). When
sharing the change with other sites as an update, the site
includes 1n the update data representing the change to the
data object and data representing the site’s version vector for
the data object after the increment. A site receiving the
update can compare the version vector in the update with its
own version vector for the data object to determine whether
the version of the data object at the receiving site and the
version of the data object in the update are: (1) identical, (2)
ordered, or (3) concurrent.

Known techniques for comparing two version vectors to
determine whether the two versions are i1dentical, ordered, or
concurrent can be used. In one embodiment, comparing two
version vectors includes comparing each element in one
version vector with the corresponding element in the other
version vector. Correspondence between elements 1s deter-
mined based on the site the elements correspond to. In
particular, the element for a site 1n one version vector 1s
compared against the element for the same site 1n the other
version vector. Two versions are 1dentical 1f each element in
one version vector equals the corresponding element 1n the
other version vector. The two versions are ordered 1f one

US RE48,589 E

9

version “happened before” the other. Version vector A
happened betfore version vector B 11 each element 1n version
vector B 1s greater than or equal to the corresponding
clement 1n version vector A and at least one element 1n the
version vector B 1s greater than the corresponding element
in version vector A. Similarly, version vector B happened
betfore version vector A 1f each element 1n version vector A
1s greater than or equal to the corresponding eclement 1n
version vector B and at least one element in the version
vector A 1s greater than the corresponding element 1n version
vector B. Two versions are concurrent 1f they are neither
identical nor ordered.

Sharing Changes to Data Objects Using Per-Object Ver-
s1on Vectors

FIG. 3 1llustrates a method 300 for sharing a data change
to a data object 1n a multimaster database system using
per-object version vectors, according to an embodiment of
the invention. As shown, the method 300 begins at step 305
where a site makes a change to a local copy of a data object
stored 1n the site’s copy of the body of data. For example, a
user may use a database application at the site to add, delete,
or edit one or more properties of the data object.

In one embodiment, as part of changing a data object at
a site, each change results 1n a new version of the data object
at the site. At step 310, the site’s local logical clock in the
version vector for the data object 1s incremented by a fixed
value (e.g., one) to retlect the new version of the data object
at the site where the change was made. The other elements
in the version vector are not incremented.

In one embodiment, each change to a data object at a site
1s shared with every other site 1n the system. Depending on
the topology of the multimaster system (e.g., full-meshed or
partially meshed), a site making a change may communicate
with every other site to share the change, or just some subset
of them that are responsible for communicating the change
with other sites. At step 315, the change made at step 305 1s
shared with at least one other site 1n the system. Sharing the
change includes sending, to the at least one other site, data
that represents the change and data that represents the
version vector for the changed data object after the incre-
ment at step 310.

In one embodiment, data that represents the change
includes an identifier of the data object and a materialized
representation of the data object including all properties of
the data object. In another embodiment, data that represents
the change includes an identifier of the data object but just
the properties of the data object affected by the change. Data
that represents the version vector for the changed data object
need not include a representation of each element of the
version vector and 1n a practical embodiment, data repre-
senting only a subset of all possible elements of the version
vector 1s shared with the at least one other site.

Detecting and Decontlicting Conflicts Involving Changes
to Data Objects Using Per-Object Version Vectors

FIG. 4 1llustrates a method 400 for detecting and decon-
flicting a conflict 1nvolving concurrent changes to a data
object using per-object version vectors, according to an
embodiment of the invention. As shown, the method 400
begins at step 405 where a site receives an update for a data
object from another site. The update includes data that
represents a change to the data object including an 1dentifier
of the changed data object and data that represents the
version vector for the changed data object. The version
vector represents the version of the data object at the site that
made the change immediately after the change was made.
For clarity of explanation, the version vector for the changed

10

15

20

25

30

35

40

45

50

55

60

65

10

data object received 1n the update will be referred to as the
changing site’s version vector for the data object.

At step 410, the site recerving the update obtains locally
its version vector for the data object based on the identifier
of the data object included 1n the update and compares 1ts
version vector with the changing site’s version vector to
determine whether the two versions are i1dentical, ordered, or
concurrent. As mentioned above, this comparison includes
comparing the changing site’s version vector with the
receiving site’s version vector on an element by element
basis.

At step 415, a determination 1s made whether the chang-
ing site’s version for the data object received in the update
and the receiving site’s version vector for the data object are
concurrent. If the two versions are concurrent, then a conflict
has been detected. That 1s, the version of the data object at
the recerving site reflects a change to the data object made
without knowledge of the change received 1n the update and
the version of the data object received 1n the update retlects
a change to the data object made without knowledge of the
change that the receiving site 1s aware of. If a conflict 1s
detected, then the method 400 proceeds to step 420 where
the concurrent changes resulting in the conflict 1s either
automatically or manually decontlicted.

At step 420, an 1mni1tial determination 1s made whether the
contlict can be automatically decontlicted. In one embodi-
ment, determining whether a contlict can be automatically
decontlicted 1s based on a set of heuristics and/or decon-
fliction rules. The set of heuristics and/or decontliction rules
may be user defined. For example, in one embodiment,
determining whether a conflict can be automatically decon-
flicted includes determining whether the concurrent changes
involve changes to non-overlapping properties or non-over-
lapping property types of the data object. For example, 1f the
change received 1n the update 1s to a Phone Number property
of a particular Person data object and the change the
receiving site 1s aware of 1s to an Address property of the
particular data object, then the system may automatically
determine that both changes can accepted. In one embodi-
ment, non-overlapping properties are detected at the receiv-
ing site by performing a property by property comparison
between the changing site’s version of the data object
received 1n the update and the receiving site’s version of the
data object.

If the conflict cannot be automatically decontlicted, then
the receiving site holds the update 1n a pending update queue
for the data object until it can be deconflicted with the [aide}
aid of user mput. For example, the recerving site may not be
able to automatically decontlict a conflict if the concurrent
changes ivolve changes to the same property of a data
object. For example, 11 the change received in the update 1s
to a Phone Number property of a particular Person data
object and the change to the data object the receiving site 1s
aware of 1s also to the Phone Number property of the
particular data object, then the receiving site may not be able
to automatically resolve the conflict. While an update to a
data object remains 1n the receiving site’s pending update
queue for the data object, the receiving site can continue to
make changes to the data object and accept and apply
updates to the data object received from other sites until the
user either discards or accepts the update.

In one embodiment, to help a user make an informed
decontliction decision when manually deconflicting a con-
flict involving concurrent changes to a data object, the
decontlicting site determines the greatest common ancestor
at the decontlicting site of (a) the version of the data object
in the pending update queue at the decontlicting site (pend-

US RE48,589 E

11

ing version) and (b) the current version of the data object at
the deconflicting site (current version). The greatest com-
mon ancestor of these two versions 1s determined as the most
recent version of the data object at the deconflicting site that
1s ordered before (1.€., happened before) both (a) the pending
version of the data object and (b) the current version of the
data object according to their respective version vectors. An
application at the decontlicting site uses the greatest com-
mon ancestor information to present to a user the differences
between both: (1) the greatest common ancestor version of
the data object and the pending version and (2) the greatest
common ancestor version and the current version. For
example, the application may present a graphical user inter-
face that provides a visual indication of the property-wise
differences so that a user can understand the nature of the
concurrent changes and indicate which version of the data
object 1s correct. Based on presentation of the difl

erences (1)
and (2), the user can determine which one of the two
versions for the data object 1s the correct version for the data
object and provide an indication through the application of
the selected version.

At step 425, the decontliction of the concurrent changes
in step 420 results 1 a change to the receiving site’s local
copy of the data object. The change to the data object retlects
the result of the decontliction. For example, if it was
determined 1n step 420 that the concurrent changes involved
non-overlapping properties, then the change made to the
data object at step 425 might involve modifying the receiv-
ing site’s local copy of the data object to incorporate the
changed non-overlapping properties received 1n the update.

After the change 1s made to the receiving site’s local copy
of the data object, at step 430, the changing site’s version
vector for the data object 1s merged together with the
receiving site’s version vector for the data object. Merging,
the two version vectors includes merging each element 1n the
changing site’s version vector for the data object with the
corresponding element 1n the receiving site’s version vector
tor the data object. Merging two elements includes choosing
the numerically greater of the two elements as the value of
the element 1n the new version vector. What 1s produced by
this merging at step 430 1s a new version vector that 1s
ordered after both the receiving site’s version vector for the
data object and the changing site’s version vector for the
data object. Stated otherwise, the receirving site’s version
vector for the data object and the changing site’s version
vector now both happened before the new version vector.
After the two version vectors are merged, the recerving site’s
version vector for the data object 1s replaced with the new
version vector which then becomes the version vector for the
data object at the receiving site.

Step 433 1s similar to a combination of steps 310 and 3135
of method 300. At step 435, the recerving site’s logical clock
in the version vector for the data object 1s incremented by a
fixed value (e.g., one) to reflect the change made at step 425
as a result of the deconfliction at step 420. The other
clements 1n the version vector are not incremented. In
addition, at step 430, the change(s) to the recerving site’s
copy of the data object are shared with other site(s) in the
system.

If, at step 415, the receiving site determines that the
changing site’s version vector for the data object and the
receiving site’s version vector for the data object are either
identical or ordered (1.e., not concurrent), then, at step 440,
the recerving site either incorporates the update into the
receiving site’s local copy of the data object or discards the
update. In one embodiment, the receiving site incorporates
the update into the receiving site’s local copy of the data

10

15

20

25

30

35

40

45

50

55

60

65

12

object if the receiving site’s version vector for the data
object 1s ordered before (1.e., happened before) the changing
site’s version vector for the data object. Incorporating the
update into the receiving site’s local copy of the data object
includes overwriting data object information in the receiving
site’s local copy with the superseding changes for the data
object included in the update. In one embodiment, the
receiving site discards the update if the receiving site’s
version vector for the data object 1s 1dentical to the changing
site’s version vector for the data object. The receiving site
may also discard the update 1f the changing site’s version
vector for the data object 1s ordered before (1.e., happened
before) the receiving site’s version vector for the data object.
In this latter case, the update represents an old change that
was already incorporated into and been superseded by the
receiving site’s version of the data object.

If, at step 435, the update was incorporated into the
receiving site’s local copy of the data object, then, at step
450, the changing site’s version vector for the data object 1s
merged together with the receiving site’s version vector for
the data object to produce a new version vector for the data
object at the receiving site. Step 450 1s similar to step 430.
However, unlike the case where the recerved update to the
data object 1s 1n contlict with the receiving site’s version of
the data object, the new version vector for the data object at
the receiving site 1s not incremented after merging the
receiving site’s version vector for the data object and the
changing site’s version vector for the data object.

Method 300 and method 400 of FIGS. 3 and 4 will now
be further explained by example with reference to FIG. S.
FIG. 5 1llustrates an example of sharing and decontlicting
data changes in multimaster system 100. Logical time pro-
ceeds downward from the top of the figure to the bottom as
events occur at the sites 101, 102, and 103. As shown, each
site 101, 102, and 103 mitially has identical copies of the
same data object. The data object has two attributes: a Type
attribute and a Name attribute. The Type attribute 1s set to the
value “Person” and the Name attribute 1s set to the value
“J.S.” 1n each copy of the data object at each site. In addition,
each site 101, 102, and 103 maintains a version vector for
the data object. Initially, the version vectors are identical
(1.e., <1, 0, 0>) reflecting that each site has the same version
of the data object. Each version vector has three elements,
one for each site 101, 102, and 103. In the example depicted
in FIG. §, the first (leftmost) element of each version vector
corresponds to site 101, the second (middle) element of each
version vector corresponds to site 102, and the third (right-
most) element of each version vector corresponds to site
103.

At event 503 at site 101, a local change 1s made to site
101°s copy of the data object. In particular, the Name
property 1s changed from “J.S.” to “John Smith™. In accor-
dance with step 310 of method 300, site 101°s logical clock
for the data object 1s incremented by a fixed value. In the
example, site 101°s logical clock 1n the version vector for the
data object 1s incremented from 1 to 2.

In accordance with step 315 of method 300, at event 505,
site 101 shares the change to 1ts copy of the data object with
site 102. In particular, an update 1s sent from site 101 to site
102. In one embodiment, the update includes an 1dentifier of
the data object, data representing the change made, and data
representing site 101°s version vector for the data object
(e.g., <2, 0, 0>).

At event 507, the update sent from site 101 1s received at
site 102. In accordance with step 410 of method 400, the
version vector for the data object recerved in the update <2,
0, 0> 1s compared against site 102°s current version vector

US RE48,589 E

13

for the data object <1, 0, 0>. Such comparison reveals that
sites 102’°s version vector happened before (1s ordered
betore) site 101°s version vector. Thus, the update recerved
at site 102 reflecting the change made at site 101 does not
contlict with site 102’s version of the data object. In accor-
dance with step 440 of method 400, site 102 incorporates the
change received 1n the update into 1ts local copy of the data
object with the change received in the update superseding
any differing properties of site 102’s copy of the data object.
In particular, the value of the Name property in site 102’s
copy of the data object 1s changed from “J.S.” to “John
Smith”. In accordance with step 450 of method 400, Site
101°s version vector for the data object recerved in the
update 1s merged with site 102’s version vector to produce
a new version vector for the data object at site 102 of <2, 0,
0>

At event 509, site 101°s update 1s propagated by site 102
to site 103. In one embodiment, site 102 1s configured to
perform such propagation as part of a partially-meshed or
cascading multimaster replication topology. In an alternative
embodiment, instead of relying on site 102 to propagate the
update, site 101 communicates the update to both site 102
and site 103 as part of a fully meshed multimaster replication
topology. At event 511, site 103 receives the update and
incorporates the update into 1ts local copy of the data object
and merges version vectors by performing steps similar to
those performed by site 102 at event 507.

Event 513 and event 513 represent concurrent changes to
the data object. In particular, at site 102 a Phone # property
1s added to the data object. At site 103, an Address property
1s added to the data object. In accordance with step 310 of
method 300, site 102 and site 103 both increment their
logical clock for the data object. At event 517, site 102 sends
an update to site 103 reflecting the addition of the Phone #
property. At event 519, site 103 sends an update to site 102
reflecting the addition of the Address property. Although not
shown 1n FIG. 5, sites 102 and 103 may also communicate
updates to other sites in the system (e.g., site 101). At event
521, site 102 receives the update sent from site 103 and
detects the conflict. In particular, the version vector received
in the update from site 103 (1.e., <2, 0, 1>) 1s not 1dentical
to, nor ordered before or after, the version vector for the
object at site 102 (1.e., <2, 1, 0>). In accordance with step
420 of method 400, site 102 attempts to automatically
decontlict the contlict based on a pre-specified set of heu-
ristics and/or decontliction rules. In the example of FIG. 5,
site 102 compares 1ts copy of the data object with the version
of the data object received 1n the update and determines that
the concurrent changes involve changes to non-overlapping,
properties. Thus, at event 512, site 102 determines that the
contlict can be automatically decontlicting and updates 1ts
local copy of the data object accordingly. In particular, the
Address property received in the update 1s added to site
102’°s local copy of the data object. Further, 1n accordance
with step 430 of method 400, site 102’°s version vector for
the data object 1s merged with site 103’s version vector for
the data object received 1n the update and the resulting
version vector becomes the new version vector for the data
object at site 102. Then, 1n accordance with step 4335 of
method 400, site 102 increments its logical clock in the
version vector for the data object by one to produce a [newe]
new version vector for the data object at site 102 of <2, 2,
1>

At event 523, site 103 performs a process similar to what
site 102 performs at event 521.

10

15

20

25

30

35

40

45

50

55

60

65

14

Avoiding Needless Repetitive Updates

After event 521 at site 102 and after event 523 at site 103,
site 102 and site 103 both have 1dentical copies of the data
object. However, site 102 and site 103 have different version
vectors for the data object. In the example, site 102 has a
version vector for the data object of <2, 2, 1> and site 103
has a version vector for the data object of <2, 1, 2>. In
accordance with step 4335 of method 400, site 102 and site
103 may send an update to each other reflecting their
respective automatic deconfliction operations performed at
events 521 and 523 respectively. When received by the other
site, these updates will be detected as contlict. For example,
site 102°s version vector <2, 2, 1> 1s not i1dentical, nor
ordered before or after, site 103’s version vector <2, 1, 2>,
If no corrective action 1s taken, site 102 and site 103 will
repeatedly and needlessly decontlict, increment their logical
clocks for the data object, and send updates to each other
ceven though both sites have identical copies of the data
object.

In one embodiment, to avoid needless repetitive updates,
at step 420 of method 400, after a conflict has been detected,
a comparison 1s made between the version of the data object
received 1n the update and the receiving site’s version of the
data object. If the two versions are identical, then only a
merge of the two version vectors 1s performed (step 430).
The recerving site’s local copy of the data object 1s not
changed and the receiving site’s logical clock 1n the version
vector for the data object 1s not incremented (1.e., steps 425
and 435 are not performed). In one embodiment, this com-
parison 1ncludes a property by property comparison between
the two versions of the data object.

For example, returning to FIG. 5, at event 529, site 102
receives an update from site 103 indicating that site 103
added the Phone # property to 1ts copy of the data object and
including its current version vector for the data object of <2,
1, 2>. Upon recerving this update, site 102 detects a contlict
because its version vector <2, 2, 1> i1s not identical to, nor
ordered before or after, site 103’s version vector <2, 1, 2>,
Site 102 compares 1ts version of the data object with the
version of the data object received 1n the update from site
103. Upon determining that the versions are 1dentical (1.e.,
both versions have the same properties with the same
values), site 102 merges the two version vectors to produce
a new version vector for the data object at site 102 of <2, 2,
2>, Site 103 performs a similar process at event 531 to arrive
at the same version vector <2, 2, 2>. Now that both version
vectors are identical, a conflict may [not] zo longer be
detected and updates relating to the previous decontliction
no longer propagated by the sites.

Per-Link Set Version Vectors

In one embodiment, links connecting two data objects are
versioned separately and independently from the data
objects connected by the links. In particular, the set of links
connecting two objects 1s associated with its own version
vector separate from the versions vectors associated with the
two objects. Each site maintains a version vector for each
link set. Changes to a link set at a site including adding a link
to the set or removing a link from the set result 1n the site
incrementing 1ts local logical clock for the link set and the
site sharing the change to the link set with other sites. The
versions vectors associated with copies of a link set at the
sites can be used to detect and decontlict conflicts mnvolving
concurrent changes to two diflerent copies of the same link
set 1n a manner similar that described above for how
per-object version vectors can be used to detect and decon-
tlict contlicts involving concurrent changes to two different
copies of the same data object.

US RE48,589 E

15

In addition, per-link set version vectors allow sites to
automatically incorporate a concurrent change that includes
a change to a link set and a change to a data object connected
to another data object by the link set. For example, assume
Site A and Site B have the same version of data object X and
the same version of data object Y. Further, assume that Site
A’s version vector for data object X 1s 1dentical to Site B’s
version vector for data object X and that Site A’s version
vector for data object Y 1s 1dentical to Site B’s version vector
for data object Y. If a local change 1s made to data object X
at Site A (e.g., by adding a new property), then Site A
increments 1ts local logical clock in the version vector for
data object X and sends an update to Site B. Assume that,
before Site B receives the update regarding the change to
data object X at Site A, a local change 1s made at Site B
linking data object X and data object Y. According to one
embodiment, this causes Site B to increment 1ts local logical
clock in the version vector for the link set connecting data
objects X and Y. However, in this case, Site B does not
increment 1ts local logical clock for either data object X or
data object Y. Site B then sends an update to Site A reflecting
the change to the link set between data objects X and Y.
Upon recerving the update from Site B regarding the link set
change, Site A incorporates the update such that data object
X as modified by the change at Site A 1s linked to data object
Y. Similarly, upon receiving the update from Site A regard-
ing the change to data object X, Site B incorporates the
update such that data object X as modified by the change at
Site A 1s linked to data object Y. After the updates have been
shared with each other, both Site A and Site B have 1dentical
copies of data object X and data object Y and 1dentical
copies of the links set connected data objects X and Y.

This example 1s illustrated 1n FIG. 6. As shown, mitially
Site A and Site B have the same version of data object X and
the same version of data object Y. Events 603 and 605
represent concurrent changes. In particular, at event 603, a
local change 1s made to data object X at Site A. For example,
a change 1s made mvolving a property of data object X.
Concurrently, at event 605, a local change 1s made at Site B
linking data object X and data object Y For example, 11 data
object X and data object Y each represent a particular
person, they may be linked through a Friend Of relationship.
At event 607, Site A shares 1ts change to data object X with
Site B and includes its version vector for data object X<2,
0, 0> 1n 1ts update. At event 609, Site B shares its change to
the X-Y link set and includes its version vector for the X-Y
link set <1, 0, 0> 1n 1ts update. Both sites receive and
incorporate each other’s updates into their respective copies
of the database at events 611 and 613. Note that in this
example there 1s no detected conflict between the concurrent
changes because the set of links connecting data objects X
and Y 1s versioned separately and independently of the data
objects X and Y themselves.

Using Per-Object Version Vectors to Detect Object Reso-
lution Contlicts

As mentioned, some database systems may support
“object resolution”. Object resolution mnvolves a user or an
automated computing process determining that two or more
separate data objects actually represent the same real-world
entity and invoking a function of the database system so that
the separate data objects are resolved together 1nto a single
data object. For example, assume there are two separate data
objects, one having a Name property value of “John Smith”,
the other having a Name property value of “J. S.”. A user
may decide that these two data objects both represent the
same real-world person. Accordingly, in a database system
that supports object resolution, the user may invoke a

10

15

20

25

30

35

40

45

50

55

60

65

16

function of the database system so that the two separate data
objects are resolved to a single data object having a name
property value of “John Smith” or “I.S.” as selected by the
user resolving the objects together.

In multimaster database systems employing asynchronous
replication, it would be desirable to detect as a conflict
concurrent changes that include an object resolution change.
For example, assume that in database A, User 1 changed the
hair color property of a data object representing a person
named “J.S.” from “brown” to “blonde”. Further assume
that before the hair color change made by User 1 can be
propagated from database A to database B that User 2
changes database B by resolving together the data object
representing “J.S.” with another data object representing a
person named “John Smith”. It would be desirable for the
multimaster database system to detect these two concurrent
changes as a contlict as User 2 may not have decided to
resolve “I.S.” and “John Smith” together 1f User 2 had
known that John Smith’s hair color was changed by User 1.
Similarly, User 1 may not have decided to change the hair
color of “J.5.” had User 1 known that User 2 resolved “J.S.”
and “John Smith” together.

In one embodiment, per-object version vectors are used to
detect as a contlict a concurrent change mvolving an object
resolution change. In particular, when a site resolves two or
more objects together, the site increments each local logical
clock at the site 1n each version vector for each data object
resolved together. The resolution of the data objects 1s then
shared as an update with other sites. The update includes the
sharing site’s resulting version vectors for each of the data
objects that were resolved together.

According to one embodiment, a site receiving the update
detects a contlict by comparing each version vector for each
data object 1n the object resolution update with 1ts version
vector for the corresponding data object. If any of the
version vectors are concurrent, then a conflict 1s detected.
The resolution of the objects 1s incorporated 1nto the receiv-
ing site’s copy of the database only if each and every version
vector recerved the update 1s 1dentical to or ordered after the
corresponding version vector at the recerving site.

As an example, assume data object X at site 101 of FIG.
1 has version vector <1, 0, 0> and data object Y at site 101
has version vector <1, 0, 0>. When data objects X and Y are
resolved together at site 101, each logical clock for data
objects X and Y at site 101 1s incremented by a fixed value
(e.g., one) giving a version vector at site 101 of <2, 0, 0,>
for data object X and a version vector at site 101 of <2, 0,
0> for data object Y. When the object resolution change at
site 101 1s shared by site 101 with other sites (e.g., site 102
and site 103), the update includes data indicating the object
resolution change (1.e., that data objects X and Y were
resolved together) and site 101°s version vectors for the data
objects that were resolved together (e.g., <2, 0, 0> for data
object X and <2, 0, 0> for data object Y). Further assume
that a change concurrent with the object resolution change
made at site 101 1s made to data object X at site 102 thereby
changing the version vector for data object X at site 102
from <1, 0, 0> to <1, 1, 0>. For example, a property of data
object X 1s modified at site 102. Upon receiving the update
sent from site 101 regarding the object resolution change,
site 102 will detect these concurrent changes as a conflict. A
conflict will be detected at site 102 because a version vector
for at least one data object received 1n the object resolution
update from site 101 1s concurrent with the version vector
for the data object at site 102. In particular, the version
vector for data object X received 1n the update <2, 0, 0> 1s
concurrent with the version vector for data object X at site

US RE48,589 E

17

102 <1, 1, 0>. In response to detecting the contlict, site 102
may attempt to automatically deconflict the contlict accord-
ing to pre-defined heuristics and/or decontliction rules, or
may require mput from a user to decontlict the conflict.

Object Resolution Aware Happens After (RAHA)

In one embodiment, a site recerving an update mvolving
a change to a data object that has been resolved together at
the recerving site with one or more other data objects will be
applied at the receiving site only 1f each and every data
object resolved together at the receiving site 1s available 1n
the update. If each and every data object 1s not available in
the update, then the update may be placed 1n the receiving
site’s pending update queue. A process at the receiving site
periodically scans the pending update queue for updates
that, when combined, include each and every data object
resolved together at the receiving site. If the scanning
process discovers such a combination, then the updates may
be applied atomically in combination at the receiving site.

For example, consider the following events that occur in
system 100 of FIG. 1:

(1) Both site 101 and site 102 have copies of data objects
X, Y, and Z each at version <1, 0, 0>. Further, data objects
X, Y, and Z are resolved together at both site 101 and site
102.

(2) At site 101, data object X 1s unresolved from data
objects Y and Z. Each version vector at site 101 1s incre-
mented such that each data object X, Y, and Z 1s now at
version <2, 0, 0> at site 101.

(3) Site 101 sends an update to site 102 that includes data
representing data object X at version <2, 0, 0> and data
representing the resolution of data objects Y and Z each at
version <2, 0, 0>,

(4) Site 102 recerves the update from site 101 and places
the update 1n 1ts pending update queue. The update 1s placed
in the pending update queue because neither data object X
at version <2, 0, 0> nor the resolution of data objects Y and
7. each at version <2, 0, 0> includes all the data objects 1n
the resolution of data objects X, Y, and Z each at version <1,
0, 0> at site 102.

(5) A scanming process at site 102 scans the pending
update queue for updates that, when combined, include each
and every of the data objects X, Y, and Z resolved together
at site 102. The scanning process finds the updates received
from site 102 in the pending update for data objects X, Y, and
7. and applies them to site 102’s copy of the body data after
which both site 101 and site 102 have data object X at
version <2, 0, 0> unresolved from resolved data objects Y
and 7, each at version <2, 0, 0>,

Per-Site Global Acknowledgement Version Vectors

In one embodiment, to aid 1n determining what changes
should be shared with other sites 1n the system, each site
maintains a single global acknowledgement version vector
which the site periodically shares with other sites in the
system. A site’s global acknowledgement version vector
reflects a merging of all version vectors for all changes
successiully applied to the site’s local copy of the shared
body of data. When a sending site shares a change with a
receiving site, the receiving system 1s guaranteed to have
successiully already received all changes that are ordered
before (1.e., happened belfore) the receiving site’s global
acknowledgement version vector. Thus, the sending site
need not send those changes to the receiving site that are
ordered betfore (1.e., happened belfore) the receiving site’s
global acknowledgement version vector.

In one embodiment, changes 1n the pending update queue
at a site are shared with other sites even though the updates
are pending and have not yet been decontlicted. This 1s done

10

15

20

25

30

35

40

45

50

55

60

65

18

for correctness 1n systems 1in which the replication topology
1s cyclic and/or dynamic. For example, consider system 100
of FIG. 1 1n which all three sites 101, 102, and 103 are
configured to share changes with each other. Further con-
sider the following events that occur 1n system 100:

(1) Site 101 sends to site 102 an update for data object A
at version <1, 0, 0> and an update for data object B at
version <1, 0, 0>,

(2) Concurrent with event (1), site 102 edits object A to
version <0, 1, 0>.

(3) Site 102, upon recerving the update for object B a
version <1, 0, 0,> from site 101, applies the update to its
local copy of object B. Site 102, upon receiving the update
for data object A at version <1, 0, 0> from site 101, places
the update 1n a pending update queue at site 102.

(4) Site 102 sends to site 103 an update for data object A
at version <0, 1, 0> and an update for data object B at
version <1, 0, 0>,

(5) Site 103, up receiving the update for object B at
version <1, 0, 0> from site 102, applies the update to its local
copy of object B. Site 103, upon receiving the update for
data object A at version <0, 1, 0> from site 102, applies the
update to 1ts local copy of object A. Site 103°s global
acknowledgement version vector 1s at <1, 1, 0> as a result
of merging the version vector for data object A at version <0,
1, 0> and the version vector for data object B at version <1,
0, 0>

In this example, 1f, at event (4), the update for data object
A at version <1, 0, 0> 1n site 102’s pending update queue 1s
not also shared with site 103, then site 103 may never
receive the update because site 103’s global acknowledg-
ment version vector indicates that site 103 has already
received the update. Thus, according to one embodiment,
site 102 at event (4) will also share with site 103 the update
in 1ts pending update queue for data object A at version <1,
0, 0>. This 1s so even though the update has not yet been
decontlicted. In one embodiment, the pending update is also
stored 1n site 103’s pending update queue. In this situation,
the conflict can now be decontlicted at either site 102 or site
103.

Implementing Mechanisms—Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 7 1s a block diagram that illustrates a
computer system 700 upon which an embodiment of the
invention may be implemented. Computer system 700
includes a bus 702 or other communication mechanism for
communicating information, and a hardware processor 704
coupled with bus 702 for processing information. Hardware
processor 704 may be, for example, a general purpose
MmICroprocessor.

US RE48,589 E

19

Computer system 700 also includes a main memory 706,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 702 for storing imnformation
and 1nstructions to be executed by processor 704. Main
memory 706 also may be used for storing temporary vari-
ables or other intermediate mformation during execution of
instructions to be executed by processor 704. Such nstruc-
tions, when stored 1n storage media accessible to processor
704, render computer system 700 imto a special-purpose
machine that 1s customized to perform the operations speci-
fied 1n the 1nstructions.

Computer system 700 further includes a read only

memory (ROM) 708 or other static storage device coupled
to bus 702 for storing static information and instructions for
processor 704. A storage device 710, such as a magnetic disk
or optical disk, 1s provided and coupled to bus 702 for
storing information and 1nstructions.

Computer system 700 may be coupled via bus 702 to a

display 712, such as a cathode ray tube (CRT), for displaying
40 mmformation to a computer user. An input device 714,
including alphanumeric and other keys, 1s coupled to bus
702 for communicating information and command selec-
tions to processor 704. Another type of user iput device 1s
cursor control 716, such as a mouse, a trackball, or cursor
direction keys for communicating direction information and
command selections to processor 704 and for controlling
cursor movement on display 712. This input device typically
has two degrees of freedom 1n two axes, a first axis (e.g., X)
and a second axis (e.g., v), that allows the device to specily
positions 1n a plane.

Computer system 700 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which 1n combination with the computer system causes or
programs computer system 700 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 700 in response to
processor 704 executing one or more sequences of one or
more instructions contained i main memory 706. Such
instructions may be read into main memory 706 from
another storage medium, such as storage device 710. Execu-
tion of the sequences of instructions contained 1n main
memory 706 causes processor 704 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or 1n combination
with software instructions.

The term “non-transitory media™ as used herein refers to
any media that store data and/or imstructions that cause a
machine to operation 1 a specific fashion. Such non-
transitory media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 710.
Volatile media includes dynamic memory, such as main
memory 706. Common forms of non-transitory media
include, for example, a floppy disk, a flexible disk, hard disk,
solid state drive, magnetic tape, or any other magnetic data
storage medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and FEPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Non-transitory media 1s distinct from but may be used 1n
conjunction with transmission media. Transmission media
participates 1n transferring information between non-transi-
tory media. For example, transmission media includes
coaxial cables, copper wire and fiber optics, including the
wires that comprise bus 702. Transmission media can also

5

10

15

20

25

30

35

40

45

50

55

60

65

20

take the form of acoustic or light waves, such as those
generated during radio-wave and infra-red data communi-
cations.

Various forms of media may be mnvolved 1n carrying one
or more sequences of one or more instructions to processor
704 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the mnstruc-
tions 1nto 1ts dynamic memory and send the 1nstructions over
a telephone line using a modem. A modem local to computer
system 700 can receive the data on the telephone line and
use an 1nfra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 702. Bus 702 carries the data to main memory
706, from which processor 704 retrieves and executes the
istructions. The instructions recerved by main memory 706
may optionally be stored on storage device 710 erther before
or after execution by processor 704.

Computer system 700 also includes a communication
interface 718 coupled to bus 702. Communication interface
718 provides a two-way data communication coupling to a
network link 720 that 1s connected to a local network 722.
For example, communication interface 718 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
718 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 718 sends and receirves
clectrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types ol information.

Network link 720 typically provides data communication
through one or more networks to other data devices. For
example, network link 720 may provide a connection
through local network 722 to a host computer 724 or to data
equipment operated by an Internet Service Provider (ISP)
726. ISP 726 1n turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 728. Local
network 722 and Internet 728 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 720 and through communication interface 718,
which carry the digital data to and from computer system
700, are example forms of transmission media.

Computer system 700 can send messages and receive
data, including program code, through the network(s), net-
work link 720 and communication interface 718. In the
Internet example, a server 730 might transmit a requested
code for an application program through Internet 728, ISP
726, local network 722 and communication interface 718.

The received code may be executed by processor 704 as
it 1s recerved, and/or stored in storage device 710, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the mnven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to 1mple-
mentation. Thus, the sole and exclusive indicator of what 1s
the mvention, and 1s intended by the applicants to be the
invention, 1s the set of claims that 1ssue from this applica-
tion, in the specific form 1 which such claims i1ssue,
including any subsequent correction. Any definitions
expressly set forth herein for terms contained 1n such claims
shall govern the meaning of such terms as used 1n the claims.

US RE48,589 E

21

Hence, no limitation, element, property, feature, advantage
or attribute that 1s not expressly recited 1n a claim should
limit the scope of such claim in any way. The specification
and drawings are, accordingly, to be regarded in an 1llus-
trative rather than a restrictive sense.

What 1s claimed 1s:

[1. In a multimaster database system comprising a plu-
rality of sites, a method for sharing and decontlicting data
changes, the method comprising:

at a first site of the plurality of sites, making a first change

to a set of one or more links connecting two data
objects by adding or removing one or more links from
the set of links:
wherein the set of links 1s associated at the first site with
a first version vector for the set of one or more links;

at a second site of the plurality of sites, making a second
change to the set of links connecting the two data
objects by adding or removing a link from the set of
links:

wherein the set of links 1s associated at the second site

with a second version vector for the set of links:
sharing the first change with the second site of the
plurality of sites;

receiving, at the second site, an update reflecting the first

change to the set of links at the first site;
wherein the update mcludes:
an 1dentification of the set of links,
data retlecting the first change to the set of links at the
first site, and

the first version vector for the set of links:

at the second site, comparing the first version vector for
the set of links to the second version vector for the set
of links to determine whether the first change to the set
of links at the first set and the second change to the set
of links at the second site are identical, ordered, or
concurrent;

wherein the method 1s performed by a plurality of com-

puting devices.}

[2. The method according to claim 1, wherein the second
change to the set of links 1s made at the second site before
the first change to the set of links 1s made at the first site; and
wherein the method further comprises determining, based on
the comparing, that the first and second changes are
ordered.}

[3. The method according to claim 1, wherein the second
change to the set of links 1s made at the second site before
the first change to the set of links 1s made at the first site; and
wherein the method further comprises determinming, based on
the comparing, that the first and second changes are con-
current.]

[4. In a multimaster database system comprising a plu-
rality of sites, a method for sharing and decontlicting data
changes, the method comprising:

at a first site of the plurality of sites:

resolving two or more data objects together to produce
a data object resolution change;

sharing the data object resolution change with one or
more other sites of the plurality of sites;

at a second site of the plurality of sites:

receiving an update reflecting the data object resolution
change made at the first site;
wherein the update includes:
an 1dentification of each of the two or more data
objects,
data that indicates that the two or more data objects
were resolved together, and

10

15

20

25

30

35

40

45

50

55

60

65

22

for each of the two or more data objects, a version
vector for the data object;

comparing, for each of one or more of the two or more
data objects, the version vector for the data object
received 1n the update to a version vector at the
second site for the data object to determine whether
the data object resolution change and a version at the
second site of the data object are 1dentical, ordered,
Or concurrent,

determining, based on the comparing, that the data
object resolution change 1s concurrent with a version
at the second site of at least one of the two or more
data objects; and

in response to determining that the data object resolu-
tion change 1s concurrent with a version at the
second site of at least one of the two or more data
objects, determining that the data object resolution
change contflicts with a version at the second site of
at least one of the two or more data objects;

wherein the method 1s performed by a plurality of com-

puting devices.]

[5. One or more non-transitory computer-readable media
storing instructions which, when executed by a plurality of
computing devices, cause performing a method for sharing
and decontlicting data changes 1n a multimaster database
system comprising a plurality of sites, the method compris-
ng:

at a first site of the plurality of sites, making a first change

to a set of one or more links connecting two data
objects by adding or removing one or more links from
the set of links:
wherein the set of links 1s associated at the first site with
a first version vector for the set of one or more links;

at a second site of the plurality of sites, making a second
change to the set of links connecting the two data
objects by adding or removing a link from the set of
links:

wherein the set of links 1s associated at the second site

with a second version vector for the set of links:
sharing the first change with the second site of the
plurality of sites;

receiving, at the second site, an update reflecting the first

change to the set of links at the first site;

wherein the update includes:

an 1dentification of the set of links,
data reflecting the first change to the set of links at the
first site, and
the first version vector for the set of links;
at the second site, comparing the first version vector for
the set of links to the second version vector for the set
of links to determine whether the first change to the set
of links at the first set and the second change to the set
of links at the second site are identical, ordered, or
concurrent.]

[6. The one or more non-transitory computer-readable
media of claim 5, wherein the second change to the set of
links 1s made at the second site before the first change to the
set of links 1s made at the first site; and wherein the method
further comprises determining, based on the comparing, that
the first and second changes are ordered.]

[7. The one or more non-transitory computer-readable
media of claim 5, wherein the second change to the set of
links 1s made at the second site before the first change to the
set of links 1s made at the first site; and wherein the method
turther comprises determining, based on the comparing, that
the first and second changes are concurrent.]

US RE48,589 E

23

[8. One or more non-transitory computer-readable media
storing 1nstructions which, when executed by a plurality of
computing devices, cause performing a method for sharing
and deconflicting data changes 1n a multimaster database
system comprising a plurality of sites, the method compris- 5
ng:

at a first site of the plurality of sites:

resolving two or more data objects together to produce
a data object resolution change;

sharing the data object resolution change with one or 10
more other sites of the plurality of sites;

at a second site of the plurality of sites:

receiving an update retlecting the data object resolution
change made at the first site;
wherein the update includes: 15
an 1dentification of each of the two or more data
objects,
data that indicates that the two or more data objects
were resolved together, and
for each of the two or more data objects, a version 20
vector for the data object;
comparing, for each of one or more of the two or more
data objects, the version vector for the data object
recerved 1n the update to a version vector at the
second site for the data object to determine whether 25
the data object resolution change and a version at the
second site of the data object are 1dentical, ordered.,
Or concurrent;
determining, based on the comparing, that the data
object resolution change 1s concurrent with a version 30
at the second site of at least one of the two or more
data objects; and
in response to determining that the data object resolu-
tion change 1s concurrent with a version at the
second site of at least one of the two or more data 35
objects, determining that the data object resolution
change contlicts with a version at the second site of
at least one of the two or more data objects.}

9. In a multimaster database system comprising a plu-
rality of sites, a method for sharing and deconflicting data 40
changes, the method comprising:

at a first site of the plurality of sites, making a first change

to a set of one or more links connecting two data
objects by adding or removing one ov more links from
the set of links; 45
wherein the set of links is associated at the first site with
a first version vector for the set of links, the first version
vector versioning the set of links separately and inde-
pendently of the two data objects connected by the set
of links; 50
at a second site of the plurality of sites, making a second
change to the set of links commnecting the two data
objects by adding or removing a link from the set of
links;

wherein the set of links is associated at the second site 55

with a second version vector for the set of links;

sharing the first change with the second site of the

plurality of sites;

receiving, at the second site, an update veflecting the first

change to the set of links at the first site; 60
whevrein the update includes:

an identification of the set of links,

data reflecting the first change to the set of links at the first

site, and

the first version vector for the set of links; 65

at the second site, comparing the first version vector for

the set of links to the second version vector for the set

24

of links to determine whether the first change to the set
of links at the first set and the second change to the set
of links at the second site ave identical, orderved, or
concurrent;

wherein the method is performed by a plurality of com-

puting devices.

10. The method according to claim 9, wherein the second
change to the set of links is made at the second site before
the first change to the set of links is made at the first site; and
wherein the method further comprises determining, based on
the comparing, that the first and second changes are
ordered.

11. The method accovding to claim 9, wherein the second
change to the set of links is made at the second site before
the first change to the set of links is made at the first site; and
wherein the method further comprises determining, based on
the comparing, that the first and second changes arve con-
currvent.

12. In a multimaster database system comprising a plu-
rality of sites, a method for sharing and deconflicting data
changes, the method comprising:

at a first site of the plurality of sites:

resolving two or movre data objects together to produce a

data object vesolution change;

sharing the data object resolution change with one or

movre other sites of the plurality of sites;

at a second site of the plurality of sites:

receiving an update rveflecting the data object vesolution

change made at the first site;

wherein the update includes:

an identification of each of the two or more data objects,

data that indicates that the two or more data objects were

resolved together, and
for each of the two or more data objects, a version vector
Jor the data object;

comparing, for each of one or movre of the two ov more
data objects, the version vector for the data object
received in the update to a version vector at the second
site for the data object to determine whether the data
object resolution change and a version at the second
site of the data object are identical, ovdered, or con-
current;

determining, based on the comparing, that the data object

resolution change is concurvent with a version at the
second site of at least one of the two or more data
objects; and

in response to determining that the data object vesolution

change is concurvent with a version at the second site
of at least one of the two or more data objects,
determining that the data object resolution change
conflicts with a version at the second site of at least one
of the two or more data objects;

wherein the method is performed by a plurality of com-

puting devices.

13. One or more non-transitory computer-readable media
storing instructions which, when executed by a plurality of
computing devices, cause performing a method for sharing
and deconflicting data changes in a multimaster database
system comprising a plurality of sites, the method compris-
Ing.

at a first site of the plurality of sites, making a first change

to a set of one or more links connecting two data

objects by adding or removing one or more links from
the set of links;
wherein the set of links is associated at the first site with

a first version vector for the set of links, the first version

US RE48,589 E

25

vector versioning the set of links separately and inde-
pendently of the two data objects connected by the set
of links;

at a second site of the plurality of sites, making a second

26

computing devices, cause performing a method for sharing
and deconflicting data changes in a multimaster database
system comprising a plurality of sites, the method compris-

ing.:

change to the set of links commnecting the two data 5
objects by adding or removing a link from the set of
links;

whevrein the set of links is associated at the second site

with a second version vector for the set of links;

sharing the first change with the second site of the 10

plurality of sites;

receiving, at the second site, an update veflecting the first

change to the set of links at the first site;

wherein the update includes:

an identification of the set of links, 15

data reflecting the first change to the set of links at the first

site, and

the first version vector for the set of links;

at the second site, comparing the first version vector for

the set of links to the second version vector for the set 20
of links to determine whether the first change to the set

of links at the first set and the second change to the set

of links at the second site ave identical, orderved, or
concurrent.

14. The one or more non-transitory computer-readable 25
media of claim 13, wherein the second change to the set of
links is made at the second site before the first change to the
set of links is made at the first site; and wherein the method
further comprises determining, based on the comparing,
that the first and second changes are ovdered. 30

15. The one or more non-transitory computer-readable
media of claim 13, wherein the second change to the set of
links is made at the second site before the first change to the
set of links is made at the first site; and wherein the method
further comprises determining, based on the comparing, 35
that the first and second changes are concurrent.

16. One or more non-transitory computer-readable media
storing instructions which, when executed by a plurality of

at a first site of the plurality of sites:

resolving two or movre data objects together to produce a
data object vesolution change;

sharing the data object resolution change with one or
movre other sites of the plurality of sites;

at a second site of the plurality of sites:

receiving an update reflecting the data object vesolution
change made at the first site;

wherein the update includes:

an identification of each of the two or more data objects,

data that indicates that the two or more data objects were
resolved together, and

for each of the two or more data objects, a version vector

Jor the data object;

comparing, for each of one or more of the two or more
data objects, the version vector for the data object
received in the update to a version vector at the second
site for the data object to determine whether the data
object resolution change and a version at the second
site of the data object ave identical, ovdered, or con-
current;

determining, based on the comparing, that the data object
resolution change is concurvent with a version at the
second site of at least one of the two or more data
objects; and

in response to determining that the data object resolution
change is concurrent with a version at the second site
of at least one of the two or more data objects,

determining that the data object resolution change
conflicts with a version at the second site of at least one
of the two or more data objects.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

