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Method

W W
-
-

02

Determine a first amount of space for storing user data in a
storage device

o

04

Determine a second amount of space for storing corresponding
Intra-device protection data in the storage device

o

06
Write user data in the first amount of space in the storage device

08

Generate intra-device protection data corresponding to the
user data

o

310

Write the intra-device protection data in the second amount
of space in the storage device

12

o

Monitor behavior of the storage device

314

Detect characteristics of

the storage device which affect

reliability
?

316 Yes
Adjust the first and/or second amounts of space

FIG. 3
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State Table
o
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Total Errors
608
Number of Recoverable Errors
610
Number of Unrecoverable Errors A19
o4
Data Age -
Allocation State of a First Allocation Space a
Allocation State of an nth Allocation Space
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1302

Determine to support a number of devices to store user data

in a RAID array within each partition of a storage subsystem
e — —_— _ : .
Determine to support a number of devices to store corresponding

inter-device protection data within each partition of the subsystem
Determine to support Q devices to store extra inter-device
protection data across the partitions of the subsystem

1308
Write user data and corresponding parity data in selected
storage devices
1310 ~ Detect a
No condition to perform read reconstruction
In a giveg partition
Yes
1312 Detect a
sufficient number of parity devices in No
the giver)? partition
1314 Yes

Perform the reconstruct read operation with one or more
corresponding devices within the given partition

No 1316 Detect a sufficient

number of correspon{;iing Q parity devices

Yes

Perform the reconstruct read operation with one to
Q corresponding devices across the partitions

Rebuild or retrieve the corresponding user data
from another source

FIG. 13
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DISTRIBUTED MULTI-LEVEL PROTECTION
IN A RAID ARRAY BASED STORAGE
SYSTEM

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS REFERENCE 10 RELATED
APPLICATIONS

This application is a reissue application of U.S. Pat. No.
9,348,696, granted May 24, 2016, which issued from U.S.

application Ser. No. 12/896,675 filed Oct. 1, 2010.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to computer networks and, more
particularly, to efliciently distributing data among a plurality
of solid-state storage devices.

2. Description of the Related Art

As computer memory storage and data bandwidth
increase, so does the amount and complexity of data that
businesses [daily] manage daily. Large-scale distributed
storage systems, such as data centers, typically run many
business operations. A distributed storage system may be
coupled to client computers iterconnected by one or more
networks. If any portion of the distributed storage system
has poor performance or becomes unavailable, company
operations may be impaired or stopped completely. A dis-
tributed storage system is therefore [is] expected to maintain
high standards for data availability and high-performance
functionality. As used herein, storage disks may be referred
to as storage devices that include storage disks as well as
[some] types of storage technologies that do not include
disks.

To protect against data loss, storage devices often include
error detection and correction mechanisms. Often these
mechanisms take the form of error correcting codes which
are generated by the devices and stored within the devices
themselves. In addition, distributed storage systems may
also utilize decentralized algorithms to distribute data
among a collection of storage devices. These algorithms
generally map data objects to storage devices without rely-
ing on a central directory. Examples of such algorithms
include Replication Under Scalable Hashing (RUSH), and
Controlled Replication Under Scalable Hashing (CRUSH).
With no central directory, multiple clients 1n a distributed
storage system may simultaneously access data objects on
multiple servers. In addition, the amount of stored metadata
may be reduced. However, the diflicult task remains of
distributing data among multiple storage disks with varying
capacities, mput/output (I/0) characteristics and rehability
issues. Similar to the storage devices themselves, these

algorithms may also include error detection and correction
algorithms such as RAID type algorithms (e.g., RAIDS and

RAID6) or Reed-Solomon codes.

The technology and mechanisms associated with chosen
storage devices determine the methods used to distribute
data among multiple storage devices, which may be dynami-
cally added and removed. For example, the algorithms
described above were developed for systems utilizing hard
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2

disk drives (HDDs). The HDDs comprise one or more
rotating disks, each coated with a magnetic medium. These
disks rotate at a rate of several thousand rotations per minute
for several hours daily. In addition, a magnetic actuator 1s
responsible for positioning magnetic read/write devices over
the rotating disks. These actuators are subject to friction,
wear, vibrations and mechamical misalignments, which
result 1n reliability 1ssues. The above-described data distri-
bution algorithms are based upon the characteristics and
behaviors of HDDs.

One example of another type of storage disk 1s a Solid-
State Disk (SSD). A Solid-State Disk may also be referred
to as a Solid-State Drive. An SSD may emulate a HDD
interface, but an SSD utilizes solid-state memory to store
persistent data rather than electromechanical devices as
found 1n a HDD. For example, an SSD may comprise banks
of Flash memory. Without moving parts or mechanical
delays, an SSD may have a lower access time and latency
than a HDD. However, SSD typically have significant write
latencies. In addition to different input/output (I/0) charac-
teristics, an SSD experiences diflerent failure modes than a
HDD. Accordingly, high performance and high rehability
may not be achieved i1n systems comprising SSDs {for
storage while utilizing distributed data placement algorithms
developed for HDDs.

In view of the above, systems and methods for efliciently
distributing data and detecting and correcting errors among
a plurality of solid-state storage devices are desired.

SUMMARY OF THE INVENTION

Various embodiments of a computer system and methods
for efliciently distributing and managing data among a
plurality of solid-state storage devices are disclosed.

In one embodiment, a computer system comprises a
plurality of client computers configured to convey read and
write requests over a network to one or more data storage
arrays coupled to receive the read and write requests via the

network. Contemplated 1s a data storage array(s) comprising,
a plurality of storage locations on a plurality of storage
devices. In various embodiments, the storage devices are
configured in a redundant array of independent drives
(RAID) arrangement for data storage and protection. The
data storage devices may include solid-state memory tech-
nology for data storage, such as Flash memory cells. The
data storage subsystem further comprises a storage control-
ler configured to configure a first subset of the storage
devices for use 1n a first RAID layout, the first RAID layout
including a first set of redundant data. The controller further
configures a second subset of the storage devices for use 1n
a second RAID layout, the second RAID layout including a
second set of redundant data. Additionally, when writing a
stripe, the controller may select from any of the plurality of
storage devices for one or more of the first RAID layout, the
second RAID layout, and storage of redundant data by the
additional logical device.

Also contemplated are embodiments wherein the first
RAID layout 1s an L+x layout, and the second RAID layout
1s an M+y layout, wheremn L, x, M, and, y are integers,
wherein either or both (1) L 1s not equal to M, and (2) x 1s
not equal to .

These and other embodiments will become apparent upon
consideration of the following description and accompany-
ing drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a generalized block diagram illustrating one
embodiment of network architecture.
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FIG. 2 1s a generalized block diagram of one embodiment
of a dynamic intra-device redundancy scheme.

FIG. 3 1s a generalized flow diagram illustrating one
embodiment of a method for adjusting intra-device protec-
tion 1n a data storage subsystem.

FI1G. 4 15 a generalized block diagram of one embodiment
ol a storage subsystem.

FIG. 5 1s a generalized block diagram of one embodiment
of a device unit.

FIG. 6 1s a generalized block diagram illustrating one
embodiment of a state table.

FIG. 7 1s a generalized block diagram illustrating one
embodiment of a flexible RAID data layout architecture.

FIG. 8 1s a generalized block diagram illustrating another
embodiment of a flexible RAID data layout architecture.

FIG. 9 1s a generalized flow diagram illustrating one
embodiment of a method for dynamically determining a
layout 1n a data storage subsystem.

FIG. 10 1s a generalized block diagram illustrating vyet
another embodiment of a flexible RAID data layout archi-
tecture.

FIG. 11A 1llustrates one embodiment of a device layout.

FIG. 11B 1illustrates one embodiment of a segment.

FIG. 11C 1s a generalized block diagram illustrating one
embodiment of data storage arrangements within different
page types.

FIG. 12 1s a generalized block diagram illustrating one
embodiment of a hybrid RAID data layout.

FIG. 13 1s a generalized flow diagram illustrating one
embodiment of a method for selecting alternate RAID
geometries 1n a data storage subsystem.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments are shown
by way of example 1n the drawings and are herein described
in detail. It should be understood, however, that drawings
and detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the con-
trary, the invention 1s to cover all modifications, equivalents
and alternatives falling within the spirit and scope of the
present mvention as defined by the appended claims.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced
without these specific details. In some instances, well-
known circuits, structures, signals, computer program
instruction, and techniques have not been shown in detail to
avoid obscuring the present invention.

Referring to FIG. 1, a generalized block diagram of one
embodiment of network architecture 100 1s shown. As
described further below, one embodiment of network archi-
tecture 100 includes chient computer systems 110a-110b
interconnected to one another through a network 180 and to
data storage arrays 120a-120b. Network 180 may be coupled
to a second network 190 through a switch 140. Client
computer system 110c 1s coupled to client computer systems
110a-110b and data storage arrays 120a-120b via network
190. In addition, network 190 may be coupled to the Internet
160 or other outside network through switch 150.

It 1s noted that 1in alternative embodiments, the number
and type of client computers and servers, switches, net-
works, data storage arrays, and data storage devices 1s not
limited to those shown in FIG. 1. At various times one or
more clients may operate oflline. In addition, during opera-
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tion, imdividual client computer connection types may
change as users connect, disconnect, and reconnect to net-
work architecture 100. A further description of each of the
components shown 1n FIG. 1 1s provided shortly. First, an
overview of some of the features provided by the data
storage arrays 120a-120b 1s described.

In the network architecture 100, each of the data storage
arrays 120a-120b may be used for the sharing of data among
different servers and computers, such as client computer
systems 110a-110c. In addition, the data storage arrays
120a-120b may be used for disk mirroring, backup and
restore, archival and retrieval of archived data, and data
migration {from one storage device to another. In an alternate
embodiment, one or more client computer systems 110a-
110c may be linked to one another through fast local area
networks (LLANSs) 1n order to form a cluster. One or more
nodes linked to one another form a cluster, which may share
a storage resource, such as a cluster shared volume residing
within one of data storage arrays 120a-120b.

Each of the data storage arrays 120a-120b includes a
storage subsystem 170 for data storage. Storage subsystem
170 may comprise a plurality of storage devices 176a-176m.
These storage devices 176a-176m may provide data storage
services to client computer systems 110a-110c. Each of the
storage devices 176a-176m may be configured to receive
read and write requests and comprise a plurality of data
storage locations, each data storage location being address-
able as rows and columns 1n an array. In one embodiment,
the data storage locations within the storage devices 176a-
176m may be arranged into logical, redundant storage
containers or RAID arrays (redundant arrays of inexpensive/
independent disks). However, the storage devices 176a-
176m may not comprise a disk. In one embodiment, each of
the storage devices 176a-176m may utilize technology for
data storage that 1s different from a conventional hard disk
drive (HDD). For example, one or more of the storage
devices 176a-176m may include or be further coupled to
storage consisting of solid-state memory to store persistent
data. In other embodiments, one or more of the storage
devices 176a-176m may include or be further coupled to
storage utilizing spin torque transfer technique, magnetore-
sistive random access memory (MR AM) technique, or other
storage technmiques. These different storage techniques may
lead to differing reliability characteristics between storage
devices.

The type of technology and mechanism used within each
of the storage devices 176a-176m may determine the algo-
rithms used for data object mapping and error detection and
correction. The logic used in these algorithms may be
included within one or more of a base operating system (OS)
116, a file system 140, one or more global RAID engines 178
within a storage subsystem controller 174, and control logic
within each of the storage devices 176a-176m.

In one embodiment, the included solid-state memory
comprises solid-state drive (SSD) technology. Typically,
SSD technology utilizes Flash memory cells. As 1s well
known 1n the art, a Flash memory cell holds a binary value
based on a range of electrons trapped and stored 1n a floating
gate. A fully erased Flash memory cell stores no or a
minimal number of electrons in the floating gate. A particu-
lar binary value, such as binary 1 for single-level cell (SLC)
Flash, 1s associated with an erased Flash memory cell. A
multi-level cell (IMLC) Flash has a binary value 11 associ-
ated with an erased Flash memory cell. After applying a
voltage higher than a given threshold voltage to a controlling
gate within a Flash memory cell, the Flash memory cell traps
a given range of electrons 1n the tloating gate. Accordingly,
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another particular binary value, such as bmary 0 for SLC
Flash, 1s associated with the programmed (written) Flash
memory cell. A MLC Flash cell may have one of multiple
binary values associated with the programmed memory cell
depending on the applied voltage to the control gate.

Generally speaking, SSD technologies provide lower read
access latency times than HDD technologies. However, the
write performance of SSDs 1s significantly impacted by the
availability of free, programmable blocks within the SSD.
As the write performance of SSDs 1s significantly slower
compared to the read performance of SSDs, problems may
occur with certain functions or operations expecting similar
latencies. In addition, the differences in technology and
mechanisms between HDD technology and SDD technology
lead to differences in reliability characteristics of the data
storage devices 176a-176m.

In various embodiments, a Flash cell within an SSD must
generally be erased before 1t 1s written with new data.
Additionally, an erase operation 1n various flash technolo-
gies must also be performed on a block-wise basis. Conse-
quently, all of the Flash memory cells within a block (an
erase segment or erase block) are erased together. A Flash
erase block may comprise multiple pages. For example, a
page may be 4 kilobytes (KB) in size and a block may
include 64 pages, or 256 KB. Compared to read operations
in a Flash device, an erase operation may have a relatively
high latency—which may in turn increase the latency of a
corresponding write operation. Programming or reading of
Flash technologies may be performed at a lower level of
granularity than the erase block size. For example, Flash
cells may be programmed or read at a byte, word, or other
S1ZE.

A Flash cell experiences wear alter repetitive erase-and-
program operations. The wear 1n this case 1s due to electric
charges that are injected and trapped in the dielectric oxide
layer between the substrate and the tloating gate of the MLC
Flash cell. In one example, a MLC Flash cell may have a
limit of a number of times 1t experiences an erase-and-
program operation, such as a range from 10,000 to 100,000
cycles. In addition, SSDs may experience program disturb
errors that cause a neighboring or nearby Flash cell to
experience an accidental state change while another Flash
cell 1s being erased or programmed. Further, SSDs 1include
read disturb errors, wherein the accidental state change of a
nearby Flash cell occurs when another Flash cell 1s being
read.

Knowing the characteristics of each of the one or more
storage devices 176a-176m may lead to more etlicient data
object mapping and error detection and correction. In one
embodiment, the global RAID engine 178 within the storage
controller 174 may detect for the storage devices 176a-176m
at least one or more of the following: inconsistent response
times for I/O requests, incorrect data for corresponding
accesses, error rates and access rates. In response to at least
these characteristics, the global RAID engine 178 may
determine which RAID data layout architecture to utilize for
a corresponding group of storage devices within storage
devices 176a-176m. In addition, the global RAID engine
178 may dynamically change both an intra-device redun-
dancy scheme and an inter-device RAID data layout based
on the characteristics of the storage devices 176a-176m.

FIG. 1 1llustrates an example of a system capable of the
described features according to one embodiment. Further
details are provided below. Referring to FIG. 1, a further
description of the components of network architecture 100 1s
provided below.
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Components of a Network Architecture

Again, as shown, network architecture 100 includes client
computer systems 110a-110c interconnected through net-
works 180 and 190 to one another and to data storage arrays
120a-120b. Networks 180 and 190 may include a variety of
techniques including wireless connection, direct local area
network (LAN) connections, storage area networks (SANs),
wide area network (WAN) connections such as the Internet,
a router, and others. Networks 180 and 190 may comprise
one or more LANSs that may also be wireless. Networks 180
and 190 may further include remote direct memory access
(RDMA) hardware and/or software, transmission control
protocol/internet protocol (TCP/IP) hardware and/or soft-
ware, router, repeaters, switches, grids, and/or others. Pro-

tocols such as Fthernet, Fibre Channel, Fibre Channel over
Ethernet (FCoE), 1SCSI, and so forth may be used 1n

networks 180 and 190. Switch 140 may utilize a protocol
associated with both networks 180 and 190. The network

190 may interface with a set of communications protocols
used for the Internet 160 such as the Transmission Control

Protocol (TCP) and the Internet Protocol (IP), or TCP/IP.
Switch 150 may be a TCP/IP switch.

Client computer systems 110a-110c are representative of
any number of stationary or mobile computers such as
desktop personal computers (PCs), workstations, laptops,
handheld computers, servers, server farms, personal digital
assistants (PDAs), smart phones, and so forth. Generally
speaking, client computer systems 110a-110c¢ include one or
more processors Comprising one Oor more processor cores.
Each processor core includes circuitry for executing instruc-
tions according to a predefined general-purpose nstruction
set. For example, the x86 instruction set architecture may be
selected. Alternatively, the Alpha®, PowerPC®, SPARC®,
or any other general-purpose instruction set architecture may
be selected. The processor cores may access cache memory
subsystems for data and computer program instructions. The
cache subsystems may be coupled to a memory hierarchy
comprising random access memory (RAM) and a storage
device.

Each processor core and memory hierarchy within a client
computer system may be in turn connected to a network
interface. In addition to hardware components, each of the
client computer systems 110a-110c may include a base
operating system (OS) stored within the memory hierarchy.
The base OS may be representative of any of a variety of
specific operating systems, such as, for example,
MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, Linux®,
Solaris® or another known operating system. As such, the
base OS may be operable to provide various services to the
end-user and provide a software framework operable to
support the execution of various programs. Additionally,
cach of the client computer systems 110a-110c¢ may include
a hypervisor used to support higher-level virtual machines
(VMs). As 1s well known to those skilled in the art, virtu-
alization may be used 1n desktops and servers to fully or
partially decouple software, such as an OS, from a system’s
hardware. Virtualization may provide an end-user with an
illusion of multiple OSes running on a same machine each
having i1ts own resources, such logical storage entities (e.g.,
logical unit numbers, LUNSs) corresponding to the storage
devices 176a-176m within each of the data storage arrays
120a-120b.

Each of the data storage arrays 120a-120b may be used for
the sharing of data among different servers, such as the client
computer systems 110a-110c. Each of the data storage arrays
120a-120b includes a storage subsystem 170 for data stor-
age. Storage subsystem 170 may comprise a plurality of
storage devices 176a-176m. Each of these storage devices




US RE48,448 E

7

176a-176m may be a SSD. A controller 174 may comprise
logic for handling received read/write requests. For
example, the algorithms brietly described above may be
executed 1n at least controller 174. A random-access
memory (RAM) 172 may be used to batch operations, such
as recerved write requests.

The base OS 132, the file system 134, any OS drivers (not
shown) and other software stored in memory medium 130
may provide functionality enabling access to files and
LUNs, and the management of these functionalities. The
base OS 134 and the OS drivers may comprise program
instructions stored on the memory medium 130 and execut-
able by processor 122 to perform one or more memory
access operations in storage subsystem 170 that correspond
to recerved requests.

Each of the data storage arrays 120a-120b may use a
network interface 124 to connect to network 180. Similar to
client computer systems 110a-110c, 1n one embodiment, the
functionality of network mterface 124 may be included on a
network adapter card. The functionality of network interface
124 may be implemented using both hardware and software.
Both a random-access memory (RAM) and a read-only
memory (ROM) may be included on a network card imple-
mentation of network iterface 124. One or more application
specific itegrated circuits (ASICs) may be used to provide
the functionality of network interface 124.

In one embodiment, a data storage model may be devel-
oped which seeks to optimize data layouts for both user data
and corresponding error correction code (ECC) information.
In one embodiment, the model 1s based at least in part on
characteristics of the storage devices within a storage sys-
tem. For example, in a storage system, which utilizes
solid-state storage technologies, characteristics of the par-
ticular devices may be used to develop a model for the
storage system and may also serve to inform corresponding
data storage arrangement algorithms. For example, 11 par-
ticular storage devices being used exhibit a change in
reliability over time, such a characteristic may be accounted
for 1n dynamically changing a data storage arrangement.

Generally speaking, any model which 1s developed for a
computing system 1s mncomplete. Often, there are simply too
many variables to account for in a real world system to
completely model a given system. In some cases, 1t may be
possible to develop models which are not complete but
which are nevertheless valuable. As discussed more fully
below, embodiments are described wherein a storage system
1s modeled based upon characteristics of the underlying
devices. In various embodiments, selecting a data storage
arrangement 1s performed based on certain predictions as to
how the system may behave. Based upon an understanding,
of the characteristics of the devices, certain device behaviors
are more predictable than others. However, device behaviors
may change over time, and 1n response, a selected data
layout may also be changed. As used herein, characteristics
of a device may refer to characteristics of the device as a
whole, characteristics of a sub-portion of a device such as a
chip or other component, characteristics of an erase block, or
any other characteristics related to the device.

Intra-Device Redundancy

Turning now to FIG. 2, a generalized block diagram
illustrating one embodiment of a dynamic intra-device
redundancy scheme 1s shown. As 1s well known to those
skilled 1n the art, one of several intra-device redundancy
schemes may be chosen to reduce the effects of latent sector
errors 1n a storage device. The term “sector” typically refers
to a basic umt of storage on a HDD, such as a segment
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within a given track on the disk. Here, the term *“sector” may
also refer to a basic unit of allocation on a SSD.

An allocation unit within an SSD may include one or
more erase blocks within an SSD. Referring to FIG. 2, the
user data 210 may refer to both stored data to be modified
and accessed by end-users and 1nter-device error-correction
code (ECC) data. The inter-device ECC data may be parity
information generated from one or more pages on other
storage devices holding user data. For example, the inter-
device ECC data may be parity information used 1n a RAID
data layout architecture. The user data 210 may be stored
within one or more pages included within one or more of the
storage devices 176a-176k. In one embodiment, each of the
storage devices 176a-176k 1s an SSD.

An erase block within an SSD may comprise several
pages. As described earlier, in one embodiment, a page may
include 4 KB of data storage space. An erase block may
include 64 pages, or 256 KB. In other embodiments, an erase
block may be as large as 1 megabyte (MB), and include 256
pages. An allocation unit size may be chosen 1n a manner to
provide both sufliciently large sized unmits and a relatively
low number of units to reduce overhead tracking of the
allocation units. In one embodiment, one or more state tables
may maintain a state of an allocation unit (allocated, free,
erased, error), a wear level, and a count of a number of errors
(correctable and/or uncorrectable) that have occurred within
the allocation unit. In various embodiments, the size of an
allocation unit may be selected to balance the number of
allocation units available for a give device against the
overhead of maintaining the allocation units. For example,
in one embodiment the size of an allocation unit may be
selected to be approximately Yiooth of one percent of the
total storage capacity of an SSD. Other amounts of data
storage space for pages, erase blocks and other unit arrange-
ments are possible and contemplated.

Latent sector errors (LSEs) occur when a given sector or
other storage unit within a storage device 1s 1naccessible. A
read or write operation may not be able to complete for the
given sector. In addition, there may be an uncorrectable
error-correction code (ECC) error. An LSE 1s an error that 1s
undetected until the given sector 1s accessed. Therelfore, any
data previously stored 1n the given sector may be lost. A
single LSE may lead to data loss when encountered during
RAID reconstruction after a storage device failure. For an
SSD, an increase in the probability of an occurrence of
another LSE may result from at least one of the following
statistics: device age, device size, access rates, storage
compactness and the occurrence of previous correctable and
uncorrectable errors. To protect against LSEs and data loss
within a given storage device, one of a multiple of intra-
device redundancy schemes may be used within the given
storage device.

An 1ntra-device redundancy scheme utilizes ECC 1nfor-
mation, such as parity information, within the given storage
device. This intra-device redundancy scheme and 1ts ECC
information corresponds to a given device and may be
maintained within a given device, but 1s distinct from ECC
that may be internally generated and maintained by the
device 1tself. Generally speaking, the internally generated
and maintained ECC of the device 1s invisible to the system
within which the device 1s included. The intra-device ECC
information included within the given storage device may be
used to increase data storage reliability within the given
storage device. This intra-device ECC information 1s 1n
addition to other ECC information that may be included
within another storage device such as parity information
utilized 1 a RAID data layout architecture.
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A highly effective intra-device redundancy scheme may
suiliciently enhance a reliability of a given RAID data layout
to cause a reduction in a number of devices used to hold
parity information. For example, a double parity RAID
layout may be replaced with a single parity RAID layout 1f
there 1s additional intra-device redundancy to protect the
data on each device. For a fixed degree of storage efliciency,
increasing the redundancy in an intra-device redundancy
scheme 1ncreases the reliability of the given storage device.
However, increasing the redundancy 1n such a manner may
also increase a penalty on the input/output (I/O) perfor-
mance of the given storage device.

In one embodiment, an intra-device redundancy scheme
divides a device mto groups of locations for storage of user
data. For example, a division may be a group of locations
within a device that correspond to a stripe within a RAID
layout as shown by stripes 250a-250c. User data or inter-
device RAID redundancy information may be stored in one
or more pages within each of the storage devices 176a-176k
as shown by data 210. Within each storage device, intra-
device error recovery data 220 may be stored in one or more
pages. As used herein, the intra-device error recovery data
220 may be referred to as intra-device redundancy data 220.
As 1s well known by those skilled 1n the art, the intra-device
redundancy data 220 may be obtained by performing a
function on chosen bits of information within the data 210.
An XOR-based operation may be used to derive parity
information to store 1n the intra-device redundancy data 220.
Other examples of mtra-device redundancy schemes include
single parity check (SPC), maximum distance separable
(MDS) erasure codes, interleaved parity check codes (IPC),
hybrid SPC and MDS code (MDS+SPC), and column diago-
nal parity (CDP). The schemes vary in terms of delivered
reliability and overhead depending on the manner the data
220 1s computed. In addition to the above described redun-
dancy information, the system may be configured to calcu-
late a checksum wvalue for a region on the device. For
example, a checksum may be calculated when information
1s written to the device. This checksum 1s stored by the
system. When the information 1s read back from the device,
the system may calculate the checksum again and compare
it to the value that was stored originally. If the two check-
sums differ, the information was not read properly, and the
system may use other schemes to recover the data. Examples
of checksum functions include cyclical redundancy check
(CRC), MD?3, and SHA-1.

As shown 1n stripes 250a-250c, the width, or number of
pages, used to store the data 210 within a given stripe may
be the same 1n each of the storage devices 176a-176k.
However, as shown in stripes 250b-250c, the width, or
number of pages, used to store the mtra-device redundancy
data 220 within a given stripe may not be the same 1n each
of the storage devices 176a-176k. In one embodiment,
changing characteristics or behaviors of a given storage
device may determine, at least 1n part, the width used to store
corresponding 1intra-device redundancy data 220. For
example, as described above, Flash cells experience pro-
gram disturb errors and read disturb errors, wherein pro-
gramming or reading a page may disturb nearby pages and
cause errors within these nearby pages. When a storage
device 1s aging and producing more errors, the amount of
corresponding 1ntra-device redundancy data 220 may
increase. For example, prior to a write operation for stripe
250b, characteristics of each of the storage devices 176a-
176k may be monitored and used to predict an increasing
error rate. A predicted increase 1n errors for storage devices
176c and 1767 may be detected. In response, the amount of
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intra-device redundancy data 220 may be increased for
storage devices 176¢ and 1767. In the example of stripes
250a and 250b of FIG. 2, an increase in the amount of
protection data stored can be seen for storage devices 176c¢
and 1767 for stripes 250a and 250b. For example, now, rather
than protecting storage devices 176c and 1767 with single
parity, these devices may be protected with double parity or
triple parity. It 1s noted that increasing the amount of
intra-device protection for devices 176¢ and 1767 does not
necessitate a corresponding increase 1n other devices of the
same stripe. Rather, data for the stripe may have differing
levels of protection 1n each device as desired.

In various embodiments, increases or decreases 1in a given
level of data protection may occur on a selective basis. For
example, in one embodiment, an increase 1n protection may
occur only for storage devices that are detected to generate
more errors, such as storage devices 176¢ and 1767 1n the
above example. In another embodiment, an increase 1n
protection may occur for each of the storage devices 176a-
176k when storage devices 176¢ and 1767 are detected to
generate more errors. In one embodiment, increasing the
amount of intra-device protection on a parity device such as
device 176k may require a reduction 1n the amount of data
protected within the stripe. For example, increasing the
amount of intra-device data stored on a parity device for a
grven stripe will necessarily reduce an amount of parity data
stored by that device for data within the stripe. If this amount
of parity data 1s reduced to an amount that 1s less than that
needed to protect all of the data in the stripe, then data within
the stripe must be reduced if continued parity protection 1s
desired. As an alternative to reducing an amount of data
stored within the stripe, a different device could be selected
for storing the parity data. Various options are possible and
are contemplated. It 1s also noted that while FIG. 2 and other
figures described herein may depict a distinct parity device
(e.g., 176k), 1n various embodiments the parity may be
distributed across multiple devices rather than stored 1n a
single device. Accordingly, the depiction of a separate parity
device 1n the figures may generally be considered a logical
depiction for ease of discussion.

Referring now to FIG. 3, one embodiment of a method
300 for adjusting intra-device protection 1n a data storage
sub-system 1s shown. The components embodied 1n network
architecture 100 and data storage arrays 120a-120b
described above may generally operate in accordance with
method 300. The steps 1n this embodiment are shown in
sequential order. However, some steps may occur 1 a
different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps,
and some steps may be absent 1n another embodiment.

In block 302, a first amount of space for storing user data
in a storage device 1s determined. This user data may be data
used 1n end-user applications or inter-device parity infor-
mation used 1 a RAID architecture as described earlier
regarding data 210. This first amount of space may comprise
one or more pages within a storage device as described
carlier. In one embodiment, a global RAID engine 178
within the storage controller 174 receives behavioral statis-
tics from each one of the storage devices 176a-176m. For a
given device group comprising two or more of the storage
devices 176a-176m, the global RAID engine 178 may
determine both a RAID data layout and an initial amount of
intra-device redundancy to maintain within each of the two
or more storage devices. In block 304, the RAID engine 178
may determine a second amount of space for storing corre-
sponding 1ntra-device protection data 1n a storage device.
This second amount of space may comprise one or more
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pages within a storage device. The intra-device protection
data may correspond to the to intra-device redundancy data
220 described earlier.

In block 306, data 1s written 1n the first amount of space
within each storage device included within a given device
group. In one embodiment, both user data and inter-device
parity information 1s written as a single RAID stripe across
multiple storage devices included within the given device
group. Referring again to FIG. 2, the width for the corre-
sponding data being written 1s the same within each storage
device. In block 308, the intra-device protection data is
generated by an ECC algorithm, an XOR-based algorithm,
or any other suitable algorithm. In addition, the system may
generate a checksum to help identify data that has not been
retrieved properly. In block 310, the generated intra-device
protection data 1s written 1n the second amount of space in
the storage devices.

In block 312, the RAID engine 178 may monitor behavior
of the one or more storage devices. In one embodiment, the
RAID engine 178 may include a model of a corresponding
storage device and receive behavioral statistics from the
storage device to mput to the model. The model may predict
behavior of the storage device by utilizing known charac-
teristics of the storage device. For example, the model may
predict an upcoming increasing error rate for a given storage
device. If the RAID engine 178 detects characteristics of a
given storage device which aflect reliability (conditional
block 314), then 1n block 316, the RAID engine may adjust
the first amount and the second amount of space for storing
data and corresponding intra-device redundancy data. For
example, the RAID engine may be monitoring the statistics
described earlier such as at least device age, access rate and
error rate. Referring again to FIG. 2, the RAID engine 178
may detect storage devices 176¢ and 1767 have an increase
in a number of errors. Alternatively, the RAID engine may
predict an increase in a number of errors for storage devices
176c and 1763. Accordingly, prior to writing the second
stripe 250b, the RAID engine 178 may adjust a number of
pages used to store data 210 and data 220 1n each of the
storage devices 176a-176k. Similarly, the RAID engine 178
may detect storage device 176b has decreased rehiability.
Therefore, prior to writing the third stripe 250c, the RAID
engine 178 may again adjust a number of pages used to store
data 210 and data 220 in each of the storage devices
176a-176k.

Monitoring Storage Device Characteristics

Turning now to FIG. 4, a generalized block diagram of
one embodiment of a storage subsystem 1s shown. Each of
the one or more storage devices 176a-176m may be parti-
tioned in one of one or more device groups 173a-173m.
Other device groups with other devices may be present as
well. One or more corresponding operation queues and
status tables for each storage device may be included 1n one
of the device units 400a-400w. These device units may be
stored in RAM 172. A corresponding RAID engine 178a-
178m may be included for each one of the device groups
173a-173m. Each RAID engine 178 may include a monitor
410 that tracks statistics for each of the storage devices
included within a corresponding device group. Data layout
logic 420 may determine an amount of space to allocate
within a corresponding storage device for user data, inter-
device redundancy data and intra-device redundancy data.
The storage controller 174 may comprise other control logic
430 to perform at least one of the following tasks: wear
leveling, garbage collection, I/O scheduling, deduplication
and protocol conversion for mcoming and out-going pack-
ets.
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Turmning now to FIG. 5, a generalized block diagram of
one embodiment of a device unit 1s shown. A device unit
may comprise a device queue 510 and tables 520. Device
queue 510 may include a read queue 512, a write queue 514
and one or more other queues such as other operation queue
516. Each queue may comprise a plurality of entries for
storing one or more corresponding requests 530a-530d. For
example, a device unit for a corresponding SSD may include
queues to store at least read requests, write requests, trim
requests, erase requests and so forth. Tables 520 may com-
prise one or more state tables 5322a-522b, each comprising a
plurality of entries for storing state data, or statistics, 530. It
1s also noted that while the queues and tables are shown to
include a particular number of entries 1n this and other
figures, the entries themselves do not necessarily correspond
to one another. Additionally, the number of queues, tables,
and entries may vary from that shown in the figure and may
differ {from one another.

Referring now to FIG. 6, a generalized block diagram
illustrating one embodiment of a state table corresponding to
a given device 1s shown. In FIG. 6, state table 522 may
correspond to one of state tables 522a-522b of FIG. 5. In
one embodiment, such a table may include data correspond-
ing to state, error and wear level information for a given
storage device, such as an SSD. A corresponding RAID
engine may have access to this information, which may
allow the RAID engine to dynamically change space allo-
cated for data storage and schemes used for both inter-device
protection and intra-device protection. In one embodiment,
the information may include at least one or more of a device
age 602, an error rate 604, a total number of errors detected
on the device 606, a number of recoverable errors 608, a
number of unrecoverable errors 610, an access rate of the
device 612, an age of the data stored 614 and one or more
allocation states for allocation spaces 616a-616n. The allo-
cation states may include filled, empty, error and so forth.

Flexible RAID Layout

Turning now to FIG. 7, a generalized block diagram
illustrating one embodiment of a flexible RAID data layout
architecture 1s shown. A RAID engine may determine a level
ol protection to use for storage devices 176a-176k. For
example, a RAID engine may determine to utilize RAID
double parity for the storage devices 176a-176k. The inter-
device redundancy data 240 may represent the RAID double
parity values generated from corresponding user data. In one
embodiment, storage devices 1767 and 176k may store the
double parity information. It 1s understood other levels of
RAID parity protection are possible and contemplated. In
addition, in other embodiments, the storage of the double
parity information may rotate between the storage devices
rather than be stored within storage devices 1767 and 176k
for each RAID stripe. The storage of the double parity
information 1s shown to be stored in storage devices 176;
and 176k for ease of 1llustration and description.

Referring now to FIG. 8, a generalized block diagram
illustrating another embodiment of a flexible RAID data
layout architecture 1s shown. Similar to the example shown
in FIG. 7, double parity may be used for the storage devices
176a-176k. Although a RAID double parity 1s described 1n
this example, any amount of redundancy in a RAID data
layout architecture may be chosen.

During operation, the RAID engine 178 may monitor
characteristics of the storage devices 176a-176k and deter-
mine the devices are exhibiting a reliability level higher than
an 1nitial or other given reliability level. In response, the
RAID engine 178 may change the RAID protection from a
RAID double parity to a RAID single parity. In other RAID
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data layout architectures, another reduction 1n the amount of
supported redundancy may be used. In other embodiments,
the momtoring of storage devices 176a-176k and changing
a protection level may be performed by other logic within
storage controller 174.

Continuing with the above example, only single parity
information may be generated and stored for subsequent
write operations executing on a given RAID stripe. For
example, storage device 176k may not be used 1n subsequent
RAID stripes for write operations after the change in the
amount of supported redundancy. In addition, data stored 1n
storage device 176k may be invalidated, thereby freeing the
storage. Pages corresponding to freed data in storage device
176k may then be reallocated for other uses. The process of
reducing an amount of parity protection and freeing space
formerly used for storing parity protection data may be
referred to as “parity shredding”. In addition, 1n an embodi-
ment wherein storage device 176k 1s an SSD, one or more
erase operations may occur within storage device 176k prior
to rewriting the pages within stripe 250a.

Continuing with the above example of parity shredding,
the data stored in the reallocated pages of storage device
176k within stripe 250a after parity shredding may hold user
data or corresponding RAID single parity information for
other RAID stripes that do not correspond to stripe 250a. For
example, the data stored 1n storage devices 176a-1767 within
stripe 250a may correspond to one or more write operations
executed prior to parity shredding. The data stored 1n storage
device 176k within stripe 250a may correspond to one or
more write operations executed after parity shredding. Simi-
larly, the data stored in storage devices 176a-1767 within
stripe 250b may correspond to one or more write operations
executed prior to parity shredding. The pages in storage
device 176k within stripe 250b may be freed, later erased,
and later rewritten with data corresponding to one or more
write operations executed after the change 1n the amount of
supported redundancy. It 1s noted that this scheme may be
even more eflective when redundancy information 1s rotated
across storage devices. In such an embodiment, space that 1s
freed by shredding will likewise be distributed across the
storage devices.

Referring again to FIG. 8, the deallocated pages shown 1n
storage device 176k within stripe 250c represent storage
locations that may have previously stored RAID double
parity information prior to parity shredding. However, now
these pages are invalid and have not yet been reallocated.
Particular characteristics of an SSD determine the manner
and the timing of both freeing and reallocating pages within
storage device 176k 1n the above example. Examples of
these characteristics include at least erasing an entire erase
block prior to reprogramming (rewriting) one or more pages.
As can be seen from FIG. 8, when parity 1s shredded, 1t 1s
not necessary to shred an entire device. Rather, parity may
be shredded for individual stripes as desired. Similarly,
parity protection for a stripe may be increased may adding,
protection data stored on an additional device to a stripe.

Referring now to FIG. 9, one embodiment of a method for
dynamically determining a RAID layout 1s shown. The
components embodied in network architecture 100 and data
storage arrays 120a-120b described above may generally
operate 1 accordance with method 900. In FIG. 9, two
processes 910 and 920 are shown. Each of the processes may
operate concurrently, or 1n a given order. Further, the steps
in this embodiment are shown in sequential order. However,
some steps may occur in a ditferent order than shown, some
steps may be performed concurrently, some steps may be
combined with other steps, and some steps may be absent 1n
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another embodiment. Block 910 1illustrates a process
whereby a storage control system monitors the characteris-
tics and behaviors of storage devices 1n the system (block
912). For example, characteristics such as those described 1n
FIG. 6 may be observed and/or recorded. If a particular
condition 1s detected, such as a change 1n reliability (deci-
sion block 914), then a change in the amount of protection
used for stored data may be made (block 916). For example,
when given devices are relatively young 1n age, the reliabil-
ity of the devices may not be known (e.g., the devices may
sufler “infant mortality” and fail at a relatively young age).
Therefore, one or more extra storage devices per RAID
stripe may be used to store parity information. At a later
time, this extra protection may be removed when the devices
prove over time that they are rehable. In various embodi-
ments, characteristics regarding error rates may be main-
tamned for devices. For example, characteristics concerning
correctable and/or uncorrectable errors may be maintained
and used to make decisions regarding the reliability of a
given device. Based upon this information, the storage
controller may dynamaically alter various levels of protection
for a device or stripe.

Block 920 of FIG. 9 generally illustrates a process

whereby at the time a stripe or other portion of storage 1s to
be allocated (decision block 922), a determination regarding
the layout and protection level to use for the data may be
made (block 924). It 1s noted that the process of block 910
could be performed at this time. Alternatively, levels of
protection may have been determined by process 910 and
stored. The determination of block 924 could then be based
upon that stored data. In one embodiment, once a given
layout has been determined, the particular devices to be used
for the layout may be selected from a group of devices
(block 925). For example, 1n one embodiment a group of 20
devices may be available for use. If a layout of 3542 1s
determined, then any seven devices may be selected for use
from the group of 20. Additionally, it 1s noted that a
subsequent write with a selected 5+2 layout need not use the
same 7 devices. Subsequent to determining the layout,
protection level, and devices for the stripe, the stripe may be
written (block 926).
In various embodiments, the RUSH algorithm may be
utilized to determine which devices on which the data and
redundancy information for a given stripe will reside. For
example, the RUSH algorithm may be used to select the
particular devices to utilize for an 8+2 RAID layout for a
given stripe 1n storage devices 176a-176k. Generally speak-
ing, as used herein, an M+N layout may generally describe
a layout which includes M data devices and N parity devices
for a given data stripe. Additionally, as discussed above,
parity may be distributed across the devices rather than tully
located within particular devices. Accordingly, an 8+2 lay-
out may include data and parity striped across 10 devices—
with 8 of the devices storing data and two of the devices
storing parity. On a subsequent occasion, a layout of 1242
may be selected. In this manner, the desired layout and
protection characteristics may be determined dynamically at
the time a write (e.g., a stripe) 1s to be written. In one
embodiment, storage devices 176a-176k may include more
than 10 storage devices, such as 30, 50 or more storage
devices. However, for a stripe with an 8+2 layout, only 10
of the storage devices are utilized. It 1s noted that any 10 of
the devices may be selected and any suitable algorithm may
be used for selecting the 10 devices for use in storing the
stripe. For example, the CRUSH algorithm could be used to
select which 10 of the storage devices 176a-176k to utilize
for a given 8+2 RAID layout.
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In one example of a chosen 8+2 RAID layout for storage
devices 176a-176k, 2 of the storage devices may be used to
store error correcting code (ECC) information, such as parity
information. This information may be used to perform
reconstruct read requests. Referring again to FIG. 8, the
storage devices 176) and 176k may be selected to store
RAID double parity information in this example. Again, the
parity information may be stored i a rotated fashion
between each of the storage devices 176a-176k included
within the RAID array, rather than consistently stored 1n the
same storage devices. For ease of illustration and descrip-
tion, the storage devices 1767 and 176k are described as

storing RAID double parity.
In block 926, during execution of a write operation,

metadata, user data, intra-device parity information and
inter-device parity information may be written as a RAID
stripe across multiple storage devices included within the

RAID array. In block 912, the RAID engine 178 may

monitor behavior of the one or more storage devices within
the RAID array. In one embodiment, the RAID engine 178
may include a monitor 410 and data layout logic 420 as
shown in FI1G. 4. The RAID engine 178 may monitor at least
an age ol a given storage device, a number and a type of
errors, detected configuration changes since a last allocation
of data, an age of given data, a current usage of storage space
in the RAID array, and so forth.

The data, which 1s monitored by the RAID engine 178,
may be stored in RAM 172, such as in one of the device
units 400a-400w shown in FIG. 4. Tables may be used to
store this data, such as the examples shown i FIG. § and
FIG. 6. The logic included within a corresponding RAID
engine may both detect and predict behavior of storage
devices by monitoring updated statistics of the storage
devices. For example, the model may predict an upcoming
increasing error rate for a given storage device.

If increased reliability of the storage device(s) 1s detected
(conditional block 908), then 1n block 910, the RAID engine
may decrease the level of data protection within the system.
For example, in one embodiment the amount of parity
information stored 1n the storage subsystem may be reduced.
Regarding the above example, the RAID engine may
decrease the RAID double panity to RAID single parity for
the corresponding 8+2 RAID array, converting 1t to an 8+1
RAID array. In other examples a given RAID array may be
utilizing an N-level amount of redundancy, or parity, 1n a
RAID architecture prior to block 916. In block 916, the
RAID engine may determine to utilize an (N-m)-level
amount of redundancy, wherein N>1 and 1=m<N. There-
fore, during subsequent write operations for a given RAID
stripe, there will be m fewer storage devices written to
within the given RAID stripe.

In order to reduce the level of data protection within the
system, the RAID engine (or another component) may
perform parity shredding as described earlier. Subsequently,
the storage controller 174 may reallocate those pages which
were Ireed as a result of the shredding operation to be used
in subsequent write operations.

As each of the storage devices 176a-176k both age and fill
up with data, extra parity information may be removed from
the RAID array as described above. The metadata, the user
data, corresponding intra-device redundancy information
and some of the inter-device redundancy information
remains. Regarding the above example with an 8+2 RAID
array, the mformation stored in storage devices 176a-176;
remains. However, extra inter-device redundancy informa-
tion, or extra parity information, may be removed from the
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RAID array. For example, extra parity information stored in
storage device 176k may be removed from the RAID stripes.

The information that remains, such as the information
stored 1n storage devices 176a-1767 in the above example,
may remain 1n place. The storage space storing the extra
parity information, such as the corresponding pages in
storage device 176k 1n the above example, may be reused
and reallocated for subsequent write operations. In one
embodiment, each new allocation receives a new virtual
address. Each new allocation may have any given size, any
given alignment or geometry, and may fit 1n any given
storage space (either virtual or physical). In one embodi-
ment, each one of the storage devices 176a-176k and each
allocated page within a storage device have a header com-
prising identification information. This identification infor-
mation may allow the reuse of storage space for freed extra
parity information without changing a given configuration.

In an embodiment wherein one or more of the storage
devices 176a-176k 1s an SSD, an erase block 1s erased prior
to reprogramming one or more pages within the erase block.
Therefore, in an embodiment wherein storage device 176Kk 1s
an SSD, corresponding erase blocks are erased prior to
reprogramming freed pages in storage device 176k. Regard-
ing the above example with an original 8+2 RAID array, one
or more erase blocks are erased in storage device 176k
within stripes 250a-250b prior to reprogramming pages with
data 210. The original 8+2 RAID array 1s now an 8+1 RAID
array with storage device 1767 providing the single parity
information for RAID stripes written prior to the parity
shredding.

As 1s well known to those skilled 1n the art, during a read
or write failure for a given storage device, data may be
reconstructed from the supported inter-device parity infor-
mation within a corresponding RAID stripe. The recon-
structed data may be written to the storage device. However,
if the reconstructed data fails to be written to the storage
device, then all the data stored on the storage device may be
rebuilt from corresponding parity information. The rebuilt
data may be relocated to another location. With Flash
memory, a Flash Translation Layer (FTL) remaps the storage
locations of the data. In addition, with Flash memory,
relocation of data includes erasing an entire erase block prior
to reprogramming corresponding pages within the erase
block. Maintaining mapping tables at a granularity of erase
blocks versus pages allows the remapping tables to be more
compact. Further, during relocation, extra pages that were
freed during parity shredding may be used.

Offset Parity

Turning now to FIG. 10, a generalized block diagram
illustrating yet another embodiment of a tlexible RAID data
layout architecture 1s shown. Similar to the generalized
block diagram shown 1n FIG. 8, a flexible RAID data layout
architecture may be used. The storage devices 176a-176k
comprise multiple RAID stripes laid out across multiple
storage devices. Although each of the storage devices 176a-
176k comprises multiple pages, only page 1010 and page
1020 are labeled for ease of illustration. In the example
shown, a double parity RAID data layout 1s chosen, wherein
storage devices 1767 and 176k store double parity informa-
tion.

Each of the pages in the storage devices 176a-176k stores
a particular type of data. Some pages store user data 210 and
corresponding generated inter-device parity information
240. Other pages store corresponding generated intra-device
parity information 220. Yet other pages store metadata 242.
The metadata 242 may include page header information,
RAID stripe 1dentification information, log data for one or
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more RAID stripes, and so forth. In addition to inter-device
parity protection and intra-device parity protection, each of
the pages 1n storage devices 176a-176k may comprise
additional protection such as a checksum stored within each
given page. In various embodiments, the single metadata
page at the beginming of each stripe may be rebuilt from the
other stripe headers. Alternatively, this page could be at a
different offset in the parity shard so the data can be
protected by the inter-device parity. A “shard” represents a
portion of a device. Accordingly, a parity shard refers to a
portion of a device storing parity data.

Physical Layer

In various embodiments, the systems described herein
may include a physical layer through which other elements
of the system communicate with the storage devices. For
example, scheduling logic, RAID logic, and other logic may
communicate with the storage devices via a physical layer
comprising any suitable combination of software and/or
hardware. In general, the physical layer performs a variety
of functions including providing access to persistent storage,
and performing functions related to integrity of data storage.

FIG. 11A 1llustrates one embodiment of a hypothetical
device layout for a 500 GB device. In various embodiments,
the storage devices described herein may be formatted with
a partition table 1101 at the beginning of the device, and a
copy of the partition table at the end of the device. Addi-
tionally, a device header 1103 may be stored in the first and
last blocks. For example, 1n a flash based storage device, a
device header may be stored 1n the first and last erase blocks.
As previously discussed, an erase block 1s a tlash construct
that 1s typically 1n the range of 256 KB-1 MB. Additional
unused space in the first erase block may be reserved
(padding 1105). The second erase block 1n each device may
be reserved for writing logging and diagnostic information
1107. The rest of the erase blocks 1n between are divided into
Allocation Units (AUs) 1109 of a multiple erase blocks. The
AU s1ze may be chosen so there are a reasonable number of
AUs per device for good allocation granularity. In one
embodiment, there may be something 1n the range of 10,000
AUs on a device to permit allocation 1n large enough units
to avoid overhead, but not too many units for easy tracking
Tracking of the state of an AU (allocated/free/erased/bad)
may be maintained an AU State Table. The wear level of an
AU may be maintained 1mn a Wear Level Table, and a count
ol errors may be maintained in an AU Error Table.

In various embodiments, the physical layer allocates
space 1n segments which include one segment shard 1n each
device across a set of devices (which could be on different
nodes). FIG. 11B depicts one embodiment of a segment and
various 1dentifiable portions of that segment 1n one possible
segment layout. In the embodiment shown, a single segment
1s shown stored 1n multiple devices. Illustrated are data
devices Data 0-Data N, and panty devices Parity P and
Parity Q. In one embodiment, each segment shard includes
one or more allocation units on a device such that the size
of the shard 1s equal on each device. Segment shard 1123 1s
called out to 1illustrate a segment shard. Also illustrated 1f
FIG. 11B, 1s an I/O read size 1127 which in one embodiment
corresponds to a page. Also shown 1s an I/O parity chunk
1129 which may include one or more pages of page parity

tor the I/O shard.

In one embodiment, each segment will have its own
geometry which may include one or more of the following
parameters:
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(1) RAID level—The RAID level used for cross device
protection 1n the segment. This may determine mirror-
ing, parity, or ECC RAID and how many segment
shards contain parity.

(2) Device Layout 1/O shard size—This represents the
s1ize used to stripe across each device during a write.
This will typically be 1n the range of 256 KB to 1 MB

and probably be a multiple of the erase block size on
cach device. FIG. 11B calls out I/O shard size 1125 for

purposes of illustration.
(3) I/O read size—This 1s a logical read size. Each 1/O
shard may be formatted as a series of logical pages.
Each page may in turn include a header and a checksum
for the data 1n the page. When a read 1s 1ssued 1t will be
for one or more logical pages and the data 1n each page
may be validated with the checksum.

(4) I/O shard RAID level The IO shard has intra-shard
parity to handle latent errors found during a rebuild.
This parameter determines what type of parity 1s used
for intra-shard protection and thus how many copies of
the intra-shard parity will be maintained.

(5) I/O parity chunk—In various embodiments, the stor-
age devices may do ECC on a page basis. Conse-
quently, if an error 1s seen it 1s likely to indicate failure
of an entire physical page. The I/O parity chunk 1s the
least common multiple of the physical page size on
cach device in the segment and the intra-shard parity 1s
calculated by striping down the 1I/O shard 1n the larger
of the I/O panty chunks or the I/O read size. Included
may be one or more pages of page parity. In various
embodiments, this parity may be used to rebuild data 1n
the event of a failed checksum validation.

In various embodiments, as each new segment 1s written

a RAID geometry for the segment will be selected. Selection
of the RAID geometry may be based on factors such as the
current set of active nodes and devices, and the type of data
in the segment. For example 1 10 nodes or devices are
available then an (8+2) RAID 6 geometry may be chosen
and the segment striped across the nodes to withstand two
device or node failures. If a node then fails, the next segment
may switch to a (742) RAID 6 geometry. Within the segment
some of the segment shards will contain data and some will
contain ECC (e.g., parity).

In one embodiment, there are five types of segments.
Three of these segments correspond to the AU State Table,
the AU Frror Table, and the Wear Level Table. In some
embodiments, these three segments may be mirrored for
additional protection. In addition to these three segments,
there are metadata segments which may also be additionally
protected through mirroring. Finally there are Data segments
which hold client blocks and log information. The log
information contains update information associated with the
client blocks in the segment. The data segments will likely
be protected by RAID 6 as illustrated in FIG. 11B with
Parity P and Panty Q shards. In addition to the above, a
segment table 1s maintained as an 1n memory data structure
that 1s populated at startup with information from the
headers of all the segment shards. In some embodiments, the
table may be cached completely on all nodes so any node
can translate a storage access to a physical address. How-
ever, 1n other embodiments an object storage model may be
used where each node may have a segment table that can
take a logical reference and identily the segment layout node
where the data 1s stored. Then the request would be passed
to the node to 1dentity the exact storage location on the node.
FIG. 11B also depicts segment tail data which i1dentifies any
(volume, snapshot) combinations that take up a significant
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amount ol space in the segment. When snapshots are
removed, a data scrubber may help identify segments for
garbage collection based on this data.

In one embodiment, the basic unit of writing 1s the segio
which 1s one I/O shard on each of the devices 1n the segment.
Each logical page 1n the segio 1s formatted with a page
header that contains a checksum (which may be referred to
as a “media” checksum) of the page so the actual page size
for data 1s slightly smaller than one page. For pages 1n the
parity shards of a segment the page header 1s smaller so that
the page checksums in the data page are protected by the
parity page. The last page of each IO shard 1s a parity page
that again has a smaller header and protects all the check-
sums and page data 1n the erase block against a page failure.
The page size retferred to here 1s the I/O read size which may
be one or more physical flash pages. For some segments, a
read size smaller than a physical page may be used. This
may occur for metadata where reads to lookup information
may be index driven and smaller portion of data may be read
while still obtaining the desired data. In such a case, reading,
half a physical page would mean tying up the I/O bus (and
network) with less data and validating (e.g., checksumming)
less data. To support a read size smaller than a physical page,
an embodiment may include multiple parity pages at the end
of the erase block such that the total size of all the parity

pages 1s equal to the flash page size.

As the wear level of an erase block increases, the likeli-
hood of an error increases. In addition to tracking wear
levels, data may be maintained regarding observed how
often errors are seen on an erase block and blocks with a
higher probability of error identified. For some erase blocks,
it may be decided to keep double or triple error correcting
parity at the end of the erase block instead of the single
RAID 5 parity. In this case, the data payload of the segio
may be reduced accordingly. It may only be necessary to
reduce the poor erase block within the segio, rather than all
the erase blocks. The page headers 1n the erase block may be
used to 1dentity which pages are parity and which are data.

Whenever a page 1s read from storage, the contents may
be validated using the page checksum. If the validation fails,
a rebuild of the data using the erase block parity may be
attempted. If that fails, then cross device ECC for the
segment may be used to reconstruct the data.

In data segments the payload area may be divided into two
areas. There will be pages formatted as log data which may
include updates related to stored client blocks. The remain-
der of the payload area may contain pages formatted as
client blocks. The client block data may be stored in a
compressed form. Numerous compression algorithms are
possible and are contemplated. Additionally, in various
embodiments Intel® Advanced Encryption Standard
instructions may be used for generating checksums. Addi-
tionally, there may be a header for the client block that
resides 1n the same page as the data and contains information
needed to read the client block, including an 1dentification of
the algorithm used to compress the data. Garbage collection
may utilize both the client block header and the log entries
in the segio. In addition, the client block may have a data
hash which may be a checksum of the uncompressed data
used for deduplication and to check the correctness of the
decompressed data.

In some embodiments, segments and segios may have a
monotonically increasing ID number used to order them. As
part of writing a segio, a logical layer can record dependen-
cies on prior tlushes. At startup, the physical layer may build
an ordered list of segments and segios and 1f a segio 1s
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dependent on another uncompleted segio 1t may be rolled
back and not considered to have been written.

Wear Level Table

The Wear Level Table (WLT) for each device may be
stored 1n a segment local to each device. The information
may also be stored in the header of each segment shard. In
one embodiment, the wear information 1s an integer that
represents the number of times the allocation unit has been
crased and reused. As the wear information may not be
accurate, a flush of the table to the device may be performed
when there has been a certain amount of activity or when the
system has been i1dle for a reasonable period. The WLT may
also be responsible for cleaning up old WLT segments as 1t
allocates new ones. To add an extra layer of protection, old
copies may be maintained before freeing them. For example,
a table manager may ensure that 1t keeps the previous erase
block and the current erase block of WLT entries at all times.
when 1t allocates a new segment 1t won’t free the old
segment until 1t has written into the second erase block of the

new segment.
AU State Table

The AU State Table (AST) tracks the state of each AU.
The states include Free, Allocated, Erased and Bad. The
AST may be stored 1n a segment on the device. Changing a
state to Allocated or Free may be a synchronous update,
while changing a state to Bad or Erased may be an asyn-
chronous update. This table may generally be small enough
and have enough updates that updates may be logged 1n
NVRAM. The AST may be responsible for cleaning up old
AST segments as 1t allocates new ones. Since the AST can
be completely recovered by scanning the first block of each

AU on the drive, there 1s no need to keep old copies of the
AST.

AU Error Table

The AU Error Table (AET) may be used to track the
number of recoverable errors and unrecoverable errors
within each AU. The AET 1s stored in a segment on the
device and each field may be a two byte integer. With four
bytes per AU the entire table may be relatively small.

Retferring now to FIG. 11C, a generalized block diagram
illustrating one embodiment of data storage arrangements
within different page types i1s shown. In the embodiment
shown, three page types are shown although other types are
possible and contemplated. The shown page types include
page 1110 comprising metadata 1150, page 1120 comprising
user data 1160, and page 1130 comprising parity information
1170 (inter-device or intra-device). Each of the pages 1110-
1130 comprises metadata 1140, which may include header
and 1dentification information. In addition, each of the pages
1110-1130 may comprise intra-page error recovery data
1142, such as a corresponding checksum or other error
detecting and/or correcting code. This checksum value may
provide added protection for data stored 1n storage devices
176a-176k 1n a given device group.

Further, page 1130 may comprise inter-page error recov-
ery data 1144. The data 1144 may be ECC information
derived from the intra-page data 1142 stored 1n other storage
devices. For example, referring again to FIG. 10, each page
within storage device 1767, which stores inter-device parity
information 240, may also store inter-page error recovery
data 1144. The data 1144 may be a parity, a checksum, or
other value generated from intra-page error recovery data
1142 stored in one or more of the storage devices 176a-1761.
In one embodiment, the data 1144 1s a checksum value
generated from one or more other checksum values 1142
stored 1n other storage devices. In order to align data 1144
in a given page in storage device 1767 with data 1142 1n a
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corresponding page in one or more of the storage devices
176a-1761, padding 1146 may be added to the corresponding,
pages.

In one embodiment, end-user applications perform I/O
operations on a sector-boundary, wherein a sector 1s 512
bytes for HDDs. In order to add extra protection, an 8-byte
checksum may be added to form a 520-byte sector. In
various embodiments, compression and remapping may be
used 1n a flash memory based system to allow user data to
be arranged on a byte boundary rather than a sector bound-
ary. In addition, a checksum (8 byte, 4 byte, or otherwise)
may be placed inside a page after a header and before the
user data, which may be compressed. This placement 1s
shown 1n each of pages 1110-1130.

When an end-user application reads a 512-byte sector, a
corresponding page, which may be 2 KB-8 KB 1n size 1n one
embodiment, has extra protection with an 8-byte checksum
at the beginning of the page. In various embodiments, the
page may not be formatted for a non-power of 2 sector size.
As shown 1 pages 1110-1120, the checksum may be oflset
a few bytes 1nto the page. This offset allows a parity page,
such as page 1130, to store both a checksum that covers the
parity page and ECC to protect checksums of the other
pages.

For yet another level of protection, data location infor-
mation may be included when calculating a checksum value.
The data 1142 1n each of pages 1110-1130 may include this
information. This information may include both a logical
address and a physical address. Sector numbers, data chunk
and oflset numbers, track numbers, plane numbers, and so
forth may be included in this information as well.

Alternate Geometries

Turning now to FIG. 12, a generalized block diagram
illustrating one embodiment of a hybrid RAID data layout
1200 1s shown. Three partitions are shown although any
number of partitions may be chosen. Each partition may
correspond to a separate device group, such as device groups
[713a-173b] 173a-173b shown in FIG. 1. Each partition
comprises multiple storage devices. In one embodiment, an
algorithm such as the CRUSH algorithm may be utilized to
select which devices to use 1n a RAID data layout architec-
ture to use for data storage.

In the example shown, an L+1 RAID array, M+1 RAID
array, and N+1 RAID array are shown. In various embodi-
ments, L, M, and N may all be different, the same, or a
combination thereof. For example, RAID array 1210 1is
shown 1n partition 1. The other storage devices 1212 are
candidates for other RAID arrays within partition 1. Simi-
larly, RAID array 1220 1illustrates a given RAID array 1n
partition 2. The other storage devices 1222 are candidates
tor other RAID arrays within partition 2. RAID array 1230
illustrates a given RAID array in partition 3. The other
storage devices 1232 are candidates for other RAID arrays
within partition 3.

Within each of the RAID arrays 1210, 1220 and 1230, a
storage device P1 provides RAID single parity protection
within a respective RAID array. Storage devices D1-DN
store user data within a respective RAID array. Again, the
storage of both the user data and the RAID single parity
information may rotate between the storage devices D1-DN
and P1. However, the storage of user data 1s described as
being stored in devices D1-DN. Similarly, the storage of
RAID single parity information 1s described as being stored
in device P1 for ease of 1illustration and description.

One or more logical storage devices among each of the
three partitions may be chosen to provide an additional
amount of supported redundancy for one or more given
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RAID arrays. In various embodiments, a logical storage
device may correspond to a single physical storage device.
Alternatively, a logical storage device may correspond to
multiple physical storage devices. For example, logical
storage device Q1 1n partition 3 may be combined with each
of the RAID arrays 1210, 1220 and 1230. The logical
storage device Q1 may provide RAID double parity infor-
mation for each of the RAID arrays 1210, 1220 and 1230.
This additional parity information 1s generated and stored
when a stripe 1s written to one of the arrays 1210, 1220, or
1230. Further this additional parity information may cover
stripes 1n each of the arrays 1210, 1220, and 1230. There-
fore, the ratio of a number of storage devices storing RAID
parity information to a total number of storage devices 1s
lower. For example, 11 each of the partitions used N+2 RAID
arrays, then the ratio of a number of storage devices storing
RAID parity information to a total number of storage
devices 1s 3(2)/(3(N+2)), or 2/(N+2). In contrast, the ratio
for the hybrid RAID layout 1200 1s (3+1)/(3(N+1)), or
4/(3(N+1)).

It 1s possible to reduce the above ratio by increasing a
number of storage devices used to store user data. For
example, rather than utilize storage device (Q1, each of the
partitions may utilize a 3N+2 RAID array. In such a case, the
ratio of a number of storage devices storing RAID parity
information to a total number of storage devices 1s 2/(3N+2).
However, during a reconstruct read operation, (3N+1) stor-
age devices receive a reconstruct read request for a single
device failure. In contrast, for the hybrid RAID layout 1200,
only N storage devices receive a reconstruct read request for
a single device failure.

It 1s noted each of the three partitions may utilize a
different RAID data layout architecture. A selection of a
given RAID data layout architecture may be based on a
given ratio number of storage devices storing RAID parity
information to a total number of storage devices. In addition,
the selection may be based on a given number of storage
devices, which may receive a reconstruct read request during
reconstruction. For example, the RAID arrays 1210, 1220
and 1230 may include geometries such as L+a, M+b and
N+c, respectively.

In addition, one or more storage devices, such as storage
device Q1, may be chosen based on the above or other
conditions to provide an additional amount of supported
redundancy for one or more of the RAID arrays within the
partitions. In an example with three partitions comprising
the above RAID arrays and a number Q of storage devices
providing extra protection for each of the RAID arrays, a
ratio of a number of storage devices storing RAID parity
information to a total number of storage devices 1s (a+b+
c+Q)/(L+a+M+b+N+c+()). For a single device failure, a
number of storage devices to receive a reconstruct read
request 1s L, M and N, respectively, for partitions 1 to 3 in
the above example. It 1s noted that the above discussion
generally describes 3 distinct partitions 1n FIG. 12. In such
an embodiment, this type of “hard” partitioning where a
given layout 1s limited to a particular group of devices may
guarantee that reconstruct reads in one partition will not
collide with those 1n another partition. However, in other
embodiments the partitions may not be hard as described
above. Rather, given a pool of devices, layouts may be
selected from any of the devices. For example, treating the
devices as on big pool 1t 1s possible to configure layouts such
as (L+1, M+1, N+1)+1. Consequently, there 1s a chance that
geometries overlap and reconstruct reads could collide. IT L,
M, and N are small relative to the size of the pool then the
percentage of reconstruct reads relative to normal reads may
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be kept low. As noted above, the additional redundancy
provided by Q1 may not correspond to a single physical
device. Rather, the data corresponding to the logical device
Q1 may in fact be distrnbuted among two or more of the
devices depicted in FIG. 12. In addition, 1in various embodi-
ments, the user data (D), parity data (P), and additional data
(Q) may all be distributed across a plurality of devices. In
such a case, each device may store a mix of user data (D),
parity data (P), and additional parity data (Q).

In addition to the above, 1n various embodiments, when
writing a stripe, the controller may select from any of the
plurality of storage devices for one or more of the first RAID
layout, the second RAID layout, and storage of redundant
data by the additional logical device. In this manner, all of
these devices may participate 1n the RAID groups and for
different stripes the additional logical device may be difler-
ent. In various embodiments, a stripe 1s a RAID layout on
the first subset plus a RAID layout on the second subset plus
the additional logical device.

Referring now to FIG. 13, one embodiment of a method
1300 for selecting alternate RAID geometries 1mn a data
storage subsystem 1s shown. The components embodied 1n
network architecture 100 and data storage arrays 120a-120b
described above may generally operate in accordance with
method 1300. The steps 1n this embodiment are shown in
sequential order. However, some steps may occur in a
different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps,
and some steps may be absent 1n another embodiment.

In block 1302, a RAID engine 178 or other logic within
a storage controller 174 determines to use a given number of
devices to store user data in a RAID array within each
partition of a storage subsystem. A RUSH or other algorithm
may then be used to select which devices are to be used. In
one embodiment, each partition utilizes a same number of
storage devices. In other embodiments, each partition may
utilize a different, unique number of storage devices to store
user data. In block 1304, the storage controller 174 may
determine to support a number of storage devices to store
corresponding Inter-Device Error Recovery (parity) data
within each partition of the subsystem. Again, each partition
may utilize a same number or a different, unique number of
storage devices for storing RAID parity information.

In block 1306, the storage controller may determine to
support a number Q ol storage devices to store extra
Inter-Device Error Recovery (parity) data across the parti-
tions of the subsystem. In block 1308, both user data and
corresponding RAID parity data may be written 1n selected
storage devices. Referring again to FIG. 12, when a given
RAID array 1s written, such as RAID array 1210 1n partition
1, one or more bits of parity information may be generated
and stored 1n storage device Q1 in partition 3.

If the storage controller 174 detects a condition for
performing read reconstruction 1 a given partition (condi-
tional block 1310), and 11 the given partition has a suilicient
number of storage devices holding RAID parity information
to handle a number of unavailable storage devices (condi-
tional block 1312), then 1n block 1314, the reconstruct read
operation(s) 1s performed with one or more corresponding
storage devices within the given partition. The condition
may include a storage device within a given RAID array 1s
unavailable due to a device failure or the device operates
below a given performance level. The given RAID array 1s
able to handle a maximum number of unavailable storage
devices with the number of storage devices storing RAID
parity information within the given partition. For example,
if RAID array 1210 1n partition 1 1n the above example 1s an
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L+a RAID array, then RAID array 1210 1s able to perform
read reconstruction utilizing only storage devices within
partition 1 when k storage devices are unavailable, where
] <=k<=a.

If the given partition does not have a suflicient number of
storage devices holding RAID parity information to handle
a number of unavailable storage devices (conditional block
1312), and 1f there i1s a suflicient number of (Q storage
devices to handle the number of unavailable storage devices
(conditional block 1316), then in block 1318, the reconstruct
read operation(s) 1s performed with one or more correspond-
ing Q storage devices. One or more storage devices 1n other
partitions, which are storing user data, may be accessed
during the read reconstruction. A selection of these storage
devices may be based on a manner of a derivation of the
parity information stored in the one or more (Q storage
devices. For example, referring again to FIG. 12, storage
device D2 1n partition 2 may be accessed during the read
reconstruction, since this storage device may have been used
to generate corresponding RAID parity information stored in
storage device Q1. If there are not a suflicient number of (@
storage devices to handle the number of unavailable storage
devices (conditional block 1316), then 1 block 1320, the
corresponding user data may be read from another source or
be considered lost.

It 1s noted that the above-described embodiments may
comprise soitware. In such an embodiment, the program
instructions that implement the methods and/or mechanisms
may be conveyed or stored on a computer readable medium.
Numerous types ol media which are configured to store
program 1nstructions are available and include hard disks,
floppy disks, CD-ROM, DVD, flash memory, Program-
mable ROMs (PROM), random access memory (RAM), and
various other forms of volatile or non-volatile storage.

In various embodiments, one or more portions ol the
methods and mechanisms described herein may form part of
a cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services
according to one or more various models. Such models may
include Infrastructure as a Service (laaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). In IaaS,
computer infrastructure 1s delivered as a service. In such a
case, the computing equipment i1s generally owned and
operated by the service provider. In the PaaS model, sofit-
ware tools and underlying equipment used by developers to
develop software solutions may be provided as a service and
hosted by the service provider. SaaS typically includes a
service provider licensing soitware as a service on demand.
The service provider may host the soitware, or may deploy
the software to a customer for a given period of time.
Numerous combinations of the above models are possible
and are contemplated.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the
above disclosure 1s fully appreciated. It 1s intended that the
following claims be interpreted to embrace all such varia-
tions and modifications.

What 1s claimed 1is:

[1. A computer system comprising:

a data storage subsystem comprising a plurality of storage
devices 1n a redundant array ol independent disks
(RAID) configuration; and

a storage controller configured to:

write a first RAID stripe to the plurality of storage devices
including:
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for each storage device of a subset of the plurality of
storage devices, writing within a page of the storage
device, user data and a checksum that validates the
user data stored on the storage device;

26

inter-page protection data, the inter-page protection

data protecting the checksums stored on each storage
device of the subset of storage devices.}

[10. The method as recited in claim 9, further comprising

writing within a page of a particular storage device of > writing a second RAID stripe to a subset of the plurality of

the plurality storage devices,

inter-device protection data, the inter-device protec-
tion data protecting the user data stored on each
storage device of the subset of the plurality of
storage devices;

intra-page protection data, the intra-page protection
data protecting the inter-device protection data
stored on the particular storage device; and

inter-page protection data, the inter-page protection
data protecting the checksums stored on each
storage device of the subset of storage devices.]

[2. The computer system as recited in claim 1, wherein the
storage controller 1s further configured to write a second
RAID stripe to a subset of the plurality of storage devices,
the first RAID stripe having a first RAID layout and the
second RAID stripe having a second RAID layout.]

[3. The computer system as recited in claim 2, wherein the
first RAID layout 1s an L+x layout, and the second RAID
layout 1s an M+y layout, wherein L, x, M, and, y are integers,
and wherein either or both (1) L 1s not equal to M, and (2)
X 1s not equal to y.]

[4. The computer system as recited in claim 2, wherein the
first RAID layout 1s selected from a first device group and
the second RAID layout 1s selected from a second device
group.]

[5. The computer system as recited in claim 2, wherein the
first RAID layout and the second RAID layout include at
least one device that has a larger storage capacity than other
devices 1ncluded in the first RAID layout and the second

RAID layout.]

[6. The computer system as recited in claim 2, wherein the
storage controller 1s further configured to configure an
additional logical device not included 1n either the first
RAID layout or the second RAID layout to store redundant
data for both the first RAID layout and the second RAID

layout.]
[7. The computer system as recited in claim 1, wherein the
plurality of storage devices are solid state storage devices.]
[8. The computer system as recited in claim 1, wherein the
storage controller 1s configured to store metadata, user data,
and protection data 1n pages, each page including a header
with a checksum.]
[9. A method for use in a computing system, the method
comprising;
writing a RAID stripe to a plurality of storage devices 1n
a redundant array of independent disks (RAID) con-
figuration, wherein writing the RAID stripe includes:
for each storage device of a subset of the plurality of
storage devices, writing within a page of the storage
device, user data and a checksum that validates the
user data stored on the storage device;
writing within a page of a particular storage device of
the plurality storage devices,
inter-device protection data, the inter-device protection
data protecting the user data stored on each storage
device of the subset of the plurality of storage
devices;
intra-page protection data, the intra-page protection
data protecting the inter-device protection data
stored on the particular storage device; and
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storage devices, the first RAID stripe having a first RAID
layout and the second RAID stripe having a second RAID
layout.]

[11. The method as recited in claim 10, wherein the first
RAID layout 1s an L+x layout, and the second RAID layout
1s an M+y layout, wherein L, x, M, and, y are integers, and
wherein eitther or both (1) L 1s not equal to M, and (2) X 1s

not equal to y .}
[12. The method as recited in claim 10, wherein the first

RAID layout 1s selected from a first device group, and the
second RAID layout 1s selected from a second device

group. ]

[13. The method as recited in claim 9, wherein the
plurality of storage devices are solid state storage devices.]

[14. The method as recited in claim 9, further comprising
storing metadata, user data, and protection data 1n pages,
each page including a header with a checksum.]

[15. A non-transitory computer readable storage medium
storing program instructions, wherein the program instruc-
tions are executable to:

write a RAID stripe to a plurality of storage devices 1n a
redundant array of independent disks (RAID) configu-
ration, wherein writing the RAID stripe includes:
for each storage device of a subset of the plurality of

storage devices, writing within a page of the storage

device, user data and a checksum that validates the

user data stored on the storage device;

writing within a page of a particular storage device of

the plurality storage devices,

inter-device protection data, the inter-device protec-
tion data protecting the user data stored on each
storage device of the subset of the plurality of
storage devices;

intra-page protection data, the intra-page protection
data protecting the inter-device protection data
stored on the particular storage device; and

inter-page protection data, the inter-page protection
data protecting the checksums stored on each
storage device of the subset of storage devices.]

[16. The non-transitory computer readable storage
medium as recited 1n claim 15, wherein the storage control-
ler 1s turther configured to write a second RAID stripe to a
subset of the plurality of storage devices, the first RAID
stripe having a first RAID layout and the second RAID stripe
having a second RAID layout.]

[17. The non-transitory computer readable storage
medium as recited 1n claim 16, wherein the first RAID
layout 1s an L+x layout, and the second RAID layout 1s an
M+y layout, wheremn L, x, M, and, v are integers, and
wherein either or both (1) L 1s not equal to M, and (2) X 1s
not equal to y .}

[18. The non-transitory computer readable storage
medium as recited 1n claim 15, wherein the plurality of
storage devices are solid state storage devices.}

19. A computer system comprising:

a data storage subsystem comprising a plurality of stor-
age devices in a redundant array of independent drives
(RAID) configuration,; and

a storage controller to:
write a first RAID stripe to the plurality of storage

devices including:
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for each storage device of a subset of the plurality of

storage devices, writing within a page of the

storage device, user data, and a checksum that

validates the user data storved on each storage

device of the subset of the plurality of storage

devices; and

writing, within a page of a particular storage device

of the plurality of storage devices:

inter-device rvedundancy data, the inter-device
redundancy data to protect the user data stoved
on each storage device of a first subset of the
plurality of storage devices,

intra-page error rvecovery data, the intra-page
error recovery data to protect the inter-device
redundancy data stoved on the particular stor-
age device, and

inter-page protection data, the inter-page protec-
tion data to protect the checksums storved omn
each storage device of the subset of the plurality
of storage devices.

20. The computer system of claim 19, wherein the storage
controller is further comfigured to write a second RAID
stripe to a second subset of the plurality of storage devices,
the first RAID stripe having a first RAID layout and the
second RAID stripe having a second RAID layout.

21. The computer system of claim 20, wherein the first
RAID layout is an L+x layout, and the second RAID layout
is an M+y layout, wherein L, x, M, and, v are positive
integers, and wherein at least one of: (1) L is not equal to
M, or (2) x is not equal to y.

22. The computer system of claim 20, wherein the first
RAID lavout is selected from a first device group and the
second RAID layout is selected from a second device group.

23. The computer system of claim 19, wherein the plu-
rality of storage devices ave solid state storage devices.

24. The computer system of claim 19, wherein the plu-
rality of storage devices comprise flash memory cells.

25. The computer system of claim 19, wherein the com-
puter system is a flash memory based system.

26. A method, comprising:

writing, by a storage controller of a data storage subsys-

tem comprising a plurality of storage devices in a
redundant array of independent drives (RAID) configu-
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ration, a first RAID stripe to the plurality of storage

devices, wherein writing the first RAID stripe com-

prises.
Jor each storage device of a subset of the plurality of
storage devices, writing within a page of the storage
device, user data, and a checksum that validates the
user data stoved on each storvage device of the subset
of the plurality of storvage devices; and
writing, within a page of a particular storage device of
the plurality of storage devices:
inter-device redundancy data, the inter-device
redundancy data to protect the user data stored on
each storage device of a first subset of the plural-
ity of storage devices,

intra-page evvor recovery data, the intra-page error
recovery data to protect the inter-device protec-
tion data storved on the particular storage device,
and

inter-page protection data, the inter-page protection
data to protect the checksums stored on each
storage device of the subset of the plurality of
storage devices.

27. The method of claim 26, further comprising writing a
second RAID stripe to a second subset of the plurality of
storage devices, the first RAID stripe having a first RAID
layout and the second RAID stripe having a second RAID

layout.
28. The method of claim 27, wherein the first RAID layout

is an L+x layout, and the second RAID layout is an M+y
lavout, whervein L, x, M, and, v are positive integers, and
wherein at least one of: (1) L is not equal to M, or (2) x is
not equal to y.

29. The method of claim 27, wherein the first RAID lavout

is selected from a first device group and the second RAID
layout is selected from a second device group.

30. The method of claim 26, wherein the plurality of
storage devices are solid state storage devices.

31. The method of claim 26, wherein the plurality of
storage devices comprise flash memory cells.

32. The method of claim 26, wherein the data storage

subsystem is a flash memory based system.
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