(19) United States

12y Reissued Patent
Gorchetchnikov et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE48438E

US RE48.,438 E
*Feb. 16, 2021

(54) GRAPHIC PROCESSOR BASED
ACCELERATOR SYSTEM AND METHOD

(71) Applicant: Neurala, Inc., Boston, MA (US)
(72) Inventors: Anatoli Gorchetchnikov, Belmont, MA
(US); Heather Marie Ames, Milton,
MA (US); Massimiliano Versace,
Milton, MA (US); Fabrizio Santini,
Jamaica Plain, MA (US)
(73) Assignee: Neurala, Inc., Boston, MA (US)
(*) Notice: This patent 1s subject to a terminal dis-
claimer.
(21) Appl. No.: 15/808,201
(22) Filed: Nov. 9, 2017
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 9,189,828
Issued: Nov. 17, 2015
Appl. No.: 14/147,015
Filed: Jan. 3, 2014

U.S. Applications:
(63) Continuation of application No. 11/860,254, filed on

Sep. 24, 2007, now Pat. No. 8,648,367,

(Continued)
(51) Int. CL
GO6T 1/60 (2006.01)
GO6IF 9/50 (2006.01)
(Continued)
(52) U.S. CL
CPC Go6T 1720 (2013.01); GO6F 9/5027
(2013.01); GO6T 1/60 (2013.01);
(Continued)
(58) Field of Classification Search

CPC ... GO6F 9/5027; GO6F 2209/509; GO6T 1/20;
GO6T 1/60; GO6N 99/005; GO6N 3/063

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,063,603 A 11/1991 Burt
5,136,687 A 8/1992 Edelman et al.
(Continued)
FOREIGN PATENT DOCUMENTS
EP 1 224 622 Bl 7/2002
WO WO 2014/190208 11/2014
(Continued)

OTHER PUBLICATTIONS

Cornwall et al., “Automatically Translating a General Purpose C++

Image Processing Library for GPUs™, IEEE, Jun. 2006, 8 pages.
(Year: 2006).*

(Continued)

Primary Examiner — William H. Wood
(74) Attorney, Agent, or Firm — Smith Baluch LLP

(57) ABSTRACT

An accelerator system 1s implemented on an expansion card
comprising a printed circuit board having (a) one or more
graphics processing units (GPUs), (b) two or more associ-
ated memory banks (logically or physically partitioned), (c)
a specialized controller, and (d) a local bus providing signal
coupling compatible with the PCI industry standards. The
controller handles most of the primitive operations to set up
and control GPU computation. Thus, the computer’s central
processing unit (CPU) can be dedicated to other tasks. In this
case a few controls (simulation start and stop signals from
the CPU and the simulation completion signal back to CPU),
GPU programs and mnput/output data are exchanged between
CPU and the expansion card. Moreover, since on every time
step of the simulation the results from the previous time step
are used but not changed, the results are preferably trans-
terred back to CPU in parallel with the computation.

36 Claims, 5 Drawing Sheets

Expansion Cardyy 55 j‘*“

A 20

mirinlian
it

=

D Rt e

435

rEE L SRS
N 'é' E}'g s . |

! Bengasd beimorhl seiads bevna

P domnyie prenRey
D ek v G225

i

et

!ﬁwﬁmhm

[P ——)

=-rue

[

L

US RE48,438 E
Page 2

Related U.S. Application Data
(60) Provisional application No. 60/826,892, filed on Sep.

25, 2006.
(51) Int. CL

Go6T 1720 (2006.01)

GO6N 3/063 (2006.01)

GO6N 20/00 (2019.01)
(52) U.S. CL

CPC GO6F 2209/509 (2013.01); GO6N 3/063

(2013.01); GO6N 20/00 (2019.01)

(56) References Cited

U.S. PATENT DOCUMENTS

5,142,665 A * 8/1992 Bigusocoeevvinennnnn, GO6N 3/04
706/16
5,172,253 A 12/1992 Lynne
5,388,206 A 2/1995 Poulton et al.
6,018,696 A 1/2000 Matsuoka et al.
6,336,051 Bl 1/2002 Pangels et al.
6,647,508 B2 11/2003 Zalewski et al.
7,119,810 B2* 10/2006 Sumanaweera G06T 15/005
345/506
7,219,085 B2* 5/2007 Buckc...ooill, GO6N 3/08
706/12
7.477,256 B1* 1/2009 Johnson GO6F 3/14
345/501
7,525,547 B1* 4/2009 Diard G06T 1/20
345/502

7,765,029 B2 7/2010 Fleischer et al.
7,861,060 B1* 12/2010 Nickolls et al. 712/22
7,873,650 Bl 1/2011 Chapman et al.
8,392,346 B2 3/2013 Ueda et al.
8,510,244 B2 8/2013 Carson et al.
8,583,286 B2 11/2013 Fleischer et al.
8,648,867 B2 * 2/2014 Gorchetchnikov et al. .. 345/501
9,031,692 B2 5/2015 Zhu
9,177,246 B2 11/2015 Buibas et al.
9,626,566 B2 4/2017 Versace et al.
10,083,523 B2 9/2018 Versace et al.
1

2001/0010034 Al1* 7/2001 Burton GO6F 17/5022
703/17

2002/0046271 Al 4/2002 Huang

2002/0050518 Al 5/2002 Roustael

2002/0064314 Al 5/2002 Comaniciu et al.

2002/0168100 A1 11/2002 Woodall

2003/0026588 Al 2/2003 Elder et al.

2003/0078754 Al 4/2003 Hamza

2004/0015334 Al 1/2004 Ditlow et al.

2005/0166042 Al 7/2005 Evans

2006/0129506 Al1* 6/2006 Edelman GO5D 1/0088
706/12

2006/0184273 Al 8/2006 Sawada et al.

2007/0052713 Al 3/2007 Chung et al.

2007/0198222 Al 8/2007 Schuster et al.

2007/0279429 A1 12/2007 Ganzer

2008/0033897 Al 2/2008 Lloyd

2008/0066065 Al 3/2008 Kim et al.

2008/0258880 A1 10/2008 Smith et al.

2009/0080695 Al 3/2009 Yang et al.

2009/0089030 Al 4/2009 Sturrock et al.

2009/0116688 Al 5/2009 Monacos et al.

2010/0048242 Al 2/2010 Rhoads et al.

2011/0004341 Al 1/2011 Sarvadevabhatla et al.

2011/0173015 Al 7/2011 Chapman et al.

2011/0279682 Al 11/2011 L1 et al.

2012/0072215 Al 3/2012 Yu et al.

2012/0089552 Al 4/2012 Chang et al.

2012/0197596 Al 8/2012 Comu

2012/0316786 A1 12/2012 Liu et al.

2013/0126703 Al 5/2013 Caulfield

2013/0131985 Al 5/2013 Weiland et al.

2014/0019392 Al 1/2014 Buibas et al.

2014/0032461 Al 1/2014 Weng

2014/0089232 Al 3/2014 Buibas et al.
2014/0052679 Al 11/2014 Sinyavskiy et al.
2015/0127149 Al 5/2015 Sinyavskiy et al.
2015/0134232 Al 5/2015 Robinson
2015/0224648 Al 8/2015 Lee et al.
2016/0075017 Al 3/2016 Laurent et al.
2016/0082597 Al 3/2016 Gorchetchnikov et al.
2016/0096270 Al 4/2016 Gabardos et al.
2016/0198000 Al 7/2016 Gorchetchnikov et al.
2017/0024877 Al 1/2017 Versace et al.
2017/0076194 Al 3/2017 Versace et al.
2017/0193298 Al 7/2017 Versace et al.

FOREIGN PATENT DOCUMENTS

WO WO 2014/204615 12/2014
WO WO 2015/143173 9/2015
WO WO 2016/014137 1/2016

OTHER PUBLICATIONS

Montrym et al., ““The GeForce 6800, IEEE, 2005, 11 pages. (Year:
2005).*

Perumalla, Kalyan S., “Discrete-event Execution Alternatives on
General Purpose Graphical Processing Units (GPGPUs)”, IEEE,
“Proceedings of the 20th Workshop on Principles of Advanced and
Distributed Simulation (PADS’06)”, Mar. 2006, 8 pages. (Year:
2006).*

Setoain et al., “Parallel Hyperspectral Image Processing on Com-
modity Graphics Hardware”, IEEE, “Proceedings of the 2006
International Conference on Parallel Processing Workshops
(ICPPW’06)”, Mar. 2006, 8 pages. (Year: 2006).*

Luo et al., “Artificial Neural Network Computation on Graphic
Process Unit”, IEEE, “Proceedings of International Joint Confer-
ence on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 20057,
Feb. 2005, pp. 622-626 (Year: 2005).*

Non-Final Office Action dated Jan. 4, 2018 from U.S. Appl. No.
15/262,637, 23 pages.

Wu, Yan & J. Cai, H. (2010). A Simulation Study of Deep Belief
Network Combined with the Self-Organizing Mechanism of Adap-
tive Resonance Theory. 10.1109/CISE.2010.5677265, 4 pages.
Al-Kaysi, A. M. et al., A Multichannel Deep Belief Network for the
Classification of EEG Data, from Ontology-based Information
Extraction for Residential Land Use Suitability: A Case Study of the
City of Regina, Canada, DOI 10.1007/978-3-319-26561-2_5, 8
pages (Nov. 2015).

Apolloni, B. et al., Training a network of mobile neurons, Proceed-

ings of International Joint Conference on Neural Networks, San
Jose, CA, dor: 10.1109/IJCNN.2011.6033427, pp. 1683-1691 (Jul.

31-Aug. 5, 2011).
Boddapati, V., Classifying Environmental Sounds with Image Net-

works, Thesis, Faculty of Computing Blekinge Institute of Tech-
nology, 37 pages. (Feb. 2017).

Khaligh-Razavi, S.-M. et al., Deep Supervised, but Not Unsuper-
vised, Models May Explain IT Cortical Representation, PLoS
Computational Biology, vol. 10, Issue 11, 29 pages. (Nov. 2014).
Kim, S., Novel approaches to clustering, biclustering and algo-
rithms based on adaptive resonance theory and intelligent control,
Doctoral Dissertations, Missourt University of Science and Tech-
nology, 125 pages. (2016).

Notice of Alllowance dated May 22, 2018 from U.S. Appl. No.
15/262,637, 6 pages.

Ren, Y. et al., Ensemble Classification and Regression—Recent

Developments, Applications and Future Directions, in IEEE Com-
putational Intelligence Magazine, 10.1109/MCI1.2015.2471235, 14

pages (2016).
Sun, Z. et al., Recognition of SAR target based on multilayer

auto-encoder and SNN, International Journal of Innovative Com-

puting, Information and Control, vol. 9, No. 11, pp. 4331-4341,
Nov. 2013.

US RE48,438 E
Page 3

(56) References Cited
OTHER PUBLICATIONS

Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J., & Ogden,
J. M. (1984). Pyramid methods in image processing. RCA engineer,
29(6), 33-41.

Aggarwal, Charu C, Hinneburg, Alexander, and Keim, Daniel A. On
the surprising behavior of distance metrics in high dimensional
space. Springer, 2001,

Ames, H, Versace, M., Gorchetchnikov, A., Chandler, B., Livitz, GG.,
Leveille, J., Mingolla, E., Carter, D., Abdalla, H., and Snider, G.
(2012) Persuading computers to act more like brains. In Advances
in Neuromorphic Memristor Science and Applications, Kozma,
R.Pino,R., and Pazienza, G. (eds), Springer Verlag.

Ames, H. Mingolla, E., Sohail, A., Chandler, B., Gorchetchnikov,
A., Levellle, J., Livitz, G. and Versace, M. (2012) The Animat. IEEE
Pulse, Feb. 2012, 3(1), 47-50.

Artificial Intelligence As a Service. Invited talk, Defrag, Broomifield,
CO, Nov. 4-6 (2013).

Aryananda, L. (2006). Attending to learn and learning to attend for
a social robot. Humanoids 06, pp. 618-623.

Baraldi, A. and Alpaydin, E. (1998). Simplified ART: A new class
of ART algorithms. International Computer Science Institute, Berke-
ley, CA, TR-98-004, 1998.

Baraldi, A. and Alpaydin, E. (2002). Constructive feedforward ART
clustering networks—Part I. IEEE Transactions on Neural Net-
works 13(3), 645-661.

Baraldi, A. and Parmiggiani, F. (1997). Fuzzy combination of
Kohonen’s and ART neural network models to detect statistical
regularities 1n a random sequence of multi-valued 1nput patterns. In
International Conference on Neural Networks, IEEE.

Baraldi, Andrea and Alpaydin, Ethem. Constructive feedforward
ART clustering networks—part II. IEEE Transactions on Neural
Networks, 13(3):662-677, May 2002. ISSN 1045-9227. do1: 10.1109/
tnn.2002.1000131. URL http://dx.do1.org/10.1109/tnn.2002.
1000131.

Bengio, Y., Courville, A., & Vincent, P. Representation learning: A
review and new perspectives, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 35 Issue 8, Aug. 2013, pp.
1798-1828.

Berenson, D. et al., A robot path planning framework that learns
from experience, 2012 International Conference on Robotics and
Automation, 2012, 9 pages [retrieved from the internet] URL:http://
users.wpl.edu/-dberenson/lightning.pdf.

Bernhard, F., and Keriven, R. (2005). Spiking Neurons on GPUs.
Tech. Rep. 05-15, Ecole Nationale des Ponts et Chauss’es, 8 pages.
Besl, P. J., & Jain, R. C. (1985). Three-dimensional object recog-
nition. ACM Computing Surveys (CSUR), 17(1), 75-145.

Bohn, C.-A. Kohonen. (1998). Feature Mapping Through Graphics
Hardware. In Proceedings of 3rd Int. Conference on Computational
Intelligence and Neurosciences, 4 pages.

Bradski, G., & Grossberg, S. (1995). Fast-learning Viewnet archi-
tectures for recognizing three-dimensional objects from multiple
two-dimensional views. Neural Networks, 8 (7-8), 1053-1080.
Canny, J.A. (1986). Computational Approach to Edge Detection,
IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6):679-
698.

Carpenter, G.A. and Grossberg, S. (1987). A massively parallel
architecture for a self-organizing neural pattern recognition machine.
Computer Vision, Graphics, and Image Processing 37, 54-115.
Carpenter, G.A., and Grossberg, S. (1995). Adaptive resonance
theory (ART). In M. Arbib (Ed.), The handbook of brain theory and
neural networks. (pp. 79-82). Cambridge, M. A.: MIT press.
Carpenter, G.A., Grossberg, S. and Rosen, D.B. (1991). Fuzzy ART:
Fast stable learning and categorization of analog patterns by an
adaptive resonance system. Neural Networks 4, 759-771.
Carpenter, Gail A and Grossberg, Stephen. The art of adaptive
pattern recognition by a self-organizing neural network. Computer,
21(3):77-88, 1988.

Coifman, R.R. and Maggioni, M. Diflusion wavelets. Applied and
Computational Harmonic Analysis, 21(1):53-94, 2006.

Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B.,
Warner, F., and Zucker, S'W. Geometric diffusions as a tool for
harmonic analysis and structure definition of data: Diffusion maps.
Proceedings of the National Academy of Sciences of the United
States of America, 102(21):7426, 2005.

Davis, C. E. 2005. Graphic Processing Unit Computation of Neural
Networks. Master’s thesis, University of New Mexico, Albuquer-
que, NM, 121 pages.

Dosher, B.A., and Lu, Z.L.. (2010). Mechanisms of perceptual
attention 1n precuing of location. Vision Res., 40(10-12). 1269-

1292,

Ellias, S. A., and Grossberg, S. (1975). Pattern formation, contrast
control and oscillations in the short term memory of shunting
on-center off-surround networks. Biol Cybern 20, pp. 69-98.

Extended European Search Report and Written Opinion dated Jun.
1, 2017 from European Application No. 14813864.7, 10 pages.

Extended FEuropean Search Report and Written Opinion dated Oct.
12, 2017 from European Application No. 14800348.6, 12 pages.

Extended European Search Report and Written Opinion Oct. 23,

2017 from European Application No. 15765396.5, 8 pages.

Fazl, A., Grossberg, S., and Mingolla, E. (2009). View-invariant
object category learning, recognition, and search: How spatial and
object attention are coordinated using surface-based attentional
shrouds. Cognitive Psychology 58, 1-48.

Foldiak, P. (1990). Forming sparse representations by local anti-
Hebbian learning, Biological Cybernetics, vol. 64, pp. 165-170.
Friston K., Adams R., Perrinet L., & Breakspear M. (2012). Per-
ceptions as hypotheses: saccades as experiments. Frontiers in Psy-
chology, 3 (151), 1-20.

Galbraith, B.V, Guenther, F.H., and Versace, M. (2015) A neural
network-based exploratory learning and motor planning system for
co-robots.Frontiers in Neuroscience, 1n press.

George, D. and Hawkans, J. (2009). Towards a mathematical theory
of cortical micro-circuits. PLoS Computational Biology 5(10), 1-26.
Georgell, J., and Westermann, R. (2005). Mass-spring systems on
the GPU. Simulation Modelling Practice and Theory 13, pp. 693-
702.

Gorchetchnikov A., Hasselmo M.E. (2005). A biophysical imple-
mentation of a bidirectional graph search algorithm to solve mul-
tiple goal navigation tasks. Connection Science, 17(1-2), pp. 145-
166.

Gorchetchnikov A., Hasselmo M.E. (2005). A simple rule for
spike-timing-dependent plasticity: local influence of AHP current.
Neurocomputing, 65-66, pp. 885-890.

Gorchetchnikov A., Versace, M., Hasselmo M.E. (2005). A Model
of STDP Based on Spatially and Temporally Local Information:
Derivation and Combination with Gated Decay. Neural Networks,
18, pp. 458-466.

Gorchetchnikov A., Versace, M., Hasselmo M.E. (2005). Spatially
and temporally local spiketiming-dependent plasticity rule. In:
Proceedings of the International Joint Conference on Neural Net-
works, No. 1568 1n IEEE CD-ROM Catalog No. 05CH37662C, pp.
390-396,

Gorchetchnikov A. An Approach to a Biologically Realistic Simu-
lation of Natural Memory. Master’s thesis, Middle Tennessee State
University, Murfreesboro, TN, 70 pages.

Grossberg, S. (1973). Contour enhancement, short-term memory,
and constancies in reverberating neural networks. Studies in Applied
Mathematics 52, 213-257.

Grossberg, S., and Huang, T.R. (2009). Artscene: A neural system
for natural scene classification. Journal of Vision, 9 (4), 6.1-19.
do1:10.1167/9.4.6.

Grossberg, S., and Versace, M. (2008) Spikes, synchrony, and
attentive learning by laminar thalamocortical circuits. Brain Research,
1218C, 278-312 [Authors listed alphabetically].

Hagen, T.R., Hjelmervik, J., Lie, K.-A., Natvig, J. and Ofstad
Henriksen, M. (2005). Visual simulation of shallow-water waves.
Simulation Modelling Practice and Theory 13, pp. 716-726.
Hasselt, Hado Van. Double g-learning. In Advances in Neural
Information Processing Systems, pp. 2613-2621, 2010.

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning
algorithm for deep belief nets. Neural Computation, 18, 1527-1554.

US RE48,438 E
Page 4

(56) References Cited
OTHER PUBLICATIONS

Hodgkin, A.L., and Huxley, A.F. (1952). Quantitative description of
membrane current and its application to conduction and excitation
in nerve. J Physiol 117, pp. 500-544.

Hopfield, J. (1982). Neural networks and physical systems with
emergent collective computational abilities. In Proc Natl Acad Sci

USA, vol. 79, pp. 2554-2558.

Ilie, A. (2002). Optical character recognition on graphics hardware.
Tech. Rep. integrative paper, UNCCH, Department of Computer
Science, 9 pages.

International Preliminary Report on Patentability in related PCT
Application No. PCT/US2014/039162 filed May 22, 2014, dated

Nov. 24, 2015, 7 pages.
International Preliminary Report on Patentability in related PCT
Application No. PCT/US2014/039239 filed May 22, 2014, dated
Nov. 24, 2015, 8 pages.

International Preliminary Report on Patentability dated Nov. 8,
2016 from International Application No. PCT/US2015/029438, 7

pages.
International Search Report and Written Opinion dated Feb. 18,

2015 from International Application No. PCT/US2014/039162, 12
pages.

International Search Report and Written Opinion dated Feb. 23,
2016 from International Application No. PCT/US2015/029438, 11
pages.

International Search Report and Written Opinion dated Jul. 6, 2017
from International Application No. PCT/US2017/029866, 12 pages.
International Search Report and Written Opinion dated Nov. 26,
2014 from International Application No. PCT/US2014/039239, 14
pages.

International Search Report and Written Opinion dated Sep. 15,
2015 from International Application No. PCT/US2015/021492, 9

pages.
Itt1, L., and Koch, C. (2001). Computational modelling of visual
attention. Nature Reviews Neuroscience, 2 (3), 194-203.

Itt1, L., Koch, C., and Niebur, E. (1998). A Model of Saliency-Based
Visual Attention for Rapid Scene Analysis, 1-6.

Jarrett, K., Kavukcuoglu, K., Ranzato, M. A., & LeCun, Y. (Sep.
2009). What 1s the best multi-stage architecture for object recog-
nition?. In Computer Vision, 2009 IEEE 12th International Confer-
ence on (pp. 2146-2153). IEEE.

Kipfer, P, Segal, M., and Westermann, R. (2004). UberFlow: A
GPU-Based Particle Engine. In Proceedings of the SIGGRAPH/
Eurographics Workshop on Graphics Hardware 2004, pp. 115-122.
Kolb, A., L. Latta, and C. Rezk-Salama. (2004). “Hardware-Based
Simulation and Collision Detection for Large Particle Systems.” 1n
Proceedings of the SIGGRAPH/Eurographics Workshop on Graph-
ics Hardware 2004, pp. 123-131.

Kompella, Varun Raj, Luciw, Matthew, and Schmidhuber, Jurgen.
Incremental slow feature analysis: Adaptive low-complexity slow
feature updating from high-dimensional input streams. Neural Com-
putation, 24(11):2994-3024, 2012.

Kowler, E. (2011). Eye movements: The past 25years. Vision
Research, 51(13), 1457-1483. do1:10.1016/.visres.2010.12.014.
Larochelle H., & Hinton G. (2012). Learning to combine foveal
glimpses with a third-order Boltzmann machine. NIPS 2010,1243-
1251.

LeCun, Y., Kavukcuoglu, K., & Farabet, C. (May 2010). Convolu-
tional networks and applications in vision. In Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on
(pp. 253-256). IEEE.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects
by non-negative matrix factorization. Nature, 401(6755):788-791.
Lee, D. D., and Seung, H. S. (1997). “Unsupervised learning by
convex and conic coding.” Advances 1n Neural Information Pro-
cessing Systems, 9.

Legenstein, R., Wilbert, N., and Wiskott, .. Reinforcement learning
on slow features of high-dimensional input streams. PLoS Compu-
tational Biology, 6(8), 2010. ISSN 1553-734X.

Leveille, J., Ames, H., Chandler, B., Gorchetchnikov, A., Mingolla,
E., Patrick, S., and Versace, M. (2010) Learning in a distributed

software architecture for large-scale neural modeling. BIONET-
ICS10, Boston, MA, USA.

Livitz, G., Versace, M., Gorchetchnikov, A., Vasilkoski, 7., Ames,
H., Chandler, B., Leveille, I., Mingolla, E., Snider, G., Amerson, R.,
Carter, D., Abdalla, H., and Qureshi, S. (2011) Visually-Guided
Adaptive Robot (ViIGuAR). Proceedings of the International Joint
Conference on Neural Networks (IJCNN) 2011, San Jose, CA,
USA.

Lowe, D.G.(2004). Distinctive Image Features from Scale-Invariant
Keypoints. Journal International Journal of Computer Vision archive

vol. 60, 2, 91-110.

Lu, Z.L., Liu, J., and Dosher, B.A. (2010) Modeling mechanisms of
perceptual learning with augmented Hebbian re-weighting. Vision
Research, 50(4). 375-390.

Mahadevan, S. Proto-value functions: Developmental reinforce-
ment learning. In Proceedings of the 22nd international conference

on Machine learning, pp. 553-560. ACM, 2005.

Meuth, J.R. and Wunsch, D.C. (2007) A Survey of Neural Compu-
tation on Graphics Processing Hardware. 22nd IEEE International
Symposium on Intelligent Control, Part of IEEE Multi-conference
on Systems and Control, Singapore, Oct. 1-3, 2007, 5 pages.
Mishkin M, Ungerleider LG. (1982). “Contribution of striate inputs
to the visuospatial functions of parieto-preoccipital cortex in mon-
keys,” Behav Brain Res, 6 (1): 57-77.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrel
A, Veness, Joel, Bellemare, Marc G, Graves, Alex, Riedmuiller,
Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-
533, Feb. 25, 2015.

Moore, Andrew W and Atkeson, Christopher GG. Prioritized sweep-
ing: Reinforcement learning with less data and less time. Machine
Learning, 13(1):103-130, 1993.

Najemnik, J., and Geisler, W. (2009). Simple summation rule for
optimal fixation selection 1n visual search. Vision Research. 49,
1286-1294.

Notice of Allowance dated Jul. 27, 2016 from U.S. Appl. No.
14/662,657.

Notice of Allowance dated Dec. 16, 2016 from U.S. Appl. No.
14/662,657.

Oh, K.-S., and Jung, K. (2004). GPU implementation of neural

networks. Pattern Recognition 37, pp. 1311-1314.

Oja, E. (1982). Simplified neuron model as a principal component
analyzer. Journal of Mathematical Biology 15(3), 267-273.

Partial Supplementary European Search Report dated Jul. 4, 2017
from European Application No. 14800348.6, 13 pages.
Raiymakers, M.E.J., and Molenaar, P. (1997). Exact ART: A com-
plete implementation of an ART network Neural networks 10 (4),
649-669.

Ranzato, M. A., Huang, F. J., Boureau, Y. L., & Lecun, Y. (Jun.
2007). Unsupervised learning of invariant feature hierarchies with
applications to object recognition. In Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on (pp. 1-8). IEEE.
Raudies, F., Eldridge, S., Joshi, A., and Versace, M. (Aug. 20, 2014).
Learning to navigate in a virtual world using optic flow and sterco
disparity signals. Artificial Life and Robotics, DOI 10.1007/s10015-
014-0153-1.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of
object recognition in cortex. Nature Neuroscience, 2 (11), 1019-
1025.

Riesenhuber, M., & Poggio, T. (2000). Models of object recogni-
tion. Nature neuroscience, 3, 1199-1204.

Rolfes, T. (2004). Artificial Neural Networks on Programmable
Graphics Hardware. In Game Programming Gems 4, A. Kirmse, Ed.
Charles River Media, Hingham, MA, pp. 373-378.

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB:
An eflicient alternative to SIFT or SURF. In IEEE International
Conference on Computer Vision (ICCV) 2011, 2564-2571.
Ruesch, I. et al. (2008). Multimodal Saliency-Based Bottom-Up
Attention a Framework for the Humanoid Robot 1Cub. 2008 IEEE

International Conference on Robotics and Automation, pp. 962-965.

US RE48,438 E
Page 5

(56) References Cited
OTHER PUBLICATIONS

Rumelhart D., Hinton G., and Williams, R. (1986). Learning inter-

nal representations by error propagation. In Parallel distributed
processing: explorations in the microstructure of cognition, vol. 1,
MIT Press.

Rumpit, M. and Strzodka, R. Graphics processor units: New pros-
pects for parallel computing. In Are Magnus Bruaset and Aslak
Tveito, editors, Numerical Solution of Partial Differential Equations
on Parallel Computers, vol. 51 of Lecture Notes in Computational
Science and Engineering, pp. 89-134. Springer, 2005.

Schaul, Tom, Quan, John, Antonoglou, Ioannis, and Silver, David.
Prioritized experience replay. arXiv preprint arXiv: 1511.05952,
Nov. 18, 2015.

Schmidhuber, J. (2010). Formal theory of creativity, fun, and
intrinsic motivation (1990-2010). Autonomous Mental Develop-
ment, IEEE Transactions on, 2(3), 230-247.

Schmidhuber, Jurgen. Curious model-building control systems. In
Neural Networks, 1991. 1991 IEEFE International Joint Conference
on, pp. 1458-1463. IEEE, 1991.

Seibert, M., & Waxman, A.M. (1992). Adaptive 3-D Object Rec-
ognition from Multiple Views. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 14 (2), 107-124.

Sherbakov, L. and Versace, M. (2014) Computational principles for
an autonomous active vision system. Ph.D., Boston University,
http://search.proquest.com/docview/1558856407.

Sherbakov, L., Livitz, G., Sohail, A., Gorchetchnikov, A., Mingolla,
E., Ames, H., and Versace, M. (2013a) CogEye: An online active
vision system that disambiguates and recognizes objects. NeuComp
2013.

Sherbakov, L., Livitz, G., Sohail, A., Gorchetchnikov, A., Mingolla,
E., Ames, H., and Versace, M (2013b) A computational model of the
role of eye-movements 1n object disambiguation. Cosyne, Feb.
28-Mar. 3, 2013. Salt Lake City, UT, USA.

Smolensky, P. (1986). Information processing in dynamical sys-
tems: Foundations of harmony theory. In D. E.

Spratling, M. W. (2008). Predictive coding as a model of biased
competition 1n visual attention. Vision Research, 48(12):1391-1408.
Spratling, M. W. (2012). Unsupervised learning of generative and
discriminative weights encoding elementary image components in a
predictive coding model of cortical function. Neural Computation,
24(1):60-103.

Spratling, M. W., De Meyer, K., and Kompass, R. (2009). Unsu-
pervised learning of overlapping image components using divisive
input modulation. Computational intelligence and neuroscience.
Sprekeler, H. On the relation of slow feature analysis and laplacian
cigenmaps. Neural Computation, pp. 1-16, 2011.

Sutton, Richard S and Barto, Andrew G. Reinforcement learning:
An introduction. MIT press, 1998.

Tong, F., Ze-Nian Li, (1995). Reciprocal-wedge transform for
space-variant sensing, Pattern Analysis and Machine Intelligence,
IEEE Transactions on , vol. 17, No. 5, pp. 500-51. do1: 10.1109/

34.391393.
Torralba, A., Oliva, A., Castelhano, M.S., Henderson, J.M. (2006).
Contextual guidance of eye movements and attention in real-world

scenes: the role of global features in object search. Psychological

Review, 113(4).766-786.
Van Hasselt, Hado, Guez, Arthur, and Silver, David. Deep rein-

forcement learning with double q-learning. arXiv preprint arXiv:
1509.06461, Sep. 22, 2015.
Versace, M. (2006) From spikes to interareal synchrony: how

attentive matching and resonance control learning and information
processing by laminar thalamocortical circuits. NSF Science of
Learning Centers PI Meeting, Washington, DC, USA.

Versace, M., (2010) Open-source software for computational neu-
roscience: Bridging the gap between models and behavior. In
Horizons in Computer Science Research,vol. 3.

Versace, M., Ames, H., Leveille, J., Fortenberry, B., and Gorchetchnikov,
A. (2008) KlnNeSS: A modular framework for computational
neuroscience. Neuroinformatics, 2008 Winter; 6(4):291-309. Epub

Aug 10, 2008.

Versace, M., and Chandler, B. (2010) MoNETA: A Mind Made from
Memristors. IEEE Spectrum, Dec. 2010.

Webster, Bachevalier, Ungerleider (1994). Connections of I'T areas

TEO and TE with parietal and frontal cortex in macaque monkeys.
Cerebal Cortex, 4(5), 470-483.

Wiskott, Laurenz and Sejnowski, Terrence. Slow feature analysis:
Unsupervised learning of invariances. Neural Computation, 14(4).715-

770, 2002.

Livitz G., Versace M., Gorchetchnikov A., Vasilkoski Z., Ames H.,
Chandler B., Levellle J. and Mingolla E. (2011) Adaptive, brain-like
systems give robots complex behaviors, The Neuromorphic Engi-
neer, : 10.2417/1201101.003500 Feb. 2011. 3 pages.
Salakhutdinov, R., & Hinton, G. E. (2009). Deep boltzmann machines.
In International Conference on Artificial Intelligence and Statistics
(pp. 448-455).

Sherbakov, L. et al. 2012. CogEye: from active vision to context
identification, youtube, retrieved from the Internet on Oct. 10, 2017:
URL://www.youtube.com/watch?v=15PQk962B1k, 1 page.
Sherbakov, L. et al. 2013. CogEye: system diagram module brain
area function algorithm approx # neurons, retrieved from the
Internet on Oct. 12, 2017: URL://http://www-labsticc.univ-ubs.
fr/~coussy/neucomp2013/index_ fichiers/material/posters/
NeuComp2013_final56x36.pdf, 1 page.

Snider, Greg, et al. “From synapses to circuitry: Using memristive
memory to explore the electronic brain.” IEEE computer, vol. 44(2).
(2011): 21-28.

Versace, TEDx Fulbright, Invited talk, Washington DC, Apr. 5,
2014. 530 pages.

Versace, Brain-inspired computing. Invited keynote address, Bionet-
ics 2010, Boston, MA, USA. 1 page.

* cited by examiner

U.S. Patent Feb. 16, 2021 Sheet 1 of 5 US RE48.438 E

L -+ 1%
_Ltl.\'l"ll G

LR - I Y

. . . at 1 "
'?‘.I“"I"' Hfﬂ.ﬁ.‘h‘l‘w-!_ﬁh&;q"‘;.:r:r#_ #‘-.'h' f" - -‘ﬁ E' P ﬂi .
" L Lot " - - Lk !

£ L
I‘,'.'u'- A $‘1
e . 1 1 - N
g ':r r'|_|'|:'|._" _. 1;1;1.1;r - Iﬁ‘l'l;r'+ .
-E) rr'r'r.lhll.-.-. _r'r.'r.l"f E _-"r'r‘lr# #
\ ‘l. .-_-I'L'._'-_. woe W " '.,"." |\'|I.l_lll' - .
R e e STy g T 4 memmea e e = - _ mrmaa mimwea st mmsaca eawmcm s weed aiw wmed s wems mc A amak asa mmamcaimrewaacacaeea =
_-r'; . ATl LA i L
+ . RN I
-l' 1 L]
i Wt o ‘..' "
& L 2 - - :
2 i -
1'T- -i a7 -
L] E) .
- "n 1 .
w . -
] - . . .
-
¥ : A : . b
l" b 4 " -J' L]
:- ¥ . ™ . .
A b " i b .
Do : ; : .
o . . Ry, .
Yoy . -] 1, .
rd : ; ¥ LAl 2 |
¥ L] . . 1
i * L T mrm ey e e P b gt b ol o am e i o Pt o e e i by g e b P e e e e P T g i Py . -
. =‘ .- - lﬂ s =l o o = v uw A dhor - w bk rr - = wlhpgmidrdhd - = = rhiddwn ~ v m I i i.'I' - = w w hdr d r - - rwowhrrndkdr - - 'I'-." " L]
. . - ' ¥ b
I;I . N a L - s ¥
I" ':. - [. - L] [] -
x L . ‘e - ' .
" = M L L] '-I- . L]
o : . 2 : .
] - r L] L. ll-: L
k ¥ . 'n - 1 a 1 . . .
B L . A h LA Ay Yy gt b .
Fol : T RS IELGr TR L AIRT R N R : :
S 2 ') K e . T -"l‘.a‘l'. r ".‘ * .
[. - L} L | M » [
. 1 . - LR X P Y Y, M . . -
. +* a ._: o .l-i-iii"-'ri-l.ll-lq"--r-l-l.-l-lil'i"- = -".I L)
- - - . - i F -I*-' "..‘ ', -
¥ L] » - .
- ¥ . - 1 . . ‘-, e e i ¥ "
n 7 -] 'y 'l"*...".,'.f' AEE AR R R o L] .
. - - = ' ; WA . i, |': :
n "n ! e - - s |' F .
con : O Lo BB g : SIITRIIIIIEE e . :
. - . -..l e o - .-.r =, l:; N [
: 'S : ‘a L] %’ é £ Il:'II .!‘ ‘: :
. - g - iy _ L W ; :
1,] LN - % . . L F | n
™ 2 - 1 T EERN N 4 -_-l..ﬁlﬁ_i - "_-. = '.‘ . -
b ¥ - . LY = _l 1.1'- llip b
i - . - » . ~4 A ...:-. q!: ;
PN : g e 3 ; KA : ¥
- n - 1] 5 LI T SR B N T L] . L
" .|‘. . . n . L, . ". '_.,., [Tt Tt T Sl T B i i St .'.. Ly .
- - LY ".,. | - 3 = W'y .'F'J L] .
o L] A - Ty el o e ' ..‘. ._'E ' 1
! h . " =) et By v'r " . ‘
. ; T o - : - ‘ !
:-: - . - . N } :'i: -' *
r - i .
* " ! 'n - . v l': a"s v
: e a " ’ ¥ . .
| - n # 1 - . :p o - .
N : I I e Yo ke e e S 7 L :
. " - FEUTETTS PR e N B A A R AR A et R u B A S AR Mt i T - : ‘ v
- A, - W LY .)
3 - ; § e " - :
" .,) A A e :
- - -n -
. e : '.'_. . .:'..:-.f‘* b ., .
‘ll - “ "u L . LA A l“"-* ¥ 1 - --'lr\ ’ "I S :
L " FR—— |-’l|-+ .',..p- . ,"‘..' eyt |:.p. : .
. . .

.. o '
1-:#*#." + -"‘:-.- ‘i
B T S N _..'r

""
W e e kot

P
"a
i
LN
'I.
a
e
III.-|..-
L
M
'\-v'..h-
.
"y
ok
% d .
L)
.-Wi
;5;:..
- -
-

e -
L L e N R R e T T S L I D T L 5, P T L T L I s
r e

]
.
r -
r
¢

.. R
. W e , qﬁf:}
MR A A L LT R e R T L PR AL L R P A I L S L LR "-’n'n‘-n'-u'?i"'l - r "
] - ¥ 4 .
A ’ [v] r ;
& L o -h: . 1
L) - - . . L]
1 r 1 . -
1 o T i.l o . - L]
" .._ : o '_--._3:.:._:.‘:‘:‘::- '+'}:‘:‘T*:*1'.'j"}:":‘:":":. L § .-" R R LR R R S R A L AN R - I ARAI R LR RN |- N |..-.
L] n o P R L L B PRI T e I | . '.I - . DA
[] r 1 . . ol e e et 1:-1 ‘I- ‘. e 4 T L]
+ - . LI A L T T T - . L - D . .
. N . - . B T 1) LY S N s . - "
-{ W 4 ‘. - LT ST TTTTa T T T LT O L T ., Iy A r o . - -
L i,.f""""*"*'-'" v . - Wttt e e T e e e e e e e e e e e e e e N T I M S ' - Wt
- - . A 1 - L - . . . - ’. . . -
o . I . \] . L] k \
. \ -‘i-fﬂlﬂ:t,\}-w. .w :-_f o AL P . -t - >
. ‘ ™ - . * . * - r
L L A, e e - i am = r n L L . - I 1
'.| . -: '-.! [:‘R‘E‘tﬂ"; J'l‘i‘l"“n“'ﬂ'ﬂf J-"-'h‘t‘q"l..tir"lﬂ, F’F H‘H‘I ‘#*-',l-'l 'l"'i:"':‘ lp"r . -'.-:- - d‘_.il LU .t ; L . - L ¥ -
- JLIL I '_ _rom m '-_-_r LI T B) I-r-r-l LI L L o, ; ' 'r
" .-'I [] |.'|.I [T T T I‘-I'I-.I [T -F+I‘-I-"I L -|l+rll-"ll-"l.ll."'l B Ill- lrl.hI --rb FEFEELFE - = 8 l'-l- [-I" I:ﬁ _.l-l ‘. - LI) - :
- lt' ‘-"_1' :"l - “r’!!!'l-l“"#!#'lf“-ﬂ"#'l!-‘-‘!'!'II“!!"II“#‘:' "-F .
. e *-\,'.-‘i e n ‘I‘r Ta o -
. - ¥ L F] - l.ll - .
. n Lt . L G -
u .1 e - LR} | 2] L
o e ..."-..".‘.."" . . ',"‘*'-n"q'\-“'.'-"-‘q.'-i‘q"-q"\-“'\-"-‘-"n"q.-i'-|.'\-l'\-"\-"-"-'-..'-q.'-q'\-"\-".“'-‘-"d‘i‘-q."-n"-".“'.'-"..'.."q."-u‘-.." i
M y! LI - . 1‘: o
- . R - P s .
. - »oa s - ; i L]
r b d 1]
a o Lo " " ':* . .
. T T et L] 4 o . l'
4 L L BL BT L] 4 - L
R 3 -
4 "" [] "Jl "l-' 1.|| [L I L T T TR RN T T T T T R T T TN T L R L I T T L T TN T AL T R T N T TR T o1 s I.li'.' ' -l v !.Jl l. o
Py *» LR RE L R R N I R B B R =y rr'maly s rrg el "smyprr il a r rp ERE B I Y Fah . I'*u . -
.: L] ;e * ‘:rl - " L] - ‘{ [.
- e Ll B l-llll-I_ill-l'i--.qlldl_i.lllr-_d-.ql.dliltllr--.-.qliliirr-.-.n.h.ii-l'il-.-ldllil LIL I B R R N AL L BB B :_.l' ||" - '..l.I -
- L :- : : ¥ .: F “m v . :
. - LS 13 :i"ll‘ ;: I:; . :
- - L) " .
[. . ,.: 1 . .l_ . :
* ™ - . . T ¥ o
- . . L] IR . n
_J-‘ !‘ .u ': bi.- - l'l{ Y :
. . > @ 1 . »
" ! LI s . :
-) *'mE o . .
- - =N [] - -
E o b l-’.p . :
- - [) » .
. - v ' - -
. - v .
¥ 1 L . T
n e ' - . 4
T R L1 'f § .
4 * - .'- I.
- . o . . .) .
§ . A T o b e T P TR A R R AT r e N e r e e TR b e A b e ‘ R
] .]
. 3 -
4 -‘] 1_
» - . : S v -
L .- E'R - r 1 - pE Rl v R A TR AR EFa- 4 a'Rar 'y " mM M -+ m-kE ~-wm mma'r "— @ mmrts - - ypem'ma’e » mea'sm "Fow L T P + - nmEE =" . .q-t;- YR RN + m'a
L] . i '
h l-*. N] !
+ -~ r -
] - . [
n . I-|-+- T] ‘l
. . 1]
-I 1 :_ *
L] w .
n - : :.
3 W . e
- L L]
LI LI
.' . . . - - - . - i‘ -
T I e T L T e L e T s e R R T R L e T T L R e e L I e e R T L L e T L L e

FIG. 1

U.S. Patent

A oA W m o W

o
L.

"

G
Chig

L)
i

LN N N N L N S N S NN L L

. h- h-

L1

!

L T

L1

e

Ly

AL A R A

A

A

L A N N Bk B N N N

A

e I N N A B -)

iy

o

AN

kT N

oL

[]
A

w L]
o e e e e e e e e e e e e e e

e R e e e e

A

L XA

o)
i
F g Wt ot

I . .

x

o
i 2 L

Feb. 16, 2021

w e

w oW e e W W e W e

T R

el sl

Sheet 2 of §

A LA/l A L A Al AAd LA

o

E N NN A N N N

o,

N

.

el e w e

R L

W W W W W W W W WY SR i i
. TR EEREYY .
-
.
. u -
i R L 4
s . s
p

US RE48,438 L

[l e,

[l et o

[Raul e el il

[el el tal

L L o L

gl e L

Lol el e o e

£

A el e e A

NN

A e i e
- Y
w n

)]
X ;
A s
r E
X .
y E
r s
X ;

. E
X "
X g

-

L

N

NN

iy o]
X, I, 4
ry i

o e e

o

AR R R R R R B DR DR RN A

P N N N NN N

2
.

US RE48,438 L

Sheet 3 of 5

Feb. 16, 2021

U.S. Patent

€ Did

b I I T T I N L RN R

QSe

06¢g

OGN

S . . NV N -=f-=>
. | o) sl wowviownoow e | A1
| NOIVINGNOD . viyd vL1¥d LNd1N0 B €
c.. i Lye A I R Y S I
coeel b :
Lo e g dODVEEINGD daNIXAd dOLINOW
e d ISV NN 55349044
<
ANVE -
Ly d31HdINQOD NOIYZIVILINI
AJOWIW HIAVHS [aaaaa
e OGNV HOIVH3INED NOLLVINWIS
OLNVY INCHd memrrnme—- e H

SIUVNIE ¥IAVHS |

[]
ror
==
rr
==
ror

OT¢E

FaM1iXdL

435HVvd LNdNI

dOLVHINGD

T1¢

NOILOVHILNG |

LERYE

G0t

te

| IDYHYILNI HISN DIHIVED

/N

90¢€

NOLLYZETVELING
3I3V44 4 LNI

- 43SM JIHAVYED |

L0t

c0E WVIHLS
NOUIVIIINI 43501

N

S3AA

eNOUVYEIL
LSV

i

ASIA OL
LAdLNO ViVQ

(1€ A
<

NOILYZITVILINI
O/1 S13

80¢

<&
10e AVILLS

NOLVINdOd |

INVE AHOWIW |
UNLXILOLWYY |

NO¥H STHNIXIL [

.| INdNiTvN¥aa | ¢

. | SITIONINGD | epe 4

MR W AW ARSI W E AW AW E AW ALW YA YW RS NAEY WY N AT Y

14813

ﬂ*hH%*hHﬂ*hHHhHﬂ*hHd*hHﬂ*h“-—l\..l-rl-l-i-h.h:l—l—l-h.hrl—l—i-h.h:l—l—l-ﬁ.hrl—l—l--h.hrl--I-l-h.hrl-—l-l--h*huﬂ*rmﬂ*hM*h“*

LNdiNO vivda

GZ1 ndd

U.S. Patent

Expansion Card,

Feb. 16, 2021

L I.-"I -I'I.-'-I -"I.-I -.'I.-.'I -"I.-'.I -I'Il-l'l -"I.-.'I -"I.-.'I -.'I.-.'I-'.

-, v
%

Wa o
Gof IR

SR
Sl i? i-} A

R ST Dty

st ek ¥

.‘.i-
ﬁ P

L]

hank i b

+ i‘-".f ¥, ; I-j iu ; l'.ﬂl.::fl':-klh [

L FEREERERELEREREEREREE Y

g g g g ey ey ey gy g ey ey ey ey ey g g ey g g g g g ey g gy ey ey ey iy

o

- m"“;ﬂ.
bt T

- T
é-"”-._ o
N,
X

.-I

e,
it LN - %'hk
o FEVEEHCIEYT

3l

A oL om

.,
"

LI T I B R BT T

LI T R T R T I T |

1'|

R T R R T T

LR T I PO R S

. oA

&t

Sheet 4 of 5

o O e e, R,

]
]
]
'
]
:) i'"'.
]
'
l.-a.-a.-.-a.-a..-a.-.-a.tﬁnﬁﬂnﬁﬁnﬁﬂnﬁnﬁtﬂnﬂnﬁnﬂﬂ*
L)
.- '.:‘l.,'r,.__. T :l'l. '-':l oy .1" ; L ._:. ".t:_ 1 :
LR WL S R S K SR I '
R s I o o o o o o .
RN e !
'll-l‘;‘l-"i-'ll-'*h:l:-l .'l"i-:}-ﬂ" : L] ..‘ o
e : ’:g 3:
&30

....................

.......

.......

.......
- .

]

e
£

llllllllllllllll

b

' L

PSS e YOO
H I

i Pekire TN

¢ LT l- L =a

Vo Reanids e)

L]

tﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂh oy i i e i i i

450

E;'E:?ﬁ,:::;::r.i-: e ST
SEEONGE TSIy
bk b i

et e el el b D b b b e D M b D R b

| 4 &
'I-'::l

t-lll-'-dr--q--dr--q--q--ﬂr-'-i-

#"'""""""""
L] "

arsssssanas
¥
‘h
-
n:_
-

1
W
D
]
r

..............

1111111

IR TR RS
}%hkgazﬁ ;‘J Eﬁ%b{ia E¥3
Y BEOK

*-‘--‘--‘--‘--‘--‘--‘-‘-‘-‘--‘-‘-‘--‘-‘- ‘' '

b ol b e ol e e i e e e e e

—
-

+I. _ﬂ-

e T e

'I- 0 - -‘

- 'I-Il L] -

[T

o 1 =t

T e T e

lllllllllllll

e T

-
- [

T3

F

ﬂ

Puasmds ¢
SRR IR

e, e, e, e,
oi=te

T Syesney ?e_:-:-};*ﬂ"-f?f'-i

US RE48,438 L

I‘""I‘!‘"""""!"""‘".‘!"""‘"I‘!"""‘"I‘!‘""‘"l

1, "

:-:*-m. gL LIAIE
wer FEAAE B

ot

i N W R e N

"y

ee e e e _,_._E.,. e e ey e e etereal

l‘."..:'

"h'-.,
ﬁh':' .-"‘"F
o

ﬂ i«&"’ﬂi *“"
:.I*:?: iy i
T, o
Yoo

US RE48,438 L

Sheet 5 of 5

Feb. 16, 2021

U.S. Patent

-

SyURUodUDD 30100 NGy e siowd o mER 10

Hipyoed eyl ADUS 59

.
- a - a . -- "= - - - - . - - - - = . - - - mom T - . - s ar . - - s ow b - - - [- a - — . ror . - s a - - - -m . - - - a - P I | - - - mrdr . 11 a n ne o P Fin 4 m = om omoaoa ka o e " o a a a . omod o oaad wodra - wd oo [
-... LA N R R A l.ll“—.l..._.. .- [l.r_.._.-.l.l.lq.._.- __1.-._1.__.1l1.ll..l.r_-.._.lr.__._1._.l.l1 . .lq.l._..l_- L R N] _-.I mam] w4 wra LRI AL I R T N N L R A L N T R - LI - - r W .1..'-..-.. LT N _-.",. e L -, ..Jr.__.n. A 2 L2 LFL L LW oA R NN R Al...._-"_ A KN .r... I 1..-...1..-...-.-...._-"..-....._. PG T s e BL N _.. .. L -ﬁ..l. L N L L. e A Qe e E, L B L]) - o L " + P
- T - . ' - '
" ra o I - - - » - » 3 . ' . ! F] - . — -
» r 1 1 " - =1 r L & 3 ' - a r -
- - - _-l_ - - - » - ¥ H . - . - - -
. - i . ra - e L L _-..._. .-.- - * .
- - - . . ' a a
.__.-. l-. __..-.. .7 o - B - . T - 1 . T - f] 1 r \
- -] Jn N . - »] "] . F] - o - . L]
. . . r r .] ' - - . X - I3 L] * " .
. ¥ ™ n n . r : [l F o a - -
- L . N . [- - - . 1 b 1 & ' d & .
a -t - - » n r - r " 4, . - a - -
- ¥ a - o ' J_. . fs . ' ' ¥ - 'y - 1] r
1 - L} L] L] L] E L] L - - - - - 4
- ™ r e - r . r F] » d [r
L] r ! L] L] - E] 1 - - . L] 1 -
L] . . - RS AR NP S . o . L)
- - . - - a r . - " ma. - - wror ona - v . .l PR P R R o a e I sk w Fdoa oaa -
__.} 1 rrFET R R e L L T R N A A R A N A A LI L A . L LT AL LT L e L T LN L L R R N R T]\ LI N . A N e .) .
. h -
. -
.
. "
L}
. F
. -
*, -
s Y e
LI o .
[] |] k 3 . 3 . . - -
M AR AR RS L R R R N AL N N LN s N R T N T T e T A LUl e i R AL AL L R sam - mr o
. > o " : r -
"m__ L a
- -
. -
L]
_-__ -,
- &+
T » -
N v F]
-_._ ¥ ..1.
L] .] Y . . .
- . - - = . am - - = . soa . - . - "= . - a - - y L' u y - - - - a4 & F. .4 . oa a - R -
R AN A R LR I e e R L Ay N B s e T g s o o e R W AT R P TR T N AL PR I SR B T oA, . i - e Tat 1 - . T e N .
__... > b e
- -
L]
. -
* .
. -
- ..
- -
. a’
" -
L
- -
-] L O L N L - " . - da . . " - .—_1 -
R KA R LRI R R A N A N N N L AR N T e AR T R AL AL P N R T e T L L R el R T
. by y *
i F]
" 2"
- .
' -
T F]
. 4
__.__. -
4 &+
L]
__..l Ry
N -~
L - -] . . . ; . . .]] Ry S Y W R LYNEYNE TR . " - - - - .
- a . - - F . ram a - - y ; o a - - - i r - . . - y Ll y VW . - 1 oxd P B a PR [l i LI = -1 d 1 a P o - PR P I
QT TR g L e R R R R e T oy R L A A e g o T Ty iy iy iy o R LR L L P e R N L R Ee o . . .
. - - a &+ a -
* Fl [] * -
s N " l.._) [] T d 1 i. .l.. . b .i.! * - "
" wd i » a = - = L} L t [*] - r a . .
- . Y a 1] - M =n a - - -
» " = - ' * T [L] - " a - - * .
" N M . - ™ _a ' ' a . ' d . - F]
. » = F "~ - - a]] 19 = dp 1 F F] a 4
ax - - . . * F . . - F . » [l - Fl
™ ' 1 - . - 4 k = - - . L] Il o .
. .-.r [- N § - . . + - a4 -4 - -
» " .k " -t L " » L] - 13 . 1 ¥ ¥
L] - * L] L] ‘ ' - - o - -,
L) . L] - -] b - X ' ' '] ¥
. s - ' 5 ' . ’ - a A - » a - -
1] . 1 - . . - ' [] § - ' - LI - - ¥ -
] L] L] L[] L] - [] a - L] o o] a*
- . - L] : . r * a . - r] Wt s P & J k ‘xm N] 150 o, PR I N iR e ok p E . B ko ' A e A . ‘o or - R A A o R
L R e e R R L A R R e e R e T R L B A e N e A e T e e T o L P R e e e R e T e ' . T T e e e e e S e T N s B R R el T B T R T T Sn Pl i Ll P R e e e] B Lt T T e P e Ml el L = P z bl - - z il

US RE48,438 E

1

GRAPHIC PROCESSOR BASED
ACCELERATOR SYSTEM AND METHOD

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

RELATED APPLICATIONS

The present application is a broadening reissue applica-
tion of U.S. Pat. No. 9,189,828, filed Jan. 3, 2014, which
claims a priority benefit, under 35 U.S.C. §120, as a con-
tinuation of U.S. application Ser. No. 11/860,254, now U.S.
Pat. No. 8,648,867 B2, filed Sep. 24, 2007, entitled “Graphic
Processor Based Accelerator System and Method,” which i
turn claims the priority benefit, under 35 U.S.C. §119(e), of
U.S. Application No. 60/826,892, filed Sep. 25, 2006. Each
of the above-i1dentified applications 1s incorporated herein by
reference 1n 1ts entirety. More than one reissue application
has been filed for the reissue of U.S. Pat. No. 9,159,828,

including this application and a reissue continuation appli-

cation filed Dec. 29, 2020.

BACKGROUND

Graphics Processing Units (GPUs) are found in video
adapters (graphic cards) of most personal computers (PCs),
video game consoles, workstations, etc. and are considered
highly parallel processors dedicated to fast computation of
graphical content. With the advances of the computer and
console gaming industries, the need for eflicient manipula-
tion and display of 3D graphics has accelerated the devel-
opment of GPUs.

In addition, manufacturers of GPUs have included general
purpose programmability into the GPU architecture leading
to the increased popularity of using GPUs for highly paral-
lelizable and computationally expensive algorithms outside
of the computer graphics domain. When implemented on
conventional video card architectures, these general purpose
GPU (GPGPU) applications are not able to achieve optimal
performance, however. There 1s overhead for graphics-
related features and algorithms that are not necessary for
these non-video applications.

SUMMARY

Numerical simulations, e.g., finite element analysis, of
large systems of similar elements (e.g. neural networks,
genetic algorithms, particle systems, mechanical systems)
are one example of an application that can benefit from
GPGPU computation. During numerical simulations, disk
and user iput/output can be performed independently of
computation because these two processes require interac-
tions with peripheral hardware (disk, screen, keyboard,
mouse, etc) and put relatively low load on the central
processing unit/system (CPU). Complete independence 1s
not desirable, however; user mput might affect how the
computation 1s performed and even interrupt 1t 1f necessary.
Furthermore, the user output and the disk output are depen-
dent on the results of the computation. A reasonable solution
would be to separate input/output 1nto threads, so that 1t 1s
interacting with hardware occurs in parallel with the com-
putation. In this case whatever CPU processing 1s required

5

10

15

20

25

30

35

40

45

50

55

60

65

2

for mput/output should be designed so that i1t provides the
synchronization with computation.

In the case of GPGPU, the computation 1tself 1s performed
outside of the CPU, so the complete system comprises three
“peripheral” components: user interactive hardware, disk
hardware, and computational hardware. The central process-
ing unit (CPU) establishes communication and synchroni-
zation between peripherals. Each of the peripherals 1s pret-
erably controlled by a dedicated thread that 1s executed 1n
parallel with minimal interactions and dependencies on the
other threads.

A GPU on a conventional video card 1s usually controlled
through OpenGL, DirectX, or similar graphic application
programming 1interfaces (APIs). Such APIs establish the
context of graphic operations, within which all calls to the
GPU are made. This context only works when 1nitialized
within the same thread of execution that uses 1t. As a result,
in a preferred embodiment, the context 1s mitialized within
a computational thread. This creates complications, how-
ever, 1n the interaction between the user interface thread that
changes parameters of simulations and the computational
thread that uses these parameters.

A solution as proposed here 1s an implementation of the
computational stream of execution in hardware, so that
thread and context initialization are replaced by hardware
initialization. This hardware implementation includes an
expansion card comprising a printed circuit board having (a)
one or more graphics processing units, (b) two or more
associated memory banks that are logically or physically
partitioned, (c) a specialized controller, and (d) a local bus
providing signal coupling compatible with the PCI industry
standards (this includes but i1s not limited to PCI-Express,
PCI-X, USB 2.0, or functionally similar technologies). The
controller handles most of the primitive operations needed to
set up and control GPU computation. As a result, the CPU
1s Treed from this function and 1s dedicated to other tasks. In
this case a few controls (simulation start and stop signals
from the CPU and the simulation completion signal back to
CPU), GPU programs and imput/output data are the infor-
mation exchanged between CPU and the expansion card.
Moreover, since on every time step of the simulation the
results from the previous time step are used but not changed,
the results are preferably transferred back to CPU 1n parallel
with the computation.

In general, according to one aspect, the invention features
a computer system. This system comprises a central pro-
cessing unit, main memory accessed by the central process-
ing unit, and a video system for driving a video monitor 1n
response to the central processing unit as 1s common. The
computer system further comprises an accelerator that uses
input data from and provides output data to the central
processing umt. This accelerator comprises at least one
graphics processing unit, accelerator memory for the graphic
processing unit, and an accelerator controller that moves the
input data into the at least one graphics processing unit and
the accelerator memory to generate the output data.

In the preferred, the central processing unit transiers the
input data for a simulation to the accelerator, after which the
accelerator executes simulation computations to generate
the output data, which 1s transferred to the central processing
unit. Preferably, the accelerator controller dictates an order
of execution of instructions to the at least one graphics
processing unit. The use of the separate controller enables
data transfer during execution such that the accelerator
controller transfers output data from the accelerator memory
to main memory of the central processing unit.

US RE48,438 E

3

In the preferred embodiment, the accelerator controller
comprises an iterface controller that enables the accelerator
to communicate over a bus of the computer system with the
central processing unit.

In general according to another aspect, the invention also
features an accelerator system for a computer system, which
comprises at least one graphics processing unit, accelerator
memory for the graphic processing unit and an accelerator
controller for moving data between the at least one graphics
processing unit and the accelerator memory.

In general according to another aspect, the mnvention also
features a method for performing numerical simulations 1n a
computer system. This method comprises a central process-
ing unit loading mput data into an accelerator system from
main memory of the central processing unit and an accel-
erator controller transierring the mput data to a graphics
processing unit with instructions to be performed on the
input data. The accelerator controller then transfers output
data generated by the graphic processing unit to the central
processing unit as output data.

The above and other features of the invention including
various novel details of construction and combinations of
parts, and other advantages, will now be more particularly
described with reference to the accompanying drawings and
pointed out 1n the claims. It will be understood that the
particular method and device embodying the invention are
shown by way of illustration and not as a limitation of the
invention. The principles and features of this invention may
be employed 1n various and numerous embodiments without
departing from the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, reference characters refer
to the same parts throughout the different views. The draw-
ings are not necessarily to scale; emphasis has instead been
placed upon 1illustrating the principles of the invention. Of
the drawings:

FIG. 1 1s a schematic diagram 1illustrating a computer
system 1ncluding the GPU accelerator according to an
embodiment of the present invention;

FI1G. 2 1s block diagram 1llustrating the architecture for the
GPU accelerator according to an embodiment of the present
imnvention;

FIG. 3 1s a block/flow diagram 1llustrating an exemplary
implementation of the top level control of the GPU accel-
erator system:

FI1G. 4 1s a flow diagram illustrating an exemplary imple-
mentation of the bottom level control of the GPU accelerator
system that 1s used to execute the target computation; and

FIG. 5 1s an example population of nine computational
clements arranged 1n a 3x3 square and a potential packing
scheme for texture pixels, according to an implementation of
the present imvention.

DETAILED DESCRIPTION

FIG. 1 shows a computer system 100 that has been
constructed according to the principles of the present inven-
tion.

In more detail, the computer system 100 in one example
1s a standard personal computer (PC). However, this only
serves as an example environment as computing environ-
ment 100 does not necessarily depend on or require any
combination of the components that are illustrated and
described herein. In fact, there are many other suitable
computing environments for this mvention, including, but

10

15

20

25

30

35

40

45

50

55

60

65

4

not limited to, workstations, server computers, supercom-
puters, notebook computers, hand-held electronic devices
such as cell phones, mp3 players, or personal digital assis-
tants (PDAs), multiprocessor systems, programmable con-
sumer electronics, networks of any of the above-mentioned
computing devices, and distributed computing environments

that including any of the above-mentioned computing
devices.

In one mmplementation the GPU accelerator 1s imple-

mented as an expansion card 180 includes connections with
the motherboard 110, on which the one or more CPU’s 120

are 1nstalled along with main, or system memory 130 and
mass/non volatile data storage 140, such as hard drive or
redundant array of independent drives (RAID) array, for the
computer system 100. In the current example, the expansion

card 180 communicates to the motherboard 110 via a local
bus 190. This local bus 190 could be PCI, PCI Express,

PCI-X, or any other functionally similar technology (de-
pending upon the availability on the motherboard 110). An
external version GPU accelerator 1s also a possible imple-

mentation. In this example, the external GPU accelerator 1s
connected to the motherboard 110 through USB-2.0, IEEE
1394 (Firewire), or similar external/peripheral device inter-
face.

The CPU 120 and the system memory 130 on the moth-
erboard 110 and the mass data storage system 140 are
preferably independent of the expansion card 180 and only
communicate with each other and the expansion card 180
through the system bus 200 located 1n the motherboard 110.
A system bus 200 1n current generations of computers have
bandwidths from 3.2 GB/s (Pentium 4 with AGTL+, Athlon
XP with EV6) to around 15 GB/s (Xeon Woodcrest with
AGTL+, Athlon 64/Opteron with Hypertransport), while the
local bus has maximal peak data transier rates of 4 GB/s
(PCI Express 16) or 2 GB/s (PCI-X 2.0). Thus the local bus
190 becomes a bottleneck 1 the information exchange
between the system bus 200 and the expansion card 180. The
design of the expansion card and methods proposed herein
minimizes the data transter through the local bus 190 to
reduce the eflect of this bottleneck.

The system memory 130 i1s referred to as the main
random-access memory (RAM) in the description herein.
However, this 1s not itended to limit the system memory
130 to only RAM technology. Other possible computer
storage media include, but are not limited to ROM,
EEPROM, flash memory, or any other memory technology.

In the 1llustrated example, the GPU accelerator system 1s
implemented on an expansion card 180 on which the one or
more GPU’s 240 are mounted. It should be noted that the
GPU accelerator system GPU 240 1s separate from and
independent of any GPU on the standard video card 150 or
other video driving hardware such as integrated graphics
systems. Thus the computations performed on the expansion
card 180 do not interfere with graphics display (including
but not limited to manipulation and rendering of 1mages).

Various brand of GPU are relevant. Under current tech-
nology, GPU’s based on the GeForce series from NVIDIA
Corporation or the Catalyst series from ATI/Advanced
Micro Devices, Inc.

The output to a video monitor 170 1s preferably through
the video card 150 and not the GPU accelerator system 180.
The video card 150 1s dedicated to the transfer of graphical
information and connects to the motherboard 110 through a
local bus 160 that 1s sometimes physically separate from the
local bus 190 that connects the expansion card 180 to the

motherboard 110.

US RE48,438 E

S

FIG. 2 1s a block diagram 1llustrating the general archi-
tecture of the GPU accelerator system and specifically the
expansion card 180 in which at least one GPU 240 and
associated memories 210 and 250 are mounted. Electrical
(signal) and mechanical coupling with a local bus 190
provides signal coupling compatible with the PCI industry
standards (this includes but 1s not limited to PCI, PCI-X, PCI
Express, or functionally similar technology).

The GPU accelerator further preferably comprises one
specifically designed accelerator controller 220. Depending
upon the implementation, the accelerator controller 220 1s
field programmable gate array (FPGA) logic, or custom built
application-specific (ASIC) chip mounted in the expansion
card 180, and in mechanical and signal coupling with the
GPU 240 and the associated memories 210 and 250. During
initial design, a controller can be partially or even fully
implemented 1n software, 1n one example.

The controller 220 commands the storage and retrieval of
arrays ol data (on a conventional video card the arrays of
data are represented as textures, hence the term ‘texture’ 1n
this document refers to a data array unless specified other-
wise and each element of the texture 1s a pixel of color
information), execution of GPU programs (on a conven-
tional video card these programs are called shaders, hence
the term ‘shader’ 1n this document refers to a GPU program
unless specified otherwise), and data transier between the
system bus 200 and the expansion card 180 through the local
bus 190 which allows communication between the main
CPU 120, RAM 130, and disk 140.

Two memory banks 210 and 250 are mounted on the
expansion card 180. In some example, these memory banks
separated in the hardware, as shown, or alternatively imple-
mented as a single, logically partitioned memory compo-
nent.

The reason to separate the memory into two partitions 210
250 stems from the nature of the computations to which the
GPU accelerator system 1s applied. The elements of com-
putation (computational elements) are characterized by a
single output variable. Such computational elements often
include one or more equations. Computational elements are
same or similar within a large population and are computed
in parallel. An example of such a population 1s a layer of
neurons 1n an artificial neural network (ANN), where all
neurons are described by the same equation. As a result,
some data and most of the algorithms are common to all
computational elements within population, while most of the
data and some algorithms are specific for each equation.
Thus, one memory, the shader memory bank 210, 1s used to
store the shaders needed for the execution of the required
computations and the parameters that are common for all
computational elements and 1s coupled with the controller
220 only. The second memory, the texture memory bank
250, 1s used to store all the necessary data that are specific
for every computational element (including, but not limited
to, mput data, output data, intermediate results, and param-
eters) and 1s coupled with both the controller 220 and the
GPU 240.

The texture memory bank 2350 1s preferably further par-
tittoned into four sections. The first partition 250 a 1s
designed to hold the external input data patterns. The second
partition 250b 1s designed to hold the data textures repre-
senting internal varnables. The third partition 2350c 1s
designed to hold the data textures used as input at a
particular computation step on the GPU 240. The fourth
partition 250d holds the data textures used to accommodate
the output of a particular computational step on the GPU
240. This partitioning scheme can be done logically, does

10

15

20

25

30

35

40

45

50

55

60

65

6

not require hardware implementation. Also the partitioning,
scheme 1s also altered based on new designs or needs of the
algorithms being employed. The reason for this partitioning
1s Turther explained 1n the Data Organization section, below.

A local bus interface 230 on the controller 220 serves as

a driver that allows the controller 220 to communicate
through the local bus 190 with the system bus 200 and thus
the CPU 120 and RAM 130. This local bus interface 230 1s
not intended to be limited to PCI related technology. Other
drivers can be used to interface with comparable technology
as a local bus 190.

Data Orgamization

Each computational element discussed above has output
variables that affect the rest of the system. For example in
the case of a neural network 1t 1s the output of a neuron. A
computational element also usually has several internal
variables that are used to compute output variables, but are
not exposed to the rest of the system, not even to other
clements of the same population, typically. Each of these
variables 1s represented as a texture. The important differ-
ence between output variables and internal variables 1s their
access.

Output variables are usually accessed by any element 1n
the system during every time step. The value of the output
variable that 1s accessed by other elements of the system
corresponds to the value computed on the previous, not the
current, time step. This 1s realized by dedicating two textures
to output variables—one holds the value computed during
the previous time step and 1s accessible to all computational
clements during the current time step, another 1s not acces-
sible to other elements and 1s used to accumulate new values
for the variable computed during the current time step.
In-between time steps these two textures are switched, so
that newly accumulated values serve as accessible input
during the next time step, while the old input 1s replaced with
new values of the variable. This switch 1s implemented by
swapping the address pointers to respective textures as
described 1n the System and Framework section.

Internal variables are computed and used within the same
computational element. There 1s no chance of a race con-
dition 1 which the value 1s used before 1t 1s computed or
after 1t has already changed on the next time step because
within an element the processing 1s sequential. Therefore, 1t
1s possible to render the new value of internal variable into
the same texture where the old was read from 1n the texture
memory bank. Rendering to more than one texture from a
single shader 1s not implemented 1n current GPU architec-
tures, so computational elements that track internal variables
would have to have one shader per varniable. These shaders
can be executed 1n order with internal variables computed
first, followed by output varnables.

Further savings of texture memory 1s achieved through
using multiple color components per pixel (texture element)
to hold data. Textures can have up to four color components
that are all processed in parallel on a GPU. Thus, to
maximize the use of GPU architecture 1t 1s desirable to pack
the data 1n such a way that all four components are used by
the algorithm. Even though each computational element can
have multiple variables, designating one texture pixel per
clement 1s ineflective because internal variables require one
texture and output varniables require two textures. Further-
more, different element types have diflerent numbers of
variables and unless this number 1s precisely a multiple of
four, texture memory can be wasted.

A more reasonable packing scheme would be to pack four
computational elements into a pixel and have separate
textures for every variable associated with each computa-

US RE48,438 E

7

tional element. In this case the packing scheme 1s 1dentical
tor all textures, and therefore can be accessed using the same
algorithm. Several ways to approach this packing scheme
are outlined here. An example population of nine computa-
tional elements arranged 1n a 3x3 square (FIG. 5a) can be

packed by element (FIG. 5b), by row (FIG. 5¢), or by square

(FIG. 5d).

Packing by element (FIG. 5b) means that elements 1,2,3.4
g0 1nto first pixel; 5,6,7.8 go into second pixel; 9 goes nto
third pixel. This 1s the most compact scheme, but not
convenient because the geometrical relationship 1s not pre-
served during packing and its extraction depends on the size
of the population.

Packing by row (column; FIG. 5¢) means that elements
1,2.3 go into pixel (1,1); 3,4,5 go into pixel (2,1), 7.8,9 go
into pixel (3,1). With this scheme the element’s v coordinate
in the population 1s the pixel’s y coordinate, while the
clement’s x coordinate in the population i1s the pixel’s x
coordinate times four plus the mndex of color component.
Five by five populations 1n this case will use 2x5 texture, or
10 pixels. Five of these pixels will only use one out of four
components, so 1t wastes 37.5% of this texture. 25x1 popu-
lation will use 6x1 texture (si1x pixels) and will waste 12.5%
of 1t.

Packing by square (FIG. 5d) means that elements 1,2,4,5
oo 1nto pixel (1,1); 3,6 go into pixel (1,2); 7.8 go into pixel
(2,1), and 9 goes into pixel (2,2). Both the row and the
column of the element are determined from the row (col-
umn) of the pixel times two plus the second (first) bit of the
color component index. Five by five populations 1n this case
will use 3x3 texture, or 9 pixels. Four of these pixels waill
only use two out of four components, and one will only use
one component, so 1t wastes 34.4% of this texture. This 1s
more advantageous than packing by row, since the texture 1s
smaller and the waste 1s also lower. 25x1 population on the
other hand will use 13x1 texture (thirteen pixels) and waste
>50% of 1t, which 1s much worse than packing by row.

In order to eliminate waste altogether the population
should have even dimensions 1n the square packing, and it
should have a number of columns divisible by four 1n row
packing. Theoretically, the chances are approximately
equivalent for both of these cases to occur, so the particular
task and data sizes should determine which packing scheme
1s preferable 1n each individual case.

The System and Framework

FIG. 3 shows an exemplary implementation of the top
level system and method that 1s used to control the compu-
tation. It 1s a representation of one of several ways 1n which
a system and method for processing numerical techniques
can be implemented 1n the invention described herein and so
the implementation 1s not intended to be limited to the
tollowing description and accompanying figure.

The method presented herein includes two execution
streams that run on the CPU 120—User Interaction Stream
302 and Data Output Stream 301. These two streams pret-
erably do not interact directly, but depend on the same data
accumulated during simulations. They can be implemented
as separate threads with shared memory access and executed
on different CPUs 1n the case of multi-CPU computing
environment. The third execution stream—Computational
Stream 303—runs on the GPU accelerator of the expansion
card 180 and interacts with the User Interaction Stream 302
through 1mitialization routines and data exchange 1n between
simulations. The Computational Stream 303 interacts with
the User Interaction Stream and the Data Output Stream
through synchronization procedures during simulations.

10

15

20

25

30

35

40

45

50

55

60

65

8

The crucial feature of the interaction between the User
Interaction Stream 302 and the Computational Stream 303 1s
the shift of priorities. Outside of the simulation, the system
100 1s driven by the user input, thus the User Interaction
Stream 302 has the priority and controls the data exchange
304 between streams. After the user starts the simulation, the
Computational Stream 303 takes the priority and controls
the data exchange between streams until the simulation 1s
finished or mterrupted 350.

The user starts 300 the framework through the means of
an operating system and 1nteracts with the software through
the user interaction section 305 of the graphic user interface
306 executed on the CPU 120. The start 300 of the imple-
mentation begins with a user action that causes a GUI
initialization 307, Disk input/output initialization 308 on the
CPU 120, and controller initialization 320 of the GPU
accelerator on the expansion card 180. GUI mitialization
includes opening of the main application window and setting
the interface tools that allow the user to control the frame-
work. Disk I/O mitialization can be performed at the start of
the framework, or at the start of each individual simulation.

The user interaction 305 controls the setting and editing of
the computational elements, parameters, and sources of
external iputs. It specifies which equations should have
their output saved to disk and/or displayed on the screen. It
allows the user to start and stop the simulation. And 1t
performs standard interface functions such as file loading
and saving, interactive help, general preferences and others.

The user 1nteraction 305 directs the CPU 120 to acquire
the new external input textures needed (this mcludes but 1s
not limited to loading from disk 140 or recerving them in
real time from a recording device), parses them 11 necessary
309, and mitializes their transier to the expansion card 180,
where they are stored 325 in the texture memory bank 2350
by the controller 220. The user mteraction 305 also directs
the CPU 120 to parse populations of elements that will be
used 1n the simulation, convert them to GPU programs
(shaders), compile them 310, and initializes their transfer to
the expansion card 180, where they are stored 326 in the
shader memory bank 210 by the controller 220. This opera-
tion 1s accompanied by the upload 309 of the 1nitial data mnto
the input partition of the texture memory bank 250, and
stores the shader order of execution 1n the controller 220.
The user can perform operations 309 and 310 as many times
as necessary prior to starting the simulation or between
simulations.

The editing of the system between simulations 1s difficult
to accomplish without the hardware implementation of the
computational thread suggested herein. The system of equa-
tions (computational elements) 1s represented by textures
that track variables plus shaders that define processing
algorithms. As mentioned above, textures, shaders and other
graphics related constructs can only be mitialized within the
rendering context, which 1s thread specific. Therefore tex-
tures and shaders can only be initialized 1n the computa-
tional thread.

Network editing 1s a user-interactive process, which
according to the scheme suggested above happens in the
User Interaction Stream 302. The simulation software thus
has to take the new parameters from the User Interaction
Stream 302, communicate them to the Computational
Stream 303 and regenerate the necessary shaders and tex-
tures. This 1s hard to accomplish without a hardware 1mple-
mentation of the Computational Stream 303. The Compu-
tational Stream 303 1s forked from the User Interaction
Stream and 1t can access the memory of the parent thread,
but the reverse commumnication 1s harder to achieve. The

US RE48,438 E

9

controller 220 allows operations 309 and 310 to be per-
formed as many times as necessary by providing the nec-
essary communication to the User Interaction Stream 302.

After execution of the input parser texture generation 309
and population parser shader generator and compiler 310 are
performed at least once, the user has the option to initialize
the simulation 311. During this mitialization the main con-
trol of the framework 1s transierred to the GPU accelerator
system’s accelerator controller 220 and computation 330 1s
started (see FIG. 4; 420). The user retains the ability to
interrupt the simulation, change the mput, or to change the
display properties of the framework, but these interactions
are queued to be performed at times determined by the
controller-driven data exchange 314 and 316 to avoid the
corruption of the data.

The progress monitor 312 1s not necessary for perior-
mance, but adds convenience. It displays the percentage of
completed time steps of the simulation and allows the user
to plan the schedule using the estimates of the simulation
wall clock times. Controller-driven data exchange 314
updates the display of the results 313. Online screen output
tor the user selected population allows the user to monitor
the activity and evaluate the qualitative behavior of the
network. Simulations with unsatisfactory behavior can be
terminated early to change parameters and restart. Control-
ler-driven data exchange 314 also drives the output of the
results to disk 317. Data output to disk for convenience can
be done on an element per file basis. A suggested file format
includes a leftmost column that displays a simulated time for
cach of the simulation steps and subsequent columns that
display variable values during this time step 1n all elements
with 1dentical equations (e.g. all neurons in a layer of a
neural network).

Controller-driven data exchange or mput parser texture
generator 316 allows the user to change input that 1s gen-
crated on the fly during the simulation. This allows the
framework momitoring of the mput that 1s coming from a
recording device (video camera, microphone, cell recording,
clectrode, etc) 1n real time. Similar to the mitial mnput parser
309, 1t preprocesses the mput into a universal format of the
data array suitable for texture generation and generates
textures. Unlike the 1nitial parser 309, here the textures are
transferred to hardware not whenever ready but upon the
request of the controller 220.

The controller 220 also drives the conditional testing 315
and 318 imnforms the CPU-bound streams whether the simu-
lation 1s finished. If so, the control returns to the User
Interaction Stream. The user then can change parameters or
iputs (309 and 310), restart the simulation (311) or quit the
framework (390).

SANNDRA (Synchronous Artificial Neuronal Network
Distributed Runtime Algorithm; http://www.kinness.net/
Docs/SANNDRA/html) was developed to accelerate and
optimize processing ol numerical integration of large non-
homogenous systems of differential equations. This library
1s fully reworked in its version 2.x.x to support multiple
computational backends including those based on multicore
CPUs, GPUs and other processing systems. GPU based
backend for SANNDRA-2.x.Xx can serve as an example
practical software implementation of the method and archi-
tecture described above and pictorially represented in FIG.
3.

To use SANNDRA, the application should create a
TSimulator object either directly or through inheritance.
This object will handle global simulation properties and
control the User Interaction Stream, Data Output Stream,
and Computational Stream. Through TSimulator::

10

15

20

25

30

35

40

45

50

55

60

65

10

timestep(), TSimulator::outfileInterval(), and TSimulator::
outmode(), the application can set the time step of the
simulation, the time step of disk output, and the mode of the
disk output. The external input pattern should be packed nto
a TPattern object and bound to the simulation object through
TSimulator: :resetInputs() method. TSimulator::
simLength() sets the length of the simulation.

The second step 1s to create at least one population of

equations (Tpopulation object). Population holds one equa-
tion object TEquation. This object contains only a formula
and does not hold element-specific data, so all elements of
the population can share single TEquation.

The TEquation object 1s converted to a GPU program
betfore execution. GPU programs have to be executed within
a graphical context, which 1s stream specific. TSimulator
creates this context within a Computational Stream, there-
fore all programs and data arrays that are necessary for
computation have to be imitialized within Computational
Stream. Constructor of TPopulation 1s called from User
Interaction Stream, so no GPU-related objects can be ini-
tialized 1n this constructor.

TPopulation::fillElements() 1s a virtual method designed
to overcome this difhiculty. It 1s called from within the
Computational Stream after TSimulator::networkCreate() 1s
called 1n the User Interaction Stream. A user has to override
TPopulation::fillElements() to create TEquation and other
computation related objects both element independent and
clement-specific. Flement independent objects include sub-
components of TEquation and objects that describe how to
handle interdependencies between variables implemented
through derivatives of TGate class.

Element-specific data 1s held in TElement objects. These
objects hold references to TEquation and a set of TGate
objects. There 1s one TElement per population, but the size
of data arrays within this object corresponds to population
s1ize. All TElement objects have to be added to the TSimu-
lator list of elements by calling TSimulator::addUnit()
method from TPopulation::fillElements().

Finally, TPopulation::fillElements() should contain a set
of TElement::add*Dependency() calls for each element.
Each of these calls sets a corresponding dependency for
every TGate object. Here TGate object holds element 1nde-
pendent part of dependency and TElement::
add*Dependency() sets element-specific details.

System provided TPopulation handles the output of com-
putational elements, both when they need to exchange the
data and when they need to output 1t to disk. User imple-
mentation of TPopulation derivative can add screen output.

Listing 1 1s an example code of the user program that uses
a recurrent competitive field (RCF) equation:

Listing 1

untlé tw =3, h = 3;
static float m_compet = 0.5;

static float m_persist = 1.0;
class TCablePopRCF : public TPopulation
i

TEq _RCF*™ m_equation;
TGate® m_gatel;

TGate™ m_gate?2;

volid createGatingStructure()
{

m_gatel = new TGate(0);
m_gate2 = new TGate(1);

3

void createUnitStructure(TBasicUnit™ u)

{

US RE48,438 E

11

-continued

Listing 1

u->addO20PInputDependency(m_gatel, 0., 0., 0.004, 0., 0, 0);
u->addFullDependency(m_gate2, population());
)
public: TCablePopRCF() : TPopulation(*compCPU RCF”, w, h, true) { };
~TCablePopRCF() {if(m_equation) delete m_equation;
1f{m_gatel) delete m_gatel;
if(m_gate2) delete m_gate2;};
bool fillElements(TSimulator®* sim);
1
bool TCablePopRCF::fillElements(TSimulatior® sim)
1
m_equation = new TEq_RCF(this, m_compet, m_persist);
createGatingStructure();
for(size_t 1 = 0; 1 <xSize(); ++1)
for(size_t] = 0;] <vySize(); ++])
{
TElement*® u = new TCPUElement(this, m_equation, 1, j);
sim->addUnit(u);
createUnitStructure(u);

;

Return true;

j

int

main()

{

// Input pattern generation (309 in FIG.3)

unt32_t* pat = new wnt32_t[w*h|;

TRandom<float> randGen (0);

for(uint32 t I =0; I <w*h; ++1)

pat[i] = randGen.random();

Tpattern™ p = new Tpattern(pat, w, h);

// Setting up the simulation

TSimulator® cableSim = new TSimulator(*“data’); /(308 and 320 in
FIG. 3)

cableSim->timestep(0.05); //(320 1n FIG. 3)
cableSim->resetlnputs(p); //(325 1n FIG. 3)
cableSim->outfileInterval(0.1); /(308 in FIG. 3)
cableSim->outmode(SANNDRA :::timefunc); //(308 in FIG. 3)
cableSim->simLength(60.0); //(320 in FIG. 3)

// Preparing the population

TPopulation® cablePop = new TCablePopRCE(); //(310 1mn FIG. 3)
cableSim->networkCreate(); /(326 in FIG. 3)

uintl6_t user= 1;

while(user)

{

if(! cableSim->simulationStart(true, 1)) /(311 in FIG. 3)
exit(1);

std::cout<<*“Repeat?'n’; //(305 in FIG. 3)
std::cin>>user; //(305 mm FIG. 3)

if(user == 1)

cableSim->networkReset(); /(305 1n FIG. 3)

i

[f{cableSim)

Delete cableSim; //Also deletes cablePop and its internals
exit(0);

1

FIG. 4 1s a detailed flow diagram 1illustrating a part of an

exemplary implementation of the bottom level system and
method performed during the computation on the GPU
accelerator of the expansion card 180 and 1s a more detailed
view of the computational box 330 in FIG. 3. FIG. 4 15 a
representation of one of several ways 1n which a system and
method for processing numerical techniques can be 1mple-
mented.

With systems ol equations that have complex interdepen-
dencies 1t 1s likely that the variable in some equation from
a previous time step has to be used by some other equation
alter the new values of this variable are already computed
for new time step. To avoid data confusion, the new values
of vanables should be rendered in a separate texture. After
the time step 1s completed for all equations, these new values
should be copied over old values so that they are used as
input during the next time step. Copying textures 1s an

10

15

20

25

30

35

40

45

50

55

60

65

12

expensive operation, computationally, but since the textures
are referred to by texture IDs (pointers), swapping these
pointers for mput and output textures after each time step
achieves the same result at a much lesser cost.

In the hardware solution suggested herein, ID swapping 1s
equivalent to swapping the base memory address for two
partitions ol the texture memory bank 250. They are
swapped 4835 during synchronization (485, 430, and 455) so
that data transfer 445 and the computation 435-487 proceeds
immediately and in parallel with data transfer as shown 1n
FIG. 4. A hardware solution allows this parallelism through

access of the controller 220 to the onboard texture memory
bank 250.

The main computation and data exchange are executed by
the controller 220. It runs three parallel substreams of
execution: Computational Substream 403, Data Output Sub-
stream 402, and Data Input Substream 404. These streams
are synchronmized with each other during the swap of pointers
485 to the mput and output texture memory partitions of the
texture memory bank 250 and the check for the last iteration
487. Algorithmically, these two operations are a single
atomic operation, but the block diagram shows them as two
separate blocks for clanty.

The Computational Substream 403 performs a computa-
tional cycle including a sequential execution of all shaders
that were stored 1n the shader memory bank 210 using the
appropriate mput and output textures. To begin the simula-
tion the controller 220 initializes three execution substreams
403, 402, and 404. On every simulation step, the Compu-
tational Substream 403 determines which textures the GPU
240 will need to perform the computations and initiates the
upload 435 of them onto the GPU 240. The GPU 240 can
communicate directly with the texture memory bank 250 to
upload the appropriate texture to perform the computations.
The controller 220 also pulls the first shader (known by the
stored order) from the shader memory bank 210 and uploads
450 1t onto the GPU 240.

The GPU 240 executes the following operations 1n this
order: performs the computation (execution of the shader)
4'70; tells the controller 220 that it 1s done with the compu-
tations for the current shader; and after all shaders for this
particular equation are executed sends 480 the output tex-
tures to the output portion of the texture memory bank 250.
This cycle continues through all of the equations based on
the branching step 482.

An example shader that performs fourth order Runge-
Kutta numerical integration 1s shown in Listing 2 using
GLSL notation;

Listing 2

uniform sampler2DRect Variable;

uniform float integration_step;

float halfstep = integration_step®0.5;

float fl_6step = integration_step/6.0;

vecd output = texture2DRect(Varniable, gl _TexCoord[0].st);
// define equation() here

vecd rungekuttad(vecd x)

{

const vecd kl = equation(x);

const vec4 k2 = equation(x + halfstep™kl);

const vecd k3 = equation(x + halfstep*k2);

const vecd k4 = equation(x + integration step*k3);
return fl_6step™(kl + 2.0%(k2 + k3) + k4);

US RE48,438 E

13

-continued
Listing 2
h
Void main(void)
{

output += rungekuttad{output);
o| FragColor = output;

h

The shader 1n Listing 2 can be executed on conventional
video card. Using the controller 220 this code can be further
optimized, however. Since the integration step does not
change during the simulation, the step itself as well as the
halfstep and %6 of the step can be computed once per
simulation, and updated in all shaders by a shader update
procedures 310, 326 discussed above.

After all of the equations in the computational cycle are
computed the main execution substream 403 on the control-
ler 220 can switch 483 the reference pointers of the input and
output portions of the texture memory bank 250.

The two other substreams of execution on the controller
220 are waiting (blocks 430 and 455, respectively) for this
switch to begin their execution. The Data Input Substream
404 1s controlling 440 the input of additional data from the
CPU 120. Thais 1s necessary 1n cases where the simulation 1s
monitoring the changing input, for example mput from a
video camera or other recording device 1n the real time. This
substream uploads new external mput from the CPU 120 to
the texture memory bank 250 so it can be used by the main

computational substream 403 on the next computational step
and waits for the next iteration 475. The Data Output
Substream 443 controls the output of simulation results to
the CPU 120 11 requested by the user. This substream
uploads the results of the previous step to the main RAM
130 so that the CPU 120 can save them on disk 140 or show
them on the results display 313 and waits for the next
iteration 460.

Since the Computational Substream 403 determines the
timing of input 440 and output 443 data transters, these data
transiers are driven by the controller 220. To further reduce
the data transfer overhead (and disk 140 overhead also) the
controller 220 mnitiates transfer only after selected compu-
tational steps. For example, 11 the experimental data that 1s
simulated was recorded every 10 milliseconds (msec) and
the simulation for better precision was computed every 1
msec, then only every tenth result has to be transferred to
match the experimental frequency.

This solution stores two copies of output data, one 1n the
expansion card texture memory bank 250 and another 1n the
system RAM 130. The copy in the system RAM 130 1s
accessed twice: for disk I/O and screen visualization 313. An
alternative solution would be to provide CPU 120 with a
direct read access to the onboard texture memory bank 250
by mapping the memory of the hardware onto a global
memory space. The alternative solution will double the
communication through the local bus 190. Since the goal
discussed herein 1s reducing the information transfer through
the local bus 190, the former solution 1s favored.

The main substream 403 determines 1f this 1s the last
iteration 487. If 1t 1s the last iteration, the controller 220
waits for the all of the execution substreams to finish 490
and then returns the control to the CPU 120, otherwise it
begins the next computational cycle.

This repeats through all of the computational cycles of the
simulation.

10

15

20

25

30

35

40

45

50

55

60

65

14
CONCLUSION

This GPU accelerator system offers the following poten-
tial advantages:

1. Limited computations on the CPU 120. The CPU 120
1s only used for user mput, sending information to the
controller 220, recerving output aiter each computational
cycle (or less frequently as defined by the user), writing this
output to disk 140, and displaying this output on the monitor
170. This frees the CPU 120 to execute other applications
and allows the expansion card to run at its full capacity
without being slowed down by extensive interactions with
the CPU 120.

2. Minimizing data transfer between the expansion card
180 and the system bus 200. All of the information needed
to perform the simulations will be stored on the expansion
card 180 and all simulations will take place on 1t. Further-
more, whatever data transifer remains necessary will take
place in parallel with the computation, thus reducing the
impact of this transier on the performance.

3. New way to execute GPU programs (shaders). Previ-
ously, the CPU 120 had full control over the order of
shader’s execution and was required to produce specific
commands on every cycle to tell the GPU 240 which shader
to use. With the invention disclosed herein, shaders waill
initially be stored on the shader memory bank 210 on the
expansion card 180 and will be sent to the GPU 240 for
execution by the general purpose controller 220 located on
the expansion card.

4. Multiple parallelisms. The GPU 240 is inherently
parallel and 1s well suited to perform parallel computations.
In parallel with the GPU 240 performing the next calcula-
tion, the controller 220 1s uploading the data from the
previous calculation into main memory 130. Furthermore,
the CPU 120 at the same time uses uploaded previous results
to save them onto disk 140 and to display them on the screen
through the system bus 200.

5. Reuse of existing and affordable technology. All hard-
ware used 1n the mvention and mentioned here-in are based
on currently available and reliable components. Further
advance of these components will provide straightforward
improvements of the invention.

While this invention has been particularly shown and
described with references to preferred embodiments thereot,
it will be understood by those skilled in the art that various
changes 1 form and details may be made therein without
departing from the scope of the invention encompassed by
the appended claims.

What 1s claimed 1s:
1. A computer system, comprising:
a central processing unit to receive input data;
main memory, operably coupled to the central processing
unit via a bus, to store the input data received by the
central processing unit;
an accelerator, operably coupled to the central processing
unit and the [first] mair memory via the bus, to receive
at least a portion of the input data from the main
memory, the accelerator comprising:
at least one graphics processing unit to perform a
sequence ol computations on the at least a portion of
the mput data so as to generate output data, the
sequence of computations rvepresenting an artificial
neural network, intermediate computations 1n the
sequence ol computations representing respective
layvers of the artificial neural network and yielding
intermediate results; and

US RE48,438 E

15

accelerator memory, operably coupled to the [graphic]
at least one graphics processing unit, to store the
results of the [plurality of sequential] sequence of
computations; and

a controller, operably coupled to the at least one graphics

processing unit and the accelerator memory, to initial-
ize textures and shaders in the accelervator memory for
performing the sequence of computations, to control
performance of the sequence of computations by the at
least one graphics processing unit, 1o transier the at
least a portion of the input data into the accelerator
memory during performance of the intermediate com-
putations in the sequence of computations by the at
least one graphics processing unit, and to transfer at
least a portion of the output data from the accelerator
memory to the main memory during performance of the
intermediate computations in the sequence ol compu-
tations by the at least one [graphic] graphics processing
umnit.

2. The computer system of claim 1, wherein the central
processing unit 1s configured to receive the put data in
response to a user interaction.

3. The computer system of claim 1, wherein:

the central processing unit 1s configured to receive the

input data at a first rate; and

the at least one graphics processing unit 1s configured to

perform the sequence of computations at a second rate
different than the first rate.

4. The computer system of claim 1, wherein the main
memory 1s configured to store a copy of the output data
stored 1n the accelerator memory.

5. The computer system of claim 1, wherein an output of
at least one computation 1n the sequence of computations
represents an output of at least one neuron in an artificial
neural network.

6. The computer system of claim 1, wherein accelerator
memory Comprises:

a first memory bank to store parameters common to all of

the computations in the sequence of computations; and

a second memory bank to store data specific to at least one

computation 1n the sequence of computations.

7. The computer system of claim 1, wherein the controller
1s configured to transier the output data from the accelerator
memory to the main memory without transferring any of the
intermediate results from the accelerator memory to the
main memory so as to reduce data transfer via the bus.

8. The computer system of claim 1, wherein the controller
1s configured to transier at least a portion of the output data
from the accelerator memory to the main memory after the
at least one graphics processing unit has begun to perform
another sequence ol computations.

9. The computer system of claim 8, wherein the controller
1s configured to 1imitiate transter of the at least a portion of the
input data and to transfer the at least a portion of the output
data 1n parallel with performance of at least one computation
in the other sequence of computations by the at least one
graphics processing unit.

10. The computer system of claim 1, wherein the con-
troller 1s configured to control execution of the sequence of
computations by the at least one graphics processing unit.

11. The computer system of claim 1, further comprising:

at least one of a video camera, a microphone, or a cell

recording electrode, operably coupled to the central
[processor] processing unit, to acquire the input data in
real time.

12. A method of performing a sequence of computations
representing an artificial neural network on a computer

10

15

20

25

30

35

40

45

50

55

60

65

16

system comprising a central processing unit (CPU), a main
memory operably coupled to the central processing unit via
a bus, an accelerator operably coupled to the CPU and the
main memory via the bus, the accelerator comprising a
graphics processing unit (GPU) and an accelerator memory,
the method comprising:

(A) performing, by the GPU, the sequence of computa-
tions on a first portion of [the] input data so as to
generate a first portion of [the] output data, the first
portion of the output data representing an output of a
neuron in a first laver of the artificial neural network,
intermediate computations in the sequence of compu-
tations yielding intermediate results, wherein perform-
ing the sequence of computations on the first portion of
the input data comprises (i) assigning an output vari-
able to a first texture and a second texture, the output
variable being included in a first computational ele-
ment of a plurality of computational elements, the
plurality of computational elements representing the
sequence of computations and (ii) accumulating a first
value for the output variable in the first texture during
a first time step;

(B) 1n parallel with performing the sequence of compu-
tations by the GPU in (A), transferring a second portion
of the mput data from the main memory to the accel-
erator via the bus; [and]

(C) m parallel with performing the sequence of compu-
tations by the GPU 1n (A), transferring a second portion
of the output data from the accelerator memory to the
main memory via the bus, the second portion of the
output data representing an output of a neuron in a
second layer in the artificial neural network; and

(D) performing, by the GPU, the sequence of computa-
tions on the second portion of the input data, wherein
performing the sequence of computations on the second
portion of the input data comprises (i) accumulating a
second value for the output variable in the second
texture during a second time step and (ii) making the
first value of the output variable in the first texture
accessible to other computational elements in the plu-
rality of computational elements during the second
lime step.

13. The method of claim 12, further comprising:

storing the mput data 1n the main memory 1n response to
a user interaction.

14. The method of claim 12, further comprising:

recerving the input data at a first rate; and

wherein (A) comprises performing the sequence of com-
putations at a second rate diflerent than the first rate.

[15. The method of claim 12, wherein (A) comprises:

generating an output representative of an output of at least
one neuron in an artificial neural network.]

16. The method of claim 12, wherein (C) comprises:

transterring the second portion of the output data from the
accelerator memory to the main memory without trans-
ferring any of the intermediate results of the plurality of
sequential computations from the accelerator memory
to the main memory so as to reduce data transier via the
bus.

17. The method of claim 12, wherein (C) comprises:

transierring the second portion of the output data from the
accelerator memory to the main memory after the GPU
has begun to perform another sequence of computa-
tions.

18. The method of claim 17, wherein (C) further com-

Prises:

US RE48,438 E

17

initiating transier of the second portion of the output data
in parallel with performance of at least one computa-
tion 1n the other sequence of computations.

19. The method of claim 12, further comprising;

acquiring the input data in real time with at least one of >

a video camera, a microphone, or a cell recording
clectrode operably coupled to the CPU.

20. The method of claim 12, further comprising:

storing parameters common to all of the computations 1n

the sequence of computations 1n a first memory bank in
the accelerator memory; and

storing data specific to at least one computation in the

sequence ol computations 1n a second memory bank 1n
the accelerator memory.
21. A method of performing a sequence of computations
vepresenting an artificial neural network, the method com-
prising:
receiving, at a central processing unit (CPU), first input
data acquired from an external system in real time;

initializing, by a contvoller operably coupled to a graph-
ics processing unit (GPU), textures and shaders in a
memory operably coupled to the GPU;

transferving the first input data received by the CPU to the

memory operably coupled to the GPU;

performing, by the graphics processing unit (GPU), a first

computation in the sequence of computations on the
first input data based on the textures and shaders to
generate first output data, computations in the
sequence of computations rvepresenting respective lay-
ers of neurvoms in the artificial neural network, an

output of the first computation in the sequence of

computations vepresenting an output of a first neuron in
a first laver in the artificial neural network;

storing, in the memory operably coupled to the GPU, the
first input data and the first output data; and

transferring second input data acquired from the external
system in real time into the memory operably coupled
to the GPU after the GPU starts the first computation
and before the GPU starts a second computation of the
sequence of computations, an output of the second
computation in the sequence of computations repre-
senting an output of a second neurvon in a second layer
in the artificial neural network.

22. The method of claim 21, wherein transferring the
second input data comprises transferving the second input
data via a bus operably coupled to the CPU.

23. The method of claim 21, further comprising:

transferving the first output data from the memory to

another memory during the second computation in the
sequence of computations.

24. The method of claim 23, further comprising:

stoving intermediate results of the sequence of computa-

tions in the memory, and

wherein transferving the first output data from the

memory to the other memory occurs without transfer-
ving the intermediate vesults of the sequence of com-
putations.

25. The method of claim 23, wherein transferving the
second input data and transferving the first output data
occurs in parallel.

26. The method of claim 21, further comprising:

storing, in a first memory partition of the memory, parvam-
eters common to all of the computations in the

sequence of computations.

10

15

20

25

30

35

40

45

50

55

60

65

18
27. The method of claim 26, further comprising:

storing, in a second memory partition of the memory, data
specific to the first computation in the sequence of
computations.

28. The method of claim 27, further comprising:

storing, in the second memory partition, external input
data patterns, vepresentations of internal variables, an
input of the computation in the sequence of computa-
tions, and the output of the computation in the sequence
of computations.

29. The method of claim 21, wherein storing the first

output data comprises:

accumulating, in the memory, outputs of computational
elements executed by the GPU in performing the first
computation in the sequence of computations.

30. The method of claim 21, further comprising:

storing, in the memory, an output of a previous compu-
tation in the sequence of computations; and

accessing, by the GPU, the output of the previous com-
putation during performance of the computation in the
sequence of computations.

31. The method of claim 21, whervein performing the first
computation comprises executing a plurality of computa-
tional elements representing a layer of neurons in an arti-

ficial neural network.

32. The method of claim 31, wherein all neurons in the
laver of neurons are described by the same equation.

33. The method of claim 21, further comprising:

acquiving the second input data with at least one of a
video camera, a microphone, or a cell recording elec-
trode.

34. The method of claim 21, further comprising:

loading the second input data from disk.

35. A system for performing a sequence of computations,

the system comprising:

a camera to generate input data in veal time;

a first memory partition;

a second memory partition operably coupled to the first
memory partition; and

a processing unit, operably coupled to the camera, the
first memory partition, and the second memory parti-
tion, to perform the sequence of computations on a first
portion of the input data so as to genervate a first
portion of output data, intermediate computations in
the sequence of computations vielding intermediate
vesults, the first portion of the output data representing
an output of an artificial neural network,

wherein the first memory partition is configured to trans-
fer a second portion of the input data to the second
memory partition in parallel with performance the
sequence of computations by the processing unit,

wherein the second memory partition is configured to
transfer a second portion of the output data to the first
memory partition in parallel with performance the
sequence of computations by the processing unit, and

wherein the sequence of computations represents the
artificial neural network, each neuron in the artificial
neural network has an output variable assigned to a
first texture and a second texture in the memory, the first
texture holds a first value of the output variable com-
puted during a previous time step of the sequence of
computations and accessible to other neurons in the
neural network during a currvent time step of the
sequence of computations and the second texture accu-
mulates a second value of the output variable computed
during the current time step.

US RE48,438 E

19

36. The system of claim 35, wherein the first memory
partition and the second memory partition are logical par-
titions.

37. The system of claim 35, wherein the processing unit is
comprises a graphics processing unit (GPU). 5
38. The system of claim 35, wherein the processing unit is
configured to receive the input data at a first vate and to
perform the sequence of computations at a second rate is

different than the first rate.

39. The system of claim 35, wherein the second memory 10
partition is configured to transfer the second portion of the
output data to the first memory partition without transfer-
ring any of the intermediate vesults to the first memory
partition.

40. A system for executing an artificial neural network, 15
the system comprising:

a central processing unit (CPU) to provide first input

data;

a memory, operably coupled to the CPU, to store the first
input data in a first partition, referenced by a first 20
pointer, before computing a first layer of neurons of the
artificial neural network;

a processing unit, operably coupled to the memory, to
perform, during computation of the first layer of neu-
rons, at least one calculation on the first input data so 25
as to generate first output data, the first output data
vepresenting an output of at least one neuron in the first
laver of neurons; and

a controller, operably coupled to the processing unit and
the memory, to: 30
store the first output data in a second partition of the

memory, the second partition referenced by a second
pointer, and to swap the first pointer with the second
pointer at the end of the computation of the first layer
of neurons, such that the first output data becomes an 35
input for a second layer of neurons of the artificial
neural network,
transfer the first output data to another memory during
computation of the second layer of neurons, and
dictate an order of execution of instructions to the 40
processing unit to perform the computation of the
first laver of neurons.

41. The system of claim 40, wherein the processing unit
comprises a graphics processing unit.

42. The system of claim 40, wherein the controller is 45
configured to send instructions for performing the at least
one calculation to the processing unit.

43. The system of claim 40, wherein the memory further
comprises.

a third partition to store internal variables; and 50

a fourth partition to store data used as input at a
particular layer of neurons of the artificial neural
network.

44. A computer system, cOmprising.

a central processing unit to receive input data acquired 55
from an external system,

main memory, operably coupled to the central processing
unit via a bus, to storve the input data received by the
central processing unit,

an accelerator, operably coupled to the central processing 60
unit and the main memory via the bus, to receive at
least a portion of the input data from the main memory,
the accelerator comprising:
at least one processing unit to perform a sequence of

computations representing an artificial neural net- 65
work on the at least a portion of the input data so as
to generate output data, intermediate computations

20

in the sequence of computations representing layers
of the neural network and vielding intermediate
results; and

accelerator memory, operably coupled to the at least
one processing unit, to stove the results of the
sequence of computations; and

a controller, operably coupled to the at least one
processing unit and the accelevator memory, to con-
trol transfer of the at least a portion of the input data
into the accelevator memory during performance of
the intermediate computations in the sequence of
computations by the at least one processing unit, to
control transfer at least a portion of the output data
from the accelerator memory to the main memory
during performance of the intermediate computa-
tions in the sequence of computations by the at least
one processing unit, and to control performance of
the sequence of computations by the at least one
processing unit.

45. The computer system of claim 44, wherein the central

processing unit is configured to rveceive the input data in

response to a user interaction.

46. The computer system of claim 44, wherein:

the central processing unit is configured to rveceive the
input data at a first rate; and

the at least one processing unit is configured to perform
the sequence of computations at a second rate different
than the first rate.

47. The computer system of claim 44, wherein the main
memory is configured to stove a copy of the output data
storved in the accelerator memory.

48. The computer system of claim 44, wherein an output
of at least one computation in the sequence of computations
represents an output of at least one neuron in an artificial
neural network.

49. The computer system of claim 44, wherein accelerator
memory comprises.

a first memory partition to store parameters cOmmon to
all of the computations in the sequence of computa-
tions; and

a second memory partition to store data specific to at least
one computation in the sequence of computations.

50. The computer system of claim 44, wherein the con-
troller is comnfigured to transfer the output data from the
accelervator memory to the main memory without transfer-
ring any of the intermediate results from the accelerator
memory to the main memory so as to reduce data transfer
via the bus.

51. The computer system of claim 44, wherein the con-
troller is configured to tramnsfer at least a portion of the
output data from the accelerator memory to the main
memory dfter the at least one processing unit has begun to

perform another sequence of computations.

52. The computer system of claim 51, wherein the con-
troller is configured to initiate transfer of the at least a

portion of the input data and to transfer the at least a portion

of the output data in parallel with performance of at least
one computation in the other sequence of computations by
the at least one processing unit.

53. The computer system of claim 44, wherein the con-
troller is configured to control execution of the sequence of
computations by the at least one processing unit.

54. The computer system of claim 44, further comprising:

at least one of a video camera, a microphone, or a cell

recording electrode, operably coupled to the central
processing unit, to acquire the input data in rveal time.

US RE48,438 E

21

55. The computer system of claim 1, wherein the control-
lev is configured to inform the central processing unit that
the sequence of computations is finished.

56. The computer system of claim 1, wherein the control-
ler is configured to reduce a processing load on the central
processing unit.

57. The computer system of claim 1, wherein the control-

ler is configured to rveduce interactions between the central
processing unit and the accelerator.

¥ ¥ # ¥ o

10

22

	Front Page
	Drawings
	Specification
	Claims

