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bonus(z,y) < 3z, f.( salary(z, z) A factor(z, ) A
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Algorithm 1 SATURATE(T)

Require: A typing 7T of arity n.

Ensure: A saturated typing semantically equivalent to 7T

1. repeat

2:  Toa T

3: for T, 7 C 1,4 do

4: T < max | (T U ALL-CONSENSUS(n, 7, 7))

5: until Tﬂld — T

6: return 7T

FIG. 11
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Algorithm 2 ALL-CONSENSUS(n, 7, 7’)

Require: Two TTCs 7 and 7 of arity n.

Ensure: The lean set of all their consensus T TCs.

1. S« 0

2 for ./ C {1,...,n} do

3 S+ max ((SU{T&E; T}
4: S +—max | (SU{rE37})

5 return S

FIG. 12
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Algorithm 3 ALL-CONSENSUS-OPT(n,7,7')

Require: Two TTCs 7 and 7 of arity n.
Ensure: The lean set of all their consensus T TCs.

1: v e—T7AT

2: N+« (

3 Lr+— T

4. for + — 1 to n do

5. if v, = 1 then

6: N+ « N+t U {4}

7 Lbr <— AT, r AT

8: S «+ ALL-CONSENSUS-REC(n,v, 7,0, 7/, r, N*, 1)
o: if N+ = () then

10 S ¢+ max  (SU{TD37'})

11: return S

FIG. 13
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Algorithm 4 ALL-CONSENSUS-REC(n,v, 7., 7", 1, J, 1)

Require: Two TTCs 7 and 7' of arity n, their meet v, aset J C {1....,n}, an index
1 <2< mn,and two partial results | = A{j € J |4}, r=ANjeJ |t}
Ensure: The lean set of all consensus TTCs of 7 and 7' over index sets ./ 2 .J such that

T, i—1y 7Ol i1}

1. if I —LVvVr— L then
2. return {

3. if 1 — n then

4. af [ <. rVr <:{ then
5. return )

6: return {7 P, 7'}

7. S + ALL-CONSENSUS-REC(n, v, 7, 0.7, 7, J, i + 1)

8. ifie JVvI< 1, Ar < 7 then
9: return S

10 Lr+—IAT,r AT

11: J < J U PART(v. %)

12: 141+ 1

13: S 4+ max | (S U ALL-CONSENSUS-R,

L4

C(ﬂ'j Uy T, z: Tfj T, v]: ?))

14 return 5

FIG. 14
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TYPE INFERENCE FOR DATALOG WITH
COMPLEX TYPE HIERARCHIES

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATIONS

[This application] Movre thar one reissue application has
been filed for the reissue of U.S. Pat. No. §,595,213. The
other reissue application in addition to the present reissue
application is U.S. patent application Ser. No. 14/952,788,
filed on Nov. 25, 2015. The present application is a con-
tinuation reissue application of U.S. reissue application Ser.

No. 14/952,788, filed on Nov. 25, 2015, and is also a reissue
application of U.S. application Ser. No. 13/183,514, which
was filed on Jul. 15, 2011, and issued as U.S. Pat. No.
8,595,213 on Nov. 26, 2013, which 1s based upon and claims

priority Irom prior provisional patent application No.
61/364,571, filed on Jul. 15, 2010 the entire disclosure of

which 1s herein 1incorporated by reference.

FIELD OF THE INVENTION

The present invention relates generally to information
retrieval, 1n particular the way electronically stored data 1s
accessed via queries that are formulated in a programming
language. The invention concerns both the detection of
errors 1n such queries, and their eflicient execution.

BACKGROUND OF THE INVENTION

Like any other programming task, writing queries 1s
error-prone, and 1t 1s helpful 1f the programming language 1n
which queries are expressed gives assistance in 1dentifying,
errors while queries are being written, and before they are
executed on a database. Programming languages often pro-
vide “types” for that purpose, indicating for each variable
what kind of value it may hold. A programming language for
expressing queries 1s usually called a “query language”. The
most popular example of a query language 1s SQL.

In SQL, and in most other query languages 1n prior art,
types are assigned to each variable separately. As a conse-
quence, very lew errors are caught before the query is
executed on a database. The only kind of error found 1s when
an operation does not make sense: for instance, a string
cannot be subtracted from an integer. In particular one
cannot predict accurately (without runming the query),
whether a query will return any results or not. And vyet, a
query that returns no results 1s the most common symptom
ol a programming error.

In the logic programming community, some attempts
have been made to construct type checkers that detect
queries where there are no results at all, regardless of the
contents of the database being queried. None of these
attempts precisely tracks the dependencies between vari-
ables, however, and therefore they are suboptimal: there are
many queries for which one could prove that no results are
returned, and yet the type checkers do not find the errors. It
1s very confusing for users that some errors of this kind are
caught, and others are not.
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2

In the theoretical database community, there has been
some work on proving containment between queries, but
this 1s typically restricted to unnatural fragments of the
query language. Furthermore these works do not take advan-
tage of the type hierarchies that typically exist on data stored
in a database.

What 1s desired, therefore, but not yet accomplished
before the present invention, 1s a system and method of

computing types for queries that accurately approximate the
actual set of results, taking the type hierarchy into account.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an example program written in Datalog with a
sequence of rules.

FIG. 2 1s an example of a type hierarchy suitable for the
program 1n FIG. 1.

FIG. 3 15 a definition listing 1llustrating the approximation
of every use of an extensional relation symbol by the
conjunction of 1ts column types.

FIG. 4 1s a diagram illustrating the need for consensus
formation when checking type inclusion.

FIG. § 1s a diagram further illustrating the need for
consensus formation when checking type inclusion.

FIG. 6 1s a plot 1llustrating the type inference time plotted
on the y-axis versus the depth (1.e., number of layers) of the
program on the x-axis.

FIG. 7 1s a block diagram illustrating how types of
database queries are inferred.

FIG. 10 15 a block diagram of a computer system suitable
for implementing the various embodiments of the present
invention discussed herein according to one embodiment of
the present invention.

FIG. 8 1s a flow chart illustrating inclusion testing for
types represented by sets of type tuple constraints (TTCs).

FIG. 9 1s a flow chart 1llustrating saturation of sets of type
tuple constraints (1TCs) for inclusion testing.

FIG. 11 1s algorithm 1 of the present invention.

FIG. 12 1s algorithm 2 of the present invention.

FIG. 13 1s algorithm 3 of the present invention.

FIG. 14 1s algorithm 4 of the present invention.

DESCRIPTION OF THE PREFERREI
EMBODIMENTS

It should be understood that these embodiments are only
examples of the many advantageous uses of the mnovative
teachings herein. In general, statements made 1n the speci-
fication of the present application do not necessarily limait
any of the various claimed inventions. Moreover, some
statements may apply to some 1nventive features but not to
others. In general, unless otherwise indicated, singular ele-
ments may be 1n the plural and vice versa with no loss of
generality.

1. Introduction

The present invention infers precise types for queries
where the entities 1n the database satisiy complex conditions
regarding subtyping, disjointness and so on.

To 1llustrate, consider the Datalog program in FIG. 1,
which 1s a slight adaptation of an example 1n [1]. It assumes
a database that contains monadic extensional relations for
employee, senior, junior, parttime, student and manager.
These monadic relations capture the entities that are manipu-
lated by quernies, and they are the building blocks of types.
There 1s furthermore an extensional relation salary(x, z).

In the program, additional intensional relations are
defined: bonus(x, v) computes the bonus y that an employee
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x will get. Non-students x get a bonus vy that 1s computed by
multiplying x’s salary z by a factor 1, which 1s returned by
factor(x, 1). The factor depends on the seniority of the
employee. For students, the bonus 1s always 50, independent
of their salary. Finally, the program defines a query, which
1s to find the bonus of all senior managers.

The enftity types are expected to satisly many interesting,
facts that are useful in reasoning about types, for nstance
those shown 1n FIG. 2. We call such a set of facts the type
hierarchy. Note that the type hierarchy goes well beyond the
usual notion of subtyping in traditional programming lan-
guages, 1n that one can state other relationships besides mere
implication or equivalence. An example of such an interest-
ing fact 1s the last statement, which says that managers
cannot be part-time employees. The programmer will have
to state these facts as part of the database definition, so that
they can be checked when information 1s entered, and to
enable their use 1n type inference and optimisation.

To do type inference, we of course also need to know
some facts about extensional relations. For instance,

salary(x, z)—employee(x) /\ float(z)

states that the first column of the extensional relation salary
will contain values of type employee, and the second one
will contain floating point numbers. A database schema
provides this column-wise typing information for every
extensional relation.

(Given the schema and the hierarchy, type inference should
infer the following implications ifrom the definitions in the
program:

bonus(x, v)—employee(x) /\ float(y)
factor(x, y)—employee(x) /\ float(y)

query(x, y)—senior(x) /\ manager(x) /\ float(y)

Note how these depend on facts stated in the type hier-
archy: for example, 1n inferring the type of factor, we need
to know that employee 1s the union of junior and senior.

Type inference will catch errors: when a term 1s inferred
to have the type L, we know that 1t denotes the empty
relation, independent of the contents of the database. Also,
the programmer may wish to declare types for intensional
relations 1n her program, and then it needs to be checked that
the inferred type implies the declared type.

The benefits of having such type inference for queries 1s
not confined to merely checking for errors. Precise types are
also usetul 1n query optimisation. In particular, the above
query can be optimised to:

query(X, y)<—manager(x) /\ senior(x) /\ salary(x, z)
/\ y=0.15%z

This rewriting relies on the fact that we are asking for a
manager, and therefore the disjunct in the definition of bonus
that talks about students does not apply: a student 1s a
parttime employee, and managers cannot be parttime. Again
notice how the complex type hierarchy 1s crucial 1n making
that deduction. The elimination of disjuncts based on the
types 1in the calling context 1s named type specialisation;
type specialisation 1s very similar to virtual method resolu-
tion 1n optimising compilers for object-oriented languages.
Similarly, the junior alternative 1n the definition of factor can
be eliminated. Once type specialisation has been applied, we
can eliminate a couple of supertluous type tests: for instance,
- student(x) 1s implied by manager(x). That 1s called type
erasure. The key to both type specialisation and type erasure
1s an eflicient and complete test for type containment, which
takes all the complex facts about types mto account.
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4

Overview The general problem we address 1s as follows.
(Given the class of all Datalog programs P, we 1dentily a
sublanguage 7 of type programs. Type inference assigns an
upper bound |p| in the language of type programs to each
program p. To say that [p] is an upper bound is just to say
that p (plus the schema and the type hierarchy) implies [p].

The 1dea of such ‘upper envelopes’ 1s due to Chaudhun [8,
9].
In Section 2 we propose a definition of the class of type
programs: any program where all extensionals called are
monadic. Type programs can, on the other hand, contain
(possibly recursive) definitions of intensional predicates of
arbitrary arity. We then define a type inference procedure
[p|, and prove that its definition is sound in the sense that |p |
1s truly an upper bound of p. Furthermore, i1t 1s shown that
for negation-free programs p, the inferred type [p] is also
optimal: [p] is the smallest type program that is an upper

bound of p.

For negation-free programs, the definition of [p] is in
terms of the semantics of p, so that the syntactic presentation
of a query does not aflect the inferred type. It follows that the
application of logical equivalences by the programmer or by
the query optimiser does not aflect the result of type infer-
ence.

The restriction that programs be negation-free can be
relaxed to allow negation to occur in front of sub-programs
that already have the shape of a type program. Not much
more can be hoped for, since sound and optimal type
inference for programs with arbitrary negations 1s not decid-
able.

To also do type checking and apply type optimisations, we
need an eflective way of representing and manipulating type
programs. To this end, we 1dentily a normal form for a large
and natural class of type programs in Section 3. The class
consists of those type programs where the only negations are
on monadic extensionals (i.e., entity types). There 1s a
simple syntactic containment check on this representation,
ispired by our earlier work reported 1n [13].

That simple containment check 1s sound but not complete.
A geometric analysis of the mmcompleteness 1n Section 4
suggests a generalisation of the celebrated procedure of
Quine [22] for computing prime implicants. We present that
generalised procedure, and show that the combination of the
simple contamnment check plus the computation of prime
implicants yields a complete algorithm for testing contain-
ment of type programs.

The algorithm we present 1s very different from the
well-known approach of propositionalisation, which could
also be used to decide containment. The merit of our novel
algorithm 1s that 1t allows an implementation that 1s eflicient
in common cases. We discuss that implementation 1n Section
5. We furthermore present experiments with an industrial
database system that confirm our claims of efliciency on
many usetul queries.

Finally, we discuss related work in Section 6, and con-
clude in Section 8.

In summary, the original contributions of this paper
include:

The i1dentification of a language of type programs for
Datalog, suitable both for precise error checking and
for type-based optimisations.

The definition of a very simple type inference procedure
that 1s proved sound and optimal.

A contamnment check for type programs that relies on a
novel generalisation of Quine’s method of computing
prime 1mplicants.
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Experiments in an industrial database system that show

that this containment algorithm 1s eflicient and usetul.

2. Type Programs

It 1s customary to write Datalog programs as a sequence
of rules as seen 1n FIG. 1, but this syntax 1s too imprecise for
our purposes. In the remainder of the paper, all Datalog
programs will be written as formulae of Stratified Least
Fixpoint Logic (SLFP) over signatures without function
symbols.

This logic, presented for example 1 [10], extends first
order logic (including equality) with fixpoint definitions of
the form [r(X,, . . ., X, )=¢|y. Here, r 1s an n-ary relation
symbol, the x; are pairwise different element variables, and
¢ and 1 are formulae. Intuitively, the formula defines r by
the formula ¢, which may contain recursive occurrences of
r, and the defined relation can then be used 1n 1.

The x. are considered bound in ¢ and free in 1), whereas
the relation r 1s free 1n ¢ and bound m Y. To ensure
stratification, iree relation symbols are not allowed to occur

under a negation, which avoids the problematic case of
recursion through negation. For example, the formula

[s(x, y)=x=y \/ Fz.e(x, z) /\ s(z, y)]s(x, ¥) (1)

defines the relation s to be the reflexive transitive closure of
¢. By way of illustration (and only in this example), free
occurrences ol element variables and relation variables have
been marked up 1n bold face. The formula 1s trivially
stratified since no negations occur anywhere.

In this program, the relation symbol s 1s an intensional
predicate since 1t 1s given a defining equation. On the other
hand, relation e 1s an extensional, which we assume to be
defined as part of a database on which the program 1s run.
We will denote the set of intensional relation symbols as
J and that of extensional relation symbols as [, and
require them to be disjoint.

Model-theoretically, the role of the database 1s played by
an interpretation J which assigns, to every n-ary relation
symbol e € E , a set of n-tuples of some non-empty domain.
To handle free varniables we further need an assignment o
that maps free element variables to domain elements and
free relation varniables to sets of tuples.

Just as 1n {irst order logic, we can then define a modelling,
judgement 1k, . stating that formula ¢ is satisfied under
interpretation I and assignment o. In particular, stratifica-
tion ensures that formulae can be interpreted as continuous
maps ol their free relation variables, so that fixpoint defi-
nitions can be semantically interpreted by the least fixpoints
of their defining equations.

For a formula ¢ with a single free element varnable x, we
set [[¢]]Z :={c|T E___ ¢}, omitting the subscript Z where
unambiguous.

Just as the semantics of the intensional predicates i1s
determined with respect to the semantics of the extensional
predicates, the types of the intensional predicates are derived
with respect to the types of the extensional predicates. These
are provided by a schema .7 which assigns, to every n-ary
extensional predicate, an n-tuple of types. As 1s customary,
types are themselves monadic predicates from a set T <
E of type symbols. For consistency, we require that the
schema assigns a type symbol to itself as its type.

For the program 1n (1), for example, we might have two
type symbols a and b, with the schema specilying
that .7 (e)=(a, b) and of course .7 (a)=(a), .7 (b)=(b).

Semantically, we understand this to mean that in every
interpretation of the extensional symbols conforming to the
schema, the extension of a given column of an extensional
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6

symbol should be exactly the same as the extension of the
type symbol assigned to 1t by the schema.

We can define a first order formula, likewise denoted
as .7, which expresses this constraint: For every n-ary
relation symbol e € E\T and every 1=i=sn whereu € E 1is
the type assigned to the 1-th column of e, the
formula . contains a conjunct

L Xe(XL ..., X)) e

v Kol X s -

(2)

Our example schema above, for instance, would be
expressed by the formula

(Vx.Fy.e(xy)) = a(x)) /\ (Vy.(3x.e(x, y)) < bly))

In the literature, the types assigned by the schema are
often not required to fit exactly, but merely to provide an
over-approximation of the semantics. We could achieve this
by relaxing (2) to use an implication instead of a bi-
implication.

Instead, we take a more general approach by allowing
arbitrary additional information about the types to be
expressed through a hierarchy formula ¢ . Our only
requirements about this formula are that 1t be a closed first
order formula containing only type symbols (and no other
relation symbols).

In particular, the hierarchy may stipulate subtyping rela-
tions; in our example, the hierarchy could be Vx.a(x)—b(x),
expressing that a 1s a subtype of b. Perhaps more interest-
ingly, 1t can also express disjointness of types, e.g. by stating
that Vx._a(x) \/ _b(x); we could then deduce that in the
definition of the reflexive transitive closure e can, in fact, be
iterated at most once. Many other kinds of constraints are
just as easily expressed, and provide opportunities for
advanced optimisations.

We now approximate programs by type programs, which
are programs that only make use of type symbols (and no
other extensional relation symbols), and do not contain
negation. (Compare this with the hierarchy which can con-
tain negations, but no fixpoint definitions.) To every SLFP
formula ¢ we assign a type program [¢| by replacing
negated subformulae with [t] 7"and approximating every use
ol an extensional relation symbol by the conjunction of 1ts
column types. The complete definition 1s given 1n FIG. 3.

For our example program, we would obtain the type

[s(x, V)=x=y \/ Jz.a(xX) /\ b(z) /\ s(z, v)]s(x, ¥)

which 1s semantically equivalent to

x=y \/ a(x) /\ b(y)

We will see 1 the next section that, 1n fact, fixpoint
definitions can always be eliminated from such type pro-
grams, vielding formulae of monadic first order logic.

As the example suggests, the types assigned to programs
semantically over-approximate them 1n the following sense:

Theorem 1 (Soundness). For every program ¢ we have

L oF [¢]

That 1s, every interpretation and assignment satisiying the
schema, the hierarchy and ¢ also satisfies [¢].

Prool Sketch. We can show by induction on ¢ the fol-
lowing stronger version of the the—orem: For any interpre-
tation £ with 7 E . and any two assignments o and o',
which assign the same values to element variables, and
where o(r) = o'(r) for every r € I, we have T F_ [¢]
whenever I +_ ¢.

From this, of course, it follows that .7, ¢ E [¢], and
again .# , ¥, ¢ E [¢]| by monotonicity of entailment.
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Perhaps more surprisingly, our type assignment also
yields the tightest such over-approximation, in spite of our
very lax restrictions on the hierarchy:

Theorem 2 (Optimality). For a negation-iree program ¢
and a type program U, i1i we have

"Sﬁ:ﬁ:q)lz ﬂ
then also
7 [91F o

To prove this theorem, we need a monotonicity result for
the type assignment.

Lemma 3. For two negation-iree programs ¢ and 1, 11 1t
is the case that .77 , 2# ,¢F 1 thenalso .7, 27, [¢|E [y].

An easy way to prove this result 1s to make use of
cartesianisation, which 1s the semantic equivalent of the
typing operator [¢|. For a relation R = D”, we define its
cartesianisation cart (R)=m,;(R) x . . . xw (R) to be the
cartesian product of the columns of R. Likewise, the carte-
sianisation cart(Z ) of an interpretation . is the interpreta-
tion which assigns cart(Z (e)) to every relation symbol e.

It 1s then not hard to see that

cart(LYF_ < TE_ [¢] (3)

for any negation-iree formula ¢, interpretation 7 and
assignment o whenever .¥* + .7 . Also, cart(f )+~ %" if T
F . ,andcart(l ) F 27 it T F 27

From this observation, we easily get the

Proof of Lemma 3. Assume .% , 77, ¢ |, and let I, o
be givenwith T F ., 3¢ E I and T E_ [¢].

By (3), we have cart(I ) | .7, cart(Z ) | 2 and also cart(
I) Y. ¢, so by assumption cart(f ) | _ {, but then by
applying (3) again we get I | _ [].

We briefly pause to remark that Lemma 3 also shows that
type inference for negation-ifree programs respects semantic
equivalence: If ¢ and 1 are semantically equivalent
(under .%* and .7# ), then so are their types. This does, of
course, not hold 1n the presence of negation, for given a type
symbol u, we have [u(x)|=u(x) yet [__u(x)|-rT.

Continuing with our development, we can now give the

Proof of Theorem 2. Assume . , 2# , ¢ F U; by Lemma
3 this means ., 7, [¢]| + [O]. But since O is a type
program we have [0]=0, which gives the result.

So far we have handled negation rather crudely, trivially
approximating 1t by t. In fact, we can allow negations 1n type
programs and amend the definition of |¢| for negations to
read

- 1f ¢ 1s a type program
[=el=9 _

otherwise

All the above results, including soundness and optimality,
g0 through with this new definition, and the optimality and
monotonicity results can be generalised to hold on all
programs which contain only harmless negations, 1.¢. nega-
tions where the negated formula 1s a type program.

There 1s little hope for an optimality result on an even
larger class of programs: Using negation, equivalence
checking of two programs can be reduced to emptiness, and
a program 1s empty il 1ts optimal typing 1s 1. As equiva-
lence 1s undecidable [23], any type system that 1s both sound
and optimal for all programs would likewise have to be
undecidable.

Our proposed definition of type programs 1s significantly
more liberal than previous proposals in the literature.
Frihwirth et al. 1n a seminal paper on types for Datalog [16]
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propose the use of conjunctive queries, with no negation, no
disjunction, no equalities and no existentials.

As an example where the additional power 1s useful,
consider a database that stores the marriage register of a
somewhat traditionally minded community. This database
might have types male and female, specified to be disjoint by
the type hierarchy, and an extensional relation married with
schema (female, male). (Note that this means that all male
and female entities 1n the database are married, 1.e. occur
somewhere 1n the married relation. )

Using our above terminology, we have T ={male,
female! and E =T U {married}; 5 is Vx._male(x) \/ _
female(x).

Let us now define an intensional predicate spouse:

[spouse(X, v)=married(X, v) \/ married(y, X)]spouse
(%, ¥)

What 1s the type of spouse(x, v)? In the proposal of [16],
we could only assign it (female(x) \/ male(x)) /\ (female(y)
\/ male(y)), so both arguments could be either male or
female. By contrast, when employing our definition of type
programs, the inferred type 1s

(female(x) /\ male(y)) \/ (male(x) /\ female(y))

This accurately retlects that x and y must be of opposite
sex. By properly accounting for equality, we can also infer
that the query spouse(X, v) /\ x=y has type L under the
hierarchy: nobody can be married to themselves.

3. Representing Type Programs

For query optimisation and error checking, the single
most important operation on types 1s containment checking,
1.e. we want to decide, for two type programs U and U,
whether 27 /\ I[IJE V', which we will write 9[|]JF 2# O
for short.

As mentioned 1n the introduction, we are often interested
in checking whether a formula 1s unsatisfiable, that 1is
whether 1t always gives an empty set of results regardless of
the interpretation of the extensional relations. If such a
formula occurs in a user program, 1t 1s regarded as a type
error and the user 1s alerted to this fact; 1f 1t occurs during
optimisation, it provides an opportunity for logical simpli-
fication. By the results of the previous section, a formula ¢
containing only harmless negations 1s unsatisfiable 1l 1ts
type is equivalent to 1, that is iff [¢]| F 27 L.

Our type programs only make use of monadic extension-
als, and their containment can be decided by a straightior-
ward extension of the well-known decision procedure for
monadic first order logic [6]. This construction, however,
incurs an exponential blowup in formula size and does not
directly yield a practical algorithm.

Under some mild restrictions on the class of type pro-
grams and the hierarchy, however, we can represent type
programs 1n a compact manner that allows eflicient contain-
ment checking i practice.

The class of type programs we deal with falls in between
the two classes discussed 1n the previous section by allowing
negation, but only 1n front of type symbols (and never before
equalities). The definition of | *] is easily changed to accom-
modate this by setting | _¢ |=_¢ if ¢ is of the form u(t) for u
& T, and T otherwise. We call a possibly negated applica-
tion of a type symbol to a variable a type literal.

Furthermore, we require the hierarchy 27 to be of the
form Vx.h(x), where h(x) does not contain quantifiers or
equations, and only a single free variable x.

The basic unit of our representation are type propositions,
which are Boolean combinations of type symbols, all of
them applied to the same variable. In other words, a type
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proposition 1s a quantifier-free type program without fix-
point definitions or free relation variables, having precisely
one free element varniable. For example, the subformula h(x)
of ¢ 1s a type proposition.

A type proposition ¢ behaves essentially the same as the
propositional formula [¢| that results from 1t by replacing
every atom u(x) with the propositional letter u; for example,
it is easily seen that Vx.y is (first order) valid iff ¢l 1s
(propositionally) valid [20]. Hence we will sometimes 1den-
tify the two notationally.

For example, 1f a and b are type symbols, then a(x) \/-
b(x) 1s a type proposition with la(x) \/-b(x)l=a \/-b.

For the restricted class of type programs under consider-
ation, fixpoint definitions can be eliminated. To see this,
recall that fixpoint definitions can be expanded into infinite
disjunctions [10]. It thus suflices to show that the type
programs without free relation variables and without fix-
point definitions (which we shall hencetforth call flat) form
a complete lattice, so that even a prima facie infinite
disjunction can 1n fact be represented by a single formula.

Lemma 4. The flat type programs form a complete lattice
under the order F 27 .

Proof. The lattice structure i1s obviously given by the
logical operations of conjunction and disjunction. To show
completeness, we show that the set of flat type programs 1s
finite (modulo equivalence under - 77 ).

Notice that every flat type program with m free element
variables from X={x,, ..., x_} can be written in prenex
form as

l/\ i, i (x5 N 1{{\ XiaVONL

= j=m =k=n

foraset Y={y,,...,v,} of element variables, where all the
y, ;and X, , are type propositions, and C is a conjunction of
equations between element variables from X U Y.

Existentials distribute over disjunctions, and also over
conjunctions 1f the variable they bind 1s only free in one of
the conjuncts. Also, note that Ix.(x=y /\ ¢) is semantically
equivalent to ¢ with y substituted for x. Hence we can
turther bring the type program into the form

A ‘)&E,J‘(Kj) AA

| 1= j=m l=k=n

V

i

Ay, X DAL

where C' now contains only variables from X. We will say
that a formula of this shape 1s 1 solved form.

Clearly, there are only finitely many different formulae in
solved form (modulo semantic equivalence), since there are
only finitely many type propositions.

Notice that the set of flat type programs 1s no longer finite
i we allow negated equalities. Indeed, for every natural
number n, let €, be a formula asserting that there are at least
n different individuals; for example, €, 1s dx,, X,._X,=X,.
Then _e, F ¢ —-€,__, for every n, yet all the €, are seman-
tically distinct; so the lattice 1s not even of finite height
anymore.

Corollary 5. Every type program without free relation
variables 1s semantically equivalent to a flat type program,
and hence to a formula of monadic first order logic.

Here 1s an example of how a type program (with only a
single disjunct) can be brought into solved form.

10

15

20

25

30

35

40

45

50

55

60

65

10

Jdz-a(x)/\z==y/\b(y)/ \c(X)/\x=y/\

—¢(z)={sorting by variable }dz-a(x)/\c(x)/\b(y)
AN S ZA

z==y/\=c(z)={pushing in I }a(x)/\c(x)/\b(y)/\x=y/\

Jdz-z=y/\=¢(z)={eliminating =under 3 }a(x)/ \c¢(x)
A\b(y)/\

x=y/\=c(y)={sorting again a(x)/\c(x)/\b(y)/ \=c(y)
/A\X=Yy

We will now troduce data structures that represent
formulae 1n solved form, and develop a containment check-
ing algorithm that works directly on this representation.

We define an order on type propositions by taking ¢<<:
to mean [IJE hl /\ I¢pl—I1l, where |hl is the propositional
formula corresponding to ## as defined above. It 1s not hard
to see that this holds precisely when ¢ F 22 1. In the
remainder, we will i1dentify type propositions that are
equivalent under <: so that it becomes a partial order. Where
needed, we make equivalence under <: explicit by writing 1t
as =7 .

If t 1s a single type proposition and C a set of type
propositions, we write t<:C (C<:t) to mean that t<:c (c<:t)
for some ¢ € C.

The order <: can be extended to sets of type propositions
by defining C<:D to mean that for any d € D there 1s some
¢ € C with ¢<:d. This order 1s clearly reflexive and transitive,
and 1s anti-symmetric (and hence a partial order) on lean
sets, 1.¢. sets C where ¢<:.c' for ¢, ¢' € C implies c=c'. One
way of making a set of type propositions lean 1s to discard
its non-minimal elements, which we write as min(C).

We can represent every disjunct of a formula 1n solved
form using the following data structure:

Definition 1. An n-ary type tuple constraint, or TTC, T 1s

a structure (t,, . .., t IplC) where

each component t, 1s a type proposition,

p is an equivalence relation over {1, . . ., n},

C 1s a set of type propositions called inhabitation con-

straints, such that

tor all 1=i1, j=n with 1~, j (1.e., 1 and j belong to the same

partition of p) we have t =t

C 1s lean,

for all 1<k<n we have C<:t,.

If p is a relation, we write p to mean the smallest
equivalence relation containing 1t. The equivalence class of
an element x under p is written [x],, where we omit the
subscript p 1t 1t 1s clear from context. We call an equivalence
relation q finer (or, more precisely, no coarser) than p i
whenever x~_y then also x~ v.

Whenever we have apre-TTC t=(t,, ..., t [plC) that does
not satisty one of the requirements, we can build a TTC that
does by setting

rell-=(t.l - -

where |[t,||. =~ {t,1i~, j}.

For a TTC ©=(t,, . . ., t IplC), we define tT,;=t, and 7,._,
1s the TTC resulting from t by replacing the component t,
(and every component t, where 1~ J) by r and adding r to the
inhabitation constraints.

The formula represented by a TTC 1s easily recovered:

Definition 2. Given a list of n different element variables
X, . .., X, we deline the type program [t](X;, ..., X, )
corresponding to a TTC ©=(t,, . . . , t IplC) as

s |t pIp Imin(C U {t), . .., 1, 1))
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A TTC 1s called degenerate 1f 1 1s among 1ts inhabitation
constraints; 1t represents an unsatisilable formula. The
equivalence relation 1s called trivial 1f 1t 1s 1n fact the 1dentity
relation 1d, and the set of inhabitation constraints 1s called
trivial 11 it only constrains the component types to be
inhabited. When writing a TTC, we will often leave out
trivial partitionings or inhabitation constraints.

We extend the order <: to TTCs component-wise:

Definition 3. For two n-ary TTCs ©=(t,, . . ., t IplC) and
T=(t,", . .., t'Ip'1C") we define T<:t' to hold il

for every 1=1=n we have t<t/',

p' 1s finer than p,

C<:C.
It 1s routine to check that this defines a partial order with
maximal element [t**“=(t, ..., )] T"'“=(T, . .., T), with

binary meets defined by

, LIpIC) AN (1, . . ., 8, Ip 1Tt A
St At Ip UpiC U

(ty, . ..
t, ..

(4)

Since all type programs can be brought into solved form,
we can represent them as sets of TTCs.
Definition 4. A lean set of non-degenerate TTCs 1s called

a typing.
The formula represented by a typing is

[T]:= V [7]

=T

The order < 1s extended to typings by defining T<T" to
hold 1f, for every T € T there 1s a v € T" with ©<1'.

To convert any set oI TTCs 1nto a typing we can eliminate
all non-maximal and degenerate TTCs from 1t; this operation
we will denote by max .

The order on typings i1s again a partial order with least
element @ and greatest element [{t’’“}] {7°?’“}. Binary
meets can be defined point-wise as

TAT=max , ({t A"tk E€T, v €T} (5)

and joins are given by

T \/ T'=max (T U T") (6)

We will now show that every type program can be
translated to a typing. We already have enough structure to
model conjunction and disjunction; existential quantification

1s also not hard to support.
Definition 5. The 1-th existential of a TTC ©=(t,, . . .,
t IplC), where 1=i1=n, 1s defined as

3.(t)=(t,, . . .

where p' is the restriction of pto {1, .. .,1-1,i+1, ..., n}.
The existential of a typing 1s defined pointwise:

L gs tigs e .., P ImMIn(C U {t;})

3.(T):=max  {I.(v)lt € T}

To see that this models the existential quantifier on type
programs, we can easily convince ourselves of the follow-
ng:

Lemma 6. Lett be an n-ary TTC, I an interpretation and
o a statement. Then I | _ [d.(t)] iff there 1s a domain
element d such that I F .., [t]. An analogous statement
holds for typings. |

Although typings cannot directly represent type programs
with fixpoint defimitions or free relation variables, we can
translate every closed type program to a typing by elimi-
nating definitions. Let us start with a translation relative to
an assignment to free relation symbols.

Definition 6. Let ¢ be a type program without fixpoint
definitions containing the intensional relation vaniables
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r,,...,r_and the element variables x, .. ., X, . We translate
it to a mapping { ¢ : Typing”—Typing by recursion on the
structure of ¢:

(1) (T)=0

(x=x 2 (T)={(v, . . ., W {{iitD}

Cux)? (T)={x77¢,_,

(—ux)? (T)={z",

(X)) (T)=T,
Cp g (TY= ) (TH7N ) (T)
Cp g (TH=Cp? (T (T)

( HXI-.IP) (T)ZEL-(( Y ) (T))

It is easy to check that { ¢) is a monotonic mapping for
every ¢ with respect to the order <:, and since the set of
typings 1s finite 1ts least fixpoint can be computed by
iteration. Thus we can translate every type program ¢ which
does not have free relation variables into a typing { ¢) which
represents it:

Lemma 7. For every type program ¢ without free relation
variables, we have ¢—+ 7 [($)].

Proof Sketch. In fact, we can show that, for any type
program ¢ with m free relation variables and every m-tuple

T of typings, we have the equivalence ¢([T]) =+ [{ ¢) (T)].
where [T] is the m-tuple of type programs we get from

applying [*] to every component of T.

This can be proved by structural induction on ¢ by
showing that [{*)] commutes with the logical operators
(using Lemma 6 for the case ol existentials) and with
fixpoint iteration. The lemma then follows for the case m=0.

4. Containment Checking,

We are now going to investigate the relation between the
orders <: (component-wise or syntactic subtyping) and E
¢ (semantic subtyping). The former 1s convenient in that
it can be checked component-wise and only 1nvolves propo-
sitional formulae, so 1t would be nice 1f we could establish
that T <T, ot [T,] | 22 [T,].

Unfortunately, this 1s not true. The ordering < 1s easily
seen to be sound 1n the following sense:

Theorem 8. For any two typings T and T", 11 T<:T" then [T]
F 27 [T'].

However, 1t 1s not complete. Consider, for example, the
typings T={(b \/ ¢, a)} and T'={(a \/ b, a), (¢ \/ d, a)}.
Clearly we have [T] + 2# [T'], yet TT

If we interpret type symbols as intervals of real numbers,
this example has an intuitive geometric interpretation,
shown 1 FIG. 4.

The mdividual TTCs then become rectangles 1n the two-
dimensional plain, and 1t 1s easy to see that the single TTC
in T (depicted by the single rectangle 1n heavy outline filled
with vertical lines) 1s contained in the union of the TTCs 1n
T' (the two rectangles filled with slanted lines), but not 1n
either one of them 1n 1solation.

A similar problem can arise from the presence of equality
constraints: Consider the typings T={(a \/ b, a \/ bl{{1,
21D} and T'={(a, a), (b, b)}. The former appears in FIG. 5
as a heavy slanted line, which 1s not contained 1n either of
the two squares representing the TTCs 1n T', but only 1n their
union.
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Intuitively, the problem 1s that <: tests containment of
TTCs 1n 1solation, whereas the semantic inclusion check
considers containments between sets of TTCs.

The following lemma paves the way for a solution:

Lemma 9. The mapping [ ] 1s the lower adjoint of a Galois 5
connection, 1.e. there 1s a mapping (I*) from type programs
to typings such that

TIE 2 9 iff T<:(19)

Proof. As we have established, typings and type programs
form complete lattices under their respective orders. Since
[*] distributes over joins it must be the lower adjoint of a
(Galo1s connection between these lattices.

An immediate consequence of this 1s that [T, ]~ 27 [T1,]
implies T, <:(I[T,]l). To check, then, whether T, 1s seman-
tically contained 1n T,, we compute (I[T,]!) and check for
component-wise nclusion.

One possible implementation of (I¢) comes directly from
the definition of the Galois connection: For any type pro-
gram O, (191) is the greatest typing T such that [[T] F 2#
O] [TF ## U, and since there are only finitely many typings
and containment 1s decidable we could perform an exhaus-
tive search to find this T.

Clearly, this algorithm 1s not ideal, since one of our goals
1s to avoid having to explicitly decide the relation - 27 .
Inspiration for a better solution comes from a perhaps
somewhat unexpected direction, namely the theory of Bool-
can function minimisation:

Quine [22] introduces an algorithm whose first part deter-
mines the set of prime implicants of a Boolean formula,
which are conjunctive formulae such that every conjunctive
formula that implies the original formula implies one of the
prime 1mplicants.

Generalising from conjunctions to TTCs and from propo-
sitional formulae to typings, we will mtroduce a saturation
mapping sat that generates the set of all prime 1mplicant
TTCs for a typing, which are TTCs such that every TTC that
(semantically) entails the typing entails one of them com-
ponent-wise. Hence whenever [T,] E 2# [1,] we have
T,<:sat(l,), so sat 1s an implementation of (I[*]l). The
saturation mapping also preserves semantics, so the other
direction of the implication holds as well.

We can follow Quine’s definitions and proofs almost
paragraph by paragraph, starting with the generalisation of
the consensus operation:

Definition 7. The consensus T &, T over I of two n-ary
TTCs T and t', where ] = {1, ..., n} is an index set, is
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We will sometimes write /\, T for /\,, t,.

Roughly, the consensus operation equates all columns 1n 60
] and preserves all other equalities and inhabitation con-
straints of its operands, takes disjunctions over the columns
in J, and conjunctions over all the others.

For example, 1n the example shown in FIG. 5 we can take
the consensus of (a, a) and (b, b) over J={1, 2} to obtain the
TTC (a\/b,a\/bl{{1,2}}), which is precisely the missing
piece to show that T 1s a subtype of T".
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In the particular case where J={j} is a singleton set, and
both partitions and inhabitation constraints are trivial, the
consensus takes conjunctions on all columns except 1, where
it takes a disjunction. This 1s a generalisation of the behav-
iour of the consensus operator used 1n the minimisation of
Boolean functions.

For example, in FIG. 4 we can take the consensus of (a \/
b, a) and (¢ \/ d, a) on J={1} to obtain the TTC (a \/ b \/
¢ \/ d, a) which covers (b \/ c, a).

We need another kind of consensus to deal with 1nhabi-
tation constraints:

Definition 8. The existential consensus of two n-ary TTCs
T and T 1s defined by

(ty, ..., tIplC) Dat,, ..., t ' IpICHY=(t, /Nt ...
ANt Ip U p'IC N CY)
where C \/ C'={c \/ c'lc € C, ¢' € C'}.

To see why this 1s necessary, assume we have type
symbols a, b, ¢ with 2+ Vx.ax) \/ b(x)—c(x), and
consider typings T={(clidla \/ b)} and T'={(clidla),
(clidlb)}. Clearly, [T]=c(x,) /\ dz.(a(z) \/ b(z))=[T"], yet
T<T' since {a\/ b}<:{a} and {a \/ b}<:{b}. However, if
we add the existential consensus (clidla \/ b) to T", we will
be able to prove that T<:T".

It 1s not hard to verity that adding the consensus of two
TTCs to a typing does not change its semantics.

Lemma 10. For two TTCs T, T and an index set J we have
[t D, T+ 3¢ [{t,t'}] and [t D5 T+ 27 [{t, T'}]

Proot Sketch. Clearly, 11 J=0 the consensus is just the
meet, so nothing needs to be proved.

Otherwise, let 7 and o be given suchthat I E_ [t D, T'].
Then, for somei € J, either I | ,/\,c, t,(x)or I | ,/\;,
t/; in the former case I F , [t], and in the latter case I +,
[T'].

For the existential consensus, assume I | _ [T @5 T'] and
further assume there 1s some inhabitation constraint ¢ of ©
such that I V' [y.c(y) (for otherwise I +_ [t] is immediate).
We must have 7 E dy.c(y) \/ c'(y) for all inhabitation
constraints ¢' of ', so certainly I | dy.c' (y). We then easily
see that I F_ [T'].

Remember that typings do not contain non-maximal ele-
ments. The following result shows that we do not lose
anything by eliminating them.

Lemma 11. Consensus formation 1s monotonic 1n the
sense that for TTCs o, o', T, ' with 0<:¢' and T<:t' and for
an index set ] we have 0 D ,t<: 0’ D, 7' and 0 D5 t<:0' D5
,.U'I'

Prool Sketch. The components of the two TITCs are
combined using conjunction and disjunction, which are
monotonic with respect to subtyping, and the partitionings
and inhabitation constraints are combined using set union
which 1s also monotonic.

Definition 9. An n-ary typing T 1s said to be saturated 1t
the consensus of any two TTCs contained 1n it 1s covered by
the typing; 1.e. for any T, T € T and any index set ] =
{1,...,n} we have T D, tT'<T and T P35 v'<T.

Lemma 12. Every typing T can be converted mto a
semantically equivalent, saturated typing sat(1) by exhaus-
tive consensus formation.

Proof. We use Algorithm 2 to collect all consensus TTCs
of two given TTCs. As shown in Algorithm 1, this 1is
performed for every pair of TTCs 1n the typing, and this
procedure 1s repeated until a fixpoint i1s reached.

Notice that in each iteration (except the last) the set of
TTCs covered by the typing becomes larger, and since there
are only finitely many TTCs, the termination condition must
become true eventually.
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We now generalise the concepts of implicants and prime
implicants.

Definition 10. A 'TTC T 1s an implicant for a typing 1" i
we have [t] F 27 [T1']; 1t 1s a prime implicant 11 1t 1s a
<:-maximal implicant.

More explicitly, a TTC m 1s a prime implicant for a typing
T it

1. 7t 1s an implicant of T°

2. For any T with m<tt and [t] F ¥ [T'], we have t<m.

The second condition 1s equivalent to saying that for any
T with Tt and Tt we have [t] ¥ 27 [T].

Lemma 13. Every implicant implies a prime implicant.

Proof. The set of all implicants of a typing 1s finite, so for
any 1mplicant T there 1s a maximal implicant © with ©<:m,
which 1s then prime by definition.

Remark 14. If  1s a prime implicant of T, then m<<'T 1l
Tt & .

Proof. The direction from right to left 1s trivial. For the
other direction, suppose n<:T, 1.e. m<:m' for some ©' & T.
Certainly ['] = 27 [T], so w'<:m since m 1s prime. But this
means that n=rt' € T.

We want to show that sat(1) contains all prime 1mplicants
of T, so we show that saturation can continue as long as there
1s some prime implicant not included 1n the saturated set yet.

Lemma 15. If there is a prime implicant 7t of T with 7t &
T, then T 1s not saturated.

Proof. Let m be a prime implicant of T with © & T.
Consider the set

F 27 [x], v<:T}

This set 1s not empty (1t contains 7 by the preceding remark)
and 1t 1s finite, so we can choose a <:-minimal element 1 €
M.

The proot proceeds by considering three cases. In the first,
we shall show that a consensus step 1s possible, thus proving,
that T 1s not saturated. In the second, we show that an
existential consensus step can be made, again proving non-
saturation. Finally, we show that either the first or second
case must apply, as theirr combined negation leads to a
contradiction.

Assume there 1s an mndex 1 for which =77 r' \/ r'" for

two 1', r" neither of which equals ..

Then we form y":=,_ . and Pp":=. _ .. Observe that 1}
and 1 are strictly smaller than 1, so they cannot be 1n
M. They both, however, entail &, so there must be ¢', ¢"
c T with P'<:¢' and }p<:¢".

Note that y=' ©;; Y", where [1] 1s the equivalence class
of i in . By Lemma 11, this means that {<:¢' &, ¢",
and since P<:T we also have ¢' D,; ¢"<<:T, which
shows that T 1s not saturated.

Assume for some ¢ € C, where C 1s the set of inhabitation
constraints of 1, we have c=2¢ ' \/ r" for two ', r"
neither of which equal c.

We form 1 from 1 by setting the inhabitation constraints
to C\{c} U {r'} and minimising, and similarly for {".
As above, those two are strictly smaller than 1 and we
can {ind ¢' and ¢". The prootf goes through as 1n the
previous case, since it 1s easy to see that =)' D5 ",

Otherwise, for any index 1 and r', ' with W} =27 ' \/ "
we have etther =7 ' or Yy =7 r" (1.e. every |, 1s
jomn-1rreducible) and likewise for all ¢ € C.

We will show that in this case <1, contrary to our
assumptions. We know that [] | ## [T], so any interpre-
tation Z and assignmentowith Z + 2% and I +_[y] will
satisfy some TTC t € T. Put differently, if T E_ (37 /\)
(x,) foralliand I E 3Iy.(2# /\ ¢) (y) for all inhabitation

M:={tl[7]
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constraints ¢ and moreover a satisfies the partition of 1, then
we will find Tt € T with I F_ [T].

Observe that for every 1 the (propositional) formula
lhi/A\lp,l can be written as a conjunction 1, ; /\ ... /A1,
of type literals. We can moreover assume that every typé
symbol occurs in precisely one of these literals, for 1, say,
type t does not occur, then I, JANVANS FEVANE SRV
L, /N .. /] ,, \/~ is ajoin reductlon of Ihl/\llp .

Let SllCh a decomposmon be fixed and let L :=
L, 1.1, . }. Sincey, =}, whenever i and j are in the same
partition, we can clearly choose the decomposition such that
L, =L, n this case. Likewise, for every inhabitation constraint

c we can write [hi/\lclas 1, ; /N ... /A1, m» and define L,
by analogy.

We define an interpretation JZ over the domain
Xpp - -+ » X U C of variables modulo the partition of

plus the inhabitation constraints by
I p)y-{x;bEL}U {cbeEL)

for every type symbol b. The assignment 1s simply defined
by o(X,)=X;-

It is easy to see that x,, € [[1]] it 1 € L, for all 1=i=n, and
c € [[1]] it 1 € L_ for all inhabitation constraints ¢, from
which we deduce I +~ _ (3 /\ ) (x,) for all i, and T
E 3dyv.(s# /\) (v) for all inhabitation constraints ¢. By
definition, o satisfies the partition of . So we have some T
cTwith I |, [t].

We claim that p<:T.

Indeed, let an index 1=1=n be given. Then we can write T,
as a disjunction ol conjunctions, such that one of its dis-
juncts, of the form 1, ' /\ ... /\ 1, " is satisfied under
I and o, meaning that x; E [[ ]]I for all j, so all the
I, ;/ are mn fact in L, so {,<T,.

Since o satisiies the partition of T, this partition must be
finer than the partition of 1.

Finally, let an inhabitation constraint d of T be given.
Since 7 E dv.(7# .) (y), the interpretation of 7 A d
cannot be empty. As above, we can write 77 . d 1 a
disjunctive form such that all the literals in one of 1its
disjuncts are non-empty in J . So there must be some
domain element that occurs in the denotation of all these
literals. It 1t 1s one of the x;,, then we have 1,<:d, which
implies c<:d for some 1nhabitation constraint ¢ of ; 11 1

i, J

il 1t 1S
an inhabitation constraint ¢, then we have c<:d directly.

Taking these facts together, we get P<:t, whence p<T.
This contradicts our assumption, and we conclude that this
subcase cannot occur.

Now we can declare victory:
Theorem 16. It [T,| F ## [T,], then T <:sat(T),).

Proof. Assume [T,]+ ## |[T1,] and let T €T, be given.
Then [T] F 27 |T,], so certamly [t] E 27 [sat(T,)], since
saturation does not change the semantics. By Lemma 13 this
means that there 1s a prime 1mplicant i of sat(T,) with T<<.
By Lemma 15 we must have ©t € sat(T,), so t<:sat(l,).
Since this holds for any Tt € T, we get T,<:sat(T,).

5. Implementation

It 1s not immediately clear that the representation for type
programs proposed in the preceding two sections can be
implemented efficiently. While the mapping |¢] from pro-
grams to type programs 1s, of course, easy to implement and
lincar in the size of the program, the translation of type
programs into their corresponding typings involves fixpoint
iterations to eliminate definitions. Saturation 1s also poten-
tially very expensive, since we have to compute the con-
sensus on every combination of columns for every pair of
TTCs 1n a typing, and repeat this operation until a fixpoint
1s reached.
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We report in this section on our experience with a
prototype implementation based on Semmle’s existing type

checking technology as described 1n [13]. The type checker
computes typings for programs and immediately proceeds to
saturate them to prepare for containment checking. It uses a
number of simple heuristics to determine whether a consen-
sus operation needs to be performed. This drastically
reduces the over-head of saturation in practice and makes
our type inference algorithm practically usable.

TTCs can be compactly represented by encoding their
component type propositions as binary decision diagrams.
The same can be done for the hierarchy, so checking
containment of type propositions can be done with simple
BDD operations.

As with any use of BDDs, it 1s crucial to find a suitable
variable order. We choose a very simple order that tries to
assign neighbouring indices to type symbols that appear 1n
the same conjunct of the hierarchy formula 27 . For
example, 1f the hierarchy contains a subtyping statement
u,(X)—u,(X) or a disjointness constraint = (u,(x) /\ u,(X)),
then u, and u, will occupy adjacent BDD variables. This
heuristic 1s simple to implement and yields reasonable BDD
s1Zzes as shown below.

To mitigate the combinatorial explosion that saturation
might bring with 1t, we avoid useless consensus formation,
i.e. we will not form a consensus t & t' if t & v'<:{t, '} or
T @ T i1s degenerate. The following lemma provides a
number of suflicient conditions for a consensus to be useless:

Lemma 17. Lett=(t,,...,t |plC)and t'=(t,, ..., Ip'1C")
betwo TTCs and J = {1, ..., n} a set of indices. Then the
following holds:

1. If N—={ilt, /A t/)=1} J then T @, 1" is degenerate.

2. If AN, t=L or /\, t/=L, then T /\,, T'<:{T, T'} for any

I'o 1.
3. If we have 1 ¢ J with /\, t<t, and /\,., t/<t/, then
T D 0 T<T D, T.

4. 1f /\ o, t,<</\,c, t! or vice versa, then T B, T'<:{T, T'}.
5. Forj € 1, j' ¢ T with j~— ' we have T @, T<:t @,
,.U'l'

6. If N*=0, then T D5 ' is degenerate.
Proof. Recall thatt &b, t—H|(u,, .. ., u, lp U p' U IxJIC U
ChH|| where

-

We prove the individual claims:

1. Indeed, assume k € N™\J, then u,=t, /\ t,'=L1.

2. Assume, for example, /\,c,;t,=1 and let J' © Jbe given,
then N\, t=1, so u,=/\, t'<:t)if i € ], and u,=t, /\
t. '<:t otherwise, so T @, T<t'. If the other disjunct is
1, we see that T D ,, Tt by a similar argument.

3. Note that /\ . ;0 17/ N\, and /N o /=N 1, 50
™D, T<TD T

4. The argument 1s similar to 2.

5. Writing I' for J U {j'}, we see that the partitioning will
be the same for J and J'. Now consider the 1th compo-
nent of T &, v'. If 1~1' for some 1' € I, then 1~]', so we
have

if1el

/\_,FEJ tj \/ /\jEJ t:,'
t AL

otherwise

(TN ~(Nes 6V Ny TN N G Atk ~i, k &
Jt=

VAVEYS FRAVIAWESS D VAN (AN i IAWANE | PAVAN w41 oo N
& 1}=
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(5 AN Nep o\ G /AN INep ) AN ANt Atk ~1 k
<

MNerti V Nepth) AN Ak~ kE T'=
(T, 1),

Otherwise we have (T ®,1"),=(t & ,. T'),, so overall T &,
T<T QT

6. Obvious, since the components of T D5 t' are obtained

by forming the meet.

This suggests an improved implementation of Algorithm
2, shown 1n two parts as Algorithm 3 and Algorithm 4, which
straightforwardly exploit the above properties to avoid per-
forming useless consensus operations whose result would be
discarded by the max, operator anyway. In the latter, we
make use of an operation Part(v, 1) which returns the
equivalence partition 1index 1 belongs to 1n TTC v.

To show that these improvements make our type inference
algorithm feasible 1n practice, we measure 1ts performance
on some typical programs from our intended application
domain. The Datalog programs to be typed arise as an
intermediate representation of programs written 1 a high-
level object-oriented query language named .QL [14, 15],
which are optimised and then compiled to one of several
low-level representations for execution.

We measure the time 1t takes to infer types for the 89
queries 1n the so-called “Full Analysis™ that ships with our
source code analysis tool SemmleCode. These queries pro-
vide statistics and overview data on structural properties of
the analysed code base, compute code metrics, and check for
common mistakes or dubious coding practices.

A type inference for the query being compiled 1s per-
formed at three different points during the optimisation
process, giving a total of 267 time measurements. All times
were measured on a machine running a Java 1.6 virtual
machine under Linux 2.6.28-13 on an Intel Core2 Duo at 2.1
GHz with four gigabytes of RAM, averaging over ten runs,
and for each value discarding the lowest and highest reading.

Of the 267 calls to type inference, 65% finish 1 0.5
seconds or less, 71% take no more than one second, 93% no
more than two, and 1 98% of the cases type inference 1s
done 1n under three seconds. Only two type inferences take
longer than four seconds, at around 4.5 seconds each.

The size of the programs for which types are inferred
varies greatly, with most programs containing between 500
and 1500 subterms, but some programs are significantly
larger at more than 3000 subterms. Interestingly, program
s1ze and type inference time are only very weakly correlated
(p<<0.4), and the correlation between the number of strati-
fication layers (which roughly corresponds to the number of
fixpoint computations to be done) and type inference time 1s
also not convincing (p<0.6).

The low correlation 1s evident in FIG. 6 which shows the
type inference time plotted on the y-axis versus the depth
(1.e., number of layers) of the program on the x-axis. In
particular, the two cases in which type inference takes longer
than four seconds are both of medium size and not among
the deepest either.

This suggests that the asymptotic behaviour of the algo-
rithm 1n terms of input size 1s masked by the strong influence
of implementation details (at least for the kind of programs
we would expect to deal with 1n our applications), and we
can expect significant performance gains from fine tuning
the implementation.

Our experiments also show that saturation, while
extremely expensive 1n theory, 1s quite well-behaved 1n
practice: 1 78% of all cases, no new T'TCs are added during
the first iteration of Algorithm 1, so the typing 1s already
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saturated. In another 17% of all cases we need only one more
iteration, and we almost never (=0.01%) need to do more
than four 1iterations.

Although 1n every individual iteration we potentially have
to take the consensus over every combination of columns,
our heuristics manage to exclude all combinations of more
than one column 1n 94% of all cases, and sometimes (14%)
can even show that no consensus formation 1s needed at all.

Since our type inference algorithm makes heavy use of
BDDs, some statistics about their usage may also be of
interest. We use about 300 BDD vaniables (one for every
type symbol), with most of the BDDs constructed during
type checking being of rather moderate size: the BDD to
represent the type hierarchy (which encodes about 800
constraints automatically derived during translation
from .QL to Datalog) occupies around 4000 nodes, while the
BDDs for individual type propositions never take more than
100 nodes.

While we have anecdotal evidence to show that the
optimisation techmiques we have presented 1n earlier work
[13] benefit greatly from combining them with the richer
type hierarchies our type system supports, we leave the
precise investigation of this matter to future work.

6. Benefits

The present invention handles negated types accurately.
Also, the present invention handles 1inhabitation constraints
(1.e., existentials 1n type programs) precisely.

We achieve pleasing theoretical properties and can sup-
port a rich language of type constraints by sacrificing
polynomial time guarantees, although our experiments show
that this 1s a reasonable tradeoil for our application area.

While the performance of our prototype implementation
1s promising, other implementation approaches certainly
exist and may be worth exploring. Bachmair et al. [4]
develop a decision procedure for monadic first order logic
based on the superposition calculus. Since type programs
can readily be expressed as monadic first order formulae,
their algorithm could be used to decide type containment.
Another possibility would be to use Ackermann’s translation
from monadic first order logic to equality logic [2], and then
employ a decision procedure for this latter logic.

7. Review of High Level Flow Diagrams

FIG. 7 1s a block diagram illustrating how types of
atabase queries are inferred. Type inferencer 701 receives
atabase schema 703 and query 704 and infers types from
efinitions 1n the program by replacing each use of a
atabase relation 1n the program by the types 1n the database
schema, resulting 1n type program 706 as described 1n the
section above entitled “2. Type Programs.” The type infer-
encer lurthermore receives type hierarchy 7035 to check
types 1n the type program for inclusion as described 1n the
section above entitled “4. Containment Checking,” gener-
ating 1information about type inclusion 708. The type infer-
encer also uses the type hierarchy to generate emptiness
information 710 indicating which types 1n the type program
are empty as described 1n the section above entitled “2. Type
Programs.” In one embodiment the inclusion and emptiness
information 1s used by query optimizer 711 to generate an
optimized version of the query that can be run on query
engine 712 to query relational data source 713, as described
in the section above entitled “1. Introduction,” subsection
“Overview.”

FIG. 8 1s a flow chart illustrating inclusion testing for
types represented by sets of type tuple constraints (ITTCs).
To test inclusion of a type represented by a set S1 of TTCs
801 1n a type represented by a set S2 of TTCs 802, set S2 1s
first saturated 803 by adding all prime 1mplicants of all TTCs
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in S2 to the set, vielding a larger set S2' 804, as described 1n
the section above entitled “4. Containment Checking.” All
TTCs 1n S1 are then examined in turn 805, and for every
TTC 807 in S1 1t 1s checked whether there 1s a larger,
covering TTC 1n S2' 808, as described in the section above
entitled “4. Containment Checking,” subsection “Definition
7. If no such larger TTC 1s found 809, the type represented
by S1 1s not mncluded 1 S2. Otherwise the TTC 1s removed
from S1 810 and the next TTC 1s examined. If a covering
TTC 1s found for every TTC 1 S1 806, then the type
represented by S1 1s included in the type represented by S2.

FIG. 9 15 a tlow chart illustrating saturation of sets of type
tuple constraints (1TCs) for inclusion testing. Starting with
a given set S of TTCs 901, every pair of TTCs from S 1s
considered 1n turn 902, and a consensus of the two TTCs 1s
computed 903, as described 1n the section above entitled *“3.
Representing Type Programs,” subsection “Definition 4. If
S does not contain a TTC larger than the consensus 904, it
1s added to the set S 905. This 1s repeated until all pairs of
TTCs have been considered 907.

8. Conclusion

We have presented a type inference procedure that assigns
an upper envelope to each Datalog program. That envelope
1s itself a Datalog program that makes calls to monadic
extensionals only. The algorithm 1s able to cope with com-
plex type hierarchies, which may include statements of
implication, equivalence and disjointness of entity types.

The type 1inference procedure 1s itself an extremely simple
syntactic mapping. The hard work goes into an eflicient
method of checking containment between type programs.
We achieve this via a novel adaption of Quine’s algorithm
for the computation of the prime mmplicants of a logical
formula. Generalising from logical formulae to type pro-
grams, we bring types into a saturated form on which
containment 1s easily checked.

As shown by our experiments, the algorithm for inferring
a type and saturating 1t works well on practical examples.
While 1t may still exhibit exponential behaviour in the worst
case, such extreme cases do not seem to arise in our
application area. Thus our algorithm 1s a marked improve-
ment over well-known simpler constructions that always
require an exponential overhead.

Many avenues for further work remain. Perhaps the most
challenging of these 1s the production of good error mes-
sages when type errors are identified: this requires printing
the Boolean formulae represented via TTCs 1n legible form.
We have made some progress on this, employing Coudert et
al.’s restrict operator on BDDs, which 1s another application
of prime 1mplicants [12].

There 1s also substantial further engineering work to be
done 1n the implementation. Careful 1mspection of the sta-
tistics show that our use of BDDs 1s very much unlike their
use 1n typical model checking applications [26], and we
believe this could be exploited i the use of a specialised
BDD package. For now we are using JavaBDD [25], which
1s a literal translation of a C-based BDD package into Java.

Finally, we will need to investigate how to best exploit the
advanced features oflered by our type system. In particular,
much experience remains to be gained in how to make 1t
casy and natural for the programmer to specily the con-
straints making up the type hierarchy, and which kinds of
constraints benefit which kinds of programs.

9. Non-Limiting Hardware Examples

Overall, the present invention can be realized in hardware
or a combination of hardware and software. The processing
system according to a preferred embodiment of the present
invention can be realized 1 a centralized fashion 1n one
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computer system, or 1n a distributed fashion where different
clements are spread across several interconnected computer
systems and 1mage acquisition sub-systems. Any kind of
computer system—or other apparatus adapted for carrying
out the methods described herein—is suited. A typical
combination of hardware and soitware 1s a general-purpose
computer system with a computer program that, when
loaded and executed, controls the computer system such that
it carries out the methods described herein.

An embodiment of the processing portion of the present
invention can also be embedded in a computer program
product, which comprises all the features enabling the
implementation of the methods described herein, and
which—when loaded 1n a computer system—is able to carry
out these methods. Computer program means or computer
programs 1n the present context mean any expression, 1n any
language, code or notation, of a set of 1nstructions intended
to cause a system having an information processing capa-
bility to perform a particular function either directly or after
cither or both of the following a) conversion to another
language, code or, notation; and b) reproduction 1n a difler-
ent material form.

FIG. 10 1s a block diagram of a computer system usetul
for implementing the software steps of the present invention.
Computer system 1000 includes a display interface 1008
that forwards graphics, text, and other data from the com-
munication infrastructure 1002 (or from a frame bufler not
shown) for display on the display umt 1010. Computer
system 1000 also includes a main memory 1006, preferably
random access memory (RAM), and optionally includes a
secondary memory 1012. The secondary memory 1012
includes, for example, a hard disk drive 1014 and/or a
removable storage drive 1016, representing a floppy disk
drive, a magnetic tape drive, an optical disk drive, etc. The
removable storage drive 1016 reads from and/or writes to a
removable storage unit 1018 in a manner well known to
those having ordinary skill in the art. Removable storage
unit 1018, represents a CD, DVD, magnetic tape, optical
disk, etc. which 1s read by and written to by removable
storage drive 1016. As will be appreciated, the removable
storage unit 1018 includes a computer usable storage
medium having stored therein computer software and/or
data. The terms “computer program medium,” “computer
usable medium,” and “computer readable medium™ are used
to generally refer to media such as main memory 1006 and
secondary memory 1012, removable storage drive 1016, a
hard disk installed in hard disk drive 1014, and signals.

Computer system 1000 also optionally includes a com-
munications interface 1024. Communications interface 1024
allows software and data to be transferred between computer
system 1000 and external devices. Examples of communi-
cations interface 1024 include a modem, a network interface
(such as an Fthernet card), a communications port, a PCM-
CIA slot and card, etc. Software and data transierred wvia
communications interface 1024 are in the form of signals
which may be, for example, electronic, electromagnetic,
optical, or other signals capable of being received by com-
munications interface 1024. These signals are provided to
communications interface 1024 via a communications path
(1.e., channel) 1026. This channel 1026 carries signals and 1s
implemented using wire or cable, fiber optics, a phone line,
a cellular phone link, an RF link, and/or other communica-
tions channels.

Although specific embodiments of the invention have
been disclosed, those having ordinary skill in the art waill
understand that changes can be made to the specific embodi-
ments without departing from the spirit and scope of the
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invention. The scope of the mvention 1s not to be restricted,
therefore, to the specific embodiments. Furthermore, it 1s
intended that the appended claims cover any and all such
applications, modifications, and embodiments within the
scope of the present invention.
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What 1s claimed 1s:

[1. A computer-implemented method comprising:

accessing a program with one or more queries to a
database that contains relations described by at least
one database schema;

receiving the database schema and at least one entity type
hierarchy for the database; and
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inferring a first type program from definitions in the
program by replacing each use of a database relation 1n
the program by its type 1n the database schema, and the
type 1s at least portion of a second type program,

wherein each of the first type program and the second type
program 1s a derived program using type symbols
without other extensional relation symbols, and each of
the first type program and the second type program do
not contain negation,

wherein the first type program and the second type

program uses monadic extensions;
testing portion of the first type program that has been
inferred for type emptiness and type inclusion; and

providing at least one of error information and optimiza-
tion information regarding the type emptiness and type
inclusion being found for the type.]

[2. The computer-implemented method of claim 1, further
comprising;

in response to type emptiness being found for a portion of

the first type program that has been inferred during

determining of the testing portion of the first type

program, performing at least one of:

removing the a type test;

providing a notification regarding the emptiness found
for the portion of the first type program:;

providing notification on combiming queries by con-
junction without creating empty parts 1n a combined
query.

in response to an empty part ol a query being a conjunc-

tion, finding a smallest set of query parts that has a
conjunction that 1s empty;

in response to a search for a smallest empty part of a

database query that traverses all parts of the database
query, pushing a conjunction of an approximation of
the smallest empty part and a context on top of a stack
of approximations of all contexts where the empty part
1s being used; and

climinating empty query parts to achieve virtual method

resolution in an object-oriented query language.}

[3. The computer-implemented method of claim 1, further
comprising:

in response to type inclusion being found for a portion of

the first type program that has been inferred during

determining of the testing portion of the first type

program, performing at least one of:

removing the a type test; and

providing a noftification regarding the type inclusion
being found for the portion type.]

[4. The computer-implemented method of claim 1, further
comprising:

testing the type program that has been inferred {for

whether a database query 1s contained 1 a given
portion of the type program; and in response to the
database query not being contained in the given por-
tion, performing at least one of:

removing a type test; and

providing a notification regarding the database query not

being contained in the given portion.]

[5. The computer-implemented method of claim 1,
wherein portions of the type program that has been inferred
are represented by a set of type tuple constraints (T'1Cs),
wherein each of the TTCs includes:

a tuple of type propositions;

an equivalence relation between tuple components; and

a set of inhabitation constraints.]
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[6. The computer-implemented method of claim 5, further
comprising:

checking inclusion of a portion of the type program that

has been inferred represented by a first set of TTCs 1nto
another portion of the type program represented by a
second set of TTCs by computing a set of prime
implicants of the second set; and

checking each TTC in the first set and finding a larger
TTC 1n the set of prime 1mplicants of the second set of
TTCs.}

[7. The computer-implemented method of claim 6, further
comprising;

computing the set of prime implicants of the second set of

TTCs by saturating the second set by exhaustively
applying consensus operations to ensure all relevant
TTCs are included.]

[8. The computer-implemented method of claim 7,
wherein the consensus operations are performed by

receiving two TTCs as operands;

receiving a set of indices and equating all columns whose

indices occur 1n the set, and preserving all other equali-
ties and inhabitation constraints of the operands, and
taking disjunctions over columns in the set and con-
junctions over all other columns; and

taking a union of two or more of the equivalence relations

in the operands and a pointwise disjunction of the
inhabitation constraints of the operands.]

[9. The computer-implemented method of claim 8, further
comprising:

reducing a number of consensus operations that need to be

performed during saturation by omitting consensus
operations where a resulting TTC will be covered by
TTCs already present in the set.]

[10. The computer-implemented method of claim 8, fur-
ther comprising:

receiving a logical formula that represents a type hierar-

chy, and representing a component type proposition of
a TTC as a binary decision diagram (BDDs), and
choosing a BDD varniable order by assigning neighbor-
ing indices to type symbols that appear in a same
conjunct of the logical formula that represents the type
hierarchy.]

[11. The computer-implemented method of claim 1,
wherein an approximation 1s used to find erroneous parts of
a database query that will return an empty set of results,
regardless of contents stored in the database.}

[12. The computer-implemented method of claim 2,
wherein the providing notification on combining queries by
conjunction without creating empty parts in a combined
query includes depicting compatible types with similar
pictures in a user interface.]

[13. The computer-implemented method of claim 1,
wherein the one or more queries to the database contain calls
to other query procedures, and an approximation is used to
optimize these called procedures, by eliminating query parts
that will return an empty set of results 1n a context where
they are called, regardless of any contents of the database.]

[14. The computer-implemented method of claim 13,
wherein the context of a procedure 1n a database query 1s
computed by

traversing a call graph of that query, and

keeping a stack of approximations of all contexts where

the procedure 1s being used, and

when entering a procedure in the call graph, pushing a

conjunction of an approximation of a body of that
procedure and a top of the stack onto the stack as a new
context.]
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[15. The computer-implemented method of claim 1,
wherein an approximation 1s used to optimize queries, by
climinating query parts that test whether a value 1s included
in a portion of the first type program, and the approximation
indicates at least one of:

the value will be 1ncluded in this portion of the first type

program regardless of contents stored in the database;
and

the value will not be included 1n the portion of the first
type program. ]
[16. A system comprising:
a memory;
a processor communicatively coupled to the memory; and
a type inferencer communicatively coupled to the
memory and the processor, wherein the type inferencer
1s adapted to:
accessing a program with one or more query operations to
a database that contains relations described by at least
one database schema;
receiving the database schema and at least one entity type
hierarchy for the database; and
inferring a first type program from definitions 1n the
program by replacing each use of a database relation 1n
the program by its type 1n the database schema, and the
type 1s at least portion of a second type program,
wherein each of the first type program and the second type
program 1s a derived program using type symbols
without other extensional relation symbols, and each of
the first type program and the second type program do
not contain negation,
wherein the first type program and the second type
program uses monadic extensions;
testing portion of the first type program that has been
inferred for type emptiness and type inclusion; and
providing at least one of error information and optimiza-
tion information regarding the type emptiness and type
inclusion being found for the type.]
[17. The system of claim 16, wherein the type inferencer
turther adapted to:
in response to type emptiness being found for a portion of
the first type program that has been inferred during
determining of the testing portion of the first type
program, performing at least one of:
removing a type test;
providing a notification regarding the emptiness found
for the portion of the first type program;
providing notification on combimng queries by con-
junction without creating empty parts 1n a combined
query.
in response to an empty part ol a query being a conjunc-
tion, finding a smallest set of query parts that has a
conjunction that 1s empty;
in response to a search for a smallest empty part of a
database query that traverses all parts of the database
query, pushing a conjunction of an approximation of
the smallest empty part and a context on top of a stack
ol approximations of all contexts where the empty part
1s being used; and
climinating empty query parts to achieve virtual method
resolution in an object-oriented query language.}
[18. The system of claim 16, wherein the type inferencer
1s Turther adapted to:
in response to type inclusion being found for a portion of
the first type program that has been inferred during
determining of the testing portion of the first type
program, performing at least one of:

1S
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removing a type test; and

providing a notification regarding the type inclusion being

found for the portion type.]

[19. A non-transitory computer program product, the
computer program product comprising instructions for:

accessing a program with one or more query operations to

a database that contains relations described by at least
one database schema;

receiving the database schema and at least one entity type

hierarchy for the database; and
inferring a first type program from definitions in the
program by replacing each use of a database relation 1n
the program by its type in the database schema, and the
type 1s at least portion of a second type program,

wherein each of the first type program and the second type
program 1s a derived program using type symbols
without other extensional relation symbols, and each of
the first type program and the second type program do
not contain negation,

wherein the first type program and the second type

program uses monadic extensions;
testing portion of the first type program that has been
inferred for type emptiness and type inclusion; and

providing at least one of error information and optimiza-
tion information regarding the type emptiness and type
inclusion being found for the type.]

[20. The non-transitory computer program product of
claim 19, further comprising:

1in response to type emptiness being found for a portion of

the first type program that has been inferred during

determining of the testing portion of the first type

program, performing at least one of:

removing a type test;

providing a notification regarding the emptiness found
for the portion of the first type program:;

providing notification on combining queries by con-
junction without creating empty parts 1n a combined
query,

in response to an empty part of a query being a conjunc-

tion, finding a smallest set of query parts that has a
conjunction that 1s itsellf empty;

in response to a search for a smallest empty part of a

database query that traverses all parts of the database
query, pushing a conjunction of an approximation of
that part and a context on top of a stack; and
climinating empty query parts to achieve virtual method
resolution in an object-oriented query language.}
21. A computer program product, the computer program
product comprising a havdware storage device comprising
instructions to cause a computer system to perform opera-
tions comprising:
obtaining a query program that queries a database
described by a database schema that specifies a column
type for every column of every extensional predicate
that occurs in the query program and also described by
a type hierarchy that is of the form Vx.h(x) in which
h(x) does not contain quantifiers or equations and only
contains a single free variable Xx;

representing the query program by a first type program
having no free relation variables and having no fixpoint
definitions containing intensional rvelation variables,
wherein the column type is at least a portion of a
second type program, whervein each of the first type
program and the second type program is a derived
program, and wherein each of the first type program
and the second type program uses monadic extension-
als, a type program being a program that only makes
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use of type symbols and no other extensional relation
symbols and that only has instances of negation in front
of tvpe symbols that are the names of monadic exten-
sionals;

translating the first type program into a typing, wherein
the typing is a lean set of non-degenerate n-ary type
tuple constraints (I'TCs), each T1C being defined by

(i) a tuple (¢1, . . . tn) of n type propositions ti, a tvpe
proposition being a guantifier-free type program with
no fixpoint definitions and no free rvelation variables
and having precisely one free element variable,

(ii) an equivalence relation over the set of integers
11, ..., n} that defines a partition of the set of integers
11, ..., n}; and

(iii) a set C of inhabitation constraints, each inhabitation
constraint being a type proposition, the inhabitation
constraints modeling existential quantification;

such that the following three requirements ave satisfied
whenever [ and | belong to the same partition under the
equivalence relation.

1=t

C<:t, for all k&{1, . .., n}, and

c<.c' for ¢, c'€C implies c=c’;

testing a first TTC of the typing for type emptiness and
tvpe inclusion; and

providing at least one of error information and optimi-
zation information regarding the type emptiness and
tvpe inclusion being found for a type program repre-
sented by the T1C.

22. The computer program product of claim 21, wherein:

the type propositions of the T1Cs do not contain negation.

23. The computer program product of claim 21, wherein:

the type hiervarchy includes one ov move of (i) a statement
of implication between entity tvpes, (ii) a statement of
equivalence of entity types, or (iii) a statement of
disjointness of entity types.

24. The computer program product of claim 21, wherein:

translating the first type program into the typing com-
prises eliminating all non-maximal and degenerate
T1Cs from the set of T1Cs.

25. The computer program product of claim 21, further

comprising instructions to cause the computer system to

perform the operations of:

representing the T1Cs in the typing by encoding the

component type propositions of the TICs as binary
decision diagrams.

26. The computer program product of claim 21, further

comprising instructions to cause the computer system to

perform the operations of:

building a TTC|t|| from a pre-TTC, the pre-TTC being a
structure T=(t,, . . ., t, IplC), in which t,, ..., t, are a
tuple of type propositions, p is a vrelation over
11,...,n}, Cis aset of inhabitation constraints, which
are type propositions, and T does not satisfy at least one
of the three requivements, by setting:

s Imin(CU{t, . ..t 1)

Fell-=dlz, I - -

where
2], =/\tli~j}, where i~ j states that i and j belong to
the same partition in g, and
p is a smallest equivalence relation containing the rela-
tion p.
27. The computer program product of claim 21, wherein
the query program is a first query program and the typing is
a first typing, the operations further comprising:
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obtaining a second query program that queries a second
database that is described by the database schema and
the type hievarchy;

representing the second query program by a third type

program having no free velation variables and having 5
no fixpoint definitions containing intensional relation
variables;

translating the third type program into a second typing,

and

performing a containment check on the first typing and 10

the second typing to determine whether the first type
program contains the thivd type program.

28. The computer program product of claim 27, wherein
the data in the second database is different from the data in
the first database. 15

29. The computer program product of claim 21, further
COMprising:

performing type specialization and type evasure using the

tvping to optimize the query program.

30. The computer program product of claim 21, wherein 20
the first type program is without fixpoint definitions and has
intentional relation variables v, . . . , v, and element
variables x,, . . ., x , and wherein translating the first type
program into a typing comprises performing vecursion on

the structure of the first type program to translate the first 25
tvpe program, denoted @, to a mapping (¢): Diyping”—Tvp-
ing, the mapping being a mapping from a tuple of m typings

T, wherein each of the m typings is associated with a

respective one of the m velation variablesv,, ..., v andthe
recursion is defined by: 30
(1) (TY=0
Gz (=T ., YLD}
35
Cu)) (T)={17.)
Coue) ) (TH={177C, )
() (T)=T, A0
A (TH=A ) (TH7 o) (T)
Cpvmd (T)=Cpd (T (T)
(3,2 (T)=3,((y? (T)) *
wherein
the i-th existential of a TTC ©=(¢,, . . ., t IplC) is
defined as A (v):=(,, ..., ¢t _, t. ., ..., t|p\lmin
(CULED) 50
where p'is the vestriction of pto {1,. . . ,i-1,i+1, ... ,n}
and

the i-th existential of a typing T is defined pointwise as
A(7) := max, {3.(v)ItET},
where the operation max, on a set of T1Cs removes all 55
non-maximal and degenevate T1Cs from the set of
1TT1Cs;
binary meets and joins of two typings T and 1" are
defined pointwise and vespectively as T
NT"=max ({t/\t'Itelt'eT'}) and 1" 60
\/T"=max  (TUT");
[T""“Y is a greatest element under the order <: on a
typing, and {T""“. _ ) is a second TTC resulting from
a first TTC {T""“} by replacing the j-th type proposi-
tion in the tuple of type propositions of the first TTC by 65
u in the second TTC and adding u to the inhabitation
constraints of the second TTC; and

30

T ..., NN[{ij}]D} denotes a set of TTCs, which is a
tvping, with a single TTC in the set, which single TTC
has every component of its tuple of type propositions is
equal to 1, which single TTC has as its partition the
smallest equivalence velation in which i and ] are
equivalent, and which single T1C is trivial;

wherein the overall typing is the least fixpoint of the

resulting typings T after the recursion is complete.

31. A system comprising:

a computer system comprising one ov more computers
each having a memory and a processor communica-
tively coupled to the memory; and

a type infervencer computer program loaded in the com-
puter system, wherein the type inferencer is adapted to
cause the computer system to perform the operations
of :

obtaining a query program that quervies a database
described by a database schema that specifies a column
tvpe for every column of every extensional predicate
that occurs in the query program and also described by
a type hierarchy that is of the form ¥x.h(x) in which
h(x) does not contain quantifiers or equations and only
contains a single free variable x;

representing the query program by a first type program
having no free rvelation variables and having no fixpoint
definitions containing intensional rvelation variables,
wherein the column type is at least a portion of a
second type program, whervein each of the first type
program and the second type program is a derived
program, and wherein each of the first type program
and the second type program uses monadic extension-
als, a type program being a program that only makes
use of type symbols and no other extensional relation
symbols and that only has instances of negation in front
of tvpe symbols that ave the names of monadic exten-
sionals;

translating the first type program into a typing, wherein
the typing is a lean set of non-degenerate n-ary type
tuple constraints (I'TCs), each TTC being defined by

(i) a tuple (¢t1, . . . tn) of n type propositions ti, a tvpe
proposition being a quantifier-free type program with
no fixpoint definitions and no free rvelation variables
and having precisely one free element variable,

(ii) an equivalence relation over the set of integers
11, ..., n} that defines a partition of the set of integers
11, ..., n}, and

(iii) a set C of inhabitation constraints, each inhabitation
constraint being a type proposition, the inhabitation
constraints modeling existential quantification;

such that the following three requirements ave satisfied
whenever i and j belong to the same partition under the
equivalence relation.

t=t,

C<:t, for all k&{1, ..., n}, and

c<:c' for ¢, c'€C implies c=c’;

testing a first T1C of the typing for type emptiness and
tvpe inclusion; and

providing at least one of error information and optimi-

zation information vegarding the type emptiness and
tvpe inclusion being found for a tvpe program repre-
sented by the TIC.

32. The system of claim 31, wherein:

the type propositions of the T1Cs do not contain negation.

33. The system of claim 31, wherein:

the type hievarchy includes one ov move of (i) a statement
of implication between entity types, (ii) a statement of
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equivalence of entity tvpes, or (iii) a statement of

disjointness of entity types.

34. The system of claim 31, wherein:

translating the first type program into the typing com-
prises eliminating all non-maximal and degenerate

TTCs from the set of TTCs.
35. The system of claim 31, the operations further com-

prising:
representing the T1Cs in the typing by encoding the
component type propositions of the T1TCs as binary
decision diagrams.
36. The system of claim 31, the operations further com-
prising:
building a TTC |[t|| from a pre-TTC, the pre-TTC being a
structure t=(,, . . ., t Ip|C), in which t,, ..., t, are a
tuple of tvpe propositions, p is a relation over
11,...,n}, Cis aset of inhabitation constraints, which
are type propositions, and T does not satisfy at least one
of the three vequirements, by setting:

it/ Imin(CULt;, ..., 1))

rell-=Cle; s - -

where
[, =/ \tli~f}, where i~_j states that i and j belong to
the same partition in q, and p is a smallest equivalence
relation containing the velation p.

37. The system of claim 31, wherein the guery program is
a first query program and the typing is a first typing, the
operations further comprising:

obtaining a second query program that gueries a second

database that is described by the database schema and
the type hievarchy;

representing the second query program by a third type

program having no free velation variables and having
no fixpoint definitions containing intensional velation
variables;

translating the thivd type program into a second typing;

and

performing a containment check on the first typing and

the second typing to determine whether the first type
program contains the thivd type program.

38. The system of claim 37, wherein the data in the second
database is different from the data in the first database.

39. The system of claim 31, the operations further com-
prising:

performing type specialization and type evasure using the

typing to optimize the query program.

40. The system of claim 31, wherein the first type program
is without fixpoint definitions and has intentional relation
variables v,, . .., v and element variables x., . .. , x,, and
wherein translating the first type program into a typing
comprises performing vecursion on the structure of the first
tvpe program to translate the first type program, denoted ,

to a mapping (@): Iyping”—1yping, the mapping being a
mapping from a tuple of m typings T, wherein each of the

m typings is associated with a respective one of the m
relation variablesv,, . .., ¥, and the recursion is defined by

(1) (T)=0

(x=x)(T)={T ... T{Lilh}

Cue)? (TH={T77C,._,)
(u)) (TH={T77C,__ )
( Fi(;)) (T)=T,

/N (TH= ) (TH7 o) (T)
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(v (M=) (THA ) (T)
(3,42 (T)=3, ) (T))

wherein

the i-th existential of a TTC ©=(¢,, . .., t IplC) is

defined as A(v):=(t, . . . t_,.t,. , ... t|p'lminr
(CU )
where p' is the restriction of pto {1, . . . i-1,i+1, ..., n}

and
the i-th existential of a typing T is defined pointwise as
4.(1):=max {3.(T)ItET},
where the operation max, on a set of T1Cs rvemoves all
non-maximal and degenerate T1Cs from the set of
T1Cs;
binary meets and joins of two typings T and 1" are
defined pointwise and vrvespectively as T
ANT"=max ({t/\t'Itelt'ET'}) and T
\/T"=max  (TUT";
[T is a greatest element under the order <: on a
typing, and {T"7% _ } is a second TTC resulting from
a first TTC {T""“} by replacing the j-th type proposi-
tion in the tuple of type propositions of the first TTC by
u in the second TTC and adding u to the inhabitation
constraints of the second TTC; and
0T ... DD} denotes a set of TTCs, which is a
tvping, with a single TTC in the set, which single TTC
has every component of its tuple of type propositions is
equal to T, which single TTC has as its partition the
smallest equivalence velation in which i and j are
equivalent, and which single TTC is trivial;
wherein the overall typing is the least fixpoint of the

resulting typings T after the recursion is completed

41. A computer-implemented method comprising:

obtaining a query program that queries a database
described by a database schema that specifies a column
tvpe for every column of every extensional predicate
that occurs in the query program and also described by
a type hierarchy that is of the form Vx.h(x) in which
h(x) does not contain quantifiers or equations and only
contains a single free variable x;

representing the quervy program by a first type program
having no free rvelation variables and having no fixpoint
definitions containing intensional rvelation variables,
wherein the column type is at least a portion of a
second type program, wherein each of the first type
program and the second type program is a derived
program, and wherein each of the first type program
and the second type program uses monadic extension-
als, a type program being a program that only makes
use of type symbols and no other extensional relation
symbols and that only has instances of negation in front
of tvpe symbols that ave the names of monadic exten-
sionals;

translating the first type program into a typing, wherein
the typing is a lean set of non-degenerate n-ary type
tuple constraints (I'TCs), each TTC being defined by

(i) a tuple (¢t1, . . . tn) of n type propositions ti, a tvpe
proposition being a quantifier-free type program with
no fixpoint definitions and no free rvelation variables
and having precisely one free element variable,

(ii) an equivalence relation over the set of integers
11, ..., n} that defines a partition of the set of integers
11, ..., n}, and

(iii) a set C of inhabitation constraints, each inhabitation
constraint being a type proposition, the inhabitation
constraints modeling existential quantification;
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such that the following three rvequirements arve satisfied
whenever [ and | belong to the same partition under the
equivalence relation:

t,=t,

C<:t, for all kE{]J C. H}J and 5

c<:c’ for ¢, c'€C implies c=c’;

testing a first TTC of the typing for type emptiness and
tvpe inclusion; and

providing at least one of ervor information and optimi-
zation information vegarding the type emptiness and 10

tvpe inclusion being found for a tvpe program repre-

sented by the TTC.

42. The method of claim 41, wherein:

the type propositions of the T1Cs do not contain negation.

43. The method of claim 41, wherein: 15

the type hievarchy includes one or movre of (i) a statement

of implication between entity types, (ii) a statement of
equivalence of entity types, or (iii) a statement of
disjointness of entity types.

44. The method of claim 41, wherein: 20

translating the first type program into the typing com-

prises eliminating all non-maximal and degenerate
TTCs from the set of T1Cs.
45. The method of claim 41, further comprising:
representing the T1Cs in the typing by encoding the 25
component type propositions of the TICs as binary
decision diagrams.

46. The method of claim 41, further comprising:

building a TTC |[t|| from a pre-TTC, the pre-TTC being a

structure v=(t,, . . ., t, Ip|C), in which t,, ..., t are a 30

tuple of type propositions, p is a relation over

11,...,n}, Cis aset of inhabitation constraints, which

are type propositions, and T does not satisfy at least one

of the three vequirements, by setting:

ell==dlie; 15, - - - SltalpPImin(CULty, . ..t ) >
where

[, =\t li~f}, where i~_j states that i and j belong to

the same partition in q, and p is a smallest equivalence
relation containing the velation p. 40

47. The method of claim 41, wherein the query program
is a first query program and the typing is a first typing, the
method further comprising:

obtaining a second query program that queries a second

database that is described by the database schema and 45
the type hievarchy;

representing the second query program by a third type

program having no free velation variables and having

no fixpoint definitions containing intensional relation

variables; 50
translating the third type program into a second typing;

and

performing a containment check on the first typing and

the second typing to determine whether the first type
program contains the thivd type program. 55

48. The method of claim 47, wherein the data in the
second database is different from the data in the first
database.

49. The method of claim 41, further comprising:

performing type specialization and type evasure using the 60

tvping to optimize the query program.

50. The method of claim 41, wherein the first type pro-
gram Is without fixpoint definitions and has intentional
relation variables v, . . . , v, and element variables
X; ..., X, and wherein translating the first type program 65
into a typing comprises performing rvecursion on the struc-
ture of the first type program to translate the first type

34
program, denoted @, to a mapping (**): Toping”— Bping,

the mapping being a mapping from a tuple of m typings T,
wherein each of the m typings is associated with a respective
one of the m relation variables v, . .., v, and the recursion

is defined by:
(1) (TH=p

(x=x)(T)={(T ..., T}

Cue)) (TH={177C, _,}
Cou@) ) (TH={177C,.__)
(nGON(T)=1,

Cp g ? (TH=C? (T o) (T
Cypvad (T =Cpd (T ) (T)

(3,92 (T)=3, ) (T

wherein
the i-th existential of a TTC ©=(¢,, . .., t IplC) is
defined as A.(v).=(t, . .. t_,t,., ... .t Ip'| min
(CUL)
where p' is the vestriction of pto {1, ..., i-1,i+l, ...,
n} and

the i-th existential of a typing 1T'is defined pointwise as
4.(7):=max {3d.(v)ItET},
where the operation max, on a set of T1Cs removes all
non-maximal and degenevate T1Cs from the set of
1T1Cs;
binary meets and joins of two typings T and T’ are
defined pointwise and vrvespectively as T
NT"=max ({t/\t'It€lt'eT’}) and T
\/T"=max  (TUT"),
[T") is a greatest element under the order <: on a
tvping, and {T""¢._ Y is a second TTC resulting from
a first TTC {T""“} by replacing the j-th type proposi-
tion in the tuple of type propositions of the first TT1C by
u in the second TTC and adding u to the inhabitation
constraints of the second T1C; and
NT ... D[j]D)}) denotes a set of TTCs, which is a
tvping, with a single TTC in the set, which single TTC
has every component of its tuple of type propositions is
equal to T, which single TTC has as its partition the
smallest equivalence rvelation in which i and | are
equivalent, and which single TTC is trivial;
wherein the overall typing is the least fixpoint of the

resulting typings T after the recursion is completed.
51. A computer program product, the computer program
product comprising a havdware storage device comprising
instructions to cause a computer system to perform opera-
tions comprising.
obtaining a query program that queries a database
described by a database schema that specifies a column
type for every column of every extensional predicate
that occurs in the query program and also described by
a type hierarchy that is of the form Vx.h(x) in which
h(x) does not contain quantifiers or equations and only
contains a single free variable x;
representing the query program by a first type program
having no free relation variables and having no fixpoint
definitions containing intensional rvelation variables,
wherein the column type is at least a portion of a
second type program, whervein each of the first type
program and the second type program is a derived
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program, and wherein each of the first tvpe program
and the second type program uses monadic extension-
als, a type program being a program that only makes
use of type symbols and no other extensional relation
symbols, and wherein the first type program and the
second type program do not contain negation;

translating the first type program into a typing, wherein
the typing is a lean set of non-degenerate n-ary type

tuple constraints (I'lTCs), each TTC being defined by

(i) a tuple (tI, . . . tn) of n type propositions ti, a type
proposition being a quantifier-free type program with
no fixpoint definitions and no free relation variables
and having precisely one free element variable,

(ii) an equivalence velation over the set of integers
11,..., n} that defines a partition of the set of integers
11, ..., n}, and

(iii) a set C of inhabitation constraints, each inhabitation
constraint being a type proposition, the inhabitation
constraints modeling existential quantification;

such that the following three rvequirements arve satisfied
whenever [ and | belong to the same partition under the
equivalence relation:

t,=t,

C<:t, forall k&{1, . .., n}, and

c<:c’ for ¢, c'€C implies c=c’;

testing a first TTC of the typing for type emptiness and
tvpe inclusion; and

providing at least one of ervor information and optimi-
zation information vegarding the type emptiness and
tvpe inclusion being found for a tvpe program repre-
sented by the T1C.

52. A system comprising:

a compiter system cOmprising one ov morve computers
each having a memory and a processor communica-
tively coupled to the memory; and

a type inferencer computer program loaded in the com-
puter system, wherein the type inferencer is adapted to
cause the computer system perform the operations of.

obtaining a query program that queries a database
described by a database schema that specifies a column
tvpe for every column of every extensional predicate
that occurs in the query program and also described by
a type hierarchy that is of the form ¥ x.h(x) in which
h(x) does not contain quantifiers or equations and only
contains a single free variable x;

vepresenting the query program by a first tyvpe program
having no free rvelation variables and having no fixpoint
definitions containing intensional rvelation variables,
wherein the column type is at least a portion of a
second type program, whervein each of the first type
program and the second type program is a derived
program, and wherein each of the first type program
and the second type program uses monadic extension-
als, a type program being a program that only makes
use of type symbols and no other extensional relation
symbols, and wherein the first type program and the
second type program do not contain negation;

translating the first type program into a typing, wherein
the typing is a lean set of non-degenerate n-ary type

tuple constraints (11Cs), each TTC being defined by

(i) a tuple (¢, . . . tn) of n type propositions ti, a type
proposition being a guantifier-free type program with
no fixpoint definitions and no free rvelation variables
and having precisely one free element variable,
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(ii) an equivalence relation over the set of integers
11, ..., n} that defines a partition of the set of integers
11, ..., n}, and

(iii) a set C of inhabitation constraints, each inhabitation
constraint being a type proposition, the inhabitation
constraints modeling existential gquantification;

such that the following three requivements are satisfied
whenever i and j belong to the same partition under the
equivalence relation.:

t=t,

C<:t, for all k&{1, ..., n}, and

c<:c' for ¢, c'€C implies c=c’;

testing a first TTC of the typing for type emptiness and
tvpe inclusion; and

providing at least one of error information and optimi-
zation information vegarding the type emptiness and

tvpe inclusion being found for a tvpe program repre-
sented by the T1C.

53. A computer-implemented method comprising:

obtaining a query program that queries a database
described by a database schema that specifies a column
type for every column of every extensional predicate
that occurs in the query program and also described by
a type hierarchy that is of the form Vx.h(x) in which
h(x) does not contain quantifiers or equations and only
contains a single free variable x;

representing the query program by a first type program
having no free relation variables and having no fixpoint
definitions containing intensional rvelation variables,
wherein the column type is at least a portion of a
second type program, whervein each of the first type
program and the second type program is a derived
program, and wherein each of the first type program
and the second type program uses monadic extension-
als, a type program being a program that only makes
use of type symbols and no other extensional relation
symbols, and wherein the first type program and the
second type program do not contain negation;

translating the first type program into a typing, wherein
the typing is a lean set of non-degenerate n-ary type
tuple constraints (I'1TCs), each TTC being defined by

(i) a tuple (¢, . . . tn) of n type propositions ti, a type
proposition being a quantifier-free type program with
no fixpoint definitions and no free rvelation variables
and having precisely one free element variable,

(ii) an equivalence relation over the set of integers
Y1, ..., n} that defines a partition of the set of integers
11, ..., n}, and

(iii) a set C of inhabitation constraints, each inhabitation
constraint being a type proposition, the inhabitation
constraints modeling existential quantification;

such that the following three requivements are satisfied
whenever i and j belong to the same partition under the
equivalence relation:

t=t,

C<:t, for all k&{1, . .., n}, and

c<.c' for ¢, c'€C implies c=c’;

testing a first TTC of the typing for type emptiness and
tvpe inclusion; and

providing at least one of error information and optimi-
zation information vegarding the type emptiness and

tvpe inclusion being found for a type program repre-
sented by the T1C.
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