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FIG. 3
AMENDED
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FIG. 4
AMENDED
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FIG. 5
AMENDED
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FIG. 6
AMENDED

Algorithm 4

Input: set of samples in pixel 7, m.,i ﬁi d&mp?m 11 negnborhood

AL color v and feature welghts 3, and previons rﬂmﬁﬁ-ﬁ colors
¢
Output: filtered color of the samples ¢

b D using the Wl terms from hine 14

Lo
. _,_g._‘g

¥ fier the colors of somples in pixel & using bitateral hlier ¥/
4 i all samples ¢ m 7 do
5. ﬁ‘:‘; e, w e U
6. for all sanmles j i A do
7 {L ii. nlate *s*w W ﬁi‘; E:e; 16 wsing ey and 3
‘{

&

S S S T %
4 W — 1 ~§~ W
. ead oy

J' -f

e ol fw

12 el foy

aelavess issues %*é‘ i HEIR */
13 i ompute mean my and std deve oy of iltered colors
14: for all samples 2 in P deo |
15:  for color chann a:i ,5"?*‘: = § m 3 do
16 if (), — m5 . } > g, then

2
%
o'
’*'E‘.""
s
pw
f.m
fﬂ
s

I8 end ﬂ
18 £48 i foar
20: end for

21 return fltered color of the samples ¢©



US RE48.,083 E

Sheet 7 of 7

Jul. 7, 2020

U.S. Patent

9L/

aoelaU|

uonesIuUNWWo?

00L

71/ Hun
abelols

a|geAoWaY

¢l L Hun Xsig pJeH

01/ Aowsiy Alepuodss

48)A
aJnjonJiselu)
UoIe2IuUNWWOo)

¢0/
soBI9)U|

(O/1) Aejdsi

L Dl

80/
AJOWB

ulen

904
10SS820.d




US RE48,083 E

1

SYSTEM AND METHODS FOR RANDOM
PARAMETER FILTERING

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
Grant No. 0845396 awarded by the National Science Foun-
dation. The government has certain rights in the invention.

This application claims the benefit of the following: U.S.

Provisional Patent Application No. 61/433,361 filed Jan. 17,
2011, U.S. Provisional Patent Application No. 61/464,422
filed Mar. 4, 2011, and U.S. Provisional Patent Application
No. 61/477,702 filed Mar. 21, 2011.

FIELD OF THE INVENTION

The nvention relates generally to computer graphics.
More particularly, the invention relates to a system and
methods for image rendering in and by digital computing,
systems, such as computer graphics systems and methods
for motion pictures and other applications.

BACKGROUND OF THE INVENTION

High-end film applications require the synthesis of high-
quality 1magery that 1s often photorealistic or matches a
desired artistic style. One approach for synthesizing high-
quality imagery 1s known as Monte Carlo rendering, which
simulates the physical process of how light flows through
the scene and exposes a piece of film 1n the camera. Monte
Carlo rendering 1s advantageous since it 1s physically cor-
rect, 1.e., 1t correctly simulates the physics of how light
bounces around the walls and reflects ofl the surfaces like it
does 1n the real world. Therefore to make a scene look
realistic, all that 1s needed 1s light sources positioned 1n the
proper places when building the computer model of the
scene. Monte Carlo rendering produces a beautiful image
that looks realistic because 1t has correctly simulated how
light bounces around in the scene.

Although Monte Carlo rendering can produce beautitul,
photorealistic 1mages, a disadvantage 1s that 1t usually takes
a long time—up to a day per image—to produce high-
quality results which make 1t unacceptable for real-world
production environments such as computer-generated film
production. Runming the Monte Carlo rendering algorithm
for just a few minutes by using only a small number of
samples per pixel results 1n an 1mage that 1s very noisy and
unusable for high-end film applications. For example, for a
high resolution frame like those required 1n the movies could
take more than a day per frame to calculate the final image.
Considering a 2-hour digital movie at 24 frames per second
that has 172,800 individual image frames, it would take 473
years to generate all the frames for a movie using Monte
Carlo rendering. Movies are iterative creative processes, so
shots often have to be done over and over, and since the
production schedule 1s usually around a year, this technol-
ogy 1s simply not feasible for feature film production.
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Therefore, Monte Carlo rendering 1s too time-consuming
and diflicult to incorporate 1mnto high-end film applications.

Although Monte Carle rendered scenes may look good
from any angle, doing something as simple as moving the
camera or moving an object on a virtual set would require
hours of manual labor to ensure the lighting 1s correct.
Monte Carlo rendering systems can produce beautitul, pho-
torealistic 1mages by simulating light transport through a
series ol multidimensional integrals at every pixel of the
image: integration of the radiance over the aperture of the
camera, over the area light sources of the scene, over the
time the shutter 1s open, and even over the pixel for
antialiasing. Monte Carlo renderers estimate these integrals
by taking many point samples of the scene function—
functional representation of the ray-tracing system given a
specific scene. This sampling process mvolves tracing rays
with sets of random parameters that correspond to the
dimensions of integration, e.g., the moment 1n time of the
ray for motion blur, the position of the ray on the aperture
of the camera for depth-oi-field, and so on. In path-tracing,
the Monte Carlo system integrates over randomly selected
paths from the camera’s 1mage plane through the scene in
order to compute full global i1llumination effects.

If the scene function i1s evaluated at enough of these
multidimensional samples, the Monte Carlo rendering sys-
tem will converge to the actual value of the integral, result-
ing 1n a physically correct image. Unfortunately, the vari-
ance of the estimate of the integral decreases with the
number of samples, so a large number of samples are needed
to get a noise-free result. Thus, although a very noisy
approximation of the final 1image can be obtained in a few
minutes, 1t takes a long time—as much as a day per
image—to get a result that 1s acceptable for high-end
rendering applications. This limits the use of Monte Carlo
rendering systems in modern digital film production.

One way to address these problems i1s to apply a noise
reduction filter to the noisy image. However, the fundamen-
tal problem 1s that filters cannot easily determine what 1s
unwanted noise (introduced by the Monte Carlo integration
process) and what 1s valid scene content, since scene content
can oiten have a noisy appearance i and of itself.

Bilateral filters can be applied to preserve edges in the
image by blending samples using weights computed from
the differences in position as well as sample value, thereby
avoiding blending samples together whose values differ
greatly. Unfortunately, bilateral filters work poorly for {il-
tering general Monte Carlo noise. As an example, a depth-
of-field scene including three quads of noisy textures, with
only the closest quad 1n focus, the Monte Carlo integration
process produces noise in the blurred regions because rays
from a pixel 1n these areas hit different parts of the quads and
therefore have widely varying colors when rendered at 8
samples/pixel. A bilateral filter that uses the sample color to
preserve the texture detail in the in-focus quad would also
preserve the depth-of-field noise, because, 1 this example,
the color vaniations for both are very similar explaining why
previous methods that use scene features for bilateral filter-
ing do not work for general Monte Carlo eflects. Noise has
always been a problem associated with Monte Carlo
approaches of 1image rendering.

Attempts to solve the noise problem associated with
Monte Carlo rendering include filtering Monte Carlo noise
and reducing the source of Monte Carlo noise. Nonlinear
filters have been developed to filter Monte Carlo noise such
as alpha-trnmmed filters (which discard statistical outliers
and average the remaining samples). One proposed nonlin-
car {ilter spreads out the contribution of “noisy” samples to
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smooth out the signal. The noisy samples are identified by
finding pixels where the variance 1s still above a threshold
alter a certain amount of time. Another proposed attempt to
filter Monte Carlo noise includes filtering Monte Carlo
renderings by filtering the low-frequency indirect illumina-
tion separately from the rest of the image. Filters based on
anisotropic diffusion have also been proposed to filter Monte
Carlo noise by preserving details in the 1image using a map
of 1image coherence with color, depth, and normal 1nforma-
tion.

In addition, a modified bilateral filter has been proposed
to compare the range values of a Gaussian-filtered version of
the 1mage. Yet filtering global i1llumination has also been
proposed using a geometry-based discontinuity buffer to
adjust a filter. More recently, the edge-avoiding A-Trous
filter has been proposed that incorporates a wavelet formu-
lation mto the bilateral filter including adding additional
information such as normal and world position to help
identily edges 1n the scene. Overall, the problem with these
approaches to filtering Monte Carlo noise 1s that scene
information such as normals and world positions can be
corrupted by Monte Carlo noise in eflects such as depth-oi-
ficld and motion blur, so filters that rely on variations 1n
these values to preserve scene detail cannot denoise these
kinds of scenes. This 1s why these approaches have all
focused on denoising irradiance or other forms of global
illumination, where the geometry scene information at each
sample 1s unaflected by the random parameters. What 1s
needed 1s an approach to reduce Monte Carlo noise that can
handle general Monte Carlo effects with the same frame-
work.

The source of the noise in Monte Carlo rendering has also
been studied 1n order to develop algorithms to mitigate the
problem. For example, 1t has been studied how to extend
non-uniform sampling patterns from 2D to the number of
dimensions of the random parameters 1n order to improve
the quality of the final image. Other attempts to reduce the
source of Monte Carlo noise mtroduced new Monte Carlo-
based rendering algorithms with lower variance, such as
irradiance caching, photon mapping, and multidimensional
light cuts. Other attempts reduced the noise by fitting a
smooth basis to the noisy data. Multidimensional sampling
and the reconstruction problem has also been studied with
respect to the source of Monte Carlo noise. A multidimen-
sional adaptive sampling algorithm has been proposed,
which adaptively samples the space 1n all parameter dimen-
sions and can handle a wide range of Monte Carlo eflects,
but unfortunately suflers from the curse of dimensionality as
the number of parameters grows.

Another general method 1s known as adaptive wavelet
rendering, which positions samples based on the variance of
a wavelet basis’s scale coeflicients and reconstructs the final
image using a wavelet approximation. This smooths noisy
arcas and preserves detail, although 1t produces wavelet
artifacts when the sampling rate 1s low. Adaptive wavelet
rendering claims to distinguish between the two sources of
image-space variance—scene leatures and Monte Carlo
noise—using the wavelet coellicients. However, the pro-
posed method would not work for depth-of-field scenes
since 1n 1mage space the Monte Carlo noise 1s similar to the
noisy texture detail.

Other attempts to reduce the source of Monte Carlo noise
uses transform domain analysis to optimize the adaptive
placement of samples for specific Monte Carlo effects. For
example, the Fourier domain has been used to efliciently
render depth-of-field effects, while frequency-space analysis
has been leveraged to develop a sheared filter and sampling
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method for motion blur. However, these attempts cannot be
applied to various effects. Recently, compressed sensing has

been used to reconstruct scene signal assuming that it 1s
sparse 1n a transiform domain. This method 1s not an adap-
tive-sampling algorithm, but a post-process reconstruction.
Unfortunately, compressed sensing methods still need a
considerable number of samples to produce good results.
Information theory has also been applied to improve ray
tracing using adaptive methods, where the entropy of the
color or geometry 1s used to determine the rendering quality
ol a part of the image.

What 1s needed 1s a rendering approach that overcomes
the deficiencies of the prior art. More particularly, what 1s
needed 1s a rendering approach that removes noise and
produces a high quality image in short period of time such
as a few minutes. The invention satisfies this demand.

SUMMARY OF THE INVENTION

Monte Carlo rendering systems use a set of parameters
(typically random numbers) to determine the position and
direction of light rays leaving the camera and propagating
through the scene. Once a specific ray has been selected by
a set of random parameters, the rendering system then
performs a physical simulation to calculate where the ray
intersects the scene objects. It then computes the world
coordinates of the intersection point, as well as extra scene
features such as surface normals, texture values, depth, etc.
In typical implementations, this information 1s then used by
the rendering system to compute the color for the sample
represented by the ray. These samples are then converted
into pixel values to form the final 1image. When a large set
of rays are taken, an 1image that approximates the desired
image with complete 1llumination 1s computed.

Taking the embodiment of the functional relationship
used 1 filtering methods, the mvention 1s discussed with
respect to Monte Carlo rendering. However, it 1s contem-
plated that it 1s applicable to any rendering methods such as
Markov Chain Monte Carlo. The invention considerably
accelerates Monte Carlo rendering, going from a day per
frame to just a few minutes while maintaining high quality
of the final 1mage. The algorithm according to the invention
1s based on a filtering approach referred to herein as “Ran-
dom Parameter Filtering”. For purposes of this application,
Random Parameter Filtering refers to the process of deter-
mining a relationship between the outputs and the inputs for
a rendering system, more specifically, a relationship between
the values of the sample computed with the Monte Carlo
rendering system and the random parameters used to com-
pute them, and then using this imformation to reduce the
Monte Carlo noise through a filtering process. This allows
for the identification of the samples that represent noise 1n
the 1image, such that a filter can be applied to remove much
of the noise while preserving scene features that may look
like noise but are desirable, such as dirt marks on a wall. The
result 1s an 1mage that looks like 1t was rendered with a much
higher number of samples, but 1s produced very quickly.
Although the 1image 1s not 1dentical to a ground-truth refer-
ence 1mage rendered in many hours, visually 1t 1s very
comparable to the reference 1images could be acceptable for
final production renders.

Random parameter filtering 1s a simple, post-process
technique based on a form of a bilateral filter known as a
cross-bilateral filter that works in 1mage space after samples
have been computed and that 1s easy to integrate with a
conventional Monte Carlo rendering system. The imnvention
1s able to i1dentily Monte Carlo noise and separate 1t from
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scene-dependent noise using a simple observation: the unde-
sired Monte Carlo noise occurs whenever the sample values
are a function of the random parameters used in the Monte
Carlo system. More specifically, noise that 1s a function of
the random parameters 1s Monte Carlo noise whereas noise
that 1s present in the original scene 1s scene detail.

For example, 1n a scene with an area light source that 1s
point sampled by the Monte Carlo system to compute soit
shadows, it 1s seen that in fully dark areas known as the
umbra, the final shaded color of the samples 1s not a function
of the random position of the sample on the light source
because no matter where the sample 1s located the shadow
ray 1s always blocked. These regions are not noisy because
the random parameters do not aflect the output. A similar
thing happens 1n fully Iit regions, where the shadow ray 1s
able to reach the light source regardless of 1ts position on the
light source. In both of these regions, the scene function 1s
constant with respect to the random point on the light source
and so 1ts position does not aflect the output of the function.
In the penumbra regions, however, some of the shadow rays
will reach the light source while others will be blocked by
occluders, depending on where the sample 1s positioned on
the light source. This means that the color of the sample 1n
these parts of the image will be a function of the position of
the sample on the light source, which 1s why these regions
contain undesired Monte Carlo noise. This same observation
holds true for other Monte Carlo noise, otherwise referred to
herein as “eflects™. The term “eflects” includes, for example,
depth-of-field, motion blur, area light sources, path tracing,
Russian roulette, shading, shadows including soit shadows,
reflection, transparency, refraction, diffraction, translucency,
indirect illumination, to name a few.

Estimating the functional relationships between the mnputs
and the outputs of the rendering system, the importance of
sample features that depend on the random parameters can
be reduced when applying a cross-bilateral filter to reduce
Monte Carlo noise but preserve scene detail. Unfortunately,
finding the functional relationship between sample features
and the random parameters 1n closed, mathematical form 1s
impossible for complex scenes. Furthermore, finding where
the scene function 1s constant with respect to the random
parameters 1s not easy with a small number of samples.
Therefore, the rendering system 1s treated as a “black box™
(with scene function) to estimate the functional dependen-
cies, which outputs other scene features in addition to the
sample color. The inputs and outputs of the scene function
are modeled as random variables, and the functional rela-
tionships are estimated by looking for statistical dependen-

cies between them. This 1s achieved by using the concept of
“mutual nformation”—the measurement of the mutual
dependence between random variables—, which conveys
how much nformation inputs provide about a specific
output. Although the 1invention 1s discussed with respect to
mutual information, functional dependency may also be
determined 1n other ways such as co-variance.

According to the invention, for parts of the image where
the outputs are functions of the random parameters—i.c.,
scene function varies with respect to the random parameters
for image positions—there exists a connection between the
random 1nputs and the outputs. On the other hand, 1f the
outputs are not functions of the random parameters—i.e.,
scene function i1s constant with respect to the random
parameters for fixed image positions—, the connection
between the output and the random parameter mmputs 1s
cllectively severed for these regions in the image. This
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means that 1n these regions the “signal” from the random
inputs never reaches the output, so they do not appear noisy
in the final 1mage.

With this analogy in mind, the invention can be thought
of as “wiggling” the iput parameters with a random number
generator and observing the “wiggle” 1n the output 1n the
form of noise, which only occurs when the output 1s a
function of these noisy inputs. The statistical dependence
between the wiggle at the output and that at the inputs 1s
what the mutual information metric uses to estimate the
functional dependency between them. However, other ways
to determine the functional relationship between the outputs
and mputs are contemplated, such as fixing the samples
positions 1n the X, y domain while only changing the random
parameters and looking at the variance of the scene function
to see 11 the outputs are aflected. Although methods like this
might be able to establish a functional dependency, one
advantage of the mutual information metric 1s that it scales
up and down as the amount of dependency changes. For
example, the sample color in a depth-of-field scene can
become a function of the random position on the lens the
instant that scene intersection point moves away from the
focus plane, resulting 1n a variance metric that has almost a
step-function response. The mutual information metric, on
the other hand, scales gradually, so 1t can be used to size the
cross-bilateral filter.

However, mutual information does not always perfectly
estimate the functional relationship. It can fail, for example,
if the “wiggle™ 1n the output 1s masked by a complex random
function, such as when the output is the function of the mnput
through a look-up table—e¢.g., a texture—that contains a set
of random numbers as elements. This makes the input and
output appear to be statistically independent and therefore
hides their connection from the mutual information metric.
However, compared to the other metrics, mutual information
works well for a vaniety of complex scenes. It should be
noted that although the presence of Monte Carlo noise
requires that the scene function vary with respect to the
random parameters in parts of the image (1.e., there should
be a connection between the random inputs and the outputs
in these regions), the noise seen in the final 1mage can be
attributed to the random parameters themselves, not to the
variance in the integrand of the scene function. This can
clearly been seen 1f the input parameters are replaced with
uniformly sampled values. Although the scene function 1s
unchanged, the noise has been replaced by banding artifacts
in which the differences between sample values that are used
by the bilateral filter have different properties than when
generated with random numbers. Of course, only regions
where the sample value 1s a function of the random param-
cters are aflected by this change in nput, while the other
regions remain the same. The mvention uses mutual nfor-
mation to detect the presence of noise from the mputs 1n the
functional outputs, thereby filtering out the noise generated
by the random parameters 1n Monte Carlo rendering.

It 1s also contemplated that mutual information may be
used between the outputs and the mputs of a rendering
system to determine what regions have moved or what
regions have noise 1n them such that more samples can be
thrown 1nto that region. It 1s also contemplated that mutual
information may be used between the outputs and the mputs
of a rendering system to estimate the amount of noise 1n any
region such that a denoising algorithm can be applied based
on the noise level 1 order to remove the Monte Carlo noise.

Using a filter similar to the bilateral filter referred to
herein as a cross-bilateral filter, the noise can be removed by
adjusting the variance of the filter based on the statistical




US RE48,083 E

7

dependencies of scene features on the random parameters.
Specifically, a bilateral filter 1s one that takes into account
both the sample position and the sample value when apply-
ing the filter, unlike a standard Gaussian filter that only takes
into account the sample position. This enables the bilateral
filter to preserve edges in the 1mage. For example, a bilateral
filter using the scene features (as a feature vector) 1n order
to reduce noise while preserving scene details may preserve
a texture on a surface, wherein the texture value may be

included 1n the bilateral filter to prevent blurring across that
detail.

One advantage of the mvention 1s that 1t 1s general and can
handle any of the effects that can be computed using Monte
Carlo integration. Physical meaning does not need to be
attributed to the random parameters. Instead, the invention
embodies the spirit of traditional Monte Carlo integration,
where only the random values need to be provided for each
parameter that the system should integrate over.

The random parameters must be specified that are to be
filtered so that the algorithm can remove the noise from each
of the effects 1n the final image. The mvention allows for a
wide range ol Monte Carlo effects to be handled including
ellects that require discrete integration (summation) such as
integrating over multiple light sources using a discrete
random number to select between them, or using Russian
roulette to randomly either transmit or reflect a ray off a
semitransparent surface.

The invention may be used in a variety of applications.
For example, any application that uses Monte Carlo 1nte-
gration to compute results may benefit from the mvention.
For example, the invention may be used with simulation of
particle transport. As another example, the invention may be
used 1n finance applications such as with the calculation of
options. The mvention may also be implemented with an
image capturing device to produce a “clean 1image™ or be
used to produce a “dirty image” to protect access to the
“clean 1mage”. Furthermore, the invention may be used to
regulate or control distribution and access to content.

In one embodiment of the invention, the functional rela-
tionship 1s used in filtering methods to reduce the noise
directly as a post-process. In another embodiment of the
invention, the functional relationship i1s used in adaptive
sampling methods to position new samples efliciently. In yet
another contemplated embodiment of the invention, the
functional relationship 1s used 1n a combination of filtering
methods and adaptive sampling methods.

Turning to the embodiment of the functional relationship
used 1n adaptive sampling, the basic 1dea 1s that the tradi-
tional Monte Carlo image rendered with a few number of
samples 1s noisy exactly where the features are a function of
(or depend on) the random parameters. After all, this 1s the
source of the Monte Carlo noise. Although this information
can be used to know where to filter, this information can also
be used to know where to throw new samples 1n the adaptive
sampling case. For example, a low resolution version of the
image, say 10x10 smaller than the final 1mage, can be
rendered. A suflicient number of samples are taken at each
macro pixel, for example 64 samples, so that the statistical
dependencies can be established thereby communicating
which areas of the image are dependent on the random
parameters and which ones are not. Less than 1 sample per
pixel 1s found by taking every group of 10x10 pixels and
throwing only 64 samples in that group.

Therefore, to render an 1mage with 8 samples/pixel on
average, a lot of samples are left over that can be thrown 1n.
More samples are added where scene features are dependent
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on the random parameters. It 1s contemplated that a sutlicient
number of samples could produce noise-free 1images without
the need to do any filtering.

In yet another embodiment of the invention, the adaptive
sampling method can be incorporated with a filtering
method or random parameter filtering method. It 1s observed
that the random parameter filter 1s actually quite good at
removing noise in the regions that depend on the random
parameters and should be blurred. Therefore, the additional
samples would be thrown 1n the place that does not depend
on the random parameters since a smooth result can be
achieved by using a filter. This 1s 1n stark contrast to the
traditional adaptive method which place more samples 1n the
regions that are noisy to make them less noisy. According to
the invention, the filter removes the noise very nicely and
because these regions should not have a lot of detail anyway
the samples can be saved for the regions with more detail.

Although the mnvention renders the samples only once and
then removes the noise of the final 1mage, 1t 1s contemplated
to incorporate the invention in the middle of an adaptive
loop that takes some samples, performs filtering, and then
takes additional samples. For example, the mvention may
use the statistical dependency to detect noisy regions and
place more samples in those regions.

The 1invention and 1ts attributes and advantages will be
further understood and appreciated with reference to the
detailled description below of presently contemplated
embodiments, taken in conjunction with the accompanying
drawings.

"y

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates a rendering system treated as a black box
according to one embodiment of the invention;

FIG. 2 illustrates a table of notations according to one
embodiment of the invention;

FIG. 3 illustrates an algorithm related to random param-
cter filtering according to one embodiment of the invention;

FIG. 4 illustrates an algorithm related to pre-processing
samples according to one embodiment of the invention;

FIG. 5 illustrates an algorithm related to computing
feature weights according to one embodiment of the inven-
tion;

FIG. 6 illustrates an algorithm related to filtering the
samples according to one embodiment of the invention;

FIG. 7 illustrates an exemplary computer rendering sys-
tem that may be used to implement the methods according
to the invention.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

The mvention 1s computer rendering system method for
increasing the quality of an 1mage from a scene file. The
scene file typically contains information about the objects 1n
the scene such as geometric shape, material properties, etc.
The scene file may also include light sources such as shape,
s1Ze, position, color, intensity, etc. and information about the
camera including position, orientation, resolution, etc. The
scene llle may also include texture maps and shaders that
specily how the individual surfaces should be colored. A set
of samples are computed from the scene file and interme-
diate information 1s saved. The intermediate information
includes scene independent data and scene dependent data.
Scene independent data 1s computed by the rendering system
and may include, for example, screen position and random
parameters, such as the position on the lens (for computing
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depth-of-field) or the time of the sample (for computing
motion blur). Scene dependent data 1s dernived from the
scene file using the given scene independent data and
includes, for example, scene features and sample color.
Scene features include world position, texture coordinates,
texture values, normal, and depths to name a few. A rela-
tionship between the scene dependent data and the scene
independent data 1s calculated. The relationship may be
based on mutual information, statistical dependency, or
some other metric. The relationship assists 1n differentiating
artifacts (or noise) of the scene file and the rendering system
(Monte Carlo random parameters). The relationship 1s used
with a process to output the image. Processes include
filtering methods and adaptive sampling methods.

FIG. 1 1llustrates a rendering system treated as a black box
according to one embodiment of the mnvention. According to
the invention, determining where Monte Carlo noise occurs
in an 1mage begins with identifying the regions in which the
sample values are functions of the random parameters. To do
this, the rendering system 100 1s treated as a black box 104
with scene function f( ) that is evaluated deterministically
by the ray tracing system for a specific scene, for example,
a scene with depth-of-field. This function takes as its only
inputs 102 the screen position x, y 102a on the image as well
as the random parameters u, v 102b for Monte Carlo
integration—i.e., the position on the lens. Since these are the
only inputs 102 to the deterministic system, the outputs 106
ol the black box 104 must all be functions of these mnputs (or
constant with respect to them). These outputs 106 are a set
of features for each sample, such as world position 106a,
surface normal 106b, texture value 106c¢ or the output of the
texture lookup, and sample color 106d or the final shaded
value. The mvention estimates the functional relationship by
taking a set of samples 1n a neighborhood A and treating
the mput values 102 and output values 106 of this neigh-
borhood as statistical random vanables. The statistical
dependence of the outputs 106 are then determined based on
the mputs 102 using mutual information as shown by 108.
This allows a determination as to which scene features are
highly dependent on random parameters so that their weight
can be adjusted such as lowered during bilateral filtering.

Taking a scene with depth-of-field, the input parameters
are changed while keeping the scene function f( ) the same.
Setting the random parameters u, v to random values for
cach sample produces a noisy image. However, 11 uniform
parameters for the random parameters u, v are used, the
noise 1s replaced with banding artifacts. It should be noted
that only the regions where the sample color 1s a function of
the random parameters are atlected by changing the param-
eters u, v so the regions that are 1n focus 1n a depth-ot-field
scene are mostly unchanged. Thus, the Monte Carlo noise to
be eliminated 1s directly caused by the random parameters
whenever the sample values are a function of them.

FIG. 2 illustrates a table of notations used in describing
the invention. The invention can be described 1n four parts:
(1) the overall method according to an algorithm of one
embodiment of the invention, (2) the pre-processing of the
samples by clustering them and removing their mean and
standard deviation; (3) the statistical computation of the
feature weights for the cross-bilateral filter using the statis-
tical dependency of features on the random variables, and
(4) filtering the samples.

FIG. 3 illustrates the overall method according to an
algorithm related to random parameter filtering according to
one embodiment of the invention. Samples are rendered and
teature vectors are created. The invention can be considered
a post-process filter, so the first step 1s to render the samples
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at the given sampling rate of s samples/pixel and then the
filtering process 1s applied, which consecutively performs
the filter 1n several 1terations. First, samples are rendered at
a fixed sampling density and a vector x 1s stored for each
sample. The data structure 1s simply a floating point array
with enough space for the number of samples (computed as
the 1mage resolution times the number of samples/pixel s)
and enough space for each such as 27 floats per sample to
store all the information. For the scene features in f, the
invention stores for each sample the normal, world-space
position, and texture values (the set of tloats from texture
lookups used by the surface shader to produce the surface
color) for the first intersection point of the ray, and the world
position and normal for the second intersection 1n a path
tracer. The same features are stored for every scene. If an
object does not have the specific feature, a zero 1s substituted
or 1f the shader does not use the feature when computing the
final color, features that do not aflect the final color are
ignored. Since all these features are available to the render-
ing system at some point during the tracing of the ray,
outputting the feature vector for the sample 1s simply a
matter of caching the information after 1t 1s calculated,
which 1s standard practice 1n rendering systems when cre-
ating a G-bufler for deferred shading.

In addition to these scene-dependent features, the mven-
tion stores the random parameters used by the Monte Carlo
system so that 1t can identily the functional relationships
between the inputs and the outputs. Wherever possible, these
random parameters are used in the form that most closely
reflects their use 1n the renderer. For example, the random u,
v position on the lens for depth-of-field can be computed in
several ways: two uniformly distributed random numbers
can be used from O to 1 that are then scaled and translated
into a —1 to 1 range on a square lens, or the random numbers
can be used to pick 0 and r values that uniformly sample a
circular lens without rejection, etc. Rather than deal with the
raw random parameters that have no physical meaning, the
final random wvalues are used as they are used by the
rendering system. In the case of the position on the lens, the
final u, v values ranging from -1 to 1 are used as the random
parameters because these relate to the physical process
simulated by the rendering system. In most cases the random
parameters are tloating point values, but they could also be
integers, such as when a discrete random number 1s used to
select an individual light source for lighting with multiple
light sources.

Note that 1n industrial rendering systems these random
parameters are often determined with pre-computed
sequences of low discrepancy numbers provided to the
renderer. In this case, the random parameters do not need to
be stored 1n the sample vector since the post-process filter
could use this same sequence to recompute the random
parameters on the tly. According to one embodiment, how-
ever, a brute-force approach may be used with the PBRT?2
and LuxRender Monte Carlo rendering systems to compute
the samples. Furthermore, Monte Carlo-based approaches
such as photon mapping and bi-directional path tracing may
be implemented in accordance with the mvention.

As shown by FIG. 3, To estimate the functional depen-
dencies of sample values on the mputs to the Monte Carlo
rendering system using mutual information, a set of samples
to process are selected. Every sample in the image cannot be
used because the functional dependencies change from
region to region. For example, an image may have some
regions 1n focus and others out of focus, and these have
different dependencies on the random parameters. There-
fore, as every pixel 1s looped over in the image, a local
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neighborhood of samples A 1s selected around that pixel to
measure the local statistics for mutual mmformation. How-
ever, how big to make the block size needs to be decided 1n
order to define the extent of neighborhood AN . If a large
block size 1s used, there will be more samples to calculate
statistics thereby improving the accuracy of the dependency
estimates and providing more samples to filter out noise.
Unfortunately, larger block sizes have fewer localities and
might cause problems when the block overlaps regions with
different functional dependencies, such as regions where the
amount ol defocus blur changes. To resolve these two
competing considerations, a multi-pass approach 1s used
where the invention loops over the image several times
using different block sizes.

Starting at a larger block size and shrinking the block size
down 1n a series of iterations, four 1terations are found to be
suilicient, for example, starting at a block size of 55 pixels
wide and going down to 33, 17 and finally 7 pixels wide. At
cach step, the samples’ colors are filtered with the weighted
bilateral filter using the samples in A", and the new filtered
color 1n the next pass of the algorithm 1s used—except to
compute statistical dependencies, since they are always
computed with the original sample color. By going from

larger to smaller block size, the low Irequency noise 1is
addressed that a smaller filter kernel would leave behind and
then, as the block size 1s reduced, the localized noise 1s
climinated and the detail cleaned up. The multi-pass
approach also reduces the maximum block size needed for
filtering, since a larger filter can be emulated by progres-
sively applying a smaller kernel. This allows the achieve-
ment of good performance and quality at the same time.

After the samples are rendered, the random parameter
filtering algorithm 1s ready to be applied, which 1s performed
independently for every pixel of the image. As each pixel 1s
looped over, the samples are pre-processed 1n the block
around the pixel to create a neighborhood N of samples to
use to compute statistics and perform filtering as shown by
FIG. 4.

As shown 1 FIG. 4, the bilateral filter 1s applied to the
samples 1n the block of pixels. However, for large block
s1zes, the process of calculating the contribution of all
samples to any given sample 1s time consuming because the
number of samples increases as O(N?) with block size. To
accelerate this process, a random subset of samples within
the block 1s selected and only these samples are used for
statistical analysis and to filter the samples within the pixel.
This 1s a form of Monte Carlo estimation and significantly
accelerates the calculations. Although 1t may introduce a
slight error, the error 1s small and found to be reasonable
considering the improvement in running time for the algo-
rithm. The bilateral filter according to the invention weights
samples based on screen position, distance with a Gaussian
ol vanance Opz that depends on the block size (0,=b/4).
Since a set of random samples are selected, they can be
drawn with a Gaussian distribution with variance Cfpz around
the pixel 1n question 1n order to essentially perform 1mpor-
tance sampling. This allows the first term to be removed
from the bilateral filter calculation as discussed more fully
below.

Some kind of clustering needs to be performed when
placing samples 1n neighborhood N to avoid mixing sta-
tistics. The set of samples P at the current pixel N <
P are always included in neighborhood A . Then, a ran-
dom set of samples 1s selected with a Gaussian distribution
from the block of pixels as described above and added to the
neighborhood N only 1t all of their scene features 1 are
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within three standard deviations of the mean for the pixel. So
given sample 7 that 1s within the block of pixels:

N <= NUjifIf,-mP S<36P /forall k

In one embodiment, a value of 30 instead of 3 1s used
when testing the world position since 1t varies much more
than the other features. Also, this test 1s only done when o
P !kf >().1 because 1t 1s not desirable to throw all the samples
away 1n cases where the variance 1s very small, such as
constant-valued regions.

Belore the statistical dependencies for a set of samples 1n
a neighborhood 1s computed, the scene features are normal-
ized by removing the mean and dividing by the standard
deviation for each of the elements 1n the sample vector. The
reason for this 1s that the features 1n 1 reside 1n very different
coordinate systems. For example, world positions could be
in the range of 0 to 1000, while the normal vector could have
components 1n the range of O to 1. It this discrepancy 1s not
corrected, a larger weight could madvertently be given to
certain features when calculating dependency that may not
necessarlly be more important. Vectors that have been
normalized 1n this manner are represented with a bar, for
example, f becomes T.

The core of the algorithm according to the invention 1s the
computation of the color weights o and feature weights 3 as
shown 1n FIG. 5. Mutual information 1s used to compute the
statistical dependencies between a sample feature and the
inputs to the Monte Carlo system.

Since 1t 1s diflicult to denive an exact functional relation-
ship between scene features and the inputs of the rendering,
system p, and r, for complex scenes, a statistical dependency
1s proposed based on the mputs providing information about
the scene features. The invention uses mutual information,
which 1s the exact measure of dependence between two
random variables and indicates how much information one
tells about another. In one embodiment, the mutual infor-
mation between two random variables X and Y can be
calculated as:

p(x, y) (Eq. 1)

X;Y) =), ) px )l
uX; Y) >J>JP(K’ j*’)E"'glz:'(rfi)li‘*(y)

xe X yvet

where these probabilities are computed over the neighbor-
hood of samples N around a given pixel. To calculate the
mutual information between two vectors x and y, specifi-
cally, T N ,andr N ,, respectively, the histogram for each is
calculated. To compute the histograms, all values are made
positive by subtracting the minimum element in the vector
and quantizing the elements nto integer bins by rounding
their values. How many times the values of x fall inside each
bin are counted and the probabilities are found by dividing
by the length of x. A joint histogram 1s calculated 1n a similar
way, except with pairs of values (X, y).

To estimate statistical dependencies on 1nputs, the depen-
dency of the k” scene feature on all random parameters
(given by D,,") 1s calculated using mutual information. The
heuristic approximates this by measuring the dependency on
individual random parameters and adding them up. There-
fore, the statistical dependency 1s first calculated between
the k™ scene feature and the 1” random parameter by
D= N 4 r N ;). and then the dependency of the k™
scene feature on all n random parameters 1s approximated
as:
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Dy = Z DY) = Z #(En i T )

1={=n 1={=n

(Eq. 2)

The dependency of the k™ scene feature on screen posi-
tion (D) and color dependencies D_,” and D_,”
similarly computed:

D%y = ZDH— Z#fwkapm) (Eq. 3)
1 =f=2 1={=2

ok = Z D-::k = Z HCN k5 TN (Eq. 4)
l=l=n l=f{=n

(Eq. 5)

.;:ﬁ; = Z D.;:k = Z (TN 15 P g)-

1=i=2 1={=2

The dependency of the k™ color channel on all the scene
teatures 1s computed so that later the weight for features that
do not contribute to the final color can be reduced:

DLy = Z D} = Z “Cri; En ). (Eq. ©)

1=l=m 1=l=2

In addition, a related term 1s computed pertaining to how
all color channels are dependent on the k™ scene features:

DI = Z Di}k = Z 1T Evi)- (Eq. /)

1={=3 1={=3

Finally, the terms D_,”, D_,7, D7 are calculated by
summing over the color channels:

(Eq. 8)

= » D[,.Df= » D,.D/ = ) DI,

l=k=3 1=£t=3 l=k=3

As shown in FIG. §, the error of the approximation 1s
determined. Ideally, the statistical dependency of the k”
scene feature on all random parameters 1s calculated using
the joint mutual information wr AN ,, rAN 5 . . .,
r N AN ). Unfortunatelyj this joint mutual information
can be difficult and expensive to compute as the number n
gets larger, because the histogram grows to the power of n
while the number of samples to do statistics grows linearly.
This means that the ability to compute the histogram accu-
rately degenerates quickly and 1t becomes much slower to do
so. For this reason, the approximation i1s performed by
measuring the dependency on individual random parameters
and adding them up as described above.

Now the eflect thus has in the overall calculation of
statistical dependency 1s examined. To keep things simple, 1t
1s assumed that two statistically independent random vari-
ables R, and R, are inputs to the system and produce the
output feature Y. In order to measure wWR,, R,; Y), 1t 1s
approximated as WR, ;Y )+Ww(R,;Y). The following derivative
shows that the statistical dependence 1s underestimated:

PR RS Y )=H(R |,R5)-H(R R, 1Y)
=H(R | )+H(R, IR )-H(R,IY)-H(R5IR,Y)

=u(R;Y)+H(R IR )-H(R, IR}, Y)
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If R, are R, are independent, then H(R,IR,)=H(R.,) such
that:

H(R 1, R Y )=p(R ;Y )+H(R,)-H(R, IR, Y)
=H(R;Y)+(R5R,Y)
=R Y)+U(YR R))

=R Y) (RS Y )+HUR R, YY)

Thus, the approximation that wW(R,;, R,; Y)=wR,; Y)+u
(R,; Y) eflectively assumes that (R, ; R,1Y)=0. This means
that the information 1s 1gnored that the output feature tells
about relationship between the inputs, which might not be
zero even though the inputs are statistically independent. To
understand why, the function f( ) 1s set to act as an XOR gate
of two 1nputs. If one of the inputs and the output 1s known,
the other input can automatically be determined even though
the two 1nputs may be statistically independent. Since (R ;
R,1Y)=0, the approximation 1s an underestimate of the true
jomt mutual information between the random parameters
and the scene feature. However, the approximation works
quite reasonably, even for intricate scenes with complex
relationships between the random parameters and the scene
features.

Since the sample features are only functions of the
random parameters r; and the screen position p,, the heuristic
computes the fractional contribution of the random param-
eters to the k” scene feature with the following formula:

D%,
D%, + Dik +

(Eq. 9)

W??k —

The addition of the term e term prevents degeneration
when the dependencies D" and D~ are both small. This
expression communicates how much the k” feature was
aflected by the random parameters as a fraction of the
contributions from both sets of inputs, with the reasonable
assumption that the position and random parameters are
statistically independent. When the sample 1s only a function
of the random parameters, this value will be close to 1, and
when 1t 1s dependent only on the screen position 1t will be O.
In the common case where there 1s some contribution from
both 1nputs, for example, a partially out-of-focus object 1s
dependent on both screen position and u, v, the mvention
simply 1nterpolates between the two.

The invention also includes a similar algorithm using the
dependencies of the k” sample color channel on the random
parameters D_ " and on the screen position D /~ to compute
the fractional contribution of the random parameters on the
k™ color channel:

g (Eq. 10)

-::k_ r
Dk+Dk+£

The overall contribution of the random parameters on the

color W " for use 1n sizing the filter 1s obtained by averaging
the W_,", W_,", W_3" terms:

1 (Eq. 11)
W, = §(W£,1 + Wi, + W 3.
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Lastly, the W /* term is computed to communicate how
much the color depends on a specific feature:

D/ (Eq. 12)

D’ +D? + D

&
Wik =

As shown in FIG. §, the computation of the fractional
contributions 1s determined. Specifically, once the statistical
dependencies have been calculated, the normalized depen-
dencies are computed to determine the ¢ and 3 parameters.
The o and p parameters are adjusted 1n each 1teration as the
block size decreases by giving more weight to the depen-
dency on the random parameters. The 1dea behind this 1s that
when the block sizes are large, there will be an increase in
dependency on the spatial screen position because of the
natural spatial variations 1n the image. However, the statis-
tics are more corrupt because of the mixing of statistics that

happens with large block sizes. Therefore, more weight 1s
given to the normalized dependency on the random param-
cters as the block size goes down with each iteration. This
adjustment 1s expressed as:

a,=max(1-2(1+0.10)W_,",0) (Eq. 13)

Br=W ./ max(1-(1+0.1) W,;”,0) (Eq. 14)

where the t term 1s the iteration of the multi-pass approach,
with the first pass t=0. The incorporation of the t term
increases the weight of W_ " and W, upon each successive
iteration, and the max( ) term 1s added to ensure that the
value stays positive.

As shown 1n FIG. 6, the color samples are filtered. The
invention filters the color of samples x, using a weighted
bilateral filter in which the importance of the color and scene
features 1s adjusted to reflect their dependence on the
random parameters:

(Eq. 15)
WU—EXP——Z (p:k pjk) X
F' 1=k=2
1 o
eXp|— 2?2 Z @ (Tig —CTi)° | X
| l=k=3 i
exp| — Pefix — 1 O,
i Qﬂ-f ].{:.IE-'.'Z{:?H ’
where W is the contribution—or weight—of the j” sample
to the i” Sample during filtering. Because of the way the

samples are selected 1n neighborhood N randomly using a
Gaussian distribution with standard deviation o, (where
0,=b/4), the first term of this expression 1s dropped and
becomes:

(Eq. 16)

W;; = exp|—

i

20_2 Z @ (Tig —Cip )" | X

Cl=k=3

exp|—

f. —f
| ZG'fIZ Btk

<k =m

The variances of the Gaussians for both the color and the
feature are set to the same value:
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s (Eq. 17)
(1 Wy

r:rz:r:r}:

C

The variances are divided by (1-W ) because, in the
end, only the sample color 1s of importance and a large filter
1s desired wherever the color depends a lot on the random
parameters, 1.€., 15 very noisy. This term adjusts the size of
the Gaussian based on the overall noise level, making 1t large
when needed. The terms o~ and sz are separated since they
depend on all three color channels (because of the W™ term)
as opposed to o, (whose W_,” term varies per color chan-
nel). Therefore, the terms o > and sz modulate the overall
size of the Gaussian while o, and [3, adjust 1t further based
on dependencies with the random parameters.

Because the constant o_” is divided by the number of
samples when computing the filter’s variance o=, the inven-
tion 1s a biased but consistent estimator, meaning that the
estimator converges to the value of the integral as the
number of samples per pixel s goes to infinity. As s—00, a
weight of w, =1 1s produced only when 1= and zero is

everywhere else. Therefore, the colors of the samples are not
filtered at all, so the invention converges to standard Monte
Carlo, which 1s a consistent estimator.

Once the filter weights w, ; are obtained, these weights are
used to blend 1n the color contributions from these samples:

szjc;-’k (Eg. 13)
jeN
2. Wi

JeN

J"'.-"'

:k'_

where the denominator 1s never zero because at least w, ;=1
(a sample fully contributes to itsell). Note that this process
filters the colors of individual samples (not pixels), and 1s
performed separately for every pixel in the image, since
statistics change from pixel to pixel. After all samples 1n the
image have been filtered, the process 1s repeated with a new
iteration as shown in FIG. 3.

The mvention can be applied to a variety of scenarios such
as using only direct lighting to highlight the illumination
contribution from path tracing. Many regions of the image
may be completely dark when using only direct lighting
because these regions are totally occluded from the sky light
source. This means that the 1llumination 1n these regions that
1s visible 1s due exclusively to path-tracing. The invention 1s
able to denoise these regions by examining the relationship
between the sample values and the random parameters used
to compute the bounces of each path.

Path-tracing 1s notoriously noisy, and when Monte Carlo
samples are mput to the algorithm, much of the detail in the
textures 1n the scene 1s completely gone. This 1s more
evident 11 the color channel 1s multiplied by 1000. Many of
the pixels remain black, which indicates that these pixels
have no usetul color information. The cross-bilateral filter
examines other sample features, such as world position,
surface normal, and texture value, each weighted depending
on their amount of functional dependency on the random
parameters. In embodiments where the samples’ colors are
extremely noisy because the path tracing produces a lot of
noise while computing the global 1llumination, the invention
detects the connection between the sample color and the
random parameters of the path tracer, and essentially 1ignores
the color when bilateral filtering. The texture value, on the
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other hand, 1s found to have little dependence on the random
parameters so 1t 1s weighted heavily by the cross-bilateral

filter.

Therelfore, to filter a sample 1ts color 1s 1gnored while
close attention 1s paid to its texture value. When blending 1n
values from around the filter kernel, only samples with
similar texture values are blended together. Therefore, 1f a
sample hits a dark part of the texture, samples from other
parts of the texture are blended in that are also dark.
Essentially, the filter according to the invention combines
many noisy samples of dark texture together to approximate
a noise-free dark texture. Of course, some blurring of the
texture detail occurs when a large filter kernel 1s used to help
denoise a very noisy 1image. Ideally, a small filter 1s desired
to help preserve detail. The invention 1s reasonably robust
and of great importance in production environments.

Although color 1s treated as a special feature since the
color channel 1s filtered, 1t 1s contemplated that only incident
1llumination may be filtered and used in a surface shader to
get an 1improved result.

FI1G. 7 1llustrates an exemplary computer rendering sys-
tem 700 that may be used to implement the methods
according to the mvention. One or more computer systems
700 may carry out the methods presented herein as computer
code.

Computer system 700 includes an input/output display
interface 702 connected to communication infrastructure
704—such as a bus—, which forwards data such as graph-
ics, text, and information, from the communication infra-
structure 704 or from a frame bufler (not shown) to other
components of the computer system 700. The input/output
display interface 702 may be, for example, a keyboard,
touch screen, joystick, trackball, mouse, monitor, speaker,
printer, any other computer peripheral device, or any com-
bination thereol, capable of entering and/or viewing data.

Computer system 700 includes one or more processors
706, which may be a special purpose or a general-purpose
digital signal processor that processes certain information.
Computer system 700 also includes a main memory 708, for
example random access memory, read-only memory, mass
storage device, or any combination thereof. Computer sys-
tem 700 may also 1nclude a secondary memory 710 such as
a hard disk umt 712, a removable storage unit 714, or any
combination thereol. Computer system 700 may also
include a communication interface 716, for example, a
modem, a network interface (such as an Fthernet card or
Ethernet cable), a commumication port, a PCMCIA slot and
card, wired or wireless systems (such as Wi-F1, Bluetooth,
Infrared), local area networks, wide area networks, intranets,
etc.

It 1s contemplated that the main memory 708, secondary
memory 710, communication interface 716, or a combina-
tion thereol, function as a computer usable storage medium,
otherwise referred to as a computer readable storage
medium, to store and/or access computer software including
computer instructions. For example, computer programs or
other instructions may be loaded into the computer system
700 such as through a removable storage device, for
example, a floppy disk, ZIP disks, magnetic tape, portable
flash drive, optical disk such as a CD or DVD or Blu-ray,
Micro-Electro-Mechanical Systems, nanotechnological
apparatus. Specifically, computer software including com-
puter instructions may be transferred from the removable
storage unit 714 or hard disc unit 712 to the secondary
memory 710 or through the communication infrastructure
704 to the main memory 708 of the computer system 700.
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Communication interface 716 allows software, instruc-
tions and data to be transferred between the computer
system 700 and external devices or external networks.
Software, instructions, and/or data transferred by the com-
munication interface 716 are typically in the form of signals
that may be electronic, electromagnetic, optical or other
signals capable of being sent and recerved by the commu-
nication interface 716. Signals may be sent and recerved
using wire or cable, fiber optics, a phone line, a cellular
phone link, a Radio Frequency link, wireless link, or other
communication channels.

Computer programs, when executed, enable the computer
system 700, particularly the processor 706, to implement the
methods of the invention according to computer software
including 1nstructions.

The computer system 700 described herein may perform
any one of, or any combination of, the steps of any of the
methods presented herein. It 1s also contemplated that the
methods according to the invention may be performed
automatically, or may be invoked by some form of manual
intervention.

The computer system 700 of FIG. 7 1s provided only for
purposes of 1llustration, such that the invention 1s not limited
to this specific embodiment. It 1s appreciated that a person
skilled in the relevant art knows how to program and
implement the invention using any computer system.

The computer system 700 may be a handheld device and
include any small-sized computer device including, for
example, a personal digital assistant, smart hand-held com-
puting device, cellular telephone, or a laptop or netbook
computer, hand held console or MP3 player, tablet, or
similar hand held computer device, such as an 1Pad®, 1Pad
Touch® or 1Phone®.

While the invention has been described with reference to
particular embodiments, those skilled in the art will recog-
nize that many changes may be made thereto without
departing from the scope of the mvention. Each of these
embodiments and variants thereof 1s contemplated as falling
with the scope of the claimed invention, as set forth 1n the
following claims.

What 1s claimed 1s:

1. A method for performing [a random parameter filter]
Monte Carlo denoising, comprising the steps of:

rendering one or more 1mage samples or one or more
pixels at a given sampling rate;

storing a vector of a plurality of [scene] features and one
or movre rendering system inputs for each 1mage sample
or each pixel,;

[saving one or more random parameters for each image
sample used to calculate the image sample by a ren-
dering system;]

choosing the one or more 1image samples or the one or
movre pixels 10 process;

performing [pre-processing] processing on the one or
more 1mage samples or the one or more pixels using
one or movre stored features and filter parameters that
are automatically adjusted for each image sample or
each pixel to compute filter weights;,

[calculating a dependency of a color and a feature of the
one or more random parameters and one or more
rendering system inputs to obtain a calculated depen-
dency;

using the calculated dependency to determine a weight for
cach scene feature to obtain dependency information;

moditying the one or more image samples using the
dependency information to obtain a final modified
sample;]
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filtering the [final modified sample to produce one or
more pixels] one or more image samples or the one or
movre pixels using the computed filter weights to com-

pute a filtered value; and

outputting a final 1mage, wherein the final image includes
the computed filtered value of each image sample or
each pixel.

2. The method for performing [a random parameter filter]
Monte Carlo denoising according to claim 1, wherein the
choosing step further comprises the step of conducting
iterations [of] using a block around [a pixel of the image
sample] the one or more pixels from a large block size to a
small block size.

3. The method for performing [a random parameter filter]
Monte Carlo denoising according to claim 1, wherein the
choosing step further comprises the step of selecting a
random subset of image samples within [each] a block
around the one orv more pixels.

4. The method for performing [a random parameter filter]
Monte Carlo denoising according to claim 1, wherein the
performing step further comprises the step of clustering the
one or more 1mage samples or the one or more pixels mto
one or more groups.

5. The method for performing [a random parameter filter]
Monte Carlo denoising according to claim 4, [wherein,]
wherein the clustering step includes the step of calculating,
[the] a standard deviation of [the] @ mean for t2e one or more
pixels Jof the image sample].

6. The method for performing [a random parameter filter}
Monte Carlo denoising according to claim 1, wherein the
performing step further comprises the step of manipulating,
the vector by removing [the] a mean and dividing by [the]
a standard deviation for each [scene] feature [of the plurality
of scene features], wherein each feature is a scene feature
for each 1mage sample.

7. The method for performing [a random parameter filter]
Monte Carlo denoising according to claim [1] /3, wherein
[the] @ dependency is a statistical dependency.

8. The method for performing [random parameter filter]
Monte Carlo denoising according to claim 1, wherein [the

10

15

20

25

30

35

20

one or more scene features] each feature is at least one
selected from the group [comprising] comsisting of: world
position, surface normal, color, texture value, texture coor-
dinate, and shader value.

9. The method for performing [random parameter filter]

Monte Carlo denoising according to claim 1, wherein the
one or more rendering system inputs 1s at least one selected
from the group [comprising] consisting of: screen position
and random parameter.

10. The method for performing [a random parameter
filter] Monte Carlo denoising according to claim 1, wherein
the filtering step further comprises the steps of:

classifying the [weight] filter weights above a certain

value to mean that [the scene] a feature of the plurality
has little or no dependency on [the] one or more
random parameters and the [weight] filter weights
below a certain value to mean that [the scene] a feature
of the plurality has a significant dependency on the one
or more random parameters.

11. The method for performing Monte Carlo denoising
according to claim 1 further comprising the step of recon-
structing the computed filtered value of each image sample
or each pixel to obtain the final image.

12. The method for performing Monte Carlo denoising
according to claim 1, further comprising the step of saving
by a rendering system one ov more random pavameters for
each image sample or each pixel used to calculate the image
sample.

13. The method for performing Monte Carlo denoising
according to claim 12, further comprising the steps of:

calculating a dependency of a color and a feature of the

one or more random pavameters and the one or more
rendering system inputs to obtain a calculated depen-
dency;
using the calculated dependency to determine a weight for
each feature to obtain dependency information; and

modifving the one or more image samples or the one or
move pixels using the dependency information to obtain
a final modified sample.
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