USOORE47851E
(19) United States
12y Reissued Patent (10) Patent Number: US RE47.,851 E
Moyer 45) Date of Reissued Patent: Feb. 11, 2020
(54) DATA PROCESSING SYSTEM HAVING 5,313,608 A * 5/1994 Takaiccocven.... GOGF 12/0875
CACHE MEMORY DEBUGGING SUPPORT A7 A F 51004 Bomrek e
AND METHOD THEREFOR 2 OHIERAS s S UEL 09
o _ 5,491,793 A * 2/1996 Somasundaram .. GO6F 11/3636
(75) Inventor: William C. Moyer, Dripping Springs, 714/10
TX (US) 5,636,363 A 6/1997 Bourekas et al.
5,892,897 A * 4/1999 Carlson GO6F 11/1641
(73) Assignee: Rambus Inc., Sunnyvale, CA (US) 714/31
6,016,555 A * 1/2000 Deao etal. 714/35
6,044,478 A 3/2000 Green
(21) Appl. No.: 13/172,508 6,145,099 A * 11/2000 Shindou GOGF 11/3632
714/37
(22) Filed: Jun. 29, 2011 6,260,131 B1* 7/2001 Kikuta et al. 711/210
Related U.S. Patent Documents (Continued)
Reissue of. FOREIGN PATENT DOCUMENTS
(64) Patent No.: 7,555,605
[ssued: Jun. 30, 2009 EP 0569987 Al * 11/1993 GO6F 11/3636
Appl. No.: 11/536,085 EP 1286269 A2 * 2/2003 ... GO6F 9/30043
Filod: Sep. 28, 2006 P 05-289904 * 11/1993 .ccoovoo.... GOGF 11/28
Primary Examiner — Christopher E. Lee
(51) Int. CL 74) Attorney, Agent, or Firm — Finnegan Henderson
Y, AZ g
GO6l 12/00 (2006.01) Farabow Garrett & Dunner LLP
GO6l 11/36 (2006.01)
(52) U.S. CL (57) ABSTRACT
C.PC s — GO6l 11/3648 (2013.01) A data processing system having debugging circuitry and a
(58) Field of Classification Search method for operating the data processing system 1s provided.
CPC GO6F 9/3005,J GO6F 5/01, GO6F 11/273,J In the Sys‘[enl:J a processor has a cache memory and 1s

GO6F 11/364; GOOF 11/1641; GOOGF coupled to a system bus. An instruction is received which

11/2236; GO6F 11/3636; GO6L 11/3648 indicates an effective address. The instruction is executed

USPC ... 703/28; 712/E9.032, 119, 125, 202, 227, and it is determined if the effective address results in a hit or
714/10, 28, 30, 31, 38.1 a miss in the cache. If the effective address results in a hit,

See application file for complete search history. data associated with the effective address is provided from
_ the cache to the system bus without modifying a state of the
(56) References Cited cache. The mstruction allows real-time debugging circuits to

be able to view the current value of one or more variables 1n

U.S. PALTENT DOCUMENTS memory that may be hidden from access due to cache

4,635,193 A * 1/1987 MOYer .oovooviovv.... GO6F 9/3005 hierarchy without modifying the value or impacting the
712/E9.032 current state of the cache.
5,185,878 A * 2/1993 Baror GOG6F 12/0848
711/123 24 Claims, 2 Drawing Sheets
TO/FROM T0
CACHE CONTROL CIﬁCUITRY 36 CONTROL CI*RCUITRY 36
b } A
(FROM EXECUTION
v UNITS 42)
—» CACHE CONTROL CIRCULIRY i, LB
e Hrrpss |y o
54 INDICATOR .
TAG TAG (
| ADDRESS STATUS By |y
FIELD BITS DATA
f A Al A Y A ™ TLB
— CONTROL
V| D 32 PHYSTCAL CIRCUITRY
ADDRESS

BUFFER \

|~

<]

Y
10/FROM
BIU 276

US RE47,851 E

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

6,321,329 B1* 11/2001 Jaggar et al. GO6F 11/3632
712/227
6,502,209 B1* 12/2002 Bengtsson GO6F 11/3632
714/10
6,668,339 B1* 12/2003 Maeda GO6F 11/3648
714/28

6,954,826 B2 10/2005 Moyer
7,346,744 B1* 3/2008 Glascoccoooeeiiiiininnn, 711/141
7,533,302 B2* 5/2009 Wu ... GO6F 11/2236
712/227
8,352,713 B2* 1/2013 Burke GO6F 11/3648
712/227
2002/0013893 Al* 1/2002 Roy ...cooooveeinnnnnnn, GO6F 11/3636
712/227
2003/0191624 Al1* 10/2003 Mornigaki GO6F 11/364
703/28
2004/0193831 Al* 9/2004 Moyer GO6F 11/3648
711/202
2004/0236911 Al* 11/2004 Moyer GO6F 11/3648
711/119
2005/0273559 Al* 12/2005 Arnstodemou GO6F 5/01
711/125
2006/0206763 Al* 9/2006 Kudo GO6F 11/273
714/30
2006/0271919 Al* 11/2006 Moyvercooevvvvveeennnn, 717/136
2007/0006042 Al1* 1/2007 Beukema GO6F 11/3656
714/38.1

* cited by examiner

U.S. Patent Feb. 11, 2020 Sheet 1 of 2 US RE47,851 E

12)’
PROCESSOR
13 DEBUG
CIRCUITRY
CACHE 14
20 f.l.f ,r"f
MEMORY
18 10
40 58 DEBUG
L [- 36 34 | cIRCUTTRY
INSTRUCTION INSTRUCTION 14
FETCH ’ DECODE § CONTROL INTERNAL
UNIT UNIT
CIRCUITRY VERUC
—>| CR CIRCUIT
f.f" fx" f.f Xf_,.- 37
..____ﬁz__....._________.__________.___
13 | |
N { Y Y 13

Y CACHE EXECUTION Sggggét
UNITS " REGISTERS
—1 | (GPRS)
BIU -
26 PROCESSOR
$ 12

Fr7G. 2

U.S. Patent Feb. 11, 2020 Sheet 2 of 2 US RE47,851 E

T0/FROM T0
CACHE CONTROL CIRCUITRY 36 CONTROL CIRCUITRY 36
13 1 ‘ oA
> (FROM EXECUTION
UNITS 42)
—> CACHE CONTROL CIRCUITRY |.
TLB HIT/MISS | | ﬁé?
- INDICATOR /
TAG TAG
| ADDRESS STATUS Jb
FIELD BITS DATA .
r - - “ ———=——— CONTROL
vV | [32 PHYSTCAL CIRCULTRY
ADDRESS
BUFFER
50
Y
TO/FROM
BIU 26
60
011 1 1 1] 40P RA B {0 0 0 0 TBD 0| /

US RE47,851 E

1

DATA PROCESSING SYSTEM HAVING
CACHE MEMORY DEBUGGING SUPPORT
AND METHOD THEREFOR

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

FIELD OF THE INVENTION

The present invention relates generally to data processing,
and more particularly, to a data processing system having
cache memory debugging support and method therefor.

RELATED ART

Data processing systems typically include debug circuitry
to permit a programmer to determine various values within
the system at different points 1n time. Some data processing,
systems allow the debug circuitry to operate 1n near “real-
time”. Currently in real-time debugging, if a variable 1s
cached, the debug circuitry has no easy access to the latest
value of the variable without a very intrusive set of opera-
tions to cause a central processing unit (CPU) 1n the system
to be halted and the value extracted from the cache via
execution of multiple mstructions including load and store
instructions passed 1n through a JTAG (Joint Test Action
Group) port or other debug interface. This may cause
undesirable state changes within the cache memory. Also,
the load and store instructions can cause additional message
generation for real-time debug trace units, 1n order to expose
the variable, which may result in a bandwidth 1ssue. In
addition, the problem 1s more acute 1f a cache hierarchy
exists between the CPU and the debug circuitry. Further,
because current intrusive methods of determining cache
values aflect the state of the cache, particular debugging
1ssues may not be exposed 1n the same manner due to
differences in the cache and system state caused by the
debugging operation, and may even hide the problem being
debugged.

Therelfore, there 1s a need for a debugging circuit and
method that solves the above problems.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mvention 1s illustrated by way of example
and not limited by the accompanying figures, in which like
references indicate similar elements, and in which:

FIG. 1 1llustrates, 1n block diagram form, a data process-
ing system in accordance with one embodiment of the
present mvention.

FIG. 2 illustrates, 1n block diagram form, a processor of
the data processing system of FIG. 1.

FI1G. 3 illustrates, 1n block diagram form, a portion of the
processor ol FIG. 2.

FIG. 4 1llustrates an instruction bit field m accordance
with the present mvention.

Skilled artisans appreciate that elements in the figures are
illustrated for simplicity and clarity and have not necessarily
been drawn to scale. For example, the dimensions of some
of the elements in the figures may be exaggerated relative to

10

15

20

25

30

35

40

45

50

55

60

65

2

other elements to help improve the understanding of the
embodiments of the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

As used herein, the term “bus™ 1s used to refer to a
plurality of signals or conductors which may be used to
transier one or more various types of information, such as
data, addresses, control, or status. The conductors as dis-
cussed herein may be illustrated or described 1n reference to
being a single conductor, a plurality of conductors, unidi-
rectional conductors, or bidirectional conductors. However,
different embodiments may vary the implementation of the
conductors. For example, separate unidirectional conductors
may be used rather than bidirectional conductors and vice
versa. Also, plurality of conductors may be replaced with a
single conductor that transfers multiple signals serially or 1n
a time multiplexed manner. Likewise, single conductors
carrying multiple signals may be separated out into various
different conductors carrying subsets of these signals. There-
fore, many options exist for transierring signals.

Generally, the present invention provides, 1n one embodi-
ment, a method and apparatus for showing a data block from
a cache memory that 1s not directly visible on a system bus
during a debugging operation. The data block 1s shown by
making the data block available on a system bus. When
shown, the data block cache status 1s not modified regardless
of whether 1t 1s currently “dirty” or “clean”. In one embodi-
ment, the method 1s implemented as an 1nstruction 1n a data
processing system. The instruction causes the data block to
be exposed to the system bus where 1t can be captured by a
debugging circuit, such as an IEEE ISTO-3001 compliant
Nexus™ debugging unit. Nexus™ 1s a trademark of Frees-
cale Semiconductor, Inc. located in Austin, Tex. The current
state of the cache 1s not affected, including data tag and
status information associated with each cache entry, as well
as all replacement location logic used to determine an entry
to next be replaced on a cache miss. Also, 1f the value 1s not
in the cache, the value can be retrieved from the system
external to the cache so that 1t 1s made wvisible to the
debugging circuit, without having the value written to the
cache. The mstruction allows real-time debugging circuits to
be able to view the current value of one or more variables in
memory that may be hidden from access due to cache
hierarchy without moditying the value or impacting the
current state of the cache.

Normally, prior art systems utilize a series of memory
access 1nstructions such as load and store instructions, or
utilize one or more cache management istructions, such as
a block flush 1nstruction, to cause operand values contained
in one or more memory locations (which may be cached) to
be made visible to a real-time debug unit so that the values
can be captured and messaged out externally to the user of
the system for debugging purposes. However, these prior art
methods interact with a cache or caches 1n the system and
cause normal activity such as cache line replacements and
allocations, and state changes to cache line status to occur,
which 1ntrusively modily the state of the system. This
intrusive modification 1s not desirable, since 1t interacts with
the normal activity of the system which would have
occurred if no debugging activity was performed, and this
interaction may cause numerous umntended side-eflects.

In one aspect there 1s provided a method for operating a
processor coupled to a system bus and having a cache. The
method comprises: receiving an mstruction which indicates
an eflective address; and executing the instruction, wherein
executing the instruction comprises: determining if the

US RE47,851 E

3

eflective address results in a hit or a miss in the cache; and
when the eflective address results 1n a hit, providing data
associated with the effective address from the cache to the
system bus without moditying a state of the cache.

In another aspect there 1s provided a method for operating
a processor coupled to a system bus and having a cache, the
method comprising: recerving an mstruction which indicates
an ellective address; determining that the eflective address
results 1n a hit in the cache, wherein determining comprises
identifying a hit entry in the cache associated with the
cllective address; and when a dirty bit of the hit entry
indicates that data stored 1n the hit entry 1s clean, providing
at least a portion of the data stored 1n the hit entry from the
cache to the system bus.

In yet another aspect there i1s provided a method for
operating a processor having a table look-aside builler
(TLB). The method comprises: receiving an 1instruction
which indicates an effective address and which includes a
TLB exception indicator; providing the effective address to
the TLB: when the eflective address results 1n a miss 1n the
TLB, selectively taking an exception based on the TLB
exception indicator; and when the effective address results 1n
a hit 1n the TLB, providing a translated address from the
TLB corresponding to the effective address.

In yet another aspect there 1s provided a data processing
system that comprises a processor having a cache, the
processor coupled to receive and execute instructions from
debug circuitry. The cache comprises a cache array storing
a plurality of cache entries and cache control circuitry. The
cache control circuitry 1s coupled to the cache array and
determines 1f an effective address indicated by an instruction
received from the debug circuitry results in a hit or a miss
in the cache array. When the eflective address results 1n a hat,
the cache control circuitry enables the cache array to provide
data associated with the eflective address to a system bus
coupled to the processor and the debug circuitry without
modilying a state of the cache array.

FI1G. 1 1llustrates, 1n block diagram form, a data process-
ing system 10 in accordance with one embodiment of the
present invention. Data processing system 10 includes a
processor 12, a debug circuit 14, an mput/output (I/0) 16,
and a memory 18, all bi-directionally coupled to a bus 20.

Note that in one embodiment, all of data processing
system 10 may be located on a single integrated circuit or
within a same device. Alternatively, data processing system
10 may include any number of separate integrated circuits or
separate devices interconnected with each other. For
example, 1 one embodiment, the memory 18 may be
located on one or more 1ntegrated circuits, separate from the
rest of data processing system 10.

The memory 18 may be any type of memory, such as, for
example, a read only memory (ROM), a random access
memory (RAM), non-volatile memory (e.g. Flash), eftc.
Also, memory 18 may be a memory or other data storage
located within another peripheral or slave or on a different
integrated circuit.

In one embodiment, processor 12 and debug circuitry 14
are bus masters. In one embodiment, processor 12 1s a
processor capable of executing instructions, such as a micro-
processor, digital signal processor, etc., or may be any other
type ol bus master, such as for example, a direct memory
access (DMA) controller, or the like. Note that other slave
devices may be included 1n data processing system 10 that
are not illustrated 1 FIG. 1, such as for example, another
memory coupled to bus 20, as well as any type of peripheral
circuit which resides on the system bus or coupled to I/O
circuit 16.

10

15

20

25

30

35

40

45

50

55

60

65

4

Processor 12 includes a cache 13. Cache 13 functions as
a level one (LL1) cache for storing data and/or instructions for
use by processor 12. Typically, data and/or mstructions are
loaded mto cache 13 from memory 18 before being executed
by the processor. Cache 13 may comprise a separate data
cache and a separate instruction cache. Cache 13 comprises
one or more data arrays, one or more tag arrays, and one or
more status bit arrays. In some embodiments the tag and
status information may be stored in a common array. Each
cache entry consists of a block or line of data, a tag value
which associates the data with a memory address, and status
information, including whether the cache entry 1s valid,
whether the cache entry 1s “dirty™, 1.e. modified with respect
to the data associated with the same address in memory 18
or other external memory blocks 1f present, and other
associated status information. In one embodiment, memory
18, or a portion of memory 18 may be characterized as a
level two (LL2) cache.

An 1mput/output (I/O) module 16 1s bi-directionally con-
nected to the bus 20 and to external circuitry (not shown).
The I/O module 16 includes various interface circuits
depending upon type of external circuitry that 1s connected
to the I/O module 16. 1/0 module 16 may optionally contain
one or more alternate bus masters coupled to bus 20.

Debug circuit 14 1s bi-directionally connected to bus 13
and to processor 12 via bus 15. Debug circuit 14 1s also
bi-directionally connected to external circuitry (not shown)
such as a hardware tester or other debugging interface
hardware.

In general, debug circuitry 14 functions as a diagnostic
check for data processing operations related to an access to
cache 13, memory 18, and I/O module 16, and 1n other
embodiments, other types of data retention circuits utilized
by data processing system 10 whether imnternal to or external
to data processing system 10. The processor 12 and alternate
bus masters obtain mastership of the system bus 20 as
needed and selectively access the system memory 18 to
retrieve and store data and 1nstructions. Debug circuitry 14
may be configured by the user of data processing system 10
to capture the values of one or more memory locations by
monitoring addresses presented on bus 20, and capturing or
sampling the related data values presented on bus 20. During
bus read operations, the data values are provided by a
selected slave device such as memory 18. During bus write
operations, the data values are provided by a bus master of
bus 20 such as processor 12. As the bus transfers occur,
debug circuitry 14 momnitors each transfer and selectively
captures data values corresponding to data locations the user
of debug circuitry 14 wishes to monitor. These values and
conditions may be programmed 1nto and transferred from
debug circuitry 14 via the terminals shown 1n FIG. 1.

Certain limitations 1n prior art systems are overcome by
the current invention. In prior art systems, 11 a data variable
or value 1s located within cache 13, the data value may be
modified with respect to the corresponding value 1n memory
18, 1.e. the latest (most up to date) value 1s not present 1n
memory 18, but only within cache 13. If debug circuitry 14
accesses memory 18 to obtain the desired variable’s value,
it will not get a correct copy, since the copy may be modified
internally in cache 13.

An 1nstruction 1s provided 1n data processing system 10 to
allow debug circuitry 14 to “see” a value which may be
stored 1n cache 13. The instruction 1s herein after referred to
as a “data cache block show” instruction and includes an
ellective address corresponding to the value. The instruction
1s executed by the processor. It 1s determined 11 the effective
address results 1n a “hit” or a “miss” 1n the cache. When the

US RE47,851 E

S

ellective address results 1n a hit, the value 1s provided to bus
20 associated with the effective address from the cache 13.
Debug circuitry 14 then has access to the value from the bus
20 as 1t 1s provided by the processor. In one embodiment,
debug circuitry 14 monitors transactions on bus 20, and is
capable of sampling the address and associated data values
as bus transiers occur. Desired values can then be transferred
alter sampling to a user of the system performing a debug-
ging operation by means of signals from debug circuitry 14
of FIG. 1. A state of cache 13 1s not modified when the value
1s placed on the bus 20. In prior art systems, 1t 1s not possible
to place the value of the data variable on bus 20 from cache
13 when a cache hit occurs, since the cache satisfies the prior
art load or store request generated by a normal load or store
instruction. This causes an 1ssue for debug circuitry 14, since
the value 1s not made visible on bus 20 for capture. When the
effective address results in a miss, one feature of the
instruction allows the value to be retrieved from another
memory, such as for example, memory 18. If value 1s
retrieved from another memory, the value 1s placed on bus
20 by the memory during retrieval, allowing access to the
value by debug circuitry 14. Note that the value 1s not then
stored 1 cache 13 as required by normal load and store
instruction misses. The value 1s discarded after being shown
on bus 20. By discarding the value and not allocating a
replacement cache entry as 1s done for normal cache misses
incurred by normal load and store instructions, the result of
executing the data cache block show nstruction has minimal
cllect on the state of the cache, thus simplifying debug of the
system, since the debug operation 1s minimally intrusive.
Cache lines are not replaced on misses, and no state changes
occur to the status bits, data, or tag information contained 1n
the cache. In addition, regardless of hit or miss outcome, the
state of one or more cache line replacement algorithm state
variables remain unchanged, such as least recently used
status bits, etc.

Typically, some data values are subject to change and are
updated in response to executing instructions. In some
debugging situations it may be desirable to retrieve the latest
version of the value even when resident 1n the cache. A
“dirty bit” 1s associated with a cache entry indicates whether
or not data in the cache associated with the effective address
1s different (1.e. has been modified) from data stored at
another memory location, such as memory 18, correspond-
ing to the effective address. In accordance with the disclosed
embodiment, a “dirty bit” associated with the eflective
address of the value 1s not modified when the value is
retrieved from the cache and presented to the system bus 20
in response to executing the data cache block show nstruc-
tion. Likewise, cache 13 1s not modified if the value asso-
ciated with the eflective address 1n cache 13 1s the same as
the value 1n another memory location, 1.¢. the data 1s clean.
In other words, even when a dirty bit of the hit cache entry
indicates that data stored in the entry 1s clean, the data stored
in the entry 1s provided to bus 20 and the entry 1s not
modified. When a dirty bit of the hit cache entry indicates
that data stored in the entry 1s dirty, the data stored in the
entry 1s still provided to bus 20, and the entry 1s not
modified, and the dirty bit 1s not cleared, unlike 1n prior art
cache control mstructions. The data cache block show
instruction will be discussed in more detail below.

FI1G. 2 illustrates, 1n block diagram form, processor 12 of
the data processing system 10 of FIG. 1. Processor 12
includes cache 13, bus interface unit 26, general purpose
registers (GPRS) 32 translation look-aside bufler (TLB) 35,
internal debug circuitry 34, control circuitry 36, instruction
decode unit 38, instruction fetch unit 40, and execution units

10

15

20

25

30

35

40

45

50

55

60

65

6

42. Note that in the following description regarding the
connections between blocks 1n FIG. 2, some of the various
connections are repeated. Also, each of the various connec-
tions includes multiple conductors. In FIG. 2, cache 13 1s
bi-directionally coupled to control circuitry 36, to execution
units 42, to instruction fetch unit 40, to TLB 35, to BIU 26,
and to internal debug circuit 34. TLB 335 1s bi-directionally
coupled to control circuitry 36, to execution units 42, and to
cache 13. Execution units 42 1s bi-directionally coupled to
cache 13, to instruction decode unit 38, to TLLB 35, to control
circuitry 36, and to GPRS 32. BIU 26 1s bi-directionally
coupled to cache 13, to instruction fetch unit 40, to control
circuitry 36, to execution units 42, and to bus 20. GPRS 32
1s bi-directionally coupled to control circuitry 36, and to
execution units 42. Internal debug circuit 34 1s bi-direction-
ally coupled to control circuitry 36. Control circuitry 36 1s
bi-directionally coupled to instruction fetch unit 40, to
instruction decode unit 38, to TLB 35, to cache 13, to BIU
26, to execution units 42, to internal debug circuit 34, and to
GPRS 32. Control circuitry 36 includes a condition register
377. Condition register 37 generally retlects results of imstruc-
tion execution. Typically, these include relational values set
as the result of an arithmetic, logical, or comparison opera-
tion 1nstruction. In addition, 1n one embodiment, condition
register 37 may be updated with status reflected during
operation of the data cache block show instruction. For
example, when the data cache block show instruction 1is
provided by, for example, debug circuitry 14 for execution
by processor 12, an error may occur during the attempted
execution of the mstruction. The condition register 37 com-
prises one or more error update indicators that can be
updated by processor 12 1n response to an error occurring
during execution of the instruction. Instruction decode unit
38 1s bi-directionally coupled to debug circuitry 14, to
instruction fetch unit 40, and to execution units 42. Instruc-
tion fetch unmit 40 1s bi-directionally coupled to debug
circuitry 14, to instruction decode unit 38, to cache 13, and
to BIU 26. Each of instruction fetch unit 40, instruction
decode unit 38 and control circuitry 36 are directly coupled
to debug circuitry 14. Note that in other embodiments,
processor 12 may have different processing blocks and the
connections between the blocks may be different.

FIG. 3 illustrates, in block diagram form, cache 13 and
TLB 35 of the processor 12 of FIG. 2 1n more detail. Cache
13 includes cache control circuitry 54 and cache array 50.
TLB 35 includes TLB control circuitry 56 and bufler 58.
Cache array 50 1s an array of random access memory cells
organized as a plurality of entries. In one embodiment, cache
array 50 comprises SRAM (static random access memory)
memory cells. In other embodiments, other memory types
are suitable. In FIG. 3, entry 52 1s representative of the
plurality of entries and includes a TAG address bit field
labeled “TAG ADDRESS FIELD”, a TAG status bit field
labeled “TAG STATUS BITS” and a data bat field labeled
“DATA”. The TAG status bit field includes a valid bat
labeled “V” and a dirty bit labeled “D”. Each entry may be
referred to as a “cache line” for processor 12. Cache array
50 1s bi-directionally coupled to both cache 3 0 control
circuitry 54 and to bus 20 via BIU 26. Cache control
circuitry 54 1s bi-directionally coupled to control circuitry
36. Cache control circuitry 54 determines 1f an eflective
address pointed to by an instruction received from, for
example, cache 13, memory 18, or debug circuitry 14 1s a hit
or amiss in cache 13. In TLB 35, bufler 58 1s bi-directionally
coupled to TLB control circuitry 56 and 1s for storing
physical addresses that correspond to the effective addresses
from execution units 42. TLB control circuitry 36 1s coupled

US RE47,851 E

7

to both control circuit 36 and to cache control circuitry 54
for providing a TLB hit or miss indicator. TLB control
circuitry 56 1s also coupled to cache control circuitry 54 for
providing a physical address corresponding to an effective
address (EA). Address translation from an eflective address
to a physical address 1s performed by TLB 335 in a standard
manner as 1s known 1n the art. Cache control circuitry 34
determines 1f an eflective address pointed to by an instruc-
tion results in a hit or miss by comparing the physical
address for an access provided by TLB 35, to the stored
value(s) contained in one or more tag entries in cache array
50. In some embodiments, TLB 35 1s optional, and if not
present, the effective address (EA) 1s provided directly to
cache 13 without translation. In such embodiments, stored
tag values correspond directly to effective addresses without
address translation to a physical address occurring.

FI1G. 4 1llustrates a data cache block show instruction bit
field 60 1n accordance with the present invention. The data
cache block show instruction can be issued by any bus
master of data processing system 10. In the illustrated
embodiment, the data cache block show instruction 1s 1ssued
by debug circuitry 14. In other embodiments, one or more
data cache block show instructions may be stored in pro-
gram memory locations contained 1n memory 18, or else-
where within data processor 10, and may be retrieved by
processor 12 as a part of normal struction stream process-
ing. In one embodiment, bits [0-5] of the instruction are used
to identily the instruction as the data cache block show
mstruction. In the illustrated embodiment, bits [0-5] are
011111. In other embodiments, bits [0-5] may be different.
In addition, 1n other embodiments, the number of bits in each
bit field may be diflerent. Bits [6-10] are labeled “#opt” and
are for indicating which of five features are to be used with
the 1nstruction:

#opt=[miss_fetch_true, signal TLB_exceptions,
of_show, mask_data_bkpt, record_status].

Bits [11-15], labeled “RA” and bits [16-20] labeled “RB”
are the effective address oflset and the effective address base
register values, respectively, use to compute the effective
address of the data to be made available on bus 20. Bits
[21-30] labeled “TBD” are not used for this instruction. Bit
[31] indicates the end of the instruction.

The data cache block show 1nstruction 1s provided to force
visibility of a potentially cached location to an agent exter-
nal to the processor 12, for example, debug circuitry 14 for
debug visibility purposes. No data breakpoint event occurs
as part of the execution of this mnstruction if the option bit
field #opt[mask_data_bkpt] of bits [6-10] indicates break-
points should be masked. Normal load and store instructions
continue to generate data breakpoint events if so enabled by
internal debug circuitry 34 of FIG. 2. Watchpoint signaling
1s implementation dependent, and may also be controlled by
internal debug circuitry 34 of FIG. 2 to generate watchpoint
events when certain eflective address matches for a data
access occur. If the data block containing the byte addressed
by an eflfective address 1s 1n the data cache of this processor
and no TLB Miss or Protection violation occurs, the
addressed data block 1s written to a memory higher 1n the
memory hierarchy, such as for example, memory 18. When
the instruction 1s executed, the state of the data block in
cache 13 1s not altered. The data block 1s written to bus 20
regardless of whether it 1s “dirty” or “clean”.

The size of the data block written to bus 20 1s determined
by the feature #opt[size_oif_show], where “size_ol_show” 1s
a data block size indicator. The data block “shown™ by the
instruction may be all of a cache line associated with an
ellective address or may be less than all of a cache line based

size

10

15

20

25

30

35

40

45

50

55

60

65

8

on the size indicator. If the data block containing the byte
addressed by the eflective address 1s not 1n cache 13 and the
feature #Hopt|miss_1Ietch_true] indicates that miss fetching
should occur, the addressed block 1s fetched from another
memory ol the system, such as memory 18, to be made
visible on bus 20 for capture by debug circuitry 14, and 1s
discarded by Processor 12. Otherwise, 11
#opt[miss_fetch_true] indicates no miss fetching 1s to occur,
then the instruction 1s treated as a NOP (no operation) 1f a
miss occurs and no data 1s provided to bus 20.

If #opt[signal_TLB_exceptions] 1s set as true, then the
cllective address 1s translated to a physical address by TLB
35 and the physical address used to determine 1f the effective
address results 1 a hit or a miss. If a TLB Miss or TLB
Protection violation occurs, 1t 1s signaled within processor
12, and exception processing 1s initiated to deal with the
generated error condition. Conversely, 11 #opt[signal_TL-
B_exceptions] 1s set as false, TLB Miss and TLB Protection
violations are ignored, and the instruction 1s treated as a
NOP of one 1f these conditions 1s encountered, and no
exception 1s taken. If TLB errors, bus errors, or other errors
occur as part of the execution of this instruction, the errors
are signaled via a status bit in the control register 37 1f
#opt[record_status] 1s set.

The feature #opt[signal TLB_exceptions] can be used
with other instructions besides the data cache block show
istruction. When #opt[signal_TLB_exceptions] 1s set true,
a elfective address associated with an instruction 1s provided
to TLB 35. When the eflective address results 1n a miss in
the TLB 35, an exception 1s taken based on the whether
#opt[signal_TLB_exceptions] 1s set true or false. When the
effective address results 1n a hit in TLB 35, a translated
address 1s provided from TLB 35 for the eflective address.
When the effective address results 1n a miss in TLB 35 and
the #opt[signal_TLB_exceptions] 1s set true, execution of
the mnstruction will result in a TLB Miss exception being
signaled, and appropriate exception processing activity 1s
initiated by processor 12. When the effective address results
in a miss 1n TLB 35 and the #opt[signal_TLB_exceptions]
1s set false, execution of the instruction will not result 1n a
TLB Miss exception being signaled, and instead, a no-
operation, or other default result will be processed by
processor 12. In this manner, an 1nstruction specifier can be
used to condition whether a normally generated TLB excep-
tion condition will result 1 exception processing or will
result 1n a default result being provided, such as a no-
operation.

Note that the function of the data cache block show
instruction 1s mdependent of whether the data block con-
taining the byte addressed by an eflective address 1s char-
acterized as “write through required” or “caching inhibited”.
In either case, the execution of the data cache block show
instruction causes the data value to be made visible on bus
20 for sampling or capture by debug circuitry 14, without
aflecting the state of the cache. It should be apparent now,
that using the data cache block show instruction of the
current invention causes the latest data value associated with
a memory location to be made visible on the system bus for
sampling or capture by debug circuitry, regardless of
whether the associated memory location 1s resident or not in
the cache, and 11 resident, regardless of the clean or dirty
status of the data, and 1n the process of making the value
visible, no current cache state, data, tag, or status is altered.
Such control results 1n greatly improved ability to debug a
system.

In the foregoing specification, the invention has been
described with reference to specific embodiments. However,

US RE47,851 E

9

one of ordmary skill in the art appreciates that various
modifications and changes can be made without departing
from the scope of the present invention as set forth in the
claims below. Accordingly, the specification and figures are
to be regarded in an 1illustrative rather than a restrictive
sense, and all such modifications are intended to be included
within the scope of present invention.

Benefits, other advantages, and solutions to problems
have been described above with regard to specific embodi-
ments. However, the benefits, advantages, solutions to prob-
lems, and any element(s) that may cause any benefit, advan-
tage, or solution to occur or become more pronounced are
not to be construed as a critical, required, or essential feature
or element of any or all the claims. The terms a or an, as used
herein, are defined as one or more than one. The terms
including and/or having, as used herein, are defined as
comprising (1.€., open language). As used herein, the terms
“comprises,” “comprising,” or any other variation thereof,
are intended to cover a non-exclusive inclusion, such that a
process, method, article, or apparatus that comprises a list of
clements does not include only those elements but may
include other elements not expressly listed or inherent to
such process, method, article, or apparatus.

What 1s claimed 1s:
1. A method for operating a processor coupled to a system
bus and having a cache, comprising:
receiving an instruction which indicates an eflective
address and provides a breakpoint disable indicator;
and executing the instruction, wherein executing the
istruction comprises:
selectively disabling data breakpoints during execution
of the instruction based on the breakpoint disable
indicator;
determining 11 the eflective address results 1n a hit or a
miss 1n the cache; and
when the eflective address results in a hit, providing
data associated with the effective address from the
cache to the system bus without modifying a state of
the cache; and
when the effective address results in a miss, selectively
providing data associated with the effective address
from a memory to the system bus based on a fetch
indicator provided by the instruction, wherein when
the data associated with the effective address is
provided from the memory to the system bus, the data
associated with the effective address is not stoved in
the cache.
[2. The method of claim 1, wherein executing the instruc-
tion further comprises:
when the eflective address results 1n a miss, selectively
providing data associated with the effective address
from a memory to the system bus, wherein when the
data associated with the eflective address 1s provided
from the memory to the system bus, the data associated
with the effective address is not stored in the cache.]
[3. The method of claim 2, wherein when the effective
address results 1n a miss, selectively providing data associ-
ated with the eflective address from the memory to the
system bus based on a fetch indicator provided by the
instruction. J
4. The method of claim [3] /, wherein when the fetch
indicator indicates fetching and when the eflective address
results 1n a miss, data associated with the eflective address
1s provided from the memory to the system bus.
5. The method of claam 4, wherein when the fetch
indicator indicates no fetching and when the eflfective

10

15

20

25

30

35

40

45

50

55

60

65

10

address results 1n a miss, data associated with the eflective
address 1s not provided from the memory to the system bus.

6. The method of claim 1, wherein when the eflective
address results 1n a hit, providing the data associated with
the eflective address from the cache to the bus without

moditying the state of the cache comprises:
providing the data associated with the eflective address
from the cache to the bus without modifying a dirty bit
in the cache associated with the eflective address, the

dirty bit indicating whether or not the data associated
with the effective address stored 1n the cache 1s difterent

from data stored at a memory location in the memory

corresponding to the eflective address.

7. The method of claim 1, wherein when the effective
address results 1n a hit, the data associated with the eflective
address that 1s provided from the cache to the system bus has
a same value as data stored at a memory location in the
memory corresponding to the eflective address.

8. The method of claim 1, wherein receiving the nstruc-
tion which indicates the eflective address comprises receiv-
ing the instruction from debug circuitry coupled to the
system bus.

9. The method of claim 1, whereimn the instruction pro-
vides a size indicator, and wherein the data associated with
ellective address provided from the cache to the system bus
comprises all of a cache line associated with the effective
address or less than all of the cache line associated with the
eflective address, based on the size indicator.

10. The method of claim 1, wherein executing the nstruc-
tion further comprises:

translating the eflective address to a translated address

using a translation look-aside bufler (TLB), wherein
determining 1f the eflective address results 1n a hit or a
miss 1 the cache comprises using the translated
address to determine 1f the eflective address results 1n
a hit or a miss.

11. The method of claim 10, wherein the instruction
provides a TLB exception indicator which indicates whether
or not an exception 1s to be taken if the eflective address
results 1n a miss 1n the TLB.

12. The method of claiam 1, wherein the instruction
provides an error update indicator, and wherein the execut-
ing the instruction further comprises:

based on the error update indicator, selectively updating a

field 1 a condition register of the processor 1n response
to an error occurring during execution of the mnstruc-
tion.
13. A method for operating a processor coupled to a
system bus and having a cache, comprising:
recerving an 1nstruction which indicates an eflective
address, the istruction including a size indicator;

determining that the effective address results 1n a hit 1n the
cache, wherein determining comprises 1dentifying a hit
entry 1n the cache associated with the effective address;
and

when a dirty bit of the hit entry indicates that data stored

in the hit entry 1s clean, providing at least a portion of
the data stored in the hit entry from the cache to the
system bus, wherein a size of the at least a portion of
the data 1s determined based on the size indicator.

14. The method of claim 13, when the dirty bit of the hit
entry indicates that the data stored 1n the hit entry 1s clean,
the data stored in the hit entry of the cache 1s unmodified
with respect to data stored at a memory location in a memory
coupled to the system bus, the memory location correspond-
ing to the eflective address.

US RE47,851 E

11

15. The method of claim 13, further comprising;

when the dirty bit of the hit entry indicates that data stored
in the hit entry 1s dirty, providing at least a portion of
the data associated with the eflective address from the
cache to the system bus.

16. The method of claim 15, wherein the at least a portion
ol the data associated with the etfiective address stored 1n the
hit entry 1s provided from the cache to the system bus
without modifying the dirty bit of the hit entry.

17. The method of claim 13, when the dirty bit of the hit
entry indicates that data stored in the hit entry 1s clean, the
at least a portion of the data stored 1n the hit entry 1s provided
from the cache to the system bus without moditying the dirty
bit of the hit entry.

18. A method for operating a processor having a table
look-aside bufler (TLB), the method comprising:

receiving an 1instruction which indicates an eflective
address and which includes a TLB exception indicator;

providing the effective address to the TLB;

when the eflective address results 1n a miss in the TLB,
selectively taking an exception based on the TLB
exception indicator; and

when the eflective address results in a hit in the TLB,
providing a translated address from the TLB corre-
sponding to the eflective address.

19. The method of claim 18, wherein when the eflective
address results 1n a miss i the TLB and the exception 1s
taken based on the TLB exception indicator, the method
turther comprises processing the exception to provide a
translated address corresponding to the eflective address.

20. The method of claim 19, wherein when the effective
address results 1 a miss 1n the TLB and the exception 1s not
taken based on the TLB exception indicator, the method
turther comprises treating the mstruction as a no-operation
(NOP) instruction.

21. The method of claim 19, wherein when the effective
address results 1n a miss 1n the TLB and the exception 1s not
taken based on the TLB exception indicator, no translated
address 1s provided for the eflective address 1n response to
the 1nstruction.

22. A data processing system comprising:

a processor having a cache, the processor coupled to
receive and execute instructions from debug circuitry,
the cache comprising;:

a cache array storing a plurality of cache entries; and

cache control circuitry coupled to the cache array, the
cache control circuitry determining 1f an effective
address indicated by an instruction received from the
debug circuitry results 1n a hit or a miss 1n the cache
array, and
wherein:
when the effective address results 1n a hit, the cache
control circuitry enables the cache array to provide
data associated with the effective address to a system
bus coupled to the processor and the debug circuitry,
without moditying a state of the cache array, and

when the effective address results 1n a miss, the pro-
cessor selectively enables a fetch of the data asso-
ciated with the eflective address from a memory
coupled to the system bus, wherein when the pro-
cessor enables the fetch of the data associated with
the eflective address from the memory to the system
bus, the data associated with the effective address 1s
not stored in the cache array.

23. A method for operating a processor coupled to a
svstem bus and having a cache comprising:

10

15

20

25

30

35

40

45

50

55

60

65

12

receiving an instruction which indicates an effective
address and provides a TLB (table look-aside buffer)
exception indicator that indicates whether or not an
exception is to be taken if the effective address results
in a miss in a TLB: and
executing the instruction, wherein executing the instruc-
lion comprises:
determining if the effective address vesults in a hit or a
miss in the cache;
translating the effective address to a translated address
using the TLB, wherein determining if the effective
address results in a hit or a miss in the cache
comprises using the translated address to determine
if the effective address results in a hit or a miss; and
when the effective address rvesults in a hit, providing data
associated with the effective address from the cache to
the system bus without modifying a state of the cache.
24. A method for operating a processor coupled to a
system bus and having a cache;
receiving an instruction which indicates an effective
address and provides a size indicator and an errvor
update indicator; and
executing the instruction, wherein executing the instruc-
tion comprises.
determining if the effective address results in a hit or a
miss in the cache;
when the effective address rvesults in a hit, providing
data associated with the effective addrvess from the
cache to the system bus without modifying a state of
the cache, wherein a size of the data provided is
determined based on the size indicator; and
based on the ervor update indicator, selectively updating
a field in a condition register of the processor in
response to an error occurring durving execution of the
instruction.
25. A method for operating a processor coupled to a
svstem bus and having a cache, comprising:
receiving an instruction from debug circuitry which indi-
cates an effective address; and
executing the instruction, wherein executing the instruc-
lion comprises:
determining if the effective address results in a hit or a
miss in the cache; and
when the effective address vesults in a hit, providing
data associated with the effective address from the
cache to the system bus without modifying a state of
the cache; and
when the effective address vesults in a miss, selectively
enabling, by the processor, a fetch of the data associ-
ated with the effective addvess from a memory coupled
to the system bus, wherein the fetched data associated
with the effective address is not stored in the cache.
26. A method for operating a processor coupled to a
svstem bus and having a cache, comprising:
receiving an instruction which indicates an effective
address and provides a TLB (table look-aside buffer)
exception indicator,; and
executing the instruction, wherein executing the instruc-
lion comprises:
determining if the effective address vesults in a hit or a

miss in the TLB; and

when the effective address results in a miss, selectively
taking an exception based on the TLB exception
indicator, and

US RE47,851 E
13

when the effective address vesults in a hit in the TLB,
providing a translated address from the TLB corre-
sponding to the effective address.

G e x Gx ex

14

	Front Page
	Drawings
	Specification
	Claims

