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HIGH PERFORMANCE MEMORY BASED
COMMUNICATIONS INTERFACE

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a Divisional of U.S. patent application

Ser. No. 11/535,258, filed Sep. 26, 2006, which claims
priority to U.S. Provisional Application No. 60/736,004,
filed Nov. 12, 2005. The entireties of all of the atoremen-

tioned applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the present mvention relate to high
performance memory based communications interfaces. In
particular, embodiments of the present invention relate to
methods and systems for reducing or eliminating the com-
munications bottleneck between multi-processor computing,
systems and communication networks.

2. Description of the Prior Art and Related Information

The ever-growing need for computational performance 1s
being satisfied by increasingly powerful commercial pro-
cessors, and topologies that combine a plurahty ol proces-
SOI'S around a communications network. To eflectively uti-
lize the power of such a system, especially where application
software that 1s runming concurrently on the processors
needs to interact with each other, requires the use of an
appropriate communications network. To date, the power of
processors has outpaced the advances of communication
network implementations, causing a bottleneck 1n the per-
formance of applications.

Parallel applications typically interwork through an inter-
mediary layer of soitware that abstracts the specifics of the
underlying networks. These software layers may be, for
example, a communications focused protocol stack (e.g.
Transmission Control Protocol/Internet Protocol—TCP/IP)
or a library (e.g. Message Passing Interface—MPI) which
may include both communications and value added services.
Communication network implementations include network
switching (which transmit network level entities to their
destinations), network endpoint processing (which provide
the network transmit and network receive functions on
behalf of the host) and communications endpoint processing
(which provide eflicient writing and reading of data to/from
memory, iterface to/from the network endpoint processors,
synchronization of the data with workloads, and providing
quality of service guarantees to workloads).

The computational domain 1s primarily designed for func-
tional richness (support for Operating Systems—OS, Librar-
ies, Application Program Interfaces—API’s, multi-thread-
ing etc), whereas the communications domain 1s primarily
designed for simplicity, throughput and low latency. The
computational domain 1s typically software based and the
communications domain 1s primarily hardware based (al-
though this 1s not always the case). The interfacing of these
two domains may cause performance bottlenecks.
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Conventional methods and systems for addressing the
interface between the computational and communications
domain have been characterized by a number of mitiatives
for high-performance networking. The most dominant
approach 1s Ethernet. Ethernet solutions include Ethernet
switches and host NICs (Network Interface Controller) that
may include switch endpoint and commumnications endpoint
functions. Ethernet communications solutions have evolved
with respect to bandwidth (as of this writing, [10 Gbs
Ethernet] 10GE 1s emerging and the Institute of Electrical
and Electronics Engineers [IEEE] 1s looking at 40 Gbs
Ethernet rates as a next step), and with respect to function-
ality. Ethernet networks use a NIC to map frames in main
processor memory to the network. They incorporate a Direct

Memory Access (DMA) controller, but this typically 1is
limited to sending a frame (or packet) at a time for trans-
mission to the network. Ethernet with Hardware Ofiload
Acceleration extends the Fthernet capability by adding

support for TCP and RDMA (Remote DMA) protocols on
top of the core Ethernet. Importantly, this protocol still only

sends one fame (or packet) at a time. The latest NICs have
included TCP offload, Direct Memory Access (DMA),

Remote Direct Memory Access (RDMA), and Internet SCSI
(Small Computer System Interface) (1SCSI) hardware sup-
port. Software maps the services to standards based TCP
communications.

Asynchronous Transfer Mode (ATM) has a variety of
NIC’s and Switches, with software to adapt standards based
interfaces to the ATM network. ATM 1s not being evolved as
a significant computer 1mterconnect technology. With ATM,
the frame 1s typically transmitted as a packet to the ATM
NIC where 1t 1s stored in local memory and Segment
Assembly and Reassembly (SAR) functions are performed.

Infiniband 1s a computer industry inmtiative aimed to
provide high performance interconnect. Infimband 1s a
whole cloth solution providing, switches, Host Channel
Adapters, interface software and standards based software
mapping. Indeed, Infiniband defines an interface between
computer memory and a high performance network. The
Infiniband Architecture (IBA) includes an industry defined
specification that defines the Meta Architecture of Infini-
band. At the architecture specification level, there are dif-
ferences in the methods used to map the data queues to
applications. The implementation of IBA has been limited
due to a lack of acceptance of this architecture outside of
high performance applications. There are a number of ven-
dors that provide Infiniband hardware and software compo-
nents.

There are also a number of other proprietary hardware
interface devices and switches that, when combined with
appropriate software, may be used for computer communi-
cations. Such communication switches are typically used for
data communications and have a rich set of “quality of
service” attributes. They are typically packet oriented and
the interface device receives packets over an electrical bus
and the device performs internal segmentation and storage 1n
local memory.

Due to the shortcomings of the existing solutions, more
cllicient systems and methods need to be developed to
reduce or eliminate the communications bottleneck between
multiprocessor computing systems and communication net-
works.

SUMMARY OF THE CLAIMED
EMBODIMENTS

Accordingly, an embodiment of the present invention 1s a
method for transmitting a data packet including a header and
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a payload to a communications medium. The method may
include steps of segmenting the data packet mto a plurality
of fragments stored 1n non-contiguous portions of a com-
puter memory; generating a fragment descriptor for each of
the plurality of fragments such that one of the generated
fragment descriptors 1s associated with the header and at
least one other of the generated fragment descriptors is
associated with the payload; storing the generated fragment
descriptors 1in contiguous portions of the computer memory;
sending the stored plurality of fragment descriptors across
an interface; retrieving the sent fragment descriptors from
the interface; reassembling the segmented data packet by
retrieving the header and the payload associated with the
retrieved fragment descriptors from the computer memory,
and transmitting the reassembled data packet to the com-
munications medium.

The segmenting, generating, storing and sending steps
may be carried out by a communications endpoint processor
(CEP) kernel. The segmenting, storing and sending steps
may be carried out 1n protected kernel space. The segment-
ing, storing and sending steps may be carried out in user
space. At least some of the functionality of the CEP kernel
may be carried out by software. The retrieving, reassembling,
and transmitting steps may be carried out by a CEP engine.
At least some of the functionality of the CEP engine may be
carried out by hardware. The segmenting step may be
carried out such that each fragment descriptor includes a
data structure that defines the physical address 1n the com-
puter memory of 1ts corresponding fragment. The segment-
ing step may he carried out such that each fragment descrip-
tor mncludes, for example, a pointer to the physical address
in the computer memory of its corresponding fragment, a
length field indicating a length 1n bytes of its corresponding
fragment, a flag field indicating whether 1ts corresponding
fragment 1s a last fragment of the payload, and an instance
ID field. The segmenting step may be carried out such that
cach fragment descriptor of each fragment into which the
data packet 1s segmented stores a same instance ID in the
instance 1D field. The method may further include a step of
generating a segment descriptor that 1s associated with all of
the fragment descriptors of the fragments into which the data
packet 1s segmented. The segmenting step may be carried
out with the data packet being categorized into a medium
data packet whose size 1s less than or equal to a predeter-
mined maximum size or 1nto a large data packet whose size
exceeds the predetermined maximum size. The segmenting
step may segment the large data packet mto at least two
segments whose size 1s equal to or less than the predeter-
mined maximum size. Each of the at least two segments may
be associated with a respective segment descriptor and each
of the at least two segments may include a same header and
a plurality of fragments, the header and the plurality of
fragments each being associated with a respective fragment
descriptor. The segmenting step may include a chaining step
to chain the respective segment descriptors associated with
the at least two segments. The chaining step may include
generating a first segment chain descriptor that includes a
start address field configured to store a start address of a first
fragment descriptor of a first fragment of a first one of the
at least two segments and at least one second segment chain
descriptor between other ones of the at least two segments.
Each respective segment descriptor may include an instance
ID field and the segmenting step may include storing unique
and sequentially numbered instance IDs 1n the respective
instance ID fields.

According to another embodiment, the present invention
1s a computer communications interface for transmitting a
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data packet that includes a header and a payload to a
communications medium. The computer communications
interface may include a communications endpoint processor
(CEP) mterface; a CEP kernel coupled to the CEP interface,
the CEP kernel being configured to segment the data packet
into a plurality of fragments, to store the plurality of
fragments 1n non-contiguous portions of a computer
memory, to generate a fragment descriptor for each of the
plurality of fragments such that one of the generated frag-
ment descriptors 1s associated with the header and at least
one other of the generated fragment descriptors 1s associated
with the payload, to store the generated fragment descriptors
in contiguous portions of the computer memory and to send
the stored plurality of fragment descriptors across the CEP
interface, and a CEP engine coupled to the CEP interface,
the CEP engine being configured to retrieve the fragment
descriptors from the interface, to reassemble the segmented
data packet by retrieving the header and the payload asso-
cliated with the retrieved fragment descriptors from the
computer memory, and to transmit the reassembled data
packet to the communications medium.

At least some of the functionality of the CEP kernel may
be implemented in software. At least some of the function-
ality of the CEP engine may be implemented in hardware.
The CEP kemnel may be configured to segment the data
packet into a plurality of fragments such that each fragment
descriptor includes a data structure that defines the physical
address 1n the computer memory of 1ts corresponding frag-
ment. The CEP kernel may be further configured to segment
the data packet into a plurality of fragments such that each
fragment descriptor includes, for example, a pointer to the
physical address 1n the computer memory of 1ts correspond-
ing fragment, a length field indicating a length 1n bytes of 1ts
corresponding fragment, a flag field indicating whether 1ts
corresponding fragment 1s the last fragment of the payload
and an instance ID field. The CEP kernel may be further
configured to segment the data packet into a plurality of
fragments such that each fragment descriptor of each frag-
ment into which the data packet 1s segmented stores a same
instance ID 1n the instance 1D field. The CEP kermel may be
further configured to generate a segment descriptor that 1s
associated with all of the fragment descriptors of the frag-
ments into which the data packet 1s segmented. The data
packet may be categorized into a medium data packet whose
s1ze 1s less than a predetermined maximum size or mto a
large data packet whose size exceeds the predetermined
maximum size. The CEP kernel may be further configured
to segment the data packet such that the large data packet 1s
segmented mto at least two segments whose size 1s equal to
or less than the predetermined maximum size. Each of the at
least two segments may be associated with a respective
segment descriptor and each of the at least two segments
may include a same header and a plurality of fragments, the
header and the plurality of fragments each being associated
with a respective fragment descriptor. The CEP kernel may
be further configured to chain the respective segment
descriptors associated with the at least two segments. The
CEP kernel may be further configured to generate a first
segment chain descriptor that includes a start address field
coniigured to store a start address of a first fragment descrip-
tor of a first fragment of a first one of the at least two
segments and at least one second segment chain descriptor
between other ones of the at least two segments. Each
respective segment descriptor may include an instance 1D
field and the segmenting step may include storing unique
and sequentially numbered instance IDs 1n the respective




US RE47,756 E

S

instance ID fields. The CEP kernel may run in protected
kernel space. The CEP kernel may run 1n user space.

Yet another embodiment of the present invention 1s a
method for a local computational host to communicate with
a remote computational host, the local and remote compu-
tational hosts each comprising an operating system, a work-
load; a communication endpoint processor (CEP) kernel
coupled to the workload over an interface and a CEP engine
coupled to the CEP kernel over a CEP engine interface. The
method may include steps of the local workload mmvoking a
one sided remote memory operation across the interface to
the local CEP kernel; the local CEP kernel constructing a
memory operation command; the local CEP kernel sending,
the constructed memory operation command across a local
CEP kemnel to remote CEP engine protocol; the remote CEP
engine consuming and executing the sent memory operation
command without mvoking services of the remote CEP
kernel, the remote workload or of the remote operating
system, and the local CEP engine recerving a result of the
executed memory operation command or a confirmation that
the sent memory operation command has been carried out.

The constructing step may be carried out with the memory
operation command being, for example, a remote read
command; a remote posted write command; a remote non
posted write, a remote read-modify-write, a remote DMA
read, or a remote DMA write.

The present invention, according to another embodiment
thereot, 1s a method for optimizing a data packet i a high
performance computer system. Such a method may include
steps of preparing a payload of the data packet; passing the
prepared payload to a communications endpoint processor
(CEP) kernel; appending the CEP kernel, a header to the
prepared payload to generate a CEP kernel protocol unit that
may be optimized for a processor environment; transmitting,
by the CEP kernel, the CEP kemel protocol unit to a CEP
driver that 1s optimized for high throughput and low latency,
and transforming, by the CEP driver, the transmitted CEP
kernel protocol unit into one of a plurality of CEP kernel
protocol unit formats depending upon the size range of the
payload, each of the plurality having a different format for
cilicient handling by a CEP engine that 1s configured to
automate communication tasks and to interface to a system
memory controller for direct memory operations.

The si1ze range of the payload corresponding to each of the
plurality of CEP kernel protocol units may be program-
mable. The transforming step may transform the CEP kernel
protocol unit into a medium size CEP kernel format, a large
CEP kernel format or a small CEP kernel format. The
transforming step may be carried out independently of the
CEP kernel. The transtorming step may include a step of
representing the medium size CEP kernel format of the CEP
kernel protocol unit in a segment descriptor that includes a
definition of the physical address of all memory locations at
which the data packet 1s stored. The segment descriptor may
include an ordered plurality of fragment descriptors, each of
the plurality of fragment descriptors corresponding to a
fragment that contains a portion of the payload and defining
a physical memory location of its corresponding fragment.
The plurality of fragment descriptors may be stored 1n order
in consecutive physical memory space. The transforming
step may include transmitting, to the CEP engine, a {irst data
structure containing a virtual address 1n memory of the
header, and at least one second data structure containing a
virtual address 1n memory of the payload.

The method may turther include steps of transmitting, by
the CEP driver, the first and the at least one second data
structure to the CEP engine, and retrieving the header and
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payload from the memory using the transmitted first and at
least one second data structure. The transforming step may
transiform the CEP kernel protocol unit into the large CEP
kernel format when the payload 1s larger than the largest
packet size that 1s optimal for transmission through a com-
munication system of the high performance computer sys-
tem. The transforming step may transform the CEP kernel
protocol unit into the large CEP kernel format by segment-
ing the payload 1nto a plurality of segments, all but a last one
of the plurality of segments being of a size that 1s equal to
or less than the largest packet size. The transforming step
may transform the CEP kernel protocol unit into the small
s1ze CEP kernel format and the method further may include
a step of copying the payload ito a sequential physical
memory segment of a main memory of the high performance
computer system. The transforming step may generate a
single fragment descriptor that includes a physical memory
location of the payload and the method further may include
a step of transmitting the single fragment descriptor to the
CEP engine. The transforming step may transform the CEP
kernel protocol unit into the small size CEP kernel format
and may copy the payload directly into the memory coupled
to the CEP engine to which the CEP engine has direct access.
The memory coupled to the CEP engine may include a
memory mapped packet output queue. The method may
further include the steps of providing the CEP engine with
a descriptor output queue that 1s configured as a memory
mapped FIFO and the CEP driver transmitting the trans-
formed CEP kernel protocol unit to the descriptor output
queue. The method may also include steps of providing the
CEP engine with a memory mapped descriptor output queue
ready register, and the CEP drniver writing to the descriptor
output queue ready register when descriptors for at least a
portion of the transformed CEP kernel protocol unit have
been written to the descriptor output queue. After the writing
step, the method may further include a step of the CEP
engine performing a descriptor output queue mput operation
to accept the descriptors written to the descriptor output
queue. The method may also include a step of the CEP driver
including, in one of the descriptors to be written to the
descriptor output queue, an indication that descriptors for a
CEP kernel protocol unit previously written to the descriptor
output queue are ready for the CEP engine to remove from
the descriptor output queue.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a network 100 including a plurality of
computational hosts 102 that may each include one or more
processors, according to an embodiment of the present
invention.

FIG. 2 shows the elements that may be included in the
computational host 102 of FIG. 1, according to an embodi-
ment of the present invention.

FIG. 3 shows the elements that may be included 1n the
computational host 102 of FIG. 2, imncluding a decomposi-
tion of the Communications Endpoint Processor (CEP) 122
of FIG. 2 into a CEP Kernel 148 and a CEP engine 150, to
show 1nternal functional blocks and interfaces thereof,
according to an embodiment of the present imvention.

FIG. 4 shows a communications architecture 200 from the
perspective of two-sided communications across a commu-
nication network, according to an embodiment of the present
invention.
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FIG. 5 shows a communications architecture 300 with
functions tor one-sided communications across a commu-

nication network, according to an embodiment of the present
invention.

FIG. 6 shows an example of a CEP kemel protocol 400
and its relationship to a user payload and to the embodiment
functions, according to an embodiment of the present inven-
tion.

FI1G. 7 shows a subdivided CEP kemel protocol 500, and
an exemplary functionality of the interface between the CEP
kernel 148 and the CEP engine 150 of FIG. 3, including a
CEP Drniver 502, according to an embodiment of the present
invention.

FIG. 8 shows an exemplary medium sized CEP kernel
packet 600 1n the logical, virtual memory and physical
memory domains, according to an embodiment of the pres-
ent 1nvention.

FI1G. 9 shows medium sized a CEP kernel packet segment
descriptor 612 including fragment descriptors, according to
an embodiment of the present invention.

FIG. 10 shows an exemplary large sized CEP kernel
packet 700 and shows how i1t may be segmented into
multiple segments, according to an embodiment of the
present invention.

FIG. 11 shows an exemplary large packet segment chain-
ing data structure, according to an embodiment of the
present mvention.

FIG. 12 shows a representation of transmit functions
implemented i the CEP engine 150 of FIG. 3 across the
hardware-software interface between the CEP drniver 502 of
FIG. 7 and the CEP engine 150 of FIG. 3, according to an
embodiment of the present invention.

FIG. 13 shows a descriptor output queue entry 822,
according to an embodiment of the present invention.

FI1G. 14 shows the addition of a packet output queue 830
directly 1n a hardware 800 of the CEP engine 150 that is
accessible across the hardware-software interface between
the CEP driver 502 and the CEP engine 150, according to an
embodiment of the present invention.

FIG. 15 1s a high level overview of receive functions,
according to an embodiment of the present invention.

FIG. 16 shows a two-sided communication hardware to
soltware interface, according to an embodiment of the
present mvention.

DETAILED DESCRIPTION

Herein, the combination of the application and any library
or communications protocol associated with the application
1s collectively referred to as a “workload”. Underneath the
workload, there may be provided a set of communication
functions that operate to cooperatively provide the workload
with the required communication services between 1ts col-
laborative peers.

Embodiments of the present invention address a set of
functionalities and components within a communication
endpoint processor (CEP) that acts as an interface between
the computational and communications domains. The
embodiments disclosed herein deliver a complete memory
mapped high performance interface that has the ability to
support the simultaneous transmission ol multiple frames,
and that has the ability to interrupt the transmission of lower
priority frames in order to send comparatively higher pri-
ority frames.

FIG. 1 shows a network 100 including a plurality of
computational hosts 102 that may each include one or more
processors, according to an embodiment of the present
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invention. Each computational host 102 may include one or
more processors that may operate 1n several modes. Such
modes may include (but are not limited to) an independent
operating mode, a mode 1n which the processor(s) operate as
a cache coherent region known as SMP (Symmetric Multi-
Processor), or a mode 1n which the processor(s) operate as

ccNUMA (Cache Coherent Non-Uniform Memory Archi-
tecture). A multi-port network 104 may provide connectivity
between the computational hosts 102, each of which 1s
connected to the multi-port network 104 with a link 106.
Computational Host and Communication Endpoints

FIG. 2 depicts the elements that may be included 1n each
of the computational hosts 102 of FIG. 1. As shown, each
computational host 102 may include a memory 110; a
workload 112; an operating system 114; a processor 116 (or
more than one such processors 116); a memory controller
118; an interrupt controller 120; a communications endpoint

processor (CEP) 122, and a network endpoint controller
(NEC) 124. Note that while the block diagram of FIG. 2
shows the constituent elements of a representative compu-
tational host 102, actual implementations thereof may vary
with respect to the number of memory controllers 110 and
the number of processors 116, for example. The workload
112 may include one or multiple applications with one or
multiple libraries to support the parallel algorithm operation.
Within the computational host 102, a set of “Compute Host
System Components” 125 (system components) includes the
operating system 114, the processor 116, the memory 110,
the memory controller 118, and the interrupt controller 120.
The system components 125 include a standard set of
hardware and software based services to deliver a compu-
tational environment. The system components 125 may
include commercially available technologies, or one or more
of the system components 125 may be proprietary for
delivering specific value. The Commumnications Endpoint
Processor (CEP) 122 may provide all of the functionality
required to transmit and receive data on behalf of the
workload 112 across any communications network, to and
from other computational nodes (computational hosts 102).
The data may represent two-sided messages or commands
between cooperating workloads 112 1n distributed (compu-
tational) hosts 102. In addition, the data may represent
one-sided remote memory operations from one workload
112 to perform memory operation in a remote host location
without any support from the remote host’s workload 112,
operating system 114, or CEP 122 support software. The
Network Endpoint Controller (NEC) 124 may provide all of
the functionality to transmit and receive data across a
network (e.g. the multi-port network 104 of FIG. 1). Func-
tional relationships (interfaces) between the elements that
make up the computational host 102, are shown 1n FIG. 2 in
the form of double-ended arrows, including:

an 1nterface 126 between the memory 110 and the
memory controller 118;

an interface 128 between the workload 112 and the
operating system 114;

an interface 130 between the workload 112 and the
processor 116;

an interface 132 between the workload 112 and the CEP
122;

an nterface 134 between operating system 114 and the
processor 116;

an interface 136 between operating system 114 and the
CEP 122;

an interface 138 between the processor 116 and the
memory controller 118;
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an 1nterface 140 between the processor 116 and the
interrupt controller 120;

an iterface 142 between the memory controller 118 and
the CEP 122;

an interface 144 between the interrupt controller 120 and
the CEP 122: and

an 1nterface 146 between the CEP 122 and the NEC 124.

FIG. 3 shows elements that may be included in the
computational host 102 (of FIG. 1), including a decompo-
sition of the CEP 122 of FIG. 2 to show internal functional
blocks and interfaces thereotf, according to an embodiment
of the present invention. As shown in FIG. 3, the CEP 122
may be partitioned into 2 main blocks; namely, a CEP kernel
148 and a CEP engine 150, linked by a CEP engine interface
152. The CEP kernel 148 may be configured to be respon-
sible for interfacing to the workload, end-to-end protocol
management between peer CEP kernel entities in remote
hosts, and for managing the CEP engine interface 152. The
CEP engine 150 may provide high performance automation
of communication tasks and direct interfacing to the system
memory controller 118 for direct memory operations. FIG.
3 turther shows the association of the CEP interfaces (132,
136, 142, 144, 146 of FIG. 2) with the other elements of the
computational host 102, connecting to the CEP kernel 148
and the CEP engine 150 as follows:

interface 132 between the workload 112 and the CEP
kernel 148:

interface 136 between operating system 114 and the CEP
kernel 148;

interface 142 between the memory controller 118 and the
CEP 122 1s split into two 1interfaces, interface 142a to the
CEP kernel 148 and interface 142b to the CEP engine 150;

interface 144 between the interrupt controller 120 and the
CEP engine 150; and

interface 146 between the CEP engine 150 and the NEC
124.

The workload 112 may contain one or more libraries. The
lowest layer of the libraries may be modified to optimally
suit the target environment. For a CEP implementation, the
libraries may be modified to interface to the CEP kernel 148

directly for highest performance (through the interface 132).
The workload libraries may communicate with the CEP
kernel 148 through an operating system call or via OS
bypass capabilities, for example (through the interface 132).
The CEP engine 150 may provide the functionally to man-
age end-to-end data transfer services, interface to the net-
work endpoint controller (NEC) 124 (through the interface
146) and to efliciently interface to the system memory
(through the interface 142b and the memory controller 118),
the CEP kernel 148 (through the interface 152), and the
interrupt controller 120 (through the interface 144). The
dotted line 1n FIG. 3 shows the primary partitioning between
hardware and software implementations, according to an
embodiment of the present invention. For example, the CEP
kernel 148 may be primarily software based, and the CEP
engine 150 may be primarily hardware based for perfor-
mance. However, the CEP engine 150 may include some
software and (some) CEP kernel 148 functions may be
targeted to hardware. That 1s to say, embodiments of the
present invention are not limited by any rigid partitioning,
between hardware and soitware, because the partitioning
between hardware and software implementations of the CEP
engine 150 and of the CEP kernel 148 and other structures
and functionalities disclosed herein may evolve over time as
the underlining technology evolves. The interface 142a 1s
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included i FIG. 3 to show a possible standard read/write
interface to system memory for software running on a
Processor.

Concurrent Parallel Distributed Communications Functions
& Interfaces

Parallel workloads on distributed hosts communicate
across the network for interactive collaboration of their
algorithms. Embodiments of the present mnvention support
two communication models: two-sided and one-sided com-
munications. Two-sided communications may occur where
both hosts collaborate to complete the communications
tasks. One-sided communications may occur where a work-
load on one side of the communications network performs
direct memory operations on the remote host without the
collaboration of the remote host (either at the workload,
operating system, or communications protocol level). For
one-sided operation, both sides preferably should have pre-
exchanged information on remotely accessible memory
regions and established permissions and security keys.

FIG. 4 depicts a communications architecture 200 from
the perspective of two-sided communications across a com-
munication network (e.g. the multi-port network 104 of FIG.
1) between two hosts (the computational hosts 102, #1 and
#N respectively), according to an embodiment of the present
invention. In FIG. 4, each of the hosts 102 1s expanded to
show the following elements from FIG. 3: the workload 112;
the CEP 122 (decomposed into the CEP kernel 148 and the
CEP engine 150); the NEC 124; the imterrupt controller 120;
and the memory controller 118, together with their respec-
tive interfaces. With reference to FIG. 4, the workloads 112
may communicate with each other using the services of the
underlying CEP 122 (i.e. the CEP Kernel 148 and the CEP
Engine 150) and communication network functions (the
NECs 124); the CEP kernel 148 may communicate with one
or multiple CEP kernels 148 each runnming on remote com-
putational hosts, to provide operational and/or administra-
tive data transier services and the CEP engine 150 may
provide for hardware driven data transier service across a
communications network (e.g. the multi-port network 104).
End-to-end protocols may be provided to enable the CEP
engines 150 to communicate with each other to maintain
integrity of specific services.

In FIG. 4, reference numerals 202 to 206 represent
peer-to-peer communications protocols that operate over the
network:

a workload to workload protocol 202;

a CEP kernel end-to-end protocol 204; and

a CEP engine end-to-end protocol 206.

The protocols may be configured to carry messages that
span all aspects of the communications session, including
operational messages and commands and administrative
state control. Reference numeral 208 denotes a network
access protocol; reference numerals 210-214 represent
Application Program Interfaces (APIs) and services pro-
vided between functional layers within each host (corre-
sponding to the interfaces 132, 152, and 146 respectively),
and reference numerals 216 (corresponding to the interface
144) and 218 (corresponding to the interface 142b) denote
direct or semi-direct hardware access to the interrupt con-
troller and to memory, respectively.

FIG. 5 shows a communications architecture 300 with
functions for one-sided communications across a comimus-
nication network, according to an embodiment of the present
invention. FIG. 5 1s analogous to FIG. 4, but the two-sided
protocols 202 (workload to workload) and 204 (CEP Kernel
end-to-end) are replaced by a “local-CEP kernel to remote-
CEP engine”protocol 304. The local workload 112 (in the
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computational host #1) may perform one-sided memory
operations on a remote host (the computational host #N),
through the local CEP kernel 148 which may communicate
directly with the remote CEP Engine 150 using the “local-
CEP kernel to remote-CEP engine” protocol 304 (a logical
interface). Such memory operations may include (but are not
limited to) commands that carry out the following, without
limitation:

Remote read (byte, word, double word . . . );

Remote posted write (byte, word, double word . . . );

Remote non posted write (byte, word, double WOI‘d )i

Remote read-modify-write  (byte, word, double
word . . . );

Remote DMA read (remote address-range, local address),
and

Remote DMA write (local
address).

The local workload 112 may invoke the one-sided remote
memory operation across the interface 132 (the API 210) to
the local CEP kernel 148. The local CEP kernel 148 may
then construct the command, which may then be commu-
nicated to the remote CEP engine 150 across the logical
interface 304. Physically, the local CEP kernel 148 may
invoke the remote operation via the local CEP engine 150
(using the interface 152/212) and the CEP engine end-to-end
protocol 206. The remote CEP engine 150 may then con-
sume and carry out the remote memory command without
invoking the services of the remote CEP kernel 148 or the
remote workload 112. Note that an option may be set by the
local host initiating the remote memory operation to inter-
rupt the far end. The single sided remote DMA describes the
data path. It 1s understood that end to end synchronization of
user memory locations, and permissions are needed but are
not described 1n this document.

Communications Endpoint Kernel to Communications
point Engine Interface

There are many aspects that may impact the overall
performance of the system. One such aspect 1s the interface
between the CEP kernel 148 and the CEP engine 150 (the
interface 152 i FIGS. 3, 4 and 35). The CEP kernel 148 may
interface to the CEP engine 150 1n at least two ways. For
two-sided communications, the CEP kernel 148 may hand
ofl CEP protocol units to the CEP engine 150 for delivery to
remote hosts. The CEP kernel 148 may also receive CEP
protocol unmits from the CEP engine 150 that have been sent
by remote hosts. For single-sided communications, the (lo-
cal) CEP kernel 148 may utilize the (local) CEP engine 150
to deliver the remote memory commands to the associated
CEP engine 150 on the relevant remote host, and the remote
memory operation may take place without the assistance of
the remote CEP kernel 148, remote operating system, or the
remote workload 112. The only information received from
the local CEP engine 150 will be results (1if any) from the
single sided command (e.g. this could be delivery confir-
mation or confirmation that the requested read data has been
placed 1n the assigned butler).

FIG. 6 depicts a CEP kernel protocol 400 including a user
payload 402 and a CEP-kernel protocol unit 404, showing
the relationship between the CEP kernel protocol 400 and
the workload 112, the CEP kernel 148, and the CEP engine
150. The CEP kemel protocol unit 404 (or packet) may
include a CEP kernel header 406 and a payload 408 (which
1s equal to or may 1nclude the user payload 402). In order to
tacilitate end-to-end state management and control, the CEP
kernel 148 may piggy-back CEP kernel messages 410 onto
the protocol unit. The control data contained 1n the piggy-
back CEP kernel messages 410 may also include commands

address-range, remote
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to instruct the remote CEP-Engine 150 in single sided
communications. In preparing a CEP-kernel protocol unit
404, the CEP kernel 148 may be given access to the user
payload 402 through an API invoked by the workload 112
across the interface 210 (also shown 1n FIGS. 4 and 35). The
CEP kernel 148 may then prepare the CEP protocol unmit 404
and hand 1t ofl to the CEP engine 150 across the interface
212.

The following description is split into three sections:

1. A ligh level description of the CEP-kemel to CEP
engine interface 212;

2. A detailed description of the data path, packet sizes, and
core datapath data structures that provide an eflicient rep-
resentation of the packet to the CEP engine 150.

3. A description of control structures, 1n combination with
an exemplary embodiment of the invention.

Interface Between the CEP Kernel and the CEP Engine

An 1mportant element of high performance communica-
tions 1s the interface between the soitware functions that
operate within the processor environment (including but not
limited to workloads, OS, memory management, APIs,
communications protocols and interrupt services, {for
example), and the highly optimized methods and functions
that provide the actual transmit and receive paths over the
underlying communications network. According to embodi-
ments of the present invention, the functions discharged by
the CEP 122 may be split between the CEP kernel 148 and
the CEP engine 150 (FIGS. 3 to 5) to better exploit optimal
mapping to technology.

The CEP kernel 148 may be optimized to provide the CEP
functionality that operates within the standard processor
operating environment, and to provide optimized interfaces
to those other functions that are accessed from within the
standard processor environment.

The CEP engine 150 may also be optimized for low
latency and high throughput communications over the
underlying communications network. According to an
embodiment of this mnvention, the CEP kernel 148 may be
implemented as a software implementation 1n kernel space
and the CEP engine 150 may be implemented as a Field
Programmable Gate Array (FPGA) and/or an Application
Specific integrated Circuit (ASIC), for example. However,
the selection of technology 1s not rigid and there are many
options for target technology selection. These options will
change as technology evolves or the services of the under-
lying communications network change, enabling lower cost
and/or higher performance implementations

The interface between the functionally rich software
driven CEP kernel 148, with the highly optimized CEP
engine 130, introduces some fundamental problems. The
reason for this 1s because the CEP kernel protocol unit (or
packet) 404, as shown i FIG. 6, may not be optimal for
transmitting to a CEP engine 1350 that 1s itself highly
optimized for throughput and low latency. This 1s because
highly optimized performance (advantageously imple-
mented 1 hardware) and functional richness (advanta-
geously implemented 1n software) do not always optimally
fit into the same target technology. The CEP kernel 148
covers a wide range of use cases and to build the function-
ally to handle the generic CEP kernel protocol unit 404
directly into the lowest level of CEP engine 150 either adds
complexity, or compromises performance. In addition, the
CEP kemnel Protocol Data Unit (PDU) payload 408 may be
located 1n virtual user memory space. Thus, it may not be
contiguous and may be aligned with page boundaries that
may be anywhere 1n memory. In addition, the CEP kernel
protocol header 406 and any piggy backed control messages
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410 may be 1n separate physical memory locations. Requir-
ing the CEP engine 150 to be able to handle memory access
at the virtual level may detract from performance and may
add complexity to the implementation thereof. With oper-
ating systems that provide distinct user and kernel space, the
workload 112 and (user) payload 402 may each be initially
in user space, while the CEP kernel 148 may run 1n protected
kernel space. The CEP kermel may run equally well 1n user
space. Though the terminology of “user space” and “kernel
space” 1s used herein, embodiments of the present invention
work equally well with operating systems that run both user
and special kernel functions 1n one mode.

To solve the problem described above, the functionality of
the interface between the CEP kernel 148 and the CEP
engine 150 (the nterface 212) may be subdivided into two
parts, as shown 1n FIG. 7. FIG. 7 depicts a subdivided CEP
kernel protocol 500, similar to the CEP kernel protocol 400
of FIG. 6, replacing the interface 212 (of FIG. 6) with a CEP
driver 502 and an interface 212a between the CEP kernel
148 and the CEP driver 502, and a further interface 212b
between the CEP driver 502 and the CEP engine 150. In
addition, FI1G. 7 1llustrates multiple CEP kernel protocol unit
types (PDU types) 504 each representing a different message
s1ze-class and each optimized for handling by the low level
CEP engine 150.

The subdivided CEP kernel to CEP engine interface (the
interfaces 212a and 212b) may provide a more optimal
mapping to technology. The CEP kernel 148 may provide all
of the highly optimized services required in the processor
environment and may produce a CEP kernel protocol unit
404, as shown 1n FIG. 7. The CEP kernel protocol unit 404
may then be transmitted to the CEP drniver 502 over the
interface 212a. The CEP engine 150 may be configured and
highly optimized for throughput and low latency and may
receive optimized variants of the CEP kernel protocol umit
404 (1.e. the CEP kermnel protocol unit types 504) over the
interface 212b, as shown in FIG. 7. The CEP driver 502
provides a mapping between the unified CEP kernel PDU
404 that may be 1deal for the processor environment (inter-
face 212a), to one that may be optimal for communicating
with the CEP engine (150) implementation (interface 212b).
As shown 1n FIG. 7, the CEP driver 502 may transform the
CEP kernel PDU 404 into one of several PDU types 504,
cach of which may offer optimal performance for a range of
CEP functionality and packet sizes. The number of PDU
types need not be fixed and may expand as the set of services
grow. The PDU types 504 may be communicated to the CEP
engine 150 across the mterface 212b. It 1s to be understood
that the CEP driver 502 may be implemented 1n hardware,
soltware or a combination of both. It may be co-located with
the CEP kernel 148, the CEP engine 150, as a separate entity
or as a combination or all three.

Datapath Packet Sizes and Data Structures Over the Inter-
tace 212b

A unified CEP kernel protocol unit may include a range of
packet sizes, and the CEP kernel may be configured to work
cllectively at this level. However, for performance and
complexity reasons (as described above), a unified CEP
kernel protocol unit may not be optimal for handling by the
CEP engine. Aspects of an embodiment of the present
invention include methods for partitioming the unified CEP
kernel protocol units 404 1nto multlple subset formats for
cilicient handling by the CEP engine 150 over the interface
212b. For exemplary and illustrative purposes only, three
s1ze ranges are defined herein for transterring CEP kernel
data across the mtertace 212b (from the CEP Driver 502 to
the CEP engine 150 1n FIG. 7). These size ranges may be
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defined as (but not limited to) small packet (PDU Type 1,
reference numeral 504.1), medium packet (PDU Type 2,
reference numeral 504.2) and large packet (PDU Type M,
reference numeral 504.M). The number of distinct methods
for handling one or more ranges of packets sizes may depend
on the results of a cost/benefits, analysis. This may vary
depending on the state-oi-the-art of processor, system
memory access times, ASIC/FPGA technology, memory
interface method, communications network and the specific
performance and cost targets, for example. These variables
may change over time as technology and requirements
change. The CEP kernel 122 may be most tlexible when the
s1ze for each range 1s programmable, so that 1t may be tuned
for maximum performance given the other parameters of the
system. The use of different methods for handling small,
medium and large packets has a major impact on perior-
mance. The methods for handling each size and the perfor-
mance factors that may decide the optimum size, according
to embodiments of the present invention, are described
hereunder.

Medium Sized CEP Kernel Packets

A medium sized packet may be defined as being larger
than a small sized packet, up to a bounded size. According
to an embodiment of the present mvention, the maximum
s1ze of a medium size packet 1s equivalent to a segment. The
choice of segment size (and by definition maximum medium
packet size) 1s a function of:

The MTU (Maximum Transfer Unit) of the network. A
segment must be less than or equal to the maximum
transier unit supported by the communications network
(e.g. the multi-port network 104 in FIG. 1). This 1s
because if the segment 1s larger than the MTU, then an
additional PDU Segment Assembly and Reassembly
(SAR) function would be required to break the segment
down to units that may be carried by the network;

The segment size may be defined as less than the MTU of
the communications network. This would be done it
there were performance advantages in the implemen-
tation. For example, a segment s1ize may be defined that
maps nto a convenient buller size at each end of the
communications path, or 1s optimal for the character-
istics of the communications network and

The size of the medium packet may be defined to be
greater than a small sized packet size, and less than or
equal to the maximum segment size as determined
above.

Having defined an embodiment 1n which the maximum
size of the medium size packet 1s equal to one segment
(subject to the conditions above), the following details an
embodiment of a method of efhiciently representing the
segment to the CEP engine. Note that the medium packet
may include a user payload that may be defined by a virtual
memory address, a CEP kernel header that may be also
defined by a virtual memory address, and potentially a
control message that may be piggy backed onto the packet,
also defined by a virtual memory address. The CEP engine
150 may be given the three virtual addresses to get the
packet header and user payload from memory. However, this
may be very time consuming and may not meet performance
targets. For example, the virtual to physical address mapping
takes time, and 1f the virtual address 1s not 1n the Translation
Look-aside Bufler (TLB) of the host computer which acts as
an address translation cache, 1t may take even more time as
an additional memory read may be required to obtain the
appropriate translation tables from main memory.

The sequential virtual memory space may be built from
multiple physical memory fragments that may be limited by
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page size, and that may be aligned to page boundaries at
unpredictable physical locations. FIG. 8 depicts the relation-
ship of a medium sized packet (for example PDU type 2,
reference numeral 504.2 in FIG. 7) in logical, wvirtual
memory and physical memory domains. This figure shows
how a packet may be distributed across physical memory in
current processor architectures. Embodiments of the present
invention provide an eflicient interface between the virtual
space that high level software deals with and the simpler but
higher performance throughput driven communications
hardware.

Shown 1n FIG. 8, 1s a Logical CEP Kernel medium sized
packet 600 comprising a header 602 and user data 604. The
user data 604 includes consecutive payload fragments 606 to
610 (payload fragment 1 to payload fragment N) 1n the User
Virtual space. The header 602 1s also shown 1n the Kernel
Virtual space. The header 602 and the payload fragments
606 to 610 arc further shown 1n the Physical space, where
the payload fragments 606 to 610 may not he stored con-
secutively. The optional piggy-backed control messages are
not shown i FIG. 8.

To achieve very high performance at the CEP engine
interface 212b, the medium sized packet 600 may be rep-
resented by a data structure that defines the physical address
of all of the memory locations that include the physical
packet. This data structure 1s called a segment descriptor.
The segment descriptor data structure may, in turn, include
a multiple set of ordered data that are referred to herein as
fragment descriptors. Each fragment descriptor may define
a specilic mstance of a distributed physical memory frag-
ment that may include part of the segment. These are shown
in FIG. 9 and may collectively define the entire packet
including user payload, CEP kernel header, and 1n some
instances CEP kernel control messages that may be piggy-
backed onto the user packet. Since the header and user
payload may be bounded, the data required to define a full
segment descriptor for the largest medium sized packet
segment, may also be bounded as a function of page si1ze and

segment size.
Similar to FIG. 8 above, FIG. 9 shows the payload

fragments 1 to N (606, 608, and 610) in “User space™, 1.e.
the user data 1n consecutive user virtual space; the header
602 1n “Kernel space”; and both the header 602 and the
Payload fragments 1 to N (608, 610, and 606) 1n “Physical
space”. Note that the order of the Payload fragments in
“Physical space” may not be the same order as 1mn “User
space”. FIG. 9 further shows a segment descriptor 612,
including Fragment descriptors 614, 616, 618, and 620. The
fragment descriptors 614-620 of the segment descriptor 612
are stored in order i consecutive physical space. The
segment descriptor 612 represents an ordered set of the
fragment descriptors 614-620.

Each fragment descriptor 614-620 relates to a fragment 1n
physical space, that 1s 1n the example the header 602 and the
payload fragments 606, 608, and 610. Each fragment
descriptor includes the following fields (field reference
numbers apply to each fragment descriptor but are shown for
clarity only on the fragment descriptor 620):

An M-bit physical “start address” field 622, which defines

the physical address of the first word of the correspond-
ing fragment in physical memory (physical space), 1.e.
the physical address of the corresponding memory
page;

An N-bit “length” field 624 specilying the number of
bytes 1n the corresponding fragment. The maximum
value of N may be equivalent to the number of bytes in
the page size used in the target system;
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A P-bit “flag” field 626, which may be used for control
purposes. For a fragment descriptor that 1s part of a
segment descriptor (fragment descriptor set) 612
describing a single segment or medium sized packet (as
in the example of FI1G. 9), only one bit in the “flag™ field
1s used. This bit 1s set to 1 to indicate to the CEP engine
that this 1s the last fragment descriptor of the segment
descriptor (ordered set) 612. If the current fragment
descriptor 1s not the last fragment descriptor, this bit 1s
set to the value 0. The other bits of the “tlag™ field 626
need not be used and may be set to 0, although the use
of one of these other bits 1n processing large packets 1s
described hereunder.

An I-bit “instance 1dentifier (ID)” field 628. The “instance
1D represents the sequence of the packet or segment
and 1s the same 1n all fragment descriptors for the entire
packet segment descriptor 612.

The CEP engine 150 may be configured to use the
segment descriptor 612 (which includes an ordered set of
fragment descriptors) to engage an intelligent DMA engine
to pull the entire data packet out of physical memory. Note
that the CEP driver 502 may place the entire segment
descriptor data structure into consecutive physical memory
for easy access by hardware driven DMA. This memory may
optionally be dedicated to the CEP engine 150 or may he
part of system memory (see Packet Output Queue 830 in
FIG. 14 below). The values of “P” and “I”’defining the sizes
of the *“tlag” field 626 and the “instance 1D field 628
respectively may be chosen for convenience in implemen-
tation. The “tlag” field 626 1s used for control purposes and
the number of bits may increase as the technology matures.
The “instance 1D field 628 1s used for packet reordering and
guaranteed delivery (see the copending application
LIQU6020). Its value must be sufliciently large to handle all
outstanding segments.

Large Size CEP Kernel Packets

Large CEP kernel packets may be larger than the maxi-
mum segment size (as described above, a segment may be
defined as the largest packet size that 1s optimal for trans-
mission through the communications system). As a result
and according to an embodiment of the present invention, a
large packet 1s preferably segmented at the transmitting end
into multiple segments and 1s preferably reassembled at the
receiving end back into the original large packet for pro-
cessing by the remote peer CEP kernel 148, for the ultimate
consumption of the payload by the workload 112. All
segments of the decomposed large packet may include the
maximum segment size with the possible exception of the
last segment, which may be sized anywhere from one
payload byte plus CEP kernel header up to the maximum
segment size.

Recall that a segment of a CEP kernel packet may be the
result of the CEP protocol stack’s SAR (segmentation and
reassembly) process for matching the MTU (Maximum
Transfer Unit) imposed either by the underlying communi-
cations network limitations or by the need for optimized
performance. A segment descriptor may include an ordered
set of fragment descriptors, each of which may point to the
distributed fragments of physical memory that may include
the entire packet (as shown 1 FIG. 9). The segment descrip-
tor may provide all of the mformation for the CEP engine
intelligent DMA to read the header, user payload data, and
potentially piggy-backed control messages directly out of
main system memory using physical addresses to transmit
the entire segment. Recall also that a memory fragment
(memory page) 1s distinctly different from a segment in a
CEP kemel packet. Memory fragmentation 1s due to the
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inability to keep a packet or a segment of a packet 1n a
consecutive range ol physical memory because of paging
and the addition of a header.

From a performance standpoint, 1t may not be possible or
cilicient to use virtual addresses to describe the large packet
to the CEP engine (as with the medium size packet). Instead,
another data structure that defines the physical representa-
tion of the large packet may be defined. FIG. 10 depicts a
large CEP kernel packet 700 including a (CEP kernel)
header 702 and a (large) payload 704, and shows how 1t may
be segmented 1into multiple segments 706, 708, and 710 that
collectively define the entire large packet. The CEP kernel
header 702 1s placed at the front of each segment of the large
packet.

The large CEP kernel packet 700 may be represented to
the CEP engine 150 as a series of segment descriptors, each
describing one segment of the segmented large CEP kernel
packet (1.e. the segments 706 to 710). For large packets that
comprise multiple segments, this implementation may have
a performance disadvantage of requiring a lot of descriptor
data to be transmitted to the CEP engine 150 to imnitiate the
transaction, and may utilize an undue amount of CEP engine
memory. To increase flexibility, improve scaling, and in
many cases improve performance, an additional mode called
segment chaining may be defined for representing large CEP
kernel packets 700 to the CEP engine 150 across the
interface 212b. Segment chaining enables the entire large
packet to be represented to the CEP engine 150 through a
single simplified data structure. This data structure may be
interpreted by the CEP engine 150 intelligent DMA function
(the DMA 814, see FIG. 12 below) to extract the whole
packet, segment by segment, for transmission across the
communications network. The segment chaining data struc-
ture 1s depicted 1 FIG. 11.

FIG. 11 shows an exemplary large packet segment chain-
ing data structure, according to an embodiment of the
present mvention. Illustrated in FIG. 11 are:

the user payload 704 from FIG. 10;

a segmentation of the user payload 1n user space, into a
number of segments (Segment 1, Segment 2, . . . ,
Segment n-1, and Segment n);

a fragmentation of the segments into pages in physical
memory:
the Segment 1 into fragments F1.1 and F1.2,
the Segment 2 into fragments F2.1 and F2.2,
the Segment n-1 mto fragments Fn-1.1 and Fn-1.2,
the Segment n into fragments Fn.1 and Fn.2,

the Header 702 (from FIG. 10) in kernel space;

an 1itial Segment Chain Descriptor 720; and

first, second and last Segment Descriptors, 1dentified by
their mstance IDs (231, 232, and 230+n).

While Segments (Segment 1 to Segment n) are shown
fragmented into only two fragments each in FIG. 11 for
reasons ol easier depiction, 1t 1s understood that each seg-
ment may be fragmented into a larger number of fragments
(pages), governed by the memory page size and the prede-
termined segment size.

Each Segment Descriptor includes a number of fragment
descriptors and a Segment Chain Descriptor in consecutive
memory space. It 1s important to note that while segment
descriptors are stored in consecutive memory, the multiple
individual segment descriptors that collectively define a
CEP Kernel PDU do not have to be stored in consecutive
memory unless it 1s advantageous to do so 1n an 1implemen-
tation. Segment Chain Descriptors are distinguished from
fragment descriptors 1 FIG. 11 through a bolded outline.
Each fragment descriptor and each Segment Chain descrip-
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tor includes 4 fields (the “start address” field 622, the
“length” field 624, the “flag™ field 626, and the “instance 1D”
ficld 628 as described earlier).

The “start address” field of the mitial Segment Chain
Descriptor 720 indicates the start address of the first frag-
ment descriptor of the first Segment Descriptor (instance
ID=231), illustrated by a pointer (arrow) 722 from the “start
address” field of the mitial Segment Chain Descriptor 720 to
the first fragment descriptor 1n the First Segment Descriptor.
The “start address” field of this first fragment descriptor 1n
turn points to the Header 702. The subsequent fragment
descriptors of the first Segment Descriptor (instance
ID=231) point to the physical memory fragments F1.1, F1.2
(1in their natural order) of the Segment 1, followed by a
Segment Chain Descriptor 724. The Segment Chain
Descriptor 724, through a pointer arrow 726, points to the
start of the Second Segment Descriptor (Instance 11D=232).
Again, the first fragment descriptor of this Second Segment
Descriptor (Instance 1D=232) points to the Header 702 and
subsequent fragment descriptors point to the memory frag-
ments of the Segment 2 (F2.1, etc). Similarly, additional
Segment Descriptors include fragment descriptors pointing
to the header and segment fragments (not shown) and are
chained through Segment Chain Descriptors to subsequent
Segment Descriptors. In the example shown in FIG. 11,
there are n segments, and the Last (n-th) Segment Descriptor
(Instance ID=230+n) 1s again shown. The Segment Chain
Descriptor of the second-to-last Segment Descriptor (In-
stance 1D=230+n-1) (not shown) provides a pointer 728 to
the last Segment Descriptor (Instance ID=230+n) whose
fragment descriptors point to the Header 702 and the frag-
ments Fn.1 and Fn.2. The last Segment Descriptor finally
includes a last Segment Chain Descriptor 730 whose “start
address” field 622 and “length” field 624 each contain a
value of zero to indicate the end of the descriptor chain.

As the example illustrated i FIG. 11, shows, a segment
descriptor used 1n chaining mode may have the same format
as the segment descriptor 612 for the medium sized packet
(1.e., it may include an ordered set of memory fragment
descriptors), with the addition of one extra descriptor to the
set called a “segment chaining descriptor” (reference numer-
als 724 and 730 1n FIG. 11). The segment chaining descrip-
tor may be 1dentical to the memory fragment descriptor in

size and fleld format but 1t 1s used 1n a new mode, as follows.
The “tlag” field 626 includes a chaining bit 732 which may

be set to 1. This causes the DMA function within the CEP
engine to interpret the descriptor as a segment chaining
descriptor. The *“‘start address” field 622 may point to the first
byte in physical memory ol the next chained segment
descriptor (e.g. 1n FIG. 11 the “start address™ field 622 of the
segment chaining descriptor 724 points to the start of the
first descriptor 1n the Second Segment Descriptor 1D=232.
The “length” field 624 may include the number of memory
fragment descriptors plus the segment chaining descriptor
within the next segment descriptor (e.g. in FIG. 11 the value
of the “length” field 624 of the segment chaining descriptor
724 1s “4”, indicating that the Second Segment Descriptor
ID=232 contains 4 descriptors). This may enable the DMA
engine (814, FIG. 12 below) to pull in the complete ordered
set of memory fragment descriptors that describe the entire
segment plus the chaining descriptor to the next segment.
The “instance ID” field 628 may be incremented for each
segment descriptor. Note that all memory fragment descrip-
tors and the segment chaining descriptor within the segment
descriptor advantageously have the same instance ID (e.g. 1n
FIG. 11, the “instance 1D field 628 of every descriptor 1n
the First Segment Descriptor 1s ID=231, and incremented to
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232 1n the Second Segment Descriptor). Each segment
descriptor, which may include memory fragment descriptors
and the segment chaining descriptor, may all be housed 1n
sequential physical memory for ease of access. The chain
may continue until all segments of the entire large packet
have been sent. Boundary conditions to start and stop the
chain may be defined. The chain may start by the CEP driver
502 writing an initial segment chain descriptor (the initial
Segment Chain Descriptor 720) to the CEP engine across the
interface 212b to start the chain (this may be started by the
intelligent DMA function 814 (see FIG. 12 below) 1n the
CEP engine 150). The initial segment chain descriptor 720
points to the first segment in the chain (i.e. the First Segment
Descriptor ID=231 1n FIG. 11). The chain stops when the
segment chaining descriptor corresponding to the last seg-
ment (1.e. the Segment Chaining Descriptor 730 1n the Last
Segment Descriptor instance ID=230+n, 1n FIG. 11) asserts

an address and segment length of zero (the “start” address
ficld 622 and the “length” field 624 both being set to zero).

Small Size CEP Kernel Packets

The handling of smaller packets may have a major impact
on system performance, as the communications overhead
cannot be amortized over large data sets. The snail packet 1s
therefore, preferably treated diflerently than the large and
medium sized CEP kernel packets. A CEP kernel packet may
be treated as a small packet when the overheads of indirectly
referencing physical memory and using intelligent DMA
functions to construct the packet from disparate physical
memory locations have a significant latency overhead, com-
pared with other aspects of the communications operation.

According to further aspects of embodiments of the
present invention, two methods are presented herewith for
handling small packets:

Method 1: The small size packet may be copied into a
sequential physical memory segment within host processor
main memory by the CEP driver function 502. The small
s1ize packet may be a complete CEP protocol unit with
consolidated user payload and CEP kernel header. A single
memory fragment descriptor (equivalent of a non chained
segment descriptor with only one memory fragment) may
then be written to the CEP engine 150 across the interface
212b. The DMA engine 814 (see FIG. 12 below) may then
read the entire small sized CEP packet from a single
sequential memory space, thereby eliminating the overhead
of having to reference two or more physical memory frag-
ments. The description of FIG. 12, below, provides addi-
tional details on the Method 1.

Method 2: Method 1 may place a consolidated packet into
sequential physical system memory. If the latency to access
system memory 1s large compared to packet communica-
tions latency, method 2 may provide a way to improve
performance. According to method 2, a small size CEP
kernel packet may be written directly to memory associated
with the CEP engine 150. (refer to FIG. 14 “packet Output
Queue” 830). The CEP Transmit Processing Functions 816
(see FIG. 14 below) may have ultra high speed access to this
memory for direct access to the packet, thus eliminating one
level of indirection and eliminating a DMA read of system
memory (also referred to as host processor main memory)
via the memory controller (interface 218 in FIG. 7). Note
that method 2 requires additional CEP hardware based
memory (Packet Output Queue 830 in FIG. 14 below). It 1s
possible to use a hybrid of CEP engine memory and system
memory. This may provide optimal performance for random
messages and optimum price/performance for heavy con-
tinuous throughput of small messages. The description of

FIG. 14, below, provides additional details on the Method 2.
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Control Structures, Exemplary Embodiments of the Inven-
tion

This section provides an exemplary embodiment of the
invention and describes the control elements. It will be
described 1n two sections relating to methods and systems
embodying both transmit and receive functions.
Transmit Methods

FIG. 12 shows a representation of the transmit functions
implemented in the CEP engine 150 across the hardware-
soltware interface 212b, according to an embodiment of the
present invention. Illustrated 1in FIG. 12 are the following
clements, using the same reference numerals as the same

elements shown in FIG. 7 earlier:
the CEP Driver 502;

the CEP Engine 150;

the Interrupt Controller 120; and

the Memory Controller 118.

The CEP Engine 150 i1s expanded to show a hardware
component 800 including:

a Descriptor Output Queue (DOQ) 802 which may be
implemented as a First-In-First-Out bufler (FIFO);

a DOQ Ready register 804;

a DOQ Status register 806;

a transmit (1X) Status register 808;

an Interrupt function 810;

a Virtual Output Queue (VOQ) Scheduler 812;

a DMA engine 814; and

a Transmit Processing function 816.

As shown, all control registers (the registers 804, 806, and
808) across the interface 212b may be memory mapped
within the system memory space of the host processor, or
may be memory mapped within the CEP engine 1tself (this
will depend on performance advantages with respect to
target technology, and may indeed change as technology
evolves) The memory may also be accessible by internal
functionality of the CEP engine 150. All packet descriptors
(segment descriptors, fragment descriptors, and segment
chain descriptors) describing small (method 1), medium and
large packets may be written to the Descriptor Output Queue
(DOQ) 802. The CEP driver 502 may write a segment
descriptor (including a set of fragment descriptors, see the
description of the segment descriptor 612, FIG. 9) to the
DOQ 802. The DOQ 802 may be implemented as a FIF
with the entry point of the FIFO being memory-mapped and
multi-word, such that a complete segment descriptor may be
written. That 1s, the CEP Driver (502) software sees a range
of writable memory in the memory-mapped I/O space
(which as described earlier can be 1n host memory or CEP
engine memory). FIG. 13 shows a descriptor output queue
entry, according to an embodiment of the present invention,
illustrating the structure of the Descriptor Output Queue
802, mncluding DOQ entries 820. Fach DOQ entry 820
includes a segment descriptor 822 comprising a number of
Fragment Descriptors (Fragment Descriptor 1 to Fragment
Descriptor N) 1n a memory mapped “descriptor queue entry”™
window 824, having an “entry start” and an “entry end”.

For each packet to be transmitted, the driver may write the
corresponding segment descriptors 822 to this same address
space consecutively. The writable Descriptor Output Queue
Ready register 804, (again, memory-mapped) may enable
the CEP driver 502 to notily the hardware that 1t has
completed writing the series of descriptors for the current
packet/segment. When this register 1s written, the CEP
Engine hardware 800 may first perform the DOQ (FIFO)
802 1nput operation to accept the content and allow the CEP
driver 502 software to write fragment descriptors to the
same memory range for the next packet. For systems that are
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heavily loaded, system performance may be improved by
enabling the next write to the first word address of the
Descriptor Output Queue 802 to indicate to the CEP Engine
hardware 800 that the last fragment descriptor of the last
segment has been completely written, and 1s thus available
for transmission. This may trigger the CEP engine 150 to

automatically perform the DOQ (FIFO) 802 input operation
to accept content. This embodiment allows the CEP driver

502 to continuously write to the DOQ FIFO 802 without

having to write to the Descriptor Output Queue Ready
register 804 11 1t has a series of packets/segments to send.
For heavily loaded systems, an improvement on the above

method 1s presented. The CEP engine hardware 800 may
take the descriptor data from the DOQ FIFO 802 by a FIFO

input operation, and may place 1t into separate memory
locations organized as “virtual output queues”(not explicitly
shown i FIG. 12). The wvirtual output queues may be
randomly read by the CEP engine transmission functions
(Transmit Processing 816). The order in which segments are
transmitted may be a function of the destination and segment
priority. This embodiment has the advantage of enabling the
VOQ scheduling function 812 to select the next segment to
send based on priority, QOS (Quality of Service) guarantees,
and destination congestions status, for example. This
embodiment permits a far more eflective use of communi-
cation resources, 1s sensitive to remote host load, and
climinates head of line blocking. This embodiment also
permits higher priority packets to preempt delivery of com-
paratively lower priority packets even 1f they are in tlight.
Thus, overall system performance under load 1s significantly
improved. The capabilities 1n the VOQ scheduler function
812 to provide a virtual output queue are enablers of the
performance advantages outlined above.

The readable memory-mapped Descriptor Output Queue
Status register 806 may allow the CEP driver to read the
number of empty entries available 1n the output FIFO (the
DOQ 802). The CEP Engine hardware 800 may use this
tacility to control the rate of data transmission from the host.
When the CEP engine hardware 800 1s congested in trans-
mitting data, it may temporarily stop updating this register
even though 1t physically has more free entries i the DOQ)
FIFO 802 (transmission job requests have been read). This
applies a back pressure to the CEP driver 502, which, 1n turn,
may notily the CEP kernel 148 (see FIG. 7). The CEP kernel
148 may then block the sending process, or drop the packet
and notily the congestion error according to the API defi-
nition, or pass this to the higher layer for it to take the
appropriate action.

The TX status register 808 communicates the transmis-
sion success status to the CEP kernel 148. The CEP dniver
502 preferably should know when the CEP engine hardware
800 has completed the transmission of a packet so that 1t
may iform the CEP kernel 148 of the event. The latter may
then unblock the sending process 1n case of blocking send or
acknowledge this fact to the higher layer in a predefined way
in case ol non-blocking send (see list of MPI functions
described earlier). The status of segment transmission may
be accomplished by the instance ID. The instance 1D may be
used sequentially by the CEP driver 502 to uniquely identify
cach segment. The CEP engine hardware 800 may provide
a memory-mapped Instance ID register (not shown) to
permit the CEP driver 502 to read the current highest
instance 1D for which the hardware has completed the use of
the associated host memory for all instance IDs equal or
lower. Note that this may not be necessarily the latest
instance ID for which the hardware has completed reading
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data from the host memory. This could happen 1t the CEP
engine 150 1s using concurrent processing.

If the CEP engine 150 provides hardware based guaran-
teed delivery, the instance ID may not be updated until the
remote end has confirmed receipt of data. The instance 1D
register may also be used by the CEP engine 150 to flag
transmission error events to the CEP driver 502. This may be
accomplished by adding a transmission error event tlag bit
to the mstance ID. Normally, the CEP engine 150 would set
this tlag bit to 0 when 1t updates the Instance ID register
which also contains a Flag field (which includes the trans-
mission error event flag bit). If there 1s a send failure, the
CEP engine 150 would set this bit to 1 on updating the
Instance ID register. Once the Instance ID register 1s updated
with the most significant bit of the flag field set to 1, the CEP
engine 150 would stop updating this register until the driver
has read the updated value; otherwise, the failure event will
be lost.

The CEP engine 150 may keep track of the time since the
instance ID register was last read. If the register has not been
read by the driver within a predefined time since 1t was first
updated after the last read, the CEP engine hardware 800
may generate an interrupt to signal thus fact. This may be
carried out by the interrupt function 810 1n FIG. 12 across
the mterface 218 to the host iterrupt controller 120. Note
that the pre-determined time before interrupt 1s program-
mable by the CEP driver 502. This scheme 1s introduced to
help with concurrent processing both 1n the software and in
the hardware for improved performance.

The VOQ Scheduler 812 shown in FIG. 12 may determine
which segment to send next based on a number of param-
cters including, destination, priority level, QOS parameters
and/or congestion, for example. Once 1t selects the next
segment to be transmitted, the VOQ Scheduler 812 may
instruct the DMA engine 814 to read the descriptors (which
may be randomly accessed from the DOQ 802) and starts the
transmission process.

The DMA engine 814 may provide imntelligent DMA
operations driven by the segment descriptors, and may read
data from system memory via the memory controller 118
(interface 216). For medium size packets, the DMA engine
814 may 1ssue read commands for all memory fragments
that make up the packet as defined be the fragment descrip-
tors that may include the total segment descriptor, including
header, payload and any control messages. For large packets,
the DMA engine 814 may not only 1ssue commands to read
the memory fragments but also may command to read the
segment descriptors. The DMA engine 814 may be started
with the initial segment chain descriptor 720 (FIG. 11)
which 1t uses to fetch the first segment descriptor (which
may include an ordered set of memory fragment descriptors
plus the next segment chain descriptor). The DMA engine
814 may use the segment descriptor to read the next segment
and the segment chain descriptor to concurrently read the
next segment descriptor. This cycle of concurrently reading,
segment data and segment descriptors may continue until the
entire packet 1s complete. The DMA engine 814 may be
preempted. When this happens (i.e., the scheduler has
selected a higher prionity packet) the DMA engine 814 may
continue until 1t reaches a self consistent state and then 1t
continues with the higher priority packet. Once the highest
priority packet i1s being transmitted, the DMA engine 814
runs to completion.

The DMA engine 814 may be preemptable by any higher
priority packet. The DMA engine 814 may save 1ts state
information and may resume when the higher priority packet
has been serviced. The DMA engine 814 may work on
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multiple packets concurrently, whether such packets are
going to different destinations or whether such packets
operate at different priority levels. Packets going to the same
destination, in the same QOS flow and at the same priority
may be treated sequentially to maintain the order. Data that 5
may include the packet segment (built from multiple physi-
cal memory fragments) may be passed to the transmuit
processing function 816 across the interface 216.

An even higher performance embodiment of the present
invention 1s presented for small packets. In the approach 10
described above (method 1), small packets may be put fully
combined and copied into sequential memory for fast access
by the DMA engine 814. Yet another embodiment of the
present mvention (method 2 above) improves performance
by placing the packet directly into a CEP engine memory 15
(the Packet Output Queue 830—see FIG. 14). This may
provide a significant performance improvement since firstly
the processing related to DMA setup, bufler allocation and
release, and handshaking between the CEP driver 502 and
the CEP Engine hardware 800 often consumes more pro- 20
cessing power than allowing the soitware to write the entire
packet to the CEP engine 150 through long word writes; and
secondly the Transmit Processing functions 816 have direct
high performance access to the packet output queue (1.e.
when 1nstructed to transmit the packet by the virtual output 25
scheduler 812). With the introduction of a Packet Output
Queue 830 (see FIG. 14 below) for enhanced performance,
the Virtual Output Scheduler 812 1s extended to be able to
select packets from the packet output queue 830 (FIG. 14)
as well a segments from the Descriptor Output Queue 802 30
based on the QOS algorithms.

FIG. 14 depicts the addition of a Packet Output Queue
830 directly 1n the CEP engine hardware 800 that 1s acces-
sible across the interface 212b. FIG. 14 1s similar to FIG. 12,
but shows additional elements 1n the CEP engine hardware 35
800: The previously mentioned Packet Output Queue 830

which 1s again memory-mapped, similar to the Descriptor
Output Queue 802; a Packet Output Queue (POQ) Ready

register 832 for the CEP driver 502 to signal to the CEP
Engine hardware 800 the completion of a packet; and a POQ 40
Status register 834. The CEP driver 502 may similarly write
continuously to the Packet Output Queue 830 for a series of
packets without writing to the POQ Ready register 832 to
signal the packet boundaries. Similarly to the status registers
associated with the control of the fragment descriptor output 45
queue 802 (1.¢., the DOQ Ready register 804 and the DOQ
status register 806), the Packet Output Queue (830) may also
be provided with the Packet Output Queue Status register
834 and the Packet Output Queue Ready register 832 for the
CEP driver 502 to check 1t the hardware has more room for 50
additional packet output, and to check transmission status.
As described above, it 1s possible to provide a hybnd
solution that addresses price/performance that uses both
CEP engine memory and system memory for small packets.
Receive Methods 55
The receive path of the CEP functionality receives packets
or packet segments from the communications network
which may then be processed. FIG. 15 shows a high level
overview of receive functions and the receive mterface that
1s included 1n the intertace 212b. FIG. 15 1s similar to FIG. 60
12, but omitting the transmit related elements and showing
receive related elements 1n the CEP engine hardware 800
instead. In FIG. 15 specifically, the CEP engine hardware
800 includes a “Iwo Sided Communications hardware-
software 1interface” (or “two-sided communications func- 65
tional block™) 840, a “One Sided Remote Memory Opera-
tion” (or “one-sided remote memory functional block™) 842,
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and a “Receive Processing” function 844, in addition to the
Interrupt 810 and the DMA engine 814.

A description of the functional blocks according to an
embodiment of the present invention follows. The receive
processing functional block 844 may be configured to ter-
minate the communications path, and to process the recerved
packet. It should then be determined whether the recerved
packet represents a one-sided or two-sided communication
and pass 1t to the appropriate handler function. The one-
sided remote memory functional block 842 may be config-
ured to carry out the memory command by accessing system
memory over the interface 216 to access the system memory
controller 118. The remote memory access may work on
memory for which access has been pre-arranged. Remote
memory operations may be one-sided since they don’t
involve any soiftware either 1in the CEP kernel 148 (FIG. 3),
the operating system 114 or the workload 112 on the remote
host and can ivolve read, write or read-modily write
operations. The two-sided communications functional block
840 may be configured to manage the hardware to software
interface for maximum performance. The DMA engine 814
may then perform system memory read and write functions
over the interface 216 on behall of the remote memory
operations (842) and the two-sided communications func-
tional block (840).

The following provides a detailed description of the
two-sided communication hardware to software interface
840 as depicted 1n FIG. 16. FIG. 16 shows the two-sided
communication hardware to software interface (labeled
“CPE Engine Recerve Interface”) 840 of FIG. 15, the view
expanded to 1nclude the following elements:

a readable Reception Queue (RxQ) 850, to yield builer
pointers;

a readable Reception Queue Ready register 8352, to yield
an Rx(Q) ready interrupt;

a readable Reception Queue Fill register 854, to yield the
number of received segments;

a writable Reception Select register 856, to accept a
peeping selection;

a writable Free Builer Queue-0 858, to accept pointers to
free bullers; and

a writable Free Builer Queue-1 860, to accept pointers to
free buflers.

Hollow arrows shown 1n the diagram of the CPE engine
receive interface 840 indicate read/write directions of the
above elements. Further shown in FIG. 16 15 a representative
RxQ entry 862, a representative Free Buller Queue entry
864, cach comprising two 32-bit address values. FIG. 16
also shows a 64-bit base address register 866, and represen-
tative memory locations 868 (New ingress data) and 870
(Next bufler to use) and pointers 872 and 874 to these
memory locations (868 and 870 respectively). The pointers
872 and 874 are computed by adding the contents of the
64-bit base address register 866 to a selected 32-bit address
value from the Rx() entry 862 and the Free bufler Queue
entry 864 respectively, as shown symbolically with Addition
symbols.

In the receiving direction, receive bullers may be set up
in system memory to house complete segments 1n contigu-
ous physical memory. The receive bullers may be co-
managed by the software (primarily in the CEP driver 520
and the CEP kernel 148) and the hardware (primarily the
CEP engine 150). The software may maintain two free lists
of buflers, one for loosely controlled traflic and one for
strictly controlled trathic (loosely and strictly controlled
flows are disclosed in commonly assigned U.S. patent
application enftitled “Secure handle for intra- and inter-
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processor communications”, which 1s incorporated herein by
reference. The CEP engine hardware 800 may maintain a
memory mapped free builer FIFO for each flow control type
(the Free Buller Queue-0 858 and the Free buller Queue-1
860 respectively 1n FIG. 16). It 1s through these free buller
FIFOs that the software may allocate free buflers to the
hardware 800 and from which hardware 800 may obtain free
butlers to use for bullering incoming traflic. This allows the
hardware 800 to have expedited access to free bullers
without havmg to 1mterrupt the CEP driver 502, thus ensur-
ing maximum performance. Both builer types may be man-
aged over the CEP driver to CEP engine interface 212b.
Upon receiving a packet or segment, the CEP engine hard-
ware 800 may allocate a bufler to store received data. To
maximize performance, the CEP engine may start to write
partial packet data or partial segment data immediately to
system memory builers (1.e. in cut-through mode) before the
complete packet or segment has been received. Once the
whole packet or segment 1s received, the hardware 800 may
calculate the packet error checksum (PEC), which 1is
appended to the packet to validate the integrity of the
received packet at the destination. Based on the result of
PEC checking, the CEP Engine hardware 800 may either
(depending on configuration settings) carry out one or all of
the following to synchronize with the CEP software:

A) set a status 1n the relevant registers (Rx(QQ 850, Rx(Q)
Ready 852, and Rx(Q) Fill 854);

B) generate an interrupt; or

C) drop the packet and free the builer.

The reception of packets or segments may be conveyed by
the hardware 800 to the CEP driver 502 through the Recep-
tion Queue 850. The Reception Queue 850 may be imple-
mented as a readable FIFO, and the data may represent the
start address 1n system memory (physical host memory) of
the buller where the packet or segment has been stored.

The following 1s an example of an embodiment that
optimizes for performance in a 64-bit architecture, where the
total bufler space may be represented (limited to a 4 GByte
range addressable) by 32 bits. Each entry in the reception
queue (RxQ) entry 862, FIG. 16) 1s a 64-bit register, allowing
two 32-bit addresses to be represented; where each 32 bit
address represents the offset for the first byte of a received
builer. The exit point of the Reception Queue 850 1s similar
to the Descriptor Output Queue 802, 1.e. 1t 1S memory-
mapped. This allows the CEP driver 502 to read the indi-
cations of packet/segment arrival, up to two at a time. Fach
of the two address fields points to the start address of the
corresponding received packet in the 64-bit address space
with the help of a pre-defined 64-bit base address (stored in
the 64-bit base address register 866 shown 1n FIG. 16). If the
reception queue 850 1s empty, an all-0 value will be returned.
If only one entry 1s valid, the other entry 1s set to O by the
CEP Engine 150 hardware. The lower addressed entry
represents the packet/segment arrived earlier.

Note that other embodiments may be 1mplemented for
machines with diflerent architectures or where buller space
of >4 GByte 1s required. The above description 1s one
optimization only for high performance across a wide range
ol applications.

Multiple reception queues 850 may be provided. For
example, one reception queue 850 may be provided for each
priority. Each reception queue 850 may be memory mapped.
This may allow the driver to provide QOS in selecting
packet processing priorities and may enable one packet to be
processed ahead of an earlier arrived packet at the receiving,
end, based on priority or other parameter(s). The CEP engine
hardware 800 may track whether the Reception Queue 8350
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1s read. If the reception queue 850 has not been read by the
CEP driver 502 for a predefined timeout since it was first
updated after the last read operation, the CEP engine hard-
ware 800 may generate an mterrupt (interrupt function 810,
FIG. 15) to signal this event. Once an interrupt has been
generated, no further interrupt may be generated by the
hardware for packets/segments arriving subsequently if the
original interrupt has not been served by the software. This
allows the software (i.e. the CEP driver 502) to serve more
received packets by a single interrupt event. The number of
interrupt events 1s preferably optimized so as to improve
system performance. The pre-defined timeout before inter-
rupt following last read may be advantageously program-
mable across the hardware software (1.e., CEP engine 150 to
CEP driver 502) interface 212b. The Reception Queue Fill
register 854 1s a memory mapped readable register that may
provide the driver software (1.e. the CEP driver 502) with the
number of received packets or segments that have not been
conveyed to the CEP driver 502. Out-of-order packet peep-
ing by the driver may be advantageously supported through
the Reception Queue Fill register 854 and the Reception
Select register 856 (a memory-mapped writable register).
The former indicates the current number of received packets
not yet conveyed to the CEP driver 502 and the latter allows
the CEP dniver 502 to signal to the CEP Engine 130
hardware which entry the CEP driver 502 wants to read with
the next read operation of the Reception Queue 850. By
default, the Reception Select register 856 may have the
value of 0 and as a result, a read of the Reception Queue 850
may return the content of the entry at the head of the queue
(FIFO exit point). If the Reception Select register 856 1s set
to some other value n (2, 4, 6 . . . due to pairing in this
example) by the driver, the next read of the Reception Queue
850 returns the content of the nth entry from the head of the
queue. Each read of the Reception Queue 850 may auto-
matically reset the Reception Select register 856 to 0. When
a read 1s performed not on the head entry of the queue, the
queue itsell may not updated (the entry read may not be
removed from the queue).

The peeping feature may enable the CEP Kernel 148 via
the CEP driver 502 to get fast access to data indicating which
source 1s filling up the builer. This may provide invaluable
data for troubleshooting connections, i1dentifying out of
balance performance 1ssues, 1dentitying sources not adher-
ing to QOS limits, and for providing the higher level CEP
kernel tunctions with data through which it may throttle
source traflic to better balance system throughput.

A CEP based performance function may be added to the
CEP engine 150 to provide instrumentation to improve the
soltware interface. This function may analyze the historical
and current state of the reception queue 850 and may provide
performance data that may be read by the driver (1.e. the
CEP driver 502). This includes a current list of entries from
grven destination (n entries), and a historical list of entries
from specific destinations within a sliding time window
(programmable).

The CEP driver software 502 may continuously replenish
hardware (the CEP engine hardware 800) with free bullers
for future packet reception as more mcoming traflic arrives
and Rx buflers maintained in the Reception Queue 850 are
consumed. This functionality may be supported through the
two Free Buller Queues 858 and 860, which are writable
FIFOs with paired 32-bit entries. The Free Buller Queue-0
(858) may be used for loosely controlled flows and the Free
Bufler Queue-1 (860) may be used for strictly controlled
flows. The driver may simply write the address of the butler
to be freed to the corresponding Free Bufler Queue (838 or
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860) when it decides to send a free buller to hardware (1.e.
the Rx(QQ 850). Each entry of the Free Bufler Queue FIFOs
may be a pair of 32-bit addresses, allowing two free bullers
to be given back to the CEP Engine 150 hardware in one
transaction. The hardware (1.e. the Rx(Q 850) may obtain the
next free buller for mmcoming trailic from the head of the
corresponding FIFO (1.e. the Free Buller Queues 858 or 860)
upon arrival of a new packet/segment. The software (1.e. the
CEP driver 5302) may give free buflers to the CEP Engine
150 hardware (i.e., the Rx(Q 8350) 1n batches for increased
performance. Internally, the CEP driver software 502 may
maintain two lists of {ree bufllers, one for each flow control
type. As before, this embodiment 1s optimized for perfor-
mance within a 64 bit architecture and where 4 GByte bufler
space as represented by 32 bit words 1s suilicient for the
application.

SUMMARY

Advantageously, the entire design has been performance
optimized without compromise and has taken full advantage
of modern high performance access to memory oflered by
the latest 64 bit processors. As those of skill may appreciate,
however, the structures and functionalities disclosed herein
may readily be adapted to higher bit order processors. The
two-sided protocol disclosed herein does not have fixed
endpoint pairs. At the hardware level, the instance ID (see
“imnstance ID” field 628 in FIGS. 9 and 11) may be local to
the transmit end to coordinate synchronization between the
CEP engine 150 and the CEP kernel 148. This implemen-
tation 1s lightweight, as compared to using (conventional)
packet sequence IDs. The CEP engine 150 may be config-
ured to transmit queues on a per-destination and priority
basis, and multiple processes may share these queues.
Receive side bufler allocation may be completely indepen-
dent from the source, thereby eliminating co-ordination
latencies. The protocol (the CEP kernel protocols 400 and
500, FIGS. 6 and 7) may advantageously support strictly
controlled and loosely controlled buflers. The CEP kernel
protocol 500 offers support for guaranteed delivery. The
CEP kemel protocol 500 offers a built in mechanism for
handling large data that may exceed the MTU of the
network. The CEP kernel protocol 500 may have a built in
scheduler that may provide QOS and smart transmit choices
based on congestion. The DMA engine 814 (FIGS. 12, 14,
and 15) may support multiple transmit modes and 1s pre-
emptable for higher priority trathc. DMA large packet mode
may provide a high level instruction that causes the DMA
engine 814 to both concurrently read the chained descriptors
and the data. The CEP kernel protocol 500 supports a direct
transmit approach for small packets. Context dependent
interrupts may be programmed to ensure optimized perfor-
mance between software and hardware. Packet peeping
functionality may be provided to enable performance and
troubleshooting to be carried out on received data before
they have been passed to the Upper Level Protocol. Embodi-
ments of the present mvention support optimized perior-
mance based on multiple packet sizes (although three are
disclosed herein, the present inventions are not limited
thereby).

While the foregoing detailed description has described
preferred embodiments of the present invention, 1t 1s to be
understood that the above description 1s 1llustrative only and
not limiting of the disclosed invention. Those of skill in this
art will recognize other alternative embodiments and all
such embodiments are deemed to fall within the scope of the
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present invention. Thus, the present invention should be
limited only by the claims as set forth below.

The mvention claimed 1s:

1. A method for optimizing a data packet in a high
performance computer system, comprising [the steps of]:
[preparing a payload of the data packet; passing the prepared
payload to a communications endpoint processor (CEP)
kernel;] appending, by [the] a communications endpoint

10 processor (CEP) kernel, a header to [the] a prepared payload
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of a data packet to generate a CEP kernel protocol unit [that
is optimized for a processor environment]; transmitting, by
the CEP kernel, the CEP kernel protocol unit to a CEP driver
[that is optimized for high throughput and low latency,]; and
transforming, by the CEP driver, the transmitted CEP kernel
protocol unit into one of a plurality of CEP kernel protocol
unmit formats depending upon a size range of the prepared
payload, each of the plurality of CEP kernel protocol unit

formats having a different format for etlicient handling by a

CEP engine [that is configured to automate communication
tasks and to interface to a system memory controller for
direct memory operations];
wherein the transforming includes transmitting to the
CEP engine a first data structure comprising a virtual
address in memory of the header, and at least one
second data structure comprising a virtual address in
memory of the prepared pavioad.
2. The method of claim 1, wherein the size range of the

prepared payload corresponding to each of the plurality of

CEP kernel protocol units 1s programmable.

3. The method of claim 1, wherein the [transforming step
transforms the CEP kernel protocol unit into] plurality of
CEP kernel protocol unit formats comprises a medium size
CEP kernel format, a large CEP kernel format [or] and a
small CEP kernel format.

4. The method of claim 1, wherein the transforming [step]
1s carried out independently of the CEP kernel.

5. The method of claim 3, wherein the transforming [step]
includes [a step of] representing the medium size CEP kernel
tormat of the CEP kernel protocol unit in a segment descrip-
tor that includes a definition of [the] a physical address of all
memory locations at which the data packet 1s stored.

6. The method of claim S, wherein the segment descriptor

further includes an ordered plurality of fragment descriptors,

cach of the plurality of fragment descriptors corresponding
to a fragment that contains a portion of the prepared payload
and defining a physical memory location of [its] a corre-
sponding fragment.

7. The method of claim 6, wherein the plurality of
fragment descriptors are stored n order i consecutive
physical memory space.

[8. The method of claim 1, wherein the transforming step
includes transmitting to the CEP engine a first data structure
containing a virtual address 1n memory of the header, and at
least one second data structure containing a virtual address
in memory of the payload.]

9. The method of claim [5] 7, further [including steps of]
comprising: transmitting, by the CEP driver, the first and the
at least one second data structure to the CEP engine, and
retrieving the header and payload from the memory using
the transmitted first and at least one second data structure.

10. The method of claim 3, wherein the transforming [step
transforms] comprises transforming the CEP kernel protocol
unit into the large CEP kernel format [when] in response to
the payload [is] being larger than a largest packet size that
1s optimal for transmission through a communication system
of the high performance computer system.
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11. The method of claim 10, wherein the transforming
[step transforms] the CEP kernel protocol unit into the large
CEP kernel format [by] comprises segmenting the prepared
payload into a plurality of segments, all but a last one of the
plurality of segments being of a size that 1s equal to or less
than the largest packet size.
12. The method of claim 3, wherein the transforming [step
transforms] comprises transforming the CEP kernel protocol
unit into the small size CEP kernel format and wherein the
method further [includes a step of] comprises copying the
prepared payload mto a sequential physical memory seg-
ment of a main memory of the high performance computer
system.
13. The method of claim 12, wherein the transforming
[step generates] comprises generating a single fragment
descriptor that includes a physical memory location of the
prepared payload and wherein the method further [includes
a step of] comprises transmitting the single fragment
descriptor to the CEP engine.
14. The method of claim 3, wherein the transforming [step
transforms] comprises transforming the CEP kernel protocol
unit into the small size CEP kernel format and copies the
prepared payload directly into a memory coupled to the CEP
engine to which the CEP engine has direct access.
15. The method of claim 14, wherein the memory coupled
to the CEP engine includes a memory mapped packet output
queue.
16. [ The method of claim 1, further including the steps of}
A method for optimizing a data packet in a high performance
computer system, cCOmprising.
appending, by a communications endpoint processor
(CEP) kernel, a header to a prepared pavioad of a data
packet to generate a CEP kernel protocol unit;

transmitting, by the CEP kernel, the CEP kernel protocol
unit to a CEP driver;

transforming, by the CEP driver, the transmitted CEP

kernel protocol unit into one of a plurality of CEP
kernel protocol unit formats depending upon a size
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range of the preparved pavioad, each of the plurality of
CEP kernel protocol unit formats having a different
format for efficient handling by a CEP engine;
providing the CEP engine with a descriptor output queue
5 that 1s configured as a memory mapped FIFO; and
[the CEP driver] transmitting, by the CEP driver, the
transformed CEP kernel protocol unit to the descriptor
output queue.
17. The method of claim 16, further [including the steps
1o of] comprising: providing the CEP engine with a memory
mapped descriptor output queue ready register].]; and [the
CEP driver] writing, by the CEP driver, to the descriptor
output queue ready register [when] in response to the
descriptors for at least a portion of the transformed CEP
kernel protocol unit [have] kaving been written to the
descriptor output queue.
18. The method of claim 17 [wherein after the writing
step, the method further includes a step of the CEP engine],
further comprising. in vesponse to the writing, performing,
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»q by the CEP engine, a descriptor output queue input operation

to accept the descriptors written to the descriptor output
queue.

19. The method of claim 16, further comprising [a step of
the CEP driver] including, by the CEP driver in one of the
descriptors to be written to the descriptor output queue, an
indication that descriptors for a CEP kernel protocol unit
previously written to the descriptor output queue are ready
for the CEP engine to remove from the descriptor output

queue.
20. The method of claim 1,

30
wherein the CEP kernel protocol unit is optimized for a
processor environment,
wherein the CEP driver is optimized for high throughput
and low latency; and
35 wherein the CEP engine is configured to automate com-

munication tasks and to interface to a system memory
controller for direct memory operations.
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