USOORE47717E
(19) United States
12y Reissued Patent (10) Patent Number: US RE47,717 E
Tung 45) Date of Reissued Patent: Nov. 5, 2019
(54) SERIAL OUTPUT REDIRECTION USING (56) References Cited

HITTP |
U.S. PATENT DOCUMENTS

(71) Applicant: QUANTA COMPUTER INC.,

6,665,731 Bl 12/2003 Kumar
Taoyuan (T'W) 7,234,964 Bl 6/2007 Karstens
(72) Inventor: Yen-Ping Tung, New Taipei (TW) (Continued)
(73) Assignee: QUANTA COMPUTER INC., FOREIGN PATENT DOCUMENTS
Taoyuan (1W) CN 101114966 1/2008
CN 103049342 4/2013
(21) Appl. No.: 15/959,955 WO 2014143034 Al 9/2014

(22) Filed: Apr. 23, 2018
Related U.S. Patent Documents

OTHER PUBLICATTIONS

Reissue of: European Search Report No. EP 15 16 7618, dated Mar. 2, 2016, 9
(64) Patent No.: 9,282,072 pages.
Issued: Mar. 8, 2016 (Continued)
Appl. No.: 14/541,998
Filed: Nov. 14, 2014 . .
o o Primary Examiner — Minh Dieu Nguyen
51) Int. CL 14) Attorney, Agent, or Firm — Nixon Peabody LLP;
V, AZ Y
HO4L 12/58 (2006.01) 7hou I u
GO6l’ 17/22 (2006.01)
(Continued) (57) ABSTRACT
(52) U.S. CL . . .
CPC HO4L 51/24 (2013.01); GOGF 13/105 A service controller on a computing device can be config-
(2013.01); GO6F I 3/}35 (2013.01); ured to redirect serial output over a network using HT'TP.
(Continued) For example, the service controller can be configured with
58) Field of Classification Search a web server that can recerve the serial output and stream the
(58) p
CPC ... HO4L 1/0076; HO4L 5/0032; HO4L 9/08; serial output to a web browser over an HTTP connection. In

HO4L 9/0816; HO4L 9/0819; HO4L 9/083; some i1mplementations, the HTTP connection can be a

HO4L 9/3268; HO4L. 12/189; HO4L . ‘
12/2838: HO4L, 12 /287 4: HO4L, 12/2878: WebSocket connection, as defined by the HIMLS specifi-

HO4T 12/2896 HO4T 12/40117 104 cation. In some implementations, a proxy server can be
13/10; HO4L, 13 /12 HO4I, 13/14; HO4L configured with a web server that can receive serial over
25/02; HO4L. 25/42; HO4L. 25/44; HO4L LAN (SOL) output from multiple servers and stream the

25/45 HO41., 27/2611 HO41L. 27/2643 SOL to a web browser on a client device.
HO4L 29/06428; HO4L 29/06455

(Continued) 19 Claims, 6 Drawing Sheets

System Architecture

600
622 602 604
Service .
Controller Processor(s) Input Device(s)
612
Operating System L~ 614
Network Displ

Interface(s) ISpiay Network Communication l— 616
g % Graphics Processing System \L— 618
808 606 Application(s) """ 620

610

US RE47,717 E

Page 2
(51) Int. CL 8,346,912 B2* 1/2013 Bhadri ...oocovvn.... GOGF 13/105
GOl 13/10 (2006.01) | | 709/201
HO4L 12/26 (2006.01) giggggg E} %8; ﬁa{lty
] ; . 1 ﬁlty
ggg: iﬁjgg %882'8:“) 8,650,273 B2 2/2014 Lambert et al.
(2006.01) 8.805.983 B2 82014 Dube et al.
HO4L 29/06 (2006.01) 2005/0129035 Al 6/2005 Saito
GO6F 9/54 (2006.01) 2009/0055157 Al 2/2009 Soffer
GO7EF 17/32 (2006.01) 2010/0281107 Al1* 11/2010 Fallowsccccovnnnnn. GO6F 9/54
(52) US. Cl. 2013/0185402 Al 7/2013 Ayanam et al. 7020
CPC ... GOG6F 17/2247 (2013.01); HO4L 43/0817 53130238785 Al 92013 Hawk of al
(2013.01); HO4L 67/2814 (2013.01); HO4L 2014/0108618 Al* 4/2014 lee ...ccoovvvvvvnnnn.... HO4IL. 12/2838
69/08 (2013.01); GO6F 9/54 (2013.01); GO7F 709/219
17/3209 (2013.01); HO4L 67/025 (2013.01); 2014/0222890 Al 8/2014 Zhu et al
HO4L 67/2838 (2013.01) 20140281894 ALT 92014 Maity oo RS

(58) Field of Classification Search
USPC ..., 709/224, 201, 202; 715/760

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,447,889 B2 11/2008 Cartes et al.

7,478,152 B2 1/2009 Holt et al.

7,543,277 Bl 6/2009 Righi et al.

7,552,213 B2 6/2009 De Oliverra et al.

7,594,144 B2 9/2009 Brandyberry et al.

7,660,910 B2 2/2010 Miller et al.

7,950,999 B2* 5/2011 Morrow GO7F 17/3209

463/16

OTHER PUBLICATTONS

Dell, “Configuring Intelligent Platform Management Interface (IPMI)”,
Retrieved on Dec. 4, 2014, from: http://web.mit.edu/cron/documentation/

dell-server-admin/en/DRAC_5/racugcly.htm. (8 pages).

Hofstadtler, “Lessons learned with Supermicro’s remote management/
IPMI view”, Retrieved from: http://christian . hofstaedtlername/blog/
2010/05/lessons-learned-with-supermicros-remote-managementipmi-
view.html (2013). (2 pages).

Ovh, “Senial-Over-Lan”, Retrieved from: https://www.ovh.co.uk/
dedicated servers/serial over lan.xml (Oct. 18, 2011). (1 page).

* cited by examiner

U.S. Patent Nov. 5, 2019 Sheet 1 of 6 US RE47.,717 E

102

100

"
S ©
= O
"0'51—
=

110
FIG. 1
(Prior Art)

Q0
] e
S

£3
I~
~
Ry ¢ Dl
-
S
-
&
Cop
= — —
) clc Olc
= | 80BI8IU] YJOMION JEETIVE=Tao [TV
& —_—
@nu 9l¢c
19SMOIE GaM TN LH 9AREN
_ 90¢
moSmﬁm J9[j0U0D) BJIAIDS
N ina(Jualid
—
-
7ol
= 80¢
rd 1906607 welsAg
¥0C NdD
dﬂ 20Z JOAIBS _

00c¢

U.S. Patent

US RE47,717 E

Sheet 3 of 6

Nov. 5, 2019

U.S. Patent

0S
Y SIS E=TY)

c0e
loneg Axoud

1NLH SAREN

ol¢
Jjasmolg g8\

vic
90IAD(] UBID

00€

& Old

a0BI91U| MJOMIBN

208 112U HIOMIE

90¢
18|04

AV Olc

NV |
JOAQ) [e1IBS

90¢
J19]|0JU0D) BDIAIS

80¢
18bb07 WoIsAS

202 Jonieg |

20c JONIDS

U.S. Patent Nov. 5, 2019 Sheet 4 of 6 US RE47.,717 E

Establish Connection to Web 402
Browser 400

404

Receive Console Messages

Transmit Console Messages | 406
to Web Browser :

FIG. 4

U.S. Patent Nov. 5, 2019 Sheet 5 of 6 US RE47.,717 E

Establish Connection to 502 500
Server(s) J

Receive Console Messages 504
from Server(s) f

Establish Connection to Web 506
Browser 5

Transmit Console Messages | 508
to Web Browser =

US RE47,717 E

O 9l
019
e 0c9 . (s)uoneolddy 909 809
M Q19 WwolsAg buissenold soydeln
2 al9 UONEDIUNWILIOY YIOMION feidsic S ITENE
= NI0MIeN
7 1O we1sAg buneisdp
&
y—
—
“ 210
\f
: _ 19]jONU0N
M (s)eo1neq 1ndu) (S)1088920.d SOINOS
09 09 ¢c9

009
2.N)08)IYDJY WaSAg

U.S. Patent

US RE47,717 E

1

SERIAL OUTPUT REDIRECTION USING
HTTP

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

The present application is a reissue of U.S. Pat. No.
9282,072, issued on Mar. 8, 2016, from application Ser. No.
14/541,998, filed on Nov. 14, 2014.

TECHNICAL FIELD

The disclosure generally relates to redirecting serial out-
put of a computing device over a network.

BACKGROUND

Serial over LAN (local area network) 1s a mechanism that
enables the mput and output of the serial port of a computing
device to be redirected over an Internet protocol (IP) net-
work. In order to receive the redirected serial output (e.g.,
console messages, system log messages, etc.), a client
device must be configured with an intelligent platform
management interface (IPMI) compliant tool to connect to
an IPMI compliant controller that 1s configured to perform
the serial output redirection. Not only must the client device
be configured with an IPMI tool to receive the console
messages, the user (e.g., server administrator) of the client
device must know how to configure and use the IPMI tool.

SUMMARY

In some 1implementations, a service controller on a com-
puting device can be configured to redirect serial output over
a network using HI'TP. For example, the service controller
can be configured with a web server that can receive the
serial output of the computing device and stream the serial
output to a web browser over an HT'TP connection. In some
implementations, the HT'TP connection can be a WebSocket
connection, as defined by the HTMLS5 specification. In some
implementations, a proxy server can be configured with a
web server that can receive serial over LAN (SOL) output
from multiple servers and stream the SOL to a web browser
on a client device.

Particular implementations provide at least the following
advantages. First, a server administrator no longer needs a
special IPMI tool to access console messages generated by
a computing device. Second, the server administrator can
use any web browser, compliant with the HT'TP connection,
on any device to access the console messages and debug
problems with a server.

Details of one or more implementations are set forth 1n the
accompanying drawings and the description below. Other
teatures, aspects, and potential advantages will be apparent
from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FI1G. 1 1llustrates an example system for redirecting serial
output over a network.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 illustrates an example system for redirecting serial
output using HTTP.

FIG. 3 1s an example system for redirecting serial output
using HT'TP and a proxy server.

FIG. 4 1s an example process for redirecting serial output
using HTTP.

FIG. 5 1s an example process for redirecting serial output
using HT'TP and a proxy server.

FIG. 6 1s a block diagram of an example system archi-
tecture 1implementing the features and processes of FIGS.
1-5.

Like reference symbols 1in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 1illustrates an example system 100 for redirecting
serial output over a network. In some 1mplementations,
system 100 can include server rack 102 that includes mul-
tiple servers 104. Each server 104 can include central
processing unit (CPU) 104 and a service controller 114. CPU
104 can be the main processor for server 104. In some

embodiments, at least one of servers 104 can include mul-
tiple CPUs.

In some 1mplementations, service controller 114 can be,
for example, a baseboard management controller (BMC). A
baseboard management controller 1s a specialized service
processor that monitors the physical state of server 104
using sensors and communicating with the system admin-
istrator through an independent connection (e.g., out-oi-
band). The BMC 1s part of the mtelligent platform manage-
ment 1nterface (IPMI) and 1s usually contaimned in the
motherboard of server 104. The BMC can operate indepen-
dently of CPU 112. Further, the BMC can operate even when
CPU 112 1s powered down and server 104 1s powered ofl.

In some implementations, service controller 114 can be
configured to redirect serial output over a network connec-
tion. For example, service controller 114 can be configured
to receive serial output (e.g., console messages) from CPU
112, or other components of server 104, and redirect the
serial output to network 106 (e.g., a local area network, wide
area network, the Internet, etc.). For example, service con-
troller 114 can implement serial over LAN serial output
redirection. However, the present technology 1s not limited
in this regard and any type of network can be utilized and
corresponding network connection types and protocols can
be utilized to support the redirecting of the serial output.

In some implementations, client device 108 can access the
serial output from server 104 using an IPMI compliant tool.
For example, the IPMI compliant tool can be used to
configure client device 108 to interface with the service
controller 114 over network 106 to receive the serial mes-
sages redirected to network 106 by service controller 114.
For example, client device 108 can be a desktop computer,
laptop computer, tablet device or handheld device. In some
implementations, client device 108 can present the serial
output recerved from server 104 on a display coupled to
client device 108. For example, the serial output can include
console messages generated by server 104. These console
messages can be displayed as lines of text 110 on the display
of client device 108. However, the present technology 1s not
limited 1n this regard and the console messages can be
presented 1n any other form or format by client device 108.
For example, the console messages can be presented using
graphical elements or a combination of lines of text and
graphical elements representing the console messages.

US RE47,717 E

3

FIG. 2 illustrates an example system 200 for redirecting
serial output using HITP. In some implementations, server
202 can be configured to redirect serial output to a browser
on a client device using HTTP. For example, server 202 1n
system 200 can correspond to server 104 1n FIG. 1. Server
202 can include CPU 204 and service controller 206. CPU
204 can be the main processor of server 202, for example.
CPU 204 can be configured with a system logger function
208. For example, the operating system, BIOS and other
applications runming on server 202 can be configured to send
console output (e.g., logging, debugging) messages to sys-
tem logger 208. System logger 208 can receive the console
output messages and send the console messages to the serial
port of server 202.

In some 1implementations, service controller 206 can be
configured to redirect serial output messages (e.g., messages
destined for the sernial port) to network interface controller
212. For example, network interface controller 212 can be a
network interface controller dedicated to service controller
206. However, 1n some implementations, the network inter-
tace controller 212 can be shared with other components 1n
system 202. Network interface controller 212 can provide
for out-of-band communication between service controller
206 and an IPMI compliant client application.

In some 1mplementations, service controller 206 can be
configured with web server 210. For example, web server
210 can be configured to receive serial output messages
from system logger 208 and redirect the serial output
messages over the network using HI'TP. For example, web
server 210 can be an HIMLS compliant web server that
provides for upgrading a regular H1'TP session to a session
compliant with the WebSocket protocol specification. Thus,
web server 210 can transmit serial output messages (e.g.,
console) messages using native HTML5 mechanisms and
without using add-ons (e.g., embedded java, Flash, or other
client-server mechamsms). For example, web server 210 can
be configured transmit WebSocket messages using a full-
duplex communication channel over a single TCP connec-
tion. The WebSocket messages allow the web server and
web browser to maintain an open communication channel
for transmission of data packets. Thus, web server 210 can
stream serial output messages generated by system logger
208 to the network 1n real-time or near real-time. However,
in some 1mplementations, the communications channel can
be opened as needed to transmit data packets.

In some implementations, client device 214 can be con-
figured with web browser 216. For example, web browser
216 can be an HIMLS compliant web browser that is
capable of establishing a WebSocket connection with an
HTMLS5 compliant web server. Client device 214 can be any
device configured with an HITML5 compliant web browser.
For example, client device 214 can be a laptop computer,
tablet computer, handheld device or other similar computing,
device.

In some 1implementations, a user (e.g., server administra-
tor) can use web browser 216 to view serial output (e.g.,
console messages) generated by server 202. For example,
the system administrator can enter the IP address of web
server 210 1n web browser 216. Web browser 216 can use
the IP address to connect to web server 210 over a network
(e.g., the Internet) and through network interface controller
212. To establish a WebSocket connection, web browser 216
can perform a conventional HT'TP handshake with web
server 210 to establish a connection and then request an
upgrade to a WebSocket protocol connection. Once the
upgrade 1s complete, web server 210 can stream the serial
output messages received from system logger 208 over a

10

15

20

25

30

35

40

45

50

55

60

65

4

TCP connection to web browser 216. For example, web
server 210 can translate the senal output (e.g., terminal or
console output) from server 202 mto a WebSocket message
using a built in HIMLS parser. For example, the WebSocket
connection can be established through a web page provided
by web server 210 according to a conventional techniques.
Once the serial output messages are recerved from server
202, web browser 216 can display the serial output messages
on the web page that i1s configured to work with the
WebSocket connection.

FIG. 3 1s an example system 300 for redirecting serial
output using HI'TP and a proxy server. For example, rather
than configuring service controller 206 with web server 210
as 1n FIG. 2, web server 304 can be configured on proxy
server 302. Web server 304 can be configured to receive
serial output from server 202, or multiple servers 202, and
generate a web page including a WebSocket connection for
streaming serial output from server 202 to web browser 216
on client device 214.

In some implementations, web server 304 on proxy server
302 can be configured to interact with the IPMI interface of
service controller 206 to request serial output from server
202. For example, service controller 206 can be configured
with serial over LAN function 210 to redirect system logger
208 output to network interface 212 so that system logger
208 output (e.g., serial output, console messages, etc.) can
be received by web server 304. For example, web server 304
can be configured with the IP address and port of each
service controller 206 on each monitored server 202 (only
one shown). Web server 304 can use the IP address and port
ol each service controller 206 to establish a connection to
cach respective service controller 206 and receive serial
output from each respective server 202. In some implemen-
tations, web server 304 can maintain simultaneous IPMI
connections to multiple servers 202.

In some implementations, web server 304 can be config-
ured to stream the serial output received from service
controller 206 to web browser 216 on client device 214. For
example, a user of client device 214 (e.g., a server admin-
istrator) can enter the IP address of web server 304 on proxy
server 302 into web browser 216. Web browser 216 can then
use the IP address of web server 304 to connect to web
server 304 over a network (e.g., the Internet). Once web
browser 216 connects to web server 304, web server 304 can
send to web browser 216 a web page that i1dentifies each
server 202 to which web server 304 1s currently connected.
The user can select a server 202 to monitor by providing
input to the web page displayed 1n web browser 216. Once
the user makes a selection, web browser 216 can establish a
WebSocket connection with web server 304 to stream the
serial output from the selected server 202 to web browser
216.

In some 1implementations, web browser 216 can be con-
figured to establish new connections to other servers through
web server 304. For example, the web page delivered to web
browser 216 from web server 304 can include functionality
to specity the IP address of service controllers of other
servers. Web browser 216 can send the specified IP address
to web server 304. Web server 304 can use the specified IP
address to establish a new connection to a new service
controller and receive serial output from the specified ser-
vice controller.

In some implementations, web browser 216 and web
server 304 can establish multiple, simultaneous WebSocket
connections. For example, the user of client device 214 may
wish to monitor multiple servers 202 simultaneously. The
web page delivered to web browser 216 can be configured

US RE47,717 E

S

to support presenting serial output (e.g., console messages,
system log messages, system error messages, etc.) from
multiple servers 202 simultancously. Thus, the user can
select each server 202 that the user wishes to monitor and
WebSockets can be established for each selected server 202.
Alternatively, the web page can be configured with a single
WebSocket connection that transmits serial output messages
received from multiple servers. The web page can be con-
figured to organize and display the messages from multiple
servers 1 an easy to read format, for example.

In some 1mplementations, the client device 214 can use
the TCP connection (e.g., WebSocket connection) estab-
lished between client device 214 and the server (e.g., server
202 or proxy server 302) to send commands from client
device 214 to service controller 206. For example, when
client device 214 1s directly connected to service controller
206 of server 202 (as i FIG. 2), a user of client device 214
can use an 1nterface (e.g., an emulated console interface on
a webpage) of web browser 216 to enter commands (e.g.,
text, IPMI commands, etc.) to control server 202. Client
device 214 can send the commands directly to web server
210 of service controller 206. Web server 210 can provide
the commands to service controller 206 for execution.

When client device 214 1s connected to service controller
206 of server 202 through proxy server 302, a user of client
device 214 can use an interface (e.g., an emulated console
interface on a webpage) of web browser 216 to enter
commands (e.g., text, IPMI commands, etc.) to control
server 202. Client device 214 can send a command to web
server 304 on proxy server 302. In response to receiving the
command, web server 302 can invoke the corresponding
service controller API (e.g., IMPI compliant function) and
send the command to service controller 206. Upon receiving
the command, service controller 206 can perform the cor-
responding function or operation.

FIG. 4 1s an example process 400 for redirecting serial
output using HTTP. For example, process 400 can be
performed by a service controller of a server, as described
above. At step 402, the service controller of a computing
device can establish a connection to a web browser. For
example, the service controller can be configured with a web
server. The web server can be accessible to a web browser
running on a client device when the web browser 1s provided
with the IP address of the web server or the IP address of the
service controller. The web server can establish a WebSocket
connection to the web browser on the client device 1n
response to an HTTP request received from the web browser.

At step 404, the service controller can receive console
messages from other components of the computing device.
For example, the web server configured on the service
controller can receive serial output messages (e.g., console
messages) from the main CPU (e.g., software running on the
main CPU) of the computing device.

At step 406, the service controller can transmit the con-
sole message to the web browser on the client device. For
example, the web server on the service controller can stream
the console messages to the web browser 1n real-time or near
real-time. The console messages can be displayed on a web
page provided by the web server and displayed on the web
browser of the client device.

FIG. 5 1s an example process 500 for redirecting serial
output using HTTP and a proxy server. For example, process
500 can be performed by a web server running on a proxy
server, as described above. At step 502, the proxy server can
establish an IPMI connection to one or more managed
servers. For example, a web server on the proxy server can
be configured as an IPMI compliant client. The web server

10

15

20

25

30

35

40

45

50

55

60

65

6

can be configured with the IP addresses of each service
controller of each server to be monitored. The web server

can connect to each server using the configured IP addresses
through the IPMI interfaces of each service controller.

At step 504, the proxy server can receive the console
messages from each server. For example, once the web
server on the proxy server establishes a connection to each
server to be monitored, the web server can receive serial
output (e.g., console messages) from each of the monitored
SErvers.

At step 506, the proxy server can establish a connection
to the web browser of a client device. For example, the web
server on the proxy server can receive a request from the
web browser on the client device for a web page for viewing
console messages from the monitored servers. The web
server can return the requested web page to the web browser
on the client device. The user of the client device can view
the web page and select (e.g., from a list presented on the
web page) which servers the user wishes to monaitor.

At step 308, the proxy server can transmit the console
messages received from the monitored servers to the web
browser on the client device. For example, once the user
selects the servers to monitor, the web browser can request
that the web server on the proxy server establish a Web-
Socket connection with the web browser. Once the Web-
Socket connection 1s established, the web server can stream
the console messages (e.g., serial output) for each selected
server to the web browser on the client device. For example,
the streamed console messages can be displayed on a web
page presented by the web browser on the client device.

As described above, 1n some implementations, serial
output redirection using HIT'TP can be realized using the
HTMLS5 WebSocket protocol to stream the serial output
(e.g., console messages) to a web browser. In other imple-
mentations, more traditional client-server (e.g., web server-
browser, java applets, etc.) streaming technologies can be
used to provide real-time or near real-time presentation of
console messages on a web browser.

Example System Architecture

FIG. 6 1s a block diagram of an example system archi-
tecture 600 implementing the features and processes of
FIGS. 1-5. The architecture 600 can be implemented on any
clectronic device that runs soitware applications derived
from compiled instructions, including without limitation
personal computers, servers, smart phones, media players,
clectronic tablets, game consoles, email devices, etc. In
some 1mplementations, the architecture 600 can include one
or more processors 602, one or more input devices 604, one
or more display devices 606, one or more network interfaces
608 and one or more computer-readable mediums 610. Each
of these components can be coupled by bus 612.

Display device 606 can be any known display technology,
including but not limited to display devices using Liquid
Crystal Display (LCD) or Light Emitting Diode (LED)
technology. Processor(s) 602 can use any known processor
technology, including but are not limited to graphics pro-
cessors and multi-core processors. Input device 604 can be
any known iput device technology, including but not lim-
ited to a keyboard (including a virtual keyboard), mouse,
track ball, and touch-sensitive pad or display. Bus 612 can
be any known internal or external bus technology, including

but not limited to ISA, EISA, PCI, PCI Express, NuBus,
USB, Serial ATA or FireWire.

Computer-readable medium 610 can be any medium that
participates in providing mstructions to processor(s) 602 for

US RE47,717 E

7

execution, including without limitation, non-volatile storage
media (e.g., optical disks, magnetic disks, flash drives, etc.)
or volatile media (e.g., SDRAM, ROM, etc.). The computer-
readable medium (e.g., storage devices, mediums, and
memories) can include, for example, a cable or wireless
signal containing a bit stream and the like. However, when
mentioned, non-transitory computer-readable storage media
expressly exclude media such as energy, carrier signals,
clectromagnetic waves, and signals per se.

Computer-readable medium 610 can include various
instructions for implementing an operating system 614 (e.g.,
Mac OS®, Windows®, Linux). The operating system can be
multi-user, multiprocessing, multitasking, multithreading,
real-time and the like. The operating system performs basic
tasks, including but not limited to: recognizing imput from
input device 604; sending output to display device 606;
keeping track of files and directories on computer-readable
medium 610; controlling peripheral devices (e.g., disk
drives, printers, etc.) which can be controlled directly or
through an I/O controller; and managing traflic on bus 612.
Network communications mstructions 616 can establish and
maintain network connections (e.g., software for implement-
ing communication protocols, such as TCP/IP, HT'TP, Eth-
ernet, etc.).

A graphics processing system 618 can include instructions
that provide graphics and 1image processing capabilities. For
example, the graphics processing system 618 can implement
the processes described with reference to FIGS. 1-5. Appli-
cation(s) 620 can be an application that uses or implements
the processes described in reference to FIGS. 1-5. For
example, applications 620 can generate the console mes-
sages (e.g., serial output) that 1s redirected by the service
controller using HITP. The processes can also be imple-
mented 1n operating system 614.

Service controller 622 can be a controller that operates
independently of processor(s) 602 and/or operating system
614. In some implementations, service controller 622 can be
powered and operational before processor(s) 602 are pow-
ered on and operating system 614 1s loaded 1nto processor(s)
602. For example, service controller 622 can provide for
pre-OS management of the computing device through a
dedicated network interface or other input device. For
example, service controller 622 can be a baseboard man-
agement controller (BMC) that monitors device sensors
(c.g., voltages, temperature, fans, etc.), logs events for
tailure analysis, provides LED guided diagnostics, performs
power management, and/or provides remote management
capabilities through an ntelligent platform management
interface (IPMI), keyboard, video, and mouse (KVM) redi-
rection, serial over LAN (SOL), and/or other interfaces.
Service controller 622 be implement the processes described
with reference to FIGS. 1-5 above. For example, service
controller 622 can be configured with a web server for
redirecting the serial output over a network using HI'TP.

The described features can be implemented advanta-
geously 1n one or more computer programs that are execut-
able on a programmable system including at least one
programmable processor coupled to receive data and
instructions from, and to transmit data and instructions to, a
data storage system, at least one mput device, and at least
one output device. A computer program 1s a set of mstruc-
tions that can be used, directly or indirectly, 1n a computer
to perform a certain activity or bring about a certain result.
A computer program can be written in any form of pro-
gramming language (e.g., Objective-C, Java), including
compiled or interpreted languages, and 1t can be deployed 1n
any form, including as a stand-alone program or as a

10

15

20

25

30

35

40

45

50

55

60

65

8

module, component, subroutine, or other unit suitable for
use 1n a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors or cores, of any kind of computer.
Generally, a processor will receive istructions and data
from a read-only memory or a random access memory or
both. The essential elements of a computer are a processor
for executing instructions and one or more memories for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to communicate with, one
or more mass storage devices for storing data files; such
devices include magnetic disks, such as internal hard disks
and removable disks; magneto-optical disks; and optical
disks. Storage devices suitable for tangibly embodying
computer program instructions and data include all forms of
non-volatile memory, mncluding by way of example semi-
conductor memory devices, such as EPROM, EEPROM,
and flash memory devices; magnetic disks such as internal
hard disks and removable disks; magneto-optical disks; and
CD-ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, ASICs
(application-specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as
a CRT (cathode ray tube) or LCD (liqud crystal display)
monitor for displaying information to the user and a key-
board and a pointing device such as a mouse or a trackball
by which the user can provide mput to the computer.

The features can be implemented 1n a computer system
that includes a back-end component, such as a data server,
or that includes a middleware component, such as an appli-
cation server or an Internet server, or that includes a front-
end component, such as a client computer having a graphical
user interface or an Internet browser, or any combination of
them. The components of the system can be connected by
any form or medium of digital data communication such as
a communication network. Examples of communication
networks include, e.g., a LAN, a WAN, and the computers
and networks forming the Internet.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network. The relationship of
client and server arises by virtue of computer programs
running on the respective computers and having a client-
server relationship to each other.

One or more features or steps of the disclosed embodi-
ments can be implemented using an API. An API can define
on or more parameters that are passed between a calling
application and other software code (e.g., an operating
system, library routine, function) that provides a service,
that provides data, or that performs an operation or a
computation.

The API can be implemented as one or more calls 1n
program code that send or receive one or more parameters
through a parameter list or other structure based on a call
convention defined in an API specification document. A
parameter can be a constant, a key, a data structure, an
object, an object class, a variable, a data type, a pointer, an
array, a list, or another call. API calls and parameters can be
implemented 1n any programming language. The program-
ming language can define the vocabulary and calling con-
vention that a programmer will employ to access functions
supporting the API.

In some implementations, an API call can report to an
application the capabilities of a device running the applica-

US RE47,717 E

9

tion, such as input capability, output capability, processing
capability, power capability, communications capability, etc.

A number of implementations have been described. Nev-
ertheless, 1t will be understood that various modifications
may be made. For example, other steps may be provided, or
steps may be eliminated, from the described flows, and other
components may be added to, or removed from, the
described systems. Accordingly, other implementations are
within the scope of the following claims.

What 1s claimed 1s:

1. A method comprising:

receiving|,] at a service controller of a computing device,

serial output messages from a processor of the com-
puting device destined for a serial port;

monitoring the service controller with a web server on a

proxy server,
redirecting, by the service controller of the computing
device, the serial output messages to [a] the proxy
Server;

translating, using a HITML parser associated with the
proxy server, the serial output messages nto corre-
sponding HTML messages;

establishing, by the proxy server, a connection with a web

browser on a client device using a native HIML
mechanism; and

streaming, by the proxy server, the corresponding HTML

messages to the web browser using the native HIML
connection.

[2. The method of claim 1, wherein the service controller
is configured with a web server.]

3. The method of claim 1, wherein the connection 1s an
HTMLS5 WebSocket connection.

4. The method of claim 1, wherein the service controller
1s a baseboard management controller.

5. The method of claim 1, wherein the connection 1s an
out-of-band connection using a network interface controller
dedicated to the service controller.

6. The method of claim 1, wherein the connection 1s
established using hypertext transfer protocol.

7. A system comprising:

a baseboard management controller (BMC);

a first server, the first server comprising a processor;

the first server further comprising a serial output port;

and

a computer-readable medium including one or more

sequences of 1nstructions which, when executed by the
baseboard management controller, causes:

receiving, [at] via the BMC, serial output messages from

the processor destined for the serial output port of the
first server;, and,

redirecting, by the BMC, the serial output messages to a

Proxy server, which the proxy server is independent of
the first server;

translating, using a HTML parser associated with the

proxy server, the serial output messages nto corre-
sponding HTML messages;

establishing, by the proxy server, a connection with a web

browser on a client device using a native HTML
mechanism; and

5

10

streaming, by the proxy server, the corresponding HIML
messages to the web browser using the native HIML
connection.
8. The system of claim 7, wherein the BMC comprises a
web server.
9. The system of claim 7, wherein the connection 1s an
HTMLS WebSocket connection.
10. The system of claim 7, wherein the connection 1s an
out-of-band connection using a network interface controller

) dedicated to the BMC.

15

20

25

30

35

40

45

50

55

11. The system of claim 7, wheremn the connection 1s
established using hypertext transier protocol.

12. A method comprising:

monitoring one orv more managed servers by a web server

Yunning omn a proxy server, which proxy server is
independent from the one or more managed servers;
establishing, by [a] tke proxy server, one or more first
connections to the one or more managed servers via a
respective service controller on each of the one or more
managed servers, [the proxy server being independent
from the one or more managed servers]:
receiving, at the proxy server, serial output messages from
the one or more managed servers destined for a respec-
tive serial output port on each of the one or more
managed servers and redirected the serial output mes-
sages to the proxy server by the respective service
controller in response to a request from the web server;

translating, using a HIML parser associated with the
proxy server, the serial output messages nto corre-
sponding HI'ML messages;

establishing, by the proxy server, a second connection to

a web browser on a client device using a native HTML
mechanism; and

streaming, by the proxy server, the corresponding HI'ML

messages to the web browser using the native HTML
connection.

13. The method of claim 12, wherein the proxy server
includes a web server and the proxy server receives the serial
output messages using an intelligent platform management
interface connection to [a] tke respective service controller
on each of the one or more managed servers.

14. The method of claim 13, wherein the respective
service controller 1s a baseboard management controller.

15. The method of claim 13, wherein each of the one or
more {irst connections are out-oi-band connections using a
network interface controller dedicated to the respective
service controller.

16. The method of claim 13, wherein each of the one or
more {irst connections to the one or more managed servers
uses an IPMI interface of the respective service controller.

17. The method of claim 12, wherein the second connec-
tion 1s an HI'MLS WebSocket connection.

18. The method of claim 12, wherein the second connec-
tion 1s established using hypertext transier protocol.

19. The method of claim 12, wherein the corresponding
HTML messages are streamed to the web browser 1n near
real-time.

20. The method of claim 12, wherein the serial output
messages mnclude console messages that are presented on a
user interface of the web browser.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

