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SYSTEM FOR DETECTING BONE CANCER
METASTASES

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

RELATED APPLICATIONS

[This]7he present application is a broadening reissue

application of U.S. application Ser. No. 13/639,747, filed
Jan. 2, 2013, now U.S. Pat. No. 8855387, issued Oct. 7,
2014, which 1s a nationalization under 35 U.S.C. §371 from
International Application Serial No. PCT/SE2008/000746,
filed Dec. 23, 2008 and published as WO 2009/084995 Al
on Jul. 9, 2009, which claims the priority benefit of U.S.

Provisional Application Ser. No. 61/017,192, filed Dec. 28,
2007, the contents of which [applications and publication]
are 1ncorporated herein by reference in their entirety.

TECHNICAL FIELD

The present invention relates to the field of medical
imaging and to the field of automated processing and
interpretation ol medical images. In particular, 1t relates to
automated processing and interpretation of two-dimensional
bone scan 1mages produced via 1sotope 1maging.

BACKGROUND

Interpreting medical 1images originating from different
types of medical scans 1s a diflicult, error prone, and time
consuming work which often imnvolves several manual steps.
This 1s especially true when trying to determining contours
ol a human skeleton and cancer metastases 1n a medical scan
1mage.

Therefore, there 1s a great need for a method for deter-
mimng contours of a human skeleton and any cancer metas-
tases, and being capable of extracting features for an auto-
matic mterpretation system.

SUMMARY OF THE INVENTION

With the above and following description 1n mind, then,
an aspect of the present invention 1s to provide a method for
determining contours of a human skeleton and being capable
of extracting features for an automatic interpretation system,
which seeks to mitigate or eliminate one or more of the
above-identified deficiencies in the art and disadvantages
singly or 1n any combination.

The object of the present invention 1s to provide a system
and a method for fully automatic interpretation of bone scan
1mages.

It 1s a further object to provide a method for reducing the
need for manual work and to create an atlas 1mage fully
comparable with a normal reference 1mage of the human
skeleton. It 1s also an object of the present invention to
provide a method for creating such a normal 1image.

An aspect of the present invention relates to a detection
system for automatic detection of bone cancer metastases
from a set ol 1sotope bone scan 1images of a patients skeleton,
the system comprising a shape i1dentifier unit for identifying,
anatomical structures of the skeleton pictured in the set of
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2

bone scan images, forming an annotated set of 1mages, a
hotspot detection unit for detecting areas of high intensity in
the annotated set of 1mages based on information from the
shape 1dentifier regarding the anatomical structures corre-
sponding to diflerent portions of the skeleton of the images,
a hotspot feature extraction umit for extracting a set of
hotspot features for each hot spot detected by the hotspot
detection unit ,a first artificial neural network unit arranged
to calculate a likelithood for each hot spot of the hotspot set
being a metastasis based on the set of hotspot features
extracted by the hotspot feature extraction unit, a patient
feature extraction unit arranged to extract a set of patient
features based on the hotspots detected by the hotspot
detection unit and on the likelihood outputs from the first
artificial neural network unit, and a second artificial neural
network unmit arranged to calculate a likelihood that the
patient has one or more cancer metastases, based on the set
of patient features extracted by the patient feature extraction
unit.

The detection system may also comprise a shape identifier
unit comprising a predefined skeleton model of a skeleton,
the skeleton model comprising one or more anatomical
regions, each region representing an anatomical portion of a
general skeleton.

The detection system may also comprise a predefined
skeleton model adjusted to match the skeleton of the set of
bone scan 1mages of the patient, forming a working skeleton
model.

The detection system may also comprise a hotspot detec-
tion unit comprising a threshold scanner unit for scanmng
the set of bone scan 1mages and 1dentifying pixels above a
certain threshold level.

The detection system may also comprise a hotspot detec-
tion unit comprising different threshold levels for the dif-
ferent anatomical regions that are defined by the shape
identifier unit.

The detection system may also comprise a hotspot feature
extraction umt for extracting one or more hotspot features
for each hot spot, comprises means for determining the
shape and position of each hotspot.

The detection system may also comprise a first artificial
neural network unit arranged to be fed with the features of
cach hotspot of the hotspot set produced by the hotspot
feature extraction unit.

The detection system may also comprise a patient feature
extraction unit provided with means to perform calculations
that make use of both data from the hotspot feature extrac-
tion unit and of the outputs of the first artificial neural
network unit.

The detection system may also comprise a second artifi-
cial neural network unit arranged to calculate the likelihood
for the patient having one or more cancer metastases, and
wherein the unit 1s fed with the features produced by the
patient feature extraction unit.

A second aspect of the present invention relates to a
method for automatically detecting bone cancer metastases
from an 1sotope bone scan 1image set of a patient, the method
comprising the following steps of extracting knowledge
information from bone scan image set, processing extracted
information to detect bone cancer metastases, wherein the
processing mvolves the use of artificial neural networks.

The step of processing extracted immformation to detect
bone cancer metastases may further imvolve feeding, to a
pretrained artificial neural network, at least one of the
following, a value describing the skeletal volume occupied
by an extracted hotspot region, a value describing the
maximum 1ntensity calculated from all hotspots on the
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corresponding normalized 1mage, a value describing the
eccentricity of each hotspot, value describing the hotspot
localization relative to a corresponding skeletal region, a
value describing distance asymmetry which 1s only calcu-
lated for skeletal regions with a natural corresponding
contralateral skeletal region, and a number of hotspots 1n one
or more certain anatomical region(s).

The step of extracting information may further mnvolve the
steps of, identifying a number of anatomical structures 1n the
bone scan 1mage(s), detecting hotspots 1n each anatomical
region by comparing the value of each pixel with a threshold
value, different for each anatomical region, and decide, for
cach hotspot, which anatomical region 1t belongs to.

The method may further comprise the step of, for each
hotspot, determining the number of pixels having an inten-
sity above a predetermined threshold level.

The step of 1dentifying a number of anatomical structures
in the bone scan image(s) may further include the step of
segmenting the bone scan 1mage(s) by a segmentation-by-
registration method.

The segmentation-by-registration method may further
comprise the steps of, comparing a bone scan 1image set with
an atlas image set, the atlas image having anatomical regions
marked, adjusting a copy of the atlas 1image set to the bone
scan 1mage set, such that anatomical regions of the atlas
image can be superimposed on the bone scan 1mage.

A third aspect of the present invention relates to a method
for creating a skeleton shape model, the method comprising
the steps of providing images of a number of healthy
reference skeletons, reorienting said 1mages into a common
coordinate system, using at least two landmark points cor-
responding to anatomical landmarks of the skeleton, making
a statistical analysis of said images, and based on the
statistical analysis, segmenting a skeleton shape model.

A Tourth aspect of the present invention relates to a
method for automatic interpretation of a two dimensional
medicine 1image set representing a body organ where said
method comprises the steps of automatically rotating the
image set to adjust for accidental tilting when the 1mages
was originally taken, automatically finding the contours of
the organ, automatically adjusting size, position, rotation,
and shape of a predefined model shape of the type of organ
in question to fit the organ of the current image, automati-
cally, with the aid of the model shape, defining certain
portions of the i1mage, normalizing, the intensity of the
image, quantitying each pixel in the image of the organ,
producing a quantification result, feeding the quantification
results to an interpretation system, letting the interpretation
system 1nterpret the image, producing an interpretation
result, and presenting the interpretation result to a user.

The method according to the fourth aspect where the
organ 1s the skeleton and said normalization i1s performed by
assigning, to a certain area of the skeleton, a certain refer-
ence value.

A fifth aspect of the present invention relates to an 1mage
classification system for labeling an 1mage into one of two
or more classes where one class 1s normal and one class 1s
pathological, the system comprising a pretrained artificial
neural network having a plurality of mputs nodes, and a
number of output nodes, a feature extractor, capable of
extracting a number of features from said image, said
features being suitable for feeding to the imput nodes,
wherein the pretrained artificial network presents a classi-
fication result on the number of output nodes when the
number of features of the image 1s fed to the plurality of
input nodes.
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The classification system according to the fifth aspect
wherein the 1image 1s a two dimensional skeleton 1image.

The classification system according to the fifth aspect
wherein said number of features comprises a total number of
pixels 1nside a contour of a skeleton of said skeleton image.

The classification system according to the fifth aspect
wherein said number of features comprises number of pixels
in largest cluster of pixels above a certain threshold level
inside a contour of a skeleton of said skeleton 1mage.

A sixth aspect of the present invention relates to a method
for automatic normalization of bone scan 1mages comprises
the steps of, identifying 1mage elements corresponding to
the skeleton, 1dentitying hotspot elements contained in the
image, subtracting the hotspot elements from the skeleton
clements, creating an i1mage having remaining elements,
calculating an average intensity of the remaining elements,
calculating a suitable normalization factor, adjusting the
bone scan image intensities by multiplication with the
normalization factor.

The method according to the sixth aspect may also
comprise the repetition of the steps of i1dentifying hotspot
clements contained in the image, subtracting the hotspot
clements from the skeleton elements, creating an image
having remaining elements, calculating an average intensity
of the remaining elements, calculating a suitable normaliza-
tion factor, adjusting the bone scan image intensities by
multiplication with the normalization factor, which are
repeated until no further significant change 1n the normal-

1zation factor occurs.

Any of the first, second, third, fourth, fifth, or sixth
aspects presented above of the present invention may be
combined 1n any way possible.

BRIEF DESCRIPTION OF TH.

(Ll

DRAWINGS

Further objects, features, and advantages of the present
invention will appear from the following detailed descrip-
tion of some embodiments of the invention, wherein some
embodiments of the mvention will be described 1n more
detaill with reference to the accompanying drawings, 1n
which:

FIG. 1 shows a block diagram of a detection system for
automatic detection of bone cancer metastases from a set of
1sotope bone scan 1mages ol a patient’s skeleton; and

FIG. 2 shows a flowchart of a preparation method for
extracting and transierring knowledge information to a
computerized i1mage processing system according to an
embodiment of the present invention; and

FIG. 3 shows a bone scan image wherein different ana-
tomic regions have been 1dentified and delineated as showed
by the superimposed outlines on top of the patient 1mage;
and

FIGS. 4a and 4b shows reference 1mages of an average of
normal healthy patient 1mages, known as an atlas, which 1s
intended to be transformed to resemble an unknown target
patient image 1n order to transier the known atlas anatomy
onto the patient 1images; and

FIG. § shows a flowchart of a normalization method for
bone scan 1image aimed to enhance local segmented hotspots
in the 1mage; and

FIGS. 6a and 6b shows an example of hotspots 1n a patient
images wherein the hotspots are regions of locally elevated
intensity that may be indicative of metastatic disease.

e

DETAILED DESCRIPTION

Embodiments of the present invention relate, 1n general,
to the field of medical imaging and to the field of automated
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processing and interpretation of medical images. A pretferred
embodiment relates to a method for automatically or semi-
automatically determining contours of a human skeleton and
any cancer metastases contained therein and being capable
ol extracting features to be used by an automatic interpre-
tation system

An 1mage 1s a digital representation wherein each pixel
represents a radiation intensity, a so called “count”, as
known 1n the art, coming from a radio active substance
injected into the human body prior to taking of the image.

Embodiments of the present invention will be described
more fully hereinafter with reference to the accompanying,
drawings, in which embodiments of the invention are
shown. This invention may, however, be embodied in many
different forms and should not be construed as limited to the
embodiments set forth herein. Rather, these embodiments
are provided so that this disclosure will be thorough and
complete, and will fully convey the scope of the mvention
to those skilled in the art. Like reference signs refer to like
clements throughout.

FIG. 1 shows a block diagram of a detection system for
automatic detection of bone cancer metastases from one or
more sets of digital 1sotope bone scan 1mages of a patient’s
skeleton according to an embodiment of the present inven-
tion. A set 1s consisting of two 1mages: an anterior scan and
a posterior scan. The system comprises an input i1mage
memory 1035 for receiving and storing the sets of digital
1sotope bone scan 1images. The mput image memory 105 1s
connected to a shape 1dentifier unit 110 arranged to 1dentily
anatomical structures of the skeleton pictured in the set of
bone scan 1mages stored in the memory 105, forming an
annotated set of 1mages as shown 1n FIG. 6 where label 601
points to an outline defining one such identified anatomical
structure (right femur bone). The shape 1dentifier unit 110 of
the detection system comprises a predefined model of a
skeleton, the skeleton model comprising one or more ana-
tomical regions, each region representing an anatomical
portion of a general skeleton. The predefined skeleton model
1s adjusted to match the skeleton of the set of bone scan
images ol the patient, forming a working skeleton model.
The shape identifier unit 110 1s connected to an annotated
image memory 115 to store the annotated set of 1mages.

A hotspot detection unit 120 1s connected to the annotated
image memory 115 and 1s arranged to detect areas of high
intensity 1n the annotated set of 1mages stored 1n the memory
115 based on mnformation from the shape identifier 110
regarding the anatomical structures corresponding to differ-
ent portions of the skeleton of the set of images. In an
embodiment the hotspot detection umit 120 may comprise a
threshold scanner unit for scanming the set of bone scan
images and 1dentiiying pixels above a certain threshold. The
hotspot detection unit 120 preferably comprises diflerent
thresholds for the different anatomical regions that are
defined by the shape identifier unit 110. The hotspot feature
extraction umt 130 for extracting one or more hotspot
teatures for each hot spot comprises means for determining
the shape and position of each hotspot.

In another embodiment the hotspot detection unit 120
may comprises an image normalization and filtering/thresh-
old unit for scanning the set of bone scan images and
identifyving pixels above a certain threshold. The hotspot
feature extractions unit 130 for extracting one or more
hotspot features for each hot spot comprises means for
determining the shape, texture and geometry of each
hotspot. A detailed enumeration and description of each
extracted feature of a preferred set of extracted features 1s

found in Annex 1.
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Information thus created regarding the detected areas of
high mtensity, so called “hotspots™, 1s stored 1n a first hotspot
memory 125. A hotspot feature extraction unit 130 1s con-
nected to the first hotspot memory 1235 and arranged to
extract a set of hotspot features for each hot spot detected by
the hotspot detection unit 120. Extracted hotspot features are
stored 1n a second hotspot memory 135.

A first artificial neural network (ANN) unit 140 1s con-
nected to the second hotspot memory and arranged to
calculate a likelihood for each hotspot of the hotspot set
being a metastasis. The first artificial neural network umit
140 are fed with the features of each hotspot of the hotspot
set produced by the hotspot feature extraction unit 130. The
likelihood calculation 1s based on the set of hotspot features
extracted by the hotspot feature extraction unit 130. The
results of the likelithood calculations are stored 1n a third
hotspot memory 145.

Preferably, in the first artificial neural network unit 140
there 1s arranged a pretrained ANN for each anatomical
region. Each hotspot 1n a region 1s processed, the one after
another, by the ANN arranged to handle hotspots from that
region.

A patient feature extraction unit 150 1s connected to the
second and third hotspot memory 1335, 1435, and arranged to
extract a set of patient features based on the number of
hotspots detected by the hotspot detection unit 120 and
stored 1n the first hotspot memory 125, and on the likelihood
output values from the first artificial neural network unit 140
being stored in the third hotspot memory 145. The patient
feature extraction unit 150 are provided with means to
perform calculations that make use of both data from the
hotspot feature extraction unit 130 and of the outputs of the
first artificial neural network unit 140. The extracted patient
features are stored in a patient feature memory 1355, Pret-
erably, the extracted patient features are those listed in a
second portion of Annex 1.

A second artificial neural network unit 160 1s connected to
the patient feature memory 155, and 1s arranged to calculate
a metastasis likelihood that the patient has one or more
cancer metastases, based on the set of patient creatures
extracted by the patient feature extraction unit 150 being
stored 1n the patient feature memory 135. The system may
optionally (hence the jagged line 1n FIG. 1) be provided with
a threshold unit 165 which i1s arranged to, 1n one embodi-
ment, make a “yes or no” decision by outputting a value
corresponding to a “yes, the patient has one or more metas-
tases” 11 the likelithood outputted from the second artificial
neural network unit 160 1s above a predefined threshold
value, and by outputting a value corresponding to a “no, the
patient has no metastases™ 1f the likelihood outputted from
the second artificial neural network unit 160 1s below a
predefined threshold value. In another optional embodiment
the threshold unit 165 1s arranged to stratify the output into
one of four diagnoses, definitely normal, probably normal,
probably metastases and definitely metastases.

Test performed with the different embodiments showed
that the system according to any of the embodiments pre-
sented above performed very well. In one of the embodi-
ments described above the sensitivity was measured to 90%
and the specificity also to 90%. The test method used 1n this
embodiment was 1dentical to the test method described 1n
the article A new computer-based decision-support system
for the interpretation of bone scans by Sadik M. et al
published 1 Nuclear Medicine Communication nr. 27: p.
417-423 (heremafiter referred to as Sadik et al).

In the optional embodiment described above the perfor-
mance was measured at the three configurations correspond-
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ing to the thresholds used to stratify the output value into one
of four diagnoses. The sensitivity and the specificity at these
configurations were:

Definitely normal/probably normal: sensitivity 95.1%

specificity 70.0%.

Probably normal/probably metastases: 90.2%, 87.3%.

Probably metastases/definitely metastases: 88.0%, 90.1%.

Further 1s provided a method for the interpretation of
isotope bone scan i1mages with the aid of the system
described in conjunction with FIG. 1, prepared according to
the method of FIG. 2. A method for bone scan image
segmentation 1s provided. An embodiment of the method

comprises the following steps described below and 1llus-
trated by the flowchart in FIG. 2.

The method, in an embodiment of the present invention,
involves performing a delineation of the entire anterior and
posterior view of the skeleton except for the lower parts of
the arms and legs using an Active Shape Model (ASM)
approach. Omitting said portions of the skeleton 1s not an
1ssue since these locations are very rare locations for metas-
tases and they are sometimes not acquired in the bone
scanning routine. For the purpose of explaining the present
invention, an Active Shape Model 1s defined as a statistical
method for finding objects 1 1mages, said method being
based on a statistical model built upon a set of traiming
images. In each training image a shape of the object 1s
defined by landmark points that are manually determined by
a human operator during a preparation or training phase.
Subsequently a point distribution model 1s calculated which
1s used to describe a general shape relating to said objects
together with 1ts variation. The general shape can then be
used to search other 1mages for new examples of the object
type, €.g. a skeleton, as 1s the case with the present invention.
A method for training of an Active Shape Model describing,
the anatomy of a human skeleton 1s provided. The model
comprises the following steps described below.

A first step may be to divide a skeleton segmentation nto
eight separate training sets 205. The training sets are chosen
to correspond to anatomical regions that the inventors have
found to be particularly suitable for achieving consistent
segmentation. The eight separate training sets 1n 210 are as
follows:

1) A first training set referring to the anterior image of head
and spine.

2) A second training set referring to the anterior image of the
ribs.

3) A third training set referring to the anterior 1mage of the
arms.

4) A fourth training set referring to the anterior image of the
lower body

5) A fifth tramning set referring to the posterior image of the
head and spine.

6) A sixth training set referring to the posterior image of the
ribs.

7) A seventh training set referring to the posterior image of
the arms.

8) An eighth training set referring to the posterior image of
the lower body

Each training set 210 comprises a number of example
images. Fach image 1s prepared with a set of landmark
points. Each landmark point 1s associated with a coordinate
pair representing a particular anatomical or biological point
of the image. The coordinate pair 1s determined by manually
pinpointing the corresponding anatomical/biological point
215. In the anterior 1image the following easily i1dentifiable
anatomical landmarks are used.
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Belore capturing the statistics of the training set 220, each
set of landmark points 215 were aligned to a common
coordinate frame, different for each of the eight traiming sets
210. This was achieved by scaling, rotating and translating
the training shapes so that they corresponded as closely as
possible to each other as described in Active shape models—
their training and application by T. F. Cootes, C. I. Taylor,
D. H. Cooper and J. Graham presented in Computer Vision
and Image Understanding, Vol. 61, no. 1, pp. 38-59, 1995
(heremafiter referred to as Cootes et al). By examination of
the statistics 220 of the tramning sets a two-dimensional
statistical point distribution model 1s derived that contains
the shape variations observed in the tramming set. This
statistical modeling of landmark (shape) variations across
skeletons 1s performed as described 1n Cootes et al and 1n
Application of the Active Shape Model 1n a commercial
medical device for bone densitometry by H. H. Thodberg
and A. Rosholm presented in the Proceedings of the 12th
British Machine Vision Conference, 43-32, 2001, (herein-
alter referred to as Thodberg et al).

The resulting statistical model 220 of shape varnations can
be applied to patient images 1n order to segment the skel-
cton. Starting with a mean shape, new shapes within a range
of an allowable varniation of the shape model can be gener-
ated similar to those of the tramning set such that the
generated skeletons resemble the structures present in the
patient 1mage. The anterior body segments that may be
segmented using this method may in one embodiment be;
Cranium-Face-Neck, Spine, Sternum Upper, Sternum
Lower, Right Arm, Leift Arm, Right Ribs, Left Ribs, Right
Shoulder, Leit Shoulder, Pelvic, Bladder, Right Femur and
Left Femur. The posterior body segments may in one
embodiment be the Cranium, Neck, Upper Spine, Lower
Spine, Spine, Right Arm, Left Arm, Right Ribs, Left Ribs,
Right Scapula, Leit Scapula, Ossa Coxae, Lower Pelvic,
Bladder, Right Femur and the Left Femur.

A first step 1n a search process may be to find a start
position for the mean shape of the anterior image. For
instance the peak of the head may be chosen because 1n tests
it has proved to be a robust starting position and 1t 1s easy to
locate by examining the intensity in the upper part of the
image above a specified threshold value 1n each horizontal
row in the 1mage.

The ensuing search for an instance of the skeleton shape
model that fits the skeleton 1n the patient image 1s carried out
in accordance with the algorithm described 1n Cootes et al
and in Thodberg et al.

In another embodiment of the present invention a second
method for bone scan 1mage segmentation 1s provided. The
goal of the second bone scan image segmentation method 1s
as 1n the previous embodiment to identily and to delineate
different anatomical regions of the skeleton 1n a bone scan
image 300. These regions will be defined by superimposed
outlines 320 onto the patient images 310, as shown 1n FIG.
3. The segmentation method described here 1s denoted
segmentation by registration.

An 1mage registration method transforms one 1mage nto
the coordinate system of another image. It 1s assumed that
the 1images depict instances of the same object class, here, a
skeleton. The transformed image 1s denoted the source
image, while the non-transformed image 1s denoted the
target 1mage. The coordinate systems of the source and
target 1mages are said to correspond when equal image
coordinates correspond to equal geometrical/anatomical
locations on the object(s) contained in the source and target
images. Performing segmentation by registration amounts to
using a manually defined segmentation of the source image,
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and registering the source image to a target image where no
segmentation 1s defined. The source segmentation 1s thereby
transierred to the target image, thus creating a segmentation
of the target image.

The segmentation of the source 1image 1n this embodiment
defines the anatomy of a reference healthy patient and has
been manually drawn by a clinical expert as a set of
polygons. FIGS. 4a and 4b shows an example of such a
reference healthy patient image 400, also called *“atlas™,
wherein FIG. 4a shows the front side view or anterior side
view ol the patient while FIG. 4b shows backside view or the
posterior view of the patient. Referring to the labels in FIGS.
da and 4b respectively, these areas define the anterior
posterior skull labeled (1,1) 401, 402, anterior and posterior
cervical spine labeled (2,2) 403, 404, anterior and posterior
thoracic spine labeled (3,3) 405, 406, anterior sternum
labeled (14) 407, anterior and posterior lumbar spine labeled

(4,4) 409, 408, anterior and posterior sacrum labeled (11,5)
411, 410, anterior and posterior pelvis labeled (15,14),
anterior and posterior left and right scapula labeled (5,6,7.,6),
anterior left and right clavicles labeled (17,16), anterior and
posterior left and right humerus labeled (7,8,9.8), anterior
and posterior left and right ribs labeled (9,10,11,10), and
anterior and posterior left and right femur labeled (12,13,
12.13) 413, 415, 412, 414.

The healthy reference image 400 1s always used as the
source 1mage by the system, while the patient 1image to be
examined acts as the target image. The result 1s a segmen-
tation of the target image into skeletal regions as depicted in
FIG. 3. Lower arms and lower legs are not considered for
analysis.

The healthy reference image 400 used as the source image
1s constructed from 10 real examples of healthy patients with
representative 1mage quality and with normal appearance
and anatomy. An algorithm 1s used which creates anterior
and posterior 1mages of a fictitious normal healthy patient
with the average intensity and anatomy calculated from the
group of example images. The system performs this task as
described 1n Average brain models: A convergence study by
Guimond A. Meunier J. Thirion J.-P presented in Computer
Vision and Image Understanding, 77(2):192-210, 2000
(hereinafter referred to as Guimond et al). The result 1s
shown 1n FIGS. 4a and 4b, where i1t can be seen that the
resulting anatomy indeed has a normal healthy appearance.
The anatomy exhibits a high degree of lateral symmetry
which 1s a result of averaging the anatomy of several
patients.

The registration method 1s an improvement of the Mor-
phon method as described 1n Non-Rigid Registration using,
Morphons by A. Wrangsjo, J. Pettersson, H. Knutsson
presented 1n Proceedings of the 14th Scandinavian confer-
ence on image analysis (SCIA’05), Joensuu June 2005
(hereinatter referred to as Wrangsjo et al) and 1n Morphons:
Segmentation using Elastic Canvas and Paint on Priors by H.
Knutsson, M. Andersson presented in ICIP 200, Genova,
Italy. September 2005 (hereinaiter referred to as Knutsson et
al). The method 1s improved to increase robustness for the
purpose of segmenting skeletal images where both an ante-
rior image and a posterior image are supplied. We now turn
to a detailed description of this improvement.

The improvement of the Morphon method contained in
this invention consists of a system for using multiple 1images
of the same object for determining a single 1image transior-
mation. In particular, we use the anterior and posterior
skeletal 1mages simultaneously. The goal of the improve-
ment 1s to 1increase robustness of the method. To describe the
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improvement, necessary parts of the original Morphon
method are first described, followed by a description of the
improvement.

The following description of the so-called displacement
vector field generation used 1n the Morphon method serves
to introduce notation and put the improvement 1nto perspec-
tive. For a more thorough treatment, refer to Wrangsjo et al
and Knutsson et al.

The Morphon registration method proceeds 1n 1terations,
where each iteration brings the source image into closer
correspondence with the target image. This corresponds to a
small displacement of each source image element (pixel or
voxel). The collection of all such displacements during an
iteration are collected 1n a vector field of the same size as the
source 1mage where each vector describes the displacement
of the corresponding 1mage element. The vector field is
determined using 4 complex filters. Each filter captures lines
and edges 1n the 1image 1n a certain direction. The directions
corresponding to the 4 filters are vertical, horizontal, top leit
to bottom right diagonal and top right to bottom leit diago-
nal. Filtering the image by one of these filters generates a
complex response which can be divided into a phase and a
magnitude. Due to the Fourier shift theorem, the phase
difference at a particular point between the filtered source
and target images 1s proportional to the spatial shaft required
to bring the objects 1into correspondence at that point in the
direction of the filter. When the phase and magnitude at each
image point has been calculated for all 4 filter directions, the
displacement vector can be found by solving a least-squares
problem at each point. The magnitude can be used to derive
a measure of the certainty of each displacement estimate.
The certainties can be incorporated in the least-squares
problem as a set of weights. The resulting weighted least
squares problem 1s

3 (1)
min Z [WEH?V — V;]Z

where v 1s the sought 2-by-1 displacement vector, n, 1s the
direction of the 1ith filter, v, 1s the phase difference corre-
sponding to the ith filter and w, 1s the certainty measure
derived from the magnitude of to the ith filter.

The improvement of this method contained 1n present
invention consists of using more than one 1mage for esti-
mating a single vector field of displacements. Each image 1s
filtered separately as described above, resulting 1n 4 com-
plex responses for each 1mage. The weighted least squares
problem 1s expanded to include all images yielding

(2)

min
v

T 2
Z [W; g0 vV —v; 4]

F—1 3
=0 =0

J

where k 1s the number of 1mages (2 1n the case of skeletal
images). The etfect of this 1s that the number of data points
are multiplied by the number of 1images 1n the estimation of
the two-dimensional displacement v, making the problem
better defined. A further explanation of the development 1s
provided by the certainty measures. Using a single image as
input, regions ol the resulting displacement vector field
corresponding to low certainty measures will be poorly
defined. If more than one 1mage 1s supplied, chances are that
at least one 1mage 1s able to provide adequate certainty to all
relevant regions.
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As mentioned before, the hotspot detection unit 120 uses
information from the shape identifier unit 110 described 1n
conjunction with FIG. 1. It’s purpose 1s two-fold. It’s
primary purpose 1s to segment hot pots 1n the anterior and
posterior patient 1mages. Hotspots are 1solated image
regions of high mtensity and may be indicative of metastatic
disease when located in the skeleton. The secondary purpose
of unit 120 1s to adjust the brightness of the 1mage to a
predefined reference level. Such intensity adjustment 1s
denoted 1mage normalization. This mvention describes an
algorithm which segments hot spots and estimates a nor-
malization factor simultaneously, and 1s performed sepa-
rately on the anterior and posterior images. First, the need
for proper normalization 1s briefly explained, followed by a
description of the algorithm.
Skeletal scintigraphy 1mages differ significantly 1n inten-
sity levels across patients, studies and hardware configura-
tions. The difference 1s assumed multiplicative and zero
intensity 1s assumed to be a common reference level for all
images. Normalizing a source image with respect to a target
image therefore amounts to finding a scalar factor that brings
the 1ntensities of the source image to equal levels with the
target 1mage. The intensities of two skeletal images are here
defined as equal when the average intensity of healthy
regions ol the skeleton i1n the source 1mage 1s equal to the
corresponding regions in the target image. The normaliza-
tion method, shown 1n a flowchart 1in FIG. 5, comprises the
following steps.
1. Identification of 1mage elements corresponding to the
skeleton 510.

2. Identification of hotspots contained in the image 520.

3. Subtraction of hotspot elements from the skeleton
clements 530.

4. Calculation of the average intensity of the remaining
(healthy) elements 540.

5. Calculation of a suitable normalization factor 550.

6. Adjustment of the source 1mage intensities by multi-
plication with the normalization factor 560.

The step 1n 310 15 carried out using information on 1mage
regions belonging to the skeleton provided by the trans-
formed anatomical regions derived by the shape identifier
unit 110 of FIG. 1, as described above. The polygonal
regions are converted into binary image masks which define
image elements belonging to the respective regions of the
skeleton.

In step 520 the hotspots are segmented using one 1mage
filtering operation and one thresholding operation. The
image 1s filtered using a diflerence-oi-Gaussians band-pass
filter which emphasizes small regions of high intensity
relative to their respective surroundings. The filtered image
1s then thresholded at a constant level, resulting in a binary
image defining the hotspot elements.

In step 530 any of the elements calculated 1n 510 that
comncide with the hotspot elements calculated 1n 520 are
removed. The remaining elements are assumed to corre-
spond to healthy skeletal regions.

In step 540 the average intensity of the healthy skeletal
clements 1s calculated. Denote this average intensity by A.

In step 550 a suitable normalization factor 1s determined
in relation to a predefined reference intensity level. This
level may for instance be set to 1000 here. The normalization
factor B 1s calculated as B=1000/A.

In step 560 the intensities of the source 1image are adjusted
by multiplication by B.

The hotspot segmentation described 1n 520 1s dependent
on the overall intensity level of the image which in turn 1s
determined by the normalization factor calculated in 550.
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However, the normalization factor calculated in 550 1s
dependent on the hotspot segmentation from 520. Since the

results of 520 and 550 are iterdependent, 520 to 560 may
in an embodiment be repeated 570 until no further change 1n
the normalization factor occurs. Extensive tests have shown
that this process normally converges 1n 3 or 4 repetitions.

FIG. 6a shows a normalized anterior bone scan 1image and
6b shows a posterior normalized, bone scan image according,
to the normalization method 1n FIG. 5. The segmented
hotspots 620 are shown 1n FIGS. 6a and 6b as dark spots
appearing in the segmented 1image 610. Thus, an automated
system according to the present invention would classity the
patient as having cancer metastases.

In the above description the second ANN may in one
embodiment be the same or a part of the first ANN.

In the above description the term point may be used to
denote one or more pixels 1 an 1image.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises™ “compris-
ing,” “includes” and/or “including” when used herein,
specily the presence of stated features, integers, steps,
operations, elements, and/or components, but do not pre-
clude the presence or addition of one or more other features,
integers, steps, operations, elements, components, and/or
groups thereol.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which this mnvention belongs. It will be further understood
that terms used herein should be interpreted as having a
meaning that 1s consistent with their meaning 1n the context
of this specification and the relevant art and will not be
interpreted i an i1dealized or overly formal sense unless
expressly so defined herein.

The foregoing has described the principles, preferred
embodiments and modes of operation of the present inven-
tion. However, the invention should be regarded as illustra-
tive rather than restrictive, and not as being limited to the
particular embodiments discussed above. The different fea-
tures of the various embodiments of the invention can be
combined in other combinations than those explicitly
described. It should therefore be appreciated that variations
may be made 1n those embodiments by those skilled 1n the
art without departing from the scope of the present invention

as defined by the following claims.

ANNEX 1

The artificial neural network system, 1.e., the first ANN
umt 140, 1s fed with the following set of 27 {features
measuring the size, shape, ornentation, localization and
intensity distribution of each hotspot. The features are:
Skeletal involvement. Measures the skeletal volume occu-
pied by the extracted hotspot region, based on the
two-dimensional hotspot area, the two-dimensional
area of the corresponding skeletal region and a coetl-
cient representing the volumetric proportion repre-
sented by the skeletal region 1n relation to the entire
skeleton. Calculated as (hotspot area/regional area)
*coetlicient.

Relative area. Hotspot area relative to the corresponding,
skeletal region. A measure that 1s independent of 1mage
resolution and scanner field-of-view.
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uses the 34 features listed below as input. All features used
by the second ANN unit are calculated from hotspots

classified as having high metastasis probability by file first
ANN unit.

13

Relative centroid position (2 features). Centroid position
relative to the bounding box of the corresponding
skeletal region. Values range from O (top, left) to 1
(bottom, right).

Relative center of mass (2 features). Similar to the cen- 5 Total involvement. The summed skeletal involvement 1n
troid features, but takes the intensities of the hotspot the entire skeleton.
region mto account when calculating x and y values. Skull involvement. The summed skeletal involvement in
Relative height. Hotspot height relative to the height of the skull region.
the corresponding skeletal region. Cervical column involvement. The summed skeletal
Relative width. Hotspot width relative to the width of the 10 involvement 1n the cervical column region.
corresponding skeletal region. Thoracic column involvement. The summed skeletal
Minimum 1intensity. Minimum intensity calculated from involvement 1n the thoracic column region.
all hotspot elements on the corresponding normalized Lumbar column involvement. The summed skeletal
1mage. involvement 1n the lumbar column region.
Maximum intensity. Maximum intensity calculated from 15  Upper limb involvement. The summed skeletal involve-
all hotspot elements on the corresponding normalized ment 1n the upper limb region.
image. Lower limb mvolvement. The summed skeletal involve-
Sum of intensities. Sum of 1ntensities calculated from all ment 1 the lower limb region.
hotspot elements on the corresponding normalized Thoracic involvement. The summed skeletal involvement
image. 20 in the thoracic region.
Mean 1ntensity. Mean intensity calculated from all hotspot Pelvis involvement. The summed skeletal involvement 1n
clements on the corresponding normalized 1mage. the pelvis region.
Standard deviation of intensities. Standard deviation of Total number of “high™ hotspots.
intensities calculated from all hotspot elements on the Number of “high” hotspots in the skull region.
corresponding normalized 1mage. 25 Number of “high” hotspots in the cervical column region.
Boundary length. Length of the boundary of the hotspot Number of “high” hotspots 1n the thoracic column region.
measured 1n pixels. Number of “high™ hotspots 1n the lumbar column region.
Solidity. Proportion of the convex hull area of the hotspot Number of “high™ hotspots in the upper limb region.
represented by the hotspot area. Number of “high™ hotspots in the lower limb region.
Eccentricity. Elongation of the hotspot ranging from O (a 30  Number of “high” hotspots 1n the thoracic region.
circle) to 1 (a line). Number of “high” hotspots in the pelvis region.
Total number of hotspot counts. Sum of intensities 1n all Maximal ANN output from the first ANN unit in the skull
hotspots 1n the entire skeleton. region.
Regional number of hotspot counts. Sum of intensities in Maximal ANN output from the first ANN unit in the
hotspots contained 1n the skeletal region corresponding 35 cervical spine region.
to the present hotspot. Maximal ANN output from the first ANN unit in the
Total hotspot extent. Area of all hotspots in the entire thoracic spine region.
skeleton relative to the entire skeletal area in the Maximal ANN output from the first ANN unit in the
corresponding 1mage. lumbar spine region.
Regional hotspot extent. Area of all hotspots in the 40  Maximal ANN output from the first ANN umt in the
skeletal region corresponding to the present hotspot sacrum region.
relative to the area of the skeletal region. Maximal ANN output from the first ANN umt in the
Total number of hotspots. Number of hotspots in the humerus region.
entire skeleton. Maximal ANN output from the first ANN umt in the
Regional number of hotspots. Number of hotspots in the 45 clavicle region.
skeletal region corresponding to the present hotspot. Maximal ANN output from the first ANN unit in the
Hotspot localization (2 features). X-coordinate ranges scapula region.
from O (most medial) to 1 (most distal) 1n relation to a Maximal ANN output from the first ANN unit in the
medial line calculated from the transformed reference femur region.
anatomy in the shape identification step. Y-coordinate 50  Maximal ANN output from the first ANN umt 1n the
ranges from 0 (most superior) to 1 (most inferior). All sternum region.
measures are relative to the corresponding skeletal Maximal ANN output from the first ANN unit in the
region. costae region.
Distance asymmetry. The smallest Euclidean distance 2nd highest ANN output from the first ANN unit in the
between the relative center of mass of the present 55 costae region.
hotspot and the mirrored relative center of mass of 3rd highest ANN output from the first ANN unit in the
hotspots 1n the contralateral skeletal region. Only cal- costae region.
culated for skeletal regions with a natural correspond- Maximal ANN output from the first ANN umt in the
ing contralateral skeletal region. pelvis region.
Extent asymmetry. The smallest difference 1 extent 60  2nd highest ANN output from the first ANN unit 1n the
between the present hotspot and the extent of hotspots pelvis region.
in the contralateral skeletal region. 3rd highest ANN output from the first ANN unit in the
Intensity asymmetry. The smallest diflerence 1n intensity pelvis region.
between the present hotspot and the intensity of The mvention claimed 1s:
hotspots 1n the contralateral skeletal region. 65 1. A detection system for automatic detection of bone

The second ANN unit which determines a patient-level

diagnosis pertaining to the existence of metastatic disease

cancer metastases from a set of 1sotope bone scan 1mages of
a patients skeleton, the system comprising:
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a shape identifier unit for identifying anatomical struc-
tures of the skeleton pictured in the set of bone scan
images, forming an annotated set of 1mages;

a hotspot detection unit for detecting areas of high inten-
sity 1n the annotated set of images based on information
from the shape identifier regarding the anatomical
structures corresponding to different portions of the
skeleton of the 1mages;

a hotspot feature extraction umt for extracting a set of

hotspot features for each hot spot detected by the

hotspot detection unit;

a first artificial neural network unit arranged to calculate
a likelihood for each hot spot of the hotspot set being
a metastasis based on the set of hotspot features
extracted by the hotspot feature extraction unit;

a patient feature extraction unit arranged to extract a set
of patient features based on the hotspots detected by the

hotspot detection unit and on the likelihood outputs

from the first artificial neural network unit; [and}

a second artificial neural network umt arranged to calcu-
late a likelihood that the patient has one or more cancer
metastases, based on the set of patient features
extracted by the patient feature extraction unit; and

an input image memory,

wherein the shape identifier unit accesses the set of
isotope bone scan images from the input image memory
and whevein, upon extraction of the set of patient
Jeatures, the patient feature extraction unit storves the
set of patient features in a patient feature memory for
accessing by the second artificial neural network to
calculate the likelihood that the patient has one or more
cancer melastases.

2. The detection system as recited in claim 1, wherein the
shape 1dentifier umt comprises a predefined skeleton model
of a skeleton, the skeleton model comprising one or more
anatomical regions, each region representing an anatomaical
portion of a general skeleton.

3. The detection system as recited in claim 2, wherein the
predefined skeleton model 1s adjusted to match the skeleton
of the set of bone scan 1mages of the patient, forming a
working skeleton model.

4. The detection system as recited in claim 1, wherein the
hotspot detection unit comprises a threshold scanner unit for
scanning the set of bone scan 1mages and 1dentifying pixels
above a certain threshold level.

5. The detection system as recited in claim 4, wherein the
hotspot detection unit comprises different threshold levels
for the different anatomical regions that are defined by the
shape 1dentifier unit.

6. The detection system as recited 1n claim 1, wherein the
hotspot feature extraction unit for extracting one or more
hotspot features for each hot spot, comprises means for
determining the shape and position of each hotspot.

7. The detection system as recited i claim 1, wherein the
first artificial neural network unit are ted with the features of
cach hotspot of the hotspot set produced by the hotspot
feature extraction unit.

8. The detection system as recited in claim 1, wherein the
patient feature extraction unit are provided with means to
perform calculations that make use of both data from the
hotspot feature extraction unit and of the outputs of the first
artificial neural network unait.

9. The detection system as recited in claim 1, wherein the
second artificial neural network unit 1s arranged to calculate
the likelithood for the patient having one or more cancer
metastases, and wherein the unit are fed with the features
produced by the patient feature extraction unit.
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10. A method automatically detecting bone cancer metas-
tases from an 1sotope bone scan image set of a patient, the
method comprising [the following steps]:
[identifying] accessing, by a computerized image pro-
cessing system, an Isotope bone scan image set,
wherein each image in the isotope bone scan image set
comprises a plurality of pixels with a value of each
pixel corresponding to an intensity;
automatically segmenting, by the computerized image
processing system, each image in the isotope bone scan
image set to identify one or more anatomical structures
of [the] a skeleton pictured in the [set of] each image
in the isotope bone scan [images] image set, thereby
forming an annotated set of 1mages;
automatically detecting [areas], by the computerized
image processing system, a set of hotspots comprising
one or more hotspots, each hotspot corresponding to an
area of high intensity in the annotated set of images
based on information regarding the anatomical struc-
tures corresponding to different portions of the skeleton
[of the images], said detecting of the set of hotspots
comprising iteratively:
identifving one or more skeletal image elements, each
of the skeletal image elements corresponding to a
region of an image in the annotated image set,
wherein the region is associated with one of the
anatomical structures;

detecting one ov more hotspots in the annotated set of
images, each hotspot corresponding a vegion of high
intensity relative to its surroundings;

for each of the skeletal image elements, determining
whether each of the skeletal image element com-
prises a detected hotspot,

calculating an average intensity of the skeletal image
elements determined not to comprise a detected
hotspot,

calculating a novmalization factor, wherein a product
of the normalization factor and the average intensity
is a pre-defined intensity level; and

multiplying the value of each pixel in the annotated set
of images by the novmalization factor;

Jor each hotspot in the set of hotspots, extracting, by the
computerized image processing system, a set ol hotspot
features [for each hot spot detected] associated with the
hotspot, and

[feeding, to a first artificial neural network unit arranged
to calculate] for each hotspot in the set of hotspots,

calculating, by the computerized image processing
system, a first likelihood value corresponding to a
likelihood [for each hot spot] of the hotspot [set] being
a metastasis, based on the set of hotspot features
[extracted;

extracting a set of patient features based on the hotspots
detected and on the likelihood outputs from the first
artificial neural network unit; and

teeding, to a second artificial neural network unit arranged

to calculate a likelihood that the patient has one or more
cancer metastases, the set of patient features extracted}
associated with the hotspot.

11. The method of claim 10, wherein [the step of pro-
cessing extracted information further mvolves feeding, to
the pretrained artificial neural network,] for each hotspot ir
the set of hotspots, the set of hotspot features comprises at
least one feature selected from the group consisting of [the
following]:
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a value describing the eccentricity of each hotspot;

a value describing the skeletal volume occupied by an
extracted hotspot region;

a value describing the maximum intensity calculated from
all hotspots on the corresponding normalized 1mage;

a value describing the hotspot localization relative to a
corresponding skeletal region;

a value describing distance asymmetry which 1s only
calculated for skeletal regions with a natural corre-
sponding contralateral skeletal region(s); and

a number of hotspots 1n one or more certain anatomical
region(s).

12. The method of claim 10, wherein [the step of extract-

ing information involves the further steps of:

identifying a number of anatomical structures 1n the bone
scan image(s);] detecting a set of hotspots comprising
one or movre hotspots comprises:

detecting hotspots 1n each anatomical region by compar-

ing the value of each pixel with a threshold value,
different for each anatomical region; and

[decide] deciding, for each hotspot, which anatomical

region 1t belongs to.

13. The method of claim 12 further comprising the step of:

for each hotspot: determining the number of pixels having

an intensity above a predetermined threshold level.

14. The method of claim [12 wherein the step of identi-
fying a number of anatomical structures in the] 10, com-
prising segmenting each image in the isotope bone scan
[image(s) further includes the step of segmenting the bone
scan image(s)] image set by a segmentation-by-registration
method.

15. The method of claim 14 wherein the segmentation-
by-registration method comprises the following steps:

comparing [a] each image of the bone scan image set with

[an] a corresponding atlas image of an atlas image set,
[the] each atlas image having anatomical regions
marked:; and

for each image of the bone scan image set, adjusting a

copy of the corresponding atlas image [set] to the bone
scan image [set], such that anatomical regions of the
atlas image can be superimposed on the [bone scan}
image of the bone scan image set.

16. The method of claim 10, wherein [the step of pro-
cessing extracted information further involves feeding, to
the pretrained artificial neural network,] for each hotspot in
the set of hotspots, the set of hotspot features comprises at
least:

a value describing distance asymmetry which 1s only

calculated for skeletal regions with a natural corre-
sponding contralateral skeletal region.
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17. The method of claim 10, comprising calculating, for
each hotspot in the set of hotspots, the first likelihood value
using a pre-trained machine learning technique.

18. The method of claim 17, whervein the pre-trained

5 machine learning technigue is an artificial neural network
(ANN).

19. The method of claim 10, wherein, for each hotspot in
the set of hotspots, the first likelihood value corresponds to
an output of a machine learning module that implements a
pre-trained machine learning technique, and the output of
the machine learning module is based at least in part on one
or movre of the hotspot features associated with the hotspot.

20. The method of claim 10, wherein for each hotspot in
the set of hotspots, calculating the first likelihood value
corresponding to a likelihood of the hotspot being a metas-
tasis, based on the set of hotspot features associated with the
hotspot comprises:

determining from the one or more identified anatomical

structures, an anatomical structure to which the
hotspot belongs based on a location of the hotspot,
selecting one of a set of artificial neural networks (ANNs),
wherein each ANN in the set of ANNs is associated with
a specific identified anatomical structuve of the one or
morve identified anatomical structurves, and
calculating the first likelihood value using the selected
ANN, wherein the specific identified anatomical struc-
tuve with which the selected ANN is associated is the
anatomical structuve to which the hotspot belongs.

21. The method of claim 10, comprising calculating, by
the computerized image processing system, a second likeli-
hood value corresponding to an overall likelihood that the
patient has one ov more metastases based on the calculated
first likelihood values.

22. The method of claim 21, comprising:

for each hotspot in the set of hotspots, calculating the first

likelihood value using a first artificial neural network

(ANN), wherein:

the first likelihood value corresponds to an output of the
first ANN, and

the output of the first ANN is based at least in part one
or movre hotspot features in the set of hotspot features
associated with the hotspot; and

calculating the second likelihood value based on an

output of a second ANN, wherein.:

the output of the second ANN is based at least in part
on one or more patient features, and

each of the one or movre patient features is based at
least in part on one or movre of the first likelihood
values calculated for each hotspot in the set of
hotspots.
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