USOOREA47593E
(19) United States
12y Reissued Patent (10) Patent Number: US RE47.,593 E
Allen 45) Date of Reissued Patent: Sep. 3, 2019
(54) RELIABILITY ESTIMATOR FOR AD HOC 7,823,009 B1 10/2010 Tormasov et al. 714/6
2002/0138353 Al* 9/2002 Schreiberetal. 705/26
APPLICATIONS 2007/0294290 Al1* 12/2007 Hansen et al. 707/103 R
. . 2010/0042720 Al 2/2010 Stienhans et al. 709/226
(71) Applicant: Amazon Technologies, Inc., Seattle, 2010/0076856 Al 3/2010 MUllins w.ooeooeroooeooroon 705/26
WA (US) 2010/0299366 A1 11/2010 Stienhans et al. 707/803
2010/0332262 Al 12/2010 Horvitz et al.covvonn.... 705/4
(72) Inven‘[or: Nicholas Alexander A,_Allen:J P{edrnc,nd:J 200/0332629 A 12/200 COtl.lgllO et Ell 709/221
WA (US) 2011/0030065 Al* 2/2011 Kulakowskicccccoovvvvenne. 726/26
2011/0061041 A1* 3/2011 Hellebro et al. 717/120
: 2011/0239039 Al 0/2011 Dieftenbach et al. 714/4.1
(73) Assignee: Amazon Technologies, Inc., Seattle, . eibas et 4
WA (US) (Continued)
(21) Appl. No.: 15/449,814 OTHER PUBLICATIONS
(22) Filed: Mar. 3, 2017 Boudali et al., “A discrete-time Bayesian network reliability mod-

eling and analysis framework,” Reliability Engineering and System

Related U.S. Patent D t
clate aten octments Safety 87(3):337-349, available online Aug. 12, 2004, print publi-

08

G o
yowils

Reissue of: .
tion Mar, 2005.
(64) Patent No.. 8,972,564 CEoR A |
[ssued: Mar. 3, 2015 (Continued)
Appl. No.: 13/223,972
Filed: Sep. 1, 2011 Primary Examiner — Robert L Nasser
(74) Attorney, Agent, or Firm — Davis Wright Tremaine
(51) Inmt. CL [LP
GO6F 11/08 (2006.01)
GO6F 11/36 (2006.01) (57) ABSTRACT
GO6F 15/16 (2006.01) _ _ _
GOGF 11/00 (2006.01) In certain embodiments, a computer-implemented method
(52) U.S. CL includes receiving a request for a reliability estimate asso-
CPC GOG6F 11/008 (2013.01); GO6F 11/3604 ciated with an ad hoc application. In response to the request,
(2013.01); GOG6F 15/16 (2013.01) one or more components associated with the ad hoc appli-
(58) Field of Classification Search cation and upon which the ad hoc application relies are
CPC o GO6F 15/16 identified. The method also includes generating a directed
See application file for complete search history. graph. The directed graph 1dentifies one or more dependency
relationships among the 1dentified components. The method
(56) References Cited also includes calculating, based at least in part on the
U.S PATENT DOCUMENTS directed graph, a reliability estimate for the ad hoc applica-
o N tion.
6,606,658 Bl 8/2003 Uematsu
7,703,072 B2* 4/2010 Nakamura et al. 717/107 20 Claims, 5 Drawing Sheets
i ey
S * | (st
i A — ,
i 1 7 ' 7
; K Mé 1150 |
i 9] 3y
i
| N
] N '
| =i
i "'"t.i ﬂtﬂrﬂ 1"
{ LU e !
| BEA g kgl
4 E
E

US RE47,593 E

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2011/0271270 Al 11/2011 Bowenooooevvveeeen, 717/171

OTHER PUBLICATIONS

Jalote et al., “Measuring Reliability of Software Products,” Inter-
national Symposium on Software Reliability (ISSRE-2004), Nov.
2004, 14 pages.

Kan, “Metrics and Models in Software Quality Engineering, Second
Edition,” Addison-Wesley Professional, Sep. 16, 2002, 7 pages.
Olsson et al., “On Latin hybercube sampling for structural reliability
analysis,” Structural Safety 25(1):47-68, available online Apr. 29,
2002, print publication Jan. 2003.

A. Olsson et al. “On Latin Hypercube sampling for structural
reliability analysis” Oct. 2001, p. 1-22.*

Metrics and Models 1n Software Quality Engineering, Second
Edition by: Stephen H. Kan Pub. Date: Sep. 16, 2002.*

A discrete Time Bayesian network reliability modeling and analysis
framework H. Boudali, J. B. Dugan University of Virgima, accepted
Jun. 8, 2004 Available online Aug. 12, 2004.*

H. Boudali “A discrete-time Bayesian network reliability modeling
and analysis framework” University of Virginia, School of Engi-

neering and Applied Science, ECE Department, Available online
Aug. 12, 2004 Abstract.™

A. Olsson™, G. Sandberg, O. Dahlblom “On Latin hypercube

sampling for structural reliability analysis™ Division of Structural
Mechanics, Lund University, PO Box 118, SE-22100 Lund, Sweden

accepted Feb. 27, 2002.*
Bankaj et al. “Measuring Reliability of Software Products™ Microsoft

corporation, Date of Conference 2004.*

* cited by examiner

US RE47,593 E

Sheet 1 of 5

Sep. 3, 2019

U.S. Patent

§ A

My A T e

o T o o T T T T, o T o, e

o T T T T TR T, T Ty T

pp ..nl...qlﬂiiliililllll.ﬁl.\r..rt!\ﬂ.ﬁ..\l.nw
PP I 8 S N S R P L SR

u_. 2 EE Q4 ¥ oy AR FFFFFTT .y wF .._.“.l_‘“
AP A L e vy 11 ,.._.h 519% Fe
. s ; nn L-..I.. rp '1
‘ L et ?..Lr“.m...uh?- _....m“

LR b L]

e Tl il ol ol ol ol At ki md l ki

, | arernnnncigte o
S s = Yo '

S b~ m | ...s,.,.M %!ﬂ?i: eV ?k.t

3
. e, viag]
vt ;,.,.m.. : t

[

. g, PR ol . " . S P, L 1---.",' Pk A ---;.. AEEY Fuw gumil "WEE TFTEET r'-‘-"i"-m. & ey

TaahalsmETET B ELTRER
L]

* ;
= m e

1111111 g gl eyl il ol il ol il il il il A o o il tfllllllvl‘l‘l‘lullliinlh
I..i_.u_._l._l.._...... kel ol il A AR i i i S S A
15 53

gt e el il il il i o A A A A il il il il il il ol ol ol ol

-l--il--lI

Ayt gl ARkl REW RRNL FEEN wwws ﬂM"‘r‘rﬁ"- ety

1 ;
4 F
4 #]
£ “ A
: .
y _ m
: 5
h k ‘
i r A
: |) A
__“ ! [A
'l
4 ._ :
: : “ :
L| y m :
“ n : Mi“itii‘i‘%tﬂkt\k “
i .
w 1 .‘. 1 w-\ .H.-._t—ﬁ . .I.I......I..I......I.J......E.I..-rl.l.l 111111 _.“»
. i
r v ¥ vl- " “ uf.-. r
u ﬂ . u\... % n__. % 4 ﬁl ! ..-w
1 4 - 1 1.
n 4 * .-.E_...ﬂ.\.t._..
' 1 R w..
“ u. PR PP PP w T T T T I Tl R ﬂ.lq Mﬂ.\,
! . rd
x
SRR IS . : |
“ .l._ “““ ¥ y
r L)
¢ ! w
r
r
1
A
o g 3w e o il ol ol m

US RE47,593 E

Sheet 2 of §

Sep. 3, 2019

U.S. Patent

T 0ty
Lot b e
%
L

HOLVINLLST
ALPHEYTIY

]
ol
‘
.I..I.I..I.F...I.I..l.1!iqiﬁiwi.pm.lriwlﬁdlll.i.t.‘\§.n.
¢
G007
LA NN
A gy e
FEvs
por bt
.ﬂr
s

4

'
v

l._

"

CUOIYINOTNG
ek T B k1§ 1
LT

L wann e

ALHEYE0HY

NOLEY

ﬂ\.\ i ._.._.....-.l. -
i %

.1_.1_..______. n."w.__..._.

}

HESYHIN A

il.\l.u-\iw\hw

¥y
!

ALY
AOMYES

Stidd¥

' .r . ., - "
- ““t‘rﬂitﬂniﬂﬂtﬁtii“t%{%}ﬁ{t‘

Y
Yra ‘e
vhH et

719
AL HEYTHY

I'“ nql.ﬂ
Iang

ALY

SEIME

i

FFWE I W E W T

NOLLINEEC
MOLY ONddY

ARSI
HALONHLISYHAN

SROYL
ANINCIWEGD

Ly IS TN IR TR

Ty
- g
AAAAARSAA R A A L A A AR R R R R T A g LA A A A B

MBS
IS

E:l.“\l‘ii.t.‘“li}h

!
N

mww

LT

US RE47,593 E

Sheet 3 of 5

Sep. 3, 2019

U.S. Patent

578

e

L
Y
5
-
Ny

T :m
i SIAMG NS .]
% BN D} _ N

L]

J__;._;J y—
NGELYCdAY \meqam Tc

.._.

!

h"."‘l

{§
..l.
i

Bk

-

Co i I e e I b B BT O

L AGIAEED

L W e R R

; /
545 435 e

2 FOMES
_____ _ mm_‘...‘m.mmmw.w E DI e zaomuss

S e o g Y W W W AWl N o

ﬁlﬂ&&l&.&im““
N
|

FoLMe

-y
-

WA Y

NOTL Ty SNOLLF N T |

-. "
i

f.....,....i\ ,,,fz,w L SIAYSS

r
1-..-.hh.h.h'h'h L H'IE

b HIALIC

A
i |
A
)
4
i
¢
o

U.S. Patent

Sep. 3, 2019 Sheet 4 of 5

N N 0 0 i B P e i e T 0 0 T T T 0 T T T Ty by b b e i e 0 0 00, M T T 0, 10, 1, T G TN T, T T T T e

VOLUME 3 SWITCH | SERVER 1
g 3 0%
: g (%,

e o L oy e R, T i vy, vy e . Wy gy sy nly ly sy by iy g e T gy gy g, T Ty T Ty T B B T B B

a3

F¥FFFyFF, Fry s ¥ 8y

Y

It
F

+ o : y

N ~h ,E}ﬁu
i} 5 ! ; 7

"
11‘%“‘““:..‘.‘.“;‘.1111:‘11llm’illm"ﬁhhl'Ii"h ‘ i

{ 3

z . $ 4.
1 ; } |

; &

i, i o i BB Pl 0y %y T oy Ty

KOO,

Ty MmN WSS NI T T oy o B B g T T T T T Tt T A SNSRI B By

SWITCH E

i al ak a

3. 40

tttiéah!-h
‘ -
My e

L
L

ok

g 0 0 0 T 0y T T T, T, iy Ty T T T T T T T

g P e UL, T, T, T,

POWER 2

A I e e

o, Ty

SWITCH

0%

PUWER 1

O P 0 P 0 g

Tk R

e T T N Ty Ty Ty T T T

e, TR gy o B e

3

T e I e T Ty Ty, By e

t

T ot Ty T T Ty, Ty I NN

! TRIAL ° {1

=k W TR

FHIAL 2 |

z L nnom

N,)
, P S T Ay A T B U Ty g e B e e R By BN AR I de e e B e L % ol e
1
- * ‘4 &
PRIAL 3 P 3 {
r - L -
: iﬁ&&ﬁh}l‘l;ihhhhllll . iy sy g Sy B T T T e T T Ty e AW . :
> n » ™ i) E x
N
- L Lo ' W : o
N
:hﬁ"rﬁ‘qqrqqquhlth;hh;hhhhlllmllllm \ " " " N, W, Y - o e M Ty g ey gy oy T T T T B Ty T By g By e :l---lhh'l T e T e B T e T
. - B . y
. E? - E E y
THIAL 1,000,000 . ;
|

T g L P P e Wi By Wy Ty i i 0,y 5 2 T T T o e T T, I

FiGh 7

R
2
=
LK
Y
et
e
2
2
B
it
G
&
-z
o
-u-u-ut
"b
3
&]
%::: 4
Z
5

US RE47,593 E

v § APPLICATION |

:

. o i g, Iy b, gy T T g T T T oy Sy By g 0, T

Ty

i, T T T T T T T T Ty 0 T T T ORI o T T o o o

U.S. Patent Sep. 3, 2019 Sheet 5 of 5 US RE47,593 E

Ty T T T T T T 0 T T, T T T T

COMPUTER SYS Tt

81 | 342

%
+ ,“5
oy oy T o g Ny T T T T Ty T T Ty T T hm".‘.‘"t

PROCESSOR |
g anome |

516 ;
; g

r.&;’ §
‘hﬂiﬁ,‘**mﬁ# LS %R NN §

"

MEMORY '

‘“‘W {ﬂ 4.;-‘-‘-&.5” ﬁj\i\v"“‘"‘ -
E
NEPWORK e jETWORK

INTERFACE e

L
o o Sy n

pEEERE

“nnnn
3
E

EnFE &b*%iifj
DONTROL

§ :
T s Ef ﬁ“"ﬂi‘"T Dol
TR BTERFAGE et DEVICE

g T ““hlg L-J\-‘-Wﬂnq,-}nhhh
.L.F
4
-5' r

530 ’ 802

OPERATING
 SYSTEM

e
STORAGE

.‘.\.ﬂ.} H@f ™

E:'E EL%‘{?*’ 'n-w:h § T

528 APPLICATIONS

S o A A A g g R NN A S A
,FM’WWKMWWWWM "
o~ R L
“u
LN -
gy - ,)
re f*u:f,' m ! .
: ﬂ'«- }'_'::
- "'F FI._*&
! ; '-r.-.-
1.*'.‘ » ‘i - lﬂ"F 1
.I N ’ 4 ’ 1 f‘_
a4 1_.-..-..-1.‘..‘..-.“ f"' :
b]
F II'.' " l' :
:) i s a
’ L »
y . iy) ”
i ' ’ 3 " ’
¥] -]
: : -
¥ 3 ! . e ro ’
; : : . ~ : '
; z / ; ‘ P
¥ : ¥ " : -
r ¥ X sl Y L]
¥]
. ‘: . $
. " | |
¥ "
LA ‘
A ¥
.
r
¥

L STORAGE
822 o MEDIUM

FiG. & B8

US RE47,593 E

1

RELIABILITY ESTIMATOR FOR AD HOC
APPLICATIONS

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS REFERENCE 10 RELATED
APPLICATION

This application, U.S. patent application Ser. No. 15/449,

814, along with U.S. patent application Ser. No. 15/466,626
filed on Mar. 22, 2017, are both reissue applications of U.S.
patent application Ser. No. 13/223,972, filed Sep. 1, 2011,
now U.S. Pat. No. 8,972,564, entitled “RELIABILITY ESTI-
MATOR FOR AD HOC APPLICATIONS.”

BACKGROUND

Reliability 1s an important business property. Reliability,
however, can be diflicult to measure 1n a distributed system
comprising many disparate components with diflering levels
ol availability and redundancy. This 1s particularly true when
portions of the service infrastructure are purchased from
another company, which may not reveal details of its internal
inirastructure. Formal models, end-to-end system descrip-
tions, and simple, uncorrelated modes of failure may be
inadequate 1 more complicated systems in which internal
components are obscured from a user.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclo-
sure and 1ts advantages, reference 1s made to the following
descriptions, taken in conjunction with the accompanying
drawings, in which:

FIG. 1 1illustrates an example system for estimating reli-
ability of an ad hoc application, according to certain embodi-
ments of the present disclosure;

FIG. 2 1s a block diagram 1llustrating an example process
for calculating a reliability estimate that that may be per-
formed by the example system of FIG. 1, according to
certain embodiments of the present disclosure;

FIG. 3 illustrates an example application definition
including a primary resource and two secondary resources,
according to certain embodiments of the present disclosure;

FIG. 4 illustrates an example application definition
expanded to include several application components found

using tag associations, according to certain embodiments of

the present disclosure;

FIG. 5 1illustrates an example directed graph constructed
by the example system of FIG. 1 imn which the example
application defimition of FIG. 4 1s expanded to include
several application and infrastructure components found
using allocation and dependency relationships;

FI1G. 6 illustrates conditional probability tables 600a-c for
application and infrastructure components included in the
example directed graph illustrated 1n FIG. 5, according to
certain embodiments of the present disclosure;

FI1G. 7 illustrates an example table that includes the results
of an example series of trials performed by the example

10

15

20

25

30

35

40

45

50

55

60

65

2

system of FIG. 1 to calculate a reliability estimate, in
accordance with particular embodiments of the present

disclosure; and

FIG. 8 1llustrates an example computer system that may
be used for one or more portions of the example system of
FIG. 1, according to certain embodiments of the present
disclosure.

DETAILED DESCRIPTION OF EXAMPL.
EMBODIMENTS

(L.

Cloud providers deliver a set of services that can be used
to construct applications in a reliable, scalable, and 1nex-
pensive manner. These benefits, however, should be
obtained by using the services in a careful manner. While
some properties such as cost are relatively easy to measure,
other properties such as reliability are not. Past solutions to
measure reliability of interconnected components, systems,
and/or applications have included manual efforts to calculate
application reliability from fault trees, reliability block dia-
grams, and other modeling approaches. These calculations
often require access to exact network schematics and aggre-
gate reliability data, which may be highly confidential and
proprietary business information. Alternatively, eflorts to
calculate application reliability have treated these factors as
black boxes, which limits the estimation of reliability to
coarse-grain measures. These methods often incorrectly
assume that all failures are independent and that the rate at
which failures occurs 1s constant.

Particular embodiments of the present disclosure address
these and other limitations of previous systems by 1ncorpo-
rating user mput of an application definition and relation-
ships between computing resources to determine an inira-
structure and application configuration. Based on historical
availability of the infrastructure and application resources,
conditional probability tables are generated that indicate the
availability of infrastructure and application components
under various circumstances (such, as, e.g., whether directly
relied upon components are available or not available). A
reliability estimate 1s generated by running a large number
ol successive trials 1n which the availability or non avail-
ability of an infrastructure or application component 1is
determined 1n accordance with the statistical probabilities
indicated 1n the generated conditional probability tables.
Thus, the reliability estimate may then be estimated based on
the aggregate number of times an ad hoc application 1s
determined to be available or not available 1n the total
number of trials. The reliability estimate may be transmitted
to a user of an ad hoc application.

FIG. 1 illustrates an example system 100 for a reliability
estimator for ad hoc applications, according to certain
embodiments of the present disclosure. In the illustrated
example, system 100 includes a user system 102, a network
104, a server system 106, a storage module 108, and one or
more computing resources 110. Although system 100 1s
illustrated and primarily described as including particular
components, the present disclosure contemplates system 100
including any suitable components, according to particular
needs.

In general, portions of system 100 provide an environ-
ment in which one or more computing resources (e.g.,
computing resources 110) 1s made available over a commu-
nication network (e.g., network 104) to one or more remote
computer systems, such as user system 102. In certain
embodiments, server system 106, storage module 108, and
computing resources 110 may be communicatively coupled
together over a high speed communication network and

US RE47,593 E

3

collectively may comprise a computing inirastructure,
which may be referred to as a provisioned computing
resources environment 112. User system 102 and/or network
104 may be external to provisioned computing resources
environment 112 and may be referred to as an external
computing environment 114,

In certain embodiments, provisioned computing resources
environment 112 (including, for example, one or more of
server system 106, storage module 108, and computing
resources 110) may provide a collection of remote comput-
ing services oflered over a network (which may or may not
be network 104). Those computing services may include, for
example, storage, computer processing, networking, appli-
cations, or any other suitable computing resources that may
be made available over a network. In some embodiments,
computing resources may be referred to as ad hoc applica-
tions, which may be provisioned or de-provisioned accord-
ing to the requirements and/or configuration of external
computing environment 114. In certain embodiments, enti-
ties accessing those computing services may gain access 1o
a suite of elastic information technology (IT) infrastructure
services (e.g., computing resources 110) as the entity
requests those services. Provisioned computing resources
environment 112 may provide a scalable, reliable, and
secure distributed computing infrastructure.

In association with making those computing resources
110 available over the network (e.g., provisioning the com-
puting resources 110), a variety of reliability parameters may
be generated. These rehability parameters may indicate or
represent the availability or non-availability of a particular
provisioned ad hoc application (or 1ts underlying infrastruc-
ture or application components) to user system 102 or
external computing environment 114. Reliability parameters
may be referred to as reliability metrics data. Server 106
uses reliability metrics data to determine a reliability esti-
mate for one or more ad hoc applications. Reliability metrics
data may be associated with a particular component, system,
software, application, interface, and/or network included 1n
provisioned computing resources environment 112. Particu-
lar examples of reliability metrics data may include user
reliability data 124, instance reliability data 126, and class
reliability data 128, discussed further below.

Portions of system 100 may determine reliability metrics
data associated with components of system 100 (e.g., com-
puting resources 110). It may be approprate to communicate
a portion or all of this reliability metrics data over a network
(e.g., network 104) to a server so that the server (e.g., server
system 106) may use the communicated reliability metrics
data. For example, reliability metrics data may be commu-
nicated over a network (e.g., network 104) to a server (e.g.,
server system 106), so that server system 106 may calculate
reliability estimate 134 for one or more ad hoc applications.
A particular reliability estimate 134 may be communicated
over network 104 to user system 102 1n response to a query
for reliability data associated with a particular ad hoc
application.

User system 102 may include one or more computer
systems at one or more locations. Each computer system
may 1nclude any appropriate mnput devices, output devices,
mass storage media, processors, memory, or other suitable
components for receiving, processing, storing, and commu-
nicating data. For example, each computer system may
include a personal computer, workstation, network com-
puter, kiosk, wireless data port, personal data assistant
(PDA), one or more Internet Protocol (IP) telephones, smart
phones, table computers, one or more servers, a server pool,
one or more processors within these or other devices, or any

10

15

20

25

30

35

40

45

50

55

60

65

4

other suitable processing device. User system 102 may be a
stand-alone computer or may be a part of a larger network
of computers associated with an enfity.

User system 102 may include processing unit 116 and
memory unit 118. Processing unit 116 may include one or
more microprocessors, controllers, or any other suitable
computing devices or resources. Processing unit 116 may
work, either alone or with other components of system 100,
to provide a portion or all of the functionality of system 100
described herein. Memory unit 118 may take the form of
volatile or non-volatile memory 1ncluding, without limita-
tion, magnetic media, optical media, RAM, ROM, remov-
able media, or any other suitable memory component.

In general, user system 102 communicates tag informa-
tion 138 and application definition 140 to server system 106
to facilitate reliability estimation for an ad hoc application.
First, user system 102 may interact with component tagging
module 142 to apply one or more metadata tags (e.g., tag
information 138) to computing resources 110. A metadata
tag may be a short, textual string that describes one or more
aspects of the relevant computing resource 110. For
example, 11 user system 102 1s provisioned with an ad hoc
application (e.g., an accounting software package) that runs
on two processing computing resources 110 and one data-
base computing resource 110, the user may tag each of the
computing resources 110 with the string ‘accounting’ to
associate the computing resources with the provisioned ad
hoc application. Tag information 138 may also describe
configuration relations. For example, tag information 138
may link resources with resource addresses, access control
policies, firewall rules, or connection strings. In general, tag
information 138 includes metadata information that associ-
ates a particular computing resource 110 with an ad hoc
application provided to user system 102.

Second, user system 102 may interact with application
definition module 144 to create an application definition
(e.g., application definition 140) of a provisioned ad hoc
application. Application definition 140 includes at least a
primary computing resource 110 for which reliability esti-
mate 134 1s to be calculated. Application definition 140 may
include one or more secondary computing resources 110 that
are supportive of the prnnmary computing resource 110. For
example, the pnnmary computing resource 110 may be soft-
ware service while a secondary computing resource 110 may
be a web service accessed by the software service. In some
embodiments, application definition 140 may not define all
secondary computing resources 110 used by a particular ad
hoc application. Graph inference module 146 may expand
the user-provided ad hoc application defimition 140 into a
more comprehensive application definition. In some
embodiments, application definition module 144 defines the
starting seeds for graph inference module 146. Graph infer-
ence module 146 1s discussed in greater detail below with
respect to FIGS. 2 and 5.

A user of user system 102 may include, for example, a
person capable of requesting and receiving a reliability
estimate for an ad hoc application. As a more particular
example, a user of system 102 may be associated with an
entity using the computing resources (e.g., computing
resources 110) made available over a network.

Network 104 facilitates wireless or wireline communica-
tion. Network 104 may communicate, for example, IP
packets, Frame Relay frames, Asynchronous Transfer Mode
(ATM) cells, voice, video, data, and other suitable informa-
tion between network addresses. Network 104 may include
one or more local area networks (LANs), radio access
networks (RANs), metropolitan area networks (MANSs),

US RE47,593 E

S

wide area networks (WANSs), mobile networks (e.g., using
WiMax (802.16), Wik1 (802.11), 3G, or any other suitable
wireless technologies in any suitable combination), all or a
portion of the global computer network known as the
Internet, and/or any other communication system or systems
at one or more locations, any of which may be any suitable
combination of wireless and wireline.

Server system 106 may include one or more computer
systems at one or more locations. Each computer system
may 1nclude any appropriate mput devices, output devices,
mass storage media, processors, memory, or other suitable
components for receiving, processing, storing, and commu-
nicating data. For example, each computer system may
include a personal computer, workstation, network com-
puter, kiosk, wireless data port, PDA, one or more IP
telephones, one or more servers, a server pool, one or more
processors within these or other devices, or any other
suitable processing device. Server system 106 may be a
stand-alone computer or may be a part of a larger network
of computers associated with an entity.

Server system 106 may include processing unit 122 and
memory unit 124. Processing unit 122 may include one or
more microprocessors, controllers, or any other suitable
computing devices or resources. Processing unit 122 may
work, either alone or with other components of system 100,
to provide a portion or all of the functionality of system 100
described herein. Memory unit 124 may take the form of
volatile or non-volatile memory including, without limita-
tion, magnetic media, optical media, RAM, ROM, remov-
able media, or any other suitable memory component.

Server system 106 may calculate reliability estimate 134
for one or more ad hoc applications. In particular, server
system 106 calculates reliability estimate 134 based on data
received from or determined in conjunction with other
components of system 100. In particular, server system 106
may calculate reliability estimate 134 based on one or more
of reliability data 124, instance reliability data 126, class
reliability 128, infrastructure repository 136, user tag infor-
mation 138, and application definition 140. As described
turther below, server system 106 may process this received
data using one or more of component tagging module 142,
application definition module 144, graph inference module
146, reliability estimator module 148, application probabil-
ity module 150, and infrastructure probability module 152 to
calculate reliability estimate 134.

User reliability data 124 represents historical availability
or non-availability of a computing resource 110 (e.g., an ad
hoc application) as determined by direct observation of user
system 102. For example, user system 102 may periodically
perform a health check on an ad-hoc application to deter-
mine whether the ad hoc application i1s operational. User
system 102 may communicate the results of the health check
to server system 106, which may store the results as user
reliability data 124.

Instance reliability data 126 represents the historical
availability or non-availability of a particular computing
resource 110 (e.g., a server, disk drive, network interface,
power supply, etc.). For example, one or more components
of system 100 (e.g., server system 106) may periodically
perform a health check of infrastructure components to
determine their respective availability or non-availabaility to
user system 102. Server system 106 stores the results of the
health check as instance reliability data 126.

Class reliability data 128 represents the historical avail-
ability or non-availability of a particular class of computing
resources 110. For example, one or more components of
system 100 (e.g., server system 106) may periodically

10

15

20

25

30

35

40

45

50

55

60

65

6

perform a health check of one or more similar computing
resources 110 to determine the availability or non-availabil-
ity as a class. Class reliability data 128 may bias towards
components with measures of similarity; such as hardware
revision, order date, time 1n service, installation location, or
maintenance record. In some embodiments, class reliability
data 128 may be used as a proxy for instance reliability data
126 if or when instance reliability data 126 1s unavailable for
a particular computing resource 110.

Infrastructure repository 136 stores information related to
computing resources 110. For example, server system 106
may store a hardware type, hardware parameters (e.g.,
processor speed, storage space, etc.), hardware revision,
order date, time 1n service, installation location, or mainte-
nance record for each computing resource 110 1n infrastruc-
ture repository 136. Infrastructure repository 136 may addi-
tionally store details regarding the connections between
computing resources 110, such as network links, network
speeds, network availability, and/or connection type. In
some embodiments, server system 106 may store informa-
tion related to computing resources 110 1n a database on
storage module 108.

Component tagging module 142 receives tag information
138 from user system 102 and stores tag information 138 1n
storage module 108. As discussed above, tag information
138 indicates relationships between computing resources
110 and an ad hoc application.

Application definition module 144 receives application
definition 140 from user system 102 and stores application
definition 140 1n storage module 108. Application definition
140 identifies one or more component computing resources
110 for an ad hoc application.

Graph inference module 146 constructs a directed graph
(e.g., directed graph 500 1illustrated in FIG. 5) including
application components and one or more inirastructure
components. Directed graph 500 may be constructed using
data from tag information 138, application definition 140,
and/or inirastructure repository 136. Graph inference mod-
ule 146 may determine relationships between computing
resources 110. For example, graph inference module 146
may determine that a particular computer resource 110 relies
on another computer resource 110 in order to operate or be
available to a user at user system 102. Graph inference
module 146 organizes these relationships and constructs
directed graph 500.

Application probability calculator 148 constructs condi-
tional probability tables 600 for the directed graph based on
user reliability data 124 and instance reliability data 126 for
components of an ad hoc application. Example conditional
probability tables 600 generated by application probability
calculator 148 are discussed further below with respect to
FIG. 6.

Infrastructure probability calculator 150 constructs con-
ditional probability tables 600 for the directed causality
graph based on instance reliability data 126 and class
reliability data 128 for infrastructure components relied on
by an ad hoc application. For an infrastructure component,
the infrastructure probability calculator 150 may access
databases for instance reliability data and class reliability
data to construct a historical availability record for the
component. Example conditional probability tables 600 gen-
erated by infrastructure probability calculator 150 are dis-
cussed further below with respect to FIG. 6.

Reliability estimator module 132 calculates reliability
estimate 134 based on conditional probabaility tables 600 and
directed graph 500. Reliability estimator module 152 may
evaluate the inferred directed graph and constructed condi-

US RE47,593 E

7

tional probability tables 600 as a Bayesian network to
produce reliability estimate 134. Exact computation of the
reliability of the primary resource may be possible for
simple directed graphs, such as graphs with only a single
path to any component. In many cases, however, the inferred
directed graph may not have a direct solution. In some
embodiments, reliability estimator module 152 supports
stochastic stmulation of the inferred directed graph to com-
pute the reliability of the primary resource. For example,
reliability estimator module 152 may run a number of trials
sampling different availability configurations according to
the conditional probabilities for availability of each compo-
nent in the directed graph.

Computing resources 110 may include any suitable com-
puting resources that may be made available over a network
(which may or may not be network 104). Computing
resources 110 may include any suitable combination of
hardware, firmware, and software. As just a few examples,
computing resources 110 may include any suitable combi-
nation of applications, power, processors, storage, and any
other suitable computing resources that may be made avail-
able over a network. Computing resources 110 may each be
substantially similar to one another or may be heteroge-
neous. As described above, entities accessing computing,
services provided by the provisioned computing resources
environment may gain access to a suite of elastic IT infra-
structure services (e.g., computing resources 110) as the
entity requests those services. Provisioned computing
resources environment 112 may provide a scalable, reliable,
and secure distributed computing infrastructure.

In the illustrated example, each computing resource 110
comprises processing unit 130 and memory unit 132. Pro-
cessing unit 130 may include one or more microprocessors,
controllers, or any other suitable computing devices or
resources. Processing unit 130 may work, either alone or
with other components of system 100, to provide a portion
or all of the functionality of system 100 described herein.
Memory unit 132 may take the form of volatile or non-
volatile memory including, without limitation, magnetic
media, optical media, RAM, ROM, removable media, or any
other suitable memory component. In certain embodiments,
a portion of all of memory unit 132 may include a database,
such as one or more structured query language (SQL)
servers or relational databases. Although FIG. 1 illustrates
examples of computing resources 110 that include process-
ing unit 130 and memory unit 132, particular embodiments
may include one or more computing resources 110 that
represent computing resources, components, applications,
and/or 1nfrastructure that do not include processor unit 130
and memory unit 132.

Server system 106 may be coupled or otherwise associ-
ated with a storage module 108. Storage module 108 may
take the form of volatile or non-volatile memory including,
without limitation, magnetic media, optical media, RAM,
ROM, removable media, or any other suitable memory
component. In certain embodiments, a portion of all of
storage module 108 may include a database, such as one or
more SQL servers or relational databases. Storage module
108 may be a part of or distinct from memory unit 122 of
server system 106.

Storage module 108 may store a variety of information
and applications that may be used by server system 106 or
other suitable components of system 100. In the 1llustrated
example, storage module 108 may store user reliability data
124, instance reliability data 126, class reliability 128, and
infrastructure repository 136. Although storage module 108
1s described as including particular mformation and appli-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

cations, storage module 108 may store any other suitable
information and applications. Furthermore, although these
particular information and applications are described as
being stored 1n storage module 108, the present description
contemplates storing this particular information and appli-
cations in any suitable location, according to particular
needs.

System 100 provides just one example of an environment
in which the reliability estimation for ad hoc applications
technique of the present disclosure may be used. The present
disclosure contemplates use of the data transfer technique 1n
any suitable computing environment. Additionally, although
functionality 1s described as being performed by certain
components of system 100, the present disclosure contem-
plates other components performing that functionality. As
just one example, functionality described with reference to
server system 106 may be performed by one or more
components of computing resources 110 and/or user system
102. Furthermore, although certain components are 1llus-
trated as being combined or separate, the present disclosure
contemplates separating and/or combining components of
system 100 1n any suitable manner. As just one example,
server system 106 and one or more of computing resources
110 may be combined 1n a suitable manner.

Certain embodiments of the present disclosure may pro-
vide some, none, or all of the following technical advan-
tages. For example, certain embodiments provide a reliabil-
ity estimate for computing resources based on a user
identification of key components and associations. Receiv-
ing user indication of certain component relationships may
allow providers to generate a reliability estimate for ad hoc
applications without having to disclose infrastructure, net-
work, and computing resource details to a user of the ad hoc
application. As a result, particular embodiments of the
present disclosure may provide a reliability estimate 1n a
distributed system comprising many disparate components
with differing levels of availability and redundancy. Thus,
providers of ad hoc applications may satisty a user demand
for reliability estimates without having to reveal the details
of the provisioned system. Accordingly, having a quantifi-
able measure of reliability for an application increases trust
and lessens the rnisk of using a cloud provider or ad hoc
applications.

FIG. 2 1s a block diagram 1llustrating an example process
in which reliability estimate 134 is calculated that may be
performed by the example system 100 of FIG. 1. In opera-
tion of an example embodiment of system 100, a user at user
system 102 1nteracts with component tagging module 142 to
apply one or more metadata tags (e.g., tag information 138)
to computing resources 110, as represented by arrow 201.
For example, if user system 102 1s provisioned with an ad
hoc application (e.g., an accounting software package) that
runs on two processing computing resources 110 and one
database computing resource 110, the user may tag each of
the computing resources 110 with the string ‘accounting’ to
associate the computing resources 110 with the provisioned
ad hoc application.

In some embodiments, multiple users using one or more
user systems 102 communicate tag nformation 138 that
include the same string. Component tagging module 142
may disambiguate usage by placing metadata tags mto a
namespace associated with the user that applied the tag. For
example, component tagging module 142 may record the
string ‘accounting’ for a first user as ‘userl:accounting’ and
the string ‘account’ for a second users as ‘user2:accounting’.
Although component tagging module 142 may record each
string using a namespace, when displaying tag information

US RE47,593 E

9

138, component tagging module 142 may hide the
namespace from the user. An example of tag information
138 applied to ad hoc application components 1s shown 1n
FIG. 4.

Additionally or alternatively, a user at user system 102
interacts with application definition module 144 to create an
application definition (e.g., application definition 140) of a
provisioned ad hoc application, as represented by arrow 202.
Application definition 140 includes at least a primary com-
puting resource 110 for which reliability estimate 134 1s to
be calculated. In some embodiments, application definition
140 may include one or more secondary computing
resources 110 that are supportive of the primary computing,
resource 110. For example, the primary computing resource
110 may be an software service while a secondary comput-
ing resource 110 may be a web service accessed by the
soltware service. An example application definition 140 1s
shown 1 FIG. 3. As shown 1n FIG. 3, a user may construct
application definition 140 by defining a primary computing
resource 110 (e.g., Application), and secondary computing
resources 110 (e.g., Service 1 and Service 2) upon which the
primary computing resource 110 depends.

In some embodiments, application definition 140 may not
define all secondary computing resources 110 used by a
particular ad hoc application. Thus, graph inference module
146 may use application definition 140, tag information 138,
and 1nfrastructure repository 136 to construct the dependen-
cies and interrelationships among the various computing
resources 110 utilized by a particular ad hoc application for
which reliability estimate 134 1s sought, represented by
arrow 203. In some embodiments, application definition
module 144 defines the starting seeds for the graph inference
module 146, and graph inference module 146 may expand
the user-provided ad hoc application defimition 140 into a
more comprehensive application definition.

An example directed graph i1s shown in FIG. 5. Graph
inference module 146 may recursively expand the ad hoc
application definition 140 by following known component
associations (as defined by tag mformation 138 and infra-
structure repository 136) to produce a directed graph of
component dependencies. For example, as shown 1n FIG. 5,
box 501, graph inference module 146 may access databases
(c.g., tag information 138 and infrastructure repository 136)
to obtain one or more secondary computing resources 110
relied upon by primary computing resources 110 (e.g.,
Application, as shown 1n box 501). Graph inference module
146 may operate recursively to 1dentily secondary comput-
ing resources 110. For example, a primary computing
resource 110 may have two secondary computing resources
110. In this example, graph inference module 146 i1dentifies
“service 17 and “service 2”7 as secondary computing
resources 110 (indicated in boxes 502 and 503), which
“application” (indicated in box 501) 1s dependent upon.
Graph inference module 146 may then determine the com-
puting resources 110 upon which the secondary computing
resources 110 depend. For example, graph inference module
146 may then determine that “service 17 (1dentified 1n box
502) depends upon “server 17 (identified 1n box 3505) and
“database” (1dentified 1n box 504). Graph inference module
146 repeats this process for each secondary computing
resource 110 i1dentified until no there are no further depen-
dent computing resources 110, as indicated by tag informa-
tion 138 and inirastructure repository 136. Thus, graph
inference module 146 generates a directed graph as shown
in FIG. S.

Returning to FIG. 2, in some embodiments, a relied upon
computing resource 110 1s a computing resource 110 for

10

15

20

25

30

35

40

45

50

55

60

65

10

which there exists a set of component computing resources
110 (possibly the empty set) such that the primary comput-
ing resource 110 1s operable when only the set of component
computing resources 110 1s inoperable, and the primary
computing resource 110 1s moperable when both the relied
upon computing resource 110 and the set of component
computing resources 110 are moperable. For example, each
disk drive 1n a pair of redundant drives 1s a relied upon
component computing resource 110 even though the failure
of any single drive may not cause the primary computing
resource 110 to become 1noperable.

Graph inference module 146 may request infrastructure
components that are allocated to the application components
from the 1nirastructure repository module 136. Infrastructure
components are part of the infrastructure provider’s imple-
mentation of a resource and generally kept secret, for
example, the arrangement of physical racks, network
switches, power supplies, air conditioners, fire suppression
units, telecommunication links, and buldings.

Graph inference module 146 may request application
components associated with tags from component tagging
module 142. For example, graph imnference module 146 may
locate application components tagged with an i1dentifier
associated with a resource. FIG. 4 illustrates the example
application definition 140 expanded to include several appli-
cation components found using tag associations. FIG. 4
includes two computing resources 110 (e.g., a first server
and a database) tagged with “Service 1” as a tag for the first
service and a third computing resource 110 (e.g., a database)
tagged with “Service 27 as a tag for the second service.

Graph inference module 146 may display the identified
application components to a user at user system 102 for
validation. Although the inference ol application compo-
nents may be beneficial to the user by reducing time spent
defining the application or tagging, an incorrect inference
may unnecessarily expand the directed graph. In some
embodiments, the graph imnference module 146 may support
a mechanism for excluding specific application components
shown 1n a particular directed graph, for example, by having
the user a apply a tag excluding the undesired component
(e.g., a “does not require” tag) to override the standard
inference algorithm used by graph inference module 146.

Once directed graph 500 1s generated, application prob-
ability calculator 148 analyzes dependency relationships
among application components in directed graph 500 to
construct a conditional probability table 600. For example,
in directed graph 500 shown 1n FIG. 5, application prob-

ability calculator 148 calculates conditional probability
tables 600 for each of Application (box 501), Service 1 (box

502), Service 2 (box 503), Database (504), Server 1 (505),
Server 2 (306), Volume 1 (507), and Volume 2 (508). Data
indicating the reliability of application components gener-
ated by graph inference module 146 communicated from
user rehiability data 124 and instance reliability data 126
may feed into application probability calculator 148, as
shown by arrows 204. Application probabaility calculator 148
may calculate the expected availability of a respective
application component in directed graph 500 based on the
availability of relied upon components. For example, appli-
cation probability calculator 148 calculates the availability
of “Service 1”7 (as indicated 1 box 3502) based on the
availability of “Database” (as indicated in box 504) and
“Server 1”7 (as indicated 1n box 5035). For each application
component for which a conditional probability table 600 1s
calculated, application probability calculator 148 may
access user reliability data 124 and instance reliability data

126.

US RE47,593 E

11

Additionally, once directed graph 500 1s generated, inira-
structure probability calculator 150 analyzes dependency
relationships among infrastructure components in directed
graph 500 to construct a conditional probability table 600.
For example, in directed graph 500 shown in FIG. 5,

inirastructure probability calculator 150 calculates condi-
tional probability tables 600 for each of Switch (box 509),

Power 1 (box 510), Power 2 (box 511) and Room (512).
Data indicating the reliability of application components
generated by graph inference module 146 communicated
from 1nstance reliability data 126 and class reliability data
128 may feed into infrastructure probability calculator 150,
as shown by arrows 203. Infrastructure probability calcula-
tor 150 examines the directly connected relied upon com-
ponents 1n directed graph 500 to construct a conditional
probability table 600 for the availability of the infrastructure
component based on the availability of the directly con-
nected components. For example, the infrastructure prob-
ability calculator 150 may locate all of the relied upon
components 1n directed graph 500 that directly point to a
relevant component. Infrastructure probability calculator
150 may then construct a conditional probability table 600
by determining the historical availability of directly connect
components.

In some embodiments, infrastructure probability calcula-
tor 150 may introduce a noise term into conditional prob-
ability table 600 to obscure the exact configuration of
infrastructure components. The use of noisy probability may
improve accuracy by permitting the infrastructure provider
to mclude infrastructure details 1n the model that might be
revealed through inspection of reliability estimates.

In some embodiments, infrastructure probability calcula-
tor 150 may factor either instance reliability data 126 or
class reliability data 128 more heavily 1n 1ts calculation. For
example, direct observation of infrastructure components
availability (e.g., instance reliability data 126) may be
preferred for component availability. If no direct observation
exists, the component availability may be estimated based
on tleet statistics for the component (e.g., class reliability
data 128).

Once conditional probability tables 600 are calculated for
cach component in directed graph 500, reliability estimator
module 152 evaluates the directed graph 500 and conditional
probability tables 600 as a Bayesian network to produce
reliability estimate 134. Exact computing of reliability of the
primary resource (such as, e.g., Application in directed
graph 500), may be possible for simple directed graphs, such
as graphs with only a single path to any component. How-
ever, 1n many case, directed graph may not have a direct
solution. In some embodiments reliability estimator module
152 may support stochastic simulation of the inferred
directed graph 500 to compute the reliability of the primary
resource. For example, reliability estimator module 152 may
run a number of trials sampling different availability con-
figurations according to the conditional probabilities (as
shown, e.g., in conditional probability tables 600) for each
component in directed graph 300. The availability of the
primary resource may then be estimated by counting the
number of failures of the primary resource according to the
inferred directed graph 500 over a large number of trials.
Numerous trials may be run in order to obtain reliability
estimate 134 of the primary resource.

Atable displaying the results of an example series of trials
1s disclosed 1n Table 7 of FIG. 7. For example, a first trail
(““Imal 17) begins with reliability estimator 152 assigning
availability to Room (box 512 of FIG. §) 1n accordance with
the conditional probability table of Room. For purposes of

10

15

20

25

30

35

40

45

50

55

60

65

12

this example, a value of “1” represents available, and a value
of “0” represents unavailable. In this example, the condi-
tional probability of Room 1s 1 99.999% of the time, and
reliability estimator 152 assigns Room as 1 m 99.999% of
trials and 0 1n 0.001% of trials. In the example Tral 1, Room
1s assigned as 1 (but in 0.001% of trials will be assigned a
0). Next, relhiability estimator 152 assigns availability to
Power 1 (box 510 of FIG. 5) in accordance with the
conditional probability table 600 of Power 1. In this
example, the conditional probability of Power 1 1s 1 99.97%
of the time when Room (upon which Power 1 relies) 1s 1.
Therefore, reliability estimator 152 assigns Power 1 as 1 1n
99.97% of the trials 1n which 1t assigned Room as 1, and
assigns Power 1 as O 1n 0.03% of the trials 1n which 1t
assigned Room as 1. In the example Tnal 1, rehability
estimator 152 assigns Power 1 as 1. Reliability estimator 152
performs analogous calculations for Power 2 (box 511 in
FIG. 5) and 1n the example Trial 1, Power 2 1s assigned a 1.
Next, reliability estimator 152 assigns Switch (box 509 in
FIG. 5) 1n accordance with its conditional probability table
in which Power 1 and Power 2 (upon which Switch relies)
are both 1, and 1n example Trnal 1, 1s assigned a 1. Next
reliability estimator 152 assigns Volume 1 (box 507 1n FIG.
5) 1 accordance with 1ts conditional probability table 1n
which Switch 1s 1, and 1n example Trial 1, 1s assigned a 1.
Similar calculations are performed for each component 1n
directed graph 500, resulting in an availability calculation
for Application. In example Trial 1, Application 1s assigned
1.

Next, reliability estimator performs a second trial (“Trial
2}, the results of which are shown in table 700 in FIG. 7.
In this example, Room 1s assigned 1, Power 1 1s assigned 1,
Power 2 1s assigned O, Switch 1s assigned 1, Volume 1 1s
assigned 1, and Application 1s assigned 1, in accordance
with the statistical outcomes indicated by their respective
conditional probability tables.

Successive trials are performed (e.g., Trial 3 through Trial
1,000,000 shown 1n Table 700), and the number of times
Application 1s assigned a 1 1s compared to the number of
times Application 1s assigned O 1n the aggregate number of
trials. For example, reliability estimator module 152 may
determine that 1n 99.89% of trials, Application 1s assigned a
1. Thus, rehability estimate 134 1s calculated to be 99.89%.
Once calculated, reliability estimate 134 may be stored 1n
storage unit 108 and/or transmitted to user system 102 to be
displayed to a user.

In some embodiments, a series of a trials may represent
sampling from among all possible combinations of the
availability status of each component 1 a directed graph.
For example, reliability estimator module 152 may perform
availability sampling to determine reliability estimate 134
for a particular primary computing resource 110 (such as,
¢.g., Application shown in FIG. §). Availability sampling
may be based on one or more samples of an availability
configuration of a directed graph (such as, e.g., directed
graph 500 shown 1n FIG. 5). An availability configuration 1s
a permutation of the availability status (where “1” represents
available and “0” represents unavailable) assigned to each
computing resource 110 in a directed graph (such as, e.g.,
directed graph 500. For example, for each availability con-
figuration, each computing resource 110 in the directed
graph 1s either available (1.e., *“1”) or unavailable (i.e., “0”).
For each sample availability configuration, there 1s a prob-
ability that the particular availability configuration will be
observed 1n practice. Each availability configuration has a
probability between and including 0% and 100%. Some
availability configurations have a 0% chance of being

US RE47,593 E

13

observed. For example, 1t 1s not possible that a server
computing resource 110 1s available when relied upon power
supply computing resources 110 are unavailable. Thus, the
probability for an availability configuration in which the
server computing resource 110 1s available (1) and the relied
upon power supply computing resources 110 are unavailable
(0) 15 0%. The sum of the probabilities across every possible
availability configuration 1s 100%.

Reliability estimator module 152 may calculate the prob-
ability of a particular availability configuration based on
conditional probability tables 600. As discussed further
below, conditional probability tables 600 give a probability
for each component to exist in a particular availability
configuration, given the availability status of relied upon
components. Since an availability configuration gives an
availability status for each component 1n a directed graph
simultaneously, the probability of the availability configu-
ration occurring in practice 1s then the product of each of the
component probabilities as indicated in the conditional
probability table 600 associated with each component. The
set of all availability configurations can be enumerated 1n a
table 1 which each row 1s a particular availability configu-
ration and each column 1s a component 1n a directed graph
(such as, e.g., directed graph 500).

Since each component 1n a directed graph 1s assigned a O
or 1, the total number of configurations (rows in the table)
1s 2 to the power of the number of components present 1n the
directed graph (i.e., 2%). Even a small number of compo-
nents makes examining every row (1.e., the probability
associated with each availability configuration) infeasible.
For example, a directed graph with 50 components would
have a table with over one quadrillion rows. Therefore, in
some embodiments, selected availability configurations are
sampled 1n order to calculate reliability estimate 134. Sam-
pling may be performed according to one or more methods.
For example, 1n some embodiments, reliability estimator
module 152 may divide the availability configurations into
groups ol relatively equal probability and may select par-
ticular samples from each group. The sampling performed
may be an orthogonal sampling method, such as orthogonal
Lain hypercube sampling.

In some embodiments, reliability estimator module 152
performs sampling by working backwards from the avail-
ability of the primary resource (such as, e.g., Application 1n
directed graph 500 shown 1n FIG. 5). Assuming a priori that
a primary resource 1s either available or not available, based
on conditional probability tables 600, there 1s a probabaility
for the resources that the primary resource relies upon to be
available or unavailable in a configuration, given the
assumed state for the primary resource. Reliability estimator
module 152 may then sample from among these configura-
tions by any appropriate method, such as, for example,
ogreedy algorithmic sampling and/or orthogonal sampling.

After sampling 1s performed, the sample probabilities are
summed according to whether the primary resource 1s avail-
able or unavailable, producing two probabilities: an avail-
able probability (“A”) and an unavailable probability (“U”).
The sum of A and U 1s greater than or equal to O but less than
or equal to 1. In some embodiments, reliability estimator
module 152 scales the available probability to 1 to calculate
reliability estimate 134 (1.e., by calculating A/(A+U)).

Reliability estimate 134 1s most accurate when A+U 1s
close to 1 and becomes increasingly inaccurate as A+U
approaches 0 since scaling the measurements 15 an approxi-
mation for the configurations that are not sampled. Reliabil-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

ity estimator module 152 may go back and perform addi-
tional sampling 1t A+U 1s too small to improve the accuracy
of reliability estimate 134.

FIG. 3 illustrates an example application definition 140
including a primary resource (e.g., an ad hoc application),
and two secondary resources (e.g., a first service and a
second service). In some embodiments, a first and second
SEervice are resources a primary resource depends upon for
operation. For example, 1f a primary resource 1s a software
application hosted on a website, a first service may represent
a web server, and a second service may represent a database.
A user at user system 102 may tag Service 1 with a “Service
17 tag, Service 2 with a “Service 2” tag, and tag Application
with “Service 17 and “Service 2 tags.

FIG. 4 illustrates an example application definition 140
from FIG. 3 expanded to include several application com-
ponents found using tag associations (such as, e.g., based on
tag information 138 recerved from user system 102) and
inirastructure repository 136. FIG. 4 includes a first server
and database tagged with Service 1 as an identifier for the
first service and a second server tagged with Service 2 as an
identifier for the second service.

FIG. 5 illustrates an example directed graph 500 con-
structed by graph inference module 146 in which the
example application definition 140 from FIG. 4 1s expanded
to include several application and infrastructure components
found using allocation and dependency relationships (e.g.,
based on tag information 138 and application definition
140). FIG. 5 includes a service 1 (box 302), service 2 (box
503), database (box 504), server 1 (box 5035), server 2 (box
506), first drive volume (box 3507) and a second drive
volume (box 508) application components, a network switch
(box 509), a first power supply (box 310), a second power
supply (box 3511) and room (box 512) infrastructure com-
ponents.

FIG. 6 illustrates conditional probability tables 600a-c
(which may be referred to individually as “conditional
probability table 600 or collectively as “conditional prob-
ability tables 600°") for application and infrastructure com-
ponents included in directed graph 500 shown in FIG. 5.
Although FIG. 6 shows example conditional probability
tables 600 based on components illustrated in FIG. 5, 1t
should be understood that any suitable conditional probabil-
ity table 600 may be generated based on the particular
configuration of system 100. In particular embodiments,
conditional probability table 600 includes the permutations
of the available and not available status of relied upon
components for each component 1n a directed graph (e.g.,
directed graph 3500). The status 1s represented as a binary
conditional, 1n which 1 represents available, and O represents
unavailable. For example, 1 a primary component relies
upon {irst and second secondary components, a conditional
probability table 600 includes a first row 1n which the first
secondary component 1s 0 and the second secondary com-
ponent 1s 0, a second row 1n which the first secondary
component 1s 0 and the second secondary component 1s 1, a
third row 1n which the first secondary component is 1 and the
second secondary component 1s 0, and a fourth row 1n which
the first secondary component 1s 1 and the second secondary
component 1s 1. Thus, a conditional probability table 600
includes a row for each permutation of the availability of
directly relied upon components for each component 1n a
directed graph (e.g., directed graph 500).

Conditional probability tables 600 for application com-
ponents may be calculated by application probably calcula-
tor 148 and inirastructure components may be calculated by
infrastructure probability calculator 150. For example, con-

US RE47,593 E

15

ditional probably table 600a illustrates conditional prob-
abilities for Server 1 (box 505 1n FIG. 5). Server 1 relies

upon Volume 1 (box 507 1n FIG. §5) and Switch (box 509 in
FIG. §). The available/non-available conditions for Volume
1 and Switch are shown in the first column and second
column of conditional probably table 600a, respectively. The
avallable/non-available condition for Server 1, which 1s
dependent on the Volume 1 and Switch columns, 1s shown
in the third column. The availability of Server 1 (expressed
as a percentage) 1s determined based on the availability of
Volume 1 and Switch, represented as a binary condition,
with 1 representing available, and O representing not avail-
able. For example, with reference to the first row of condi-
tional probability table 600a, Volume 1 1s 0 and Switch 1s O,
and Server 1 1s therefore 0%, because Server 1 1s not
operational 1f Volume 1 and Switch are not available. With
reference to the second row of conditional probability table
600a, Volume 1 1s 1 and Switch 1s O, and Server 1 is theretfore
0%, because Server 1 1s not operational 1f Switch 1s not
available. With reference to the third row of conditional
probability table 600a, Volume 1 1s O and Switch 1s 1, and
Server 1 1s therefore 0%, because Server 1 1s not operational
if Volume 1 1s not available. With reference to the fourth row
of conditional probability table 600a, Volume 1 1s 1 and
Switch 1 1s 1, and Server 1 1s therefore 99.8%. If Volume 1
and Switch 1 are available, then the availability of Server 1
1s based on historical reliability metrics data (such as, e.g.,
user reliability data 124, instance reliability data 126, and/or
class reliability data 128), as discussed above.

Conditional probability table 600b illustrates conditional
probabilities for the Database component illustrated 1n FIG.
5 (box 3504). The Database component relies upon the
Switch component (box 509 1n FIG. 5). The available/not
available condition for the Switch component 1s shown 1n
the first column, and the available/not available condition
for the Database component, which 1s dependent on the
avallable/non-available condition in the Switch column, 1s
shown 1n the second column. With reference to the first row
of conditional probability table 600b, Switch 1s 0, and
Database 1s therefore 0%. Because the Database component
1s dependent upon the Switch component, the Database
component 1s not available when the Switch component 1s
not available. With reference to the second row of condi-
tional probability table 600b, Switch 1s 1, and Database 1s
99.76%. Because the Switch component 1s available, the
availability of the Database component 1s determined from
historical reliability metrics data (such as, e.g., user reliabil-
ity data 124, instance reliability data 126, and/or class
reliability data 128), as discussed above.

Conditional probability table 600c illustrates conditional
probabilities for the Switch component illustrated 1n FIG. 5
(box 509). The Switch component relies upon the Power 1
component (box 310) or the Power 2 component (box 511).
That 1s, the Power 1 and Power 2 components are redundant
dependencies to the Switch component. With reference to
the first row of conditional probability table 600c, Power 1
1s 0 and Power 2 1s 0, and Switch 1s therefore 0%. Because
the Switch component 1s dependent upon the Power 1 or
Power 2 components, the Switch component 511 is not
available when both Power 1 and Power 2 are not available.
With reference to the second row of conditional probability
table 600c, Power 1 1s O and Power 2 1s 1, and Switch 1s
00.99%. If either Power 1 or Power 2 are available, the
availability of the Switch component 1s determined from
historical reliability metrics data (such as, e.g., user reliabil-
ity data 124, instance reliability data 126, and/or class
reliability data 128), as discussed above. Similarly, with

10

15

20

25

30

35

40

45

50

55

60

65

16

reference to the third row of conditional probability table
600d, Power 1 1s 1 and Power 2 1s 0, and Switch 15 99.99%.
With reference to the fourth row of conditional probability
table 600c, Power 1 1s 1 and Power 2 1s 1, and Switch 1s
99.99%. Since Power 1 and Power 2 are both available
(although only either Power 1 or Power two need be
available for this condition to result), the availability 1is
determined from historical reliability metrics data.

FIG. 7 illustrates a table 700 that includes the results of an
example series of trials performed by reliability estimator
152 to calculate reliability estimate 134. As discussed above,
successive trials are performed (e.g., Trial 1 through Trial
1,000,000 shown in Table 700), and the number of times
Application 1s assigned a 1 1s compared to the number of
times Application 1s assigned O 1n the aggregate number of
trials. For example, reliability estimator module 152 may
determine that 1n a series of 1,000,000 trials, Application 1s
avallable 1n 998,990 trials, and unavailable 1n 1100 trials.
Thus, reliability estimator module calculates reliability esti-
mate 134 to be 99.89%.

FIG. 8 1illustrates an example computer system 800 that
may be used for one or more portions of the example system
100 of FIG. 1, according to certain embodiments of the
present disclosure. Although the present disclosure describes
and 1llustrates a particular computer system 800 having
particular components 1n a particular configuration, the
present disclosure contemplates any suitable computer sys-
tem having any suitable components in any suitable con-
figuration. Moreover, computer system 800 may have take
any suitable physical form, such as for example one or more
integrated circuit (ICs), one or more printed circuit boards
(PCBs), one or more handheld or other devices (such as
mobile telephones or PDAs), one or more personal comput-
€rs, one or more super computers, one or more servers, and
one or more distributed computing elements. Portions or all
of user system 102, server system 106, storage module 108,
and computing resources 110 may be implemented using all
of the components, or any appropriate combination of the
components, of computer system 800 described below.

Computer system 800 may have one or more input
devices 802 (which may include a keypad, keyboard, mouse,
stylus, or other input devices), one or more output devices
804 (which may include one or more displays, one or more
speakers, one or more printers, or other output devices), one
or more storage devices 806, and one or more storage media
808. An mput device 802 may be external or internal to
computer system 800. An output device 804 may be external
or internal to computer system 800. A storage device 806
may be external or internal to computer system 800. A
storage medium 808 may be external or internal to computer
system 800.

System bus 810 couples subsystems of computer system
800 to each other. Herein, reference to a bus encompasses
one or more digital signal lines serving a common function.
The present disclosure contemplates any suitable system bus
810 including any suitable bus structures (such as one or
more memory buses, one or more peripheral buses, one or
more a local buses, or a combination of the foregoing)
having any suitable bus architectures. Example bus archi-

tectures include, but are not limited to, Industry Standard
Architecture (ISA) bus, Enhanced ISA (FISA) bus, Micro

Channel Architecture (IMCA) bus, Video Electronics Stan-
dards Association local (VLB) bus, Peripheral Component

Interconnect (PCI) bus, PCI-Express bus (PCI-X), and
Accelerated Graphics Port (AGP) bus.

Computer system 800 includes one or more processors
812 (or central processing units (CPUs)). A processor 812

US RE47,593 E

17

may contain a cache 814 for temporary local storage of
instructions, data, or computer addresses. Processors 812 are
coupled to one or more storage devices, including memory
816. Memory 816 may include RAM 818 and ROM 820.
Data and 1nstructions may transier bi-directionally between
processors 812 and RAM 818. Data and instructions may
transier uni-directionally to processors 812 from ROM 820.
RAM 818 and ROM 820 may include any suitable com-
puter-readable storage media.

Computer system 800 includes fixed storage 822 coupled
bi-directionally to processors 812. Fixed storage 822 may be
coupled to processors 812 via storage control unit 807. Fixed
storage 822 may provide additional data storage capacity
and may include any suitable computer-readable storage
media. Fixed storage 822 may store an operating system
(OS) 824, one or more executables (EXECs) 826, one or
more applications or programs 828, data 830 and the like.
Fixed storage 822 i1s typically a secondary storage medium
(such as a hard disk) that 1s slower than primary storage. In
appropriate cases, the mformation stored by fixed storage
822 may be incorporated as virtual memory into memory
816. In certain embodiments, fixed storage 822 may include
network resources, such as one or more storage area net-
works (SAN) or network-attached storage (NAS).

Processors 812 may be coupled to a variety of interfaces,
such as, for example, graphics control 832, video interface
834, input interface 836, output interface 837, and storage
interface 838, which in turn may be respectively coupled to
appropriate devices. Example mput or output devices
include, but are not limited to, video displays, track balls,
mice, keyboards, microphones, touch-sensitive displays,
transducer card readers, magnetic or paper tape readers,
tablets, styli, voice or handwriting recogmzers, biometrics
readers, or computer systems. Network interface 840 may
couple processors 812 to another computer system or to
network 842. Network imterface 840 may include wired,
wireless, or any combination of wired and wireless compo-
nents. Such components may include wired network cards,
wireless network cards, radios, antennas, cables, or any
other appropriate components. With network interface 840,
processors 812 may receive or send information from or to
network 842 1n the course of performing steps of certain
embodiments. Certain embodiments may execute solely on
processors 812. Certain embodiments may execute on pro-
cessors 812 and on one or more remote processors operating
together.

In a network environment, where computer system 800 1s
connected to network 842, computer system 800 may com-
municate with other devices connected to network 842.
Computer system 800 may communicate with network 842
via network interface 840. For example, computer system
800 may receive information (such as a request or a response
from another device) from network 842 in the form of one
or more ncoming packets at network interface 840 and
memory 816 may store the incoming packets for subsequent
processing. Computer system 800 may send information
(such as a request or a response to another device) to
network 842 1n the form of one or more outgoing packets
from network interface 840, which memory 816 may store
prior to being sent. Processors 812 may access an incoming,
or outgoing packet in memory 816 to process 1t, according
to particular needs.

Certain embodiments ivolve one or more computer-
storage products that include one or more tangible, com-
puter-readable storage media that embody software for
performing one or more steps of one or more processes
described or 1llustrated herein. In certain embodiments, one

10

15

20

25

30

35

40

45

50

55

60

65

18

or more portions of the media, the software, or both may be
designed and manufactured specifically to perform one or
more steps of one or more processes described or illustrated
herein. Additionally or alternatively, one or more portions of
the media, the software, or both may be generally available
without design or manufacture specific to processes
described or illustrated herein. Example computer-readable
storage media 1nclude, but are not limited to, CDs (such as
CD-ROMs), FPGAs, tloppy disks, optical disks, hard disks,
holographic storage devices, ICs (such as ASICs), magnetic
tape, caches, PLDs, RAM devices, ROM devices, semicon-
ductor memory devices, and other suitable computer-read-
able storage media. In certain embodiments, software may
be machine code which a compiler may generate or one or
more files containing higher-level code which a computer
may execute using an interpreter.

As an example and not by way of limitation, memory 816
may 1nclude one or more tangible, computer-readable stor-
age media embodying software and computer system 800
may provide particular functionality described or illustrated
herein as a result of processors 812 executing the software.
Memory 816 may store and processors 812 may execute the
software. Memory 816 may read the software from the
computer-readable storage media 1n mass storage device 816
embodying the software or from one or more other sources
via network interface 840. When executing the software,
processors 812 may perform one or more steps of one or
more processes described or illustrated herein, which may
include defining one or more data structures for storage in
memory 816 and modifying one or more of the data struc-
tures as directed by one or more portions the software,
according to particular needs.

In certain embodiments, the described processing and
memory elements (such as processors 812 and memory 816)
may be distributed across multiple devices such that the
operations performed utilizing these elements may also be
distributed across multiple devices. For example, software
operated utilizing these elements may be run across multiple
computers that contain these processing and memory ele-
ments. Other variations aside from the stated example are
contemplated involving the use of distributed computing.

In addition or as an alternative, computer system 800 may
provide particular functionality described or illustrated
herein as a result of logic hardwired or otherwise embodied
in a circuit, which may operate in place of or together with
solftware to perform one or more steps of one or more
processes described or illustrated herein. The present dis-
closure encompasses any suitable combination of hardware
and software, according to particular needs.

Although the present disclosure describes or illustrates
particular operations as occurring in a particular order, the
present disclosure contemplates any suitable operations
occurring in any suitable order. Moreover, the present dis-
closure contemplates any suitable operations being repeated
one or more times 1n any suitable order. Although the present
disclosure describes or illustrates particular operations as
occurring in sequence, the present disclosure contemplates
any suitable operations occurring at substantially the same
time, where appropriate. Any suitable operation or sequence
ol operations described or illustrated herein may be inter-
rupted, suspended, or otherwise controlled by another pro-
cess, such as an operating system or kernel, where appro-
priate. The acts can operate 1n an operating system
environment or as stand-alone routines occupying all or a
substantial part of the system processing.

Moreover, data transier techniques consistent with the
present disclosure may be used to communicate any suitable

US RE47,593 E

19

type of data over any suitable type of network. For example,
although the present disclosure has been described primarily
with reference to reliability metrics data, the present disclo-
sure contemplates processing any suitable type of data for
communication of a communication network (e.g., network
104).
What 1s claimed 1s:
[1. A system comprising:
one or more memory units with executable instructions;
and
one or more processing units that, when executing the
instructions 1 the one or more memory units, are
operable to:
receive an application definition associated with an ad
hoc application provisioned from one or more com-
puting resources delivered over a network, the appli-
cation definition identifying a first group of compo-
nents, the first group of components comprising the
ad hoc application and one or more computing
resources relied on by the ad hoc application;
receive tag information from a user, the tag information
indicating one or more aspects of the first group of
components;
access 1nfrastructure data from an inirastructure reposi-
tory, the infrastructure data identifying a second
group of components, the second group of compo-
nents comprising one or more computing resources
of a distributed architecture that are associated with
at least a subset of one or more components in the
first group of components;
generate a plurality of conditional probability tables,
one conditional probability table for at least a first
subset of the components 1n the first group of com-
ponents and at least a second subset of the second
group of components, the plurality of conditional
probability tables identifying at least an availability
ol a respective component of at least the first subset
of the first group of components or at least the second
subset of the second group of components based at
least 1n part on a second availability of one or more
relied upon components of the first group of com-
ponents or the second group of component, where
the one or more relied upon components are com-
ponents utilized, at least 1in part, during operation of
the respective component; and
based at least 1n part on the plurality of conditional
probability tables, calculate a reliability estimate for
the ad hoc application by at least performing a
plurality of trials, wherein performing the plurality
of trials comprises assigning a status of either avail-
able or not available to at least a portion of the
components 1n a directed graph, the status based at
least 1 part on a particular conditional probability
table associated with a particular component and the
status ol one or more directly relied upon compo-
nents. |
[2. The system of claim 1, wherein the one or more
processing units are further operable to:
based at least 1n part on the application definition, the tag
information, and the infrastructure data, generate the
directed graph, the directed graph comprising the com-
ponents from the first group of components and second
group of components and indicating one or more
dependency relationships among the components; and
wherein at least a portion of the plurality of conditional
probability tables table 1s are associated with at least
one of the one or more components in the directed

5

10

15

20

25

30

35

40

45

50

55

60

65

20

graph, and the one or more processing units are turther
operable to calculate the reliability estimate based at
least 1n part on the plurality of conditional probability
tables and the directed graph.]

[3. The system of claim 1, wherein the processing units
are Turther operable to access reliability metrics data for at
least the first subset of the first group of components and at
least the second subset of the second group of components,
wherein the reliability metrics data comprise at least one of:

user reliability data, the user reliability data comprising

historical availability data of the ad hoc application
determined by one or more users of the ad hoc appli-
cation;

instance reliability data, the instance reliability data com-

prising historical availability of a particular component
associated with the ad hoc application;

class reliability data, the class reliability data comprising

historical availability data associated with a plurality of
types of components associated with the ad hoc appli-
cation; and

wherein the processing units are operable to generate the

conditional probability table for at least the first subset
of the first group of components and at least the second
subset of the second group of components based at least
in part on the reliability metrics data.}

[4. The system of claim 1, wherein the one or more
processing units are operable to generate the conditional
probability table for at least the first subset of the first group
of components and at least the second subset of the second
group of components by:

for at least a third subset of components 1n the first group

of components and the second group of components,
determining the one or more relied upon components;
generating one or more rows 1n the conditional probability
table, the one or more rows comprising a subset of
permutations, the subset of permutations indicating
availability of at least a portion of the one or more

relied upon components by the third subset of compo-
nents; and

for the one or more rows, determining the availability of

the respective component based at least 1n part on the
subset of permutations.]

[5. The system of claim 1, wherein the one or more
processing units are operable to calculate the reliability
estimate for the ad hoc application by:

alter performing the plurality of trials, calculating a first

number of times the ad hoc application 1s assigned a
status of available;

alter performing the plurality of trials, calculating a

second number of times the ad hoc application 1s
assigned a status of not available; and

comparing the first number of times the ad hoc application

1s assigned a status of available to the second number
of times the ad hoc application 1s assigned a status of
not available.}

[6. The system of claim 1, further comprising, for at least
a portion of the plurality of conditional probability tables,
combining the availability of the respective component
identified in the conditional probability table with a gener-
ated number.}

[7. The system of claim 2, wherein the one or more
processing units are operable to calculate the reliability
estimate for the ad hoc application by:

sampling a plurality of availability configurations from a

set of all availability configurations, the sampled avail-
ability configurations based at least in part on the

US RE47,593 E

21

directed graph and indicating a status of available or
not available to at least a portion of the components in
the directed graph; and

for at least a subset of the sampled availability configu-

ration, determining the probability of the availability
configuration based at least in part on a particular
conditional probability table associated with at least a
subset of the components in the directed graph.}

[8. The system of claim 7, wherein the one or more
processing units are operable to sample the plurality of
availability configurations based at least 1n part on a hyper-
cube sampling algorithm.]

[9. The system of claim 7, wherein the one or more
processing units are further operable to calculate the reli-
ability estimate by summing the probabilities of the sampled
availability configurations.]

[10. The system of claim 1, wherein the one or more
processing units are further operable to calculate the reli-
ability estimate for the ad hoc application based at least 1n
part on a result of the plurality of trials.]

[11. A computer-implemented method, comprising:

identifying one or more components associated with an ad

hoc application and upon which the ad hoc application

relies, wherein identifying one or more components

COMprises:

obtaining an application definition associated with the
ad hoc application, the application definition
recetrved from a user and comprising a first group of
components, the first group of components including
the ad hoc application and one or more components
relied upon by the ad hoc application;

obtaining tag information, the tag information indicat-
ing one or aspects of the first group of components;
and

obtaining, based at least in part on the tag information
and the application data, infrastructure data from an
infrastructure repository, the infrastructure data iden-
tifying a second group of components, the second
group ol components comprising one or more com-
puting resources of a distributed architecture asso-
ciated with the ad hoc application;

generating a directed graph, the directed graph compris-

ing at least a subset of components of the first group of
components and the second group of components and
indicating one or more dependency relationships
among the subset of components;

generating a plurality of conditional probability tables,

based at least in part on the subset of components in the
directed graph, wherein the plurality of conditional
probability tables are based at least 1n part on one or
more of the dependency relationships 1dentified in the
directed graph and indicates availability of a respective
component based at least in part on availability of at
least one relied upon component; and

calculating, based at least in part on the directed graph, the

reliability estimate for the ad hoc application, wherein
calculating the reliability estimate for the ad hoc appli-
cation comprises performing a plurality of trials,
wherein performing the plurality of trials comprises,
assigning a status of either available or not available to
at least a portion of the components in the directed
graph, the assigned status based at least 1n part on a
particular conditional probability table associated with
a particular component of the portion of the compo-
nents in the directed graph and the assigned status of
one or more directly relied upon components.}

5

10

15

20

25

30

35

40

45

50

55

60

65

22

[12. The method of claim 11, wherein generating the
directed graph comprises

Generating the directed graph based at least in part on the

application definition, the tag information, the inira-
structure data and the conditional probability tables.]

[13. The method of claim 12, further comprising:

obtaining reliability metrics data associated with one or

more components in the directed graph, the reliability
metrics data comprising at least one of:

user reliability data, the user reliability data comprising

historical availability data of the ad hoc application
determined by one or more users of the ad hoc appli-
cation;

instance reliability data, the instance reliability data com-

prising historical availability of components associated
with the ad hoc application; and

class reliability data, the class reliability data comprising

historical availability data associated with one or more
types ol components associated with the ad hoc appli-
cation.]

[14. The method of claim 13, wherein assigning the status
to at least a portion of the components comprises:

determining whether a particular component of a portion

of components directly relied upon by a respective
component 1s assigned available or not available status;
and

i the assigned status of the particular component 1s

available, assigning the status to the respective com-
ponent based at least in part on the reliability metrics
data.]

[15. The method of claim 11, wherein calculating a
reliability estimate comprises:

alter performing the plurality of trials, calculating a first

number of times the ad hoc application 1s assigned the
status of available;

alter performing the plurality of trials, calculating a

second number of times the ad hoc application 1s
assigned the status of not available; and

comparing the first number of times the ad hoc application

1s assigned the status of available to the second number
of times the ad hoc application 1s assigned the status of
not available.}

[16. The method of claim 12, wherein calculating the
reliability estimate for the ad hoc application comprises:

sampling a plurality of availability configurations from a

set ol availability configurations, at least a subset of the
availability configurations based at least 1n part on the
directed graph and indicating the status of available or
not available for at least the portion of the components
in the directed graph; and

for at least a subset of the sampled availability configu-

rations, determining the probability of a particular
availability configuration based at least 1n part on the
conditional probability table associated with a portion
of the components in the directed graph.]

[17. The method of claim 16, wherein sampling the
plurality of availability configurations comprises sampling
the plurality of availability configurations based at least in
part on a hypercube sampling algorithm.}

[18. The method of claim 16, wherein calculating the
reliability estimate further comprises summing the prob-
abilities of the sampled availability configurations.]

[19. A non-transitory computer-readable medium com-
prising logic, the logic when executed by one or more
processing units operable to perform operations comprising;:

recerving, from a user, a request for a reliability estimate

associated with an ad hoc application;

US RE47,593 E

23

in response to the request, 1dentifying one or more com-
ponents associated with the ad hoc application and
upon which the ad hoc application relies;

accessing 1nfrastructure data from an infrastructure
repository, the infrastructure data identifying a second
group of components, the second group of components
comprising one or more computing resources of a
distributed architecture associated with the ad hoc
application;

generating a directed graph, the directed graph compris-
ing one or more 1dentified components and 1ndicating
one or more dependency relationships among the one
or more 1dentified components;

accessing reliability metrics data, the reliability metrics
data comprising at least one of user reliability data,
instance reliability data, and class reliability data, the
reliability metrics data associated with one or more
identified components 1n the directed graph;

generating a plurality of conditional probability tables, at
least one conditional probability table for at least a
subset of the one or more 1dentified components 1n the
directed graph, wherein at least a portion of the plu-
rality of conditional probability tables are based at least
in part on the one or more of the dependency relation-
ships identified in the directed graph and indicating
availability of a respective component based at least 1n
part on availability of at least one relied upon compo-
nent;

calculating, based at least in part on the directed graph and
the reliability metrics data, the reliability estimate for
the ad hoc application, wherein calculating the reliabil-
ity estimate for the ad hoc application comprises per-
forming a plurality of trnials, wherein performing the
plurality of trials comprises, assigning a status of either
available or not available to at least a subset of the one
or more 1dentified components in the directed graph,
the assigned status being based at least 1 part on a
particular conditional probability table of the plurality
ol conditional probability tables associated with a par-
ticular component and the assigned status of one or
more directly relied upon components; and

transmitting the reliability estimate to the user.}

10

15

20

25

30

35

40

24

the user reliability data comprises historical availability
data of the ad hoc application determined by one or
more other users of the ad hoc application;

the instance reliability data comprises historical availabil-

ity of a particular component associated with the ad hoc
application; and

the class reliability data comprises historical availability

data associated with one or more types ol components
associated with the ad hoc application.]

[23. The non-transitory computer-readable medium of
claim 19, wherein assigning the status to at least the subset
of the one or more 1dentified components comprises:

determining whether the subset of the one or more 1den-

tified components directly relied upon by the respective
component 1s assigned available or not available status;
and

i1 the status of the subset of the one or more identified

components 1s available, assigning the status to the
respective component based at least in part on the
reliability metrics data.}

[24. The non-transitory computer-readable medium of
claim 19, wherein calculating the reliability estimate com-
Prises:

alter performing the plurality of trials, calculating a first

number of times the ad hoc application 1s assigned the
status of available;

after performing the plurality of trials, calculating a

second number of times the ad hoc application 1s
assigned the status of not available; and

comparing the first number of times the ad hoc application

1s assigned the status of available to the second number
of times the ad hoc application 1s assigned the status of
not available.}

[25. The non-transitory computer-readable medium of
claam 21, wherein the operations further comprise, for at
least a subset of the plurality of conditional probabaility
tables, combining an availability of the one or more 1den-
tified components 1n the a particular conditional probability
table with a generated number.}

[26. The non-transitory computer-readable medium of
claam 21, wherein the logic 1s operable to calculate the

[20. The non-transitory computer-readable medium of reliability estimate for the ad hoc application by:
claim 19, wherein identifying the one or more components sampling a plurality of availability configurations from a
associated with the ad hoc application comprises: 45 set of availability configurations, the set of the avail-

accessing an application definition associated with the ad

hoc application, the application definition receirved

from the user and comprising a first group of compo-
nents, the first group of components including the ad
hoc application and one or more components relied
upon by the ad hoc application;

accessing tag information, the tag information indicating
one or more aspects of the first group of components;
and

accessing, based at least 1in part on the tag information and
application data, infrastructure data from an infrastruc-
ture repository, the infrastructure data identifying the
second group of components, the second group further
comprising one or more components of the ad hoc
application.}

[21. The non-transitory computer-readable medium of
claim 20, wherein generating the directed graph comprises:

generating the directed graph based at least in part on the
application defimition, the tag information, the infra-
structure data and the conditional probability tables.]

[22. The non-transitory computer-readable medium of
claim 19, wherein:

50

55

60

65

ability configurations based at least in part on the
directed graph and indicating the status of available or
the status of not available for at least a subset of the one
or more 1dentified components 1n the directed graph;
and

for at least a portion of the sampled availability configu-

ration, determining a probability of the availability
configuration based at least in part on a particular
conditional probability table associated with for at least
a subset of the one or more 1dentified components in the
directed graph.]

[27. The non-transitory computer-readable medium of
claim 26, wherein the logic 1s operable to sample the
plurality of availability configurations based at least in part
on a hypercube sampling algorithm.}

[28. The non-transitory computer-readable medium of
claim 26, wherein the logic i1s further operable to calculate
the reliability estimate by summing the probabilities of the
sampled availability configurations.]

[29. The non-transitory computer-readable medium of
claim 19, wherein the logic i1s further operable to determine
the plurality of trials such that the plurality of trials repre-

US RE47,593 E

25

sents a sampling from among a set of possible combinations
of the assigned status of the one or more 1dentified compo-
nents in the directed graph.]
30. A computer-implemented method, comprising:
receiving an application definition associated with an ad

hoc application identifving a first set of components of

a distributed architecture for executing the ad hoc
application;

obtaining information identifving a second set of compo-
nents of a distributed architecture associated with the
first set of components;

generating a plurality of conditional probability tables for

the first set of components and the second set of

components, the conditional probability table identify-

ing an availability of a first component of the first set
of components based at least in part on a second

availability of a second component of the second set of

components, where the first component rvelies on the
second component during operation of the first com-
ponent during execution of the ad hoc application; and

calculating a reliability estimate for the ad hoc applica-
tion based at least in part on the conditional probability
table by at least performing a plurality of trials,
wherein performing the plurality of trials comprises
assigning a status of either available or not available
to at least a portion of the components in a directed
graph, the status based at least in part on a particular
conditional probability table associated with a particu-
lar component and the status of one or more directly
relied upon components.

31. The computer-implemented method of claim 30,
wherein the computer implemented method further com-
prises generating the divected graph based at least in part
on the application definition, infrastructure data and the
conditional probability tables.

32. The computer-implemented method of claim 31,
wherein the computer-implemented method furthey compris-
Ing:

obtaining reliability metrics data associated with one or

more components in the divected graph, the reliability

metrics data comprising at least one of:

user reliability data, the user reliability data compris-
ing historical availability data of the ad hoc appli-
cation determined by one or movre users of the ad hoc
application;

instance reliability data, the instance veliability data
comprising historical availability of components
associated with the ad hoc application; and

class veliability data, the class reliability data compris-
ing historical availability data associated with one
or movre types of components associated with the ad
hoc application.

33. The computer-implemented method of claim 31,
wherein assigning the status to the portion of the compo-
nents comprises.

determining whether a particular component of a portion

of components directly relied upon by a respective
component is assigned available or not available sta-
tus; and

if the assigned status of the particular component is

available, assigning the status to the vespective com-
ponent based at least in part on the veliability metrics
data.

34. A non-transitory computer-readable storage medium
having stored therveon executable instructions that as a result
of being executed by one or more processors of computer
system, cause the computer system to at least:

5

10

15

20

25

30

35

40

45

50

55

60

65

26

obtain a request for a reliability estimate associated with
an ad hoc application, the ad hoc application associ-
ated with an application definition indicating a set of
components used to execute the ad hoc application,

in rvesponse to the request:

determine a first subset of components of the set of
components that have a dependency rvelationship with
at least a component of a second subset of components
of the set of components;

generate a plurality of conditional probability tables, at
least one conditional probability table of the plurality
of conditional probability tables for the first subset of
components based at least in part on an availability of
the second component;

determine the reliability estimate for the ad hoc applica-
tion based at least in part on the plurality of conditional
probability tables, wherein determining the reliability
estimate for the ad hoc application comprises perform-
ing a plurality of trials, wherein performing the plu-
rality of trials comprises, assigning a status of either
available or not available to at least a subset of the set
of components in a divected graph, the assigned status
being based at least in part on at least the one condi-
tional probability table of the plurality of conditional
probability tables associated with a particular compo-
nent and the assigned status of one or more divectly
relied upon components; and

transmit the reliability estimate in response to the request.

35. The non-transitory computer-readable medium of

claim 34, wherein the instructions further comprise instric-
tions that, as a vesult of being executed by the one or more

processors, cause the computer system to genervate the

directed graph based at least in part on the application
definition, infrastructure data, and the plurality of condi-
tional probability tables.

36. The non-tramsitory computer-readable medium of
claim 34, wherein the instructions further comprise instric-
tions that, as a vesult of being executed by the one or more

processors, cause the computer system to:

determine whether the component of the second subset of
components of the set of components is assigned a
status of available or not available; and
if the status is available, assigning the status to the first
subset of components.
37. The non-transitory computer-readable storage
medium of claim 34, wherein the instructions further com-

prise instructions that, as a result of being executed by the

one o¥ more processors, cause the computer system to obtain
information indicating availability of the second subset of
components from an infrastructure vepository.

38. The non-transitory computer-readable storage
medium of claim 34, wherein the instructions further com-

prise instructions that, as a result of being executed by the

One o¥ move processors, cause the computer system to obtain
an input from a userv through a user interface, the input
indicating the dependency relationship.

39. The non-transitory computer-readable storage
medium of claim 34, wherein during at least a portion of the

plurality of trials assigning a status of either available or not

available to the second component.

40. The non-transitory computer-readable storage
medium of claim 34, wherein the instructions that cause the
compuiter system to assign the status of either available or
not available to the second component further include
instructions that cause the computer system to assign the
status of either available or not available to the second
component based at least in part on instance veliability data.

US RE47,593 E

27

41. The non-transitory computer-readable storvage
medium of claim 40, wherein the instructions that cause the
compuiter system to assign the status of either available or
not available to the second component further include
instructions that cause the computer system to assign the
status of either available or not available to the second
component based at least in part on class reliability data.

42. A system, comprising.

one or more processors; and

memory to stove computer-executable instructions that, if

executed, cause the one or more processors to:

receive an application definition for a set of compo-
nents executing the application;,

determine a first subset of components of the set of
components associated with a second subset of com-
ponents of the set of components;

generate a conditional probability table for the first
subset of components and the second subset of
components based at least in part on an availability
of a first component of the first subset of components
associated with a second component of the second
subset of components, wherve the first component
relies on the second component during executing of
the application; and

calculate a veliability estimate for the application
based at least in part on the conditional probability
table, wherein calculating the reliability estimate for
the application comprises performing a plurality of
trials, wherein performing the plurality of trials
comprises assigning a status of either available or
not available to at least a subset of the set of
components in a graph, the assigned status being
based at least in part on the conditional probability
table and the assigned status of one or more dirvectly
relied upon components.

43. The system of claim 42, wherein the memory further
includes instructions that, if executed, cause the one or more
processors to genervate the graph comprising the set of
components based at least in part on the application defi-
nition and the conditional probability table.

44. The system of claim 43, wherein the memory further
includes instructions that, if executed, cause the one or more
processors to generate a plurality of availability configura-

5

10

15

20

25

30

35

40

28

tions based at least in part on the graph indicating a status
of available or not available for at least the portion of the
set of components included in the graph.

45. The system of claim 42, wherein the memory further
includes instructions that, if executed, cause the one or more
processors to sample the plurality of availability configu-
rations based at least in part on a sampling algorithm.

46. The system of claim 43, wherein the computer-exectit-
able instructions that cause the one ov more processors to
generate the graph further includes computer-executable
instructions that, if executed, cause the one or more pro-
cessors to generate the graph further based at least in part
of tag information associated with each component of the set
o] components.

47. The system of claim 42, wherein the computer-execut-
able instructions that cause the one or move processors to
calculate the veliability estimate further includes computer-
executable instructions that, if executed, cause the one or
movre processors to:

calculate a first value indicating a first number of trials of
the plurality of trials the application is assigned a
status of available;

calculate a second value indicating a second number of
trials of the plurality of trials the application is
assigned a status of not available; and

compare the first value and the second value.

48. The system of claim 42, wherein the memory further
includes instructions that, if executed, cause the one or more
processors to obtain veliability metrics data associated with
one or move components of the set of components compris-
ing at least one of user reliability data, instance reliability
data, and class reliability data.

49. The system of claim 48, wherein the computer-execut-
able instructions that cause the one or move processors to
calculate the veliability estimate further includes computer-
executable instructions that, if executed, cause the one or
movre processors to calculate the reliability estimate based at
least in part on the rveliability metrics data and the condi-

tional probability table.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

