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Applying a wavelet decomposition in order to provide a local
saliency of each pixel. 111

Determining a importance input pixel mask. 112

Determining an importance of an input pixel in response to
motion associated with each of the multiple input pixels; the
determination can include assigning a binary motion base
saliency score 1o an input pixel or assigning a non-binary
motion base saliency score of a pixel in response to the
amount of motion. 113

Determining an importance of an input pixel in response to a
saliency score of the input pixels. 114

Determining an importance of an input pixel in response to an

inclusion of an input pixel within a an input image that
represents a face of a person. 115

Performing a data reduction stage, The performing can include
representing each set of pixels by a single variable, ignoring
pixel importance information, and the like. 119

Determining an interest value for each input pixels out of multiple
input pixels of an input image. 110

Applying on each of the multiple input pixels a conversion process

that Is responsive 1o the interest value of the input pixel to provide

multiple output pixels that form the output image; wherein the input
image differs from the output image. 120
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the input frame. 111(5)
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Determining a distance between output image representations of a
pair of adjacent input pixels is responsive to an importance of at
least one of pair of adjacent input pixels. The distance can range

from one or more pixels to a portion of a pixel. 121

Applying an 6ptimal map;ﬁing between the input image to the output '
image. 123

Solving a set of sparse linear equations. 124

Applying a conversion process that is responsive to at least one of
the following constraints: each input pixel is mapped to an output
pixel that is located at substantially a fixed distance from its left and
right neighbors; each input pixel is mapped to an output pixel
located to substantially a similar location to which upper and lower
input pixels are mapped; an input pixel is mapped to an output pixel
located substantiaily at a same location as an output pixel to which
the same input pixel at a previous image was mapped, and size and
shape of the output image. 125

Re-sizing. 126

[ Altering an aspect ratio. 127
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Determining an interest value for each input pixels out of multiple
input pixels of the group of input images. These multiple input
images can form a shot or a portion of a shot. 310

Applying on each of the multiple input pixels of the group of
images a conversion process that is responsive to the interest
value of the input pixel to provide multiple output pixels that form
the output image; wherein the input image differs from the output
image. The conversion process of a certain image can be
responsive to one or more frames that precede this certain image
and to one or more mages that follow this certain image. 320

Applying the conversion process on elements of a combined
saliency matrix, wherein the combined saliency matrix includes
multiple saliency matrices, each representative of a saliency of
multiple pixeis of a single input image out of the group of input

images. 328
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SYSTEM, METHOD AND A COMPUTER
READABLE MEDIUM FOR PROVIDING AN
OUTPUT IMAGE

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a Reissue of U.S. patent application
Ser. No. 12/597,036, filed May 11, 2011, now U.S. Pat. No.

8,718,333, which is a National Phase Application of PCT
International Application No. PCT/IL2008/000528, entitled
“SYSTEM, METHOD AND A COMPUTER READABLE
MEDIUM FOR PROVIDING AN OUTPUT IMAGE”,
International Filing Date Apr. 17, 2008, published on Oct
30, 2008 as International Publication No. WO 2008/1293542,
which i turn claims prionity of U.S. Provisional Patent
Application Ser. No. 60/913,301, filed Apr. 23, 2007, [both]
each ol which are incorporated herein by reference in their
entirety.

BACKGROUND OF THE INVENTION

With the recent advent of mobile video displays, and their
expected proliferation, there 1s an acute need to display
video on a smaller display than originally mntended. Two
main 1ssues need to be confronted. The first 1s the need to
change the aspect ratio of a video. The second 1s the need to
down-sample the video whilst maintaining enough resolu-
tion of objects-of-interest. An example of the first challenge
1s the display of wide screen movies on a 4:3 TV screen.
Displaying a ball game on a cellular screen 1s a good
example for the need of a smart down-sampling technique,
where the ball needs to remain large enough to be easily seen
on screen.

The current industry solutions are basic and not very
cllective. They include: blunt aspect ratio Iree resizing;
cropping the middle of the video; resizing while preserving
the aspect ratio by adding black stripes above and below the
frame; and keeping the middle of the frame untouched while
warping the sides. In fact, 1t 1s common nowadays to have
printed lines on movie-cameras’ screens that mark the
region that will be visible 1n the frame after it would be
cropped to the aspect ratio of a regular 4:3 TV screen.

There 1s a growing need to provide effective devices and
method for image transformation.

SUMMARY OF THE

INVENTION

A method for providing an output image, the method
includes: determining an importance value for each input
pixels out of multiple mput pixels of an put 1mage;
applying on each of the multiple mnput pixels a conversion
process that 1s responsive to the importance value of the
input pixel to provide multiple output pixels that form the
output 1mage; wherein the mput image differs from the
output 1mage.

A device for providing an output image, the device
includes: a memory unit adapted to store an input image and
a processor, adapted to: determine an 1mportance value for
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2

cach mput pixels out of multiple input pixels of an 1nput
image and apply on each of the multiple 1input pixels a
conversion process that 1s responsive to the importance
value of the input pixel to provide multiple output pixels that
form the output image; wherein the input 1mage differs from
the output 1mage.

A computer readable medium that stores instructions for:
determining an importance value for each input pixels out of
multiple input pixels of an mput image; and applying on
cach of the multiple input pixels a conversion process that 1s
responsive to the importance value of the mput pixel to
provide multiple output pixels that form the output 1mage;
wherein the mput 1mage ditfers from the output image.

A method for providing an output image, the method
includes: receiving an mput frame and a feature mask
defined by a rough selection of the features; applying a
mapping process to provide the output image; wherein the
mapping process diflerentiates between pixels of features
included 1n the feature mask and between other pixels;
wherein the applying comprises solving a sparse equation
set.

A device for providing an output image, the device
includes: a memory unit adapted to store an 1input image and
a feature mask defined by a rough selection of the features;
a processor, adapted to: apply a mapping process to provide
the output 1image; wherein the mapping process differenti-
ates between pixels of features included 1n the feature mask
and between other pixels; wherein the applying comprises
solving a sparse equation set.

A computer readable medium that stores 1nstructions for:
receiving an mput frame and a feature mask defined by a
rough selection of the features; applying a mapping process
to provide the output 1mage; wherein the mapping process
differentiates between pixels of features included in the
feature mask and between other pixels; wherein the applying
comprises solving a sparse equation set.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1a 1llustrates a system according to an embodiment
of the invention;

FIG. 1b illustrates a system according to another embodi-
ment of the invention;

FIG. 2 1llustrates a flow chart of a method according to an
embodiment of the invention;

FIG. 3 illustrates a tlow chart of a method according to
another embodiment of the invention;

FIG. 4 1llustrates a flow chart of a method according to an
embodiment of the invention;

FIG. 5 1llustrates a flow chart of a method according to an
embodiment of the invention;

FIGS. 6a-6b, 7a-7h, 8a-8c,
input and output 1images;

FIGS. 12a-12¢, 13a-13b, 14a-14d, 15a-15¢, 16a-16c, 17a-
17¢c, 18a-18d, 19a-19b are input and output 1mages; and

FIG. 12d includes a series of images that illustrate various
stages ol a method according to an embodiment of the
invention.

9a-9d, 10a-101, 11a-111 are

DETAILED DESCRIPTION OF THE DRAWINGS

The terms “frame” and “1mage” have the same meaning.
Each means a set or group of pixels. Multiple frames or
images can form a shot, one or more shots can form a video
stream.

Video retargeting 1s the process of transforming an exist-
ing video to {it the dimensions of an arbitrary display. A
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compelling retargeting aims at preserving the viewers’ expe-
rience by maintaining the information content of important
regions 1n the frame, whilst keeping their aspect ratio.

An eflicient method for video retargeting 1s introduced. It
includes two stages. First, the frame (1input image) 1s ana-
lyzed to detect the importance of each region (or multiple
input pixels) in the frame. Then, a transformation (conver-
sion process) that respects the analysis shrinks less impor-
tant regions more than important ones. The analysis 1s fully
automatic and based on local saliency, motion detection, and
object detectors. The performance of the proposed method 1s
demonstrated on a variety of video sequences, and compared
to the state of the art 1n 1mage retargeting.

A method 1s provided. The method assigns a saliency
score to each pixel 1n the video. An optimized transforma-
tion of the video to a downsized version 1s then calculated
that respects the saliency score. The method 1s designed to
work efliciently in an online manner, ultimately leading to a
real-time retargeting of a streaming nput video to several
output formats. The saliency score 1s composed of three
basic components: spatial gradient magnitude, a face detec-
tor (or another object of 1interest detector), and a block-based
motion detector. The optimization stage amounts to solving,
a sparse linear system ol equations. It considers spatial
constraints as well as temporal ones, leading to a smooth
temporal user experience. It 1s noted that the method can be
applied 1n off-line, with the advantage of analyzing the entire
shot.

Conveniently, a computer readable medium 1s provided.
The computer readable medium can be a diskette, a compact
disk, a disk, a tape, a memory chip and the like and 1t stores
instructions for: determining an importance value for each
input pixels out of multiple 1nput pixels of an mput 1image;
and applying on each of the multiple input pixels a conver-
s10n process that 1s responsive to the importance value of the
input pixel to provide multiple output pixels that form the
output 1mage; wherein the mput image differs from the
output 1mage. The computer readable medium can store
instructions for executing any stage of method 100.

Given a new frame, the method computes a per-pixel
importance measure. This measure 1s a combination of three
factors: a simple, gradient based, local saliency; an ofl-the-
shelf face detector; and a high-end motion detector.

The optimization of the mapping function from the source
resolution to the target resolution i1s set through a linear
system of equations. Each pixel (1,1) at each frame t 1s
associated with two variable x, ;. v, that determine its
location on the retargeted frame. The method optimizes for
horizontal warps and for vertical warps separately, using the
same technique. The horizontal post-warp location 1s first
constrained to have the same coordinates as the warp of the
pixel JllSt below it x; ., ,, and the pixel just before it x, ;,_,.
Then 1t 1s constrained to have a distance of one from the
warping of 1ts left nelghbor X, 1.

For obvious reasons, 1t 1s impossible to satisty all of the
constraints and vet fit into smaller retargeting dimensions.
To these space-preserving constraints, a weight was added 1n
proportion to the pixel’s importance value. A pixel with high
importance 1s mapped to a distance of approximately one
from 1ts left neighbor, while a pixel of less saliency is
mapped closer to its neighbor. Time smoothness 1s also taken
into consideration, 1n order to generate a continuous natural-
looking video.

The method 1s designed for video streaming. Therelore,
time smoothness and motion analysis considerations are
limited to the previous frames only. Such considerations
need only apply to frames of the same shot (a sequence of
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video frames taken from a continuous viewpoint). It 1s noted
that the method can be applied 1n off-line and thus can take
into account multiple 1mages of an input image sequence. It
1s noted that the method can be extended to an ofi-line
method; thus, 1t can incorporate the advantages of ofl-line
video analysis. This includes smooth time analysis that
computes the mapping of each frame (image) based on an
arbitrary number of frames before or after it, and better,
more accurate motion-detector, shot-detector and object-
detectors that can incorporate information from several
frames at once.

The proposed method automatically breaks a long video
into a sequence of shots using a simple online method,
similar to the one shown 1n Meng, Y. Juan, and S.-F. Chang.
Scene change detection mm an MPEG-compressed video
sequence; Digital Video Compression: Algorithms and
Technologies, 1995 where the block matching operation 1s
replaced with the eflicient method of Lu and M. Liou. A
simple and eflicient search algorithm for block-matching
motion estimation. IEEE Trans. Circuits and Systems, 1997.
This combination 1s eflicient, robust, and uninfluenced by
object and camera motion. First, motion estimation 1s
applied on each macroblock (16x16 pixels). A shot boundary
1s detected wherever the number of blocks for which the
motion estimation fails exceeds a threshold. It 1s noted that
the proposed method can be replaced with other “Shot
detection” mechanisms, including ofi-line shot detection
mechanisms.

Importance Determination
A content preservation weight matrix 1s defined:

(1)

S :mjn(SE+Z S + Sup. 1]

Each entry in the matrix represents the saliency of a single
pixel 1 the source frame I. Values range between 0 and 1,
where zero values are, content wise, non-important pixels. It
1s noted that other saliency factors can be added into this
formula, for example, the output of more object detectors, or
output of background regions. These factors need not only
be combined using a linear function but also can be 1mple-
mented using a more complex function such in the case of
a probability computation.

Local Saliency

Various local saliency algorithms can be applied. For
example, a simple measure for local information content 1n
the frame such as the L,-Norm of the gradient 1s applied:

1/2

se=((z1) + (1)

It 1s noted that the local saliency function can be replaced
with other energy function such as L,-Norm or with the
output of local saliency detectors.
Face Detection

According to an embodiment of the invention, the local
saliency algorithm 1s based upon wavelet transformation.
The wavelet breaks the frame into 1ts “wavelets”, scaled and
shifted versions of a “mother wavelet.” These scaled and
shifted versions can be calculated by applying high pass
filters and low pass filters. These scaled and shifted versions
of the frame are associated with levels. Higher levels are
referred to as coarser levels and include fewer details. Each
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level can include few (such as three) diagonal high fre-
quency frame version (generated by applying a high pass
filter on a previous level frame version 1n few directions
such as, corollary horizontal, vertical and diagonal) and a
low frequency frame version (generated by applying a low
pass lilter on a previous level frame version).
Conveniently, the local saliency algorithm includes: (1)
wavelet decomposing a frame into multiple (N) levels; (11)
locating the coarsest diagonal high frequency frame 1n

which the percentage of wavelet coeflicients having values
below a first threshold 1s below a second threshold; (111)
thresholding the coarsest diagonal high frequency frame
(using the first threshold) to provide a binary frame (in
which a bit can be set i the corresponding wavelet coetli-
cient 1s above the threshold and can be reset of the corre-
sponding wavelet coeflicient 1s below the threshold); (1v)
re-sizing the binary frame to the size of the mput image; (v)
smoothing the re-sized binary frame (for example by apply-
ing a Gaussian blur filter) to provide a saliency score per
pixel of the mput frame. It 1s noted that the high frequency
diagonal frames can be HH frames (generated by a both
horizontal and verticla high pass filters), that the locating
stage can start from the N’th level and propagate upwards (to
less coarse frames) till reaching the first diagonal high
frequency frame that in which less then 50% of the wavelet
coellicients have a value that 1s below the first threshold.

Human perception i1s highly sensitive to perspective
changes 1n faces, more specifically to frontal portraits. In
order to avoid deforming frontal portraits the Viola and
Jones face detection mechanism was applied. (P. Viola and
M. Jones. Robust real-time face detection. International
Journal Computer Vision, 2004.)

The detector returns a list of detected faces. Each detected
face i has a 2D center coordinate F," and a radius F,’. The
face detection score of each pixel 1s a function of the
distance of that pixel from the face’s center: D (X, y):PF;—
(X, y)P,, and 1s given by the cubic function:

)

This function, which ranges between 0 and 1, 1s used to
weight the importance of the face as an almost constant
function with a drastic fall near the end of the face. This
allows some flexibility at the edges of the face whilst
avoiding face deformation. It 1s noted that the above func-
tion can be replaced with other weight function such as
linear or square functions.

A rescaling measure can be provided. It has the following
format:

-D;(x, y)3 + 5 =D;(x, y)2 (2)

~(F)’ + S=(F)

gF(Ka y) — maX{I _

(3)

| F
F =

- SE(X, y) =
max(Cwigms CHeight) Y

Spx V(1 =254 (F )" - 1.5« (F, %)

used to rescale the general saliency of a detected face 1n
relation to the area it occupies 1n a Cy;u,%Chrp,or,, PIXelS
frame. A 1 factor 1s used where the size of the face 1is
relatively small, while extremely large faces tend to be
ignored. The above prevents a distorted zooming eflect, 1.e.
retargeting of the frame such that 1t 1s mostly occupied by the
detected face. It 1s noted that the above rescaling function
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can be replaced with other rescaling function such as a
constant function, linear and the like.

Since, as stated below, when shrinking the width of an
image, smoothness over the columns 1s required, a detected
face (detected by a face detector) also prevents thinming the
regions below 1t. Therefore, human bodies are shrunk less,
as necessitated. It 1s noted that a specific human figure
detector can be added/replace the above face detector.

Retargeting examples of a frame (a) from the movie “300”
with and without face detection. (b) the gradient map, with
the faces detected imposed. (¢) the result of retargeting to
half the width without face detection. (d) the result of
retargeting with face detection. The result of the whole shot
compared to bi-cubic interpolation i1s available 1n the supple-
mental material.

Motion Detection

Moving objects 1 video draw most of the viewers’
attention and are content-wise important. By using motion
detection mechanism video can be retargeted while preserv-
ing the temporal context.

The second motion detector suggested 1n S.-C. Liu, C.-W.
Fu, and S. Chang. Statistical change detection with moments
under time-varying illumination. IEEE Trans. on Image
Processing, 1998 1s implemented. The selected method 1s
ellicient and effective, although little known.

Let the frame be partitioned mnto NxN (N=8) pixel square
blocks and A, denote the (u, v)th block. The image coor-
dinate (x, y) 1s mmn A 1f (u—-1)N+l=x<uN and (v-1)N+
1=y=vN. define x'=(X),, ., » and v'=(v), . -

For each block A ., the total intensity of the block at
frame t 1s calculated:

N N
Ay, v) = Z Z L;(x, v).

x=1y'=1

Then, the normalized “circular shift moments” in the x and
y directions mx/(u, v), my7/(u, v) are computed for =0 . . .
N-1. The x moment 1s formulated: (respectively y)

| X \ )
(U, v) = Adu, v)‘lz (5= Dpoay* ) L5, y)
x'=1 Y=l

A motion 1 block (u, v) 1s detected 11 the maximum
absolute difference 1n any of the computed moments
between two consecutive frames 1s larger than a threshold.
i.e., no motion is detected if for all j, Imx/(u, v)-mx,, /(u,
v)l<y and Imy/(u, v)-my,, /(u, v)I<y. In some tests %¥=0.3.

The motion-based saliency S, (X, y) 15 set to one 1f the
block A x| has motion, and zero otherwise. It 1s
noted that the above motion detector can be replaced by
other block-based/pixel-based motion detectors, such as the
simple “Mean Absolute Diflerence” block based motion
detector.

According to another embodiment of the mvention the
motion based saliency of a pixel can be responsive to the
amount of motion. Accordingly, the motion based saliency
can have weights that range between (for example) zero and
1. Higher motion values will result 1n lower motion based
saliency values. This can include: (1) Using the motion based
saliency, to construct a new time weighting matrix, thus
achieving more “flexible” solution 1n high motion areas; (11)
building a weighting matrix that reflects a difference
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between “1” and the values of a motion based saliency
matrix; (111) utilizing this matrix when solving various
constraints.

As can be seen in FIG. §' the moving objects gain
saliency, thus seizing a larger area in the retargeted video.
Optimization

It 1s suggested to apply a conversion process that i1s
responsive to an importance of an input pixel. It mncludes
finding an optimal mapping between the source image (1nput
image) and the retargeted 1mage (output 1mage) and espe-
cially solving a sparse linear system of equations, conve-
niently, by applying a least squares manner solution. A more
natural formalization 1s to cast the problem as a constrained
linear system. This way one can guarantee that no pixel falls
out of bounds and that the mapping preserves the order of
the pixels along the scan lines 1n the 1image. However, the
solution to the unconstrained system 1s more eflicient, and,
in practice, the mappings recovered using the unconstrained
systems of equations do not contain noticeable artifacts due
to changes 1n the order of the pixels. It 1s noted that the “least
square” measure used to minimize the cost function can be
replaced by any error measuring function, such as the
L.,-Norm.

In the retargeting process a pixel (1,)) 1n frame t of the
video 1s being mapped into a pixel 1in frame t of the output
video with some computed location (X, ; ., ¥, ;). Hence, there
1s twice the number of variables (X, , and y, ;) to solve for
then the number of pixels 1n the 1nput video. A computation
of the y variables can be made separately from the compu-
tation of the x vanables, using the same linear method
(described below). The mapping computation 1s done one
frame at a time (see below), and so the system of equations
has (approximately) the same number of unknowns as the
number of pixels in one input frame.

Consider the problem of recovering the new x-axis loca-
tions X, , of pixels (1)), 1=1 . . . Cypupn 171 . - Cprions 10
trames t=1 . .. Cp,, 1110, 1he problem ot determining y; ; , 1s
the transpose of this problem and 1s solved 1n a similar
manner. Also, consider first the more applicable problem, in
which frame should also be shrieked, 1.e., to map the frame
to a narrower frame with width Cy,, . 5550 <Cpiag- The
expanding problem 1s similar, though 1its goal 1s more
application dependent.

There are four types of constraints. First, each pixel to be
at a fixed distance from its left and right neighbors. Second,
cach pixel needs to be mapped to a location similar to the
one of its upper and lower neighbors. Third, the mapping of
a pixel at time t (current input 1mage) needs to be similar to
the mapping of the same pixel at time t+1 (previous input
image). The forth constraint fits the warped locations to the
dimensions of the target video frames.

Importance Modeling.

If a pixel 1s not “important™ 1t can be mapped close to its
left and right neighbors consequently blending with them.
An “important” pixel, however, needs to be mapped far from
its neighbors, thus a region of i1mportant pixels 1s best
mapped 1nto a region of a similar size. These 1nsights are
formulated 1nto equations stating that every pixel should be
mapped at a horizontal distance of 1 from 1its left and right
neighbors. These equations are weighted such that equations
associated with pixels with higher importance-score are
more 1influential on the final solution. The first type of
equations 1s therefore:

(3)

S fg,x(Xf;,:_Xf—l;,,:):Sz';,,:

S fzf.,.r(xﬂl ;?r_xi;?r):Sizj,r:
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More precisely, since the at least-squares manner solution
1s applied then an equation arising from a pixel ol 1impor-

tance S, , 1s as intluential as

2
S:‘,J‘,r

SI'Z..I"J'.I'?I.I'

equations arising from a pixel of importance S,. ...

It 1s noted that S 1s the saliency matrix of Eq. (1), except
the time index appears explicitly. Note that the equation
looking right from pixel (1-1,j) can be combined with the
equation looking left from pixel (1, 1) to one equation:

(6)

(S,_ 1J¢+Sf;=,r) (Xf;,r_xz'—l ;,r):(sz‘—lzf?ﬁ'sz‘;?r)

Boundary Substitutions.

In order to make the retargeted image fit 1n the new
dimensions a constraint 1s added that defining the first pixel
in each row of the frame (1, j, t) to be mapped to the first row
in the retargeted video, i.e., V], Vtx, ; =1. Similarly, the last
pixel of each row 1s mapped to the boundary of the
remapped frame: Vj, Vtx.  =Cp  miam-

Since the mappings of the first and last pixels 1n each row
are known, there 1s no need to have unknowns for them.
Instead, 1t 1s substituted with the actual values whenever
Xy, O X appear in Eq. (6).

Spatial and Time Smoothness

It 1s important to have each column of pixels 1n the input
image mapped within the boundaries of a narrow strip in the
retargeted 1mage. Otherwise, the 1image looks jagged and
distorted. These type of constraint are weighted uniformly,
and take the form:

WX, Xije1,0)=0

(7)
In the system W”=1. In order to prevent drifting, a stmilar
constraint 1s added that states that the first and the last pixels

of each column have a similar displacement.
WA (X,

L.

(8)

The mapping also has to be continuous between adjacent
frames, as stated bellow:

1,6 R, CHEfg;,r,r) =0

9)

where, 1n order to prevent distortion of faces, the weight-
ing depends on the face detector saliency map W'=0.2(1+
S.). Note that according to an embodiment of the invention
in on line more (real time mode) the resources do not
necessarily allow to build a system of equations for the
whole shot. Instead mapping 1s computed for each frame
grven the previous frame’s computed mapping. This limited-
horizon online time-smoothing method and, as illustrated in
FIG. 6' can improve results significantly.

Altering the Aspect Ratio of the Input Image

Examples of aspect ratio altering are exhibited in FIG. 7
and 1n other figures throughout this manuscript.

The format of the retargeted videos 1s as follows: each
frame 1s divided into three sub frames. The bottom one 1s the
original video frame. The top right sub-frame 1s the result of
applying bi-cubic interpolation to obtain a new frame of half
the input width. The top-left sub-frame 1s the retargeted
result.

While the method does not explicitly crop frames, when-
ever the unimportant regions 1n the frame lie away from the
frame’s center, an implicit cropping 1s created. See, for
example, the retargeting result of the sequence Akiyo (FIGS.
1'a-1'c). Many pixels at the left and right sides of the 1nput

szf,rr(xizf,r_xizj,r— 1)=0,
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frames are mapped into the first and last few columns of the
retargeted frames, hence disappearing. FIG. 1a illustrates an
original frame from the standard benchmark news sequence
“Akiyo”, FIG. 1b illustrates a half width retargeted frame
achieved by applying method 100 and FIG. 1c¢ illustrates a
half width retargeted frame achuieved with a prior art trans-
formation.

Down-Si1zing Results

The down-sampling results (preserving the aspect ratio)
are exhibited in FIG. §'.

The x-axis and the y-axis warps were computed indepen-
dently on the original frame and then applied together to
produce the output frames. As can be seen, there 1s a strong,
zooming-in effect 1n our results, as necessitated by the need
to display large enough objects on a small screen.

It 1s noted that by using a global error measuring function
(such as least squares) the solution tends to uniformly
distribute the error across the whole 1mage, rather than
concentrate 1t locally.

Video Expanding

The method can also be used for video expanding. In such
a case, however, the desired output depends on the applica-
tion. In one application, for stills, the task 1s to keep the
original size of the salient objects, while enlarging the video
by filling-in the less salient locations with unnoticeable
pixels. For such a task, the method can work without any
modifications.

In another application, one would like the salient objects
to become larger without creating noticeable distortions to
the video. A related task 1s foreground emphasis through
non-homogenous warping in-place, where the dimensions of
the video remain the same (salient objects are increased in
s1ze on the expense of less salient regions). To apply the
method 1n these cases, we need to alter Equation (6) to have
the preferred inflating ratio on the right-hand-side. If given
by the user or by some heuristic, this 1s a simple modifica-
tion. For an intlation by a fixed factor of two where the width
1s increased and the height remains the same.

According to another embodiment of the invention the
device and method are adapted to compensate for camera
motion, camera zoom-out and camera zoom-in. Accord-
ingly, the method can compensate for (or substantially
1gnore) motion introduced by camera manipulation and not
by an actual movement of the object. This stage can mvolve
incorporating global afline motion registration, nto the
solution of the optimization problem. In such a case the
global motion 1s compensated before the optimization stage,
and added/subtracted from the optimization solution.

According to another embodiment of the invention the
method and device can be used to convert an mput video
stream to a shorter output video stream. This can be applied
by computing an optimal per-pixel time warping via a linear
system of equations. Each pixel will be mapped to a time-
location 1n the output video that 1s similar to that of 1ts spatial
neighbors. Important pixels are to be mapped to locations 1n
time distinct from their time-line neighbors. Each frame in
the output video 1s assembled using several mput frames,
such that moving objects do not overlap.

Data Reduction

According to an embodiment of the invention the con-
version process can be simplified, and additionally or alter-
natively, applied on multiple frames at once, by reducing the
amount ol information that is processed during the conver-
s1on process. For example, after the importance of each pixel
of a frame 1s calculated, a smaller information set can be
used when calculating the conversion process. The smaller
information set can include multiple variables, each repre-
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sentative of an importance of multiple pixels, 1t can include
only importance information of a sub set of the pixels, and
the like. The data reduction can be implemented by various
mathematical manners such as but not limited to averaging,
quantizing, sub-set selection and the like.

For example, assuming that an input saliency matrix
(which includes information about all pixels of the frame)
has G elements, then a reduced matrix can include fewer
clements (for example G/R). After the smaller matrix 1s used
during the conversion process the results are up-scaled, for
example by using a bilinear filter, a Bi-cubic filter, and the
like.

Group of Frame Processing

According to an embodiment of the invention the con-
version process can be applied on a group of frames. This
group can form a shot or a portion of the shot. When the
conversion process 1s applied on frames of a sequence of
consecutive frames then the time smoothness can be further
improved as a frame 1s processed not just in relation to a
previous frame but also 1n relation to one or more following
frames.

Conveniently, a single conversion process can be applied
on a group of frames after performing data reduction on each
frame, but this 1s not necessarily so and depends upon the
number of frames, the computational resources and memory
resources that can be used during the conversion process and
timing requirements as 1t can be harder to provide real time
processing or even almost real time processing on a group of
frames.

For example, assuming that the group of images form a
shot the processing can include: (1) calculating the saliency
of every frame 1in the shot; resize each saliency matrix
(WidthxHeight) to a reduced matrix (Widthx{Height/Re-
ductionFactor}) using bilinear/bicubic interpolation, (ii)
generate a combined saliency matric that includes the dit-
ferent reduced matrices)—for example by concatenate the
different reduced saliency matrices one after the other to
provide, wherein the size of the combined saliency matric
has the following dimensions: Widthx
(Height*NumberOiMatrices/Reduction Factor); (111) calcu-
lating the optimization matrix with various constraints, such
as: (1.a) X(1,1,t)-X0+1,0)=1; (11.b) X(1,3,0)-X(1+1,3,t)=0;
(11.c) X(1,5,0)-X(1,1,t+41)=0; (m.d) X(@1,1,1)=1; (um1.e) X(,
Width,NumberOiFrames )=Target Width; (1v) adding
weights; (v) solving the linear system; and (vi) mapping
cach frame using the upscale solution.

Panning

Panning includes emulating a movement of a camera,
such as a horizontal movement or rotation. Panning can be
introduced when the conversion process 1s applied on a
group of frames. In this case the panning can be represented
by selecting portions of a larger frame, wherein the selection
of portions provides a panning eifect. In this case the
conversion process can include mapping pixels of an input
frame (that 1ts location within the larger frame changes over
time) to an output frame.

Conveniently, these mentioned above varying boundaries
are 1ncludes 1n the set of constraints that are solved by the
CONVersion process.

For example, assume that the variable Pan_t i1s the hori-
zontal panning of frame t. It differs over time to provide the
panning eifect. Then the conversion process should take mto
account the following constraints: (1a) X(1,1,t)-Pan_t=1; (1b)
X(,n,t)-Pan_t=new_width; (1c) X(1,5,0)+Pan_t—X(1,1,t+1)-
Pan_t+1=0//times some weighting (I use 0.11); (1) Pan_t-
Pan_{t+1}=0; /times some weighting (I use 0.000001); and
(111) Pan_1=0
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Under these constraints the linear system 1s solved. For
cach frame a solution-matrix 1s provided and Pan_t can be
subtracted from 1t. (1v) the solution matrix is upscaled to the
original frame size. (v) The frame 1s remapped.

A device 1s provided. The device can include hardware,
software and/or firmware.

FIG. 1a 1llustrates device 200 according to an embodi-
ment of the mvention. Device 200 1ncludes a processor 210
and memory unit 220. It can be connected to a display or a
printer or can include at least one of these components.
Memory unit 220 1s adapted to store an input 1mage and
processor 210 1s adapted to: determine an importance value
for each mput pixels out of multiple input pixels of an 1input
image and apply on each of the multiple mput pixels a
conversion process that 1s responsive to the importance
value of the input pixel to provide multiple output pixels that
form the output image; wherein the input image diflers from
the output 1image. Processor 210 can execute code that 1s
stored 1n a computer readable medium.

Conveniently, processor 210 includes a local saliency
detection module 212, face detection module 214, motion
detection module 216 and mapping optimizing module 218.
These modules cooperate 1 order to provide an output
image. It 1s noted that processor 210 can work 1n an in-line
manner, in a partially ofl-line manner or entirely i an
ofl-line manner. It 1s further notes that various objects of
interest can be detected by processor 210, 1n addition to or
instead of faces. Each module can include software, hard-
ware, firmware or a combination thereof.

Local saliency module 212 calculates local saliency val-
ues ol pixels. Face detection module 214 detects faces.
Motion detection module 216 detects motion. Mapping
optimizing module 218 applies the conversion process.

Conveniently, processor 210 1s adapted to perform at least
one of the following or a combination thereof: (1) determine
an 1mportance ol an mput pixel 1n response to an importance
input pixel mask. The mask can be defined by a user; (1)
determine an importance of an input pixel i response to
motion associated with each of the multiple input pixels; (111)
determine an importance of an input pixel in response to a
saliency score of the input pixels; (1v) determine an 1mpor-
tance of an input pixel 1n response to an inclusion of an input
pixel within an 1nput image that represents a face of a person
and/or within an object of interest. The object of interest 1s
predefined and can depend upon the expected content of the
image. For example, when viewing sport events the ball can
be defined as an object of interest; (v) generate an output
image such that a distance between output 1mage represen-
tations ol a pair of adjacent iput pixels 1s responsive to an
importance ol at least one of pair of adjacent mnput pixels.
Thus, for example, a pair of important mput 1image pixels
can be mapped to a pair of output image pixels while less
important pair of mput pixels can be mapped to the same
pixel or be mapped to output pixels whereas the distance
between their output 1mage representations 1s less than a
pixel; (v1) at least partially compensate for camera imnduced
motion. This motion can result from zoom-in, zoom-out,
camera rotation, and the like; (vi1) apply an optimal mapping
between the input image (original frame or source frame) to
the output 1mage (retargeted image); (vii1) solve a set of
sparse linear equations; (1x) apply a conversion process in
response to at least one of the following constraints: each
iput pixel 1s mapped to an output pixel that i1s located at
substantially a fixed distance from its left and right neigh-
bors; each mput pixel 1s mapped to an output pixel located
to substantially a similar location to which upper and lower
input pixels are mapped; an input pixel 1s mapped to an

10

15

20

25

30

35

40

45

50

55

60

65

12

output pixel located substantially at a same location as an
output pixel to which the same mput pixel at a previous
image was mapped; and size and shape of the output 1image;
(X) perform re-sizing (down-sizing, up-sizing, warping, and
the like); (x1) alter an aspect ratio.

The processor 1s adapted to perform at least one of the
mentioned above operations by executing code. It 1s noted
that the adaptation involve providing hardware circuitries
that can assist in executing one or more of the mentioned
above stages. The hardware can include memory circuitry,
logic circuitry, filters, and the like.

Conveniently, the mput image belongs to an mput 1image
sequence and processor 210 1s adapted to apply a conversion
process 1n response to a relationship between the input
image and at least one other input of the input image
sequence.

Processor 210 can execute at least one stage ol methods
100 or 300 or a combination thereof. It can, for example,
perform data reduction, wavelet decomposition, group of
frames processing, and panning.

FIG. 1b 1llustrates device 201 according to an embodi-
ment of the mvention. Device 201 differs from device 200
by including processor 211 that also include a data reduction
module 219 and a wavelet decomposition module 217. It 1s
noted that a processor can include only one of these mod-
ules. The data reduction and wavelet decomposition stage
are Turther illustrated 1n FIGS. 2 and 3.

FIG. 2 illustrates method 100 according to an embodi-
ment of the invention. Method 100 starts by stage 110 of
determining an interest value for each mput pixels out of
multiple input pixels of an input 1mage. Conveniently, stage
110 1ncludes stage 111 of applying a wavelet decomposition
in order to provide a local saliency of each pixel. Stage 111
1s 1llustrated 1n FIG. 3. Stage 111 can include at least one of
the following stages: (1) stage 111(1) of decomposing a
frame into multiple (N) levels; (1) stage 111(2) of locating
the coarsest diagonal high frequency frame in which the
percentage of wavelet coetlicients having values below a
first threshold 1s below a second threshold; (111) stage 111(3)
of thresholding the coarsest diagonal high frequency frame
(using the first threshold) to provide a binary frame; (1v)
stage 111(4) of re-sizing the binary frame to the size of the
input 1mage; (v) and stage 111(5) of smoothing the re-sized
binary frame (for example by applying a Gaussian blur
filter) to provide a saliency score per pixel of the mput
frame.

Stage 110 can include at least one of the following: (1)
stage 112 of determining a importance input pixel mask, (i1)
stage 113 of determining an importance of an 1mput pixel 1n
response to motion associated with each of the multiple
input pixels; the determination can include assigning a
binary motion base saliency score to an input pixel or
assigning a non-binary motion base saliency score of a pixel
in response to the amount of motion; (111) stage 114 of
determining an importance of an mput pixel in response to
a saliency score of the input pixels; (1v) stage 115 of
determining an importance of an mput pixel in response to
an inclusion of an 1mput pixel within a an input 1mage that
represents a face of a person.

Stage 110 15 followed by stage 120 of applying on each of
the multiple 1nput pixels a conversion process that 1s respon-
sive to the interest value of the mput pixel to provide
multiple output pixels that form the output 1mage; wherein
the mput 1image differs from the output image.

Stage 120 can be preceded by stage 119 of performing a
data reduction stage. The performing can include represent-
ing each set of pixels by a single variable, 1gnoring pixel




US RE47,534 E

13

importance information, and the like. FIG. 1 illustrates stage
119 as being included in stage 110.

FIG. 4 1llustrates various stages that can be included in
stage 120. It 1s noted that some of the stages are overlapping.
Convenmently, stage 120 can include at least one of the
following stages or a combination thereof: (1) stage 121 of
determining a distance between output image representa-
tions ol a pair of adjacent mput pixels 1s responsive to an
importance of at least one of pair of adjacent input pixels.
The distance can range from one or more pixels to a portion
of a pixel; (11) stage 122 of at least partially compensating for
camera induced motion; (111) stage 123 of applying an
optimal mapping between the mnput image to the output
image; (1v) stage 124 of solving a set of sparse linear
equations; (v) stage 125 of applying a conversion process
that 1s responsive to at least one of the following constraints:
cach mput pixel 1s mapped to an output pixel that 1s located
at substantially a fixed distance from its left and right
neighbors; each mput pixel 1s mapped to an output pixel
located to substantially a similar location to which upper and
lower mput pixels are mapped; an mput pixel 1s mapped to
an output pixel located substantially at a same location as an
output pixel to which the same mput pixel at a previous
image was mapped; and size and shape of the output 1image;
(v1) stage 126 of re-s1zing; (v) stage 127 of altering an aspect
ratio.

Conveniently, the input image belongs to an input 1image
sequence and wherein the applying 1s responsive to a
relationship between the input image and at least one other
input of the mput 1mage sequence.

FIG. 5 1llustrates method 300 according to an embodi-
ment of the invention.

Method 300 differs from method 100 by the processing of
a group ol mnput 1mages.

Method 300 starts by stage 310 of determining an interest
value for each input pixels out of multiple mput pixels of the
group ol input images. These multiple mput images can
form a shot or a portion of a shot.

Stage 310 can resemble stage 110 but 1t 1s applied on
pixels of a group of 1mages. It can be applied on these pixels
simultaneously.

Stage 310 can include stages that are analogue to stages
111-115 and 119. For example, stage 310 can include
applying a data reduction stage to provide results of a data
reduction stage. It this case stage 320 will include applying
on each of the results of the data reduction stage a conver-
s10n process that 1s responsive to the importance value of the
results to provide converted results.

Stage 310 1s followed by stage 320 of applying on each of
the multiple input pixels of the group of images a conversion
process that 1s responsive to the interest value of the input
pixel to provide multiple output pixels that form the output
image; wherein the input image differs from the output
image. The conversion process of a certain 1image can be
responsive to one or more frames that precede this certain
image and to one or more mages that follow this certain
1mage.

Stage 320 can include stages that are analogue to stages
121-127. It can also include stage 328 of applying the
conversion process on elements ol a combined saliency
matrix, wherein the combined saliency matrix includes
multiple saliency matrices, each representative of a saliency
of multiple pixels of a single input 1mage out of the group
of mnput 1mages.

Stages 310 and 320 can be executed 1n a manner that
generates a panning effect. Assuming that a sequence of K
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includes a movement of the camera from left to right, and
that portions of size PxQ pixels should be regarded as the

input image. In this case the first input image will include the
lettmost P*(Q) pixels of IA(1), the second mnput image will
include a slightly shifted portion of PxQ pixels of IA(2) and
the K’th mput 1mage should include the rightmost P*Q)
pixels of IA(K). The pixels that belong to these input images
can be processed by applying stages 310 and 320 to provide
a panning ellect.

Sample Images

FIG. 12a 1s an original image. FIG. 12b 1s a half width
retargeted output 1mage generated by applying method 100.
FIG. 12c¢ 1s a half width retargeted output 1mage generated
by applying a prior art method. FIG. 12d illustrates an
original 1mage (leftmost image) that undergoes saliency
processing, face detection and motion detection, an optimi-
zation process (conversion process) and an output {frame.

FIG. 13a 1s an mput image while FIG. 13b 1s a retargeted
frame (half width) generated by applying the method 100. It
1s noted that a cropped window cannot achieve the same
frame area utilization.

FIG. 14a 1s an mput frame, FIG. 14b 1s a gradient map of
the input frame with the faces detected imposed, FIG. 14c¢ 1s
a result of a retargeting to half the width without face
detection and FIG. 14d 1s a result of retargeting with face
detection.

FIG. 15a 1s an mput image taken from the MPEG/ITU-T
committee bench-mark video “lootball”. FIG. 15b 1s a
saliency map that includes the motion. FIG. 15¢ 1s a result
of bi-cubic interpolation to half the width. FIG. 15d 1s an
output 1image generated by retargeting without motion based
saliency and FI1G. 15¢ 1s the result of retargeting with the full
saliency map.

The top row of FIGS. 16a-16c depicts the retargeting
results of a certain frame while the top row of FIGS. 16a-16c
depicts the retargeting results of another image. FIG. 16a
illustrates a result of a bi-cubic iterpolation, FIG. 16b
illustrates the result of frame by frame retargeting and FIG.
16c¢ 1llustrates a time smoothed retargeting. Time smoothing
prevents the video from “jumping around”.

Each of FI1G. 17a-17c¢ illustrates an original frame (bottom
of each figure), a result of a bi-cubic interpolation (top-right)
and a result of applying the method 100 (top-left). The latter
retargeting method prevents much of the thinning eflect
caused by the rescaling and preserves details.

Each of FIG. 18a-18c illustrates a result of a bi-cubic
interpolation (bottom) and a result of applying the method
100 (top). The latter retargeting method applies a non-
homogenous zooms to the objects of interest.

FIG. 19a illustrates an input frame while FIG. 19b 1s a two

fold wider retargeted output 1mage generated by applying
the method 100.

APPENDIX A

APPENDIX A illustrates a method and system for pro-
viding an output 1image. Especially, a method and device for
inhomogeneous 2D texture mapping guided by a feature
mask 1s provided. The mapping can apply one or more
conversion processes that are responsive to the feature mask.
The mapping preserves some regions of the image, such as
foreground objects or other prominent parts. The method 1s
also referred to as the method illustrated in appendix A. This
method mncludes recerving an input frame and a feature mask
defined by a rough selection of the features interest map and
mapping them (by solving a sparse equation set) to an output
frame. If a rigid transformation (rigid mapping) i1s applied
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then the featured indicated in the feature mask can undergo
(during the mapping) a similarity transformation, possibly at
the expense of the background regions 1n the texture that are
allowed to deform more. If a similarity transformation
(stmilarity mapping) 1s applied then the size of a feature can
be slightly changed.

Appendix A illustrates a method for providing an output
image, the method includes: receiving an mput frame and a
feature mask defined by a rough selection of the features;
applying a mapping process to provide the output 1mage;
wherein the mapping process diflerentiates between pixels
ol features 1included 1n the feature mask and between other
pixels; wherein the applying comprises solving a sparse
equation set.

Conveniently, the mapping process applies a similarity
transformation on pixels of features included in the feature
mask.

Conveniently, the mapping process allows pixels of fea-
tures 1mcluded 1n the feature mask to slightly change.

Appendix A illustrates a device for providing an output
image, the device includes: a memory unit adapted to store
an input image and a feature mask defined by a rough
selection of the features; and a processor, adapted to: apply
a mapping process to provide the output 1mage; wherein the
mapping process diflerentiates between pixels of features
included 1n the feature mask and between other pixels;
wherein the applying comprises solving a sparse equation
set.

Conveniently, the processor applies a similarity transior-
mation on pixels of features included in the feature mask.

Conveniently, the processor applies allows pixels of fea-
tures 1mcluded 1n the feature mask to slightly change.

Appendix A illustrates a computer readable medium that
stores mstructions for: receiving an input frame and a feature
mask defined by a rough selection of the features; applying
a mapping process to provide the output 1image; wherein the
mapping process diflerentiates between pixels of features
included in the feature mask and between other pixels;
wherein the applying comprises solving a sparse equation
set.

Conveniently, the computer readable medium stores
instructions for applying a similarity transformation on
pixels of features included 1n the feature mask.

Conveniently, the computer readable medium stores
istructions for allowing pixels of features included in the
feature mask to slightly change.

Instead of cropping the frames, the device and method
shrink them while respecting the salient regions and main-
taining the user experience. The proposed device and
method are eflicient and the optimization stage includes of
solving a sparse NxN system, where N 1s the number of
pixels i each frame. The method and device are well
adapted to batch applications, but are designed for streaming
video since they compute the warp of a given frame based
on a smalltime-neighborhood only, and are 1s fast enough to
avoid delays. It 1s noted that the method and system can also
perform up-scaling.

The method and device can be applied to solve several
retargeting tasks:

video down/up-sampling, aspect ratio alterations, and
non-homogenous video expansion, video abstraction, object
removal from a video, and object insertion to video while
respecting the saliency. It i1s noted that object removal 1s
done by zeroing the saliency measure of the object while
object insertion 1s implemented by placing a new blob of
pixels 1 between existing image pixels and setting 1t the
importance of the new pixels to a large value.
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The method of appendix A does not distort the regions of
interest.

The method of appendix A and the system are able to
arbitrarily warp a given image while preserving the shape of
its features by constraining their deformation to be a simi-
larity transformation.

In particular, the method and system allow global or local
changes to the aspect ratio of the texture without causing
undesirable shearing to the features. The algorithmic core of
the method and system 1s a particular formulation of the
Laplacian editing technique, suited to accommodate simi-
larity constraints on parts of the domain.

The method 1llustrated 1n appendix A 1s usetul 1n digital
imaging, texture design and any other applications mnvolving
image warping, where parts of the image have high famil-
1arity and should retain their shape after modification.

In 2D texture mapping applications, 1mages are mapped
onto arbitrary 2D shapes to create various special eflects; the
texture mapping 1s essentially a warp of the texture image,
with constraints on the shape of the boundary or possibly the
interior of the 1mage as well. Such texture mapping 1is
common 1n graphical design and publishing tools, as well as
2D and 3D modeling and animation applications. Commer-
cial design tools usually provide a library of predefined
warps, where the user only needs to select the desired
mapping type and possibly tune a few parameters. Another
option 1s to interactively design the texture map by selecting
and transforming points or curves on the original 1mage; the
mapping 1s computed so as to accommodate such user
constraints. It 1s also possible to apply free-form deforma-
tions with grid-based controls.

Texture manipulation 1n 2D 1s commonly applied by
modelers when texturing 3D models: the texture map often
needs to be adjusted and aligned to match particular features
of the 3D surface. Constrained texture mapping methods
have been developed for this purpose where the user sup-
plies point correspondences between the texture and the 3D
model, and a suitable mapping 1s computed automatically.

Most 1image mapping and manipulation techniques treat
the entire texture image homogeneously. When the defor-
mation applied to an 1mage introduces shearing, e.g. in the
simplest situation where the aspect ratio of an i1mage 1s
altered by non-uniform scaling, all the image features are
distorted. This may be disturbing when the 1mage contains
features with highly familiar shape, such as humans, ani-
mals, prominent geometric objects, etc. Atypical example of
a simple 1mage transformation 1s shown 1n FIG. 12a, where
the shear and stretch effects distort the images of the children
in a quite unsatisfactory manner.

The method illustrated 1n appendix A 1s capable of pre-
serving the shape of masked regions of the texture while
warping the image according to the user specifications. This
feature-aware texture mapping 1s guided by a feature mask
defined by a rough selection of the features; in the mapping
result, these features will undergo solely a similarity trans-
formation, possibly at the expense of the background
regions 1n the texture that are allowed to deform more. This
method can relate to the texture optimization techniques of
Balmelli et al., where the texture map 1s warped to allow
higher pixel budget for the high-frequency details of the
texture 1mage.

At a first glance, 1t seems that a feature-preserving map-
ping could be achieved by cutting out the features, warping
the rest of the image as desired and then pasting the features
back and adjusting their orientation and scale. However, this
poses several difhiculties: (1) precise segmentation of the
features with correct alpha-mattes for subsequent seamless
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compositing 1s required; (11) 1t 1s not clear how to prescribe
the similarity transformation of the features; (111) texture
synthesis heeds to be applied for the holes that are likely to
form around the features; alternatively, the pasted features
could overlap with parts of the warped texture, causing
information loss. The above tasks are quite complex; more-
over, the tuning of such an algorithm would require signifi-
cant amount of user interaction. In contrast, our method does
not require a highly accurate matte but rather a loose
selection of the features, which can be done using standard
selection tools. The method 1llustrated 1n appendix A pro-
duces coherent, smooth 1mage warps by drawing upon the
recent machinery of differential representations and defor-
mation techniques.

Feature-Aware Mapping

The suggested feature-preserving texture mapping tech-
nique 1s first described assuming that an mput warping
function W: R*—R” is given. Assume that the input image
1s represented by a regular pixel grid of dimensions mxn.
The grid of the input 1image 1s denoted by G=(V,E.K), where
V={v,, Vs, . . ., Vot is the set of node positions (N=mn),
E={(, j)} is the set of directed edges between the nodes and
K 1s the set of quad faces of the grid. Throughout the
discussion it 1s assumed that G 1s a 4-connected quad grid,
although the algorithm can be easily extended to any general
meshing of the image. It 1s assumed that the values of the
input mapping W on all the grid nodes v, are known.

The user provides a feature mask that marks the parts of
the 1image whose shape should be preserved. The mask 1s
denoted by M={m,, . . ., m,}, such that m=1 if pixel i
belongs to a feature and m =0 otherwise. The feature nodes

indices are thus F={i s.t. m,=1}. The method 100 partitions
F into 1ts connected components: F=F, U. TZU . UF ; (see
FIG. 2(e)). The method of appendix A aims to ﬁnd a
mapping of the original grid G that 1s as close as possible to
the input warp W and respects the shape of the features
specified by the mask M. It 1s desired to preserve the shape
of all the quads contained 1n the features, meaning that they
should undergo solely a similarity or rigid transformation.
Rigid transformation implies that the size of the features will
be preserved, whereas a similanity transformation allows
varying the size according to the warping function W. The
user can be lett with the choice between rigid and similarity
behavior.

A proper shape preserving transformation for each quad
Q=(Vv;,V;,V;,,V; ) that has at least one node in F 1s provided.
W(Q) 1s approximated with a rotation/similarity transforma-
tion, by taking the linear component of W and extracting the

rotation from i1t by means of the polar decomposition.
Specifically, denote W(Q)=(v, ',v, v, v, '); denote by

the centroid of Q; the centered vertices are then v, =v, -v
(and smmilarly, u,’ or W(Q)). The method can linearly
approximate the homogeneous part of W on Q by:

TWQ [U_ Uy, U; 1114] [U_IIU_ U; 1134] " (10)

iy 713 £213
where A* denotes the pseudoinverse of matrix A. In fact,
I'y, o 1s an approximation of the Jacobian of W on Q; if given

the analytical expression ot W, 1, , can be replaced by the
Jacobian of W at, say, v
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To extract the ngid component of 1, , the method
performs 1ts singular value decomposition: TWQ—UZVT the
rigid component of Ty, 1s then

Ry o=VUT. (11)

To devise the feature-preserving mapping, the method
formulates the following optimization problem: 1t would be
desired that all the elements outside of F to undergo a
transformation as close as possible to W, and all the elements
in F should undergo solely the rigid (or similarity) compo-
nent of W. It 1s convenient to formulate the requirements of
this optimization per quad. It quad Q=(v, ,v, ,v,,v, ) belongs
to a feature (1.e. 1t has at least one node 1n F), the method
defines the following four equations related to its four edges:

Vi~ ViR oV )-Rypolv, ) k=1, ... 4 cyclically (12)

where ¥, are the unknown deformed grid nodes. Similarly, 1f
QQ does not belong to a feature, we add the following four
equations for 1ts edges:

Vi 1~ Vi = WV,

=W (v, ).k=1, (13)

Overall, the method of appendix A obtamns an over-
determined system of 4|K| equations 1n 2N unknowns,
which can be solved 1n the least squares sense. Note that the
system 1s separable 1n the two coordinates, thus we can solve
for x and y separately, with the system matrix containing N
columns. The method can constrain the boundary nodes to
their positions under W to make the optimization problem
well-posed:

- .4 cyclically

v =W(v,),ViedG. (14)

Solving for v, . . ., v, will provide a mapping that rigidly
preserves the features, including their size. To obtain a
shape-preserving mapping that allows appropnate scaling of
the features, the method can modify the local transforma-
tions Ry, , as follows.

The method estimates that the average scaling of each
connected feature component F, under W by observing the
singular values of the transtormations 1, ,. For each ele-
ment Qel, the method takes the smaller Smgular value of
I'y o, and average those values over all Qel,, obtaining the
average scale factor A,. Conveniently, the smaller singular
values are averaged, because intuitively, if the 1mage 1s
stretched 1n one direction, the feature size should remain
constant. The target local transformations of the quads 1n
each F; are thus updated to be ARy, and Eq. ((2)) 1s
modified accordingly.

Smoothing the Mapping

When the mput warp W 1s largely deforming the geometry
of G, feature shape preservation may be compromised. To
compensate for such situations, 1t 1s useful to apply weights
to Eqg. ((2)) that 1s responsible for feature preservation: each
side of those equations 1s multiplied by weight w, (a sample
value of W_=10). Since a least-squares system of equations
is solved, this multiplication results in w,~-magnification of
the corresponding error terms in the minimization func-
tional, forcing the optimization to respect the features more,
at the expense of larger deformation of other areas.

However, since the weights are abruptly discontinuous at
the feature boundaries (weighting of 1 outside the feature
and w21 1nside), such solution damages the smoothness ot
the mapping near the feature boundary. This can be easily
corrected by assigning a more smooth weighting function:
computing a local distance field to the feature and assigning
smoothly decreasing weights for the quads in the vicinity of
the feature as functions of the distance field. The equations
associated with those “transition-quads™ are of type ((2)).
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The following polynomial can be used as the decay
function:

2
EK

3
—EK2+1,

f(x) = —x°

(15) where the constant p>0 controls the extent of the decay;
the weights 1n the itermediate region around the feature
boundaries are thus defined as:

w(Q)=wHD(Q))+1-(1-H{D(Q))), (16)

where D(Q) 1s the value of the distance to the feature at the
center of Q. The decay radius p 1s set to be the width of two
orid cells; outside of this radius the weights are set to 1.
Interactive Texture Mapping

Two possible modes of texturing application are differ-
entiated from each other: mput-warp mode (described 1n the
previous section) and interactive mode. In both modes, the
feature regions of the mput image are first specified by a
feature mask. In the interactive mode, the user designs the
mapping using the standard controls of image boundary
editing and/or prescription of inner curve transformations.
The mapping 1s computed taking into account these user-
defined constraints and the feature mask, using a deforma-
tion technique based on diflerential coordinates.

These user’s manipulations are interpreted by the system
as positional constraints on the grid nodes, 1.e. simply

v.=c,1ell, (17)

where U 1s the set of the nodes constrained by the user and
c, are the new positions for those nodes.

The mapping of the free grid nodes 1s decided by applying
the Laplacian editing optimization. The goal of this optimi-
zation 1s to create a smooth and as-rigid-as-possible map-
ping of the grid shape that respects the user constraints
((17)).

“As-rigid-as-possible” means that 1t the user-constraints
imply solely a rigid (or similarity) transformation of the grid
shape, the optimization technique indeed delivers such
transiformation; otherwise, the optimization finds a mapping,
that 1s locally as close as possible to being rigid, which 1s
perceived as an mntuitive result. The optimization mmvolves
solving a sparse linear system of size 2Nx2N.

Once the mapping function W 1s established in the above
manner, i1ts feature-preserving approximation 1s created
according to the feature mask, as described 1n Section
“Feature-aware mapping” above.

Sample Implementation Details

Size setup Factor Rhs setup Solve
50 x 100 0.156 0.110 0.015 0
100 x 100 0.375 0.250 0.031 0.015
100 x 200 1.141 0.562 0.047 0.031
200 x 200 2.171 1.407 0.109 0.063

Table 1 1llustrates timing statistics (in seconds) for the
different parts of the mapping algorithm. Sys. setup stands
for the setup of the normal equations matrix; Rhs setup
denotes the building the right-hand side of the normal
equations and Solve stands for the back-substitution. Note
that the system setup and matrix factorization i1s done 1n a
pre-process, once per given image grid.

The algorithmic core of the feature-sensitive texture map-
ping 1s the solution of the least-squares optimization

expressed by Eqgs. ((2)-(3)) and ((14)).

10

15

20

25

30

35

40

45

50

55

60

65

20

When put together, these equations form an over-deter-
mined linear system of the form:

A(xy)=(byby), (18)

where x=(X,, . . ., X,)" are the x coordinates of the deformed
grid and y=(¥,, . . ., ¥,)" are the y coordinates.

The system i1s separable in the two coordinates, so the
system matrix A has N columns. The matrix 1s very sparse
since there are only two non-zero coellicients in each row.
The system 1s solved by factoring the normal equations:

ATA(xy)=A'(b,b,). (19)

The Taucs library 1s used for eflicient sparse matrix
solvers. Cholesky {factorization provides a sparse lower-
triangular matrix L such that

ATA=T1Y. (20)

Then, the equations can solved by double back substitu-
tion:

ILx, =A'b_

femp

LIx=x (21)

femp®

and 1n the same fashion for the y component. Thus, a single
factorization serves solving for multiple right-hand sides.

The construction of the A matrix, the normal equations
matrix and the factorization can be attributed to the pre-
process, since they only depend on the grid and the feature
map of the mput 1image; the matrix factorization 1s the most
computationally-intensive part, taking a few seconds for
orids with several tens of thousands of quads. Once the
factorization 1s computed, back substitution 1s extremely fast
(see Table 1).

When varying the input warp function W, there 1s only
need to update the right-hand side of the system (the b b,
vectors) and perform back-substitution, so the user can
experiment with various mappings in real time. Of course,
mampulation of very large images may slow down due to the
large dimensions of the system matrix; to maintain interac-
tive response 1n this case the grid 1s defined to be slightly
coarser than the pixel grid of the input image, so that the size
of the system remains 1n the order of 20000-50000 variables.
For example, it can efhiciently handle an 1mage of 1000x
1000 pixels by defining the size of the grid cells to be 5x5
pixels.

Computing the initial mapping by interactively-placed
user constrains (Section “Interactive texture mapping”) also
requires solving a sparse linear system of size 2Nx2N. It 1s
done 1n the same manner pre-factoring the system matrix
and solely varying the right-hand side of the system when
the user manipulates the boundary constraints. Since the
back-substitution 1s fast, the manipulation 1s interactive, as
demonstrated 1n the accompanying video.

The mentioned above feature-sensitive texturing system
on a Pentium 4 3.2 GHz computer with 2 GB RAM. It was
assumed that the feature mask comes together with the input
image, defined 1n some external image editing software.
During the experiments the feature maps were created by
Photoshop using the standard selection tools (Magic Wand,
Lasso and Magnetic Lasso). The process of feature selection
1s quite easy since the feature-aware texturing needs only a
rough binary matte.

The mventor experimented with various input warping
functions that are commonly available 1n most image editing
packages. The results of unconstrained mapping with the
mentioned above feature-preserving mapping were com-
pared 1n various figures. It can be clearly seen 1n all the
examples that the mentioned above mapping preserves the
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shape of the features while gracefully mimicking the input
mapping function. The similarity-preserving mapping
allows uniform scaling of the features, and thus 1t has more
freedom to approximate the input mapping. For instance,
when the mput mapping implies enlargement of the 1mage,
the similarity-preserving mapping will allow uniform scal-
ing of the features, whereas the rigid mapping will constrain
the features to remain 1n their original size, thus introducing
more stretch to the background areas.

In extreme deformation cases, the feature-aware mapping
may introduce fold-overs, which may result 1n texture dis-
continuity. Preventing self-intersections within the least-
squares optimization 1s quite dithcult; 1t 1s noted that the
method can be adapted to perform post-processing relax-
ations to fix the fold-overs.

Sample Images

FIGS. 6a-6b, 7a-7h, 8a-8c, 9a-9d, 10a-101, 11a-111 1llus-
trate the diflerences between applying prior art mapping
method and applying the method 1llustrated 1n appendix A.

FIG. 6a 1s the result of applying a prior art mapping
process on an 1image while FIG. 6b 1s a result of applying the
method of appendix A. It 1s noted that 1n FIG. 6a the legs of
the children are squeezed and their heads are stretched. This
aflects do not appear 1n FIG. 6b.

FIG. 7a 1s an original image. FIGS. 7b, 7¢ and 7d are the
result of applying a prior art mapping process on an 1image
so as to map the image onto a vertically stretched output
frame, onto an arc shaped output frame and onto a sinusoidal
output frame. FIG. 7e illustrates a feature map (of features
F1-F11) that 1s generated by applying the method 1llustrated
in appendix A. FIGS. 71, 7g and 7h are the result of applying
the method illustrated 1n appendix A so as to map an 1mage
onto a vertically stretched output frame, onto an arc shaped
output frame and onto a sinusoidal output frame.

FIG. 8a 1s an oniginal image. FIG. 8b illustrates a result of
applying the method 1llustrated 1n appendix A so as to map
an 1mage onto vertically (x2) stretched output frame. FIG. 8¢
illustrates an underlying grid.

FIG. 9a 1s an original image. FIG. 9b 1s the result of
applying a prior art mapping process on an image so as to
map the image onto a swirl feature the method 1llustrated in
appendix A method according to an embodiment of the
invention so as to map the image onto a swirl feature output
frame while constraining the size of features. FIG. 9d
illustrates a result of applying the method illustrated 1n
appendix A so as to map the image onto a swirl feature
output frame while allowing uniform scaling of the features.

FIG. 10a 1s an original image. FIG. 10b 1s the result of
applying a prior art mapping process on an image so as to
map the image onto three dimensional shape. FIG. 10c
illustrates the result of applying the method illustrated 1n
appendix A on an 1image so as to map the image onto three
dimensional shape.

FIG. 10d 1s an original image. FIG. 10¢ 1s the result of
applying a prior art mapping process on an image so as to
map the 1mage onto another three dimensional shape. FIG.
101 1llustrates the result of applying the method 1llustrated 1n
appendix A on an 1mage so as to map the image onto another
three dimensional shape.

FIG. 11a 1s an original image. FIG. 11b 1s the result of
applying a prior art mapping process on an image so as to
map the image onto a swirl feature output frame. FIG. 11c
illustrates a result of applying the method illustrated 1n
appendix A so as to map the image onto a swirl feature
output frame while constraiming the size of features. FIG.
11d 1llustrates a result of applying the method 1llustrated 1n
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appendix A so as to map the image onto a swirl feature
output frame while allowing uniform scaling of the features.

FIG. 11¢ 1s an original image. FIG. 111 1s the result of
applying a prior art mapping process on an i1mage so as to
map the image onto an arc shaped output frame. FIG. 11g
illustrates a result of applying the method illustrated 1n
appendix A so as to map the image onto an arc shaped output
frame while constraining the size of features. FIG. 11h
illustrates a result of applying the method illustrated 1n
appendix A so as to map the image onto an arc shaped output
frame while allowing uniform scaling of the features.

FIG. 111 1s an original image. FIG. 113 1s the result of
applying a prior art mapping process on an image so as to
map the image onto a circular shaped output frame. FIG. 11k
illustrates a result of applying the method illustrated 1n
appendix A so as to map the image onto a circular shaped
output frame while constraining the size of features. FI1G. 111
illustrates a result of applying the method illustrated 1n
appendix A so as to map the image onto a circular shaped
output frame while allowing uniform scaling of the features.

Variations, modifications, and other implementations of
what 1s described herein will occur to those of ordinary skall
in the art without departing from the spirit and the scope of
the invention as claimed. Accordingly, the invention 1s to be
defined not by the preceding illustrative description but
instead by the spirit and scope of the following claims.

We claim:

[1. A method for providing an output image, the method
comprising: determining an importance value for each nput
pixels out of multiple mput pixels of an mput image;
applying on each of the multiple input pixels a conversion
process that 1s responsive to the importance value of the
iput pixel to provide multiple output pixels that form the
output 1mage; wherein the mput image differs from the
output 1mage; wherein the determining 1s responsive to
motion associated with each of the multiple input pixels.}

[2. The method according to claim 1 wherein the deter-
mining is responsive to a saliency score of the input pixels.]

[3. The method according to claim 1 wherein the deter-
mining 1s responsive to an inclusion of an input pixel within
an input image area that represents a face of a person.]

[4. The method according to claim 1 wherein the deter-
mining 1s responsive to an inclusion of an input pixel within
an input image area that represents an object of interest.}

5. A method for providing an output image, the method
comprising;

determining an importance value for each input [pixels]

pixel out of multiple mput pixels of an mput 1mage,
wherein the importance value is at least based on a
saliency scove, the saliency scove based on at least one
of: spatial constraints, object detection and/or motion
detection for each of the multiple input pixels;
applying on each of the multiple input pixels a conversion
process that 1s responsive to the importance value of the
input pixel to provide multiple output pixels that form
the output 1image;
herein the mput image differs from the output image;
herein a distance between output 1image representations
of a pair of adjacent input pixels 1s responsive to an
importance of at least one Jof] pair of adjacent input
pixels; and

outputting the output image.

[6. A method for providing an output image, the method
comprising: determining an importance value for each mput
pixels out of multiple mput pixels of an nput 1mage;
applying on each of the multiple input pixels a conversion
process that 1s responsive to the importance value of the
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input pixel to provide multiple output pixels that form the
output 1mage; wherein the mput image differs from the
output 1mage; wherein the applying 1s responsive to at least
one of the following constraints:

cach mput pixel 1s mapped to an output pixel that 1s

located at substantially a fixed distance tfrom its left and
right neighbors;

cach mput pixel 1s mapped to an output pixel located to

substantially a similar location to which upper and
lower mput pixels are mapped;

an mput pixel 1s mapped to an output pixel located

substantially at a same location as an output pixel to
which the same input pixel at a previous 1mage was
mapped; and

size and shape of the output image.]

[7. A method for providing an output image, the method
comprising: determining an importance value for each mput
pixels out of multiple mput pixels of an mput 1mage;
applying on each of the multiple mnput pixels a conversion
process that 1s responsive to the importance value of the
input pixel to provide multiple output pixels that form the
output 1mage; wherein the mput image differs from the
output 1mage; wherein the determining 1s responsive to a
saliency score of the input pixels; wherein the saliency score
is computed by applying a wavelet decomposition process.}

8. A method for providing an output 1mage, the method
comprising:

determining an importance value for each input [pixels]

pixel out of multiple input pixels of an input 1mage,
wherein the importance value is at least based on a
saliency score, the saliency score based on at least one
of: spatial constraints, object detection and/or motion
detection for each of the multiple input pixels;
applying on each of the multiple input pixels a conversion
process that 1s responsive to the importance value of the
input pixel to provide multiple output pixels that form
the output 1mage;
wherein the mput image differs from the output image;
wherein the determining 1s responsive to a saliency score
of the mput pixels;

wherein the saliency score 1s computed by locating the

coarsest diagonal high frequency frame i1n which the

percentage of wavelet coeflicients having values below

a first threshold 1s below a second threshold,; and
outputting the output image.

9. A method for providing an output 1mage, the method
comprising;

determining an importance value for each input [pixels]

pixel out of multiple mput pixels of an mput 1mage,
wherein the importance value is at least based on a
saliency scove, the saliency score based on at least one
of: spatial constraints, object detection and/or motion
detection for each of the multiple input pixels;
applying on each of the multiple input pixels a conversion
process that 1s responsive to the importance value of the
input pixel to provide multiple output pixels that form
the output 1mage;
wherein the mput 1mage differs from the output image;
wherein the determining 1s responsive to a saliency score
of the mput pixels;
wherein the saliency score 1s computed by applying a
wavelet decomposition process;
wherein the wavelet decomposition process 1s followed
by thresholding a diagonal high frequency image to
generate a binary frame;
re-scaling the binary frame; and
smoothing the re-scaled binary frame, and

outputting the output image.
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[10. A method for providing an output image, the method
comprising: determining an importance value for each mput
pixels out of multiple mput pixels of an put 1mage;
applying on each of the multiple input pixels a conversion
process that 1s responsive to the importance value of the
iput pixel to provide multiple output pixels that form the
output 1mage; wherein the mput image differs from the
output image; wherein the applying 1s preceded by applying
a data reduction stage; and applying on each of the results of
the data reduction stage a conversion process that 1s respon-
sive to the importance value of the results to provide
converted results.}
[11. A method for providing an output image, the method
comprising: determining an importance value for each mput
pixels out of multiple mmput pixels of an nput i1mage;
applying on each of the multiple input pixels a conversion
process that 1s responsive to the importance value of the
iput pixel to provide multiple output pixels that form the
output 1mage; wherein the mput image differs from the
output 1mage;
determining an importance value for each iput pixels out
of multiple input pixels of a group of input 1mages; and

applying on each of the multiple mnput pixels a conversion
process that 1s responsive to the importance value of the
input pixel to provide multiple output pixels that form
group ol output 1mages; wherein iputs 1mage diflers
from output images.}

12. A device for providing an output image, the device
comprising;

a memory unit adapted to store an input image and a

processor, adapted to:

determine an importance value for each input [pixels]
pixel out of multiple input pixels of an input 1image and

apply on each of the multiple imnput pixels a conversion
process that 1s responsive to the importance value of the
input pixel to provide multiple output pixels that form
the output 1image, wherein the importance value is at
least based on a saliency scorve, the saliency score
based on at least one of: spatial comnstraints, object
detection and/or motion detection for each of the
multiple input pixels;

herein the mput image differs from the output image;
herein the processor 1s adapted to determine an 1impor-
tance of [an] one or the multiple input [pixel] pixels in
response to motion associated with each of the multiple
input pixels and output the output image.

[13. The device according to claim 12 wherein the pro-
cessor 1s adapted to determine an importance of an input
pixel in response to a saliency score of the input pixels.]

14. The device according to claim 12 wherein the pro-
cessor 15 adapted to determine an importance of an 1nput
pixel 1n response to an 1inclusion of an mput pixel within an
input 1mage that represents a face of a person.

15. A device for providing an output image, the device
comprising;

a memory unit adapted to store an input image and a

processor, adapted to:

determine an importance value for each input [pixels]

pixel out of multiple input pixels of an input image and
apply on each of the multiple imnput pixels a conversion

process that 1s responsive to the importance value of the
input pixel to provide multiple output pixels that form
the output 1mage, wherein the importance value is at
least based on a saliency scorve, the saliency score
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based on at least one of: spatial constraints, object

detection and/ov motion detection for each of the

multiple input pixels;

herein the mput image differs from the output image;

herein the processor 1s adapted to apply a conversion s

process 1n response to at least one of the following

constraints:

cach mput pixel 1s mapped to an output pixel that 1s
located at substantially a fixed distance from its left
and right neighbors;

cach 1mput pixel 1s mapped to an output pixel located to
substantially a similar location to which upper and
lower mput pixels are mapped;

an mput pixel 1s mapped to an output pixel located
substantially at a same location as an output pixel to
which the same mnput pixel at a previous image was 15
mapped; and
s1ize and shape of the output 1image; and
output the output image.
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16. The method of claim 5 wherein the saliency score is
based on the spatial constraints, the object detection and the

motion detection for each of the multiple input pixels.

17. The method of claim 8§ wherein the saliency score is
based on the spatial constraints, the object detection and the
motion detection for each of the multiple input pixels.

18. The method of claim 9 wherein the saliency score is
based on the spatial constraints, the object detection and the

motion detection for each of the multiple input pixels.

19. The device of claim 12 wherein the saliency score is
based on the spatial constraints, the object detection and the
motion detection for each of the multiple input pixels.

20. The device of claim 15 wherein the saliency scove is
based on the spatial constraints, the object detection and the
motion detection for each of the multiple input pixels.
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