USOORE47501E
(19) United States
12y Reissued Patent (10) Patent Number: US RE47.,501 E
Jain et al. 45) Date of Reissued Patent: Jul. 9, 2019
(54) APPLICATION PROGRAM INTERFACE (38) Field of Classification Search
ACCESS TO HARDWARE SERVICES FOR CPC GOO6F 3/061; GO6F 3/0661; GO6F 3/067
STORAGE MANAGEMENT APPLICATIONS USPC 710/35, 7, 62, 74; 711/203; 718/1, 100;
370/355, 535
(71) Applicant: XENOGENIC DEVELOPMENT See application file for complete search history.
LIMITED LIABILITY COMPANY, _
Wilmington, DE (US) (56) References Cited

U.S. PATENT DOCUMENTS

(72) Inventors: Arvind Jain, Lilburn, GA (US); Sukha

Ghosh, Lilburn, GA (US); Debasis 5,117,486 A 5/1992 Clark et al.
Dalapati, Roswell, GA (US); Zulfiqar 5,519,701 A 5/1996 Colmant et al.
Qazilbash, Duluth, GA (US) 5,819,054 A 10/1998 Ninomiya et al.
5,892,979 A 4/1999 Shiraki et al.
: : . . 5,948,119 A 9/1999 Bock et al.
(73) Assignee: X_eno-g-enlc Developmel}t lelted 6.012.119 A 1/2000 Ninomiya et al
Liability Company, Wilmington, DE 6,021,132 A 2/2000 Muller et al.
(US) 6,061,351 A 5/2000 Erimli et al.
6,061,748 A 5/2000 Taglione et al.
(21) Appl. No.: 14/944,620 6,101,192 A 82000 Wakeland
6,181,705 Bl 1/2001 Branstad et al.
o 6,192,471 B1* 2/2001 Pearceetal. 713/2
(22) Filed: Nov. 18, 2015 6,226,680 Bl 5/2001 Boucher et al.
6,233,236 Bl 5/2001 Nelson et al.
o f Related U.S. Patent Documents 6282208 BI 212001 Rowenft et al
eissue of: -
Continued
(64) Patent No.: 7,594,049 ()
Issued: Sep. 22, 2009
Appl. No.: 11/472,677 OTHER PUBLICATIONS
Filed: Jun. 22, 2006 Andrew S. Tanenbaum, Structured Computer Organization, Third
U.S. Applications: Edition, Prentice Hall Inc, 1990, pp. 11-13.
(63) Continuation of application No. 10/428,638, filed on (Continued)

May 2, 2003, now Pat. No. 7,093,038.

(60) Provisional application No. 60/380,160, filed on May Primary Examiner — Joshua D Campbell
6, 2002. (74) Attorney, Agent, or Firm — Meyertons, Hood,

Kivlin, Kowert & Goetzel, P.C.

(51) Int. CL
GO6F 3/00 (2006.01) (57) ABSTRACT
Goot 15/00 (2006.01) A method and device for using a set of APIs are provided.
Goor 3/06 (2006.01) Some of the functions which used to be performed by
(52) U.S. CL software are now accelerated through hardware.
CPC GO6I 3/0661 (2013.01); GO6F 3/061
(2013.01); GO6F 3/067 (2013.01) 27 Claims, 7 Drawing Sheets

.

Management applicatitl:vn
30

control patrE_E virtuliziltiﬂn
repository
data path -r o
T T «

. O TRt) o PSPPSR . .
:: — - E—

rdware Acceleratian
interface 18

rj Accelerated data
} path 16

. AN
A 1

US RE47,501 E

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

6,310,884 B1 10/2001 Odenwald, Jr.

6,336,156 Bl 1/2002 Chiang

6,341,329 B1* 1/2002 LeCrone et al. 711/112
6,845,403 B2* 1/2005 Chadalapaka 710/5
7,173,929 B1* 2/2007 Testardloovinn 370/355
7,280,536 B2* 10/2007 Testardiocovvvnnnennin, 370/355

2003/0084209 Al 5/2003 Chadalapaka

OTHER PUBLICATIONS

Jon William Toigo, Fibre Channel Over Internet Protocol (FCIP),

TidalWire, The Storage Connection, Sep. 2001 pp. 1-9.

Storage Networking 101, Cisco Systems, White Paper, 2001, pp.
1-11.

Peter LaPorte, The Case For Storage Virtualization Using Intelligent
Router, Exabyte Network Storage and Backup, Apr. 15, 2002, 13

pages.

* cited by examiner

US RE47,501 E

Sheet 1 of 7

Jul. 9, 2019

U.S. Patent

Art)

»

. 1 (Prior

Fig

T n..‘..m_*.w_ __“:w.m.r :

iR Ser i }.wg,__..i_}_
’ r an

b b L e __,ﬂm,‘wnf

..__._.:_._n_. .—_i.n [1] l_...m...._u

ﬁ%ﬂmmv

ii._. fh._ q ,.

e Tu....:,u.ﬁ M mﬂ.uu o T, L ..__ P it R __._._.,.....: T
.__n...-__.”.__..w.r}.__. 1 ”,.._...-..u.._.”u.ﬂ_h.....ah.hﬂ.rh +r. -.rum" .._.-qﬁ.M,.... - i g, -%
T 5 LAY Ao M g uﬂm..n:

. " " - . fn - R " .n._.._q
. T . £ . - e m .-?1._"”“_.“ __..“w.lmq_ .n.a__.. u. wu..wn #Wﬂ.ﬂhﬂ.ﬂm‘mﬁ.‘-‘m.ﬁ oy #
' - e L0 =Tt ... i
‘ o Sahiar e b G
: | , + . m...wiﬁwﬁﬁw i auNdei Ay ol
b LR - . = \ul._.-.“..._.,: ..."..___ e a b e e W |.._.....I.... J-.M»-uﬂ.\hﬁ.fun_- h._u_. 3
i . .._...,.,..._.._.-..ﬂn.- w.nﬂ.“. 1Y ,.._.m.-_i. .rru .n_.l.u
. : R R O RS S
r - !- AL, ”..r .;ww..wmw . .._._",M %Mﬁ .N_..?_.ﬂ._m .MHN.. _“_._..."..o% o w
, et Ry "Hi....".u,_ de e M mm.u.. n,".un."_..ﬂ».._-w.n.__x
. 4 .- - - A = .n-.n.vm-.n“r.uf.-.h{_ﬂ nu , = .h-..w..-_....n“..u.r..l-.h .?....-i# -
N E e e e S R O
+ b] =t T -._n1 IEATIAS G IR A FLE
1 " 1 . 1 -_......u-..!..l__ ._..n.n.u. n“__ .m.n.wu h_lwu 1.
n - L1 .w.n ._ir.mw.. ..“.. “......”..n."._.___....wnwmﬁ.....__ .
— ..,,,.._,v,_,._,_ﬁ”? i
o TS h h?v,, m.,m.:qw H“F H ” i
.nR * e P ot M
. a_ ' - ' _W%uw._n.m_r .W.-u...-.".-ﬂ__ r ._..w.,....h_ 2 _"..W.._..nﬂ .H,.n
El e G .o,...J..mm.ﬁ.x.,mw SELE L e .“-
“r) ._ ._...Mu-._r ...|) .-n...q . |
) o 6 S g .{ qu..ﬁw_. hhhx.q .ﬁ s + v ik ARSI
r - e -y x- s .. A o -u._ g e LAl RRry - .ﬂ.
1 o |-..._..... ..-... RTL 1 u_._n..._...m..._-."._..". =34 k]l _".._..ﬂ_-..n._"...ﬂ....r“..r_.ﬁ._._-_w_.n S
- L L FaFie o EY e lor Tl 3
-t = T 0 ﬁw_,wmifﬁn.um £ Pﬂg %ﬁiﬁﬁﬁﬁﬁ%y |
- [-1.-!“-.-” ; - L] -” LY -.E-.‘. -.tll- Hr.-rm-.-.m“.“f.m h I*“-.-ﬁ. ..“ 1““I-.“.- - -.- I- —1
e . n;. m I . o i Hp..,w i hwwmﬁ.ﬂm .nwaum ..Wumw..mv Soat nﬂmuﬁuw %ﬁ%ﬁhﬂ:ﬁ%@# i
. FE L __.t_..qn.“?..r......... iy H L e arp -“l..n-:. B LA ey
. - ¢ of] Rt CIsh s s et T X4 MRt e N
- L PR e h.uMﬁﬁmM%mﬁ
B AR e L R A T L ey P R TR
* o B PR £ it g e
- o Do s LR g T T R g 3 Wl 2 e S s
. N - . e R Eagibaiodes It .._“w.m....,m._..h__.wﬂgif sh by R
= - e Co R e T Sk D RS R S e
el o - _ 1 W-..u. et 7 . ”.. X -
£ f . r ;7 * - n.ﬂ..u IE".-..L L -
- . LS by R :
y - C - a . uh....wm,w A ; H ;
F L] LuaL . A '
. . . Lo R L TP e b R o R pd el
. . n.” R 1 .ﬂﬁﬁ.ﬁ% ..._“.mm..:_..n_ﬁﬁg%.w..#{?ﬁww o A R) e
Fl T I T : R R Yy n" L A .T?,nﬁq. .m.._.ﬁ}...H.
. D O B z rww, A .u, wan At R A
B it u“....-...:.un __._.-..r & _J..W - i M .m.._.rlul.............tp.n..l. H)
, [ShhL T H.“w...;mi.-”“.u... mmw“h..u :...\.m.u_:m T.."_.u_._“u“; .i.w..,v_umiu_u...q“..... .m._._pw “_.m.
_ - L B AN R s R HEL R uw i ANy e
Y | g athiis et R
» o -t..q i . a x .-tu. rewpa Al
, . TG “nﬁ,‘mﬁ,ﬂ%ﬁ A .ﬁw
T B e S N O T R T,
i . " e..;...,m%? x .“m ”: F y E i
. RS AT e H I T
T or - w7 - __.Tm.......-“.u..qﬁ...._

2
5.. T L H '
noAn P A "
s - e
1 "
e T "ty r
PO ' -
X

. bl [T
.l..”) i ".u.lnu”n.rﬁu.o.-.r "
Fih 1 .._...1!1 e "w_mmw
Myt BT ey el Al
u.“_u::.:h_u-. ol T i
R g W LM
SR T R Sl
PR .1.._w...:.1...-_r -m.....-,......l. B
..uuu-.. .5___..4_ uﬂ.n.r.._.. ; ..-..-mh
e p sl el

BRI
N Ty A= T 'S -
u-.u..P_ .n..__.u.nu...l___ = g R
'y i-.l."._v...r_.u.._._... Lab e o

r
1-; oy

U.S. Patent Jul. 9, 2019 Sheet 2 of 7 US RE47.,501 E

Fig. 2

control path 1

software

VAAPI

storage data

management silicon
3

U.S. Patent Jul. 9, 2019 Sheet 3 of 7 US RE47.,501 E

Fig. 3 (Prior Art)

! Management applica&er;

i L

control flow

ST - ‘ i,

2 e

l control pat wrtual_lzatson
]' repository |
‘ ; data path -~~~ I

data
(N L~
L

Storage Virtualization Engine

U.S. Patent Jul. 9, 2019 Sheet 4 of 7 US RE47.,501 E

Fig. 4

Management application

¥,
¥
}
1
|
[

I|
‘l

£

control pathy»

virtulization
repository
24

J :
L I 40

data path

Hardware Acceleratian
interface 18

20

Accelerated data
B \| path 16

VN 14

23 &

U.S. Patent Jul. 9, 2019 Sheet 5 of 7 US RE47.,501 E

Fig. 5

HW based
repository

50

U.S. Patent Jul. 9, 2019 Sheet 6 of 7 US RE47.,501 E

Fig. 6

id a virtual disk
62

Id an 1/O

execution plan
04

exception”
Yes 66
NoO
ardware’
software 68
72 No
Yes

execute the |/O
plan using

analyze |/O

plan

74 hardware acceleration

70

U.S. Patent Jul. 9, 2019

Fig. 7

Sheet 7 of 7

US RE47,501 E

IDiSX Storage Virtualization Engine
I/70 Processing

Vendor Proprietary Repository
Virtualization Information Populator &
Repository Synchronizer

B
L]
] I'~
“l+ .
“ L
4. T E—marra it ismarr rAnm T Tk
-APls .

I.‘.‘

= r
i R R R T T NI e

{Alternative)
(Based on Vendor APls)

T EE NN T Y OB R N R R - A -] A oy dd ok =, ek - e

Pt Ab oy =it bWk boale o b o W w ok n W damia sk Dok s oap R W

N . iViu_ity's' CiM-»Based'
. / V:rtua!mﬂa;;:z; ;:::;:'matmn
CiM/WBEM-APIs
(RPS-APIs) T APl
(Repository interface)

(CIM/WBEM-API-Based)

Control Path {CP)

in Software
B
CP Analyzed/ | 1/O-APls
Generated |
WOPlans T L ,j
AP-APIs T mfi nQ
Out Q! ‘ \
%hﬁﬁi}@i J Complex/Faulted |
B Dala, O Plans
From AP-MHW

Accelerated Path (AP)
in Hardware

US RE47,501 E

1

APPLICATION PROGRAM INTERFACE
ACCESS TO HARDWARE SERVICES FOR
STORAGE MANAGEMENT APPLICATIONS

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

This application [claims] is a reissue of U.S. patent
application Ser. No. 11/472,677, filed Jun. 22, 2006 (now
U.S. Pat. No. 7,594,049), which is a continuation [applica-
tion] of [the utility application filed May 2, 2003 now U.S.
Pat. No. 7,093,038 titled “APPLICATION PROGRAM
INTERFACE ACCESS TO HARDWARE SERVICES FOR
STORAGE MANAGEMENT APPLICATIONS” with a Ser.
No. 10/428,638.] U.S. patent application Ser. No. 10/428,
638, filed May 2, 2003 (now U.S. Pat. No. 7,093,028), which
[claimed] claims priority to U.S. Provisional [Application]
Appl. No. 60/380,160, filed May 6, 2002, [entitled “APPLI-
CATION PROGRAM INTERFACE-ACCESS TO HARD-
WARE SERVICES FOR STORAGE MANAGEMENT
APPLICATIONS,] which is hereby incorporated in its
entirety by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to an application
program 1nterface (API), more specifically, the present
invention relates to an API having access to hardware
services for storage management applications. Yet more
specifically, the present invention relates to a Virtualization
Acceleration Application Programming Interface (VAAPI)

2. Description of the Related Art

Application program intertace (API) also known as appli-
cation programming interface 1s known 1n the art. API can
be considered as a set of specific methods prescribed by a
computer operating system or by an application program,
which a programmer who 1s writing an application program
can make request of the operating system or another appli-
cation.

The explosive growth 11 storage networks 1s being driven
by the collaboration of business computing and the need for
business continuity. The storage data management silicon
model makes the assumption that the next logical step in
managing storage networks 1s to move some of the storage
management functionality into storage network with the
implementation located 1n switches, router, appliances, NAS
and SAN attached arrays. This model envisions storage
virtualization application implemented onto storage network
nodes using specialized storage data management silicon to
ensure that the node does not become a severe performance
bottleneck to the network trathic flowing through 1t.

To implement storage virtualization in the network, the
storage virtualization application 1s eflectively split into two
function components; the control path and the data path, as
shown 1n FIG. 1. The control path 1s responsible for all of the
control functions of virtualization; including setting up the
configuration, changing the configuration, network and
availability management, fault tolerance, and error recovery.
The data path component 1s responsible for moving the I/O
through the virtualization application.

10

15

20

25

30

35

40

45

50

55

60

65

2

The performance characteristics of the storage virtualiza-
tion engine in this paradigm depends on the amount of the

data path that 1s implemented in hardware. A silicon-assisted
solution can significantly reduce latencies over software
solutions and increase IOP performance many times.

Therefore, 1t 1s desiouse to have specialized APIs residing,
in the datapath. Further, 1t 1s desiouse to have a storage
network I/0O handling framework and a set of APIs for better
performance.

SUMMARY OF THE INVENTION

A storage network 1I/0O handling system including a set of
APIs are provided for enabling the separation of Control
path (configuration and complex exception handling) and
data path (storage I/O execution and relatively simpler
exception handling) related computing.

A storage network I/0 handling system including a set of
APIs 1s provided, 1n which the data path processing 1s kept
relatively simple 1n comparison to control path processing
and the system 1s being accelerated with specialized hard-
ware (HW) for achieving higher performance.

A storage network I/0 handling system including a set of
specialized APIs 1s provided for defining abstracted inter-
faces to the configuration information repository from the
Storage Management applications 1n the control path.

A storage network 1I/0O handling system including a set of
APIs 1s provided for defining a set of APIs for device
configuration, configuration loading, exception reporting,
and access to HW accelerated 1/O processing pipeline such
as a storage management processor.

A storage network I/0 handling system including a set of
APIs 1s provided for optimizing storage network environ-
ments with emphasis on performance and ease of develop-
ment.

A storage network I/0 handling system including a set of
APIs 1s provided for facilitating implementations with 10x
or greater performance scalability characteristics as com-
pared to known processor implementations

A storage network 1I/0O handling system including a set of
APIs 1s provided with the system further having an exten-
sible and partition-able framework that allows easy integra-
tion with a vendor’s unique content and APIs

A storage network 1I/0O handling system including a set of
APIs 1s provided for leveraging the industry standardization
cllorts as much as possible. For example, CIM and WBEM
are heavily leveraged in the repository component of the
present application.

A storage network I/0 handling system including a set of
APIs 1s provided for easy adaptation for implementations
other than only CIM/WBEM, including SNMP and propri-
ctary interfaces

A storage network I/0 handling system including a set of
APIs 1s provided for a wide adoptablity, or support to other
vendor storage systems.

Accordingly, a storage network I/O handling system
including a set of APIs 1s provided.

Accordingly, a method 1s provided. The method includes:
providing a virtual disk for an I/O request; providing an 1I/O
execution plan based upon the I/O request; providing an I/0O
plan executor in hardware; and using the I/O plan executor
to execute the I/0O plan, thereby at least some storage related
function are performed by the I/O plan executor 1n hardware.

Accordingly, a storage virtualization engine coupled to a
control path and a data path 1s provided. The engine com-
prising: a soltware sub-engine having the control path and
data path; and a virtualization repository; a hardware sub-

US RE47,501 E

3

engine having an accelerated data path; an VAAPI coupling
the software sub-engine with the hardware sub-engine; a
management application coupled to the software sub-engine,
wherein command therefrom are processed by the control
path, thereby some function are performed by hardware
through the VAAPI and data are accelerated through the
accelerated data path.

Accordingly, a storage management system having a
control path and a data path 1s provided. The system
comprising: a storage virtualization engine, the engine
includes: a software sub-engine having the control path and
data path; and a virtualization repository; a hardware sub-
engine having an accelerated data path; an VAAPI coupling
the software sub-engine with the hardware sub-engine; a
management application coupled to the software sub-engine,
wherein command therefrom are processed by the control
path, thereby some function are performed by hardware
through the VAAPI and data are accelerated through the
accelerated data path.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner 1n which the above recited features,
advantages and objects of the present invention are attained
and can be understood 1n detail, a more particular descrip-
tion of the mvention, briefly summarized above, may be had
by reference to the embodiments thereol which are illus-
trated 1n the appended drawings.

It 1s to be noted, however, that the appended drawings
illustrate only typical embodiments of this invention and are
therefore not to be considered limiting of 1ts scope, for the
invention may admit to other equally effective embodi-
ments.

F1G.
F1G.
F1G.
F1G.

1 1s a prior art storage system depiction.
2 15 a depiction of the present invention.
3 1s a prior art storage system.
4 1s a first depiction of the present invention.
FIG. § 1s a second depiction of the present invention.
FIG. 6 1s a flowchart of the present invention.
FIG. 7 1s a depiction of mput/output processing of the
present mvention.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

(L]

The present invention provides a Virtualization Accelera-
tion Application Programming Interface (VAAPI) which 1s
interposed between a hardware layer and a software layer.
For detailed description of VAAPI, please refer to infra. The
present invention intendes to create or modily existing
storage virtualization applications to take advantage of the
tast path acceleration provided by storage data management
s1licon, which 1s included 1n a commonly assigned applica-
tion, entitled STORAGE MANAGEMENT PROCESSOR,
provisional application No. 60/427,593, filed on Nov. 19,
2002. Further, VAAPI 1s a strategy to bring concurrence
within the storage virtualization industry for the use of a
common platform. By providing hardware-assisted data
movement and related functionality through VAAPI, viru-
alization application vendors can boost their performance
while positioning their technology on an open platform.

Referring to FIG. 2, VAAPI 4 15 a storage network 1/O
handling framework and a set of APIs for the following
purposes. The purposeses include: enabling separation of a
control path 1 (configuration and complex exception han-
dling) and data path 2 (storage I/O execution and relatively
simpler exception handling) related computing. The data

10

15

20

25

30

35

40

45

50

55

60

65

4

path 2 processing 1s kept relatively simple 1n comparison to
control path 1 processing and data path 2 1s being acceler-
ated with specialized HW for achieving higher performance.
VAAPI 4 further defines abstracted interfaces to the con-
figuration information repository from the Storage Manage-
ment applications 1n the control path 1; and defines a set of
APIs for device configuration, configuration loading, excep-
tion reporting and access to HW accelerated 1/0 processing
pipeline 1n a storage management processor 3 (silicon).

VAAPI 4 resides 1n the datapath 2 and 1s a mechanism for
implementing the steady state portion of I/O 1n hardware for
maximum performance. A storage virualization map (not
shown) 1s created in the control portion 1 of the storage
virtualization and 1s then pushed to the silicon 3 via the
VAAPI interface 4. If no exceptions to the I/O occur, 1t 1s
handled completely 1n the storage data management silicon
3 with no external processor (not shown) intervention. In the
case of exceptions, the VAAPI framework 4 1s able to push
the I/O and the exception to the external processor for
processing. The VAAPI framework 4 allows for dynamic
updates of the mapping tables maintained 1n the storage data
management silicon 3. Changes 1n configurations can occur
during runtime via the control portion 1 and be pushed to the
silicon 3 via VAAPI 4 without requiring I/O interruption.

The steady state component of the data path 2 that 1s
implemented 1n the storage data management silicon 3 1is
referred to as the Accelerated Path (AP).

A typical prior art enterprise vendor solution 1s shown 1n
FIG. 3.

The present invention provides the VAAPI which may
operate 1n new virtualization environments that use Com-
mon Information Model/Web Based Enterprise Manage-
ment (CIM/WBEM) mterfaces look like the one shown in
FIG. 4. Compared with FIG. 3, the iterface of the present
invention includes a VAAPI layer 12 interposed between a
hardware subsystem 14 which includes an accelerated data
path 16 and a hardware acceleration interface 18. Hardware
subsystem 14 1s adapted to receive data flow 20, which
terminates at terminating points 22, 24. Terminating points
22, 24 may be such devices as hard disks, virtual disks, or
tapes. Hardware acceleration interface 18 1s interposed
between accelerated data path 16 and VAAPI layer 12.

In the present invention, such as in the CIM-based
approach, necessary strategic foundations are provided
while offering a common basis for adapting to a variety of
other environments such as those using Simple Network
Management Protocol (SNMP) or proprietary protocols.

Further, the present invention comtemplates a system that
has a management application component 30 and a Virtu-
alization Engine 40. The management application 30 gen-
crates and handles the control path information. For
example, 1t may use CIM/WEBM-based interfaces to
exchange control information with the Virtualization Engine
40, which 1s implemented 1n the hardware.

As can be seen, the present invention provides VAAPI
layer 12 and hardware subsystem 14 over prior art systems
such as the one shown 1n FIG. 3.

The control path 22 may populate a virtualization reposi-
tory 24 such as the CIM-based repository using standard
CIM/WBEM formats. A Mapping Table (not shown) is
implemented in the hardware and provides the mapping
from the virtual storage to the physical storage. The CIM-
base repository 24 provides the static information for the
storage mapping in the hardware.

FIG. 5 illustrates the VAAPI support for a virtualization
application using SNMP or proprietary protocols. As can be
seen, a CIM based repository 50 1s required. Repository 50

US RE47,501 E

S

1s implemented 1n hardware and 1s coupled to VAAPI 12,
hardware acceleration interface 18 and accelerated data path
16 respectively.

In FIG. 6 there are two repositories shown, one for the
software environment and one for the hardware environ-
ment. The soltware repository 24 supports existing vendor’s
current protocols and related data structures. The hardware
repository 50 supports CIM/WBEM and 1s provided by the
hardware acceleration vendor. The two repositories 24, 50
need to populate each other and maintain a certain level of

synchronization. This functionality 1s, 1n part, accomplished
by the VAAPI interface 12.

Along with normal data and address flows 20, VAAPI 12
also supports delegation of high-usage control functions
from the software virtualization engine 40 to the hardware
virtualization engine 14. This transfer helps improve data
rates and related performances. In order to accomplish this
delegation function, VAAPI 12 must also include the inter-
taces for the software control path 22 module to interact with
the hardware acceleration engine 14. This permits VAAPI 12
to handle some of the exception conditions that are normally
handled by the current software-based Control Path compo-
nent.

The overall processing of an I/O 1s shown 1n a flowchart
60 of FIG. 6. Referring to FIG. 6, a virtual disk for an I/O
1s 1dentified from the transport protocol mformation and
validated for proper access and proper client, etc (step 62).
An appropriate 1/O execution plan 1s i1dentified for the I/O
request; the logical block addresses are translated to physical
block addresses and the corresponding physical devices are
identified (step 64). If the 1/O plan can be handled by the
acceleration hardware, then the I/O 1s handed off to the I/O
plan executor hardware (step 66). If 1t 1s determined that the
I/0 plan 1s not executable by the acceleration hardware, it 1s
then sent to the control path software (step 68). In case of
any exception in the I/O plan, the plan 1s sent to the control
path software (step 70). The control path software analyzes
the mcoming I/O plans (step 72), and after performing
required I/O operations and/or I/O exception processing
operations (step 74), resubmits the original I/O plan to the
acceleration hardware.

FIG. 7 shows an input/output processing ol a storage
virtualization engine.

To accomplish the previously-described hardware/soft-
ware-based shared processing scheme, there are require-
ments for sharing information and control at various places
within the hardware storage virtualization environment.

These interface points are broadly defined in terms of the
tollowing API groups. The groups are CIM/WBEM APIs,

RI-APIs, alternative RI-APIs, AP-APIs, [/O-APIs, and UA-
APIs.

RI GetVDList vaVendor
RI GetVDInto vaVendor

RI_GetMapVD_vaVendor

AP_SetMapVD_vaVendor

RI GetClientInfo vaVendor
AP SetClientInfo vaVendor

RI GetAcIVD wvaVendor
AP SetAcIVD vaVendor

5

10

15

20

25

30

35

40

45

50

6

CIM/WBEM APIs are Standard CIM/WBEM APIs used
to access a CIM implementation. These APIs are defined in
CIM/WBEM standards documents. RI-APIs are APIs used
by the control path software for interfacing with the storage
virtualization information repository. Implementation of this
API group 1s preferably based on top of CIM/WBEM APIs
with the repository related software provided. RI-APIs (Al-
ternative) are, 1f the storage virtualization nformation
repository of a vendor 1s such that the repository could not
be translated to a CIM repository, then the RI-APIs are to be
implemented on top of vendor-provided APIs. AP-APIs are
APIs the control path software uses to populate the accel-
eration hardware with the storage virtualization information
that 1t gets with the RI-APIs. I/O-APIs are APIs used 1n the
control path software for sharing the control and data related
to an I/0O plan with the acceleration hardware. UA-APIs are
APIs that provide utility functions, (e.g. Free buflers, etc.)
Repository Population and Synchronization (RPS-APIs)

The repository used by the hardware (AP) environment 1s
an 1implementation of standard CIM model with standard
CIM/WBEM APIs that are supported over an HI'TPS/XML
protocol. These APIs are not described 1n this document
since they are described elsewhere 1n standards documents.
Repository Interface (RI-APIs) and Accelerated Path (AP-
APIs)

The AP-APIs and the corresponding RI-APIs are further

classified into the following groups based on their informa-
tion content. Normally, for any AP-APIs, there will be a
complimentary API in the RI-API.

The following are subcategories associated with VAAPI.
These configurations are Virtual Disk Configuration, Stor-
age Services Configuration, /O Plan Exception Handling
Configuration, CP-AP Shared I/O plans, AP Pass-through
I/O plans, Physical Devices Discovery and Management,
CP-AP Transaction Management, Event Handling, Perfor-
mance and Statistics, and Utility Functions.

Virtual Disk Configuration

This group of APIs deals with configuration related to
individual virtual disk and basic virtualization (1.e., disk
concatenation and striping). In the VAAPI framework, I/Os
that requires involvement of multiple virtual disks are cat-
cgorized as Storage Services related 1/Os. For example,
mirroring, snapshot, on-line migration etc. are termed as
storage services and configuration requirements for these
services are handled through a group of APIs termed as
Storage Services Configuration that 1s described later.

The following are examples of VAAPIs of the present

invention. The prefixes used to mark this group of APIs are
RI (Repositorylnterface) and AP (Accelerated Path).

Gets the list of all virtual disks from the
repository.

Gets the information for a Virtual Disk
from the repository.

Gets the full map of a virtual disk from
the repository.

Sets the full map of a vurtual disk in AP
hardware, 1f a map already exists then it
is replaced with the new one.

Gets the information for a client from
the repository.

Sets the information for a Client in AP
hardware.

Gets the ACL setup for a virtual disk.
Sets the ACL for a virtual disk in the
AP hardware.

US RE47,501 E

7

-continued

RI_GetAcIVDClient_vaVendor
AP_SetAcIVDClient_vaVendor
RI_GetCoSVD_vaVendor
AP_SetCoSVD_vaVendor
RI_GetCoSVDClient_vaVendor
AP_SetCoSVDClient_vaVendor

AP SetStatusVD vaVendor

AP SetStatusVDClient vaVendor

Gets the ACL setup for a Client for a
virtual disk.

Sets the ACL setup for a Client for a
virtual disk in AP hardware.

(Gets Class of Service for a virtual disk
from the repository.

Sets Class of Service for a virtual

disk in AP hardware.

(Gets Class of Service for a Client for a
virtual disk from the repository.

Sets Class of Service for a Client for a
virtual disk in AP hardware.

Sets the status of a virtual disk. The
state applies to all Clients on a virtual
disk. (enable, disable, quiescent).

Sets the status of a virtual disk for a
Client in AP hardware.

RI GetStatsCollect onDirectiveVD vaVendor Gets the statistics collection directive

for a virtual disk from the repository.

AP SetStatsCollectionDirectiveVD vaVendor Sets the statistics collection for a virtual

RI_GetVDStorageSegment_vaVendor

AP_SetVDStorageSegment_vaVendor

RI_GetVDStorageExtent_vaVendor

AP_SetVDStorageExtent_vaVendor

Storage Services Configuration

disk in AP hardware.

Gets the map of a specific storage
segment (1n 1D1ISX terminology
allocation) for a virtual disk from the
repository.

Sets the map of a specific storage segment

for a virtual disk 1n the acceleration
path. This API could be used to replace

part of the map of a VD 1n the accelerated

path at allocation granularity. If the
supplied allocation 1s immediately
following the currently used allocation
numbers of a VD (l.e., it 1s not present
in the acceleration path) then this is
interpreted as extending the size of a VD.
Gets the map of a specific storage extent

within an allocation for a virtual disk from

the repository.
Sets the map of a specific storage extent
within an allocation for a virtual disk n

the acceleration path. This API could be
used to replace part of the map of a VD

in the accelerated path at the storage
extent granularity.

40

This group of APIs deals with configuration related to
various storage services applications like mirroring, snap-

shot, on-line migration, dynamic multi-path etc. This con-
figuration group may involve more than one virtual disks. s

For example, establishing a mirror virtual disk for another

virtual disk 1s done through an API 1n this group.

The prefixes used by this group of APIs are

SSRI (Storage Services Repository Interface) and

SSAP (Storage Services Accelerated Path). 50

SSRI GetlOPlan vaVendor

SSAP_ModifyIOPlan_vaVendor

For a given virtual disk, the API re-

turns the list of other virtual disks
that are associated with it in order to
implement the currently configured 55

storage services on the given

virtual disk. For example, 1f for a
virtual disk VD-A, there are two
mirrors VD-A-m1 and VD-A-m?2,
then this API will return a list giving

SSAP_SetlOPlan

I/O Plan |

-continued

the identifications of VD-A-ml and
VD-A-m2 along with the information
that they are both mirror devices of
VD-A.

vaVendor For a given virtual disk,
with the result of the

API SSRI GetIlOPlan vaVendor,

this API will set up the 110 plan for
the given virtual disk within the
accelerated path.

Modifies an existing I/O plan for a
virtual disk 1n the accelerated path.
For example, to remove the mirror
VD-A-m1 from the virtual disk
VD-A, this API will need to be used.

Fxception Handling Configuration

The APIs 1n this group provide configuration related to
handling of exceptions 1n an I/0 plan in the accelerated path.

The APIs are prefixed with PERI (Plan Exception Reposi-

tory Interface) and PEAP (Plan Exception Accelerated Path).

PERI GetlOPlanParam vaVendor

Gets the value of a given parameter from the
repository for a given I/O plan component.
For example, the time-out value for an I/O to
a mirror virtual disk. The list of parameters

will be defined during the course of the
implementation as needs are identified.

US RE47,501 E

-continued

PEAP_SetlOPlanParam_vaVendor This API will set up the value of a given parameter
in an IO plan within the accelerated path.

PEAP_IOPlanContinuationMask vaVendor The API sets a mask in order to determine if the
[/O plan execution for an I'O should continue 1n
case of failure of an IO plan component

PEAP_IOPlanSuccessMask vaVendor The API sets a mask in order to determine if the
[/O from a client on a virtual disk 1s to be reported
as a success or failure. For example, in one storage
management environment, 1t may be set so that IO
to all mirrors 1n a plan must succeed in order to
report success to an I/O client. But, if the virtual
disk exposed to the client 1s based on a RAID-5
device, then a determination could be made to
succeed the client /O even if all the mirrors in
the I/O plan fail

PEAP_IOPlanlogMask vaVendor he API sets up a mask in order to determine which
I/O components of an I/O plan need to be logged
in case of failure. Also provided in this mask is
information regarding whether the original data
needs to be logged or not. For example, 1n case
of a failure of a replication component - i one [/O
plan, it may be decided

PEAP_ VDDeactivateMask vaVendor The API sets up a mask 1n order to determine 1f
failure of an I'O component results in making a
virtual disk unavailable to the clients. The client
access 1s resumed only when the status of the virtual
disk 1s modified from the control path software

10

CP-AP Shared 1I/O Plans a note about ownership of an I/O plan. At any point 1n
The 1/O APIs provide the facility for dealing with 1/Os time, an I/O plan 1s either owned by the accelerated path

that are generated in the acceleration path and then handled

hardware or the control path software. By detfault the APIs
30 deal with the I/O plans that are not owned by the accelerated

through the control path 1n case of I/O exception. These APIs path. The APIs that deal with 1/O plans owned by the

are prefixed with I10. accelerated path are suflixed with Inap.

[0 GetPlan vaVendor

[0 GetPlanVD vaVendor

[0_GetPlanVDAIIInapva_vaVendor

I0_ChgPlanVDOwnlnap_vaVendor

IO ResubmitPlan vaVendor

IO AbortPlan vaVendor

[0 SubmutPlan vaVendor

[I0_AddDivertRange_vaVendor

I0_RemoveDivertRange vaVendor

IO PlanStatusDecode vaVendor

Gets the first I/O plan that was sent from the
accelerated path to the control path software.
Gets the first I/O plan for a virtual disk that was
sent from the accelerated path to the control path
software.

Gets a list of all the outstanding I/O plans for a
virtual disk 1n the accelerated path. These 110
plans have not yet encountered any exception.
Based on a parameter, the owner of these plans is
either kept unchanged or changed to the control
path software as part of this list generation.
Change the owner of an I/O Plan from the
accelerated path to the control path.

Control path software puts back an I/O plan after
doing necessary handling of the exception(s) in
the I/O plan.

Aborts an /O plan.

For data movement from one virtual disk to
another virtual disk, the control path

software may generate an I/O plan itself and
submit it to the accelerated path with this API.
For a given virtual disk, add a block range to

the acceleration path so that I'Os 1mmvolving

the block range are diverted to the control path
software.

For a given virtual disk, remove a previously
specified block range from the acceleration

path.

Decodes the processing status of the 110 plan
components and provides the next I/O component

on which exception occurred

US RE47,501 E

11
AP Pass-Through I/O Plans

These APIs are used to create I/O plans from the control
path and send it to the devices 1n a passthrough mode

through the acceleration path. These APIs are prefixed with
IOP.

[OP_Create]lOPlan_vaVendor This creates a new 10 plan, which

can further be filled with IO
commands

An JO 1s added to the JO plan
The mformation of an JO 1s
changed

Returns the error code for a given
IO 1n the IO plan

Re-initializes the IO plan

This releases the IO plan resources
If user wants to send down the
payload in the form of SGL, he
should build the SGL on the
256-byte memory area provided by
this API

Free the above-allocated SGL
buffer

[OP_AddIO_vaVendor
[OP_ChangelO_vaVendor

IOP GetEirorCode vaVendor

[IOP_RelnitlOPlan_vaVendor
[IOP_DestroyIOPlan_vaVendor
[IOP_AllocPayIdSGLBuf_vaVendor

[IOP_FreePayldSGLBuf vaVendor

Devices Discovery and Management

The following APIs are related to devices discovery and
management.

ISCSI Management APIs

ISCSIAPI_Get Global_Params Gets the global ISCSI
parameters from the repository.
Gets the Target List from the
repository.

Gets the mformation for a Target
from the repository.

Gets the Initiator List for a VD
from the repository.

Gets the Initiator List for a
Target from the repository.

Free the allocated buffer.

ISCSIAPI Get Target List
ISCSIAPI _Get_Target_Info
ISCSIAPI_Get_Initiator_List VD
ISCSIAPI Get Initiator List Target

UA FreeBuffPointer vaVendor

CP-AP Transaction Management

These APIs are used to provide a transaction management
tacility for updating the shared data structures between the
control path and the acceleration path 1n a way that preserves
the mtegrety of the modified data with respect to 1ts use by
multiple processors.

These APIs are prefixed with TXCP for the control path
part and TXAP for the acceleration path.

Event Handling,

In case of any exception while processing an I/O from a
client according to an I/O plan, the complete I/O plan along
with the data 1s made available to the control path software.
The APIs 1in this group provide the facilities to decode
information from the I/O plans. Also, this API group pro-
vides APIs for determining the recipients of the exception
information and APIs for sending the exception information.

The APIs 1n this group are prefixed with EHRI (Event
Handling Repository Interface) and EHAP (Event Handling
Accelerated Path).

EHAP Register EventHandler vaVendor This API registers a
function that 1s called
for a particular type of
event.

This API un-registers the

event handler.

EHAP_ UnRegister EventHandler vaVendor

5

10

15

20

25

30

35

40

45

50

55

60

65

12

-continued

EHRI_EventReportingSetup_vaVendor This API sets up the
infrastructure for the
control path software for
reporting events.

This API sends the event
to whoever has registered

for recerving the event.

EHRI SendEvent vaVendor

Performance and Statistics

This API group provides access to various performance
related counters and values 1n the accelerated path of the
Storage Virtualization Engine. The API group 1s prefixed
with PSRI (PerformanceStatisticsRepositorylnterface) and
PSAP (PerformanceStatisticsAcceleratedPath).

PSRI_UpdateVDStats_vaVendor Updates all the statistics in the
repository for a given virtual disk
Gets all the statistics for a given
virtual disk from the accelerated
path hardware to a designated area
1N memory

Resets all statistics for a virtual
disk 1n the accelerated path

Gets the map size for a virtual disk

Gets the full memory requirement
for the virtual disk in the SVE

PSAP_ CopyVDStats_vaVendor

PSAP ResetVDStats vaVendor

PSAP GetMapSi1zeVD_vaVendor
PSAP GetMemReqVD_vaVendor

Utility APIs

These APIs will provide utility functions and are prefixed
with UA. Two examples of the API 1n this category are:

This will free all buflers related to
an API that requires a parameter of
pointer to an array of pointers

This will free the buffer pointed by
the pointer

UA_FreeBuffPtoPArray_vaVendor

UA FreeBuffPointer vaVendor

Briefly, the following changes need to be implemented 1n
an existing virtualization environment to utilize VAAPI with
hardware acceleration. The primary driver will supports API

calls, including the verbs and formats, as specified 1n
VAAPI. The following identifies several of the important

areas ol impact.

If the Information Repository of the existing application
1s not CIM-based, the vendor will either need to convert the
existing SNMP or proprietary formats into the CIM object
model so that the current VAAPI implementation can get
required information from the CIM or the vendor needs to
implement the repository interface components of VAAPI
on top of the proprietary repository.

The hardware acceleration component may not be able to
handle certain error conditions. These error conditions need
to be forwarded to the existing virtualization engine (soft-
ware-based) to process and report them. The vendor needs to
provide entry points mnto the existing code to allow this
access

The data path and control path of the existing software-
based virtualization engine will also need to support the
hardware-based accelerated data path through VAAPI. This
will require changes to the control path and data path
components of the virtualization engine

One embodiment of the mvention 1s implemented as a
program product for use with a computer system such as, for
example, the storage network environment as shown 1in
FIGS. 4 and 5 and described below. The program(s) of the
program product defines functions of the embodiments
(including the methods described below with reference to

US RE47,501 E

13

FIGS. 6 and 7 and can be contained on a variety of
signal-bearing media. Illustrative signal-bearing media
include, but are not limited to: (1) information permanently
stored on non-writable storage media (e.g., read-only
memory devices within a computer such as CD-ROM disks
readable by a CD-ROM drive); (11) alterable information
stored on writable storage media (e.g., floppy disks within a
diskette drive or hard-disk drive); or (111) information con-
veyed to a computer by a communications medium, such as
through a computer or telephone network, including wire-
less communications. The latter embodiment specifically
includes information downloaded from the Internet and
other networks. Such signal-bearing media, when carrying
computer-readable 1nstructions that direct the functions of
the present invention, represent embodiments of the present
invention.

Further, the program product can be embedded within a
processor such as a storage network processor. The proces-
sor may be embodied 1n an adapter card of a server or other
type of computer work station.

In general, the routines executed to 1mplement the
embodiments of the invention, whether implemented as part
ol an operating system or a specific application, component,
program, module, object, or sequence of instructions may be
referred to herein as a “program”. The computer program
typically 1s comprised of a multitude of instructions that waill
be translated by the native computer into a machine-readable
format and hence executable instructions. Also, programs
are comprised of variables and data structures that either
reside locally to the program or are found in memory or on
storage devices. In addition, various programs described
hereinafter may be 1dentified based upon the application for
which they are implemented in a specific embodiment of the
invention. However, 1t should be appreciated that any par-
ticular program nomenclature that follows 1s used merely for
convenience, and thus the invention should not be limited to
use solely i any specific application identified and/or
implied by such nomenclature.

While the foregoing 1s directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereol, and the scope thereof 1s determined by the
claims that follow.

The 1invention claimed is:

1. A storage virtualization engine, the engine comprising:

one or more processors configured to execute a software
sub-engine having a control path that includes control
functions for I/O requests to a virtual storage;

a virtualization repository that includes a havdware-
implemented mapping table that provides a mapping
from the virtual storage to physical storage;

a hardware sub-engine having an accelerated path;

an mterface coupling the soiftware sub-engine with the
hardware sub-engine|,] and wherein the interface
includes one or more processors configured to execute
one or morvre interface functions including:

[whereby] an interface function to pass a function [is
passed] from the hardware sub-engine to the soft-
ware sub-engine in response to an exception condi-
tion; and

an interface function to pass, from the software sub-
engine to the hardware sub-engine for execution
using the accelerated path, one or more control
Junctions designated to be high-usage functions.

2. The [system] storage virtualization engine of claim 1,

turther comprising:

10

15

20

25

30

35

40

45

50

55

60

65

14

the software sub-engine creates a new /O plan which 1s
passed from the software sub-engine to the hardware
sub-engine.

3. The storage virtualization engine of claim 1, wherein
the software sub-engine is configured to create an I/O plan
and pass the I/0O plan to the hardware sub-engine.

4. The storage virtualization engine of claim I, wherein
the hardware sub-engine is configured to process a first set
of exception conditions and the software sub-engine is
configured to process a second set of exception conditions,
wherein the second set is different from the first set.

5. The storage virtualization engine of claim 1, wherein
the control path is configured to handle configuration man-
agement and errvorv vecovery.

6. The storage virtualization engine of claim 1, further
comprising a management application coupled to the soft-
ware sub-engine, whevein the control path is configured to
process commands from the management application.

7. The storage virtualization engine of claim 1, wherein
the storage virtualization engine is configured to receive an
I/0 request and determine an 1/0O execution plan for the I/O
request.

8. The storage virtualization engine of claim 7, wherein
the havdware sub-engine is configured to execute the 1/0
execution plan.

9. The storage virtualization engine of claim §, wherein,
in vesponse to a detevmination that the I/O execution plan
cannot be executed by the havdware sub-engine, the soft-
ware sub-engine is configured to execute the 1/0 execution
plan.

10. The storage virtualization engine of claim 1, wherein
the accelerated path is configured to process a selected 1/0
operation in the absence of an exception condition, wherein,
in vesponse to the presence of the exception condition, the
control path is configured to process the selected 1I/0 opera-
tion.

11. The storage virtualization engine of claim 1, wherein
the hardware mapping table is updatable dynamically and
without interruption of 1/0 events.

12. An apparatus, comprising:

a processor; and

a computer-readable storage medium having program

instructions stoved thereon that are executable by the
processor;

wherein the processor and the computer-readable storage

medium implement a storage virtualization engine, the
engine comprising:
one or more processors configured to execute a soft-
ware sub-engine having a contvol path that includes
control functions for I/0 requests to a virtual stor-
age;
a virtualization repository that includes a hardware-
implemented mapping table that provides a mapping
from the virtual storage to physical storage;
a hardware sub-engine having an accelerated path;
and
an interface coupling the software sub-engine with the
havdware sub-engine and wherein the interface
includes one or morve processors configured to
exectlite one or movre interface functions including:
an interface function to pass a function from the
hardware sub-engine to the software sub-engine in
response to an exception condition; and
an interface function to pass, from the software
sub-engine to the havdware sub-engine for execu-

US RE47,501 E

15

tion using the accelerated path, one or more
control functions designated to be high-usage
Junctions.

13. The apparatus of claim 12, wherein the processor is
included in an adapter card configured for installation in a
server.

14. The apparatus of claim 13, wherein the computer-
readable storage medium is included in the processor.

15. The apparatus of claim 12, wherein the software
sub-engine is configured to create an I/O plan and pass the
/0 plan to the harvdware sub-engine.

16. The apparatus of claim 12, wherein the hardware
sub-engine is configured to process a first set of exception
conditions and the software sub-engine is configured to
process a second set of exception conditions, wherein the
second set is diffevent from the first set.

17. The apparatus of claim 12, wherein the hardware
sub-engine is implemented via a specialized circuit.

18. The apparatus of claim 12, wherein the storage
virtualization engine is configurved to receive an I/O request
and determine an 1/0 execution plan for the I/O request,
wherein the hardware sub-engine is configured to execute
the I/O execution plan, and wherein, in response to a
determination that the I/O execution plan cannot be
executed by the havdware sub-engine, the software sub-
engine is configured to execute the 1I/0O execution plan.

19. The apparatus of claim 12, wherein the accelerated
path is configured to process a selected I/0 operation in the
absence of an exception condition and wherein, in vesponse
to the presence of the exception condition, the control path
is configured to process the selected I/O operation.

20. The apparatus of claim 12, wherein the storage
virtualization engine is configured to implement at least one
of a Common Information Model (CIM) interface, a Web
Based Enterprise Management (WBEM) interface, or a
Simple Network Management Protocol (SNMP) interface.

21. The apparatus of claim 12, wherein the hardware
mapping table is updatable dynamically and without inter-

ruption of 1/0 events.
22. A processor included in an adapter cavd configured
for installation in a server, the processor comprising:
a storage virtualization engine, the engine comprising:
one or movre processors configured to execute a soft-
ware sub-engine having a contvol path that includes
control functions for I/0 requests to a virtual stor-

age;

10

15

20

25

30

35

40

16

a virtualization repository that includes a hardware-
implemented mapping table that provides a mapping
from the virtual storage to physical storage;
a hardware sub-engine having an accelerated path;
and
an interface coupling the software sub-engine with the
havdware sub-engine and wherein the interface
includes one or more processors configured to
exectlite one or more interface functions including:
an interface function to pass a function from the
hardware sub-engine to the software sub-engine in
response to an exception condition; and
an interface function to pass, from the software
sub-engine to the havdware sub-engine for execu-
tion using the accelervated path, one orv more
control functions designated to be high-usage
functions.

23. The processor of claim 22, wherein the software
sub-engine is configured to create an 1/O plan and pass the
/0 plan to the hardware sub-engine.

24. The processor of claim 22, wherein the hardware
sub-engine is configured to process a first set of exception
conditions and the software sub-engine is configured to
process a second set of exception conditions, wherein the
second set is diffevent from the first set.

25. The processor of claim 22, wherein the storage
virtualization engine is configurved to receive an I/O request
and determine an 1/0 execution plan for the I/O request,
wherein the hardware sub-engine is configured to execute
the I/O execution plan, and wherein, in response to a
determination that the I/O execution plan cannot be
executed by the harvdware sub-engine, the software sub-
engine is configured to execute the I/0O execution plan.

26. The processor of claim 22, wherein the accelerated
path is configured to process a selected I/O operation in the
absence of an exception condition and wherein, in response
to the presence of the exception condition, the control path
is configured to process the selected 1I/0O operation.

27. The processor of claim 22, wherein the hardware
mapping table is updatable dynamically and without inter-
ruption of 1/0 events.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

