USOORE47364E

(19) United States

12y Reissued Patent (10) Patent Number: US RE47.364 E
Hodzic et al. 45) Date of Reissued Patent: Apr. 23, 2019

(54) METHOD AND SYSTEM FOR PROTECTING (56) References Cited
AGAINST THE EXECUTION OF

UNAUTHORIZED SOFTWARE U.S. PATENT DOCUMENTS

4,288,659 A 9/1981 Atalla

(71) Applicant: VUDU, Inc., Santa Clara, CA (US) 4,578,530 A 3/1986 7Zeidler
5,410,343 A 4/1995 Coddington et al.
(72) Inventors: Edin Hodzie, Pleasanton, CA (US); 5,509,120 A * 4/1996 Merkin et al. 726/24
Andrew M. Goodman, Portola Valley, g’gjg’gg i Siiggg %)ZE:H@ et al.
CA (US); Prasanna Ganesan, Menlo C (Continued)
Park, CA (US)
(73) Assignee: VUDU, INC., Sunnyvale, CA (US) OTHER PUBLICATIONS
(21) Appl. No.: 15/071,973 I;Tlt?/lsl;_ngI;??le:ﬁce Action dated Jun. 3, 2011 for U.S. Appl. No.
(22) Filed: Mar. 16, 2016 (Continued)
Related U.S. Patent Documents Primary Examiner — Minh Dieu Nguyen
Reissue of: (74) Attorney, Agent, or Firm — Bryan Cave Leighton
(64) Patent No.: 3,677,142 Paisner [.I.P
Issued: Mar. 18, 2014
Appl. No.: 13/538,430 (57) ABSTRACT
Fﬂe_d: _ Jun. 29, 2012 In accordance with an embodiment of the present invention,
U.s. AppllC‘atIOll'SZ o a client device 1s protected against the execution of unau-
(63) Continuation ot application No. 11/413,392, filed on thorized software. The client includes a code authentication
Apr. 27, 2006, now Pat. No. 8,239,686. process that verifies the integrity of executable code, by

generating and comparing a first hash value of the execut-

(51) Int. CI. able code with a known hash value of the original code.

GOor 12714 (2006'03") Furthermore, during boot-up, the client mitializes a CPU

GO6F 21/51 (2013'0:“) exception vector table with one or more vector table entries.

GO6F 21/57 (2013'03*) One or more, or all, of the vector table entries direct the CPU

GO6F 21/52 (2013.01) to execute the code authentication process prior to executing
(52) US. ClL an event handler when an exception event occurs. Conse-

CPC . Goor' 21/51 (2013.01); GO6t 21/52 quently, the code authentication process 1s virtually guaran-

(2013.01); GOGF 21/575 (2013.01) teed to execute, thereby protecting against the execution of

(58) Field of Classification Search unauthorized code.

CPC ... GO6F 21/10; GO6F 9/44589; HO4L 63/1416

See application file for complete search history. 20 Claims, 7 Drawing Sheets

ﬁ. wﬁwmﬁu RERTINE AN

F.l-“l.i-"l.l‘-\.l.li-\.l.l‘-ul.“l.l.”l.l.”H‘uumﬁ‘\h‘dﬂ‘w‘w‘wuu‘lﬂ‘& Al = R R TR A g R S gt et o]t Y

;: fﬁ}fm ﬂ{iw e LA "":;rL %!WL"‘ big f" fih —
; *“H’i"'ﬁﬁﬂ&é %&-m.s ﬂ;m BTG A0

FLoTRL PEE TEE P Tt ALr T ST T RTINS T ET AL T T

'"";
fﬁ f.u t‘i&*ﬁ% }‘*}T BEssl '*ef. iRt “’“é*“éf ,ﬂi i g

. -.-....-n,..-.-....-.-mwd

;.., L P HARLIEE ROUTINE A i,.
&‘}Eﬁfj GOO5 P HANDLIMG FOUTIRE AR e

5 £ E8S J!a:"i& NE {L"}iﬁi‘aw 'iﬁﬂ*w-*

: " ey e m-nﬂp-u-qu'.— nqn] }E :i: E:
f i BT ML mah Hu: B AT s ; :
= : ot T T e P T ™ W-ﬁmmﬂhﬁﬂw

i A I HANTLING SOUTHE ARG ;
fanmona
E_ {ﬁ&jﬂ}}ﬁ

TR 5%‘3‘5

-k =

-
e F\.-l e d b mdmmal

O S— el HAMDLING_ROUTINE_ADY

%—um.n.,-—-\.m.ﬂll-\.mmmm.ﬂﬁ«mmmmmmm*mmmmmﬁm—hhﬂm e e A, e T B

e

A T HER B TTH
BRI

il S T S e YRR Ll Rl L R

LEr A iy iﬁ ?‘I.ﬂ"i.f’ ‘ﬁL H’-f"“' f’“’*“““*’*
FLRE RIS L 4‘2; R ENED A n 3*“**”;

B H :-n.n-n-:-:-u- [Tk '\-:'\-:-n-u-q ﬂhb

.Eﬁgﬁfﬁm {hl- E"‘"{EJ hfﬂ‘ Jﬁn i mm.m 1111111 ;

Jham 1 chpk SRR 1y k IR 1 hpk INEE 1 KL INEE 1 AL EKEE B CRAL TNEE | FRAL TKEE | FLAL TREE | FLAL TREE A FLAL TREE g FLAL KRN A FLAL §REE Tl

el HANDILING ROLTING AG2

ha [IRERL L F] [E'FN RE T IFTINERE NT LE NI RVENERE TR 1F [EFT RETH BENENERNT L F BB ETEE RETE IFTRENENL RE NI BRI (L1

e ﬁﬁ?‘*ﬂ}i Mir- r&{.ﬂj *31:" f‘ﬁ*‘*ﬂ :

rﬂ ll “ur A b e AS A]

B IR T e R T R R T e T T T T T T T S T T T AT T

US RE47,364 E

Page 2
(56) References Cited 2006/0031537 A1 2/2006 Boutboul et al.
2006/0078307 Al 4/2006 Kelly
U.S. PATENT DOCUMENTS 2006/0129795 Al* 6/2006 Bulusu GOG6F 9/4401
713/2
6,115,816 A 9/2000 Davis 2006/0136597 Al 6/2006 Shabtai et al.
6,154,633 A 11/2000 Landgraf et al. 2006/0143476 Al 6/2006 McGovern
6.263.504 Bl 7/2001 Ebisawa 2006/0174004 Al 8/2006 Asthana
6.289.455 Bl 9/2001 Kocher et al. 2006/0190615 Al 8/2006 Panwar et al.
6,408,386 B1* 6/2002 Hammond GOGF 9/30181 2006/0200413 Al 9/2006 Kessel et al.
710/269 2007/0016832 Al1* 1/2007 Welss ...ovvvviiviiiinneennnn, 714/100
6,424,714 Bl 7/2002 Wasilewski et al. 2007/0101399 Al 52007 Yun
6,625,729 B1* 9/2003 Angelo et al. 713/2 2007/0157281 Al 7/2007 Ells et al.
6.687.683 Bl 2/2004 Harada et al. 2007/0245392 Al 10/2007 Shen
6715085 B2 3/2004 Foster et al. 2008/0091840 Al 4/2008 Guo et al.
6.804357 Bl 10/2004 Ikonen et al. 2008/0148323 Al 6/2008 White et al.
6.804.719 B1 10/2004 Cabrera et al. 2008/0267406 Al1* 10/2008 Asokan et al. 380/277
6.961.858 B2 11/2005 Fransdonk 2009/0006583 Al 1/2009 Kindle et al.
6,993,132 B2* 1/2006 Khandelwal et al. 380/232 2009/0019131 Al 12009 Ganesan
7,003,672 B2* 2/2006 Angelo et al. 713/189 2009/0300673 Al 12/2009 Bachet et al.
7.027.460 B2 4/2006 Iyer et al 2010/0005496 Al 1/2010 Ellis et al.
7069332 B2 6/2006 Shibata et al. 2010/0023976 Al 1/2010 Coles et al.
7.134,138 B2 11/2006 Scherr
7,168,065 B1* 1/2007 Naccache et al. 717/127
7,228,432 B2* 6/2007 Angelo et al. 713/182 OTHER PUBLICATIONS
P20 B, [Z00T Sueyoshi et al 6/, Final Office Action dated Dec. 27,2011 for U.S. Appl. No. 11/558,872.
7:440:574 B2 10/2008 Hanks et al. Final Oflice Action dated Mar. 19, 2009 for U.S. Appl. No.
7475254 B2 1/2009 Craft 11/465,434 18 pages.
7,496,756 B2 2/2009 Oka et al. Non-Final Office Action dated Oct. 26, 2010 for U.S. Appl. No.
7,631,356 B2* 12/2009 Hatlelid GO6F 21/52 11/368,306 16 pages.
000,060 By 3011 Hods 717127 Notice of Allowance dated Oct. 28, 2010 for U.S. Appl. No.
] . OQZ1C
2002/0114465 Al 82002 Shen-Orr et al. 11/357,860 30 Pages.
2002/0154897 Al 10/2002 Hoshen et al Supplemental Notice of Allowance dated Jan. 28, 2011 for U.S.
2002/0184489 Al 12/2002 Mraz Appl. No. 11/357,860.
2003/0084298 Al* 5/2003 Messerges et al. 713/176 Final Oflice Action dated Apr. 1, 2010 for U.S. Appl. No. 11/558,872
2003/0120923 Al1* 6/2003 Gilman et al. 713/170 22 pages.
2003/0208765 Al 1172003 Urdang et al. Final Office Action dated Apr. 27, 2010 for U.S. Appl. No. 11/357,860.
Sooaooaaiso AL 22000 Jennings et al Final Office Action dated Mar. 26, 2010 for U.S. Appl. No.
1 d C .
2004/0088558 Al 5/2004 Candelore 11/368,306 15 Pages.
2004/0003507 Al* 5/2004 Courcambeck et al 713/193 Non-Final Office Action dated Sep. 20, 2010 for U.S. Appl. No.
2004/0148634 Al 7/2004 Arsenault et al. 11/558,872 12 pages.
2005/0015814 A1 1/2005 Yun Non-Final Office Action dated Sep. 1, 2009 for U.S. Appl. No.
2005/0094724 Al 5/2005 Lee 11/558,872 19 pages.
2005/0108414 Al 52005 laylor et al. Non-Final Office Action dated Aug. 6, 2009 for U.S. Appl. No.
2005/0114659 Al 5/2005 Klein 11/357.860 12 pages.
%882?811 ég;gg i g%ggg ;ﬁ;ﬁm et al. Non-Final Office Action dated May 21, 2009 for U.S. Appl. No.
T 11/368,306 16 pages.
2005/0160308 Al 7/2005 Elcock et al. k .
2005/0177853 Al 2/2005 W(i:l?icamz ot al Non-Final Oflice Action dated Sep. 4, 2008 for U.S. Appl. No.
2005/0210525 A1 9/2005 Carle et al. 11/465,434 14 Pages.
2005/0262546 Al 11/2005 Murase et al. | |
2006/0008256 Al 1/2006 Khedouri et al. * cited by examiner

US RE47,364

Sheet 1 of 7

P P ey R eyt e 0 oy el ey e |y Lt

Apr. 23, 2019

U.S. Patent

e e e e e e o e

R

SRl sl s Pl R s et Sl s s

IR

Zrere

I
i
it
1
o T A A A2 L) L S L Ao L LA b L o0 sl b L A T A

s e S . T - =2 e e e S e B L e B | e (ot e o m b ot e R e o e

i mgg m % M %%

e e e e L P L e D

| 0L SNLLNOY ONITONVH |
| 60 SNILNON ONIANVH |
| 80 3NILNOYH ONITONVH |
% INLLNON ONITONVH |

S % “INILNOY DNFIC ﬁ%
wm %ﬁmg %mmﬁ%

US RE47,364

Sheet 2 of 7

Apr. 23, 2019

U.S. Patent

L Lo

o e e e S e e T S

--W.N-‘E?-'?W“."E

wRERIEd
NIV OLINBHANY

i@m% |

......

US RE47,364

Sheet 3 of 7

Apr. 23, 2019

U.S. Patent

LA SOMNOLL ALON

. AN

%mmmmﬂw i Emm&m%m

...............

b Ui

LT T T e T P R e e P e D P T R T N e i e b i el eyt) mi b i =";.:Z;-
:E-.::--:-.::.- Rk __- Lok, ..::--.-:-I:I - Lot et b bR - EaRab bkl ,--_ E"'::
: ; : I ; 4 h : o ‘F - .
OE [, E v R
| P ol rl I .
X [: . ! I |
h S, : . 5
X L3

US RE47,364

Sheet 4 of 7

Apr. 23, 2019

U.S. Patent

Al " " H o A,

ﬁ % % %@w % "

wﬁm ﬂwmﬁﬁ, ﬁ%

e e e e g e g e e 0 e g o e =k b e e Py o o A

mam%ﬁ%
mﬁ@wmm% WO OX

e LT

L] A : E F 1]
bt . . ° . ;
W s & 2 B A EP 1P L d i
1 . LA = L 5
o o .l. o = r = - e - =] 3 I
e L o '- y -] ! u
= e iy B 1 1 X [- x. 1 !
- R A o ¥ * LS s . : - !
i T o -; T OE i) 3 M L e :
i S £ E & F ; E} A ;
) . e e T T -
:] E
i 5 | X I
L 3 : L
i I L, 3
L1 - o
=) Sy E E H3
o Fe, at
" oy ¥ .l
- e et e A
i
T LT S T 20 2 A A LA T L A A o R I TR AL 2, TITER L= E.
D R e A e e T S T e T e T T e T S T e AT DT e e e R T T T e T S T e T e T T e R e P T T T T T T T T S T e T T o e S e e S R e T T S =y o e e T e o i e e o e Ve e =

U.S. Patent Apr. 23,2019 Sheet 5 of 7 US RE47.,364 E

e D L

o — .

U.S. Patent Apr. 23, 2019 Sheet 6 of 7 US RE47.364 E

US RE47,364

Sheet 7 of 7

Apr. 23, 2019

U.S. Patent

US RE47,364 E

1

METHOD AND SYSTEM FOR PROTECTING
AGAINST THE EXECUTION OF
UNAUTHORIZED SOFTWARE

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS REFERENCE TO RELATED
APPLICATIONS

[This Application] The present application is a reissue
application of U.S. Pat. No. 8,677,142 issued Mar. 18, 2014
from U.S. patent application Ser. No. 13/538,430 filed Jun.
29, 2012, which 1s a Continuation of U.S. patent application
Ser. No. 11/413,392, filed Apr. 277, 2006, now U.S. Pat. No.
8,239,686, the aforementioned priority [application] app!i-
cations being hereby incorporated by reference in [its] ¢4eir
entirety for all purposes.

TECHNICAL FIELD

The present invention relates generally to protecting the
integrity of a trusted client, and in particular, to a method and
system for protecting against the execution of unauthorized
software on a trusted client.

BACKGROUND

The Internet has shown great promise as a means for
delivering digital content (e.g., video and audio content,
such as television shows, movies and songs). One of the
advantages of network-based digital content delivery sys-
tems 1s the ability to deliver digital content to users on an
on-demand basis (e.g., video on demand, or VOD). How-
ever, content providers have been slow to make content
available via the Internet, 1n large part because of security
concerns. Specifically, content providers fear that, once their
digital content 1s available on the Internet, hackers will
circumvent any security mechanisms used to protect their
digital content and then freely distribute the content. Con-
sequently, system developers are continuously looking for
ways to secure digital content and 1mprove the systems by
which digital content 1s delivered over computer networks.

One of the ways that system developers attempt to secure
digital content 1s to develop trusted clients that cannot be
modified by hackers. For example, many digital content
delivery systems utilize trusted clients to access, or play,
digital content. One of the ways that hackers attempt to
circumvent digital content security measures 1s to modily
the trusted client device that 1s used to access, or play, the
digital content. In particular, hackers may attempt to modity
existing software, or introduce new software, on the trusted
client. Accordingly, hackers may use the modified or new
soltware processes to analyze and/or probe the trusted client
in an effort to discover encryption keys, or otherwise cir-
cumvent security measures. Consequently, it 1s desirable to
prevent the modification, or introduction of new, executable
code on a client.

SUMMARY OF THE DESCRIPTION

A method and system for protecting against the execution
of unauthorized software are disclosed. According to one

10

15

20

25

30

35

40

45

50

55

60

65

2

embodiment of the invention, a client device 1s protected
against the execution of unauthorized software. The client
includes a code authentication process that verifies the
integrity of executable code, by generating and comparing a
hash value of the executable code with a known hash value
of the authentic executable code. Furthermore, during boot-
up, the client mitializes a CPU exception vector table with
one or more vector table entries. One or more, or all, of the
vector table entries direct the CPU to execute the code
authentication process prior to executing an event handler
when an exception event occurs. Consequently, the code
authentication process 1s virtually guaranteed to execute,
thereby protecting against the execution of unauthorized
code.

Other objects, advantages and features of the present
invention will become apparent upon examining the follow-
ing detailed description of an embodiment thereof, taken 1n
conjunction with the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention will be readily understood by reviewing the
following detailed description 1n conjunction with the
accompanying drawings, in which like references indicate
similar elements and in which:

FIG. 1 1llustrates a conventional CPU exception vector
table;

FIG. 2 illustrates a CPU exception vector table, according,
to an embodiment of the invention;

FIG. 3 illustrates a client device mn a power-oll state,
according to one embodiment of the invention;

FIG. 4 1llustrates a client device in a power-on state,
according to one embodiment of the invention;

FIG. 5 illustrates a method, according to an embodiment
of the mvention, for protecting against the execution of
unauthorized software:

FIG. 6 1llustrates a client-server based digital content
delivery system, in which a client device according to an
embodiment of the invention may be utilized; and

FIG. 7 illustrates a distributed peer-to-peer digital content
delivery system, 1in which a client device according to an
embodiment of the invention may be utilized.

DETAILED DESCRIPTION

A method and system for protecting against the execution
ol unauthorized soitware on a trusted client are disclosed. In
the following description, for purposes of explanation,
numerous specific details are set forth 1n order to provide a
thorough understanding of the present invention. It will be
evident to one skilled 1n the art, however, that the present
invention may be practiced without these specific details.
The description and representation herein are the means
used by those experienced or skilled in the art to effectively
convey the substance of their work to others skilled in the
art. In some 1nstances, to avoid unnecessarily obscuring
aspects of the present invention, well-known operations and
components have not been described in detail.

Reference herein to “one embodiment” or “an embodi-
ment” means that a particular feature, structure, operation, or
other characteristic described 1n connection with the
embodiment may be included in at least one implementation
of the invention. However, the appearance of the phrase “in
one embodiment” or the phrase “in an embodiment” 1n
various places 1n the specification does not necessarily refer
to the same embodiment.

US RE47,364 E

3

FIG. 1 illustrates a conventional central processing unit
(CPU) exception vector table 10. As illustrated 1n FIG. 1, the
exception vector table 10 maps an exception vector 1dentifier
(ID) 12 to an exception handling routine 14. When an
exception event occurs 1n a conventional computing system,
the exception vector table 10 1s referenced to determine the
proper event handling routine to execute 1n order to process
the exception event. For example, when the exception event
with exception event identifier “0000 0003 occurs, the CPU
executes 1nstructions i memory 16 representing “HAN-
DLING_ROUTINE_03.” Generally, the exception vector
table 10 1s an essential component of the processing system.
Without 1t, the processing system would eventually grind to
a halt as exceptions occur without proper resolution.

FIG. 2 1illustrates a CPU exception vector table 18,
according to an embodiment of the invention. As illustrated
in FIG. 2, each entry of the exception vector table 18 causes
the central processing unit (CPU) to execute a code authen-
tication process 20 prior to executing an event handling
routine associated with the particular exception vector table
entry. For example, when an exception occurs, prior to
executing the event handler process that 1s associated with
the exception event, the central processing unit (CPU) first
executes software nstructions associated with the code
authentication process 20. If, for example, the exception
event ID 1s “0000 0003, the CPU f{irst executes the code

authentication process, and then executes the event handling
routine “HANDLING ROUTINE AQ003”. This ensures that
the CPU executes the code authentication process each time
an exception event occurs. As proper exception handling 1s
critical to a normally operating client, the code authentica-
tion process 1s virtually guaranteed to execute as exceptions
occur. This makes 1t diflicult, if not impossible, for a hacker
to disable the code authentication process.

FIG. 3 1llustrates a client device 30 1n a power-oil state,
according to one embodiment of the invention. As 1llustrated
in FIG. 3, the client 30 includes a central processing unit
(CPU) 32, coupled by means of a system bus 34 to a memory
36, a non-volatile memory 38, a security processor (or
co-processor) 40, and a network interface 42. In addition, the
CPU 32 1s coupled to a disk storage device 44 by means of
a disk controller 46 and the system bus 34.

In one embodiment of the invention, one or more of the
individual components shown i FIG. 3 may be part of a
system-on-a-chip (SoC). For example, in one embodiment
of the invention, the CPU 32, security processor 40, disk
controller 46, memory controller (not shown), and network
interface 42 may all be part of a SoC. It will be appreciated
by those skilled in the art that the client device 30 may
include a variety of other functional components (e.g., a
display subsystem and/or an additional communication
component) that are not germane to the invention, and
therefore have not been included in FIG. 3.

The disk storage device 44 stores executable code 54 and
a hash table for the executable code 66. In one embodiment
of the invention, the executable code includes, but 1s not
limited to the operating system 56, system applications 58,
and an executable code authentication process 60. The
operating system 56 may be a customized version of any
conventional operating system, such as Linux or Microsoit
Windows®. The system applications 38 will generally be
customized applications that enable the primary functions of
the client device 30, to include the play back of digital
content received over the network interface 42. The execut-
able code authentication process 60 1s a set of instructions,
or a process, that authenticates segments of executable code
when executed by the CPU 32. As described 1n greater detail

10

15

20

25

30

35

40

45

50

55

60

65

4

below, when the system powers on, segments of the execut-
able code are read into memory to be executed by the CPU
32.

It will be appreciated by those skilled i the art that,
depending on the state of the client, the executable code 54
may be a set of instructions stored on disk storage 44, or
alternatively, a process stored in memory and being executed
by the CPU. Furthermore, although the disk storage 44 1s
shown 1n FIG. 3 to include only executable code, 1t will be
appreciated that a portion of disk storage may be utilized to
store digital content (e.g., video and/or audio) as well.

The non-volatile memory 38 includes boot-loader code
62, and a digital signature 64 for the boot-loader code 64.
The boot-loader code 62 includes boot-up instructions that
are executed during a power-on procedure, which enables
the client to load the operating system and enter into an
operating state. As described 1n greater detail below, the
boot-loader digital signature 64 1s a mechanism used for
authenticating the boot-loader code 62. Accordingly, the
authentication mechanism 1s mtended to identify non-con-
forming or unauthorized code before 1t 1s executed, thereby
preventing hackers from modifying existing code, and/or
introducing new code nto the client.

In one embodiment of the invention, during production of
the client 30, the executable code 54 that 1s to be written to
the disk storage device 44 i1s loaded on to a production
server. On the production server, the executable code 54 1s
analyzed, and a hash generator algorithm 1s utilized to
generate a table 66 of hash values corresponding to seg-
ments of the executable code. Accordingly, each hash value
in the hash table 66 represents a digest of a segment of
executable code. Similarly, one or more hash values are
generated for the boot-loader code 62. In one embodiment of
the invention, the hash value for the boot-loader code 1s
encrypted with an encryption key to generate a digital
signature 64. For example, the encryption key utilized to
encrypt the hash value for the boot-loader code may be
shared 1n common with the security processor 40. Accord-
ingly, the security processor 40, utilizing the encryption/
decryption key 72, can decrypt the digital signature to access
the originally generated hash for the boot-loader code 62.

During production of the client, the boot-loader code 62
and the digital signature 64, are programmed into the
non-volatile memory 38. In addition, the hash table 1s stored
in a file on the hard disk. Consequently, after production
when the client 1s 1n use, the system ntegrity authenticator
68 can authenticate the boot-loader code 62 during a power-
on, or boot-up, procedure. Similarly, after boot-up, the
executable code authentication process 60 can authenticate
the executable code 34 by generating a hash value with the
same hash generating algorithm used on the production
server. The generated hash value 1s then compared with the
pre-calculated hash value in the hash table 66. I the hash
values match, 1t can be presumed that the segment of
executable code 1s authentic and original.

The security processor 40, which includes the system
integrity authenticator 48, also includes an encryption/de-
cryption engine 70 and at least one encryption/decryption
key 72. Accordingly, the security processor 40 may provide
the client 30 with a wide variety of security functions or
services. In one embodiment of the invention, the security
processor 40 provides processing power lfor encryption/
decryption tasks that are computationally intensive. For
example, encrypted digital content received via the network
interface 42 may be decrypted by the encryption/decryption
engine 30, 1n real time, before being provided to the display
subsystem (not shown) for display to a user. Accordingly, 1n

US RE47,364 E

S

various embodiments of the invention, the security proces-
sor 40 may have any number of secret keys 1n addition to the
encryption/decryption key 72, and each key may serve a
different purpose.

FIG. 4 1llustrates a client device 30 1n a power-on state,
according to one embodiment of the imnvention. The client
device 30 1s designed such that, when 1t 1s 1mitially powered
on, the CPU 1s held 1n the RESET state, and prevented from
operating. Accordingly, at power-on, the security processor
40 1s enabled. Specifically, the system 1ntegrity authenticator
68 1s enabled to perform an authentication operation on the
boot-loader code 62. In one embodiment of the invention,
the system integrity authenticator 68 authenticates the boot-
loader code by comparing a first hash, generated during the
power-on procedure, with a second hash, generated during
production and programmed 1nto the non-volatile memory
alter being encrypted with an encryption key For example,
the system integrity authenticator 68 generates a hash value
for the boot-loader code by analyzing the boot-loader code
62 1n the non-volatile memory 38. In addition, the system
integrity authenticator 68 reads the boot-loader code digital
signature 64. After reading the digital signature 64, the
system 1ntegrity authenticator 68 utilizes the encryption/
decryption key 72 to decrypt the digital signature 64, result-
ing 1n the original hash value for the boot-loader code 62 that
was generated at the production server. If the two hash
values match, 1t 1s presumed that the boot-loader code 62 has
not been tampered with or changed since being programmed
into the non-volatile memory during production. Accord-
ingly, the security processor 40 then enables the CPU to
access the boot-loader code 62, and begin the boot-up
procedure.

During the boot-up procedure, the operating system 56, or
a portion thereof, 1s loaded into the memory 36 in accor-
dance with the boot-loader instructions 62. In addition, an
exception vector table 74 1s generated and loaded into the
memory 36, along with system applications 38, or a portion
of, the executable code authentication process 60 and the
hash table 66. Before loading the operating system and the
application code, the boot loader also verifies that those files
are authentic by checking their signatures.

In one embodiment of the invention, the exception vector
table 74 causes the CPU to switch contexts, and execute the
executable code authentication process 60, when an excep-
tion event occurs. As described in connection with FIG. 2,
when a particular exception event occurs, the exception
vector table 1s referenced to determine the proper event
handling routine to be executed to process the exception
event. However, prior to processing the exception event, the
exception vector table directs the CPU to execute the code
authentication process. Because the operational “health” of
the client 1s dependent upon the proper processing and
handling of exception events, associating the code authen-
tication process with the exception vector tables virtually
guarantees that the code authentication process 60 will be
executed. This ensures that a hacker 1s not able to disable, or
otherwise render the code authentication process 60 1nop-
erative.

In one embodiment of the invention, the code authenti-
cation process 60 generates a hash value for a segment of
executable code 1 memory, and then compares the hash
value with a pre-calculated hash value from the hash table
for that particular segment of executable code. Assuming the
hash values match, it 1s assumed that the executable code 1s
authentic. However, 1f the hash values do not match, it 1s
presumed that the executable code 1s not authentic. In one
embodiment of the invention, when unauthentic code 1s

10

15

20

25

30

35

40

45

50

55

60

65

6

discovered, the code authentication process may cause the
client to halt executing all together. Additionally, or alter-
natively, the code authentication process 60 may report the
discovery of unauthentic code to a server.

In one embodiment of the invention, the code authenti-
cation process may maintain status mformation indicating
which segments of code have been authenticated, as well as
information relating to the time at which segments were
authenticated. Accordingly, the code authentication process
60 may control how frequently 1t operates by determining
whether executable code 1n memory 36 needs to be authen-
ticated based on the status information it maintains. For
example, 11 all of the executable code 1in memory 36 has
recently been authenticated, the code authentication process
60 may not operate, thereby passing control to the exception
handling routine associated with the exception event that
mitially triggered the execution of the code authentication
process 60. Or, 1f the code authentication process has
consumed too much CPU recently, 1t may decide not to
check and just pass control onto the event handler.

In one embodiment of the invention, 1n addition to authen-
ticating the boot-loader code at boot-up time, the system
integrity authenticator 68 of the security processor 40 sys-
tematically authenticates the exception vector table, code
authentication process 60 and the hash table 66. For
example, the system 1ntegrity authenticator 68 may generate
a hash value based on the hash table, and compare that hash
value to a previously generated hash value. The previously
generated hash value for the hash table may be a special hash
value that 1s stored in the non-volatile memory, or 1n the
security processor. In this manner, the system integrity
authenticator can verily the authenticity of the hash table
that 1s used to authenticate the executable code. Similarly,
the system integrity authenticator may authenticate the code
for the code authentication process 60, or the exception
vector table 74.

Although the hash table 66 1s shown in FIGS. 3 and 4 to
reside on the disk storage 44, 1t will be appreciated by those
skilled 1n the art that the hash table 66 may be programmed
into the non-volatile memory 38. Alternatively, the hash
table 66 may reside in a portion of memory (not shown) in
the security processor. In addition, the hash table 66 may be
encrypted with an encryption key (e.g., such as encryption
key 72), such that the security processor 1s to decrypt the
hash table prior to it being used by the code authentication
process 60.

FIG. 5 illustrates a method 80, according to an embodi-
ment of the invention, for protecting against the execution of
unauthorized code on a client device. At operation 82, the
client device 30 1s powered on, and the system integrity
authenticator 82 performs an authentication operation to
authenticate the boot-loader code 62. For example, the
system integrity authenticator 68 may verily that a hash
generated based on the boot-loader code stored 1n memory
38 1s consistent with a digital signature 64 for the boot-
loader code 62. If the boot-loader code 62 1s determined not
to be authentic, then the client halts execution 84, and does
not boot-up. However, if the boot-loader code checks out as
authentic, then at operation 86, the client loads the operating
system 1nto memory according to the instructions of the
boot-loader code 62.

During the boot-up procedure, boot loader transfers con-
trol to the kernel of the operating system, and the operating,
system boot-up proceeds. At operation 88, the client 1nitial-
izes a CPU vector table with one or more vector table
entries, which cause the CPU to execute a code authentica-
tion process when an exception event occurs, prior to

US RE47,364 E

7

executing the operating system’s exception handling routine
associated with the exception event. Accordingly, at opera-
tion 90, when an exception event occurs, the CPU interrupts
the current process to lookup the event handling routine
associated with the exception event. At operation 92, the
code authentication process 1s executed to authenticate a
segment ol executable code 1n memory. If the executable
code 1s not authentic, the client halts execution at operation
94. However, i1 the executable code i1s authentic, then the
event handling routine for the exception event 1s executed at
operation 96, after which the normal activities of the oper-
ating system including execution of the application code
resume 1n block 98.

FIG. 6 illustrates a client-server based digital content
delivery system 100, 1n which a client device 108 according
to an embodiment of the invention may be utilized. The
digital content delivery system 100 of FIG. 1 includes a
digital content server 102 with a mass storage device 104 for
storing digital content. The digital content server 102 1s
coupled by means of a network 106 to multiple client
devices 108-1, 108-2 and 108-n. In operation, a particular
client device 108-1 may communicate a request for a
particular title (e.g., movie), or other digital content, to the
content server 102. In response, the content server 102 reads
the digital content from the mass storage device 104,
encrypts the digital content with an encryption key, and then
communicates the digital content over the network 106 to
the requesting client device 108-1. Upon receiving the
encrypted digital content, the client device 108-1 executes a
procedure for decrypting the digital content and then dis-
playing the digital content to the user.

FIG. 7 illustrates a distributed digital content delivery
system 200, in which a client device according to an
embodiment of the mvention may be utilized. In contrast to
the client-server based system 100 of FIG. 1, the system of
FIG. 2 1s a distributed system. For example, the digital
content 1s stored not only on the mass storage device 204 of
the content server 202, but also on the storage devices 207-1,
207-2 and 207-n of each individual client device 208-1,
208-2 and 208-N. Consequently, when a particular client
device 208-1 makes a request for a particular title, the digital
content server 202 manages the delivery process, but the
actual data 1s communicated to the requesting client 208-1
over the network 206 from other client devices (e.g., client
devices 208-2 through 208-N). This distributed delivery
system, which may be thought of as a hybrid of a client-
server and peer-to-peer delivery system, 1s more completely
described 1n U.S. patent application Ser. No. 11/269,462
filed on Nov. 7, 2005, and assigned to VVOND, Inc.

The content delivery systems illustrated in FIG. 6 and
FIG. 7 are provided as two examples of systems 1n which the
client device, according to an embodiment of the invention,
may be utilized. However, 1t will be appreciated by those
skilled 1n the art that the present invention may be applicable
to a wide variety of client devices and content delivery
systems 1n addition to those illustrated 1n FIG. 6 and FIG. 7.
Furthermore, consistent with the invention, the client device
may be implemented 1n one of many possible form factors,
including (but not limited to): a set-top box, a handheld
player, a mobile phone, a personal digital assistant, or a
game playing device.

Thus, a method and system for protecting against the
execution of unauthorized soitware on a client device have
been described. Although the present invention has been
described with reference to specific exemplary embodi-
ments, 1t will be evident that various modifications and
changes may be made to these embodiments without depart-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing from the broader spirit and scope of the invention.
Accordingly, the specification and drawings are to be
regarded 1n an illustrative rather than a restrictive sense.

What 1s being claimed 1s:

1. A method for providing security on a client device, the
method being performed by one or more processors and
comprising:

imitializing an exception vector table, the exception vector

table [including] comprising one or more vector table
entries that each references a corresponding event
handling routine that 1s used to process a corresponding
exception event, wherein at least one vector table entry
of the one or more vector table entries causes a code
authentication process to be executed before [a] tke
corresponding event handling routine 1s executed;

in response to detecting [an] tke corresponding exception

event associated with the at least one vector table entry
of the one or more vector table entries, executing the
code authentication process to authenticate a portion of
executable code stored in a memory resource, the code
authentication process determining whether the portion
of the executable code 1s authorized or unauthorized,
and

in response to the code authentication process determin-

ing that the portion of the executable code 1s autho-

rized, executing [an] the corresponding event handling
routine corresponding to the at least one vector table
entry of the one or more vector table entries.

2. The method of claim 1, further comprising:

in response to the code authentication process determin-

ing that the portion of the executable code 1s unauthor-
1zed, preventing the execution of the corresponding
event handling routine corresponding to the at least one
vector table entry of the ome or more vector table
entries.

3. The method of claim 2, further comprising:

in response to the code authentication process determin-

ing that the portion of the executable code is [not

authorized] wunauthorized, transmitting information
about the [determined unauthorized] portion of tke

executable code determined to be unauthorized 1o a

server over a network.

4. The method of claim 1, further comprising:

maintaining status iformation mdicating:

which portions of the executable code have been
authenticated by the code authentication process, the
portions of the executable code comprising the por-
tion of the executable code; and

when the portions of the executable code have been
authenticated by the code authentication process.

5. The method of claim 4, wherein:

the code authentication process 1s executed to authenticate

the portion of t2ze executable code based, at least 1n part,

on the [maintained] status information maintained.

6. The method of claim 1, further comprising:

during a power-on procedurel,]-

[(1)] executing a system integrity authenticator to
authenticate boot-loader code stored in a non-vola-
tile memory resource[,] by determining that the
boot-loader code is authorized; and

[(i1)] in response to the system integrity authenticator
determining that the boot-loader code 1s authorized,
loading a portion of [the] an operating system into
the memory resource by executing the boot-loader
code.

US RE47,364 E

9

7. The method of claim 6, wherein:

the exception vector table 1s mmitialized 1n response to
executing the boot-loader code.

8. The method of claim 6, wherein:

the system integrity authenticator also authenticates at
least one of:

code corresponding the exception vector table; or
code corresponding to the code authentication process.
9. A client device comprising:
one or more memory resources; and
one or more processing resources coupled to the one or
more memory resources, the one or more processing
resources configured to:
initialize an exception vector table, the exception vec-
tor table [including] comprising one or more vector
table entries that each references a corresponding
event handling routine that 1s used to process a
corresponding exception event, wherein at least one
vector table entry of the one or more vector table
entries causes a code authentication process to be
executed before [a] #2e corresponding event han-
dling routine 1s executed;
in response to detecting [an] the corresponding excep-
tion event associated with the at least one vector
table entry of the one or more vector table entries,
execute the code authentication process to authenti-
cate a portion of executable code stored 1n the one or
more memory resources, the code authentication
process determining whether the portion of the
executable code 1s authorized or unauthorized; and
in response to the code authentication process deter-
mining that the portion of the executable code is
authorized, execute [an] the corresponding event
handling routine corresponding to the at least one
vector table entry of the one or more vector table
entries.
10. The [method] client device of claim 9, wherein:
the one or more [processors] processing resources are
further configured to, in response to the code authen-
tication process determining that the portion of the
executable code 1s unauthorized, prevent the execution
of the corresponding event handling routine corre-
sponding to the at least one vector table entry of the one
or more vector table entries.
11. The [method] client device of claim 10, wherein.
the one or more [processors] processing resources are
further configured to, 1 response to the code authen-
tication process determining that the portion of the
executable code is [not authorized] urauthorized, trans-
mit information about the [determined unauthorized]
portion of the executable code determined to be unau-
thorized 10 a server over a network.
12. The [method] client device of claim 9, wherein.
the one or more [processors] processing resources are
further configured to maintain status information indi-
cating.:
which portions of the executable code have been
authenticated by the code authentication process, the
portions of the executable code comprising the por-
tion of the executable code; and
when the portions of the executable code have been
authenticated by the code authentication process.
13. The [method] client device of claim 12, wherein:
the one or more [processors] processing resources execute
the code authentication process based, at least 1n part,
on the [maintained] status information maintained.

10

15

20

25

30

35

40

45

50

55

60

65

10

14. The [method] client device of claim 9, wherein:
the one or more [processors] processing resources are
further configured to, during a power-on procedurel,]-
[(1)] execute a system integrity authenticator to authen-
ticate boot-loader code stored in a non-volatile
memory resourcel.] bv determining that the boot-
loader code is authorized: and
[(i1)] in response to the system integrity authenticator
determining that the boot-loader code 1s authorized,
load a portion of [the] an operating system into the
one or more memory resources by executing the
boot-loader code.
15. The [method] client device of claim 14, wherein.
the one or more processing resources 1nitialize the excep-
tion vector table in response to executing the boot-
loader code.
16. The [method] client device of claim 14, wherein.
the system integrity authenticator also authenticates at
least one of:
code corresponding the exception vector table; or
code corresponding to the code authentication process.
17. A non-transitory computer readable medium storing

instructions that, when executed by one or more processors,
[causes] cause the one or more processors to perform steps
comprising;

imitializing an exception vector table, the exception vector
table [including] comprising one or more vector table
entries that each references a corresponding event
handling routine that 1s used to process a corresponding
exception event, wherein at least one vector table entry
of the one or more vector table entries causes a code
authentication process to be executed before [a] tke
corresponding event handling routine 1s executed;

in response to detecting [an] tie corresponding exception
event associated with the at least one vector table entry
of the one or more vector table entries, executing the
code authentication process to authenticate a portion of
executable code stored in a memory resource, the code
authentication process determining whether the portion
of the executable code 1s authorized or unauthorized,
and

in response to the code authentication process determin-
ing that the portion of the executable code 1s autho-
rized, executing [an] the corresponding event handling
routine corresponding to the at least one vector table
entry of the one or more vector table entries.

18. The non-transitory computer readable medium of

claim 17, further storing instructions that cause the one or
more processors to[,]-

in response to the code authentication process determin-
ing that the portion of the executable code is [not
authorized,] unauthorized:

[(1)] prevent the execution of the corresponding event
handling routine corresponding to the at least one
vector table entry[,] of the one or more vector table
entries; and

[(i1)] transmit information about the [determined unau-
thorized] portion of the executable code determined
to be unauthorized to a server over a network.

19. The non-transitory computer readable medium of

claim 17, further storing instructions that cause the one or
more processors to.

maintain status information indicating:
which portions of the executable code have been
authenticated by the code authentication process, the
portions of the executable code comprising the por-
tion of the executable code; and

US RE47,364 E
11

when the portions of the executable code have been
authenticated by the code authentication process.

20. The non-transitory computer readable medium of
claim 19, further storing instructions that cause the one or
more processors to: 5

execute the code authentication process based, at least in

part, on the [maintained] status information main-
tained.

12

	Front Page
	Drawings
	Specification
	Claims

