(19) United States

12 Reissued Patent
Chen et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE47296E

US RE47,296 E
*Mar. 12, 2019

(54) SYSTEM AND METHOD FOR AN ADAPTIVE
TCP SYN COOKIE WITH TIME
VALIDATION

(71) Applicant: A10 NETWORKS, INC., San Jose,

CA (US)

(72) Lee Chen, Saratoga, CA (US); Ronald

Wai Lun Szeto, San Francisco, CA

(US); Shih-Tsung Hwang, San Jose,

CA (US)

Inventors:

(73) Al10 NETWORKS, INC., San Jose,

CA (US)

Assignee:

This patent 1s subject to a terminal dis-
claimer.

Notice:

(%)

(21)
(22)

Appl. No.: 14/151,803

Filed: Jan. 9, 2014

Related U.S. Patent Documents

Reissue of:

(64) Patent No.:
Issued:
Appl. No.:
Filed:

U.S. Applications:
(63) Continuation of application No. 13/413,191, filed on

Mar. 6, 2012, now Pat. No. Re. 44,701, which 1s an
application for the reissue of Pat. No. 7,675,854.

7,675,834
Mar. 9, 2010
11/358,245
Feb. 21, 2006

(38) Field of Classification Search

CPC i HO4L 47/10; HO4L 63/1458
(Continued)
(56) References Cited
U.S. PATENT DOCUMENTS
5,218,602 A 6/1993 Grant et al.
5,774,660 A 6/1998 Brendel et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1372662 A 10/2002
CN 1449618 10/2003
(Continued)

OTHER PUBLICAITONS

Cardellin1 et al., “Dynamic Load Balancing on Web-server Sys-
tems”, IEEE Internet Computing, vol. 3, No. 3, pp. 28-39, May-Jun.
1999,

(Continued)

Primary Examiner — David E England
(74) Attorney, Agent, or Firm — Keith Kline; The Kline
Law Firm PC

(57) ABSTRACT

Provided 1s a method and system for TCP SYN cookie
validation. The method includes receiving a session SYN
packet by a TCP session setup module of a host server,
generating a transition cookie including a time value repre-
senting the actual time, sending a session SYN/ACK packet,
including the transition cookie, 1n response to the received
session SYN packet, recerving a session ACK packet, and
determining whether a candidate transition cookie in the
received session ACK packet comprises a time value rep-
resenting a time within a predetermined time interval from
the time the session ACK packet 1s recerved.

18 Claims, 10 Drawing Sheets

(51) Int. CL
GOIR 31/08 (2006.01)
HO41L 12/801 (2013.01)
HO41L 29/06 (2006.01)
(52) U.S. CL
CPC HO4L 47/10 (2013.01); HO4L 63/1458
(2013.01)
275
(460
Candidate Transition

470

(

Candidate Enerypted
Data Element

Candidate Transition
Conkie Data Elsment

430

US RE47,296 E

Page 2
(58) Field of Classification Search 7,610,622 B2* 10/2009 Touitou HO041. 63/168
. . 726/22
USPC SR 370/230.1, 709/227, 228; 726/22, 3,6 7613.193 B2* 112009 Swami ct al. 370/395 59
See application file for complete search history. 7.613.822 B2 11/2009 Joy et al.
7,673,072 B2 3/2010 Boucher et al.
(56) References Cited 7,675,854 B2* 3/2010 Chenetal. 370/230.1
7,703,102 Bl 4/2010 Eppstein et al.
U.S. PATENT DOCUMENTS 7,707,295 Bl 4/2010 Szeto et al.
7,711,790 B1* 5/2010 Barrettetal. 709/217
5862339 A 1/1999 Bonnaure et al. 7,733,866 B2* 6/2010 Mishra HO4I., 12/2854
5,875,185 A 2/1999 Wang et al. 370/349
5,935,207 A 8/1999 Logue et al. 7,747,748 B2 6/2010 Allen
5,958,053 A * 9/1999 Denkercocvvvvevvvevenrnnn, 726/1 7,765328 B2 72010 Bryers et al.
5,995981 A 11/1999 Wikstrom 7,792,113 Bl 9/2010 Foschiano et al.
6,003,069 A 12/1999 Cavill 7,808,994 B1 10/2010 Vinokour et al.
6,047,268 A * 4/2000 Bartoli et al. 713/153 7,826,487 B1* 11/2010 Mukerji et al. 370/477
6,075,783 A 6/2000 Voit 7,881,215 Bl 2/2011 Daigle et al.
6,131,163 A 10/2000 Wiegel 7,948,952 B2 5/2011 Hurtta et al.
6,219,706 Bl 4/2001 Fan et al. 7,965,727 B2 6/2011 Sakata et al.
6,259,705 Bl 7/2001 Takahashi et al. 7,970,934 Bl 6/2011 Patel
6,321,338 B1* 11/2001 Porras et al. 709/224 7,979,694 B2* 7/2011 Toutou HO4L 63/1458
6,374,300 B2 4/2002 Masters 709/229
6,456,617 Bl 9/2002 Oda et al. 7,983,258 Bl 7/2011 Ruben et al.
6,459,682 Bl 10/2002 FEllesson et al. 7,990,847 Bl 8/2011 Leroy et al.
6,483,600 B1 11/2002 Schuster et al. 7,991,859 Bl 8/2011 Miller et al.
6,535,516 Bl 3/2003 Teu et al. 7,992,201 B2 8/2011 Aldnidge et al.
6,578,066 Bl 6/2003 Logan et al. 8,019,870 Bl 9/2011 Eppstein et al.
6,587,866 B1 7/2003 Modi et al. 8,032,634 Bl 10/2011 Eppstein et al.
6,600,738 Bl 7/2003 Alperovich et al. 8,081,640 B2 12/2011 Ozawa et al.
6,658,114 B1 12/2003 Farn et al. 8,090,866 Bl 1/2012 Bashyam et al.
6,748,414 B1 6/2004 Bournas 8,099,492 B2 1/2012 Dabhlin et al.
6,772,205 Bl /2004 I.avian et al. 8,116,312 B2 2/2012 Ruddoch et al.
6,772,334 Bl * 82004 Glawitschccccvvn... 713/153 8,122,116 B2 2/2012 Matsunaga et al.
6,779,017 Bl 8/2004 ILamberton et al. 8,151,019 Bl 4/2012 Le et al.
6,779,033 Bl * 8/2004 Watson et al. 709/227 8,179,809 Bl ~ 5/2012 Eppstein et al.
6,804,224 Bl 10/2004 Schuster et al. 8,185,651 B2 5/2012 Moran et al.
6,952,728 B1 10/2005 Alles et al. 8,191,106 B2 5/2012 Choyi et al.
7,010,605 Bl 3/2006 Dharmarajan 8,224,971 Bl 7/2012 Miller et al.
7,013,482 Bl 3/2006 Krumel 8,261,339 B2 9/2012 Aldnidge et al.
7,058,718 B2* 6/2006 Fontes et al. 709/228 8,260,235 B2 9/2012 Jalan et al.
7,069,438 B2* 6/2006 Balabine et al. 713/168 8,296,434 B1 10/2012 Miller et al.
7,076,555 Bl 7/2006 Orman et al. 8,312,507 B2 11/2012 Chen et al.
7,143,087 B2 11/2006 Fairweather 8,379,515 Bl 2/2013 Mukerji
7,167,927 B2 1/2007 Philbrick et al. 3,499,095 B2 7/2013 Grosser et al.
7,181,524 Bl 2/2007 Lele 8,539,075 B2 9/2013 Bali et al.
7,218,722 Bl 5/2007 Turner et al. 8,554,929 B1 10/2013 Szeto et al.
7,228,359 Bl 6/2007 Monteiro 8,559,437 B2* 10/2013 Mishra HO41. 12/2854
7,234,161 Bl 6/2007 Maufter et al. 370/349
7,236,457 B2 6/2007 Joe 8,560,693 Bl 10/2013 Wang et al.
7,254,133 B2* 8/2007 Govindarajan et al. 370/394 8,584,199 Bl 11/2013 Chen et al.
7,269,850 B2 9/2007 Govindarajan et al. 8,595,791 Bl 11/2013 Chen et al.
7,277,963 B2 10/2007 Dolson et al. RE44,701 E * 1/2014 Chenetal. 370/230.1
7,301,899 B2* 11/2007 Goldstone 370/230 8,675,488 Bl 3/2014 Sidebottom et al.
7,308,499 B2 12/2007 Chavez 8,681,610 Bl 3/2014 Mukem
7,310,686 B2 12/2007 Uysal 8,750,164 B2 6/2014 Casado et al.
7,328,267 Bl 2/2008 Bashyam et al. 8,782,221 B2 7/2014 Han
7,334,232 B2 2/2008 Jacobs et al. 8,813,180 Bl 8/2014 Chen et al.
7,337,241 B2 2/2008 Boucher et al. 8,826,372 Bl 9/2014 Chen et al.
7,343,399 B2 3/2008 Hayball et al. 8,879,427 B2 11/2014 Krumel
7,349,970 B2 3/2008 Clement et al. 8,885,463 Bl 11/2014 Medved et al.
7,370,353 B2* 5/2008 Yangccooooeeviiiiiiininnnn, 726/11 8,807,154 B2 11/2014 Jalan et al.
7,373,500 B2 5/2008 Ramelson et al. 8,965,957 B2 2/2015 Barros
7,391,725 B2* 6/2008 Huitema et al. 370/230.1 8,977,749 Bl 3/2015 Han
7,398,317 B2* 7/2008 Chenetal. 709/229 8,990,262 B2 3/2015 Chen et al.
7,423,977 Bl 9/2008 Joshi 9,094,364 B2 7/2015 Jalan et al.
7,430,755 B1* 9/2008 Hughes et al. 726/3 9,106,561 B2 8/2015 Jalan et al.
7,463,648 B1 12/2008 Eppstein et al. 9,157,301 Bl 9/2015 Dunlap et al.
7,467,202 B2 12/2008 Savchuk 9,154,577 B2 10/2015 Jalan et al.
7.472,190 B2 12/2008 Robinson 9,154,584 Bl 10/2015 Han
7,492,766 B2 2/2009 Cabeca et al. 9,215,275 B2 12/2015 Kannan et al.
7,506,360 B1* 3/2009 Wilkinson et al. 709/223 9,219,751 Bl 12/2015 Chen et al.
7,509,369 Bl 3/2009 Tormasov 9,253,152 Bl 2/2016 Chen et al.
7,512,980 B2* 3/2009 Copeland et al. 726/22 9,270,705 Bl 2/2016 Chen et al.
7,533,409 B2 5/2009 Keane et al. 9,270,774 B2 2/2016 Jalan et al.
7,552,323 B2* 6/2009 Shayccoonnn, H041. 63/02 9,338,225 B2 5/2016 Jalan et al.
713/153 9,350,744 B2 5/2016 Chen et al.
7,584,262 Bl 9/2009 Wang et al. 9,356,910 B2 5/2016 Chen et al.
7,584,301 Bl 9/2009 Joshi 9,386,088 B2 7/2016 Zheng et al.
7,590,736 B2 9/2009 Hydrie et al. 9,531,846 B2 12/2016 Han et al.

US RE47,296 E

Page 3
(56) References Cited 2006/0069804 Al 3/2006 Miyake et al. 709/237
2006/0077926 Al 4/2006 Rune
U.S. PATENT DOCUMENTS 2006/0092950 Al 5/2006 Arregoces et al.
2006/0098645 Al 5/2006 Walkin
2001/0042200 Al* 11/2001 Lamberton HO41. 63/126 2006/0112170 AT 52006 Sirkin
713/151 2006/0164978 A1 7/2006 Werner et al.
2001/0049741 Al 12/2001 Skene et al. 2006/0168319 AL 7/2006 Trossen
2002/0026515 A1 2/2002 Michielsens et al. 2006/0187901 Al 82006 Cortes et al.
2002/0032777 Al 3/2002 Kawata et al. 2006/0190997 Al 82006 Mahajani et al.
2002/0032799 Al 3/2002 Wiedeman et al. 2006/0209789 Al 9/2006 Gupta et al.
2002/0078164 Al 6/2002 Reinschmidt 2006/0230129 Al* 10/2006 Swami HO4W 12/12
2002/0091844 A1 7/2002 Craft et al. | 709/223
2002/0103916 Al1* 82002 Chenetal.ooovvvvviiin. 709/229 2006/0233100 Al 10/2006 Luft et al.
2002/0133491 Al 9/2002 Sim et al. 2006/0251057 Al 112006 Kwon et al.
2002/0138618 Al 9/2002 Szabo 2006/0277303 Al 12/2006 Hegde et al.
2002/0141386 Al 10/2002 Minert et al. 2006/0280121 Al* 12/2006 Matobac..oovennn, 370/235
2002/0143991 A1 10/2002 Chow et al. 2007/0019543 Al 1/2007 Wei et al.ccoeeenen, 370/229
2002/0178259 Al 11/2002 Doyle et al. 2007/0022479 A1 1/2007 Sikdar et al.
2002/0188678 Al 12/2002 Edecker et al. 2007/0076653 Al 4/2007 Park et al.
2002/0191575 Al 12/2002 Kalavade et al. 2007/0086382 Al 4/2007 Narayanan et al.
2002/0194335 Al 12/2002 Maynard 2007/0094396 Al 4/2007 Takano et al.
2002/0194350 Al 12/2002 Lu et al. 2007/0118881 Al 5/2007 Mitchell et al.
2003/0009591 Al 1/2003 Hayball et al. 2007/0124502- Al 52007 Li
2003/0014544 Al 1/2003 Pettey 2007/0156919 A1 7/2007 Potti et al.
2003/0023711 Al 1/2003 Parmar et al. 2007/0165622 Al 7/2007 O’Rourke et al.
2003/0023873 Al 1/2003 Ben-Itzhak 2007/0180119 Al 8/2007 Khivesara et al.
2003/0035409 Al 2/2003 Wang et al. 2007/0185998 Al 82007 Touitou et al.
2003/0035420 Al 2/2003 Niu 2007/0195792 Al 8/2007 Chenetal. 370/395.52
2003/0061506 Al 3/2003 Cooper et al. 2007/0230337 Al 10/2007 Igarashi et al.
2003/0091028 Al 5/2003 Chang et al 2007/0242738 Al 10/2007 Park et al.
2003/0131245 Al 7/2003 Linderman 2007/0243879 Al 10/2007 Park et al.
2003/0135625 Al* 7/2003 Fontes et al. 709/228 2007/0245090 Al 10/2007 King et al.
2003/0195962 Al 10/2003 Kikuchi et al. 2007/0248009 Al 10/2007 Petersen
2004/0010545 Al 1/2004 Pandya 2007/0259673 Al 11/2007 Willars et al.
2004/0062246 Al 4/2004 Boucher et al. 2007/0283429 Al 12/2007 Chen et al.
2004/0073703 Al 4/2004 Boucher et al. 2007/0286077 Al 12/2007 Wu
2004/0078419 Al 4/2004 Ferrari et al. 2007/0288247 Al 12/2007 Mackay
2004/0078480 Al 4/2004 Boucher et al. 2007/0294209 Al 12/2007 Strub et al.
2004/0103315 Al 5/2004 Cooper et al. 2008/0016161 Al 1/2008 Tsirtsis et al.
2004/0111516 Al 6/2004 Cain 2008/0031263 A1 2/2008 Ervin et al.
2004/0128312 Al 7/2004 Shalabi et al. 2008/0076432 Al 3/2008 Senarath et al.
2004/0139057 Al 7/2004 Hirata et al. 2008/0101396 Al 5/2008 Miyata
2004/0139108 Al 7/2004 Tang et al. 2008/0109452 A1 5/2008 Patterson
2004/0141005 Al 7/2004 Banatwala et al. 2008/0109870 Al 5/2008 Sherlock et al.
2004/0143599 Al 7/2004 Shalabi et al. 2008/0120129 A1 5/2008 Seubert et al.
2004/0187032 Al 9/2004 Gels et al. 2008/0134332 A1 6/2008 Keohane et al.
2004/0199616 Al 10/2004 Karhu 2008/0162679 A1 7/2008 Maher et al.
2004/0199646 Al 10/2004 Susai et al. 2008/0225722 A1 9/2008 Khemani et al.
2004/0202182 Al 10/2004 Lund et al. 2008/0228781 Al 9/2008 Chen et al.
2004/0210623 Al 10/2004 Hydrie et al. 2008/0250099 Al 10/2008 Shen et al.
2004/0210663 Al 10/2004 Phillips et al. 2008/0253390 Al 10/2008 Das et al.
7004/0213158 Al 10/2004 Collett et al. 2008/0263209 A1 10/2008 Pisharody et al.
2004/0250059 Al 12/2004 Ramelson et al. 2008/0271130 Al 10/2008 Ramamoorthy
2004/0268358 Al 12/2004 Darling et al. 2008/0282254 Al 11/2008 Blander et al.
2005/0005207 Al 1/2005 Herneque 2008/0291911 Al 11/2008 Lee et al.
2005/0009520 Al 1/2005 Herrero et al. 2008/0298303 Al 12/2008 Tsirtsis
2005/0021848 Al 1/2005 Jorgenson 2009/0024722 Al 1/2009 Sethuraman et al
2005/0027862 Al 2/2005 Nguyen et al. 2009/0031415 Al 1/2009 Aldridge et al.
2005/0036501 A1 2/2005 Chung et al. 2009/0049198 Al 2/2009 Blinn et al.
2005/0036511 Al 2/2005 Baratakke et al. 2009/0070470 Al 3/2009 Bauman et al.
2005/0039033 Al 2/2005 Meyers et al. 2009/0077651 Al 3/2009 Poeluev
2005/0044270 Al 2/2005 Grove et al. 2009/0092124 A1 4/2009 Singhal et al.
2005/0074013 Al 4/2005 Hershey et al. 2009/0106830 Al 4/2009 Maher
2005/0080890 Al 4/2005 Yang et al. 2009/0138606 A1 5/2009 Moran et al.
2005/0102400 A1 5/2005 Nakahara et al. 2009/0138945 Al 52009 Savchuk
2005/0125276 Al 6/2005 Rusu 2009/0141634 A1 6/2009 Rothstein et al.
2005/0163073 Al 7/2005 Heller et al. 2009/0164614 A1 6/2009 Christian et al.
2005/0198335 Al 9/2005 Brown et al. 2009/0172093 A1 7/2009 Matsubara
2005/0213586 Al 9/2005 Cyganski et al. 2009/0213858 Al 8/2009 Dolganow et al.
2005/0240989 Al* 10/2005 Kim et al. ..ocooocvvveennn.... 726/11 2009/0222583 Al 972009 Josefsberg et al.
2005/0249225 Al 11/2005 Singhal 2009/0227228 Al 9/2009 Hu et al.
2005/0259586 Al 11/2005 Hafid et al. 2009/0228547 Al 9/2009 Miyaoka et al.
2005/0281190 Al 12/2005 McGee et al. 2009/0262741 Al 10/2009 Jungck et al.
2006/0023721 Al* 2/2006 Miyake et al. 370/395.2 2009/0271472 A1 10/2009 Scheifler et al.
2006/0036610 A1 2/2006 Wang 2009/0285196 Al 11/2009 Lee et al.
2006/0036733 Al 2/2006 Fujimoto et al. 2009/0313379 Al 12/2009 Rydnell et al.
2006/0041745 A1 2/2006 Parnes 2010/0008229 A1 1/2010 Bi et al.
2006/0064478 A1 3/2006 Sirkin 2010/0023621 Al 1/2010 Ezolt et al.
2006/0069774 Al 3/2006 Chen et al. 2010/0036952 Al 2/2010 Hazlewood et al.

US RE47,296 E

Page 4
(56) References Cited 2012/0239792 A1 9/2012 Banerjee et al.
2012/0240185 Al 9/2012 Kapoor et al.
U.S. PATENT DOCUMENTS 2012/0290727 Al 11/2012 Tivig
2012/0297046 Al 11/2012 Raja et al.
2010/0042869 Al 2/2010 Szabo et al. 2012/0311116 Al 12/2012 Jalan et al.
2010/0054139 Al 3/2010 Chun et al. 2013/0046876 Al 2/2013 Narayana et al.
2010/0061319 Al 3/2010 Aso et al. 2013/0058335 Al 3/2013 Koponen et al.
2010/0064008 Al 3/2010 Yan et al. 2013/0074177 AL 3/2013 Varadhan et al.
2010/0082787 Al 4/2010 Kommula et al. 2013/0083725 Al 4/2013 Mallya et al.
2010/0083076 Al 4/2010 Ushiyama 2013/0100958 Al 4/2013 Jalan et al.
2010/0094985 Al 4/2010 Abu-Samaha et al. 2013/0124715 AL 52013 Feinberg et al.
2010/0095018 Al 4/2010 Khemani et al. 2013/0135996 Al 52013 Torres et al.
2010/0098417 Al 4/2010 Tse-Au 2013/0136139 Al 5/2013 Zheng et al.
2010/0106833 Al 4/2010 Banerjee et al. 2013/0148500 Al 6/2013 Sonoda et al.
2010/0106854 Al 4/2010 Kim et al. 2013/0166762 AL 6/2013 Jalan et al.
2010/0128606 Al 5/2010 Patel et al. 2013/0173795 Al 72013 McPherson
2010/0162378 Al 6/2010 Jayawardena et al. 2013/0176854 AL 72013 Chisu et al.
2010/0205310 Al 8/2010 Altshuler et al. 2013/0191486 Al 7/2013 Someya et al.
2010/0210265 Al 8/2010 Borzsei et al. 2013/0198385 Al 2013 Han et al.
2010/0217793 Al 8/2010 Preiss 2013/0250765 Al 9/2013 Ehsan et al.
2010/0217819 Al 8/2010 Chen et al. 2013/0258846 Al 10/2013 Damola
2010/0223630 A1 9/2010 Degenkolb et al. 2013/0282791 Al 1072013 Kruglick
2010/0228819 Al 9/2010 Wei 2014/0012972° Al 1/2014 Han
2010/0235507 Al 9/2010 Szeto et al. 2014/0089500 Al 3/2014 Sankar et al.
2010/0235522 A1~ 9/2010 Chen et al. 2014/0164617 Al 6/2014 Jalan et al.
2010/0235880 Al 9/2010 Chen et al. 2014/0169168 Al 6/2014 Jalan et al
2010/0238828 Al 9/2010 Russell 2014/0207845 Al 72014 Han et al.
2010/0265824 Al 10/2010 Chao et al. 2014/0258465 Al 9/2014 Li
2010/0268814 Al 10/2010 Cross et al. 2014/0258536 Al 9/2014 Chiong
2010/0293296 Al 11/2010 Hsu et al. 2014/0269728 Al 9/2014 Jalan et al.
2010/0312740 Al 12/2010 Clemm et al. 2014/0286313 Al 9/2014 Tu et al.
2010/0318631 Al 12/2010 Shukla 2014/0298091 Al 10/2014 Carlen et al
2010/0322252 Al 12/2010 Suganthi et al. 2014/0330982 Al 11/2014 Jalan et al.
2010/0330971 Al 12/2010 Selitser et al. 2014/0334485 Al 11/2014 Jain et al.
2010/0333101 Al 12/2010 Pope et al. 2014/0359052 A1 12/2014 Joachimpillal et al.
2011/0007652 Al 1/2011 Bai 2015/0026794 Al 1/2015 Zuk et al.
2011/0019550 Al 1/2011 Bryers et al. 2015/0039671 Al 2/2015 Jalan et al
2011/0023071 A1 1/2011 Li et al. 2015/0156223 Al 6/2015 Xu et al.
2011/0029599 A1 2/2011 Pulleyn et al. 2015/0215436 Al 7/2015 Kancherla
2011/0032941 Al 2/2011 Quach et al. 2015/0237173 Al 82015 Virkki et al.
2011/0040826 Al 2/2011 Chadzelek et al. 2015/0244566 Al 82015 Puimedon
2011/0047294 Al 2/2011 Singh et al. 2015/0281087 Al 10/2015 Jalan et al.
2011/0060831 Al 3/2011 Ishii et al. 2015/0281104 Al 10/2015 Golshan et al.
2011/0083174 Al 4/2011 Aldridge et al. 2015/0296058 Al 10/2015 Jalan et al.
2011/0093522 Al 4/2011 Chen et al. 2015/0312092 A1 10/2015 Golshan et al.
2011/0099403 Al 4/2011 Miyata et al. 2015/0312268 Al 1072015 Ray
2011/0099623 Al 4/2011 Garrard et al. 2015/0333988 Al 11/2015 Jalan et al
2011/0110294 A1 5/2011 Valluri et al. 20150350048 Al 12/2015 Sampat et al.
2011/0145324 Al 6/2011 Reinart et al. 2015/0350379 Al 122015 Jalan et al.
2011/0149879 Al 6/2011 Noriega et al. 2016/0014052° A1 1/2016 Han
2011/0153834 Al 6/2011 Bharrat 2016/0014126 Al 1/2016 Jalan et al.
2011/0178985 Al 7/2011 San Martin Arribas et al. 2016/0036778 Al 2/2016 Chen et al.
2011/0185073 Al 7/2011 Jagadeeswaran et al. 2016/0042014 AL 2/2016 Jalan et al
2011/0191773 Al 8/2011 Pavel et al. 2016/0043901 Al 2/2016 Sankar et al.
2011/0196971 Al 8/2011 Reguraman et al. 2016/0044095 AL 2/2016 Sankar et al,
2011/0276695 Al 11/2011 Maldaner 2016/0050233 Al 2/2016 Chen et al.
2011/0276982 Al 11/2011 Nakayama et al. 2016/0088074 Al 3/2016 Kannan et al.
2011/0289496 Al 11/2011 Steer 2016/0105395 Al 4/2016 Chen et al.
2011/0292939 Al 12/2011 Subramaian et al. 2016/0105446 Al 4/2016 Chen et al.
2011/0302256 Al 12/2011 Sureshehandra et al. 2016/0119382 Al 4/2016 Chen et al.
2011/0307541 Al 12/2011 Walsh et al. 2016/0156708 Al 6/2016 Jalan et al.
2012/0008495 Al 1/2012 Shen et al. 2016/0173579 Al 6/2016 Jalan et al.
2012/0023231 Al 1/2012 Ueno 2017/0048107 A1 2/2017 Dosovitsky et al.
2012/0026897 Al 2/2012 Guichard et al. 2017/0048356 Al 2/2017 Thompson et al.
2012/0030341 Al 2/2012 Jensen et al.
2012/0006371 AL 3/2012 Patel et al FOREIGN PATENT DOCUMENTS
2012/0084419 Al 4/2012 Kannan et al.
2012/0084460 Al 4/2012 McGinnity et al CN 1473300 A 2/7004
2012/0106355 Al 5/2012 Ludwig CN | 590460 0/2004
2012/0117382 Al 5/2012 Larson et al. N [27558) > 5004
2012/0117571 Al 5/2012 Davis et al. N 1712545 A 12003
2012/0144014 Al 6/2012 Natham et al. .
ey _ 2012 Talan of sl CN 1725702 1/2006
2012/0144015 Al 6/2012 Jalan et al. ON 1010860 A 2/7007
2012/0151353 Al 6/2012 Joanny CN 101004740 A 7/2007
2012/0170548 Al 7/2012 Rajagopalan et al. CN 101094225 12/2007
2012/0173759 Al 7/2012 Agarwal et al. CN 101163336 A 4/2008
2012/0179770 Al 7/2012 Jalan et al. CN 101169785 A 4/2008
2012/0191839 Al 7/2012 Maynard CN 101189598 5/2008
2012/0215910 Al 8/2012 Wada CN 101193089 A 6/2008

US RE47,296 E

Page 5

(56) References Cited WO WO02006098033 A1 9/2006

WO W0O2008053954 5/2008

FOREIGN PATENT DOCUMENTS WO W0O2008078593 Al 7/2008

WO W02011049770 4/2011
CN 101247349 A /2008 WO WO2011079381 Al 7/201;
CN 101261644 A 9/2008 WO WO2011149796 12/2011
CN 101442425 A 5/2009 WO WO02012050747 4/2012
CN 101495993 A 7/20009 WO W0O2012075237 6/2012
CN 101682532 A 3/2010 WO WO2012083264 A2 6/20;2
CN 101878663 A 11/2010 WO W02012097015 A2 7/2012
CN 102123156 A 7/2011 WO W0O2013070391 5/2013
CN 102143075 A R/2011 WO WO2013081952 6/20;3
CN 102546590 7/2012 WO W02013096019 6/2th3
CN 102571742 7/2012 WO W020_13112492 8/2013
CN 102577252 7/2012 WO wW02014031046 Al 2/2014
CN 102918801 /2013 WO WwO2014052099 4/20;4
CN 103533018 1/2014 WO W02014088741 6/2014
CN 103944954 7/2014 WO W02014093829 6/2014
CN 104040990 9/2014 WO WO2014138483 9/20;4
CN 104067569 0/2014 WO WOZOtH4144837 9/2OT4
CN 104106241 10/2014 WO W0O2014179753 11/2014
CN 104137491 11/2014 WO WO2015153020 Al 10/20;5
CN 104796396 A 7/2015 WO W02015164026 A1 10/2015
CN 102577252 B 3/2016
CN 102918801 B 5/2016
EP 1709876 3/7007 OTHER PUBLICATIONS
EP 1770915 4/2007 -
EP 18850906 /2008 Spatscheck et al., “Optimizing TCP Forwarder Performance”, IEEE/
EP 02296313 3/2011 ACM Transactions on Networking, vol. 8, No. 2, Apr. 2000.
EP 2577210 4/ 20}3 Kjaer et al. “Resource allocation and disturbance rejection in web
EE %gigzgi 1(8)?383 servers using SLAs and virtualized servers”, IEEE Transactions on
EP 2760170 7/203:4 Network and Service Management, IEEE, US, vol. 6, No. 4, Dec.
EP 2772026 9/2014 1, 20009.
EP 2901308 A2 8/2015 Sharifian et al. “An approximation-based load-balancing algorithm
EP 2760170 Bl 12§2OT5 with admussion control for cluster web servers with dynamic
EE i%ggg S /38% worltfloads”, The Journal of Supercomputing, Kluwer Academic
HK 1183996 1/2014 Publishers, BO, vol. 53, No. 3, Jul. 3, 2009.
HK 1189438 6/2014 Hunt et al. NetDispatcher: A TCP Connection Router, IBM Research
HK 1198565 Al 5/2015 Report RC 20853 May 19, 1997.
EE igg?gg i gggg Noguchi, “Realizing the Highest Level “Layer 77 Switch”= Totally
K 1199779 Al 719015 Managing Network Resources, Applications, and Users =, Com-
HK 1200617 Al 8/2015 puter & Network LAN, Jan. 1, 2000, vol. 18, No. 1, p. 109-112.
IN 39/2015 9/2015 Takahashi, “The Fundamentals of the Windows Network: Under-
IN CHE2014 A 7/2016 standing the Mystery of the Windows Network from the Basics”,
P H09-097233 4/1997 Network Magazine, Jul. 1, 2006, vol. 11, No. 7, p. 32-35.
P 1999096128 4/1999 Ohnuma, “AppSwitch: 7th Layer Switch Provided with Full Setup
=t P11-338850 1071999 and Report Tools”, Int M ine, Jun. 1, 2000, vol. 10, No. 6
JP 2000276432 A 10/2000 poIt 10015, INlerop Mdgazine, Jun. 1, , VOL 1V, INO. 0,
JP 2000307634 A 11/2000 p. 143-150.
JP 2001051859 A 2/2001 Koike et al., “Transport Middleware for Network-Based Control,”
IP 2001298449 A 10/2001 IEICE Technical Report, Jun. 22, 2000, vol. 100, No. 53, pp. 13-18.
P 2002091936 A 3/2002 Yamamoto et al., “Performance Evaluation of Window Size in
‘__P 2003141068 A 5/2003 Proxy-based TCP for Multi-hop Wireless Networks,” IPSJ SIG
E ggggﬁ?zz? i ggggg Technical Reports, May 15, 2008, vol. 2008, No. 44, pp. 109-114.
TP 7006332825 A 12/2006 Abe et al., “Adaptive Split Connection Schemes in Advanced Relay
JP 2008040718 A 2/2008 Nodes,” IEICE Technical Report, Feb. 22, 2010, vol. 109, No. 438,
IP 2009500731 A 1/2009 pp. 25-30.
JP 2013528330 7/2013 Gite, Vivek, “Linux Tune Network Stack (Builers Size) To Increase
IP 205“4504484 A 2/20}4 Networking Performance,” accessed Apr. 13, 2016 at URL: «http://
IP 2014143686 3/2014 www.cyberciti biz/fag/linux-tep-tuning/», Jul. 8, 2009, 24 pages.
JP 2015507380 A 3/2015 “Ter— TCP Protocol”. T ; D s M | {A
P 5255663 B? 12/2015 D rotocol”, Linux Programmer’s Manual, accessed Apr.
JP 5906263 B 3/2016 13, 2016 at URL: «https://www.freebsd.org/cgi/man.cgi?query=tcp
JP 5913609 B2 4/2016 &apropos=0&sektion=7&manpath=SuSE+Linux%2F1386+11.0
KR 10-0830413 5/2008 &format=asc1», Nov. 25, 2007, 11 pages.
KR 1020120117461 8/2013 “Enhanced Interior Gateway Routing Protocol”, Cisco, Document
KR 101576585 B1 ~ 12/2015 ID 16406, Sep. 9, 2005 update, 43 pages.
%& igg;g? g %ggg? Crotti, Manuel et al.,, “Detecting HTTP Tunnels with Statistical
TW 444478 R 7/9001 Mechanisms”, IEEE International Conference on communications,
WO WO02001013228 2/2001 Jun. 24-28, 2007, pp. 6162-6168.
WO WO2001014990 3/2001 Haruyama, Takahiro et al., “Dial-to-Connect VPN System {for
WO WwW02001045349 6/2001 Remote DLNA Communication”, IEEE Consumer Communica-
WO W0O2003103237 12/2003 tions and Networking Conference, CCNC 2008. 5th IEEE, Jan.
WO W02004084085 Al 9/2004 10-12, 2008, pp. 1224-1225.

US RE47,296 E
Page 6

(56) References Cited
OTHER PUBLICATIONS

Chen, Jianhua et al., “SSL/TLS-based Secure Tunnel Gateway
System Design and Implementation”, IEEE International Workshop
on Anti-counterfeiting, Security, Identification, Apr. 16-18, 2007,
pp. 258-261.

“EIGRP MPLS VPN PE-CE Site of Origin (S0O)”, Cisco Systems,
Feb. 28, 2006, 14 pages.

* cited by examiner

U.S. Patent Mar. 12, 2019 Sheet 1 of 10 US RE47,296 E

108

Session y | |
PO = Client Server |
Setup | |

Module |

<104 (106

!. SN .' A o Fr—— —— —— W e Sl

Figure 1

U.S. Patent Mar. 12, 2019 Sheet 2 of 10 US RE47,296 E

< 104

TSP ges‘s-ion Setup
Module
~ | Session SYN Packet > !
210 245 |
, 250
o Y - |
TN SESS:'MB ?YNM@K - Transition Cookie
Packet
220 |
| 275 570
i
~ ™ Session ACK Packet > Cgpdldate o |
530 ‘ Transition Coekie | |

Figure 2

Sheet 3 of 10

245

U.S. Patent Mar. 12, 2019
SelectiveACK
321 -
N
322 MSS
o~ MSS
Table
307

US RE47,296 L

305

i / 330

e

Transition Cookie
| Data Element

A

MSS Indéx

Figure 3a

(

324

U.S. Patent Mar. 12, 2019 Sheet 4 of 10 US RE47,296 E

245

-Seurce 1P Address

/‘\ Destination Port 340

314 - f

Pl Sotirce 1 .
316 Seurce Port First Data ltem

~—~~ Sequence Number

/l Secret Key Offset
Y

/' Second Data ltem

350

301

i
Y
—~ Transition Cookie
360 Secret Key

Figure 3b

U.S. Patent Mar. 12, 2019 Sheet 5 of 10 US RE47,296 E

245

E—

Transition Cookie
Secret Key
—— 360

330

(

Cryptographic I Transition Cookie I
308 Method Data Element
v __ ,
Encrypted Data | 1 1
Element I Sequence Number—]

| 318

Figure 3¢

U.S. Patent

Mar. 12, 2019

275

Sequence Number
418

Y

C 428

I bl "

Candidate Sequence |

N:u: . -u-iﬁ,g N
NEMPBEer

Sheet 6 of 10

US RE47,296 L

< 270

|

Candidate Transition
Cookie

Candidate Enerypted

Data Element

l/\470

TN

Figure 4a

U.S. Patent Mar. 12, 2019 Sheet 7 of 10 US RE47,296 E

275
lﬁ 428 1

Candidate Sequence |

i Number
414 | Destination Port \ A <
- First Data item
PN ‘ o | ‘

. Secret Key Offset l ZSO

(]

401 ~ Second Data ltem
I
460
e
|)

Candidate Transition
Cookie Secret Key

. '

Figure 4b

U.S. Patent Mar. 12, 2019 Sheet 8 of 10 US RE47,296 E

275

< 460
| Ca-nd_idate Transition
Coeokie Secret Key |
470
Y

C

| Candidate Encrypted
| Data Element

Cryptegraphic
2 Method

Yy __

Candidate Transition -
. Cookie Data Element 430

i bl bl

Figure 4c¢

U.S. Patent

Mar. 12, 2019

Sheet 9 of 10

US RE47,296 L

Modified Current Time

275
430
305 <
Candidate Transition
Cookie Data Element i
431
409 |
N y(

| } Adjusted Candidate

Transition Cookie Data

Element

Figure 4d

U.S. Patent Mar. 12, 2019 Sheet 10 of 10

o507

430

Candidate Transition
Cookie Data Element

—

US RE47,296 L

Caﬂ@;jd;a’te
MSS

Reversed
MSS Table

Figure 5

US RE47,296 E

1

SYSTEM AND METHOD FOR AN ADAPTIVE
TCP SYN COOKIE WITH TIME
VALIDATION

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE 10O RELATED
APPLICATIONS

This application is a continuation reissue application of

U.S. Pat. No. 7,675,854 and claims benefit under 35 U.S.C.
120 as a continuation of application Ser. No. 13/413,19]

filed on Mar. 6, 2012, which is an application for reissue of

U.S. Pat. No. 7,675,854, originally issued on Mar. 9, 2010.

BACKGROUND OF THE INVENTION

When a TCP (Transmission Control Protocol) connection
starts, a destination host receives a SYN (synchronize/start)
packet from a source host and sends back a SYN ACK
(synchronize acknowledge). The destination host normally
then waits to receiver an ACK (acknowledge) of the SYN
ACK belore the connection 1s established. This 1s referred to
as the TCP “three-way handshake.”

While waiting for the ACK to the SYN ACK, a connec-
tion queue of finite size on the destination host keeps track
of connections waiting to be completed. This queue typically

empties quickly since the ACK 1s expected to arrive a few
milliseconds after the SYN ACK 1is sent.

ATCP SYN flood attack 1s a well known denial of service
attack that exploits the TCP three-way handshake design by
having an attacking source host generate TCP SYN packets
with random source addresses toward a victim host. The
victim destination host sends a SYN ACK back to the
random source address and adds an entry to the connection
queue, or otherwise allocates server resources. Since the
SYN ACK 1s destined for an incorrect or non-existent host,
the last part of the “three-way handshake” 1s never com-
pleted and the entry remains 1n the connection queue until a
timer expires, typically, for example, for about one minute.
By generating phony TCP SYN packets from random IP
addresses at a rapid rate, 1t 1s possible to fill up the connec-
tion queue and deny TCP services (such as e-mail, file
transier, or WWW) to legitimate users. In most instances,
there 1s no easy way to trace the originator of the attack
because the IP address of the source 1s forged. The external
manifestations of the problem may include nability to get
¢-mail, 1nability to accept connections to WWW or FIP
services, or a large number of TCP connections on your host
in the state SYN RCVD.

A malicious client sending high volume of TCP SYN
packets without sending the subsequent ACK packets can
deplete server resources and severely impact the server’s
ability to serve its legitimate clients.

Newer operating systems or platforms implement various
solutions to minimize the impact of TCP SYN flood attacks.
The solutions include better resource management, and the
use of a “SYN cookie”.

In an exemplary solution, mnstead of allocating server
resource at the time of recerving a TCP SYN packet, the
server sends back a SYN/ACK packet with a specially

10

15

20

25

30

35

40

45

50

55

60

65

2

constructed sequence number known as a SYN cookie.
When the server then receives an ACK packet 1n response to

the SYN/ACK packet, the server recovers a SYN cookie
from the ACK packet, and validates the recovered SYN
cookie before further allocating server resources.

The effectiveness of a solution using a SYN cookie
depends on the method with which the SYN cookie 1s
constructed. However, existing solutions using a SYN
cookie typically employ a hash function to construct the
SYN cookie, which can lead to a high percentage of false
validations of the SYN cookie, resulting in less than satis-
factory protection again TCP SYN flood attack.

Therefore, there 1s a need for a better system and method
for constructing and validating SYN cookies.

SUMMARY OF THE INVENTION

An aspect of the present invention provides a system for
TCP SYN cookie validation. The system includes a host
server including a processor and memory. The processor 1s
configured for recerving a session SYN packet, generating a
transition cookie, the transition cookie comprising a time
value representing the actual time, sending a session SYN/
ACK packet, including the transition cookie, 1n response to
the recerved session SYN packet, receiving a session ACK
packet, and determining whether a candidate transition
cookie 1n the recetved session ACK packet comprises a time
value representing a time within a predetermined time
interval from the time the session ACK packet 1s received.

One aspect of the mnvention includes the system above 1n
which the processor 1s further configured for regarding the
received session ACK packet as valid if the candidate
transition cookie 1n the received session ACK packet com-
prises a time value representing a time within a predeter-
mined time interval from the time the session ACK packet
1s recerved.

In another aspect of the invention, the predetermined time
interval 1s 1n the range of one to six seconds.

In one aspect of the invention, the predetermined time
interval 1s three seconds.

In another aspect of the invention, the step of generating,
the transition cookie includes the use of data obtained from
the session SYN packet.

In one aspect of the invention, the data obtained from the
session SYN packet comprises the source IP address of an
IP header associated with the session SYN packet.

In another aspect of the invention, the data obtained from
the session SYN packet comprises the sequence number of
a TCP header associated with the session SYN packet.

In another aspect of the invention, the data obtained from
the session SYN packet comprises a source port associated
with the session SYN packet.

In another aspect of the invention, the data obtained from
the session SYN packet comprises a destination port asso-
ciated with the session SYN packet.

Another aspect of the present invention provides a method
for TCP SYN cookie validation. The method includes
receiving a session SYN packet by a TCP session setup
module, generating a transition cookie by the TCP session
setup module, the transition cookie comprising a time value
representing the actual time, sending a session SYN/ACK
packet, including the transition cookie, 1n response to the
received session SYN packet, receiving a session ACK
packet, and determining whether a candidate transition
cookie 1n the recerved session ACK packet comprises a time
value representing a time within a predetermined time
interval from the time the session ACK packet 1s received.

US RE47,296 E

3

In an aspect of the invention, the method further includes
indicating the received session ACK packet comprises a
valid candidate transition cookie if the time value of the
candidate transition cookie 1s within a predetermined time
interval of the time the session ACK packet 1s received.

In another aspect of the mvention, the step of generating,

the transition cookie includes the use of data obtained from
the session SYN packet.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram illustrating a host server
including a TCP session setup module and a client server, 1n
accordance with an embodiment of the present invention;

FIG. 2 1s a schematic diagram of a TCP/IP handshake in
accordance with an embodiment of the present invention;

FI1G. 3a illustrates a method including steps for generating,
a transition cookie data element by a transition cookie
generator 245, 1n accordance with an embodiment of the
present mvention;

FI1G. 3b 1llustrates a method including steps for generating,
a transition cookie secret key by a transition cookie genera-
tor 245 based on data obtained from the receirved session
SYN packet, in accordance with an embodiment of the
present ivention;

FI1G. 3¢ illustrates a method including steps for generating
a transition cookie based on a transition cookie data element,
a transition cookie secret key, and data obtained from a
received session SYN packet 1n accordance with an embodi-
ment of the present invention;

FIG. 4a illustrates steps for generating a candidate
encrypted data element by a transition cookie validator 2735
based on data obtained from a received session ACK packet,
in accordance with an embodiment of the present invention;

FI1G. 4b 1llustrates a method including steps for generating,
a candidate transition cookie secret key by a transition
cookie validator 275 based on data obtained from a received
session ACK packet and a candidate sequence number, 1n
accordance with an embodiment of the present invention;

FI1G. 4c¢ illustrates a method including steps for generating
a candidate transition cookie data element by a transition
cookie validator 275 based on a candidate encrypted data
clement and a candidate transition cookie secret key, in
accordance with an embodiment of the present invention;

FIG. 4d illustrates a method including the steps for
validating a candidate transition cookie data element, in
accordance with an embodiment of the present invention;
and

FIG. 3 illustrates a method including steps for generating
information based on a validated candidate transition cookie
data element, in accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
specific numbers, materials and configurations are set forth
in order to provide a thorough understanding of the inven-
tion. It will be apparent, however, to one having ordinary
skill in the art, that the invention may be practiced without
these specific details. In some instances, well-known fea-
tures may be omitted or simplified so as not to obscure the
present invention. Furthermore, reference 1n the specifica-
tion to “one embodiment” or “an embodiment” means that
a particular feature, structure or characteristic described 1n
connection with the embodiment 1s 1ncluded 1n at least one
embodiment of the invention. The appearances of the phrase

10

15

20

25

30

35

40

45

50

55

60

65

4

“1n an embodiment™ 1n various places 1n the specification are
not necessarily all referring to the same embodiment.

Transmission Control Protocol (“TCP”) 1s one of the main
protocols 1n TCP/IP networks. Whereas the Internet Protocol
(“IP”) deals only with packets, TCP enables two hosts to
establish a connection and exchange streams of data. TCP
guarantees delivery of data and also guarantees that packets
will be delivered 1n the same order 1n which they were sent.

The terms “host server” and “client server” referred to 1n
the descriptions of various embodiments of the mvention
herein described are intended to generally describe a typical
system arrangement 1n which the embodiments operate. The
“host server” generally refers to any computer system inter-
connected to a TCP/IP network, including but not limited to
the Internet, the computer system comprising at a minimum
a processor, computer memory, and computer software. The
computer system 1s configured to allow the host server to
participate i TCP protocol communications over 1ts con-
nected TCP/IP network. Although the “host server” may be
a single personal computer having 1ts own IP address and 1n
communication with the TCP/IP network, 1t may also be a
multi-processor server or server bank. The “client server” 1s
similar to the “host server”, although it 1s understood that the
“client server” may, 1n fact, be a single personal computer
attached to the TCP/IP network. The only difference
between the client and the host server for the purposes of the
present imvention 1s that the host server receives the SYN
from the client server, sends a SYN ACK to the client server,
and waits for the ACK from the client server.

FIG. 1 1s a schematic diagram 1llustrating an embodiment
of the present invention. A host server 102 may include a
TCP session module 104. The TCP session setup module
104 can engage 1n a TCP handshake 108, such as described
above, with a client server 106. In an embodiment, the TCP
session setup module 104 1s a software component of the
host server 102. In one embodiment, the TCP session setup
module 104 1s implemented 1n an Application Specific
Integrated Circuit (“ASIC”) or a Field Programmable Gate
Array (“FPGA”™). It 1s the TCP session setup module that
handles the “3-way handshake™ 108 between the host server
102 and the client server 106. The TCP session setup module
may 1tsell also incorporate modules for sending and receiv-
ing TCP session packets. These modules may include but are
not lmited to a session SYN packet receiver, a session
SYN/ACK packet sender, and a session ACK packet
receiver, which are all known to those of ordinary skill in the
computer arts.

The TCP sessions setup module 104 may itself be embed-
ded 1n one or more other host server modules (not shown).
The TCP session setup module may alternatively comprise
a hardware or firmware component. For example, the sofit-
ware which handles the TCP handshake 108 on behalf of the
host server 102 may be programmed onto a externally
programmable read-only memory (“EPROM”) (not shown),
and the EPROM may then be integrated into the host server.
In another example, the ASIC or FPGA 1s integrated into the
host server.

FIG. 2 illustrates a TCP session setup module 104 pro-
cessing TCP/IP segments (not shown), such as session SYN
packet 210, session SYN/ACK packet 220, and session ACK
packet 230.

A TCP/IP segment includes a TCP header and an IP
header as described i IETF RFC 793 “Transmission Con-
trol Protocol” section 3.1 “Header Format”, incorporated
herein by reference. A TCP header optionally includes a
sack-permitted option as described in IETF RFC 2018 “TCP

Selective Acknowledgement Options™ section 2 “Sack-Per-

US RE47,296 E

S

mitted Option”, mcorporated herein by reference. A session
SYN packet 210 1s a TCP/IP segment with the SYN control

bit in the TCP Header set to “1”. A session SYN/ACK packet

220 1s a TCP/IP segment with the SYN control bit and the
ACK control bit in the TCP header set to “17. A Session
ACK Packet 230 1s a TCP/IP segment with the ACK control
bit 1n the TCP header set to <17,

Referring to FIG. 2, 1n an embodiment, the TCP session
setup module 104 receives a session SYN packet 210,
obtains data from a session SYN packet 210, such as but not
limited to the source IP address of the IP header, or the
sequence number of the TCP header, and uses the data to
generate a transition cookie 250. The transition cookie 250
1s preferably a 32-bit data element. In response to the session
SYN packet 210, the TCP session setup module 104 creates
and sends out a session SYN/ACK packet 220 in accordance
with IETF RFC 793 “Transmission Control Protocol” sec-
tion 3.4 “Establishing a connection”, incorporated herein by
reference. The TCP session setup module 104 preferably
includes the transition cookie 250 as the sequence number of
the TCP header 1n the session SYN/ACK packet 220.

After the TCP session setup module 104 has sent out the
session SYN/ACK packet 220, it waits for receipt of a
responding session ACK packet 230. In an embodiment,
when a session SYN/ACK packet 230 1s received, the TCP
session setup module 104 generates a 32-bit candidate
transition cookie 270 such that the sum of candidate tran-
sition cookie 270 and a value of “1” equal the acknowl-
edgement number of the TCP header 1n the session ACK
packet 230. For example, 11 the acknowledgement number 1s
“41B4362A” in hexadecimal format the candidate transition
cookie 270 1s “41B43629” 1n hexadecimal format; the sum
of “41B43629” and a value of “1” equals “41B4362A”. In
another example, 11 the acknowledgement number 1is
“00A30000” 1n hexadecimal format the candidate transition
cookie 270 1s “O0A2FFFF” 1n hexadecimal format; the sum
of “00A2FFFF” and a value of “1” equals “00A30000”. In
another example, 11 the acknowledgement number 1is
“00000000” 1n hexadecimal format the Candidate Transition
Cookie 270 1s “FFFFFFFF” 1n hexadecimal format; the sum
of “FFFFFFFF” and a value of *“1”” equals “00000000”, with
the most significant bit carried beyond the 32-bit boundary.
The TCP session setup module 104 may thus validate the
candidate transition cookie 270 in this manner. If the TCP
session setup module 104 determines that the candidate
transition cookie 270 1s thus valid, the session ACK packet
230 1s also valid. In this case, the TCP session setup module
104 obtains data from the validated session ACK packet 230
and sends the data and information generated during the
validation of candidate transition cookie 270 to a computing,
module (not shown) for further processing.

In order to generate and validate transition cookies 2350,
270, the TCP session setup module 104 may include a
transition cookie generator 245 and a transition cookie
validator 273, respectively. Alternatively, the generation and
validation may be performed directly by the TCP session
setup module 104. In the descriptions herein, references to
the TCP and transition cookie validator 275 are understood
to 1nclude any of the alternative embodiments of these
components.

A transition cookie generator 245 includes the function-
ality of generating a transition cookie based on the data
obtained from a session SYN 210 packet recerved by the
TCP session setup module 104.

A transition cookie validator 2735 includes the function-
ality of validating a candidate transition cookie 270 gener-

10

15

20

25

30

35

40

45

50

55

60

65

6

ated based on data obtained from a session ACK packet 230
received by the TCP session setup module 104.

In exemplary operation, a transition cookie generator 245
1s soitware or firmware that generates a transition cookie
250 based on data obtained from a session SYN packet 210
received by the TCP session setup module 104. An exem-
plary method for generating a transition cookie 250 by a
transition cookie generator 245 includes multiple steps as
illustrated i FIGS. 3a-3c.

FIG. 3a 1illustrates exemplary steps for generating a tran-
sition cookie data element 330 by a transition cookie gen-
crator 245. A transition cookie generator 245 includes a
clock 305 indicating the current time of day 1n microseconds
in a 32-bit format.

The transition cookie data element 330 1s preferably a

32-bit data element, generated by the transition cookie
generator 245 based on the selective ACK 321, the MSS

index 324 and the 32-bit current time of day indicated by

clock 305. Selective ACK 321 1s a 1-bit data element which
1s set to a value of “1” by transition cookie generator 245 1f
a TCP header in a received session SYN packet 210 includes
an optional sack-permitted option, or to “0” 11 a TCP header
in a recerved session SYN packet 210 does not include an
optional sack-permitted option.

Maximum Segment Size (“MSS”) 322 1s the maximum
number of bytes that TCP will allow 1n an TCP/IP packet,
such as session SYN packet 210, session SYN/ACK packet
220, and session ACK packet 230, and 1s normally repre-
sented by an integer value i a TCP packet header. If a TCP
header 1n a received session SYN packet 210 includes a
maximum segment size option, the transition cookie gen-
crator 245 sets the MSS 322 to equal the maximum segment
size option data ol the maximum segment size option.
Otherwise, 11 the TCP header 1in a received session SYN
packet 210 does not include a maximum segment size
option, the transition cookie generator 243 sets the MSS 322
to a default value, for example, such as integer “536”. The
MSS 1ndex 324 1s a 4-bit data element set by the transition
cookie generator 243 based on the MSS 322. The transition
cookie generator 245 preferably includes an MSS table 307,
which maps an MSS 322 to an MSS mdex 324. The
transition cookie generator 245 maps a MSS 322 with the
MSS table 307 to set the value of MSS index 324. Fo
example, MSS 322 has an integer value of “1460”. After the
mapping, MSS index 324 has a value of “4” as represented
in hexadecimal format. In an alternative embodiment, means
other than an MSS table 307 may be employed to determine
the MSS index 324 value, such as the use of a mapping
algorithm.

In generating a transition cookie data element 330, the
transition cookie generator 245 sets a transition cookie data
clement 330 to equal the 32-bit current time of day indicated
by clock 3035. For example, the 32-bit current time of day
may be “A68079E8” as represented 1in hexadecimal format,
so the transition cookie data element 330 has a value of
“A68079ER”.

Next, the transition cookie generator 245 replaces the
least significant 4 bits (bit 0-3) of transition cookie data
clement 330 with the MSS index 324, and replaces bit 4 of
a fransition cookie data element 330 with selective ACK

321. For example, 11 a transition cookie data element 330 has
been set to a value of “A68079ER”, selective ACK 321 has

a value of “1”, and MSS index 324 has a value of “4” as

represented in hexadecimal format, after the replacements,
transition cookie data element 330 has a wvalue of

“A68079F4” 1n hexadecimal format.

US RE47,296 E

7

FIG. 3b illustrates exemplary steps for generating a tran-
sition cookie secret key 360, such as by a transition cookie
generator 245 based on data obtained from a received
session SYN packet 210. The data used in generating the
transition cookie secret key 360 may include at least the 5
source IP address 312 of an IP header, a destination port 314,
a source port 316 and a sequence number 318 of a TCP
header 1n a received session SYN packet 210. In generating,
a transition cookie secret key 360, a transition cookie
generator 243 forms a 96-bit data element, a first data 1tem
340, by concatenating a source IP address 312, a sequence
number 318, a source port 316, and a destination port 314.
For example, if the source IP address 312 1s 192.168.1.134,
the hexadecimal representation being “COA80186”, the
sequence number 318 1s “9A275B84”, the source port 316
1s 4761, the hexadecimal representation being “1299”, and
the destination port 314 1s 240, the hexadecimal represen-
tation being “00F0”, then, after the concatenation, the first
data item 340 has a hexadecimal wvalue of
“COAB01869A275B84129900F0. 20

Next, since the transition cookie secret key 360 1s a
128-bit data element, the transition cookie generator 243
may use a hash function to generate the transition cookie
secret key 360 from the first data item 340. Further, the
transition cookie generator 245 may use a secret key oflset
301, which may be a 6-bit integer value, to select a 6-bit
non-negative integer from first data item 340 starting at the
bit indicated by secret key offset 301. For example, if the
secret key oflset 301 has a value of “12” and the first data
item 340 has a hexadecimal value of
“COAB01869A275B84129900F0”, the transition cookie

generator 245 selects a 6-bit non-negative iteger from the
first data 1tem 340 starting at bit 12 (b1t 12-17). The selected
non-negative mnteger 1s of this example 1s thus “16”. The
transition cookie generator 245 then uses the selected non-
negative mteger to select 64 bits of data from the first data
item 340, starting at the bit indicated by the selected
non-negative iteger, to generate the second data item 330,
which has 64 bits.

For example, 11 the selected non-negative integer 1s “8”
and the first data 1tem 340 has a hexadecimal value of
“COAB01869A275B84129900F0”, the transition cookie
generator 243 selects 64 bits (bit 8-71) of the first data item
340 to generate a second data item 350, having a hexadeci-
mal value of “869A275B84129900”. In another example, 11 45
the selected non-negative 1mteger 1s “52”, and the transition
cookie generator 245 selects 64 bits (bit 52-95 and bit 0-19)

of the first data 1tem 340 1 a wrap-around fashion, bits
52-95 have a hexadecimal value of “COAR01869A2”, and

bit 0-19 have a hexadecimal wvalue of “900F0”, so the 50
generated second data 1item 350 has a hexadecimal value of
“O00FOCOARBO1869A2”. The transition cookie generator
245 then generates a transition cookie secret key 360 by
storing the second data item 350 1n the least significant 64
bits (bit 0-63) of the transition cookie secret key 360 and
setting the most significant 64 bits (bit 64-127) to “0”. For
example, 11 the second data item 350 has a hexadecimal
value of “869A275B84129900”, the transition cookie secret
key 360 has a hexadecimal value of
“0000000000000000869A275B84129900”. 60

FIG. 3¢ illustrates exemplary steps for generating a tran-
sition cookie 250 based on a transition cookie data element
330, a transition cookie secret key 360, and data obtained
from a received session SYN packet 210, including a
sequence number 318 of a TCP header 1n a received session
SYN packet 210. To generate a transition cookie 2350, a
transition cookie generator 245 applies a cryptographic

10

15

25

30

35

40

55

65

8

method 308 on the transition cookie secret key 360 and the
transition cookie data element 330, such as an RC5 algo-

rithm described in IETF RFC 2040 “The RCS5, RC35-CBC,
RC3-CBC-Pad, and RC3-CTS Algorithms™ section 1 “Over-
view’, and sections 2-8 with detailed explanations, incor-
porated herein by reference. The RC5 algorithm takes a
32-bit plaintext mput and a 128-bit encryption key to
generate a 32-bit ciphertext output. The transition cookie
generator 245 uses the transition cookie data element 330 as
the plaintext iput to the RC5 algorithm, and the transition
cookie secret key 360 as the encryption key 1mnput to the RC3
algorithm. The transition cookie generator 245 stores the
resulting 32-bit ciphertext output of the RC5 algorithm in
the encrypted data element 370.

Next, the transition cookie generator 245 performs an
unsigned binary addition on an encrypted data element 370
and the sequence number 318, and stores the result in the

transition cookie 2350. For example, 11 the encrypted data
clement 370 has a value of “0025BC83” in hexadecimal
format, and the sequence number 318 has a value of
“0743BD55” 1n hexadecimal format, the result of the addi-
tion 1s hexadecimal “076979D8”. After the addition, the
transition cookie 250 has a value of “076979D8” in hexa-
decimal. In another example, 11 the encrypted data element
370 has a value of “BE43D096” 1n hexadecimal format, and
the sequence number 318 has a value of “9A275B84” in
hexadecimal format, the result of the addition, and the value
of transition cookie 250 1s hexadecimal “1586B2C1A”, with
the most significant bit carried beyond the 32-bit boundary.

In another embodiment, a transition cookie generator 245
may use diflerent steps to generate a transition cookie secret
key 360. For example, a secret key oflset 301 may be an
integer of a different bit length, such as a 4-bit integer value,
a 3-bit integer value, or a 3-bit integer value. Also, a
transition cookie generator 245 may use a secret key oflset
301 to select a non-negative integer value of a different bat
length from a first data item 340. For example, a transition
cookie generator 245 may select a 4-bit non-negative integer
value, a 7-bit non-negative integer value, or a 3-bit non-
negative value from a first data item 340.

In other embodiments, a transition cookie generator 245
may store a second data item 350 in the least significant 64
bits (bit 0-63) of a transition cookie secret key 360 or store
second data item 350 1n the most sigmificant 64 bits (bit
64-127) of a transition cookie secret key 360.

A transition cookie generator 245 may also perform an
exclusive-or operation on the most signmificant 48 bits (bit
0-47) of a first data item 340 and the least significant 48 bits
(bit 48-95) of a first data element 340 to form a 48-bit
temporary data element (not shown). Similarly, in another
embodiment, a transition cookie generator 245 may perform
an exclusive-or operation on the 48 even bits (bit 0, 2,
4,...90,92,94) and the 48 odd bits (b1t 1, 3, 5, . . . 93, 95,
97) to form a 48 bit temporary data element. In yet another
embodiment, a transition cookie generator 245 may store a
48-bit temporary data element 1n the least significant 48 bits
(bit 0-47) and the most significant 48 bits (bit 80-127) of a
transition cookie secret key 360, and set bit 48-79 to “0”, or
store a 48-bit temporary data element 1n the least significant
48 bits (b1t 0-47) of a transition cookie secret key 360, and
set the most significant 80 bits (bit 48-127) of a transition
cookie secret key 360 to “0”.

In other embodiments of the invention, a transition cookie
generator 245 may use an encryption algorithm to generate
a transition cookie secret key 360 from the first data i1tem

340.

US RE47,296 E

9

In another embodiment, a transition cookie generator 245
includes a secret key and an encryption algorithm, and uses
a first data element 340 as a plaintext input, and a secret key
as an encryption key mnput to the encryption algorithm to
generate a 128-bit ciphertext output. Next, a transition
cookie generator 245 generates a transition cookie secret key
360 as a 128-bit ciphertext output. Alternatively, the cipher-
text output may be a 96-bit data element, and a transition
cookie generator 2435 stores a 96-bit ciphertext output 1n the
least significant 96 bits (bit 0-95) of a transition cookie
secret key 360, and sets the most sigmificant 32 bits (bit
96-127) to “0”. In another alternative, a transition cookie
generator 245 stores the least significant 32 bits (bit 0-31) of
a 96-bit ciphertext output 1n the most significant 32 bits (bit
96-127) of a transition cookie secret key 360.

As seen 1n FIG. 2, a transition cookie validator 275
validates a candidate transition cookie 270 generated from a
session ACK packet 230 received by the TCP session setup
module 104. An exemplary method for validating a candi-
date transition cookie 270 by a transition cookie validator
275 may include multiple steps as illustrated 1n FIGS. 4a-4d.

FIG. 4a 1llustrates exemplary steps for generating a can-
didate encrypted data element 470 by a transition cookie
validator 275 based on data obtained from a received session
ACK packet 230. The candidate encrypted data element 470
may be a 32-bit data element generated based on the
sequence number 418 of the TCP header in the received
session ACK packet 230, and the candidate transition cookie
270 generated from the received session ACK packet 230 as
illustrated 1n FIG. 2.

The candidate sequence number 428 may be a 32-bit data
clement generated by a transition cookie validator 275 such
that the sum of candidate sequence number 428 and a value
of “1” equals the sequence number 418.

The candidate encrypted data element 470 1s generated by
the transition cookie validator 275 such that the result of
performing an unsigned binary addition of the candidate
encrypted data element 470 and the candidate sequence
number 428 equals the candidate transition cookie 270.

FIG. 4b 1llustrates exemplary steps for generating a can-
didate transition cookie secret key 460 by the transition
cookie validator 275 based on data obtained from the
received session ACK packet 230 and a candidate sequence
number 428. The data used for generating the candidate
transition cookie secret key 460 may include at least a source
IP address 412 of the IP header in a received session ACK
packet 230, a destination port 414 and a source port 416 of
the TCP header 1in a recerved session ACK packet 230. In the
process, a 96-bit first data 1tem 440 1s formed by a transition
cookie validator 275 by concatenating a source IP address
412, a candidate sequence number 428, a source port 416,
and a destination port 414. For example, if the source IP
address 412 1s 192.168.1.134, having a hexadecimal repre-
sentation of “C0OA80186”, the candidate sequence number
428 1s hexadecimal “9A275B84”, the source port 416 1s
4’761, having a hexadecimal representation of “1299”, and
the destination port 414 1s 240, having a hexadecimal
representation of “00F0”, after the concatenation, the first
data item 440 has a hexadecimal wvalue of
“COAB01869A275B84129900F0.

Next, the 128-bit candidate transition cookie secret key
460 1s generated from a first data item 440 by a transition
cookie validator 275 using a hash function. In an embodi-
ment, a transition cookie validator 275 uses a 6-bit secret
key oflset 401 to select a 6-bit non-negative integer from a
first data item 440 starting at a bit indicated by secret key
offset 401. For example, if the secret key offset 401 has a

10

15

20

25

30

35

40

45

50

55

60

65

10

value of “12” and the first data 1tem 440 1s
“COA801869A275B84129900F0, the transition cookie

validator 273 selects a 6-bit non-negative integer from the
first data item 440 starting at bit 12 (bits 12-17), selecting the
non-negative teger “16”. The transition cookie validator
275 then generates a 64-bit second data 1item 3350 by using
the selected non-negative integer to select 64 bits of data
from the first data item 440, starting at the bit indicated by
the selected non-negative integer.

For example, 1f the selected non-negative integer 1s “8”
and the first data i1tem 440 has a hexadecimal value of

“COAB01869A275B84129900F0”, the transition cookie
validator 275 selects 64 bits (bit 8-71) of the first data item
440 to generate a second data item 430 having a hexadeci-

mal value of “869A275B84129900”. In another example, 1
the first data 1tem 440 has a hexadecimal wvalue of
“COA801869A275B84129900F0”, and the selected non-

negative mteger 1s <527, the transition cookie validator 275
selects 64 bits (bit 52-95 and bit 0-19) mn a wrap-around
fashion. Bits 52-95 have a hexadecimal value of
“COAB01869A2”, and bits 0-19 have a hexadecimal value of
“O00F0”, so the generated second data item 4350 has a
hexadecimal value of “900FOCOA801869A2”.

Next, the transition cookie validator 275 generates a
candidate transition cookie secret key 460 by storing the
second data item 450 1n the least significant 64 bits (bit 0-63)
of the candidate transition cookie secret key 460 and setting
the most significant 64 bits (bit 64-127) to “0”. For example,
if the second data item 450 has a hexadecinmal value of
“B69A275B84129900”, the candidate transition cookie

secret key 460 has a hexadecimal wvalue of
“0000000000000000869A275B84129900”.

FIG. 4C 1illustrates exemplary steps for generating a
candidate transition cookie data element 430 by a transition
cookie validator 275 based on a candidate encrypted data
clement 470 and a candidate transition cookie secret key
460.

In an embodiment, a transition cookie validator 275
applies a cryptographic method 408 on a candidate transition
cookie secret key 460 and a candidate encrypted data
clement 470. An exemplary cryptographic method 408 1s an

RCS algorithm described in IETF RFC 2040 “The RC5,
RC3-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms™ sec-
tion 1 “Overview”, and sections 2-8 with detailed explana-
tions, mncorporated herein by reference. The RC5 algorithm
takes a 32-bit ciphertext mnput and a 128-bit decryption key
to generate a 32-bit plaintext output. A transition cookie
validator 275 uses a candidate encrypted data element 470 as
a ciphertext mput to the RC5 algorithm, and a candidate
transition cookie secret key 460 as a decryption key mput to
the RCS algorithm, to generate a 32-bit candidate transition
cookie data element 430 as the plaintext output of the RC5
decryption algorithm.

FIG. 4d 1llustrates exemplary steps by a transition cookie
validator 275 of validating a candidate transition cookie data
element 430. In an embodiment, a transition cookie validator
275 includes a clock 3035. The clock 305 indicates the current
time of day, preferably 1n microseconds 1n a 32-bit format.
The modified current time 409 15 a 32-bit data element set by
a fransition cookie validator 275 sets to the current time
indicated by clock 305. A transition cookie validator 275
then sets the least significant 5 bits (bit 0-4) of the modified
current time 409 to “0”. For example, 1f the modified current
time 409 has a value of “89AEQ3F6” in hexadecimal format,
alter setting the least significant 5 bits to “0”, the modified
current time 409 has a hexadecimal value of “89AFEO03E0”.

US RE47,296 E

11

Next, a transition cookie validator 275 sets a 32-bit
adjusted candidate transition cookie data element 431 to
equal the candidate transition cookie data element 430, and
then sets the least significant 5 bits (bit 0-4) of the adjusted
candidate transition cookie data element 431 to “0”. For
example, 1I the adjusted candidate transition cookie data
element 431 has a hexadecimal value of “89DB468F”, after
setting the least significant 5 bits to “0”, the adjusted
candidate transition cookie data element 431 has a hexa-
decimal value of “89DB4680”.

The transition cookie validator 275 may then determine 1t
the candidate transition cookie data element 430 1s valid by
determining 1f the adjusted candidate transition cookie data
clement 431 1s within a time margin of 3 seconds of the
modified current time 409. In an embodiment, 1n order to
determine 11 the adjusted candidate transition cookie data
clement 431 1s within a time margin of 3 seconds of the
modified current time 409, the transition cookie stores the
modified current time 409 1n the least significant 32 bits (bit
0-31) of a first 33-bit time data element, sets the most
significant bit (bit 32) to “0”, and adds 6 seconds to the first
33-bit time data element. Adding 6 seconds 1s to add
6,000,000 micro seconds as represented by “5B8D80” 1n
hexadecimal format. For example, i1 before the addition, the
first 33-bit time data element has a hexadecimal value of
“OFFFFFAE2”, After the addition of “SB&DRK0”, the first
33-bit time data element has a hexadecimal value of
“1005B8862”. The transition cookie validator 275 stores the
adjusted candidate transition cookie data element 431 in the
least significant 32 bits (bit 0-31) of a second 33-bit time
data element, sets the most significant bit (bit 32) to “0”, and
adds 3 seconds to the second 33-bit time data element.
Adding 3 seconds 1s to add 3,000,000 micro seconds as
represented by hexadecimal “2DC6C0”. The {transition
cookie validator 275 stores the modified current time 409 1n
the least significant 32 bits (bit 0-31) of a third 33-bit time
data element, and sets the most significant bit (bit 32) to “0”.
I1 the second 33-bit time data element 1s smaller than the first
33-bit time data element and the second 33-bit time data
clement 1s larger than the third 33-bit time data element, the
transition cookie validator 275 determines that the adjusted
candidate transition cookie data element 431 1s within 3
seconds of the modified current time 409, and thus that the
candidate transition cookie data element 430 1s valid.

FIG. 5 illustrates exemplary steps of generating informa-
tion based on a validated candidate transition cookie data
element 430. In an embodiment, candidate MSS 522 1s an
integer. A transition cookie validator 275 includes a reversed
MSS table 507, which includes information that maps a 4-bit
data element to a candidate MSS 522. A transition cookie
validator 275 extracts the least significant 4-bit (b1t 0-3) data
from candidate transition cookie data element 430, maps the
extracted 4-bit data to a reversed MSS table 507, and stores
the result mn a candidate MSS 3522. A ftransition cookie
validator 275 may then generate a maximum segment size
option as described 1n IETF RFC 793 “Transmission Control
Protocol” section 3.1 “Header Format™, incorporated herein
by reference, and sets a maximum segment size option data
of the maximum segment size option to equal a candidate
MSS 522. A transition cookie validator 275 may further
examine bit 4 of a candidate transition cookie data element
430. If bit 4 of candidate transition cookie data element 430
has a value of “1”, a transition cookie validator 275 may
generate a sack-permitted option as described i IETF RFC
2018 “TCP Selective Acknowledgement Options™ section 2,
incorporated herein by reference. A TCP session setup
module 104 may then send a sack-permitted option, a

10

15

20

25

30

35

40

45

50

55

60

65

12

maximum segment size option, and data obtained from a
received session ACK packet 230 to a computing module
(not shown) for further processing.

There are many different encryption algorithms that use
encryption keys of different bit lengths, such as, for
example, S6-bit, 64-bit, 96-bit, 128-bit. These may generate
ciphertext outputs of different bit lengths, for example,
96-bit, 64-bit, 128-bit, or 32-bit. Persons of ordinary skill in
the cipher arts will be able to apply different methods, for
example a hash function, to generate the transition cookie
secret key 360 from the ciphertext output.

A transition cookie validator 275 may also use difierent
steps to generate a candidate transition cookie secret key
460. The steps used by a transition cookie validator 273 to
generate a candidate transition cookie secret key 460 are
similar to the steps used by a transition cookie generator 245
to generate a transition cookie secret key 360.

Alternative embodiments of the invention may employ a
different algorithm for the cryptographic methods 308, 408.
In one example, the different algorithm 1s an RC2 algorithm
described 1n IETF RFC 2268 “A Description of the RC2(r)
Encryption Algorithm™ section 1 “Introduction” and section
2-4 with detailed explanation, incorporated herein by refer-
ence. In another example, the different algorithm 1s a Blow-
fish algorithm. In one other example, the different algorithm

1s a Data Encryption Standards (“DES”) algorithm based on
Federal Information Processing Standards Publication “Data
Encryption Standard (DES) FIPS PUB 46-3”, which 1s
incorporated herein by reference 1n 1ts entirety. Other algo-
rithms are also usable.

Also, a transition cookie validator 275 may use different
time margins of modified current time 409 to determine 1t
the candidate transition cookie data element 1s valid. Dii-
ferent time margins 1iclude but are not limited to 1 second,
4 seconds, 6 seconds, 2 seconds, or 11 seconds.

In an embodiment, the method of generating a transition
cookie includes MD5 signature option information in the
TCP options field. When this method i1s used, the method of
validating a candidate transition cookie 270 correspondingly
includes the MD3S signature option information in the TCP
options field.

In another embodiment, transition cookie generator 245
may include a plurality of transition cookie generation
methods for generating transition cookie 250. For example,
the secret key oflset 301 may have a diflerent value, such as
an 1nteger value of different bit length, such as 4-bit, or 8-bit.
In other examples, the selected non-negative integer from
first data 1tem 340 may be of different bit length, such as
8-bit, or 10-bit, the cryptographic method 308 may be a
different algorithm than RC5, or the generating of transition
cookie data element 330 may include MD5 signature option
information in the TCP options field of session SYN packet
210. A transition cookie generation method may include
steps diflerent from the steps in the exemplary method
illustrated 1n FIGS. 3a-3c.

In an embodiment, the transition cookie generator 245
may selects method to generate transition cookie 250 based
on random data.

The random data may include time. In one embodiment,
transition cookie generator 245 selects a method based on
the time of day. Alternatively, the transition cookie generator
245 may select a method after a time period, such as 10
seconds, 30 seconds, 2 minutes or 3 hours.

In another embodiment, the random data may include a
source IP address 1n session SYN packet 210, or a destina-
tion IP address in session SYN packet 210.

US RE47,296 E

13

The random data may include the network interface at
which a TCP session setup module 104 receives a session
SYN packet 210, or a Virtual Local Area Network (VLAN)
information associated with a session SYN packet 210.

In one embodiment, transition cookie wvalidator 275
includes a plurality of transition cookie validation methods
for validating candidate transition cookie 270. A transition
cookie validation method may include steps different from
the steps 1n the exemplary method illustrated in FIGS. 4a-4d.
A transition cookie validator 275 may select a method to
validate candidate transition cookie 270 based on random
data.

In these embodiments 1t 1s understood to be preferred that
the transition cookie validator 275 selects a complementary
method to the method selected by transition cookie genera-
tor 245.

Although the invention herein has been described with
reference to particular embodiments, it 1s to be understood
that these embodiments are merely illustrative of the prin-
ciples and applications of the present invention. It 1s there-
fore to be understood that numerous modifications may be
made to the illustrative embodiments and that other arrange-
ments may be devised without departing from the spirit and
scope of the present mvention as defined by the appended
claims.

The 1nvention claimed 1s:

[1. A system for TCP SYN cookie validation at a host

server comprising;

a session SYN packet recerver for receiving a session
SYN packet;

a transition cookie generator operating to generate a
transition cookie with the use of a transition cookie
secret key, the transition cookie comprising a time
value representing the actual time, wherein the transi-
tion cookie generator generates the transition cookie
secret key based on data obtained from the received
session SYN packet, the data obtained from the SYN
packet including at least one of a source IP address of
an IP header, a destination port, a source port, and a
sequence number of a TCP header in the received
session SYN packet, wherein the transition cookie
generator concatenates the obtained data from the ses-
ston SYN packet to generate a first data item of the
generator and the transition cookie generator uses a first
hash function to generate the transition cookie secret
key from the first data 1item of the generator;

a session SYN/ACK packet sender for sending the tran-
sition cookie 1n response to the received session SYN
packet;

a session ACK packet receiver for receiving a session
ACK packet, the session ACK packet including a
candidate transition cookie; and

a transition cookie validator, for determining whether the
candidate transition cookie 1n the recerved session ACK
packet comprises a time value representing a time
within a predetermined time interval from the time the
session ACK packet 1s received, wherein the transition
cookie validator generates a candidate transition cookie
secret key based on data obtained from the received
session ACK packet, the data obtained from the ACK
packet including at least one of a source IP address of
the IP header, a destination port, and a source port,
wherein the transition cookie validator concatenates the
obtained data from the session ACK packet to generate
a first data i1tem of the validator and the transition
cookie validator uses the first or another hash function

10

15

20

25

30

35

40

45

50

55

60

65

14

to generate the candidate transition cookie secret key

from the first data item of the validator,
wherein at least one of:
the transition cookie generator uses a secret key oflset to

select one or more bits of data from the first data 1tem
of the generator 1n order to generate a second data 1tem
of the generator, and
the transition cookie validator uses a candidate secret key
offset to select one or more bits of data from the first
data item of the validator 1n order to generate a second
data item of the validator.}

[2. The system according to claim 1, in which the tran-
sition cookie validator determines that the received session
ACK packet 1s valid 1f the candidate transition cookie in the
received session ACK packet comprises a time value rep-
resenting a time within a predetermined time interval from
the time the session ACK packet is received.]

[3. The system according to claim 1, in which the prede-
termined time interval is in the range of one to six seconds.]

[4. The system according to claim 1, in which the prede-
termined time interval is three seconds.]

[5. The system according to claim 1, in which the gen-
erating of the transition cookie includes the use of random
data.}

[6. The system according to claim 1, in which the gen-
erating of the transition cookie includes the use of data
obtained from the session SYN packet.]

[7. A system for TCP SYN cookie validation at a host
server comprising:

a session SYN packet receiver for receiving a session

SYN packet;

a transition cookie generator operating to generate a
transition cookie with the use of a transition cookie
secret key, the transition cookie comprising a time
value representing the actual time, wherein the transi-
tion cookie generator generates the transition cookie by
(1) generating an encrypted data element of the genera-
tor by applying a cryptographic method on the transi-
tion cookie secret key and a transition cookie data
clement, (11) performing an unsigned binary addition on
the encrypted data element of the generator and a
sequence number of a TCP header in the received
session SYN packet, and (111) storing the result in the
transition cookie;

a session SYN/ACK packet sender for sending the tran-
sition cookie 1n response to the received session SYN
packet;

a session ACK packet receiver for receiving a session
ACK packet, the session ACK packet including a
candidate transition cookie; and

a transition cookie validator, for determining whether the
candidate transition cookie 1n the recerved session ACK
packet comprises a time value representing a time
within a predetermined time interval from the time the
session ACK packet is received.]

[8. The system according to claim 7, wherein the transi-
tion cookie data element comprises data based on at least
one of: a selective ACK, an MSS 1ndex, and a 32-bit current
time of day indicated by a clock.]

[9. A system for TCP SYN cookie validation at a host
server comprising;:

a session SYN packet receiver for receiving a session

SYN packet;

a transition cookie generator operating to generate a
transition cookie with the use of a transition cookie
secret key, the transition cookie comprising a time
value representing the actual time;

US RE47,296 E

15

a session SYN/ACK packet sender for sending the tran-
sition cookie 1n response to the received session SYN
packet;

a session ACK packet receiver for receiving a session
ACK packet, the session ACK packet including a
candidate transition cookie; and

a transition cookie validator, for determining whether the
candidate transition cookie 1n the recerved session ACK
packet comprises a time value representing a time
within a predetermined time interval from the time the
session ACK packet 1s received, wherein the transition
cookie validator generates:

a candidate sequence number such that a sequence num-
ber of a TCP header 1n the recerved session ACK packet
equals the sum of the candidate sequence number and
a value of 1,

a candidate encrypted data element such that the result of
performing an unsigned binary addition of the candi-
date encrypted data element and a candidate sequence
number equals the candidate transition cookie, and

a candidate transition cookie data element by applying a
cryptographic method on a candidate transition cookie
secret key and the candidate encrypted data element.]

[10. The system according to claim 9, wherein the tran-

sition cookie validator validates the candidate transition
cookie data element by adjusting the candidate transition
cookie data element to generate, and determining if the
adjusted candidate transition cookie data element 1s within a
predetermined time margin of a modified current time.]

11. A system for TCP SYN cookie validation at a host

server, the system comprising.

at least one processor and a memory stoving.

a session SYN packet veceiver, wherein when the session
SYN packet receiver is executed by the at least one
processor, the session SYN packet veceiver causing the
at least one processor to receive a session SYN packet;

a transition cookie generator, the transition cookie gen-
erator being executed by the at least one processor to
generate a transition cookie with the use of a transition
cookie secret key, the transition cookie comprising a
time value vepresenting the actual time;

a session SYN/ACK packet sender, the session SYN/ACK
packet sender being executed by the at least one
processor to send the transition cookie in response to
the received session SYN packet,

a session ACK packet receiver, the session ACK packet
receiver being executed by the at least one processor to
receive a session ACK packet, the session ACK packet
including a candidate transition cookie; and

a tramnsition cookie validator the transition cookie vali-
dator being executed by the at least one processor to
determine whether the candidate transition cookie in
the received session ACK packet comprises a time
value representing a time within a predetermined time
interval from the time the session ACK packet is
received; and

wherein.

the transition cookie generator is executed by the at least
one processor to generate the transition cookie secret
key based on data obtained from the received session
SYN packet,

the transition cookie validator is executed by the at least
one processor to generate a candidate transition cookie
secret key based on data obtained from the received
session ACK packet;

10

15

20

25

30

35

40

45

50

55

60

65

16

the transition cookie generator is executed by the at least
one processor to concatenate the obtained data from
the session SYN packet to generate a first data item of
the generator,

the transition cookie validator is executed by the at least
one processor to concatenate the obtained data from
the session ACK packet to generate a first data item of
the validator;

the transition cookie genervator is executed by the at least
one processor to use a secret key offset to select one or
more bits of data from the first data item of the
generator in ovder to generate a second data item of the
generator, and

the transition cookie validator is executed by the at least
one processor to use a candidate secret key offset to
select one ov more bits of data from the first data item
of the validator in ovder to generate a second data item
of the validator.

[2. The system according to claim 11, wherein.

when the transition cookie secret key is generated based
on data obtained from the rveceived session SYN packet,
the obtained data includes at least one of: a source IP
address of an IP header, a destination port, a source
port, and a sequence number of a TCP header in the
received session SYN packet, and

when the candidate transition cookie secret key is gener-
ated based on data obtained from the received session
ACK packet, the obtained data includes at least one of:

a source IP address of the IP header, a destination port,
and a source port.

13. The system accorvding to claim 11, wherein at least one

of

the transition cookie genervator is executed by the at least
one processor to use a first hash function to generate
the transition cookie secret key from the first data item
of the generator, and

when the transition cookie validator is executed by the at
least one processor to use the first or another hash
function to gemerate the candidate tramsition cookie
secret key from the first data item of the validator.

14. The system according to claim 11, in which the
transition cookie validator is executed by the at least one
processor to determine that the received session ACK packet
is valid if the candidate transition cookie in the received
session ACK packet comprises a time value representing a
time within a predetermined time interval from the time the
session ACK packet is rveceived.

15. The system according to claim 11, in which the
predetermined time interval is in the range of one to six
seconds.

16. The system according to claim 11, in which the
predetermined time interval is three seconds.

17. The system according to claim 11, in which the
generating of the tramsition cookie includes the use of
random data.

18. The system according to claim 11, in which the
generating of the transition cookie includes the use of data
obtained from the session SYN packet.

19. A system for TCP SYN cookie validation at a host
server, the system comprising.

at least one processor and a memory storing:

a session SYN packet receiver, wherein the session SYN
packet rveceiver is executed by the at least one processor
to receive a session SYN packet;

a tramnsition cookie genervator, wherein the transition
cookie generator is executed by the at least one pro-
cessor to generate a transition cookie with the use of a

US RE47,296 E

17

transition cookie secret key, the transition cookie com-
prising a time value representing the actual time;

a session SYN/ACK packet sender, wherein the session
SYN/ACK packet sender is executed by the at least one
processor to send the transition cookie in response to
the received session SYN packet;

a session ACK packet receiver, wherein when the session
ACK packet receiver is executed by the at least one
processor to receive a session ACK packet, the session
ACK packet including a candidate transition cookie;
and

a transition cookie validator wherein the transition
cookie validator is executed by the at least one pro-
cessor to determine whether the candidate transition
cookie in the received session ACK packet comprises a
time value vepresenting a time within a predetermined
time interval from the time the session ACK packet is
received; and wherein:

the transition cookie generator is executed by the at least
one processov to generate the transition cookie by (i)
generating an encrypted data element of the generator
by applying a cryptographic method on the transition
cookie secret key and a transition cookie data element,
(ii) performing an umnsigned binary addition on the

encrypted data element of the generator and a
sequence number of a TCP header in the received
session SYN packet, and (iii) stoving the vesult in the
transition cookie.

20. The system according to claim 19, wherein the tran-
sition cookie data element comprises data based on at least
one of: a selective ACK, an MSS index, and a 32-bit current
time of day indicated by a clock.

21. The system according to claim 19, in which the
transition cookie validator is executed by the at least one
processor to determine that the received session ACK packet
is valid if the candidate transition cookie in the received
session ACK packet comprises a time value representing a
time within a predetermined time interval from the time the
session ACK packet is rveceived.

22. The system according to claim 19, in which the
predetermined time interval is in the range of one to six
seconds.

23. The system according to claim 19, in which the
predetermined time interval is three seconds.

24. The system according to claim 19, in which the

generating of the tramsition cookie includes the use of

random data.

25. The system according to claim 19, in which the
generating of the transition cookie includes the use of data
obtained from the session SYN packet.

26. A system for TCP SYN cookie validation at a host

server, the system comprising.

10

15

20

25

30

35

40

45

50

18

at least one processor and a memory storing:

a session SYN packet receiver, wherein the session SYN
packet receiver is executed by the at least one processor
to receive a session SYN packet;

a tramnsition cookie genervator, wherein the transition
cookie generator is executed by the at least one pro-
cessor to generate a transition cookie with the use of a
transition cookie secret key, the transition cookie com-
prising a time value rvepresenting the actual time;

a session SYN/ACK packet sender, wherein the session
SYN/ACK packet sender is executed by the at least one
processor to send the transition cookie in response to
the received session SYN packet,

a session ACK packet receiver, wherein the session ACK
packet receiver is executed by the at least one processor
to receive a session ACK packet, the session ACK
packet including a candidate transition cookie; and

a tramnsition cookie validator wherein the transition
cookie validator is executed by the at least one pro-
cessor to determine whether the candidate transition
cookie in the received session ACK packet comprises a
time value representing a time within a predetermined
time interval from the time the session ACK packet is
received; and to generate:

a candidate sequence number such that a sequence
number of a TCP header in the received session ACK
packet equals the sum of the candidate sequence
number and a value of 1,

a candidate encrypted data element such that the result
of performing an unsigned binary addition of the
candidate encrypted data element and a candidate
sequence number equals the candidate transition
cookie, and

a candidate transition cookie data element by (i) apply-
ing a cryptographic method on a candidate transi-
tion cookie secret key and the candidate encrypted
data element.

27. The system according to claim 26, wherein the tran-
sition cookie validator is executed by the at least one
processor to validate the candidate transition cookie data
element by adjusting the candidate transition cookie data
element to generate, and determining if the adjusted candi-
date transition cookie data element is within a predeter-
mined time margin of a modified curvent time.

28. The system according to claim 26, in which when the
transition cookie validator is executed by the at least one
processor to determine that the received session ACK packet
is valid if the candidate transition cookie in the received
session ACK packet comprises a time value representing a
time within a predetermined time interval from the time the
session ACK packet is received.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

