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SYSTEM AND METHOD FOR AN ADAPTIVE
TCP SYN COOKIE WITH TIME
VALIDATION

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE 10O RELATED
APPLICATIONS

This application is a continuation reissue application of

U.S. Pat. No. 7,675,854 and claims benefit under 35 U.S.C.
120 as a continuation of application Ser. No. 13/413,19]

filed on Mar. 6, 2012, which is an application for reissue of

U.S. Pat. No. 7,675,854, originally issued on Mar. 9, 2010.

BACKGROUND OF THE INVENTION

When a TCP (Transmission Control Protocol) connection
starts, a destination host receives a SYN (synchronize/start)
packet from a source host and sends back a SYN ACK
(synchronize acknowledge). The destination host normally
then waits to receiver an ACK (acknowledge) of the SYN
ACK belore the connection 1s established. This 1s referred to
as the TCP “three-way handshake.”

While waiting for the ACK to the SYN ACK, a connec-
tion queue of finite size on the destination host keeps track
of connections waiting to be completed. This queue typically

empties quickly since the ACK 1s expected to arrive a few
milliseconds after the SYN ACK 1is sent.

ATCP SYN flood attack 1s a well known denial of service
attack that exploits the TCP three-way handshake design by
having an attacking source host generate TCP SYN packets
with random source addresses toward a victim host. The
victim destination host sends a SYN ACK back to the
random source address and adds an entry to the connection
queue, or otherwise allocates server resources. Since the
SYN ACK 1s destined for an incorrect or non-existent host,
the last part of the “three-way handshake” 1s never com-
pleted and the entry remains 1n the connection queue until a
timer expires, typically, for example, for about one minute.
By generating phony TCP SYN packets from random IP
addresses at a rapid rate, 1t 1s possible to fill up the connec-
tion queue and deny TCP services (such as e-mail, file
transier, or WWW) to legitimate users. In most instances,
there 1s no easy way to trace the originator of the attack
because the IP address of the source 1s forged. The external
manifestations of the problem may include nability to get
¢-mail, 1nability to accept connections to WWW or FIP
services, or a large number of TCP connections on your host
in the state SYN RCVD.

A malicious client sending high volume of TCP SYN
packets without sending the subsequent ACK packets can
deplete server resources and severely impact the server’s
ability to serve its legitimate clients.

Newer operating systems or platforms implement various
solutions to minimize the impact of TCP SYN flood attacks.
The solutions include better resource management, and the
use of a “SYN cookie”.

In an exemplary solution, mnstead of allocating server
resource at the time of recerving a TCP SYN packet, the
server sends back a SYN/ACK packet with a specially
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constructed sequence number known as a SYN cookie.
When the server then receives an ACK packet 1n response to

the SYN/ACK packet, the server recovers a SYN cookie
from the ACK packet, and validates the recovered SYN
cookie before further allocating server resources.

The effectiveness of a solution using a SYN cookie
depends on the method with which the SYN cookie 1s
constructed. However, existing solutions using a SYN
cookie typically employ a hash function to construct the
SYN cookie, which can lead to a high percentage of false
validations of the SYN cookie, resulting in less than satis-
factory protection again TCP SYN flood attack.

Therefore, there 1s a need for a better system and method
for constructing and validating SYN cookies.

SUMMARY OF THE INVENTION

An aspect of the present invention provides a system for
TCP SYN cookie validation. The system includes a host
server including a processor and memory. The processor 1s
configured for recerving a session SYN packet, generating a
transition cookie, the transition cookie comprising a time
value representing the actual time, sending a session SYN/
ACK packet, including the transition cookie, 1n response to
the recerved session SYN packet, receiving a session ACK
packet, and determining whether a candidate transition
cookie 1n the recetved session ACK packet comprises a time
value representing a time within a predetermined time
interval from the time the session ACK packet 1s received.

One aspect of the mnvention includes the system above 1n
which the processor 1s further configured for regarding the
received session ACK packet as valid if the candidate
transition cookie 1n the received session ACK packet com-
prises a time value representing a time within a predeter-
mined time interval from the time the session ACK packet
1s recerved.

In another aspect of the invention, the predetermined time
interval 1s 1n the range of one to six seconds.

In one aspect of the invention, the predetermined time
interval 1s three seconds.

In another aspect of the invention, the step of generating,
the transition cookie includes the use of data obtained from
the session SYN packet.

In one aspect of the invention, the data obtained from the
session SYN packet comprises the source IP address of an
IP header associated with the session SYN packet.

In another aspect of the invention, the data obtained from
the session SYN packet comprises the sequence number of
a TCP header associated with the session SYN packet.

In another aspect of the invention, the data obtained from
the session SYN packet comprises a source port associated
with the session SYN packet.

In another aspect of the invention, the data obtained from
the session SYN packet comprises a destination port asso-
ciated with the session SYN packet.

Another aspect of the present invention provides a method
for TCP SYN cookie validation. The method includes
receiving a session SYN packet by a TCP session setup
module, generating a transition cookie by the TCP session
setup module, the transition cookie comprising a time value
representing the actual time, sending a session SYN/ACK
packet, including the transition cookie, 1n response to the
received session SYN packet, receiving a session ACK
packet, and determining whether a candidate transition
cookie 1n the recerved session ACK packet comprises a time
value representing a time within a predetermined time
interval from the time the session ACK packet 1s received.
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In an aspect of the invention, the method further includes
indicating the received session ACK packet comprises a
valid candidate transition cookie if the time value of the
candidate transition cookie 1s within a predetermined time
interval of the time the session ACK packet 1s received.

In another aspect of the mvention, the step of generating,

the transition cookie includes the use of data obtained from
the session SYN packet.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram illustrating a host server
including a TCP session setup module and a client server, 1n
accordance with an embodiment of the present invention;

FIG. 2 1s a schematic diagram of a TCP/IP handshake in
accordance with an embodiment of the present invention;

FI1G. 3a illustrates a method including steps for generating,
a transition cookie data element by a transition cookie
generator 245, 1n accordance with an embodiment of the
present mvention;

FI1G. 3b 1llustrates a method including steps for generating,
a transition cookie secret key by a transition cookie genera-
tor 245 based on data obtained from the receirved session
SYN packet, in accordance with an embodiment of the
present ivention;

FI1G. 3¢ illustrates a method including steps for generating
a transition cookie based on a transition cookie data element,
a transition cookie secret key, and data obtained from a
received session SYN packet 1n accordance with an embodi-
ment of the present invention;

FIG. 4a illustrates steps for generating a candidate
encrypted data element by a transition cookie validator 2735
based on data obtained from a received session ACK packet,
in accordance with an embodiment of the present invention;

FI1G. 4b 1llustrates a method including steps for generating,
a candidate transition cookie secret key by a transition
cookie validator 275 based on data obtained from a received
session ACK packet and a candidate sequence number, 1n
accordance with an embodiment of the present invention;

FI1G. 4c¢ illustrates a method including steps for generating
a candidate transition cookie data element by a transition
cookie validator 275 based on a candidate encrypted data
clement and a candidate transition cookie secret key, in
accordance with an embodiment of the present invention;

FIG. 4d illustrates a method including the steps for
validating a candidate transition cookie data element, in
accordance with an embodiment of the present invention;
and

FIG. 3 illustrates a method including steps for generating
information based on a validated candidate transition cookie
data element, in accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
specific numbers, materials and configurations are set forth
in order to provide a thorough understanding of the inven-
tion. It will be apparent, however, to one having ordinary
skill in the art, that the invention may be practiced without
these specific details. In some instances, well-known fea-
tures may be omitted or simplified so as not to obscure the
present invention. Furthermore, reference 1n the specifica-
tion to “one embodiment” or “an embodiment” means that
a particular feature, structure or characteristic described 1n
connection with the embodiment 1s 1ncluded 1n at least one
embodiment of the invention. The appearances of the phrase
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4

“1n an embodiment™ 1n various places 1n the specification are
not necessarily all referring to the same embodiment.

Transmission Control Protocol (“TCP”) 1s one of the main
protocols 1n TCP/IP networks. Whereas the Internet Protocol
(“IP”) deals only with packets, TCP enables two hosts to
establish a connection and exchange streams of data. TCP
guarantees delivery of data and also guarantees that packets
will be delivered 1n the same order 1n which they were sent.

The terms “host server” and “client server” referred to 1n
the descriptions of various embodiments of the mvention
herein described are intended to generally describe a typical
system arrangement 1n which the embodiments operate. The
“host server” generally refers to any computer system inter-
connected to a TCP/IP network, including but not limited to
the Internet, the computer system comprising at a minimum
a processor, computer memory, and computer software. The
computer system 1s configured to allow the host server to
participate i TCP protocol communications over 1ts con-
nected TCP/IP network. Although the “host server” may be
a single personal computer having 1ts own IP address and 1n
communication with the TCP/IP network, 1t may also be a
multi-processor server or server bank. The “client server” 1s
similar to the “host server”, although it 1s understood that the
“client server” may, 1n fact, be a single personal computer
attached to the TCP/IP network. The only difference
between the client and the host server for the purposes of the
present imvention 1s that the host server receives the SYN
from the client server, sends a SYN ACK to the client server,
and waits for the ACK from the client server.

FIG. 1 1s a schematic diagram 1llustrating an embodiment
of the present invention. A host server 102 may include a
TCP session module 104. The TCP session setup module
104 can engage 1n a TCP handshake 108, such as described
above, with a client server 106. In an embodiment, the TCP
session setup module 104 1s a software component of the
host server 102. In one embodiment, the TCP session setup
module 104 1s implemented 1n an Application Specific
Integrated Circuit (“ASIC”) or a Field Programmable Gate
Array (“FPGA”™). It 1s the TCP session setup module that
handles the “3-way handshake™ 108 between the host server
102 and the client server 106. The TCP session setup module
may 1tsell also incorporate modules for sending and receiv-
ing TCP session packets. These modules may include but are
not lmited to a session SYN packet receiver, a session
SYN/ACK packet sender, and a session ACK packet
receiver, which are all known to those of ordinary skill in the
computer arts.

The TCP sessions setup module 104 may itself be embed-
ded 1n one or more other host server modules (not shown).
The TCP session setup module may alternatively comprise
a hardware or firmware component. For example, the sofit-
ware which handles the TCP handshake 108 on behalf of the
host server 102 may be programmed onto a externally
programmable read-only memory (“EPROM”) (not shown),
and the EPROM may then be integrated into the host server.
In another example, the ASIC or FPGA 1s integrated into the
host server.

FIG. 2 illustrates a TCP session setup module 104 pro-
cessing TCP/IP segments (not shown), such as session SYN
packet 210, session SYN/ACK packet 220, and session ACK
packet 230.

A TCP/IP segment includes a TCP header and an IP
header as described i IETF RFC 793 “Transmission Con-
trol Protocol” section 3.1 “Header Format”, incorporated
herein by reference. A TCP header optionally includes a
sack-permitted option as described in IETF RFC 2018 “TCP

Selective Acknowledgement Options™ section 2 “Sack-Per-
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mitted Option”, mcorporated herein by reference. A session
SYN packet 210 1s a TCP/IP segment with the SYN control

bit in the TCP Header set to “1”. A session SYN/ACK packet

220 1s a TCP/IP segment with the SYN control bit and the
ACK control bit in the TCP header set to “17. A Session
ACK Packet 230 1s a TCP/IP segment with the ACK control
bit 1n the TCP header set to <17,

Referring to FIG. 2, 1n an embodiment, the TCP session
setup module 104 receives a session SYN packet 210,
obtains data from a session SYN packet 210, such as but not
limited to the source IP address of the IP header, or the
sequence number of the TCP header, and uses the data to
generate a transition cookie 250. The transition cookie 250
1s preferably a 32-bit data element. In response to the session
SYN packet 210, the TCP session setup module 104 creates
and sends out a session SYN/ACK packet 220 in accordance
with IETF RFC 793 “Transmission Control Protocol” sec-
tion 3.4 “Establishing a connection”, incorporated herein by
reference. The TCP session setup module 104 preferably
includes the transition cookie 250 as the sequence number of
the TCP header 1n the session SYN/ACK packet 220.

After the TCP session setup module 104 has sent out the
session SYN/ACK packet 220, it waits for receipt of a
responding session ACK packet 230. In an embodiment,
when a session SYN/ACK packet 230 1s received, the TCP
session setup module 104 generates a 32-bit candidate
transition cookie 270 such that the sum of candidate tran-
sition cookie 270 and a value of “1” equal the acknowl-
edgement number of the TCP header 1n the session ACK
packet 230. For example, 11 the acknowledgement number 1s
“41B4362A” in hexadecimal format the candidate transition
cookie 270 1s “41B43629” 1n hexadecimal format; the sum
of “41B43629” and a value of “1” equals “41B4362A”. In
another example, 11 the acknowledgement number 1is
“00A30000” 1n hexadecimal format the candidate transition
cookie 270 1s “O0A2FFFF” 1n hexadecimal format; the sum
of “00A2FFFF” and a value of “1” equals “00A30000”. In
another example, 11 the acknowledgement number 1is
“00000000” 1n hexadecimal format the Candidate Transition
Cookie 270 1s “FFFFFFFF” 1n hexadecimal format; the sum
of “FFFFFFFF” and a value of *“1”” equals “00000000”, with
the most significant bit carried beyond the 32-bit boundary.
The TCP session setup module 104 may thus validate the
candidate transition cookie 270 in this manner. If the TCP
session setup module 104 determines that the candidate
transition cookie 270 1s thus valid, the session ACK packet
230 1s also valid. In this case, the TCP session setup module
104 obtains data from the validated session ACK packet 230
and sends the data and information generated during the
validation of candidate transition cookie 270 to a computing,
module (not shown) for further processing.

In order to generate and validate transition cookies 2350,
270, the TCP session setup module 104 may include a
transition cookie generator 245 and a transition cookie
validator 273, respectively. Alternatively, the generation and
validation may be performed directly by the TCP session
setup module 104. In the descriptions herein, references to
the TCP and transition cookie validator 275 are understood
to 1nclude any of the alternative embodiments of these
components.

A transition cookie generator 245 includes the function-
ality of generating a transition cookie based on the data
obtained from a session SYN 210 packet recerved by the
TCP session setup module 104.

A transition cookie validator 2735 includes the function-
ality of validating a candidate transition cookie 270 gener-
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6

ated based on data obtained from a session ACK packet 230
received by the TCP session setup module 104.

In exemplary operation, a transition cookie generator 245
1s soitware or firmware that generates a transition cookie
250 based on data obtained from a session SYN packet 210
received by the TCP session setup module 104. An exem-
plary method for generating a transition cookie 250 by a
transition cookie generator 245 includes multiple steps as
illustrated i FIGS. 3a-3c.

FIG. 3a 1illustrates exemplary steps for generating a tran-
sition cookie data element 330 by a transition cookie gen-
crator 245. A transition cookie generator 245 includes a
clock 305 indicating the current time of day 1n microseconds
in a 32-bit format.

The transition cookie data element 330 1s preferably a

32-bit data element, generated by the transition cookie
generator 245 based on the selective ACK 321, the MSS

index 324 and the 32-bit current time of day indicated by

clock 305. Selective ACK 321 1s a 1-bit data element which
1s set to a value of “1” by transition cookie generator 245 1f
a TCP header in a received session SYN packet 210 includes
an optional sack-permitted option, or to “0” 11 a TCP header
in a recerved session SYN packet 210 does not include an
optional sack-permitted option.

Maximum Segment Size (“MSS”) 322 1s the maximum
number of bytes that TCP will allow 1n an TCP/IP packet,
such as session SYN packet 210, session SYN/ACK packet
220, and session ACK packet 230, and 1s normally repre-
sented by an integer value i a TCP packet header. If a TCP
header 1n a received session SYN packet 210 includes a
maximum segment size option, the transition cookie gen-
crator 245 sets the MSS 322 to equal the maximum segment
size option data ol the maximum segment size option.
Otherwise, 11 the TCP header 1in a received session SYN
packet 210 does not include a maximum segment size
option, the transition cookie generator 243 sets the MSS 322
to a default value, for example, such as integer “536”. The
MSS 1ndex 324 1s a 4-bit data element set by the transition
cookie generator 243 based on the MSS 322. The transition
cookie generator 245 preferably includes an MSS table 307,
which maps an MSS 322 to an MSS mdex 324. The
transition cookie generator 245 maps a MSS 322 with the
MSS table 307 to set the value of MSS index 324. Fo
example, MSS 322 has an integer value of “1460”. After the
mapping, MSS index 324 has a value of “4” as represented
in hexadecimal format. In an alternative embodiment, means
other than an MSS table 307 may be employed to determine
the MSS index 324 value, such as the use of a mapping
algorithm.

In generating a transition cookie data element 330, the
transition cookie generator 245 sets a transition cookie data
clement 330 to equal the 32-bit current time of day indicated
by clock 3035. For example, the 32-bit current time of day
may be “A68079E8” as represented 1in hexadecimal format,
so the transition cookie data element 330 has a value of
“A68079ER”.

Next, the transition cookie generator 245 replaces the
least significant 4 bits (bit 0-3) of transition cookie data
clement 330 with the MSS index 324, and replaces bit 4 of
a fransition cookie data element 330 with selective ACK

321. For example, 11 a transition cookie data element 330 has
been set to a value of “A68079ER”, selective ACK 321 has

a value of “1”, and MSS index 324 has a value of “4” as

represented in hexadecimal format, after the replacements,
transition cookie data element 330 has a wvalue of

“A68079F4” 1n hexadecimal format.
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FIG. 3b illustrates exemplary steps for generating a tran-
sition cookie secret key 360, such as by a transition cookie
generator 245 based on data obtained from a received
session SYN packet 210. The data used in generating the
transition cookie secret key 360 may include at least the 5
source IP address 312 of an IP header, a destination port 314,
a source port 316 and a sequence number 318 of a TCP
header 1n a received session SYN packet 210. In generating,
a transition cookie secret key 360, a transition cookie
generator 243 forms a 96-bit data element, a first data 1tem
340, by concatenating a source IP address 312, a sequence
number 318, a source port 316, and a destination port 314.
For example, if the source IP address 312 1s 192.168.1.134,
the hexadecimal representation being “COA80186”, the
sequence number 318 1s “9A275B84”, the source port 316
1s 4761, the hexadecimal representation being “1299”, and
the destination port 314 1s 240, the hexadecimal represen-
tation being “00F0”, then, after the concatenation, the first
data item 340 has a hexadecimal wvalue of
“COAB01869A275B84129900F0. 20

Next, since the transition cookie secret key 360 1s a
128-bit data element, the transition cookie generator 243
may use a hash function to generate the transition cookie
secret key 360 from the first data item 340. Further, the
transition cookie generator 245 may use a secret key oflset
301, which may be a 6-bit integer value, to select a 6-bit
non-negative integer from first data item 340 starting at the
bit indicated by secret key offset 301. For example, if the
secret key oflset 301 has a value of “12” and the first data
item 340 has a hexadecimal value of
“COAB01869A275B84129900F0”, the transition cookie

generator 245 selects a 6-bit non-negative iteger from the
first data 1tem 340 starting at bit 12 (b1t 12-17). The selected
non-negative mnteger 1s of this example 1s thus “16”. The
transition cookie generator 245 then uses the selected non-
negative mteger to select 64 bits of data from the first data
item 340, starting at the bit indicated by the selected
non-negative iteger, to generate the second data item 330,
which has 64 bits.

For example, 11 the selected non-negative integer 1s “8”
and the first data 1tem 340 has a hexadecimal value of
“COAB01869A275B84129900F0”, the transition cookie
generator 243 selects 64 bits (bit 8-71) of the first data item
340 to generate a second data item 350, having a hexadeci-
mal value of “869A275B84129900”. In another example, 11 45
the selected non-negative 1mteger 1s “52”, and the transition
cookie generator 245 selects 64 bits (bit 52-95 and bit 0-19)

of the first data 1tem 340 1 a wrap-around fashion, bits
52-95 have a hexadecimal value of “COAR01869A2”, and

bit 0-19 have a hexadecimal wvalue of “900F0”, so the 50
generated second data 1item 350 has a hexadecimal value of
“O00FOCOARBO1869A2”. The transition cookie generator
245 then generates a transition cookie secret key 360 by
storing the second data item 350 1n the least significant 64
bits (bit 0-63) of the transition cookie secret key 360 and
setting the most significant 64 bits (bit 64-127) to “0”. For
example, 11 the second data item 350 has a hexadecimal
value of “869A275B84129900”, the transition cookie secret
key 360 has a hexadecimal value of
“0000000000000000869A275B84129900”. 60

FIG. 3¢ illustrates exemplary steps for generating a tran-
sition cookie 250 based on a transition cookie data element
330, a transition cookie secret key 360, and data obtained
from a received session SYN packet 210, including a
sequence number 318 of a TCP header 1n a received session
SYN packet 210. To generate a transition cookie 2350, a
transition cookie generator 245 applies a cryptographic
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method 308 on the transition cookie secret key 360 and the
transition cookie data element 330, such as an RC5 algo-

rithm described in IETF RFC 2040 “The RCS5, RC35-CBC,
RC3-CBC-Pad, and RC3-CTS Algorithms™ section 1 “Over-
view’, and sections 2-8 with detailed explanations, incor-
porated herein by reference. The RC5 algorithm takes a
32-bit plaintext mput and a 128-bit encryption key to
generate a 32-bit ciphertext output. The transition cookie
generator 245 uses the transition cookie data element 330 as
the plaintext iput to the RC5 algorithm, and the transition
cookie secret key 360 as the encryption key 1mnput to the RC3
algorithm. The transition cookie generator 245 stores the
resulting 32-bit ciphertext output of the RC5 algorithm in
the encrypted data element 370.

Next, the transition cookie generator 245 performs an
unsigned binary addition on an encrypted data element 370
and the sequence number 318, and stores the result in the

transition cookie 2350. For example, 11 the encrypted data
clement 370 has a value of “0025BC83” in hexadecimal
format, and the sequence number 318 has a value of
“0743BD55” 1n hexadecimal format, the result of the addi-
tion 1s hexadecimal “076979D8”. After the addition, the
transition cookie 250 has a value of “076979D8” in hexa-
decimal. In another example, 11 the encrypted data element
370 has a value of “BE43D096” 1n hexadecimal format, and
the sequence number 318 has a value of “9A275B84” in
hexadecimal format, the result of the addition, and the value
of transition cookie 250 1s hexadecimal “1586B2C1A”, with
the most significant bit carried beyond the 32-bit boundary.

In another embodiment, a transition cookie generator 245
may use diflerent steps to generate a transition cookie secret
key 360. For example, a secret key oflset 301 may be an
integer of a different bit length, such as a 4-bit integer value,
a 3-bit integer value, or a 3-bit integer value. Also, a
transition cookie generator 245 may use a secret key oflset
301 to select a non-negative integer value of a different bat
length from a first data item 340. For example, a transition
cookie generator 245 may select a 4-bit non-negative integer
value, a 7-bit non-negative integer value, or a 3-bit non-
negative value from a first data item 340.

In other embodiments, a transition cookie generator 245
may store a second data item 350 in the least significant 64
bits (bit 0-63) of a transition cookie secret key 360 or store
second data item 350 1n the most sigmificant 64 bits (bit
64-127) of a transition cookie secret key 360.

A transition cookie generator 245 may also perform an
exclusive-or operation on the most signmificant 48 bits (bit
0-47) of a first data item 340 and the least significant 48 bits
(bit 48-95) of a first data element 340 to form a 48-bit
temporary data element (not shown). Similarly, in another
embodiment, a transition cookie generator 245 may perform
an exclusive-or operation on the 48 even bits (bit 0, 2,
4,...90,92,94) and the 48 odd bits (b1t 1, 3, 5, . . . 93, 95,
97) to form a 48 bit temporary data element. In yet another
embodiment, a transition cookie generator 245 may store a
48-bit temporary data element 1n the least significant 48 bits
(bit 0-47) and the most significant 48 bits (bit 80-127) of a
transition cookie secret key 360, and set bit 48-79 to “0”, or
store a 48-bit temporary data element 1n the least significant
48 bits (b1t 0-47) of a transition cookie secret key 360, and
set the most significant 80 bits (bit 48-127) of a transition
cookie secret key 360 to “0”.

In other embodiments of the invention, a transition cookie
generator 245 may use an encryption algorithm to generate
a transition cookie secret key 360 from the first data i1tem

340.
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In another embodiment, a transition cookie generator 245
includes a secret key and an encryption algorithm, and uses
a first data element 340 as a plaintext input, and a secret key
as an encryption key mnput to the encryption algorithm to
generate a 128-bit ciphertext output. Next, a transition
cookie generator 245 generates a transition cookie secret key
360 as a 128-bit ciphertext output. Alternatively, the cipher-
text output may be a 96-bit data element, and a transition
cookie generator 2435 stores a 96-bit ciphertext output 1n the
least significant 96 bits (bit 0-95) of a transition cookie
secret key 360, and sets the most sigmificant 32 bits (bit
96-127) to “0”. In another alternative, a transition cookie
generator 245 stores the least significant 32 bits (bit 0-31) of
a 96-bit ciphertext output 1n the most significant 32 bits (bit
96-127) of a transition cookie secret key 360.

As seen 1n FIG. 2, a transition cookie validator 275
validates a candidate transition cookie 270 generated from a
session ACK packet 230 received by the TCP session setup
module 104. An exemplary method for validating a candi-
date transition cookie 270 by a transition cookie validator
275 may include multiple steps as illustrated 1n FIGS. 4a-4d.

FIG. 4a 1llustrates exemplary steps for generating a can-
didate encrypted data element 470 by a transition cookie
validator 275 based on data obtained from a received session
ACK packet 230. The candidate encrypted data element 470
may be a 32-bit data element generated based on the
sequence number 418 of the TCP header in the received
session ACK packet 230, and the candidate transition cookie
270 generated from the received session ACK packet 230 as
illustrated 1n FIG. 2.

The candidate sequence number 428 may be a 32-bit data
clement generated by a transition cookie validator 275 such
that the sum of candidate sequence number 428 and a value
of “1” equals the sequence number 418.

The candidate encrypted data element 470 1s generated by
the transition cookie validator 275 such that the result of
performing an unsigned binary addition of the candidate
encrypted data element 470 and the candidate sequence
number 428 equals the candidate transition cookie 270.

FIG. 4b 1llustrates exemplary steps for generating a can-
didate transition cookie secret key 460 by the transition
cookie validator 275 based on data obtained from the
received session ACK packet 230 and a candidate sequence
number 428. The data used for generating the candidate
transition cookie secret key 460 may include at least a source
IP address 412 of the IP header in a received session ACK
packet 230, a destination port 414 and a source port 416 of
the TCP header 1in a recerved session ACK packet 230. In the
process, a 96-bit first data 1tem 440 1s formed by a transition
cookie validator 275 by concatenating a source IP address
412, a candidate sequence number 428, a source port 416,
and a destination port 414. For example, if the source IP
address 412 1s 192.168.1.134, having a hexadecimal repre-
sentation of “C0OA80186”, the candidate sequence number
428 1s hexadecimal “9A275B84”, the source port 416 1s
4’761, having a hexadecimal representation of “1299”, and
the destination port 414 1s 240, having a hexadecimal
representation of “00F0”, after the concatenation, the first
data item 440 has a hexadecimal wvalue of
“COAB01869A275B84129900F0.

Next, the 128-bit candidate transition cookie secret key
460 1s generated from a first data item 440 by a transition
cookie validator 275 using a hash function. In an embodi-
ment, a transition cookie validator 275 uses a 6-bit secret
key oflset 401 to select a 6-bit non-negative integer from a
first data item 440 starting at a bit indicated by secret key
offset 401. For example, if the secret key offset 401 has a
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value of “12” and the first data 1tem 440 1s
“COA801869A275B84129900F0, the transition cookie

validator 273 selects a 6-bit non-negative integer from the
first data item 440 starting at bit 12 (bits 12-17), selecting the
non-negative teger “16”. The transition cookie validator
275 then generates a 64-bit second data 1item 3350 by using
the selected non-negative integer to select 64 bits of data
from the first data item 440, starting at the bit indicated by
the selected non-negative integer.

For example, 1f the selected non-negative integer 1s “8”
and the first data i1tem 440 has a hexadecimal value of

“COAB01869A275B84129900F0”, the transition cookie
validator 275 selects 64 bits (bit 8-71) of the first data item
440 to generate a second data item 430 having a hexadeci-

mal value of “869A275B84129900”. In another example, 1
the first data 1tem 440 has a hexadecimal wvalue of
“COA801869A275B84129900F0”, and the selected non-

negative mteger 1s <527, the transition cookie validator 275
selects 64 bits (bit 52-95 and bit 0-19) mn a wrap-around
fashion. Bits 52-95 have a hexadecimal value of
“COAB01869A2”, and bits 0-19 have a hexadecimal value of
“O00F0”, so the generated second data item 4350 has a
hexadecimal value of “900FOCOA801869A2”.

Next, the transition cookie validator 275 generates a
candidate transition cookie secret key 460 by storing the
second data item 450 1n the least significant 64 bits (bit 0-63)
of the candidate transition cookie secret key 460 and setting
the most significant 64 bits (bit 64-127) to “0”. For example,
if the second data item 450 has a hexadecinmal value of
“B69A275B84129900”, the candidate transition cookie

secret key 460 has a hexadecimal wvalue of
“0000000000000000869A275B84129900”.

FIG. 4C 1illustrates exemplary steps for generating a
candidate transition cookie data element 430 by a transition
cookie validator 275 based on a candidate encrypted data
clement 470 and a candidate transition cookie secret key
460.

In an embodiment, a transition cookie validator 275
applies a cryptographic method 408 on a candidate transition
cookie secret key 460 and a candidate encrypted data
clement 470. An exemplary cryptographic method 408 1s an

RCS algorithm described in IETF RFC 2040 “The RC5,
RC3-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms™ sec-
tion 1 “Overview”, and sections 2-8 with detailed explana-
tions, mncorporated herein by reference. The RC5 algorithm
takes a 32-bit ciphertext mnput and a 128-bit decryption key
to generate a 32-bit plaintext output. A transition cookie
validator 275 uses a candidate encrypted data element 470 as
a ciphertext mput to the RC5 algorithm, and a candidate
transition cookie secret key 460 as a decryption key mput to
the RCS algorithm, to generate a 32-bit candidate transition
cookie data element 430 as the plaintext output of the RC5
decryption algorithm.

FIG. 4d 1llustrates exemplary steps by a transition cookie
validator 275 of validating a candidate transition cookie data
element 430. In an embodiment, a transition cookie validator
275 includes a clock 3035. The clock 305 indicates the current
time of day, preferably 1n microseconds 1n a 32-bit format.
The modified current time 409 15 a 32-bit data element set by
a fransition cookie validator 275 sets to the current time
indicated by clock 305. A transition cookie validator 275
then sets the least significant 5 bits (bit 0-4) of the modified
current time 409 to “0”. For example, 1f the modified current
time 409 has a value of “89AEQ3F6” in hexadecimal format,
alter setting the least significant 5 bits to “0”, the modified
current time 409 has a hexadecimal value of “89AFEO03E0”.
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Next, a transition cookie validator 275 sets a 32-bit
adjusted candidate transition cookie data element 431 to
equal the candidate transition cookie data element 430, and
then sets the least significant 5 bits (bit 0-4) of the adjusted
candidate transition cookie data element 431 to “0”. For
example, 1I the adjusted candidate transition cookie data
element 431 has a hexadecimal value of “89DB468F”, after
setting the least significant 5 bits to “0”, the adjusted
candidate transition cookie data element 431 has a hexa-
decimal value of “89DB4680”.

The transition cookie validator 275 may then determine 1t
the candidate transition cookie data element 430 1s valid by
determining 1f the adjusted candidate transition cookie data
clement 431 1s within a time margin of 3 seconds of the
modified current time 409. In an embodiment, 1n order to
determine 11 the adjusted candidate transition cookie data
clement 431 1s within a time margin of 3 seconds of the
modified current time 409, the transition cookie stores the
modified current time 409 1n the least significant 32 bits (bit
0-31) of a first 33-bit time data element, sets the most
significant bit (bit 32) to “0”, and adds 6 seconds to the first
33-bit time data element. Adding 6 seconds 1s to add
6,000,000 micro seconds as represented by “5B8D80” 1n
hexadecimal format. For example, i1 before the addition, the
first 33-bit time data element has a hexadecimal value of
“OFFFFFAE2”, After the addition of “SB&DRK0”, the first
33-bit time data element has a hexadecimal value of
“1005B8862”. The transition cookie validator 275 stores the
adjusted candidate transition cookie data element 431 in the
least significant 32 bits (bit 0-31) of a second 33-bit time
data element, sets the most significant bit (bit 32) to “0”, and
adds 3 seconds to the second 33-bit time data element.
Adding 3 seconds 1s to add 3,000,000 micro seconds as
represented by hexadecimal “2DC6C0”. The {transition
cookie validator 275 stores the modified current time 409 1n
the least significant 32 bits (bit 0-31) of a third 33-bit time
data element, and sets the most significant bit (bit 32) to “0”.
I1 the second 33-bit time data element 1s smaller than the first
33-bit time data element and the second 33-bit time data
clement 1s larger than the third 33-bit time data element, the
transition cookie validator 275 determines that the adjusted
candidate transition cookie data element 431 1s within 3
seconds of the modified current time 409, and thus that the
candidate transition cookie data element 430 1s valid.

FIG. 5 illustrates exemplary steps of generating informa-
tion based on a validated candidate transition cookie data
element 430. In an embodiment, candidate MSS 522 1s an
integer. A transition cookie validator 275 includes a reversed
MSS table 507, which includes information that maps a 4-bit
data element to a candidate MSS 522. A transition cookie
validator 275 extracts the least significant 4-bit (b1t 0-3) data
from candidate transition cookie data element 430, maps the
extracted 4-bit data to a reversed MSS table 507, and stores
the result mn a candidate MSS 3522. A ftransition cookie
validator 275 may then generate a maximum segment size
option as described 1n IETF RFC 793 “Transmission Control
Protocol” section 3.1 “Header Format™, incorporated herein
by reference, and sets a maximum segment size option data
of the maximum segment size option to equal a candidate
MSS 522. A transition cookie validator 275 may further
examine bit 4 of a candidate transition cookie data element
430. If bit 4 of candidate transition cookie data element 430
has a value of “1”, a transition cookie validator 275 may
generate a sack-permitted option as described i IETF RFC
2018 “TCP Selective Acknowledgement Options™ section 2,
incorporated herein by reference. A TCP session setup
module 104 may then send a sack-permitted option, a
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maximum segment size option, and data obtained from a
received session ACK packet 230 to a computing module
(not shown) for further processing.

There are many different encryption algorithms that use
encryption keys of different bit lengths, such as, for
example, S6-bit, 64-bit, 96-bit, 128-bit. These may generate
ciphertext outputs of different bit lengths, for example,
96-bit, 64-bit, 128-bit, or 32-bit. Persons of ordinary skill in
the cipher arts will be able to apply different methods, for
example a hash function, to generate the transition cookie
secret key 360 from the ciphertext output.

A transition cookie validator 275 may also use difierent
steps to generate a candidate transition cookie secret key
460. The steps used by a transition cookie validator 273 to
generate a candidate transition cookie secret key 460 are
similar to the steps used by a transition cookie generator 245
to generate a transition cookie secret key 360.

Alternative embodiments of the invention may employ a
different algorithm for the cryptographic methods 308, 408.
In one example, the different algorithm 1s an RC2 algorithm
described 1n IETF RFC 2268 “A Description of the RC2(r)
Encryption Algorithm™ section 1 “Introduction” and section
2-4 with detailed explanation, incorporated herein by refer-
ence. In another example, the different algorithm 1s a Blow-
fish algorithm. In one other example, the different algorithm

1s a Data Encryption Standards (“DES”) algorithm based on
Federal Information Processing Standards Publication “Data
Encryption Standard (DES) FIPS PUB 46-3”, which 1s
incorporated herein by reference 1n 1ts entirety. Other algo-
rithms are also usable.

Also, a transition cookie validator 275 may use different
time margins of modified current time 409 to determine 1t
the candidate transition cookie data element 1s valid. Dii-
ferent time margins 1iclude but are not limited to 1 second,
4 seconds, 6 seconds, 2 seconds, or 11 seconds.

In an embodiment, the method of generating a transition
cookie includes MD5 signature option information in the
TCP options field. When this method i1s used, the method of
validating a candidate transition cookie 270 correspondingly
includes the MD3S signature option information in the TCP
options field.

In another embodiment, transition cookie generator 245
may include a plurality of transition cookie generation
methods for generating transition cookie 250. For example,
the secret key oflset 301 may have a diflerent value, such as
an 1nteger value of different bit length, such as 4-bit, or 8-bit.
In other examples, the selected non-negative integer from
first data 1tem 340 may be of different bit length, such as
8-bit, or 10-bit, the cryptographic method 308 may be a
different algorithm than RC5, or the generating of transition
cookie data element 330 may include MD5 signature option
information in the TCP options field of session SYN packet
210. A transition cookie generation method may include
steps diflerent from the steps in the exemplary method
illustrated 1n FIGS. 3a-3c.

In an embodiment, the transition cookie generator 245
may selects method to generate transition cookie 250 based
on random data.

The random data may include time. In one embodiment,
transition cookie generator 245 selects a method based on
the time of day. Alternatively, the transition cookie generator
245 may select a method after a time period, such as 10
seconds, 30 seconds, 2 minutes or 3 hours.

In another embodiment, the random data may include a
source IP address 1n session SYN packet 210, or a destina-
tion IP address in session SYN packet 210.
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The random data may include the network interface at
which a TCP session setup module 104 receives a session
SYN packet 210, or a Virtual Local Area Network (VLAN)
information associated with a session SYN packet 210.

In one embodiment, transition cookie wvalidator 275
includes a plurality of transition cookie validation methods
for validating candidate transition cookie 270. A transition
cookie validation method may include steps different from
the steps 1n the exemplary method illustrated in FIGS. 4a-4d.
A transition cookie validator 275 may select a method to
validate candidate transition cookie 270 based on random
data.

In these embodiments 1t 1s understood to be preferred that
the transition cookie validator 275 selects a complementary
method to the method selected by transition cookie genera-
tor 245.

Although the invention herein has been described with
reference to particular embodiments, it 1s to be understood
that these embodiments are merely illustrative of the prin-
ciples and applications of the present invention. It 1s there-
fore to be understood that numerous modifications may be
made to the illustrative embodiments and that other arrange-
ments may be devised without departing from the spirit and
scope of the present mvention as defined by the appended
claims.

The 1nvention claimed 1s:

[1. A system for TCP SYN cookie validation at a host

server comprising;

a session SYN packet recerver for receiving a session
SYN packet;

a transition cookie generator operating to generate a
transition cookie with the use of a transition cookie
secret key, the transition cookie comprising a time
value representing the actual time, wherein the transi-
tion cookie generator generates the transition cookie
secret key based on data obtained from the received
session SYN packet, the data obtained from the SYN
packet including at least one of a source IP address of
an IP header, a destination port, a source port, and a
sequence number of a TCP header in the received
session SYN packet, wherein the transition cookie
generator concatenates the obtained data from the ses-
ston SYN packet to generate a first data item of the
generator and the transition cookie generator uses a first
hash function to generate the transition cookie secret
key from the first data 1item of the generator;

a session SYN/ACK packet sender for sending the tran-
sition cookie 1n response to the received session SYN
packet;

a session ACK packet receiver for receiving a session
ACK packet, the session ACK packet including a
candidate transition cookie; and

a transition cookie validator, for determining whether the
candidate transition cookie 1n the recerved session ACK
packet comprises a time value representing a time
within a predetermined time interval from the time the
session ACK packet 1s received, wherein the transition
cookie validator generates a candidate transition cookie
secret key based on data obtained from the received
session ACK packet, the data obtained from the ACK
packet including at least one of a source IP address of
the IP header, a destination port, and a source port,
wherein the transition cookie validator concatenates the
obtained data from the session ACK packet to generate
a first data i1tem of the validator and the transition
cookie validator uses the first or another hash function
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to generate the candidate transition cookie secret key

from the first data item of the validator,
wherein at least one of:
the transition cookie generator uses a secret key oflset to

select one or more bits of data from the first data 1tem
of the generator 1n order to generate a second data 1tem
of the generator, and
the transition cookie validator uses a candidate secret key
offset to select one or more bits of data from the first
data item of the validator 1n order to generate a second
data item of the validator.}

[2. The system according to claim 1, in which the tran-
sition cookie validator determines that the received session
ACK packet 1s valid 1f the candidate transition cookie in the
received session ACK packet comprises a time value rep-
resenting a time within a predetermined time interval from
the time the session ACK packet is received.]

[3. The system according to claim 1, in which the prede-
termined time interval is in the range of one to six seconds.]

[4. The system according to claim 1, in which the prede-
termined time interval is three seconds.]

[5. The system according to claim 1, in which the gen-
erating of the transition cookie includes the use of random
data.}

[6. The system according to claim 1, in which the gen-
erating of the transition cookie includes the use of data
obtained from the session SYN packet.]

[7. A system for TCP SYN cookie validation at a host
server comprising:

a session SYN packet receiver for receiving a session

SYN packet;

a transition cookie generator operating to generate a
transition cookie with the use of a transition cookie
secret key, the transition cookie comprising a time
value representing the actual time, wherein the transi-
tion cookie generator generates the transition cookie by
(1) generating an encrypted data element of the genera-
tor by applying a cryptographic method on the transi-
tion cookie secret key and a transition cookie data
clement, (11) performing an unsigned binary addition on
the encrypted data element of the generator and a
sequence number of a TCP header in the received
session SYN packet, and (111) storing the result in the
transition cookie;

a session SYN/ACK packet sender for sending the tran-
sition cookie 1n response to the received session SYN
packet;

a session ACK packet receiver for receiving a session
ACK packet, the session ACK packet including a
candidate transition cookie; and

a transition cookie validator, for determining whether the
candidate transition cookie 1n the recerved session ACK
packet comprises a time value representing a time
within a predetermined time interval from the time the
session ACK packet is received.]

[8. The system according to claim 7, wherein the transi-
tion cookie data element comprises data based on at least
one of: a selective ACK, an MSS 1ndex, and a 32-bit current
time of day indicated by a clock.]

[9. A system for TCP SYN cookie validation at a host
server comprising;:

a session SYN packet receiver for receiving a session

SYN packet;

a transition cookie generator operating to generate a
transition cookie with the use of a transition cookie
secret key, the transition cookie comprising a time
value representing the actual time;
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a session SYN/ACK packet sender for sending the tran-
sition cookie 1n response to the received session SYN
packet;

a session ACK packet receiver for receiving a session
ACK packet, the session ACK packet including a
candidate transition cookie; and

a transition cookie validator, for determining whether the
candidate transition cookie 1n the recerved session ACK
packet comprises a time value representing a time
within a predetermined time interval from the time the
session ACK packet 1s received, wherein the transition
cookie validator generates:

a candidate sequence number such that a sequence num-
ber of a TCP header 1n the recerved session ACK packet
equals the sum of the candidate sequence number and
a value of 1,

a candidate encrypted data element such that the result of
performing an unsigned binary addition of the candi-
date encrypted data element and a candidate sequence
number equals the candidate transition cookie, and

a candidate transition cookie data element by applying a
cryptographic method on a candidate transition cookie
secret key and the candidate encrypted data element.]

[10. The system according to claim 9, wherein the tran-

sition cookie validator validates the candidate transition
cookie data element by adjusting the candidate transition
cookie data element to generate, and determining if the
adjusted candidate transition cookie data element 1s within a
predetermined time margin of a modified current time.]

11. A system for TCP SYN cookie validation at a host

server, the system comprising.

at least one processor and a memory stoving.

a session SYN packet veceiver, wherein when the session
SYN packet receiver is executed by the at least one
processor, the session SYN packet veceiver causing the
at least one processor to receive a session SYN packet;

a transition cookie generator, the transition cookie gen-
erator being executed by the at least one processor to
generate a transition cookie with the use of a transition
cookie secret key, the transition cookie comprising a
time value vepresenting the actual time;

a session SYN/ACK packet sender, the session SYN/ACK
packet sender being executed by the at least one
processor to send the transition cookie in response to
the received session SYN packet,

a session ACK packet receiver, the session ACK packet
receiver being executed by the at least one processor to
receive a session ACK packet, the session ACK packet
including a candidate transition cookie; and

a tramnsition cookie validator the transition cookie vali-
dator being executed by the at least one processor to
determine whether the candidate transition cookie in
the received session ACK packet comprises a time
value representing a time within a predetermined time
interval from the time the session ACK packet is
received; and

wherein.

the transition cookie generator is executed by the at least
one processor to generate the transition cookie secret
key based on data obtained from the received session
SYN packet,

the transition cookie validator is executed by the at least
one processor to generate a candidate transition cookie
secret key based on data obtained from the received
session ACK packet;

10

15

20

25

30

35

40

45

50

55

60

65

16

the transition cookie generator is executed by the at least
one processor to concatenate the obtained data from
the session SYN packet to generate a first data item of
the generator,

the transition cookie validator is executed by the at least
one processor to concatenate the obtained data from
the session ACK packet to generate a first data item of
the validator;

the transition cookie genervator is executed by the at least
one processor to use a secret key offset to select one or
more bits of data from the first data item of the
generator in ovder to generate a second data item of the
generator, and

the transition cookie validator is executed by the at least
one processor to use a candidate secret key offset to
select one ov more bits of data from the first data item
of the validator in ovder to generate a second data item
of the validator.

[2. The system according to claim 11, wherein.

when the transition cookie secret key is generated based
on data obtained from the rveceived session SYN packet,
the obtained data includes at least one of: a source IP
address of an IP header, a destination port, a source
port, and a sequence number of a TCP header in the
received session SYN packet, and

when the candidate transition cookie secret key is gener-
ated based on data obtained from the received session
ACK packet, the obtained data includes at least one of:

a source IP address of the IP header, a destination port,
and a source port.

13. The system accorvding to claim 11, wherein at least one

of

the transition cookie genervator is executed by the at least
one processor to use a first hash function to generate
the transition cookie secret key from the first data item
of the generator, and

when the transition cookie validator is executed by the at
least one processor to use the first or another hash
function to gemerate the candidate tramsition cookie
secret key from the first data item of the validator.

14. The system according to claim 11, in which the
transition cookie validator is executed by the at least one
processor to determine that the received session ACK packet
is valid if the candidate transition cookie in the received
session ACK packet comprises a time value representing a
time within a predetermined time interval from the time the
session ACK packet is rveceived.

15. The system according to claim 11, in which the
predetermined time interval is in the range of one to six
seconds.

16. The system according to claim 11, in which the
predetermined time interval is three seconds.

17. The system according to claim 11, in which the
generating of the tramsition cookie includes the use of
random data.

18. The system according to claim 11, in which the
generating of the transition cookie includes the use of data
obtained from the session SYN packet.

19. A system for TCP SYN cookie validation at a host
server, the system comprising.

at least one processor and a memory storing:

a session SYN packet receiver, wherein the session SYN
packet rveceiver is executed by the at least one processor
to receive a session SYN packet;

a tramnsition cookie genervator, wherein the transition
cookie generator is executed by the at least one pro-
cessor to generate a transition cookie with the use of a
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transition cookie secret key, the transition cookie com-
prising a time value representing the actual time;

a session SYN/ACK packet sender, wherein the session
SYN/ACK packet sender is executed by the at least one
processor to send the transition cookie in response to
the received session SYN packet;

a session ACK packet receiver, wherein when the session
ACK packet receiver is executed by the at least one
processor to receive a session ACK packet, the session
ACK packet including a candidate transition cookie;
and

a transition cookie validator wherein the transition
cookie validator is executed by the at least one pro-
cessor to determine whether the candidate transition
cookie in the received session ACK packet comprises a
time value vepresenting a time within a predetermined
time interval from the time the session ACK packet is
received; and wherein:

the transition cookie generator is executed by the at least
one processov to generate the transition cookie by (i)
generating an encrypted data element of the generator
by applying a cryptographic method on the transition
cookie secret key and a transition cookie data element,
(ii) performing an umnsigned binary addition on the

encrypted data element of the generator and a
sequence number of a TCP header in the received
session SYN packet, and (iii) stoving the vesult in the
transition cookie.

20. The system according to claim 19, wherein the tran-
sition cookie data element comprises data based on at least
one of: a selective ACK, an MSS index, and a 32-bit current
time of day indicated by a clock.

21. The system according to claim 19, in which the
transition cookie validator is executed by the at least one
processor to determine that the received session ACK packet
is valid if the candidate transition cookie in the received
session ACK packet comprises a time value representing a
time within a predetermined time interval from the time the
session ACK packet is rveceived.

22. The system according to claim 19, in which the
predetermined time interval is in the range of one to six
seconds.

23. The system according to claim 19, in which the
predetermined time interval is three seconds.

24. The system according to claim 19, in which the

generating of the tramsition cookie includes the use of

random data.

25. The system according to claim 19, in which the
generating of the transition cookie includes the use of data
obtained from the session SYN packet.

26. A system for TCP SYN cookie validation at a host

server, the system comprising.
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at least one processor and a memory storing:

a session SYN packet receiver, wherein the session SYN
packet receiver is executed by the at least one processor
to receive a session SYN packet;

a tramnsition cookie genervator, wherein the transition
cookie generator is executed by the at least one pro-
cessor to generate a transition cookie with the use of a
transition cookie secret key, the transition cookie com-
prising a time value rvepresenting the actual time;

a session SYN/ACK packet sender, wherein the session
SYN/ACK packet sender is executed by the at least one
processor to send the transition cookie in response to
the received session SYN packet,

a session ACK packet receiver, wherein the session ACK
packet receiver is executed by the at least one processor
to receive a session ACK packet, the session ACK
packet including a candidate transition cookie; and

a tramnsition cookie validator wherein the transition
cookie validator is executed by the at least one pro-
cessor to determine whether the candidate transition
cookie in the received session ACK packet comprises a
time value representing a time within a predetermined
time interval from the time the session ACK packet is
received; and to generate:

a candidate sequence number such that a sequence
number of a TCP header in the received session ACK
packet equals the sum of the candidate sequence
number and a value of 1,

a candidate encrypted data element such that the result
of performing an unsigned binary addition of the
candidate encrypted data element and a candidate
sequence number equals the candidate transition
cookie, and

a candidate transition cookie data element by (i) apply-
ing a cryptographic method on a candidate transi-
tion cookie secret key and the candidate encrypted
data element.

27. The system according to claim 26, wherein the tran-
sition cookie validator is executed by the at least one
processor to validate the candidate transition cookie data
element by adjusting the candidate transition cookie data
element to generate, and determining if the adjusted candi-
date transition cookie data element is within a predeter-
mined time margin of a modified curvent time.

28. The system according to claim 26, in which when the
transition cookie validator is executed by the at least one
processor to determine that the received session ACK packet
is valid if the candidate transition cookie in the received
session ACK packet comprises a time value representing a
time within a predetermined time interval from the time the
session ACK packet is received.
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