(19) United States

12y Reissued Patent
Mohamad et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE47094E

US RE47.094 E
Oct. 23, 2018

(54) CUSTOMIZABLE INFORMATION
MANAGEMENT SYSTEM
(71) Applicant: FileOnQ, Inc., Tukwila, WA (US)
(72) Inventors: Ali Mohamad, Issaquah, WA (US);
Manoj Philip, Calgary (CA)
(73) Assignee: FileOnQ, Inc., Tukwila, WA (US)
(21) Appl. No.: 15/393,038
(22) Filed: Dec. 28, 2016
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 8,176,093
Issued: May 8, 2012
Appl. No.: 12/544,623
Filed: Aug. 20, 2009

U.S. Applications:
(63) Continuation of application No. 10/201,804, filed on

Jul. 23, 2002, now Pat. No. 7,599,942,

(60) Provisional application No. 60/308,362, filed on Jul.
26, 2001.
(51) Int. CL
GO6F 17/00 (2006.01)
GO6I 9/451 (2018.01)
GO6l 9/44 (2018.01)
G060 20/40 (2012.01)
(52) U.S. CL
CPC GO6IF 9/451 (2018.02); GO6F 9/4443
(2013.01); GO6Q 20/405 (2013.01)
(58) Field of Classification Search
CPC e, GO6F 9/4443; G06Q) 20/405
USPC .., 707/802, 803, 805; 715/222

See application file for complete search history.

40—\‘

(56) References Cited

U.S. PATENT DOCUMENTS

6,016,492 A * 1/2000 Saxtonetal. 707/100
6,757,720 Bl 6/2004 Weschler, Jr.
6,865,576 B1* 3/2005 Gongetal 707/100
6,889,260 Bl 5/2005 Hughes

2002/0111972 Al* 82002 Lynchetal ... 707/523

FOREIGN PATENT DOCUMENTS

EP 1158444 A1 * 11/2001

OTHER PUBLICATTONS

Andrew Westlake, A Simple Structure for Statistical Meta-Data,

1997, 1IEEE, pp. 186-195.

Thomas Baker et al., What Terms Does Your Metadata Use?
Application Profiles as Machine-Understandable Narratives, 2001,
National Institute of Informatics, pp. 151-159.

Jane Hunter and Carl Lagoze, Combining RDF and XML Schemas
to Enhance Interoperability Between Metadata Application Profiles,
2001, WWW10, http://www10.org/cdrom/papers/572.

Hans-J. Lenz, The Conceptual Schema and External Schemata of
Metadatabases, 1994, IEEE, pp. 160-165.

* cited by examiner

Primary Examiner — Joshua Campbell

(74) Attorney, Agent, or Firm — John W. Branch; Lowe
Graham Jones PLLC

(57) ABSTRACT

A method for managing information includes: forming a
meta data structure containing first information; forming an
application data structure containing second information;
establishing an association between the meta data structure
and the application data structure wherein the first informa-
tion has the second information associated therewith using a
server; and displaying the association on a display.

20 Claims, 3 Drawing Sheets

FORMING A META DATA STRUCTURE CONTAINING FIRST
INFORMATION
42

FORMING AN APPLICATION DATA STRUCTURE CONTAINING
SECOND INFORMATION

44

ESTABLISHING AN ASSOCIAT
STRUCTURE AND THE APP
WHEREIN THE FIRST INFO

ON BETWEEN THE META DATA

LICATION

INFORMATION ASSOCIATED THEREWI
46

RMATION

DATA STRUCTURE
HAS THE SECOND

'HUSING A SERVER

DISPLAYING THE ASSOCIATION ON A DISPLAY
48

U.S. Patent

Oct. 23, 2018

24

COM Objects
& Profile

20 7T
COM Objects
Client & Profile
22
Client
23
. COM Objects
Client & Profile

P

L2

1S Scrver
(WebView 234

Server)

t

COM
Objects 36
& Profile

Databasc
Server
{Protile

& Data)

FIG. 1

Sheet 1 of 3

EDocs

US RE47,094

WebView
Client

WebView
Chent

WebView
Client

Repository

Linked by |

168

FIG. 2

WebView
Client
WebView
Client

632

US RE47,094

Sheet 2 of 3

Oct. 23, 2018

U.S. Patent

od odu € 'Old

Vbl vl
Cl A
| | Loneoddy
| a|qe alqeL |
dnyoo al14J4eplio
“ NOOT pio1448pRj0] 55
Q
| 199
| egpeid Alisdoldpiel
_ _
| S$7g ejeq uoneolddy 9 | TESAY (INLHO) (INLHO)
9]0.dddy B[l}0Ida9M
. | INES 0}
Aladoud odA | Aledoud |
- JAIIDGQRAERD
2 g SAEG/)00) 1oIRod pue 1dLoSgA

A119d0I adA | pjei

/Om

adA | p1o14 =0 8]I}01d $81B8I)

12 Y Bl Bion

198

US RE47,094

Sheet 3 of 3

Oct. 23, 2018

U.S. Patent

¥ Ol

¥
AV 1dSId ¥V NO NOILVIODOSSY dHL ONIAVIdSIA

)%

HANHAS V ONISN HLIMJYdH L dd1LVIOOSSY NOILYINHOINI
ONOOIS dHL SVH NOILVINHOANI 15414 dHL NidddHM
JdNLONdLS V.IVA NOILLVOIlddV dHL ANV JddNLONELS

V.ivd V13N FHL NIImML349 NOLLVYIDOSSY NV ONIHSHTEV.LSH

i L PP ey P TP

144
NOILVYIWHOANI ANOOJS
ONINIVLINOO JdNLONHLS VIV NOLLVYOIddV NV ONINGO

[47
NOILYINHOANI
15did ONINIVLINOD JdNLOoNdls VivVad V14N V ONINSHO

US RE47,094 E

1

CUSTOMIZABLE INFORMATION
MANAGEMENT SYSTEM

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of co-pending U.S.
patent application Ser. No. 10/201,804 filed Jul. 23, 2002,
which claims the benefit of U.S. Provisional patent appli-

cation Ser. No. 60/308,362 filed Jul. 26, 2001, which 1s
incorporated herein by reference thereto.

TECHNICAL FIELD

The present invention relates generally to imformation
management systems, and more particularly to a system
which can be quickly customized for user/clients 1n different
industries.

BACKGROUND ART

In the past, information management system applications,
such as record management systems, had to be built by the
supplier on a custom basis for the particular business or
industry of the user/clients. The user/clients have specific
requirements from a user interface perspective (Ul) of the
data that needs to be stored in the database, plus all the
business rules behind each information field for mputting
data. What happens 1s there 1s a core to the product that
handles such items as bar codes, but nothing that actually 1s
very specific to the user interface or the fields or the data that
1s being stored.

When the user/client places an order for a system appli-
cation, technical people sit down with the user/client at an
initial technical meeting and design a user interface, get
user/client requirements, and then go back to the oflice and
submit the information to the development group.

It could take probably a week from an investigation
perspective to just get their requirements, 1.€., just to get the
initial design. Then, 1t has to be submitted to a software
development group and scheduled for development. That
could take anywhere from six weeks to several months
depending on the work load of the development group, the
complexity of the product, and how many projects the
development group was doing at the same time. When the
project 1s finally scheduled and the time starts for the
implementation, the development group has to go back to
the software base code and customize it by redesigning the
soltware based on the requirements that were gathered. At
that point the application 1s compiled, so all of that work 1s
being done within a development environment. However,
anywhere between one to five people are required to work
tull time on a particular project. This process can, depending
on the complexity, take several weeks to complete for one
user/client.

Once the product 1s compiled, then it has to be presented
to the user/client for acceptance. Approximately 90% of the
time that 1initial design 1s refused because user/clients always
change their minds. They always have diflerent require-

10

15

20

25

30

35

40

45

50

55

60

65

2

ments; they realize they forgot something; and/or something
happened in their business process or workload that changes
the mitial requirements. Especially because there 1s such a
long time span between the initial techmical meeting and
delivery, often times 1t comes back to the development group
and has to be eirther rescheduled or sometimes rushed 1n. The
developers must review the code. Again, 1t 1s back to the
development stage, redesigning screens, adding new fields,
redesigning the database, etc. Finally, 1t 1s compiled again
and sent to the user/client and hopetully it 1s approved.

Once 1t 1s approved, 1t 1s delivered to the user/client. Six
months down the line the user/client calls back and says,
“We are changing our process and we are adding two new
fields to the application. How much would 1t cost us, and
how long will 1t take?”” Again, 1t 1s exactly the same process.
The same cycle 1s repeated because the development group
must modily or redesign the user interface. The development
group will need to redesign the databases and redesign the
business rules that associate all of the elements together. So
it 1s back to square one. The development group ends up
starting from scratch, rebuilding the application, recompil-
ing 1t, sending 1t to the user/client, and hopetully getting
approval or acceptance the first time. Typically that does not
happen, so 1t 1s sent back, and so on. So from a maintenance
perspective and the perspective of the longevity of the
product, both from a user/client perspective and supplier
perspective, the customization process 1s pretty horrific.

It there were 25 user/clients, then there would be 25
versions of the product. While the core might be the same,
everything around the core may be diflerent. And as a matter
of fact, even the core can be modified based on requirements
or required work-arounds. So 1f something i1s required and
cannot be easily implemented by simply adding to the
product, the core would be modified. So for 100 user/clients,
there are 100 versions of the product, and there 1s never a
standard version of the product. From a maintainability
perspective or improving the product, 1f there 1s a new
teature that needs to be to added to the product, 1t would
have to be customized for 100 different products, and each
would then have to be supported and maintained.

Further, 1 a software bug 1s found, each of the 100
different products must be individually analyzed by going to
that particular code and looking to see 11 the bug affected 1t
because every code would be diflerent.

Even today, 1t 1s believed that almost all of the customi-
zable application products are targeted toward developers.
The developer must be highly skilled technically 1n order to
build the user interface and to associate the fields to data
storage. In addition, almost none of these applications has
any business logic behind it. Some of them may encapsulate
some business logic mto the fields, but there 1s no relation-
ship between these fields.

Business logic includes, for example, data validation, date
ranges, or rules about control dependency, which means
controlling what can and cannot be entered on the screen. If
a value 1s selected for a particular field, then other fields will
be disabled, for example. All of the current applications are
for Ul designers or database designers.

For example, with Microsoit Access, 1t 1s possible for a
non-technical end user to build an application dragging and
dropping fields onto a form and then building a database. It
1s necessary to be a technical developer to connect the two,
because the link between the database and the fields 1s not
there. The links between the fields themselves on the screen
and in the database are done by a developer and not by an
end user.

US RE47,094 E

3

In summary, 1n the past and 1n the current state of the art
today, 1t could easily take months and sometimes years from
the time that a sales person and/or a professional services
technical support person obtains the requirements of a
user/client to when a user/client 1s able to implement a
system.

A system which would be able to reduce the design time
and 1mplementation time to a matter of days or weeks, and

maybe months 11 it 1s a large company, has long been sought
by but has eluded those skilled in the art.

DISCLOSURE OF THE INVENTION

The present mvention provides a method for managing
information including: forming a meta data structure con-
taining first information; forming an application data struc-
ture containing second information; establishing an associa-
tion between the meta data structure and the application data
structure wherein the first information has the second infor-
mation associated therewith using a server; and displaying
the association on a display.

The present invention provides an application or a tool
that allows building an application including 1ts business
rules, validation, and related sub-systems at one time from
a user perspective with a simplified user interface and
simplified terminology.

Some of the additional features are supported for several
platforms, so the present invention can target mobile appli-
cations such as cellular phones and through cellular phones
to access the Internet. One of the ways that the application
can be built 1s for a cellular interface.

An engine generates the final user/client profile and that
engine would be modified to also write to that type of
application.

These systems can add new, different types of fields that
actually allow improvement of the product and the addition
of new features. The user can select some of the ways that
ficlds are represented to improve and support even more
features. In addition, the engine can support different types
of platforms in the future as opposed to only the platforms
that are currently supported today.

The above and additional advantages of the present inven-
tion will become apparent to those skilled 1n the art from a
reading of the following detailed description when taken in
conjunction with the accompanying drawings.

[

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a system used with the
method of the present invention;

FIG. 2 1s an application as used in accordance with the
present ivention;

FIG. 3 1s a flow chart of a customizable information
management system in accordance with the present inven-
tion; and

FI1G. 4 1s a simplified tlow chart of a method of the present
invention.

BEST MODE FOR CARRYING OUT TH.
INVENTION

L1l

Referring now to FIG. 1, therein 1s shown 1s a block
diagram of a customizable records and information man-
agement system 20 in accordance with the present invention.
The system 20 utilizes barcode technology to automate
business-critical activities by defimng, managing, and
quickly delivering the information necessary to efliciently

10

15

20

25

30

35

40

45

50

55

60

65

4

and eflectively manage those activities. By transforming
disorganized manual documentation into a defined and vali-
dated document collection process, the system delivers
dramatic productivity improvements.

The system 20 transforms hard copy file systems to
document 1maging solutions in easy, logical, aflordable,
proven steps without the risks associated with manual index-
ing and undefined collection processes. The system 20 can
be fully tailored to meet the unique needs and requirements
of each user/client 22-24. This tailoring of each application
1s accomplished through an on-board filing module. This
functionality allows the applications to be quickly installed
and configured by resellers and user/clients.

The system 1s a 32-bit, Windows-compliant application. It

utilizes some of the latest technologies such as Active-X and
COM. Both the Microsoit Database Engine (MSDE) and the
Microsolt SQL-Server database engine are usable as the
database management technology for the present invention.
This provides greater stability than Access and allows the
present invention to easily migrate to SQL Servers when an
application must scale. The database side of the present
invention uses Microsoft ActiveX Data Objects (ADO) for
database connectivity. The present invention will run on
Windows 95, Windows 98, Windows NT, and Windows
2000.

As an example, users/clients can create profiles 26 that are
provided to a database server 28, which stores the profiles
and data. An associate server acts as an electronic document
(Edocs) repository 30. One portion, WebView, 1s a browser
based Internet application that allows users/clients to search,
view and place requests for records. WebView Client 32
provides lower overall deployment and distribution costs

over traditional client/server software models. WebView 1s
serviced by an IIS Server (WebView Server) 34, which

maintains the COM Objects & profiles 36.

Referring now to FIG. 2, therein 1s shown an Application
15 which includes a Folder Field 15A which 1s linked by
identification to a Folder 15B. The Folder 15B 1s provided
with information through a conventional bar code reader
from a Bar Code 15C.

Referring now to FIG. 3, therein 1s shown a block diagram
of a Profiler 9B portion of the system 1n accordance with the
present 1vention.

The Profiler 9B utilizes diflerent types of structures. There
are two main types of structures: Meta Data A, or Master
List Structures 1-4, and Application Data B, or Run-time
Structures 5-8. The structures determine the features of the
Profiler 9B and what the Profiler 9B can generate.

The Master List Structures 1-4 are fairly static and not
typically changed by the end user/client 9A or by whoever
1s configuring or setting up the application. The Master List
Structures 1-4 drive what the Profiler 9B does, what 1t
presents to the user/client 9A from a user interface, and what
it generates as upon a profile. The Run-time Structures 5-8
are the ones that maintain and store what the user creates as
an application, and they end up being the driver for later
modifications to the product on the user end. Also they end
up being the driver to the engine that essentially generates
the profile as an application.

There are basically four master structures. They are Field
Type 1, Property Type 2, Property 3, and Field Type Property
4.

The Field Type 1 1s a list of field types provided by the
Profiler 9B and available to users when creating application
definitions. So when they are looking at the application, at

the Profiler 9B, and they would like to add a field, the Field

US RE47,094 E

S

Type 1 defines that there area text field, a date field, and a
mask edit field. So these are the types of fields that a user 1s
presented with.

The Property Type 2 1s a list of properties for each field.
And each property that 1s defined withuin has a type. There
are currently three main types 1n the Profiler 9B but addi-
tional different types are possible. But the three of them are
generic which means this particular property 1s a free form
text. The user can enter a value there, for example a help
prompt. Boolean logic allows a true-false type of logic
where typically from a Ul perspective 1s represented by a
check box in the Microsoft Windows environment. A list
Property Type 2 1s something that allows selection of a list
of values or entry of a new value. For example, a mask
character, which 1s one of the properties that 1s 1n the Profiler
9B, can provide one of the following either as an underscore
or a pound as one of the mask characters, or a custom
character 1t 1t 1s desired to override these.

The Property 3 1s a master list of field properties available
in the Profiler 9B. So mask character 1s one of the properties.
Valid Properties are size, mput, mask, mask character,
default value, tool tip, etc. For example, when the cursor
over the field, the properties indicate whether the field can
be queried, whether everything entered in it should be
converted to upper case, whether 1t 1s a required field within
a record, etc. Therelfore, the Property 3 i1s the master list of
all of the properties available within the Profiler 9B.

The Field Type Property 4 1s when a particular type of
field 1s selected within the Profiler 9B; there are certain
propertiecs within the master list of properties that are
assigned to that particular field. This 1s where an association
1s made between them. So 1t 1s the association between Field
Type 1 and Property 3.

Basically, the four structures define what the Profiler 9B
presents to the user so 1t 1s important to know that the
Profiler 9B 1s also dynamic 1n 1itself. Merely by coming 1n
and modilying, adding for example a new property or
moditying the type of a property or adding a new type,
actually customizes how the Profiler 9B works and essen-
tially what 1t generates also because 1t 1s all driven through
these four master tables or structures.

Run-time Structures 5-8 are the ones that get modified by
the user/client 9A behind the scenes. Obviously, the Profiler
9B customizes on behalf of the user/client 9A based on their
actions, so when a user/client 9A adds a field, i1t 1s added to
a Field Definition structure 5. The Field Definition structure
5 1s really a master list of all user-defined fields that are
created by the user. It 1s a structure that contains the user
defined fields, their names, and their type. The type is
basically dernived from the Field Type master list 1, label
captions, the position within the tabbing sequence, screen
positioning, if 1t 1s a Lookup field 8 what 1s the Lookup
category, etc. And then the generator engine, a component of
the Profiler 9B, uses this structure along with the Field
Property structure 6, which will hereinafter be described,
next to build a final applications package, basically the final
deliverable to that user.

The Field Property Structure 6 defines the relationship
between a user-defined field and 1ts properties. So when a
particular type of field 1s selected and dropped on the screen,
the Field Property Structure 6 1s created also for that field so
that when values are assigned to each Property 3, this 1s
where they get stored. So a math character for a particular
type of field would be stored 1n the Field Property Structure
6.

The Folder Field Table 7 1s actually not part of the Profiler
9B 1tself. It 1s used by the application and this 1s where the

10

15

20

25

30

35

40

45

50

55

60

65

6

Folder information 15B (shown 1n FIG. 2) 1s stored. It 1s one
of the tables that stores Folder information 15B. This
particular table actually 1s the table that presents or stores all
the user-defined fields. It 1s modified by the Profiler 9B. So,
based on the profile that 1s generated, not only does 1t
generate a user mterface, but 1t also modifies the structure of
the Folder Field Table 7 and provides the proper data types,

the sizes, and everything for these fields within the database
based on what the user selected. Just to clarity, the Folder
Field Table 7 may contain fields with a suthx, underscore, or
number. When a field 1s deleted in the Profiler 9B, 1t is
removed from the screen but its definition 1s not removed. Its
definition 1s stored as mnactive. And then within that Folder
Field Table 7, it 1s renamed so that 1t does not appear 1n the
application. This allows user/client support people to unde-
lete unintentionally deleted fields. Because basically there 1s
data 1n that field and 11 1t 1s deleted and the end user says,
“Oops, | made a mistake™ 1t 1s normally gone. It 1s necessary
to intentionally run a cleanup utility and saying, “Yes”
before any fields are actually deleted. The clean-up utility
presents a list of fields that will be deleted and requires an
athrmative “Yes” that these are the fields to be deleted, and
a command saying “clean up” 1s required before 1t cleans up.

r

The Lookup Table 8 1s also a run-time program. It 1s not
really part of the Profiler 9B but the Profiler 9B affects this
table 1n the sense that when a field 1s defined as a category,
it has a Lookup category, which means that it 1s a Lookup
field. Lookup fields are typically drop down menus. They
present the end user with a list of values and one of the
values selected 1n this list will be the content. For example,
a list of locations such as abbreviations for states of the
U.S.A. 1s really a Lookup field because 1t should not be
necessary for the user to enter the full name of the location.
The user may re-enter 1t ten times with diflerent spellings.
So there 1s a dropdown with each location name and then the
user can select one. Customized Lookups can be created
within the Profiler 9B. A category name 1s assigned. For
example, “State” 1s one category for this particular field.
Another one would be location names. And then by defining
these categories, 1t 1s possible to go 1nto the Lookup main-
tenance 1n the application, based on these customized cat-
egories to enter values for each one of these categories. At
run-time, the Profiler 9B generates the final package. That
package has code and logic 1n 1t to go and retrieve the values
or the list of values for a particular location or a bit of a
category.

When the user opens the Profiler 9B, mitially 1t 1s empty.
When the system 1s {irst received, the user/client 9A can
actually 1nstall the system on their own and start the Profiler
9B. An empty screen mitially will be seen. Then the user can
drop fields onto the form, move them around, resize them,
give them properties, and then save the profile. What the
Profiler 9B does in the end 1s basically store all of 1ts data
into Run-time Structures 5-8, but 1in addition to that, it also
stores the user/client profile. The profile 1s a form or a syntax
that 1s stored internally within the database that essentially
becomes the package that 1s used by the user interface or by
the application to present the fields.

Not only does the Profiler 9B generate the screen itsell,
but also the logic behind 1t. So within the Profiler 9B there
1s stored the Profiler VB Script and Java Script code 9C that
gets mserted based on the fields that are selected and based
on the relationships between these fields. So validation,
making sure that certain fields are enabled and disabled at
different times, based on the values that are selected, occurs
automatically and the Profiler 9B automatically adapts to
that situation.

US RE47,094 E

7

The Profiler 9B generates a WebProfile 10 and an appli-
cation profile, AppProfile 11. These profiles contain the field
definitions and their business rules, as required by the
targeted platforms. If a web product 1s enabled within the
Profiler 9B, because the Profiler 9B 1s also a customization
tool to enable/disable packages or modules within the prod-
uct, WebView 1s enabled. In addition to creating the typical
profile, the AppProfile 11, that 1s used within a Desktop
Application 13, the Profiler 9B also builds the WebProfile
10. It provides what the screen will look like and what the
functionality and business rules behind every field and every
screen that will be utilized by either the WebView or the
Desktop Application 13. Essentially, the Web Application 12
and the Desktop Application 13 utilize the application data
in Meta Data A also 1n conjunction with a profile to make
sure that the application 1s rendered correctly and the
business rules are implemented.

When the Profiler 9B starts, 1t goes through the list of
properties and fields that 1t has available to 1t, and it presents
them 1n a user interface, for example a text field, a check
box, or a date field. These types of fields are defined in the
master list tables or structures and they are utilized by the
Profiler 9B to present a dropdown that says, “Which field
would you like to add?”

In the Profiler 9B there 1s a control called the Dynamic
HTML editor. When a type of field 1s selected for addition,
based on the master tables, default locations are defined for
where the field will be dropped onto the form. For example,
it could be dropped at the right bottom part of the screen. So
Field Type 1, for example, in addition to having the i1den-
tification encoded 1n, also defines the user interface, how the
user interface represents each field type. So there 1s a
template code that 1s stored in the master table Field Type 1
that defines what needs to be done or added to that control,
for example, the dynamic HTML edit control, when a text

field 1s dropped. The tables also define what the field looks
like.

In addition, code 1s built into the Profiler 9B that 1s added
or appended to that defimition to make sure that there 1s a link
from an event handling purpose and also for validation when
properties are defined 1n that field. Then a save 1s performed.
That control, 1n addition to being added on that form, is
essentially the definition that 1s built and stored in the
database, It 1s based on that particular position on the form
where 1t has been dragged and dropped, or the form resized,
and also based on what 1s in the Profiler 9B itself in terms
of VB Script or Java Script code 9C.

What also happens, besides the ability to just drag-and-
drop the field onto the form, is that for each field type that
1s dropped on the form, the Profiler 9B says, “OK, I just
dropped a text field”. The association between Field Type 1
and Property Type 2, Property 3 and Field Type Property 4,
which are the master lists themselves, 1s determined. If there
1s a text field, what properties are required to prompt or
allow the user to enter are determined. For example, with a
date field, it does not make sense to prompt for the mask
character or the length of the field. It 1s two digits for the
month, two digits for the day, and then four digits for the
year. There 1s no way around doing that. It does not make
sense to provide, for example, the masking ability to enter a
phone number 1n a date field. So, the Profiler 9B knows by
looking at these master tables that 1t needs to present these
lists of properties to the user so he/she can modily and set
particular properties for that particular field.

Certain types of fields may be querniable while other types
of fields may not be. Being queriable 1s a function within the
product. When the end user says, “I would like to query on

5

10

15

20

25

30

35

40

45

50

55

60

65

8

something”, a value 1s placed within that field and then
entered. Does 1t participate 1n the query processing? That 1s
something that 1s defined in the Profiler 9B based on its type.
There are two types of Lookups, coded Lookups and a
simple Lookup. For example, states could be CA for Cali-
forma, or there may be just a list of user names, no code.
Those are called simple Lookups. Based on the type of
Lookup that being added to the form there are different
properties that are assigned. So this 1s what the Profiler 9B
does. It looks at the master tables and 1t says, “OK. Here are
the properties that I need to present the user with”. When the
user selects the properties, everything 1s stored 1n memory in
a structure so that later on the data gets saved primarily to
the Field Definition Table 5, which 1s one of the Run-time
Structures 5-8 that the Profiler 9B utilizes. It 1s used to
implement or save the final dynamic profile definitions
including the business rules and logic (code) 9C.

The Profiler 9B 1s really the heart of the application. It
does not work by itself. It just generates a profile that
essentially 1s used by another application or several appli-
cations. For example, when 1t 1s utilized by several appli-
cations, one of which 1s the Desktop Application 13, it reads
the Meta Data A, which are the master list tables and the
run-time tables to present the user with a user interface (Ul),
the business rules, and everything else. So it 1s based on
what the Profiler 9B generates, that the application actually
works. Without the Profiler 9B, the application does not
work. It 1s an empty application.

The Web Application 12 1s exactly the same. The Profiler
9B 1s required so that the application can know what 1t needs
to represent to the user and what business rules to implement
from a desktop and WebView perspective.

Also from a batch perspective, batch Import processing 1s
implemented. Batch Import 14 1s another way to do user data
entry, but in batch mode. So whatever 1s implemented 1n the
user interface from a validation and business rule processing,
should be implemented in the batch process. What 1s done 1n
the user iterface is that all of these rules are implemented
by the Profiler 9B and they are pretty much controlled by the
profile that 1s generated from the Profiler 9B, so everything
1s dynamic and these rules are built as the application 1is
built. The Import 14 takes that same information, the Meta
Data A, master list and the run-time tables 1n addition to an
Import Meta Data Table 14A, additional table, and 1mple-
ments business rule validation and a relationship between
fields and everything else requires dependency between
different types of fields 1 batch mode so that several
thousand records can be imported at a time. The Import tool
1s a completely diflerent tool from the rest of the Import
applications that are out there on the market in that 1t
actually implements dynamic rules and implements business
rules 1n batch mode and with good performance.

The Web View Application 12 and the Desktop Applica-
tion 13, respectively, are essentially empty applications until
they load the profile from the database where 1t has been
stored. These applications, particularly the Desktop Appli-
cation 13, use Bar Codes 15C as a major component 1n order
to drive the tracking and transferring of records.

Summarizing, the Profiler 9B generates a profile, which 1s
a user interface definition plus a data storage definition. That
data storage definition 1s only half the formula of storing a
record within the system. The other half 1s what 1s defined
by file and queue. So there are two parts to a record. A record
1s defined by the user using the Profiler 9B, which describes
which fields and the association between these fields. And
then there 1s the other part of a record, which maintains the
ability to transfer records from one location to another, to do

US RE47,094 E

9

auditing, and to do all kinds of other things. And those fields,
or those properties of a record, are defined within the Folder
structure. The Folder structure 15B 1s basically the other halt
of the Folder Field structure 15A, which 1s modified by the
Profiler 9B. That Folder structure 15B defines a Bar Code

15C and basically 1s an 1dentifier of a record. It 1s a unique
value that can be printed using a Bar Code font, can be
scanned using a Bar Code reader, and essentially using the
Bar Code 15C allows a record to be transferred from one
location to another, or to be retrieved and viewed on the
screen using a profiled application.

So essentially the application 1s generally empty. The part
that 1s the user interface 1s empty when the application 1s
initially purchased and no profile has been created. The Bar
Code 15C exists, but 1t means nothing because 1t 1s just a
unique ID. Once the profile 1s generated and saved into the
database, the user interface definition is also saved and that
defines what 1s represented to the user from a data perspec-
tive. But again behind the scenes 1s this other piece of data
that stores the current location, stores the Bar Code, stores
many other things about that particular record. And that 1s
how the application utilizes the profile 1n conjunction with
the Bar Codes 15C.

In addition, scripting ability exists withuin the Profiler 9B
itsell so when there are users who are capable of writing
code 1n addition to using this user interface, they have the
option to go to an advanced mode and enter code that
associates data with a particular field. So validation 1s not
only done by the Profiler 9B based on 1ts rules, but is also
implemented as a custom solution that the user can later on
g0 1n and modily at run-time again. This 1s not at compile
time, so 1t can be done between a user/client 9A for example
and an integrator or consulting services.

In addition, adding more generator engines enable differ-
ent destination or target platforms to be supported, such as
personal digital assistants which, generally speaking, are
considered wireless applications. The Profiler 9B can also
generate a Microsolft Outlook view, like a dashboard view,
or can generate other types of applications. Because the
Profiler 9B really 1s just a way to combine user interface and
business rules together based on a user defined drag-and-
drop methodology. But the end result of the Profiler 9B does

not have to be a browser or the Desktop Application. It can
be any other application. It can be self-contained within the
Profiler 9B 1itself.

So the Profiler 9B 1s able to target several platforms, 1n
addition to adding new features such as customization by the
user to add more code, to add more logic.

Referring now to FIG. 4, therein 1s shown a simplified
flow chart of a method 40 of the present invention. The
method 40 1ncludes: forming a meta data structure contain-
ing first information in a block 42; forming an application
data structure containing second information in a block 44;
establishing an association between the meta data structure
and the application data structure wherein the first informa-
tion has the second information associated therewith using a
server 1n a block 46; and displaying the association on a
display 1n a block 48.

While the mvention has been described 1n conjunction
with a specific best mode, it 1s to be understood that many
alternatives, modifications, and variations will be apparent
to those skilled 1n the art 1n light of the aforegoing descrip-
tion. Accordingly, it 1s intended to embrace all such alter-
natives, modifications, and variations which fall within the
spirit and scope of the included claims. All matters hither-

10

15

20

25

30

35

40

45

50

55

60

65

10

to-fore set forth herein or shown in the accompanying
drawings are to be interpreted in an illustrative and non-
limiting sense.

The mvention claimed 1s:

1. A method of operation of an information management
system that includes one or more computers that execute
instructions to perform actions, comprising:

instantiating a system application to perform actions,

including:

[forming] gererating a meta data structure containing
first information;

[forming] generating an application data structure con-
taining second information for mamtainming provided
user application information;

establishing an association between the meta data struc-
ture and the application data structure wherein the
first information has the second information associ-
ated therewith using a server, and wherein the first
information is emploved by a profiler application to
enable static actions and the second information is
emploved by the profiler application to enable user
modifiable actions;

employing one or move of a physical bar code reader
to scan a bar code or other rveaders to uniquely
identify a recovd comprised of data defined by the
first information and the second information that is
configured with the use of the profiler application to
display the record to a user or transfer the recorvd
from a disposition to another disposition; and

displaying the association on a display.

2. The method as claimed 1n claam 1 wherein:

[forming] the meta data structure includes [forming]

master list structures having:

a field type structure;

a property type structure;

a property structure; and

a field type property structure.

3. The method as claimed 1n claim 1 wherein:

[forming] the application data structure includes [form-

ing] run-time structures having:

a field definition structure; and

a field property structure.

4. The method as claimed 1n claim 1 additionally com-
prising;:

[forming] tables including:

a folder field table; and

a lookup table.

5. The method as claimed 1n claim 1 additionally com-
prising:

reading the meta data structure by an application;

reading the application data structure by the application;

and

adding customization information to [form a] #2e profile.

6. The method as claimed in claim 1 additionally com-
prising;:

reading the meta data structure by an application;

reading the application data structure by the application;

adding customization information to [form a] #:e profile;
and

entering user information using the profile to [form] a

folder.

7. The method as claimed 1n claim 1 additionally com-
prising:

reading the meta data structure by an application;

reading the application data structure by the application;

adding customization information to [form a] #ze profile;
and

US RE47,094 E

11

entering user information using the profile to [form]

folders 1n a batch mode.

8. The method as claimed in claim 1 additionally com-
prising;:

reading the meta data structure by an application 1nclud-

ing a web application and a desktop application.

9. The method as claimed in claim 1 additionally com-
prising:

validating associations of the meta data structure and the

application data structure.

10. The method as claimed 1n claim 1 additionally com-
prising:

adding a generator engine for targeting a hardware plat-

form.

11. A method of operation of an information management
system that includes one or more computers that execute
instructions to perform actions, comprising:

instantiating a system application to perform actions,

including:

[forming] gererating a meta data structure containing
first information for:
providing a user interfacel[.];
determining features [for] of the user interface],

and];

determining the contents of a profile;

[forming] generating an application data structure con-
taining second information for:

maintaining provided user application informationl,];

storing user application information|,],; and

driving an engine to generate the profile as an appli-
cation;

establishing [associations] an associatiorn between the
meta data structure and the application data structure
wherein the first information has the second infor-
mation associated therewith [to form a profiler] using
a server, and wherein the first information is
emploved by the profiler application to enable static
actions and the second information is emploved by
the profiler application to enable user modifiable
actions; [and]

emploving one or more of a physical bar code reader
to scan a bar code or other readers to uniquely
identify a record comprised of data defined by the
first information and the second information that is
configured with the use of the profiler application to
display the rvecovd to a user or transfer the vecord
from a disposition to another disposition; and

displaying the profiler on a display.

12. The method as claimed 1n claim 11 wherein:

[forming] the meta data structure includes [forming}

master list structures having:
a field type structure having:
a list of field types available to a user,
a text field,
a date field, and
a mask edit field;
a property type structure having:
a list of properties for a field,
a list of values for a field,
Boolean logic, and
a new value entry;
a property structure having:
valid properties and
a master list of all properties available 1n the profiler;
and
a field type property structure having:

10

15

20

25

30

35

40

45

50

55

60

65

12

associations between the field type structure and the
property structure.
13. The method as claimed 1n claim 11 wherein:
[forming] the application data structure includes [form-
ing] run-time structures having:
a field definition structure having:

a master list of all user-defined fields created by a
user,
a field name, and
a field type; and
a field property structure having:
relationships between a user-defined field and a
property of the user-defined field and
values of the property.
14. The method as claimed i claim 11 additionally
comprising:
[forming] tables including:
a folder field table for:
storing a folder record,
storing a user-defined field,
generating a user interface,
provides proper data types and sizes for a folder, and
permitting undeleting of an unintentionally deleted
field; and
a lookup table for:
providing a drop down menu.
15. The method as claimed in claim 11 additionally
comprising:
reading the meta data structure by [an] #ke application;
reading the application data structure by the application;
and
adding customization information to [form a] #2e profile.
16. The method as claimed in claim 11 additionally
comprising;
reading the meta data structure by [an] #%e application;
reading the application data structure by the application;
adding customization information to [form a] #ze profile;
and
entering user information using the profile to [form] a
folder.
17. The method as claimed in claim 11 additionally
comprising:
reading the meta data structure by [an] #ke application;
reading the application data structure by the application;
adding customization information to [form a] #:e profile;
and
entering user mformation using a mode selected from a
group consisting of an individual mode, a batch mode,
a bar code mode, and a combination thereof.
18. The method as claimed in claim 11 additionally
comprising;
reading the meta data structure by [an] the application
including a web application and a desktop application;
storing a web profile for the web application; and
storing an application profile for the desktop application.
19. The method as claimed m claim 11 additionally
comprising:
validating associations of the meta data structure and the
application data structure using dynamic HTML or
another syntax appropriate for other targeted platiorms.
20. The method as claimed in claim 11 additionally
comprising;
adding a generator engine for targeting a wired or wireless
platform.

	Front Page
	Drawings
	Specification
	Claims

