USO0RE46995E
(19) United States
12y Reissued Patent (10) Patent Number: US RE46.,995 E
Mokhlesi 45) Date of Reissued Patent: Aug. 14, 2018
(54) PROGRAMMING NON-VOLATILE USPC e, 365/185.03, 11, 19, 33
STORAGE USING BINARY AND See application file for complete search history.
MULTI-STATE PROGRAMMING
PROCESSES (56) References Cited

U.S. PATENT DOCUMENTS

(71) Applicant: SanDisk Technologies LLC, Addison,

TX (US) 5835406 A * 11/1998 Chevallier et al. 365/185.03

5.930.167 A * 7/1999 Lee et al. wovvvvvvvivi.., 365/185.03

(72) Inventor: Nima Mokhlesi, [.os Gatos, CA (US) 5036.884 A * 81999 Hasbun et al. ... 365/185.03
6,456,528 B1* 9/2002 Chen w...cooooeverviinn.. 365/185.03

0,717,847 B2 4/2004 Chen

(73) Assignee: SANDISK TECHNOLOGIES LLC, 7310347 B2 12/2007 Lasser

Addison, TX (US) 7388781 B2 6/2008 Litsyn
7,535,764 B2* 5/2009 Chin G11C 11/5628
(21) Appl. No.: 14/231,561 365/185.17
7,567,457 B2* 7/2009 Nazarian G11C 8/08
(22) Filed: Mar. 31, 2014 365/185.05
8,026,544 B2* 9/2011 TItoetal.ccoceeeviinnin, 257/321
Related U.S. Patent Documents (Continued)
Reissue of:
(64) Patent No.. 8,111,548 OTHER PUBLICATIONS
Issued: Feb. 7, 2012
Appl. No.: 12/339,005 Office Action dated Mar. 29, 2011, U.S. Appl. No. 12/339,005.
Filed: Dec. 18, 2008 (an‘[inued)

U.S. Applications: | | o
(60) Provisional application No. 61/082,349, filed on Jul. Primary Examiner — Behzad Peikar

21, 2008. (74) Attorney, Agent, or Firm — Vierra Magen Marcus
LLP
(51) Imnt. CL
G1IC 11/34 (2006.01) (57) ABSTRACT
G1IC 16/34 (2006'O;~) A non-volatile storage system stores data by programming
GII1C 16/04 (2006'0;“) the data as binary data into blocks that have not yet been
G1IC 1156 (2006'0;) programmed with multi-state data and have not yet been
GI1IC 16/10 (2006.01) programmed with binary data X times. The system transfers
(52) US. CL data from multiple blocks (source blocks) of binary data to
CPC G11C 16/349 (2013.01); G1IC 11/5628 one block (target block) of multi-state data using a multi-

(2013.01); G1IC 16/0483 (2013.01); GI1IC state programming process, where the target block has been
16/10 (2013.01); G1IC 2211/5641 (2013.01) previously programmed with binary data X times (or less

(58) Field of Classification Search than X times).
CPC . G11C 11/5628; G11C 16/0483; G11C 16/10;
G11C 16/349; G11C 2211/5641 39 Claims, 14 Drawing Sheets

receive requests to program and data | 7o
to be programmed

l

program data as binary data into blocks
that have not yet been programmed
with multi-state data and have not yet [~ 704
been programmed with binary data X
times

l

update valid data flag and 706
programming cycle counter for blocks

l

transfer data from multiple blocks
{(source blocks) of binary data to one
block (target block) of multi-state data
using a multi-state programming —— 708
process, where the target block has
heen previously programmed with
binary data X times

l

update valid data flags ~— 710

US RE46,995 E

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
8,027,195 B2* 9/2011 Lietal. ... 365/185.03
8,111,548 B2 2/2012 Mokhlesi
2007/0180346 Al 8/2007 Murin
2008/0123412 Al 5/2008 Lasser
2008/0259684 A1 10/2008 Shlick
2009/0089481 Al* 4/2009 Kapoor et al. 711/103

OTHER PUBLICATIONS

Response to Ofhice Action dated Aug. 26, 2011, U.S. Appl. No.
12/339,005.

Notice of Allowance dated Nov. 25, 2011, U.S. Appl. No.
12/339,005.

* cited by examiner

U.S. Patent

Fig. 1

o
o

L

/7//

S

/77

=

/77

=

/77

A

Aug. 14, 2018

126
120CG

100G
100CG

102FG
102CG

104FG
104CG

106FG
106CG

122CG

128

Sheet 1 of 14

Fig. 2
120CG 126
- 120
100CG
WL3 100
102CG
WL2 —— 102
104CG
WL 104
106CG
LG 106
122CG
SGS _——122
128

US RE46,995 E

U.S. Patent Aug. 14, 2018 Sheet 2 of 14 US RE46.,995 E

- @ swww vwhewt el F— —

— R L S e

Data
He)

CONTROL COLUMN DECODER 2428
ADDR |
CIRCUITRY READ/WRITE CIRCUITS 2308

220 |
Sense Sense 300 Sense
Block Block Block
' 1 A |
Power P _ ;

Control
226

1 On-Chip
I Address

Decoder
224

MEMORY ARRAY
200

State

@
O
Ay
O
o
L]
O
O
O
I
0
<
O
%

ROW DECODER 240A

Machine
222

ADDR . READ/WRITE CIRCUITS 230A

Sense Sense L 300 |

Block Block
1

ADDR COLUMN DECODER 242A

Data]

eyl v e e A

70 i

234

Controller
244

-

202" Fig. 3

Host

U.S. Patent Aug. 14, 2018 Sheet 3 of 14 US RE46.,995 E

block O
block 1

block 2
block 3

Fig. 4

200

»
»

=
=
®

block 1023

hlock |

BLO BL1 BL2 BL3 BL4 BLS BL69,622 BL69,623

Source

U.S. Patent Aug. 14, 2018 Sheet 4 of 14 US RE46.,995 E

300 bit line

State

l Machine
| /472
F— -/ """ """ 7/ 7/ 7 7/]
| v :
l) |
I Processor l
— > l
State | 7 | |
Machine | 493 """‘"" 492 |
I l

Data Latches

/ 11O interface |

common

wekinibrk USRS WA 0 By albelie b sl ek sl bbbl

Data Flg 5

U.S. Patent Aug. 14, 2018 Sheet 5 of 14 US RE46.,995 E

e Fig. 6A

number of
cells

Fig. 8

Kirst Page | Second Page | Third Page
WLO |1 3 0
WL1 |2 > 9
WL2 |4 3 11
WL3 |7/ 10 12

U.S. Patent Aug. 14, 2018 Sheet 6 of 14 US RE46.,995 E

number of
cells

111

Vit
number of
cells
Fig. 7B
(o7
- —p
ET-;* VT
Fig. 7C
502 506 510
m S 504\"”0 5}08 J
ANANI A ENA
111 101 ;* IOH 001 Vo
C* E* G*
number of Flg 7D
cells £ 05 50\6 508 510
V7

U.S. Patent Aug. 14, 2018 Sheet 7 of 14 US RE46.,995 E

number of F!g 7E number of Flg 7F

cells

cells
5%2 /_\v

- >

111 110 v,

number of F|g [(5 number of Flg H

cells

cells

T

G H

number of

cells Flg 7'

111 T110 101 100 | 011 1‘010 001 ooo Vi

U.S. Patent Aug. 14, 2018 Sheet 8 of 14 US RE46.,995 E

number of Flg 9A
cells
—
Vi
number of
cells
Flg OB
4
\/
ber of "
Fig 9C

Ny

Vr
humber of
cells .
Fig 9D
o) (s () [s) [
_. s
number of
cells Flg 9E

D ARARAAAR

U.S. Patent Aug. 14, 2018

Fig. 11

set magnitude of
| initial Vpgm and set |~ 608
PC = 1

ag;aly program pulse,
program all bit ines

610

Sheet 9 of 14

Fig. 10

550
pre-program block
552
erase block
554
l___seft program block
l — 556

program memory cells in |
block

616

pass

612
Verify
614
fail

618

no

yes
_ _ 620
step Vpgm and

increment PC

unsuccessfully
programmead memory
cells £ pregetermined

630

no

number?

yes

632

stafus =
Nass

634

status = fail

US RE46,995 E

U.S. Patent Aug. 14, 2018 Sheet 10 of 14 US RE46.,995 E

Fig. 12

recelive requests to program and data ' _ 702
to be programmed

program data as binary data into blocks
that have not yet been programmed
with multi-state data and have not yet 704
been programmed with binary data X
times

update valid data flag and
. ~— 706
programming cycle counter for blocks

transfer data from multiple blocks
(source blocks) of binary data to one
block (target block) of multi-state data
using a multi-state programming 708
process, where the target block has
been previously programmed with
binary data X times

update valid data flags 710

U.S. Patent Aug. 14, 2018 Sheet 11 of 14 US RE46.,995 E

‘rez:eive requests to program and data to be! "
750 programmed F'g " 1 3
752

yes are there available blocks

previcusly programmed with binary
data less than 3 times?

no

754 756

program data as binary data into | program data as binary data into
block(s) previously programmed with block(s) not yet used for

binary data less than 3 times programming
758

update programming cycie counter and valid
data flag for block(s), report completion of
programming

760

are three three blocks
currently programmed with valid
pinary data?

o

yes

762

Is there a block that does
not have valid data and has been
previously programmed with

binary data 3 times? -

yes no

using a multi-state programming process,
transfer data from the three blocks 764
currentfly programmed with vaiid binary

768

using a multi-state programming
process, transfer data from the

data to one block that does
not have valid data and has been
previously programmed with
binary data 3 times

three blocks currently
programmed with valid binary data
to a fresh block

/66

update valid data flags

U.S. Patent Aug. 14, 2018 Sheet 12 of 14 US RE46.,995 E

Fig 14A

program first binary data program first binary data

into block O into block 6
operation 1 operation 10
program first binary data program first binary data
into block 1 into block 7
operation 2 operation 11
program first binary data program first binary data
into block 2 and program into block 8 and program
multi-state data into block multi-state data into block
3 based on the binary data 0 based on the binary data
in blocks 0, 1 and 2 in blocks 6, 7 and 8

operation 3
operation 12

program second binary

data into block O program second binary

data into block &

operation 4 |
operation 13
rogram second binar e
P gata into block 1 d program second binary
data infto block 7
operation 5 operation 14
program second binary | program second binary
data into block 2 data into block 8 and
and program multi-state program multi-state data
data intc biock 4 based on into block 1 based on the
the binary data in blocks 0, binary data in blocks 8, 7,
1and 2 and 8
operation © operation 15
program third binary data program third binary data
into block O into block 6
operation 7 operation 16
program third binary data program third binary data
into block 1 Into block 7
operation 8 operation 17
program third binary data program third binary data
into block 2 and program into block 8 and program
muilti-state data into block multi-state data into block to Fig 14B
5 based on the binary data 2 based on the binary data
in blocks 0, 1 and 2 operation 9 in blocks 6, 7 and 8 operation 18

U.S. Patent

Aug. 14, 2018

Fig 14B

from Fig. 14A

first binary data
into block 9

operation 19

program first binary data

into block 10

operation 20

program first binary data
into block 11 anag program
| multi-state data into block
6 based on the binary data
in blocks 9, 10 and 11

operation 21

program second binary
data into block 9

operation 22

pgram second binary
data info block 10

operation 23

program second binary
data into block 11

and program multi-state

data into block 7 based on
the binary data in blocks 9,
10 and 11

Sheet 13 of 14

operation 24

program third binary data
into block 9

program third binary data
into block 10

operation 25

operation 26

program third binary data
into block 11 and program

multi-state data into block
8 based on the binary data

in biocks 9, 10 and 11

operation 27

program first binary data
into block 12

operation 28

program first binary data
into block 13

operation 29

program first binary data
into block 14 and program

multi-state data into block

9 based on the binary data
in blocks 12, 13 and 14

operation 30

US RE46,995 E

U.S. Patent

operation #

Aug. 14, 2018

Sheet 14 of 14

US RE46,995 E

Fig 15

block #

o [t 12 13 {4 {5 {6 {7 18 {9 (10 |11 |12 {13 |14
1 T . i
2 bl _|bi
3 |bl |bl |bl
3 ms
4 b2 ms |
5 b2 | b2 ms
6 b2 b2 (b2 | ms
6 ms | ms
7 03 ms | ms
8 b3 | b3 ms | ms
9 |b3 |b3 |b3 |ms ms |
O ms | ms | ms
10 ms {ms | ms | bl
11 ms [ms {ms | bl {bl
12 ms ims {ms | bl | bl |bl
|2 | ms ms | ms | ms
13 | ms ms | ms | ms | b2 |
14 | ms ms | ms |ms | b2 | b2 |
15 1 ms ms Ims {ms | b2 1b2 b2
15 | ms ms ms | ms | ms
16 | ms | ms ms | ms { ms | b3
17 | ms | ms ms {ms |ms | b3 | b3
1§ | ms |ms ms |ms |ms | b3 | b3 b3
18 ims {ms | ms {ms | ms | ms
19 |ms {ms |ms | ms | ms |msS bl
20 |ms {ms | ms | ms ' ms | ms bl | bl
21 |ms |ms {ms | ms | mS | mS bl |bl |bl
21 {ms ims |ms {mS {msS | msS | ms .
22 |ms |ms |ms | ms | ms |ms | ms b2
23 ims |ms |ms | ms | mS |ms | ms | b2 | b2
24 lms ms | ms | ms I'ms | ms | ms b2 | b2 | b2
24 |ms |ms |ms |ms |ms |ms | ms | ms
25 Yms |ms {ms | ms | mS |mS | ms | ms b3
26 |ms |ms |ms {ms | ms {mS | ms | ms b3 | b3 | B
27 tms Ims {ms [ms |ms |ms | ms | ms b3 | b3 | b3
27 |ms |ms |ms | ms | ms ms | ms | ms | ms |
28 |ms |ms [ms |ms |ms |ms |ms |ms | ms B bl
29 Ims {ms |{ms |ms |ms |ms | ms | ms | ms bl | bl
30 |ms |ms {ms |ms |ms [mS |ms |ms | mS bl {bl | bl
30 |ms {ms |ms |ms |ms |ms | ms |ms |ms | ms

US RE46,995 E

1

PROGRAMMING NON-VOLATILE
STORAGE USING BINARY AND
MULTI-STATE PROGRAMMING

PROCESSES

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

This application claims priority to U.S. Provisional Appli-
cation 61/082,349, “Programming Non-Volatile Storage
Using Binary And Multi-State Programming Processes,”

filed on Jul. 21, 2008.

BACKGROUND

1. Field

The present ivention relates to technology for non-
volatile storage.

2. Description of the Related Art

Semiconductor memory has become more popular for use
in various electronic devices. For example, non-volatile
semiconductor memory 1s used in cellular telephones, digital
cameras, personal digital assistants, mobile computing
devices, non-mobile computing devices and other devices.
Electrical Erasable Programmable Read Only Memory (EE-
PROM) and flash memory are among the most popular
non-volatile semiconductor memories.

Some EEPROM and flash memory utilize a floating gate
that 1s positioned above and msulated from a channel region
in a semiconductor substrate. The floating gate 1s positioned
between the source and drain regions. A control gate 1s
provided over and insulated from the floating gate. The
threshold voltage of the transistor 1s controlled by the
amount of charge that is retained on the floating gate. That
1s, the minimum amount of voltage that must be applied to
the control gate before the transistor 1s turned on to permit
conduction between its source and drain 1s controlled by the
level of charge on the floating gate. Thus, a memory cell
(which can include one or more transistors) can be pro-
grammed and/or erased by changing the level of charge on
a floating gate in order to change the threshold voltage.

When programming an EEPROM or flash memory
device, such as a NAND flash memory device, typically a
program voltage 1s applied to the control gate and the bit line
1s grounded. Electrons from the channel are injected into the
floating gate. When electrons accumulate in the floating
gate, the tloating gate becomes negatively charged and the
threshold voltage of the memory cell 1s raised so that the
memory cell 1s 1n a programmed state. More information
about programming can be found 1n U.S. Pat. No. 6,859,397,
titled “Source Side Self Boosting Technique For Non-
Volatile Memory,” and m U.S. Patent Application Publica-
tion 2005/0024939, titled “Detecting Over Programmed
Memory,” both of which are incorporated herein by refer-
ence 1n their entirety. In many devices, the program voltage
applied to the control gate during a program operation 1s
applied as a series of pulses in which the magnitude of the
pulses 1s increased by a predetermined step size for each
successive pulse.

Each memory cell can store data (analog or digital). When

storing one bit of digital data (referred to as a binary data),

10

15

20

25

30

35

40

45

50

55

60

65

2

possible threshold voltages of the memory cell are divided
into two ranges which are assigned logical data *“1” and “0.”

In one example, the threshold voltage i1s negative aiter the
memory cell 1s erased, and defined as logic “1.” After
programming, the threshold voltage 1s positive and defined
as logic “0.” When the threshold voltage 1s negative and a
read 1s attempted by applying 0 volts to the control gate, the
memory cell will turn on to indicate logic one 1s being
stored. When the threshold voltage 1s positive and a read
operation 1s attempted by applying 0 volts to the control
gate, the memory cell will not turn on, which indicates that
logic zero 1s stored.

A memory cell can also store multiple levels of informa-
tion (referred to as a multi-state data). In the case of
multi-state data, the range of possible threshold voltages 1s
divided into the number of levels of data. For example, 1f
four levels of information 1s stored, there will be four
threshold voltage ranges assigned to the data values 117,
“107, 017, and “00.” In one example, the threshold voltage
alter an erase operation 1s negative and defined as “11.”
Positive threshold voltages are used for the states of “107,
“017, and “00.” If e1ght levels of information (or states) are
stored 1n each memory cell (e.g. for three bits of data per
memory cell), there will be eight threshold voltage ranges
assigned to the data values “000”, “001”, <0107, “011”
“1007, “110” and “111.” The specific relationship between
the data programmed 1nto the memory cell and the threshold
voltage levels of the memory cell depends upon the data
encoding scheme adopted for the memory cells. For
example, U.S. Pat. No. 6,222,762 and U.S. Patent Applica-
tion Publication No. 2004/0255090, both of which are
incorporated herein by reference in their entirety, describe
various data encoding schemes for multi-state memory cells.
In one embodiment, data values are assigned to the threshold
voltage ranges using a Gray code assignment so that 1f the
threshold voltage of a floating gate erroneously shifts to its
neighboring physical state, only one bit will be aflected. In
some embodiments, the data encoding scheme can be
changed for different word lines, the data encoding scheme
can be changed over time, or the data bits for random word
lines may be inverted to reduce data pattern sensitivity and
gven wearing.

Memory cells storing multi-state data can store more data
than memory cells storing binary data; therefore, the cost per
bit 1s smaller. However, memory cells storing multi-state
data program slower than memory cells storing binary data
because memory cells storing multi-state data program to
multiple target threshold voltage ranges and require a higher
level of precision during programming than memory cells
storing binary data because the extra threshold voltage
ranges need to be narrow enough to remain distinct.

SUMMARY

A non-volatile storage system 1s provided that {irst stores
data as binary data so that the user experiences a Iast
programming experience. Subsequently, the binary data 1s
reprogrammed as multi-state data.

In one embodiment, the memory 1s divided into blocks (or
other units). To allow for even wearing, blocks will gener-
ally be used X times to store binary data and then they will
be used to store multi-state data.

One embodiment includes receiving requests to program
and recerving the data to be programmed for the requests,
programming the data as binary data into blocks that have
not yet been programmed with multi-state data and have not
yet been programmed with binary data X times, updating

US RE46,995 E

3

programming cycle counters for the blocks, transferring data
from multiple blocks (source blocks) of binary data to one
block (target block) of multi-state data using a multi-state
programming process (where the target block has been
previously programmed with binary data X times), and
marking source blocks as available for programming.

Subsequent to programming the data as multi-state data,
the data can be read many times (including hundreds or
thousands of times). In one embodiment, the memory sys-
tem can serve as a write once (or few times) and read many
times storage system that 1s used for long term storage (e.g.,
archive).

One embodiment includes programming data as binary
data 1into units of non-volatile storage elements that have not
yet been programmed with multi-state data and have not yet
been programmed with binary data X times. The process
turther includes transferring data from multiple units of
non-volatile storage elements storing binary data to one
target unit of non-volatile storage elements storing multi-
state data using a multi-state programming process after the
target unit has been previously programmed with binary data
X times.

One embodiment 1includes receiving one or more requests
to program, receiving data to be programmed for the one or
more requests, programming (1n response to the one or more
requests to program) the data as binary data into units of
non-volatile storage elements that have not yet been pro-
grammed with multi-state data and have not yet been
programmed with binary data X times, updating program-
ming cycle counters for the units of non-volatile storage
clements, 1dentifying a target umt of non-volatile storage
clements that has been previously programmed with binary
data X times, combining data from multiple units of non-
volatile storage elements storing binary data, storing the
combined data in the target unit of non-volatile storage
clements as multi-state data using a multi-state program-
ming process, and marking the multiple units as available for
additional binary programming 1f the multiple units have not
yet been programmed with binary data X times.

One embodiment includes a plurality of non-volatile
storage elements and one or more control circuits 1n com-
munication with the non-volatile storage elements. The one
or more control circuits 1dentily a first set of units of the
non-volatile storage elements that have not yet been pro-
grammed with multi-state data and have not yet been
programmed with binary data X times. The one or more
control circuits program first data as binary data into the first
set of units of the non-volatile storage elements. The one or
more control circuits 1dentity a target unit of non-volatile
storage elements that has been previously programmed with
binary data X times. The one or more control circuits
combine the first data from the first set of units of non-
volatile storage elements and store the combined data 1n the
target unit of non-volatile storage elements as multi-state

data. The one or more control circuits can read the data many
times from the target unit of non-volatile storage elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a top view of a NAND string.

FIG. 2 1s an equivalent circuit diagram of the NAND
string.

FIG. 3 1s a block diagram of a non-volatile memory
system.

FI1G. 4 1s a block diagram depicting one embodiment of a
memory array.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 1s a block diagram depicting one embodiment of a
sense block.

FIG. [6] 64 depicts an example set of threshold voltage
distributions and describes a process for programming non-
volatile memory.

FIG. [6A] 6B depicts an example set of threshold voltage
distributions and describes a process for programming non-
volatile memory.

FIGS. 7A-I show various threshold voltage distributions
and describe a process for programming non-volatile
memory.

FIG. 8 1s a table depicting one example of an order of
programming non-volatile memory.

FIGS. 9A-E show various threshold voltage distributions
and describe a process lfor programming non-volatile
memory.

FIG. 10 depicts a tflow chart describing one embodiment
ol a process for programming non-volatile memory.

FIG. 11 depicts a flow chart describing one embodiment
of a process for programming non-volatile memory ele-
ments.

FIG. 12 1s a flow chart describing one embodiment of a
process of for programming non-volatile memory elements
using a binary programming process and a multi-state pro-
gramming process.

FIG. 13 15 a flow chart describing one embodiment of a
process of for programming non-volatile memory elements
using a binary programming process and a multi-state pro-
gramming process.

FIGS. 14A and 14B depict a tlow chart describing one
embodiment of a process of for programming non-volatile
memory elements using a binary programming process and
a multi-state programming process.

FIG. 15 1s a table depicting the order of programming
block of memory.

DETAILED DESCRIPTION

One example of a flash memory system uses the NAND
structure, which includes arranging multiple transistors 1n
series, sandwiched between two select gates. The transistors
in series and the select gates are referred to as a NAND
string. FIG. 1 1s a top view showing one NAND string. FI1G.
2 1s an equivalent circuit thereof. The NAND string depicted
in FIGS. 1 and 2 includes four transistors 100, 102, 104 and
106 1n series and sandwiched between a first (or drain side)
select gate 120 and a second (or source side) select gate 122.
Select gate 120 connects the NAND string to a bit line via
bit line contact 126. Seclect gate 122 connects the NAND
string to source line 128. Select gate 120 1s controlled by
applying the appropriate voltages to select line SGD. Select
gate 122 1s controlled by applying the appropriate voltages
to select line SGS. Each of the transistors 100, 102, 104 and
106 has a control gate and a floating gate. For example,
transistor 100 has control gate 100CG and tloating gate
100FG. Transistor 102 includes control gate 102CG and a
floating gate 102FG. Transistor 104 includes control gate
104CG and floating gate 104FG. Transistor 106 includes a
control gate 106CG and a floating gate 106FG. Control gate
100CG 1s connected to word line WL3, control gate 102CG
1s connected to word line WL2, control gate 104CG 1s

connected to word line WL1, and control gate 106CG 1s
connected to word line WLO.

Note that although FIGS. 1 and 2 show four memory cells
in the NAND string, the use of four memory cells 1s only
provided as an example. A NAND string can have less than
four memory cells or more than four memory cells. For

US RE46,995 E

S

example, some NAND strings will include eight memory
cells, 16 memory cells, 32 memory cells, 64 memory cells,
128 memory cells, etc. The discussion herein 1s not limited
to any particular number of memory cells in a NAND string

A typical architecture for a flash memory system using a
NAND structure will include several NAND strings. Each
NAND string 1s connected to the source line by its source
select gate controlled by select line SGS and connected to 1ts
associated bit line by its drain select gate controlled by select
line SGD. Each bit line and the respective NAND string(s)
that are connected to that bit line via a bit line contact
comprise the columns of the array of memory cells. Bit lines
are shared with multiple NAND strings. Typically, the bit
line runs on top of the NAND strings 1n a direction perpen-
dicular to the word lines and 1s connected to one or more
sense amplifiers.

Relevant examples of NAND type flash memories and
their operation are provided in the following U.S. Patents/
Patent Applications, all of which are incorporated herein by
reference: U.S. Pat. No. 5,570,315; U.S. Pat. No. 5,774,397;
U.S. Pat. No. 6,046,935; U.S. Pat. No. 6,456,528; and U.S.
Pat. Publication No. US2003/0002348.

Other types of non-volatile storage devices can also be
used, including memory cells that do not use tloating gates.
For example, nonvolatile memory devices are also manu-
factured from memory cells that use a dielectric layer for
storing charge. Instead of the conductive floating gate ele-
ments described earlier, a dielectric layer 1s used. Such
memory devices utilizing dielectric storage element have
been described by Fitan et al., “NROM: A Novel Localized
Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Electron
Device Letters, vol. 21, no. 11, November 2000, pp. 543-
345. An ONO dlelectnc layer extends across the channel
between source and drain diffusions. The charge for one data
bit 1s localized 1n the dielectric layer adjacent to the drain,
and the charge for the other data bit 1s localized 1n the
dielectric layer adjacent to the source. For example, U.S.
Pat. Nos. 5,768,192 and 6,011,725 disclose a nonvolatile
memory cell having a trapping dielectric sandwiched
between two silicon dioxide layers. Multi-state data storage
1s implemented by separately reading the binary states of the
spatially separated charge storage regions within the dielec-
tric. Other types of non-volatile storage can also be used.

FIG. 3 illustrates a memory device 210 having read/write
circuits for reading and programming memory cells (e.g.,
NAND multi-state flash memory or other type of non-
volatile memory) in parallel. Memory device 210 may
include one or more memory die or chips 212. Memory die
212 includes an array (two-dimensional or three dimen-
sional) of non-volatile memory cells 200, control circuitry
220, and read/write circuits 230A and 230B. In one embodi-
ment, access to the memory array 200 by the various
peripheral circuits 1s implemented 1 a symmetric fashion,
on opposite sides of the array, so that the densities of access
lines and circuitry on each side are reduced by half The
read/write circuits 230A and 230B include multiple sense
blocks 300 which allow a page (or other unit) of memory
cells to be read or programmed 1n parallel. The memory
array 200 1s addressable by word lines via row decoders
240A and 240B and by bit lines via column decoders 242A
and 242B. Word lines and bit lines are examples of control
lines. In a typical embodiment, a controller 244 1s included
in the same memory device 210 (e.g., a removable storage
card or package) as the one or more memory die 212.
Commands and data are transierred between the host and
controller 244 via lines 232 and between the controller and
the one or more memory die 212 via lines 234.

.L

10

15

20

25

30

35

40

45

50

55

60

65

6

Control circuitry 220 cooperates with the read/write cir-
cuits 230A and 230B to perform memory operations on the
memory array 200. The control circuitry 220 includes a state
machine 222, an on-chip address decoder 224 and a power
control module 226. The state machine 222 provides chip-
level control of memory operations. The on-chip address
decoder 224 provides an address interface between that used
by the host or a memory controller to the hardware address
used by the decoders 240A, 2408, 242A, and 242B. The
power control module 226 controls the power and voltages
supplied to the word lines and bit lines during memory
operations. In one embodiment, power control module 226
includes one or more charge pumps that can create voltages
larger than the supply voltage.

In one embodiment, one or any combination of control
circuitry 220, power control circuit 226, decoder circuit 224,
state machine circuit 222, decoder circuit 242A, decoder
circuit 2428, decoder circuit 240A, decoder circuit 2408,
read/write circuits 230A, read/write circuits 2308, and/or
controller 244 can be referred to as one or more managing
or control circuits. The one or more managing or control
circuits perform the processes described herein.

FIG. 4 depicts an exemplary structure of memory cell
array 200. In one embodiment, the array of memory cells 1s
divided into a large number of blocks (e.g., blocks 0-1023,
or another amount) of memory cells. As 1s common for flash
EEPROM systems, the block 1s the umit of erase. That 1s,
cach block contains the minimum number of memory cells
that are erased together. Other units of erase can also be
used.

A block contains a set of NAND stings which are accessed
via bit lines (e.g., bit lines BL0-BL69,623) and word lines
(WLO0, WL1, WL2, WL3). FIG. 4 shows four memory cells
connected 1n series to form a NAND string. Although four
cells are depicted to be included in each NAND string, more
or less than four can be used (e.g., 16, 32, 64, 128 or another
number or memory cells can be on a NAND string). One
terminal of the NAND string 1s connected to a correspond-
ing bit line via a drain select gate (connected to select gate
drain line SGD), and another terminal 1s connected to the
source line via a source select gate (connected to select gate
source line SGS). Although FIG. 4 shoes 69624 bit lines, a
different number of bit lines can also be used.

Each block 1s typically divided into a number of pages. In
one embodiment, a page 1s a unit of programming. Other
units of programming can also be used. One or more pages
of data are typically stored in one row of memory cells. For
example, one or more pages ol data may be stored in
memory cells connected to a common word line. A page can
store one or more sectors. A sector includes user data and
overhead data (also called system data). Overhead data
typically includes header information and Error Correction
Codes (ECC) that have been calculated from the user data of
the sector. The controller (or other component) calculates the
ECC when data 1s being programmed into the array, and also
checks 1t when data 1s being read from the array. Alterna-
tively, the ECCs and/or other overhead data are stored in
different pages, or even different blocks, than the user data
to which they pertain. A sector of user data 1s typically 512
bytes, corresponding to the size of a sector in magnetic disk
drives. A large number of pages form a block, anywhere
from 8 pages, for example, up to 32, 64, 128 or more pages.
Diflerent sized blocks, pages and sectors can also be used.

FIG. 5 1s a block diagram of an individual sense block 300
partitioned 1nto a core portion, referred to as a sense module
480, and a common portion 490. In one embodiment, there
will be a separate sense module 480 for each bit line and one

US RE46,995 E

7

common portion 490 for a set of multiple sense modules
480. In one example, a sense block will include one common
portion 490 and eight sense modules 480. Each of the sense
modules 1n a group will communicate with the associated
common portion via a data bus 472. One example can be
found 1 U.S. Patent Application Publication 2006/0140007,
which 1s incorporated herein by reference in its entirety.

Sense module 480 comprises sense circuitry 470 that
determines whether a conduction current 1n a connected bit
line 1s above or below a predetermined level. In some
embodiments, sense module 480 includes a circuit com-
monly referred to as a sense amplifier. Sense module 480
also 1includes a bit line latch 482 that 1s used to set a voltage
condition on the connected bit line. For example, a prede-
termined state latched 1n bit line latch 482 will result 1n the
connected bit line being pulled to a state designating pro-
gram 1nhibit (e.g., Vdd).

Common portion 490 comprises a processor 492, a set of
data latches 494 and an 1I/O Interface 496 coupled between
the set of data latches 494 and data bus 420. Processor 492
performs computations. For example, one of 1ts functions 1s
to determine the data stored in the sensed memory cell and
store the determined data 1n the set of data latches. The set
of data latches 494 1s used to store data bits determined by
processor 492 during a read operation. It 1s also used to store
data bits imported from the data bus 420 during a program
operation. The imported data bits represent write data meant
to be programmed into the memory. I/O terface 496
provides an interface between data latches 494 and the data
bus 420.

During read or sensing, the operation of the system 1s
under the control of state machine 222 that controls (using
power control 226) the supply of different control gate
voltages to the addressed memory cell(s). As 1t steps through
the various predefined control gate voltages corresponding,
to the various memory states supported by the memory, the
sense module 480 may trip at one of these voltages and an
output will be provided from sense module 480 to processor
492 via bus 472. Processor 492 determines the resultant
memory state by consideration of the tripping event(s) of the
sense module and the mmformation about the applied control
gate voltage from the state machine via input lines 493. It
then computes a binary encoding for the memory state and
stores the resultant data bits into data latches 494. In another
embodiment of the core portion, bit line latch 482 serves
double duty, both as a latch for latching the output of the
sense module 480 and also as a bit line latch as described
above.

It 1s anticipated that some implementations will include
multiple processors 492. In one embodiment, each processor
492 will include an output line (not depicted in FIG. 5) such
that each of the output lines 1s wired-OR’d together. In some
embodiments, the output lines are mverted prior to being
connected to the wired-OR line. This configuration enables
a quick determination during the program verification pro-
cess of when the programming process has completed
because the state machine receiving the wired-OR line can
determine when all bits being programmed have reached the
desired level. For example, when each bit has reached 1ts
desired level, a logic zero for that bit will be sent to the
wired-OR line (or a data one 1s mverted). When all bits
output a data 0 (or a data one inverted), then the state
machine knows to terminate the programming process. In
embodiments where each processor communicates with
cight sense modules, the state machine may (in some
embodiments) need to read the wired-OR line eight times, or
logic 1s added to processor 492 to accumulate the results of

10

15

20

25

30

35

40

45

50

55

60

65

8

the associated bit lines such that the state machine need only
read the wired-OR line one time.

Data latch stack 494 contains a stack of data latches
corresponding to the sense module. In one embodiment,
there are three (or four or another number) data latches per
sense module 480. In one embodiment, the latches are each
one bit.

During program or verity, the data to be programmed 1s
stored 1n the set of data latches 494 from the data bus 420.
During the verily process, Processor 492 monitors the
verified memory state relative to the desired memory state.
When the two are 1n agreement, processor 492 sets the bit
line latch 482 so as to cause the bit line to be pulled to a state
designating program inhibit. This 1nhibits the memory cell
coupled to the bit line from further programming even 1if 1t

1s subjected to programming pulses on 1ts control gate. In
other embodiments the processor 1nitially loads the bit line
latch 482 and the sense circuitry sets 1t to an 1nhibit value
during the verity process.

In some i1mplementations (but not required), the data
latches are implemented as a shiit register so that the parallel
data stored therein 1s converted to serial data for data bus
420, and vice versa. In one preferred embodiment, all the
data latches corresponding to the read/write block of m
memory cells can be linked together to form a block shiit
register so that a block of data can be input or output by
serial transier. In particular, the bank of read/write modules
1s adapted so that each of i1ts set of data latches will shiit data
in to or out of the data bus in sequence as if they are part of
a shift register for the entire read/write block.

Additional information about the sensing operations and
sense amplifiers can be found 1 (1) United States Patent
Application Pub. No. 2004/0057287, “Non-Volatile
Memory And Method With Reduced Source Line Bias
Errors,” published on Mar. 25, 2004; (2) United States
Patent Application Pub No. 2004/0109357, “Non-Volatile
Memory And Method with Improved Sensing,” published
on Jun. 10, 2004; (3) United States Patent Application Pub.
No. 20050169082; (4) United States Patent Application
Publication 2006/0221692, titled “Compensating for Cou-
pling During Read Operations of Non-Volatile Memory,”
Inventor Jian Chen, filed on Apr. 5, 2005; and (5) United
States Patent Application Publication 2006/0158947 titled
“Reference Sense Amplifier For Non-Volatile Memory, filed
on Dec. 28, 2005. All five of the immediately above-listed
patent documents are incorporated herein by reference in
their entirety.

At the end of a successiul programming process (with
verification), the threshold voltages of the memory cells
should be within one or more distributions of threshold
voltages for programmed memory cells or within a distri-
bution of threshold voltages for erased memory cells, as
appropriate.

FIG. [6] 64 illustrates example threshold voltage distri-
butions (also called data states) for the memory cell array
when each memory cell stores binary data. Two data states
are depicted: state E and state P. State E corresponds to
memory cells that are erased. State P corresponds to memory
cells that are programmed. In one embodiment, state E
corresponds to distribution of threshold voltages below 0
volts and state P corresponds to distribution of threshold
voltages above O volts. In other embodiments, both states
can be above zero volts or both can be below zero volts. In
one example, memory cells of a block are erased. Those
memory cells that are to store data “1” will remain erased in
state E. Those memory cells that are to store data “0” will be

US RE46,995 E

9

programmed to state P. In other embodiments, state E can
store data “0” and state P can store data “1.”

FIG. [6A] 6B illustrates example threshold voltage dis-
tributions (also called data states) for the memory cell array
when each memory cell stores three bits of multi-state data.
Other embodiment, however, may use more or less than
three bits of data per memory cell (e.g., such as four or more
bits of data per memory cell).

In the example of FIG. [6A] 6B, each memory cell stores
three bits of data; therefore, there are eight valid data states
S0-S7. In one embodiment, data state S0 1s below O volts and
data states S1-S7 are above 0 volts. In other embodiments,
all eight data states are above 0 volts, or other arrangements
can be implemented. In one embodiment, the threshold
voltage distribution S0 1s wider than distributions S1-5S7.

Each data state corresponds to a unique value for the three
bits stored in the memory cell. In one embodiment, S0=111,
S1=110, S2=101, S3=100, S4=011, S5=010, and S7=000.
Other mapping of data to states S0-S7 can also be used. In
one embodiment, all of the bits of data stored in a memory
cell are stored 1n the same logical page. In other embodi-
ments, each bit of data stored 1n a memory cell corresponds
to different logical pages. Thus, a memory cell storing three
bits of data would include data 1n a first page, data 1n a
second page and data 1n a third page. In some embodiments,
all of the memory cells connected to the same word line
would store data in the same three pages of data. In some
embodiments, the memory cells connected to a word line
can be grouped into different sets of pages (e.g., by odd and
even bit lines, or by other arrangements).

In some prior art devices, the memory cells will be erased
to state S0. From state S0, the memory cells can be pro-
grammed to any of states S1-57. In one embodiment, known
as full sequence programming, memory cells can be pro-
grammed from the erased state S0 directly to any of the
programmed states S1-S7. For example, a population of
memory cells to be programmed may first be erased so that
all memory cells 1n the population are 1n erased state S0.
While some memory cells are being programmed from state
S0 to state S1, other memory cells are being programmed
from state SO to state S2, state S0 to state S3, state S0 to state
S4, state S0 to state S5, state S0 to state S6, and state S0 to
state S7. Full sequence programming 1s graphically depicted

by the seven curved arrows of FIG. 6 A
FIG. [6A] 6B shows a set of target verify levels Vvl, Vv2,

Vv3,Vvd4, Vv5, Vve, and VVT. These target verily levels are
used as comparison levels during the programming process.
For example, when programming memory cells to state 1,
the system will check to see 1t the threshold voltages of the
memory cells have reached Vv1. If the threshold voltage of
a memory cell has not reached Vvl1, then programming will
continue for that memory cell until 1ts threshold voltage 1s
greater than or equal to Vvl. If the threshold voltage of a
memory cell has reached Vvl, then programming will stop
for that memory cell. Target verity level Vv2 i1s used for
memory cells being programmed to state 2. Target verily
level Vv3 1s used for memory cells being programmed to
state 3. Target verily level Vvd4 1s used for memory cells
being programmed to state 4. Target verily level Vv 1s used
for memory cells being programmed to state 5. Target verily
level Vvé6 1s used for memory cells being programmed to
state 6. Target verily level Vv7 1s used for memory cells
being programmed to state 7.

FIG. [6A] 6B also shows a set of read compare levels Vrl,
Vr2, Vr3, Vrd, Vr5, Vr6, and Vr7. These read compare levels
are used as comparison levels during the read process. By
testing whether the memory cells turn on or remain off in

10

15

20

25

30

35

40

45

50

55

60

65

10

response to the read compare levels Vrl, Vr2, Vr3, Vrd, Vr5,
Vr6, and Vr7 being separately applied to the control gates of
the memory cells, the system can determine which states the
memory cells are 1n.

FIGS. 7A-7I disclose another process for programming,
multi-state data. Prior to the first step, the memory cells will

be erased so that they are 1n the erase threshold distribution
of state S0. The process of FIGS. 7A-7I assumes that each

memory cell stores three bits of data, with each bit being in
a diflerent page. The first bit of data (the leftmost bit) 1s
associated with the first page. The middle bit 1s associated
with the second page. The rightmost bit 1s associated with

the third page. In one embodiment, the correlation of data
states to data 1s as follows: S0=111, S1=110, S2=101,

S53=100, S4=011, S5=010, S6=001 and S7=000. However,

other embodiments can use other data encoding schemes.
When programming the first page (as described 1n FIG.
7A), 11 the bit 1s to be data “1”” then the memory cell will stay
in state SO (threshold voltage distribution 502). If the first bat
1s to be data “0”” then the memory cell 1s programmed to state

S4 (threshold voltage distribution 504). After adjacent
memory cells are programmed, capacitive coupling between
adjacent floating gates may cause the state S4 to widen as
deplcted in FIG. 7B. State S0 may also widen, but there 1s
suilicient margin between S0 and S1 to i1gnore the eflect.

More information about capacitive coupling between adja-
cent floating gates can be found 1n U.S. Pat. No. 5,867,429
and U.S. Pat. No. 6,657,891, both of which are incorporated
herein by reference 1n their entirety.

When programming the second page (see FIG. 7C), if the
memory cell 1s 1 state S0 and the second page bit 1s data “1”
then the memory cell stays in state S0. In some embodi-
ments, the programming process for the second page will
tighten threshold voltage distribution 502 to a new S0. If the
memory cell was 1n state S0 and the data to be written to the
second page 1s “0,” then the memory cell 1s moved to state
S2 (threshold voltage distribution 506). At this point, state
S2 has a verily point (lowest voltage) of C*. If the memory
cell was 1n state S4 and the second page data to be written
to the memory cell 1s “1” then the memory cell remains 1n
S4. However, state S4 1s tightened by moving the memory
cells from threshold voltage distribution 504 to threshold
voltage distribution 508 for state S4, as depicted in FIG. 7C.
Threshold voltage distribution 508 has a verily point of E*
(as compared to E** of threshold voltage distribution 504).
If the memory cell 1s 1n state S4 and the data to be written
to the second page 1s a “0” then the memory cell has its
threshold voltage moved to state S6 (threshold voltage
distribution 510), with a venily point of G*.

After the adjacent memory cells are programmed, the
states S2, S4 and S6 are widened due to the floating gate to
floating gate coupling, as depicted by threshold voltages
distributions 506, 508 and 510 of FIG. 7D. In some cases,
state SO0 may also widen.

FIGS. 7E, 7F, 7G and 7H depict the programming of the
third page of data. While one graph can be used to show the
programming, the process 1s depicted 1n four graphs for
visibility reasons. After the second page has been pro-
grammed, the memory cells are either in states S0, S2, S4 or
S6. FIG. 7E shows the memory cells that are 1n state S0
being programmed for the third page. FIG. 7F shows the
memory cells that are 1n state S2 being programmed for the
third page. F1G. 7G shows the memory cells that are in state
S4 being programmed for the third page. FIG. 7TH shows the
memory cells that are 1n state S6 being programmed for the
third page. FI1G. 71 shows the threshold voltage distributions

US RE46,995 E

11

after the processes of FIGS. 7E, 7F, 7G and 7H have been
performed on the population of memory cells (concurrently

or serially).

If a memory cell 1s 1n state S0 and the third page data 1s
“1” then the memory cell remains in state SO. If the data for >
the third page 1s “0” then the threshold voltage for the

memory cell 1s raised to be 1n state S1, with a verily point
of B (see FIG. 7E).

If a memory cell 1s 1n state S2 and the data to be written
in the third page 1s “1,” then the memory cell will remain 1n
state S2 (see FI1G. 7F). However, some programming will be
performed to tighten the threshold distribution 506 to a new
state S2 with a verily point of C volts. If the data to be
written to the third page 1s “0,” then the memory cell will be
programmed to state S3, with a verify point of D volts.

If a memory cell 1s 1n state S4 and the data to be written
to the third page 1s “1” then the memory cell will remain in
state S4 (see FI1G. 7G). However, some programming will be
performed so that threshold voltage distribution 508 will be 20
tightened to new state S4 with a verily point of E. If a
memory cell 1s 1n state S4 and the data to be written to the
third page 1s “0” then the memory cell will have its threshold
voltage raised to be 1n state S35, with a verity point of F (see
FIG. 7G). 25

If the memory cell 1s 1n state S6 and the data to be written
to the third page 1s “1” then the memory cell will remain in
state S6 (see FIG. 7H). However, there will be some
programming so that the threshold voltage distribution 510
1s tightened to be 1n new state S6, with a verity point at G. 30
I1 the third page data 1s “0” then the memory cell will have
its threshold voltage programmed to state S7, with a verily
point at H (see FIG. 7H). At the conclusion of the program-
ming of the third page, the memory cell will be 1n one of the
eight states depicted 1n FIG. 71. 35

FIG. 8 depicts one example of an order for programming,
the pages ol a set of memory cells 1n a block. The table
provides the order for programming with respect to four
word lines (WL0, WL1, WL2 and WL3) 1n the same block;
however, the table can be adapted to accommodate more or 40
less than four word lines. The first page of the memory cells
connected to WLO are programmed, followed by the pro-
gramming of the first page of the memory cells connected to
WL1, followed by the programming of the second page of
the memory cells connected to WLO, followed by the 45
programming of the first page of the memory cells con-
nected to WL2, followed by the programming of the second
page of the memory cells connected to WL1, followed by the
programming of the third page of the memory cells con-
nected to WLO, followed by the programming of the first 50
page of the memory cells connected to WL 3, followed by the
programming ol the second page of the memory cells
connected to WL2, followed by the programming of the
third page of the memory cells connected to WL1, etc.

FIGS. 9A-E disclose another process for programming 55
non-volatile memory for non-volatile memory cells that
store three bits of data per memory cell and uses four steps.
Before programming, all of the memory cells are 1n state S0,
the erased state (FIG. 9A). The first step includes program-
ming the memory cells for the higher states S4-S7. FIG. 9B 60
shows programming to state S4 for those memory cells that
are to be finally programmed to S4-S7. FIG. 9C shows the
second step, which includes programming from state S4 to
states S5-S7. FIG. 9D shows the third step, which includes
programming {from state S0 to state S1. FIG. 9E shows the 65

fourth step, which includes programming from state S1 to
states S2 and S3.

10

15

12

FIG. 10 1s a flow chart describing a programming process
for programming memory cells connected to a selected word
line. In one embodiment, the process of FIG. 10 1s used to
program a block of memory cells. In one implementation of
the process of FIG. 10, memory cells are pre-programmed in
order to maintain even wear on the memory cells (step 550).
In one embodiment, the memory cells are preprogrammed to
state S7, a random pattern, or any other pattern. In some
implementations, pre-programming need not be performed.

In step 552, memory cells are erased (1n blocks or other
units) prior to programming. Memory cells are erased 1n one
embodiment by raising the p-well to an erase voltage (e.g.,
20 volts) for a suflicient period of time and grounding the
word lines of a selected block while the source and bit lines
are floating. A strong electric field 1s thus applied to the
tunnel oxide layers of selected memory cells and the
selected memory cells are erased as electrons of the floating
gates are emitted to the substrate side, typically by Fowler-
Nordheim tunneling mechanism. As electrons are trans-
ferred from the floating gate to the p-well region, the
threshold voltage of the selected memory cells are lowered.
Erasing can be performed on the entire memory array, on
individual blocks, or another unit of cells. In one embodi-
ment, aiter erasing the memory cells, all of the erased
memory cells will be i state S0. Other techniques for
erasing can also be used.

At step 554, soit programming 1s performed to narrow the
distribution of erased threshold voltages for the erased
memory cells. Some memory cells may be 1n a deeper erased
state than necessary as a result of the erase process. Soft
programming can apply programming pulses to move the
threshold voltage of the deeper erased memory cells to state
S0 (or state E). In step 556, the memory cells of the block
are programmed as described herein. The process of FIG. 10
can be performed at the direction of the state machine,
controller or combination of state machine and controller,
using the various circuits described above. For example, the
controller may i1ssue commands and data to the state
machine to program the data. In response, the state machine
may operate the circuits described above to carry out the
programming operations. After performing the process of
FIG. 10, the memory cells of the block can be read.

FIG. 11 1s a flow chart describing one embodiment of a
process for performing programming on memory cells con-
nected to a common word line. The process of FIG. 11 can
be performed one or multiple times during step 556 of FIG.
10. For example, when programming binary data (see e.g.,
FIG. [6] 64), the process of FIG. 11 is performed once for
cach word line of a block during step 556. When program-
ming multi-state data, the process of FIG. 11 can be used to
perform the full sequence programming of FIG. [6] 64, in
which case the process of FIG. 11 would be performed once
for each word line. In one embodiment, the programming
process 1s performed 1n an order that starts from the word
line closest to the source line, working toward the bit line.
The process of FIG. 11 can also be used to perform the
programming of a page of data for a word line, with respect
to the programming process of FIGS. 7A-I, in which case the
process of FIG. 11 would be performed three times for each
word line. The process of FIG. 11 can also be used to
separately perform each step of the four steps of FIGS.
9A-9E. The process of FIG. 11 1s performed at the direction
of the state machine 222.

Typically, the program voltage applied to the control gate
during a program operation 1s applied as a series of program
pulses. In between programming pulses are a set of verily
pulses to enable verification. In many implementations, the

US RE46,995 E

13

magnitude of the program pulses 1s increased with each
successive pulse by a predetermined step size. In step 608 of
FIG. 11, the programming voltage (Vpgm) 1s mitialized to
the starting magnitude (e.g., ~12-16V or another suitable
level) and a program counter PC maintained by state
machine 222 1s mitialized at 1. In step 610, a program pulse
of the program signal Vpgm 1s applied to the selected word
line (the word line selected for programming). The unse-
lected word lines receive one or more boosting voltages
(e.g., ~9 volts) to perform boosting schemes known in the
art. If a memory cell should be programmed, then the
corresponding bit line 1s grounded. On the other hand, 11 the
memory cell should remain at 1ts current threshold voltage,
then the corresponding bit line 1s connected to V ,,,, to inhibit
programming. More information about boosting schemes
can be found i U.S. Pat. No. 6,859,397 and U.S. patent
application Ser. No. 11/553,850, both of which are incor-
porated herein by reference.

In step 610, the program pulse 1s concurrently applied to
all memory cells connected to the selected word line so that
all (or a subset) of the memory cells connected to the
selected word line are programmed together. That 1s, they
are programmed at the same time (or during overlapping
times). In this manner all of the memory cells connected to
the selected word line will concurrently have their threshold
voltage change, unless they have been locked out from
programming.

In step 612, the states of the selected memory cells are
verified using the appropriate set of target levels. Step 612
of FIG. 10 includes performing one or more verily opera-
tions. In general, during verity operations and read opera-
tions, the selected word line 1s connected to a voltage, a level
of which 1s specified for each read (e.g., see read compare
levels Vrl, Vr2, Vr3, Vrd, Vr5, Vr6, and Vr7 of FIG. [6A]
68) or vernily operation (e.g. see verily levels Vvl, Vv2,
Vv3, Vvd, Vv5, Vv6 and vv7 of FIG. [6A] 6B) in order to
determine whether a threshold voltage of the concerned
memory cell has reached such level. After applying the word
line voltage, the conduction current of the memory cell 1s
measured to determine whether the memory cell turned on
in response to the voltage applied to the word line. I the
conduction current 1s measured to be greater than a certain
value, then 1t 1s assumed that the memory cell turned on and
the voltage applied to the word line i1s greater than the
threshold voltage of the memory cell. IT the conduction
current 1s not measured to be greater than the certain value,
then 1t 1s assumed that the memory cell did not turn on and
the voltage applied to the word line 1s not greater than the
threshold voltage of the memory cell.

There are many ways to measure the conduction current
of a memory cell during a read or verily operation. In one
example, the conduction current of a memory cell 1s mea-
sured by the rate i1t discharges or charges a dedicated
capacitor 1 the sense amplifier. In another example, the
conduction current of the selected memory cell allows (or
fails to allow) the NAND string that includes the memory
cell to discharge the corresponding bit line. The voltage on
the bit line 1s measured after a period of time to see whether
it has been discharged or not. Note that the technology
described herein can be used with different methods known
in the art for veniying/reading. More information about
verilying/reading can be found in the following patent
documents that are incorporated herein by reference 1n their
entirety: (1) Umted States Patent Application Pub. No.
2004/0057287, “Non-Volatile Memory And Method With
Reduced Source Line Bias Errors,” published on Mar. 25,
2004; (2) United States Patent Application Pub No. 2004/

10

15

20

25

30

35

40

45

50

55

60

65

14

0109357, “Non-Volatile Memory And Method with
Improved Sensing,” published on Jun. 10, 2004; (3) U.S.
Patent Application Pub. No. 20050169082; and (4) U.S.
Patent Publication 2006/0221692, titled “Compensating for
Coupling During Read Operations of Non-Volatile
Memory,” Inventor Jian Chen, filed on Apr. 5, 2003.

If 1t 1s detected that the threshold voltage of a selected
memory cell has reached the appropnate target level, then
the memory cell 1s locked out of further programming by, for
example, raising its bit line voltage to Vdd during subse-
quent programming pulses.

Looking back at FIG. 11, 1n step 614 1t 1s checked whether
all of memory cells have reached their target threshold
voltages. If so, the programming process 1s complete and
successiul because all selected memory cells were pro-
grammed and verified to their target states. A status of
“PASS” 15 reported 1n step 616. Note that 1n some 1mple-
mentations, in step 614 1t 1s checked whether at least a
predetermined number of memory cells have been properly
programmed. This predetermined number can be less than
the number of all memory cells, thereby allowing the
programming process to stop before all memory cells have
reached their appropriate verily levels. The memory cells
that are not successiully programmed can be corrected using
error correction during the read process.

If, 1n step 614, 1t 1s determined that not all of the memory
cells have reached their target threshold voltages, then the
programming process continues. In step 618, the program
counter PC 1s checked against a program limit value (PL).
One example of a program limit value 1s 20; however, other
values can be used. If the program counter PC 1s not less
than the program limit value, then it 1s determined 1n step
630 whether the number of memory cells that have not been
successiully programmed 1s equal to or less than a prede-
termined number. If the number of unsuccessiully pro-
grammed memory cells 1s equal to or less than the prede-
termined number, then the programming process 1s
considered successtul and a status of PASS 1s reported 1n
step 632. In many cases, the memory cells that are not
successiully programmed can be corrected using error cor-
rection during the read process. If however, the number of
unsuccessiully programmed memory cells 1s greater than the
predetermined number, the program process 1s considered as
falled and a status of FAIL 1s reported 1n step 634.

If, 1n step 618, 1t 1s determined that the Program Counter
PC 1s less than the Program Limit value PL, then the process
continues at step 620 during which time the Program Coun-
ter PC 1s incremented by 1 and the program voltage Vpgm
1s stepped up to the next magnitude. For example, the next
pulse will have a magnmitude greater than the previous pulse
by a step size (e.g., a step size of 0.1-0.4 volts). After step
620, the process loops back to step 610 and another program
pulse 1s applied to the selected word line.

To provide the user of the memory system with faster
programming performance, the memory system first stores
data as binary data. For example, the process of FIGS. 10
and 11 are used to store data as depicted in FIG. [6] 64 (or
as 1n another scheme). Subsequently, the binary data 1is
re-programmed as multi-state data. When re-programming
the binary data as multi-state data the processes of FIGS. 10
and 11 can be used to implement the programming schemes
of FIGS. [6A] 6B, 7A-1, 9A-E, or another scheme. For
example, 1f a file to be stored contains three blocks of data,
those blocks of data will first be stored as binary data 1n three
separate blocks. Subsequently, three blocks 1f binary data
will be re-programmed into a single block as multi-state data
with three bits per memory cell. With such an embodiment,

US RE46,995 E

15

the user of the device will experience fast programming
without giving up long term storage density.

In one embodiment, the system tries to first use the block
of memory cells to store binary data. After X cycles of
erasing and storing binary data, a particular block will then
be used to store multi-state data. In one example implemen-
tation, the value of X will be the number of bits data stored
in each memory cell. For example, if the memory cells store
three bits of multi-state data, then a given block will be used
to store binary data three times. After the third time binary
data 1s stored in the given block, that given block will then
be used to store multi-state data. Other values for X can also
be used.

FIG. 12 1s a flow chart describing one embodiment of a
process for first storing data as binary data and subsequently
storing the data as multi-state data. In step 702, the system
(controller, state machine, or other component) will receive
one or more requests to program data. The data to be
programmed will also be received. In step 704, the data 1s
programmed as binary data into block that have not yet been
programmed with multi-state data and not yet been pro-
grammed with binary data X times. In one embodiment, step
704 1ncludes identifying blocks that have not yet been
programmed with multi-state data and not yet been pro-
grammed with binary data X times, and then using the
process of FIGS. 10 and 11 to program data as depicted in
FIG. [6] 64. The number of blocks used will depend on the
amount of data to be programmed.

Once the data has been written 1n step 704, the system can
report that the programming process 1s complete and/or start
another programming process. Thus, the user or host will
experience the fast programming of binary data.

In order to program the data into blocks that have not yet
been programmed with binary data more than X times, the
system needs to keep track of how many times each block
1s programmed with binary data. In one embodiment, the
controller (or the state machine or another device) maintains
a cycle count for each block that indicates how many times
cach block has been programmed with binary data. In step
706 of FIG. 12, the appropriate one or more cycle counts for
the block programmed 1n step 704 are incremented.

In step 708, data from multiple blocks storing binary data
(the source blocks) are transierred to a new block (target
block) by combining the data and storing that data 1in the new
block as multi-state data. If the multi-state data includes two
bits per memory cell, then binary data from two blocks will
be transferred to one block of multi-state data. If the
multi-state data includes three bits per memory cell, then
binary data from three blocks will be transferred to one
block of multi-state data. I the multi-state data includes four
bits per memory cell, then binary data from four blocks will
be transferred to one block of multi-state data. If the
multi-state data includes X bits per memory cell, then binary
data from X blocks will be transierred to one block of X bit
multi-state data.

In one embodiment, the block that will be used to store the
multi-state data will be a block that has been used X times
to program binary data. Inmitially, it may be necessary to
program multi-state data into a block that has not yet been
used X times to program binary data.

In one embodiment, the transter of data from the blocks
storing binary data to a block storing multi-state data (step
708) 1s performed as soon as there 1s enough data to fill up
a multi-state block. In another embodiment, the transter of
data from the blocks storing binary data to a block storing
multi-state data (step 708) 1s performed during times when
the memory system 1s 1dle and there 1s enough data to fill up

5

10

15

20

25

30

35

40

45

50

55

60

65

16

a multi-state block. For example, the memory system can
periodically test whether its 1dle and perform step 708 1n
response to determining that 1t 1s 1dle. Other times can also
be used.

In one embodiment, each block will include a valid data
flag that will indicate whether that block has valid data. That
flag can be stored in a memory cell, 1n a register with the
state machine or 1n a register (or memory location) with the
controller. When binary data i1s written i step 704, the
appropriate valid data flags are set to indicate that the block
written to have valid binary data. After the binary data 1s
re-programmed to multi-state data in a different block, the
appropriate valid data flag 1s reset 1n step 710 to indicate that
the data 1n the block 1s not valid and, therefore, the block can
be used to program other data.

FIG. 13 1s a flow chart describing an example implemen-
tation ol a system for first storing data as binary data and
subsequently storing the data as three bit per memory cell
multi-state data. In step 750 of FIG. 13, the system (con-
troller, state machine, or other component) will receive one
or more requests to program data. The data to be pro-
grammed will also be received. The controller, state
machine, or other component will determine whether there
are blocks that do not currently store valid data and have
been programmed with binary data one or two times (step
752). If so, then 1n step 754 the data received 1n step 750 1s
programmed as binary data in the block(s) identified 1n step
752. I, 1n step 752, it 1s determined that there are no blocks
that do not currently store valid data and have been pro-
grammed with binary data one or two times, then the data
received 1n step 750 1s programmed 1n step 756 as binary
data in one or more blocks not yet used for programming.
The blocks can be chosen in number order, or another
method. After steps 754 and 756, the cycle counts and the
valid data tlags for the blocks used to program data are
updated accordingly 1n step 758. In some embodiment, the
system will report to the user or host that the programming,
of the block has completed so that additional programming
can be performed.

In step 760 of FIG. 13, 1t 1s determined whether there are
three blocks that currently store valid binary data. I not, the
process 1s complete. If there are three blocks that currently
store valid binary data, then the process will continue at step
762 to re-program that binary data as multi-state data. Note
that FIG. 13 shows step 760 being performed right after step
758. In some embodiment, the system will wait until 1t’s 1dle
to perform step 760.

In step 762, 1t 1s determined whether there 1s a block that
does not have valid data and has been previously pro-
grammed with binary data three times. This inquiry 1is
performed by checking the valid data flags and cycle counts
for the blocks. If a block 1s 1dentified that does not currently
have valid, but has been previously programmed with binary
data three times, then a multi-state programming process
will be used in step 764 to program binary data from the
three blocks 1dentified in step 760 to the one block i1dentified
in step 762. For example, the processes of FIGS. 10 and 11
can be used to implement the programming schemes of
FIGS. 6A, TA-1, 9A-E, or another scheme. After the binary
data 1s re-programmed to multi-state data in a different
block, the approprniate valid data flag 1s reset in step 766 to
indicate that the data 1n the block 1s not valid and, therefore,
the block can be used to program other data.

I, in step 762, it 1s determined that there are no blocks that
do not have valid data and has been previously programmed
with binary data three times, then a multi-state programming,
process will be used 1n step 768 to program binary data from

US RE46,995 E

17

the three blocks 1dentified 1n step 760 to a fresh block (or a
block programmed one or two times). For example, the
processes of FIGS. 10 and 11 can be used to implement the
programming schemes of FIGS. 6 A, 7A-1, 9A-E, or another
scheme. After performing the multi-state programming pro-
cess of step 768, the valid data tlags will be updated in step
766. Steps 764 and 768 can use any of the multi-state
programming schemes described above, all we as others
suited for the particular implementation.

In one embodiment, after step 766 the process loops back
to re-program other data. In some embodiment, step 760-768
are pertormed repeatedly during times that the system 1is
idle.

FIGS. 14A, 14B and 13 provide an example of the order

of programming a set of blocks in a non-volatile storage
system that operates according to the process of FIG. 13.

FIGS. 14A and 14B depict a flow chart describing the order
of programming. FIG. 15 1s a table that depicts the contents
of the block during each operation described 1in FIGS. 14A
and 14B. Fach column of FIG. 15 pertains to a block of
memory 1n memory array 200. Although FIG. 15 only shows
fifteen blocks, most memory arrays will include many more
than fifteen blocks. EFach row of FIG. 15 pertains to a
programming operation. A blank box in FIG. 15 indicates
that the block does not store valid data. A “b1” 1n a box
indicates that the block 1s storing binary data and the block
has only been programmed once. A “b2” 1n a box indicates
that the block 1s storing binary data and the block has been
programmed twice. A “b3” 1 a box indicates that the block
1s storing binary data and the block has been programmed
three times. An “ms” 1n a box indicates that the block 1s
storing multi-state data. Note that FIGS. 14A, 14B and 15

provide only one example and many other embodiments for
ordering the programming can also be used.

Before any of the programming operations of FIG. 14 A,
none of the blocks will be storing valid data. Each of the
operations includes performing the process of FIG. 13.
Operation 1 will program first binary data (b1) into block 0.
Operation 2 will program first binary data (b1) into block 1.
Note that during operation 1 and operation 2, the test at step

760 of FIG. 13 will be negative and, therefore, the process
of FIG. 13 will be completed after programming the binary
data. After operation 2, FIG. 15 shows blocks 0 and 1 storing
first binary data b1l. Operation 3 will program first binary
data (b1) 1into block 2. Note that although the reference “b1”
1s depicted for blocks 0-2, the reference “b1” 1s meant to
indicate that binary data 1s stored and 1t 1s the first time that
binary data 1s stored for that block. The reference “b1” 1s not
meant to mndicate the contents of the data and 1t 1s likely (but
not required) that the data stored 1n each block i1s diflerent
from data stored in other blocks. At this point during
operation 23, FIG. 15 shows blocks 0, 1 and 2 storing first
binary data bl. After binary data 1s programmed 1nto block
2 during operation 3, the test at step 760 of FIG. 13 will be
positive; therefore, operation 3 will also include using a
multi-state programming process (see step 768) to program
binary data from the blocks 0, 1 and 2 into block 3 (a fresh
block). After operation 3 has completed, FIG. 15 shows
block 3 storing multi-state data ms, and blocks 0-2 do not
store valid data (because the valid data flags have been
updated).

Operation 4 will program second binary data (b2) into
block 0. Operation 5 will program second binary data (b2)
into block 1. Operation 6 will program second binary data
(b2) mto block 2. Operation 6 will also include using a

10

15

20

25

30

35

40

45

50

55

60

65

18

multi-state programming process (see step 768) to program
binary data from the blocks 0, 1 and 2 into block 4 (a fresh
block).

Operation 7 will program third
0. Operation 8 will program third binary data (b3) into block
1. Operation 9 will program third binary data (b3) into block
2. Operation 9 will also include using a multi-state program-
ming process (see step 768) to program binary data from the
blocks 0, 1 and 2 into block 5 (a fresh block).

At this point, blocks 0, 1 and 2 have been used three times
to store binary data; therefore, they will not be programmed
again with binary data. Instead, they will be programmed
with multi-state data.

Operation 10 will program first binary data (b1) into
6. Operation 11 will program first binary data (b1) into block
7. Operation 12 will program first binary data (b1) into block
8. Operation 12 will also include using a multi-state pro-
gramming process to program binary data from the blocks 6,
7 and 8 into multi-state data. When the test of step 762 1s
performed, there will be three blocks (blocks 0, 1 and 2) that
do not have valid data and have been programmed with
binary data three times. One of these blocks will be chosen.
In one embodiment, they are chosen in number order.
Theretore, 1n step 764, during operation 12, block 0 will be
programmed with multi-state data based on the binary data
from blocks 6, 7 and 8.

Operation 13 will program second binary data (b2) into
block 6. Operation 14 will program second binary data (b2)
into block 7. Operation 15 will program second binary data
(b2) mnto block 8. Operation 15 will also include using a
multi-state programming process (see step 764) to program
binary data from the blocks 6, 7 and 8 mto block 1 as
multi-state data.

Operation 16 will program third binary data (b3) into
block 6. Operation 17 will program third binary data (b3)
into block 7. Operation 18 will program third binary data
(b3) mnto block 8. Operation 18 will also include using a
multi-state programming process (see step 764) to program
binary data from the blocks 6, 7 and 8 into block 2.

Operation 19 will program first binary data (b1) into block
9. Operation 20 will program first binary data (b1) into block
10. Operation 21 will program first binary data (b1) into
block 11. Operation 21 will also include using a multi-state
programming process (see step 764) to program binary data
from the blocks 9, 10 and 11 into block 6.

Operation 22 will program second binary data (b2) nto
block 9. Operation 23 will program second binary data (b2)
into block 10. Operation 24 will program second binary data
(b2) into block 11. Operation 24 will also include using a
multi-state programming process (see step 764) to program
binary data from the blocks 9, 10 and 11 into block 7.

Operation 25 will program third binary data (b3) into
block 9. Operation 26 will program third binary data (b3)
into block 10. Operation 27 will program third binary data
(b3) mto block 11. Operation 27 will also include using a
multi-state programming process (see step 764) to program
binary data from the blocks 9, 10 and 11 into block 8.

Operation 28 will program first binary data (b1) into block
12. Operation 29 will program first binary data (b1l) into
block 13. Operation 30 will program first binary data (b1)
into block 14. Operation 30 will also include using a
multi-state programming process (see step 764) to program
binary data from the blocks 12, 13 and 14 into block 9. This
process will continue until all of the blocks that can be
programmed are programmed as described herein.

Although the above example of multi-state data included
three bits per memory cell, the technology described herein

binary data (b3) into block

block

US RE46,995 E

19

can be used with other multi-state data. For example, the
technology described herein can be used with memory cells
that store two bits of data, four bits of data, five bits of data,

elc.

The above-described embodiments operate on blocks of 5

memory cells. However, other units of memory cells can
also be used when first programming as binary data and then
programming as multi-state data.

The above-described processes for programming data as
binary data and then re-programming as multi-state data waill
attempt to program block X times as binary data and then
once as multi-state data. At some point, the memory array
will be filled with data. In one embodiment, the memory
system 1s an archival system and the multi-state data waill
never be over-written. Instead, 1t will be maintained for a
very long period and read many times.

In another embodiment, the memory system can be re-
initialized or re-formatted such that all data 1s erased, all
flags reset, and all cycle counts reset to 0. At that point, the
processes of FIGS. 12 and/or 13 can be repeated.

Other uses can also be utilized with the technology
described herein.

The technology described herein provides many advan-
tages. For example, programming binary data 1s faster than
programming multi-state data so the user experiences faster
programming times due to the multi-state programming,
happening later 1n the background. The system described
above allows the data integrity to be checked for the
programmed MLC data prior to deleting the binary data. All
ol the multi-state data for a block can be written at the same
time so that all word lines of a block have the same data
retention charge loss experience and are programmed at the
same temperature. In this way, we can learn the character-
istics of all the word lines 1n a block by sampling one word
line or a subset. Additionally, binary blocks can be written
in very small chunks by allowing partial page programming
in binary blocks, where binary blocks are resilient to expo-
sure to multiple program disturb conditions (caused by
several partial page programming events) by virtue of being
binary.

When not using the technology described herein and

iitially programming multi-state data, the various pages of

data need to be written more carefully and slowly so that a
page 1s readable even 1 not all pages have been pro-
grammed. By programming in binary initially, the program-
ming speed experienced by the user 1s much shorter.

In one embodiment, a flash memory chip that was
designed to store four bits per memory cell can be used to
implement the technology described herein to program data
as binary and then as three bits per memory cell multi-state
data. So, for example, using a memory chip with a capacity

of 8 GB at four bits per memory cell will have a capacity of

6 GB when storing three bits per memory cell using the
technology described herein. Some systems use four
memory chips (four memory arrays) with one controller.
Using four 6 GB memory arrays will create a system with 24
GB of storage. Some flash memory chips that store four bits
make use of a binary data cache in the flash memory array.
When using the technology described herein, the real estate
in the memory array used for the cache can be reclaimed for
general user data.

The foregoing detailed description of the invention has
been presented for purposes of illustration and description.
It 1s not mtended to be exhaustive or to limit the mvention
to the precise form disclosed. Many modifications and
variations are possible 1n light of the above teaching. The
described embodiments were chosen 1n order to best explain

10

15

20

25

30

35

40

45

50

55

60

65

20

the principles of the invention and 1its practical application,
to thereby enable others skilled 1n the art to best utilize the
invention in various embodiments and with various modi-
fications as are suited to the particular use contemplated. It
1s intended that the scope of the invention be defined by the
claims appended hereto.

What 1s claimed 1s:

1. A method of programming for a non-volatile storage
system, comprising: programming data as binary data into
units of non-volatile storage elements that have not yet been
programmed with multi-state data and have not yet been
programmed with binary data a specific number of times;
and transferring data from multiple units of non-volatile
storage elements storing binary data to one target unit of
non-volatile storage elements storing multi-state data using
a multi-state programming process aiter the target unit has
been previously programmed with binary data the specific
number of times.

2. The method of claim 1, further comprising:

incrementing cycle counts for units subjected to program-

ming of binary data;

marking units as valid 1n response to programming of

binary data and programming of multi-state data; and
marking units as invalid when binary data in the units 1s
transierred to multi-state data.

3. The method of claim 1, wherein the programming data
as binary data comprises:

determiming that a set of units of non-volatile storage

clements have not been subjected to binary program-
ming the specific number of times; and

performing a binary programming process to store the

data as binary data in the set of units of non-volatile
storage elements.

4. The method of claim 1, wherein the programming data
as binary data comprises:

determining that a set of the specific number of units of

non-volatile storage elements have not been subjected
to binary programming the specific number of times;
and

performing a binary programming process to store the

data as binary data 1n the set of the specific number of
units of non-volatile storage elements.

5. The method of claim 1, wherein the programming data
as binary data comprises determining that units of non-
volatile storage elements have not been subjected to binary
programming the specific number of times.

6. The method of claim 1, wherein the transferring data
from multiple units of non-volatile storage elements storing
binary data comprises:

determining that a specific unit of non-volatile storage

clements has been previously programmed with binary
data the specific number of times;

reading binary data from a set of units of non-volatile

storage elements;

combining the binary data from the set of umits of non-

volatile storage elements into one set ol multi-state
data; and

programming the one set of multi-state data into the

specific unit ol non-volatile storage elements.

7. The method of claim 1, wherein the transferring data
from multiple units of non-volatile storage elements storing
binary data comprises:

determining that a specific unit of non-volatile storage

clements has been previously programmed with binary
data the specific number of times;

reading binary data from a set of the specific number of

units of non-volatile storage elements; and

US RE46,995 E

21

combining the binary data from the set of the specific
number of units of non-volatile storage elements 1nto
the specific number of bits of multi-state data; and

programming the specific number of bits of multi-state
data into the specific unit of non-volatile storage ele-
ments.

8. The method of claim 1, wherein the transferring data

from multiple units of non-volatile storage elements storing
binary data comprises determining that a specific unit of
non-volatile storage elements has been programmed with
binary data the specific number of times.

9. The method of claim 1, wherein:

determining that the non-volatile storage system 1s idle,
the transferring data from multiple units of non-volatile
storage elements storing binary data to one target unit
of non-volatile storage eclements 1s performed 1is
response to determining that the non-volatile storage
system 1s 1dle.

10. The method of claim 1, wherein:

the programming data as binary data comprises determin-
ing that a set of units of non-volatile storage elements
have not been subjected to binary programming the
specific number of times and performing a binary
programming process to store the data as binary data in
the set of units of non-volatile storage elements; and

the transferring data from multiple units of non-volatile
storage elements storing binary data comprises deter-
mining that a specific unit of non-volatile storage
clements has been programmed with binary data the
specific number of times, reading binary data from a set
of the specific number of units of non-volatile storage
clements, combiming the binary data from the set of the
specific number of units of non-volatile storage ele-
ments 1nto one set of the specific number of bits of
multi-state data and programming the one set of the
specific number of bits of multi-state data into the
specific unit of non-volatile storage elements.

11. The method of claim 10, wherein:

determining that the non-volatile storage system 1s 1dle,
the transierring data from multiple units of non-volatile
storage elements storing binary data to one target unit
of non-volatile storage elements 1s performed 1s
response to determining that the non-volatile storage
system 1s 1dle; and

the method further comprises incrementing cycle counts
for units subjected to programming ol binary data,
marking units as valid i1n response to programming of
binary data and programming of multi-state data and
marking units as invalid when binary data in the units
1s transierred to multi-state data.

12. The method of claim 1, further comprising;:

formatting the non-volatile storage system; and

repeating the steps of programming data and transierring
data.

13. The method of claim 1, wherein:

the specific number 1s equal to the number of bits of data
stored 1n the non-volatile storage elements.

14. A method of programming for a non-volatile storage

system, comprising:

programming data as binary data into units of non-volatile
storage elements that have not yet been programmed
with multi-state data and have not yet been pro-
grammed with binary data three times; and

transferring data from multiple units of non-volatile stor-
age elements storing binary data to one target unit of
non-volatile storage elements storing multi-state data

10

15

20

25

30

35

40

45

50

55

60

65

22

using a multi-state programming process after the tar-
get unit has been previously programmed with binary
data three times.

15. The method of claim 1, wherein:

the units of non-volatile storage elements are blocks of
non-volatile storage elements.

16. The method of claim 1, wherein:

the non-volatile storage elements are flash memory
devices.

17. A method of programming for a non-volatile storage

system, comprising:

receiving one or more requests to program;

receiving data to be programmed for the one or more
requests;

in response to the one or more requests to program,
programming the data as binary data into multiple units
of non-volatile storage elements that have not yet been
programmed with multi-state data and have not yet
been programmed with binary data a specific number of
times:

updating programming cycle counters for the units of
non-volatile storage elements;

identifying a target unit of non-volatile storage elements
that has been previously programmed with binary data
the specific number of times;

combining data from the multiple units of non-volatile
storage elements storing binary data and storing the
combined data 1n the target unit of non-volatile storage
clements as multi-state data using a multi-state pro-
gramming process; and

marking the multiple units of non-volatile storage ele-
ments as available for additional binary programming 11
the multiple units of non-volatile storage elements have
not yet been programmed with binary data the specific
number of times.

18. The method of claim 17, further comprising:

formatting the non-volatile storage system subsequent to
the programming the data.

19. The method of claim 17, wherein:

the specific number 1s equal to the number of bits of data
stored 1n the non-volatile storage elements.

20. The method of claim 17, further comprising:

identitying the units of non-volatile storage elements that
have not yet been programmed with multi-state data
and have not yet been programmed with binary data the
specific number of times.

21. The method of claim 17, wherein:

determining that the non-volatile storage system 1s 1dle,
the combiming data and storing the combined data 1s
performed 1n response to determiming that the non-
volatile storage system 1s 1dle.

22. A non-volatile storage apparatus, comprising:

a plurality of non-volatile storage elements; and

one or more control circuits 1n communication with the
non-volatile storage elements, the one or more control
circuits 1dentity a first set of units of the non-volatile
storage elements that have not yet been programmed
with multi-state data and have not yet been pro-
grammed with binary data a specific number of times,
the one or more control circuits program first data as
binary data into the first set of units of the non-volatile
storage elements, the one or more control circuits
identily a target unit of non-volatile storage elements
that has been previously programmed with binary data
the specific number of times, the one or more control
circuits combine the first data from the first set of units
of non-volatile storage elements and store the com-

US RE46,995 E

23

bined data in the target unit of non-volatile storage
clements as multi-state data.
23. A non-volatile storage apparatus according to claim
22, wherein:
the one or more control circuits increment cycle counts
for units subjected to programming of binary data;
the one or more control circuits mark units as valid 1n
response to programming of binary data and program-
ming of multi-state data; and
the one or more control circuits mark units as invalid
when binary data in the units 1s transferred to multi-
state data.
24. A non-volatile storage apparatus according to claim
22, wherein:
the specific number 1s equal to the number of bits of data
stored 1n the non-volatile storage elements and the
number of units 1n the first set of unaits.

25. A non-volatile storage apparatus according to claim
22, wherein:

the non-volatile storage eclements are NAND flash
memory devices.

26. The method of claim 1, wherein:
the specific number 1s greater than zero.
27. The method of claim 1, wherein:
the specific number 1s greater than one.
28. The method of claim I, wherein:

the multiple units of non-volatile storage elements com-
prise a three-dimensional arvay of storage elements.

29. The method of claim I, wherein:

the multiple units of non-volatile storage elements com-
prise a three-dimensional array of memory cells.

10

15

20

25

30

24
30. The method of claim 1, wherein:

the multiple units of non-volatile storage elements are
arranged in a three-dimensional memory structure.
31. The method of claim 14, wherein:
the multiple units of non-volatile storage elements com-
prise a three-dimensional arvay of storage elements.
32. The method of claim 14, wherein:
the multiple units of non-volatile storage elements com-
prise a three-dimensional array of memory cells.
33. The method of claim 14, wherein:
the multiple units of non-volatile storage elements are
arranged in a three-dimensional memory structure.
34. The method of claim 17, wherein:
the multiple units of non-volatile storage elements com-
prise a three-dimensional arvay of storage elements.
35. The method of claim 17, wherein:
the multiple units of non-volatile storage elements com-
prise a three-dimensional array of memory cells.
36. The method of claim 17, wherein:
the multiple units of non-volatile storage elements are
arranged in a three-dimensional memory structure.
37. The nomn-volatile storage apparatus of claim 22,
wherein:
the plurality of non-volatile storage elements comprise a
three-dimensional array of storage elements.
38. The non-volatile storage apparatus of claim 22,
wherein:
the plurality of non-volatile storage elements comprise a
three-dimensional array of memory cells.
39. The non-volatile storage apparatus of claim 22,
wherein:
the plurality of nomn-volatile storage elements are

arranged in a three-dimensional memory structure.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

