USOORE46748E
(19) United States
12y Reissued Patent (10) Patent Number: US RE46.,748 E
Gaponenko et al. 45) Date of Reissued Patent: Mar. 6, 2018
(54) CONVERTING IMAGES IN VIRTUAL USPC ... 707/602, 610, 635, 756, 809, 831; 718/1:
ENVIRONMENTS 717/120, 168178

See application file for complete search history.

(71) Applicant: IBM Corporation, Armonk, NY (US) (56) References Cited
U.S. PATENT DOCUMENTS

(72) Inventors: Yulia Gaponenko, Moscow (RU);

_) 5,586,304 A * 12/1996 Stupek, Jr. GO6F 8/68
Alexey Miroshkin, Moscow (RU); 707/999 201
Indrajit Poddar, Sewickly, PA (US); 5,848,415 A * 12/1998 Guckcovvviviineiennnn, 707/831
Vladislav B. Ponomarev, Voronezh 6,058,397 A : 5? 2000 Bﬂﬂll{ls et al. | /
(RU); Tgor Sukharev, Moscow (RU) 6,714,980 Bl 3/2004 ‘Mar sonetal ... 709/226
(Continued)

FOREIGN PATENT DOCUMENTS

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) WO 2005088539 A2 9/2005

(21) Appl. No.: 14/202,186 OTHER PUBLICATIONS

Tip et al, “Practical Extraction Techniques for Java,” ACM Trans-

actions on Programming Languages and Systems, vol. 24, No. 6,

(22) Filed: Mar. 10, 2014 Nov. 2002, pp. 625-666.

(Continued)
Related U.S. Patent Documents

Reissue of Primary Examiner — Adam L Basehoar

(64) Patent No.: 8,352,415 (74) Attorney, Agent, or Firm — Jeflrey S. LaBaw; David
Issued: Jan. 8, 2013 H. Judson
Appl. No.: 12/816,117
Filed: Jun. 15, 2010 (57) ABSTRACT

The different illustrative embodiments provide a method,
computer program product, and apparatus for converting a
(51) Int. CL first image for a virtual machine formatted for a first virtual

Gool’ 17/30 (2006.01) environment. A second image 1s created, wherein the second

Gool’ 9/445 (2018.01) image 1s non-specific to any virtual environment. A deter-
GOo6l’ 9/455 (2018.01) mination 1s made whether a portion of files to be copied from

the first virtual 1mage to the second virtual image should be

(52) U.S. CL replaced using a compatibility matrix, wherein the compat-
CPC ..o GOG6F 8/63 (2013.01); GO6F 9/45558 ibility matrix identifies changes between the first virtual

(2013.01); GO6F 2009/45562 (2013.01) environment and a second virtual environment. A replace-
ment for the portion of the files 1s copied to the second 1mage

(58) Field of Classification Search using the compatibility matrix responsive to a determination
CPC .., GO6F 8/63; GO6F 9/45558; GO6F that the portion of the files 1n the set of files should be
2009/45562; GO6F 2009/4557 (Continued)

START

502‘\| CREATE A SECOND IMAGE |

FORMAT THE SECOND
604~ |MASE FOR THE SECOND
VIRTUAL ENVIRONMENT

SHOULD
A PORTION OF
FILES TO BE COPIED FROM
THE FIRST VIRTUAL IMAGE TC
THE SECOND VIRTUAL IMAGE
BE REPLAGED USING A
COMPATIBILITY
MATRIX?

YES

608
y /
COPY A REPLACEMENT
FOR THE PORTICN OF
THE FILES TO THE
SECOND IMAGE USING

COPY THE FILE TQ THE THE COMPATIBILITY
610 SECOND IMAGE MATRIX

{ S0P)

606

US RE46,748 E
Page 2

replaced. The file 1s copied to the second 1image responsive
to an absence of a determination that the each file 1n the set

of files should be replaced.

(56)

6,751,795

6,760,804
0,898,708
7,002,976
7,006,494
7,092,958
7,155,504
7,227,837
7,283,533
7,328,434

7,356,679
7,363,654
7,383,327
7,383,541

7,415,706

7,440,894
7,536,541
7,577,722
7,587,570
7,633,955
7,814,495
7,805,003
8,181,174

8,352,608
8,498,997
8,584,121

Bl *

Bl *
Bl *
B2 *
Bl *
B2 *
Bl *
Bl *
B' 3

6/2004

7/2004
5/2005
2/2006
2/2006
8/2006
12/2006
6/2007
10/2007
2/2008

4/2008
4/2008
6/2008
6/2008

8/2008

10/2008
5/2009
8/2009
9/2009

12/2009

10/2010
1/2011
5/2012

1/2013
7/2013
11/2013

23 Claims, 6 Drawing Sheets

References Cited

U.S. PATENT DOCUMENTS

Nakamura GO6F 8/68
717/174
Hunt et al. 710/313
Theodossy et al. 716/111
Dupontccocoevvennn, 370/404
Tighe et al. 370/389
Hempstead et al. 706/50
Fujtedaoooe 709/224
Bietal. ...coooovvvvivinnnnn.. 370/217
Kumar et al. 370/395.52
SWaNsonco....... GO6F 8/665
709/220
Leetal. ..oooovivivviiiniinn.n, 713/1
Yamadacoovvveennnn.. 726/15
Tormasov et al.
Banksc.coooviviivininn, GO6F 8/65
717/126
Raju ..., GO6F 9/44536
717/170
Zhouetal. 704/243
[S2aCSON wvvvvviieviiieennnen, 713/2
Khandekar et al. 709/220
Sarkar et al. 711/170
Saralya et al.
Limetal.o.covvvvninen.. 718/104
Nelson et al. 711/112
Liu i, GO6F 9/44505
717/121
Keagy etal. 709/226
MUrasecoooevvvvevvnnnnn, 707/764
Arceseet al.ooviiiiinnn, 718/1

9,052,966 B1* 6/2015 Quinlan GO6F 8/51
2002/0170052 Al* 11/2002 Radatti GOo6F 21/564
717/171

2003/0037184 Al* 2/2003 Dayetal.ooooooeeviiinnnn, 710/1
2004/0059829 Al* 3/2004 Chuetal. 709/238
2006/0101116 Al1* 5/2006 Rittman et al. 709/204
2007/0010796 Al* 1/2007 Moran et al. 604/523
2007/0168478 Al* 7/2007 Crosbieooooeeeee, 709/221
2008/0114830 Al1* 5/2008 Welingkar et al. 709/203
2008/0256530 Al* 10/2008 Armstrong GO6F 9/45533
717/174

2008/0263258 Al* 10/2008 Allwell etal. 711/6
2009/0006534 Al* 1/2009 Friesetal.cc.c... 709/203
2009/0007105 Al* 1/2009 Friesetal.cooooeeeeiinnnnnnn, 718/1
2009/0013092 Al* 12009 Paoetal.coeee 709/250
2009/0070771 Al* 3/2009 Yuyitung et al. 718/105
2009/0150802 Al* 6/2009 Doetalcooovvvee, 715/757
2010/0043046 Al* 2/2010 Senetal.ccocve 725/133
2010/0088699 Al* 4/2010 Sasakicccoovvivieivinninnnnn, 718/1
2010/0107163 Al* 4/2010 Lee .oovvvveeiiiiiiiiiieieeiiiinn, 718/1
2010/0306355 Al1* 12/2010 Lagergren et al. 709/222
2011/0035754 Al1* 2/2011 Srimivasan 718/105
2011/0131573 Al1™* 6/2011 Antonycccovvvvvneeeennnnn, 718/1
2011/0153515 A1* 6/2011 Pitzoetal. 705/342
2011/0231839 Al1* 9/2011 Bennett GO6F 9/5055
718/1

2011/0313982 Al1* 12/2011 Kranendonk et al. 707/702
2012/0140772 Al* 6/2012 Chuetal. 370/392
2013/0227089 Al* 8/2013 McLeod et al. 709/220
2013/0227551 Al* 8/2013 Tsurkinooooviiieiiiniinnnn, 718/1
2014/0201146 Al1* 7/2014 Kapsiar GO6F 17/30079
707/635

OTHER PUBLICATTONS

Hartel, “Formalizing the Safety of Java, the Java Virtual machine,
and Java Card,” ACM Computing Surveys, vol. 33, No. 4, Dec.

2001, pp. 517-558.

“Method and Practice for Achieving High Availability of Virtual

Machines Based on Normalized Image Formats and Mobility Pro-
tocols,” IBM Technical Disclosure, Mar. 27, 20009,

IPCOMO00181285D, pp. 1-3.

* cited by examiner

U.S. Patent

104

Mar. 6, 2018 Sheet 1 of 6
100
DATA PROCESSING SYSTEM
STORAGE DEVICES

US RE46,748 L

PERSISTENT
PROCESSOR UNIT MEMORY STORAGE

106
102

MmA KM/

116 l h

COMMUNICATIONS NPUT/OUTPUT
UNIT UNIT DISPLAY

110

122

112

I

COMPUTER PROGRAM PRODUCT

COMPUTER READABLE MEDIA
118 PROGRAM CODE

COMPUTER READABLE

124 STORAGE MEDIA 120

COMPUTER READABLE
126 SIGNAL MEDIA

FIG. 1

114

U.S. Patent Mar. 6, 2018 Sheet 2 of 6 US RE46,748 E

riG. 2
| VIRTUAL IMAGE CONVERSION ENVIRONMENT 200
| COMPUTER SYSTEM 202
VIRTUAL ENVIRONMENT 204 ' COMPATIBILITY MATRIX 206

VIRTUAL MACHINE 210

CHANGES 224

LIBRARY

OF FILES 236
REPLACEMENT FILES

IMAGE 212

FILES 214

PORTION 230

KERNEL FILES

SOFTWARE
SET OF DEVICE
DRIVERS
228
226
}
| IMAGE 216 VIRTUAL 208
RAW IMAGE FORMAT _ ENVIRONMENT —
9 ' VIRTUAL MACHINE

IMAGE

OPERATING SYSTEM HYPERVISOR-SPECIFIC
FORMAT
SET OF MODIFICATIONS
242
240

| ANY VIRTUAL
FILESYSTEM 1 1 ENVIRONMENT
220

223

U.S. Patent Mar. 6, 2018 Sheet 3 of 6 US RE46,748 E

300
HYP%%\QSOR X
h BOBVMware u.”.‘.
(OO ..',,
o S S S

OPERATING ”
SYSTEM RHEL
306\

\

302
0S VERSION

U.S. Patent Mar. 6, 2018 Sheet 4 of 6 US RE46,748 E

400

402~ Image type
Disk image
404 ~_ Network configuration

406 ~_ije systemn fayout

410" otartup services
VMware tools may be present
419" Kernels and bootloader
Bootloader must be installed
VMware-compatible kernel
nackage must be installeg

FIG. 4

500

U2~ Image type

Partition Image

504 ~_ Network configuratior
Eth(interface must be present

00~ system layout
/dev/sdal /
/dev/sdaZ /mnt
/dev/sda3 swap

_~ ROA keys
oU3 Must be Injected fo
~/ .ssh/authorized keys
510" Remaove VMware lools if present

517" Kernels and bootloader
Xen-compalible kernel package
must be installed (i.e. kernel-xenpas-
2.6.16.60-0.29.i586.rpm)

FIG. 5

U.S. Patent Mar. 6, 2018 Sheet 5 of 6 US RE46,748 E

002~ CREATE A SECOND IMAGE

FORMAT THE SECOND
MAGE FOR THE SECOND
VIRTUAL ENVIRONMENT

604

SHOULD
A PORTION OF
FILES TO BE COPIED FROM
THE FIRST VIRTUAL IMAGE TO

YES

THE SECOND VIRTUAL IMAGE 508
BE REPLACED USINGA ..

comgrgatgiw COPY A REPLACEMENT

606 ‘ FOR THE PORTION OF

0 THE FILES TO THE

SECOND IMAGE USING

COPY THE FILE TO THE THE COMPATIBILITY

610 SECOND IMAGE MATRIX
t

FIG. 6

U.S. Patent

Mar. 6, 2018 Sheet 6 of 6
START
702 MOUNT THE FILE SYSTEM

OF SOURCE IMAGE

704 CREATE A LIST OF ALL FILES
N THE SOURCE IMAGE

FOR THE TARGET
HYPERVISOR OR CLOUD OF
APPROPRIATE SIZE, CREATE A
FILE SYSTEM AND MOUNT IT

TO THE COMPUTER SYSTEM

706

COPY THE CONTENTS OF THE
FILE SYSTEM IN THE SOURCE
IMAGE INTO THE TARGET
IMAGE, REPLACING FILES
DESCRIBED IN THE
708 COMPATIBILITY MATRIXWITH
REPLACEMENT FILES AND
INSTALLING SOFTWARE AS
DESCRIBED IN THE

COMPATIBILITY MATRIX

PERFORM 05

710 CONFIGURATION USED BY
TARGET HYPERVISOR

FIG. 7

US RE46,748 F.

US RE46,748 E

1

CONVERTING IMAGES IN VIRTUAL
ENVIRONMENTS

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

BACKGROUND

1. Field

The disclosure relates generally to an improved data
processing system and more specifically to virtual environ-
ments. Even more specifically, the disclosure relates to

images running on virtual machines 1n virtual environments.
2. Description of the Related Art

Virtual environments are commonly used in data process-
ing systems. A virtual environment 1s software that runs a set
of virtual machines on a set of data processing systems. A
virtual machine 1s a collection of virtual hardware on which
other software 1s run. The other software commonly 1includes
an operating system. The virtual environment causes the
data processing system to run commands sent by the other
software to the virtual hardware on real-world hardware
associated with the data processing system. Examples of
virtual environments include Amazon EC2 by Amazon.com,
Inc. 1n Seattle, Wash., VMWare ESX1 by VMWare, Inc. 1n
Palo Alto, Calif., and Microsoit Hyper-V by Microsofit, Inc.
in Redmond, Wash.

The virtual environment causes the data processing sys-
tem to run the commands differently, depending on the
virtual hardware being accessed by the software running on
the virtual machine. For example, commands to perform a
calculation on a virtual processor are typically sent to the
real-world processor to be performed. However, commands
to store data on a virtual hard drive are typically stored 1n a
set of files stored on a set of real-world disks. Each of the set
of files may represent an entire drive for the virtual machine.

It 1s often desirable to convert a virtual machine from one
virtual environment to another. For example, a company
may convert a virtual machine running on Amazon EC2 to
a virtual machine running on VMWare ESXi1. Fach virtual
environment may have an image type for the virtual hard
drive specific to the type of virtual environment. For
example, a virtual hard drive used by Amazon EC2 may not
be usable by VMWare ESXi. Additionally, each wvirtual
environment may use different virtual hardware. A different
device driver may be used to communicate with the different
virtual hardware. Configuration settings may also vary
between the virtual environments, such as network configu-
ration settings.

Because of the diflerences in virtual environments, the
process for converting between virtual environments typi-
cally involves creating a virtual machine 1n the new virtual
environment and starting both the virtual machine 1n the new
virtual environment and the virtual machine in the old
virtual environment. The user then installs the desired oper-
ating system on the new virtual machine, 1nstalls the proper
device drivers for the new virtual environment, and copies
data from the old wvirtual machine to the new wvirtual
machine.

N

"y

SUMMARY

A method, computer program product, and apparatus are
presented for converting a first image for a virtual machine

10

15

20

25

30

35

40

45

50

55

60

65

2

formatted for a first virtual environment. A second 1mage 1s
created, wherein the second image 1s non-specific to any
virtual environment. A determination 1s made whether a
portion of {iles to be copied from the first virtual image to the
second virtual 1mage should be replaced using a compat-
ibility matrix, wherein the compatibility matrix i1dentifies
changes between the first virtual environment and a second
virtual environment. A replacement for the portion of the
files 1s copied to the second 1mage using the compatibility
matrix responsive to a determination that the portion of the
files 1n the set of files should be replaced. The file 1s copied
to the second 1mage responsive to an absence of a determi-
nation that the each file in the set of files should be replaced.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 depicts an 1llustration of a data processing system
in accordance with an illustrative embodiment;

FIG. 2 depicts an 1llustration of a virtual image conversion
environment 1n accordance with an 1llustrative embodiment;

FIG. 3 depicts an 1llustration of a compatibility matrix in
accordance with an 1illustrative embodiment;

FIG. 4 depicts an 1llustration of a source hypervisor entry
in a compatibility matrix in accordance with an illustrative
embodiment;

FIG. 5 depicts an 1llustration of a target hypervisor entry
in a compatibility matrix in accordance with an illustrative
embodiment;

FIG. 6 depicts a flowchart of a process for converting a
first image for a virtual machine formatted for a first virtual
environment 1n accordance with an 1llustrative embodiment;
and

FIG. 7 depicts a flowchart of a process for converting a
source 1mage for a source virtual machine formatted for a
source virtual environment to a target image for a target
virtual machine formatted for a target virtual environment in
accordance with an 1llustrative embodiment.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method or com-
puter program product. Accordingly, the present invention
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
soltware, micro-code, etc.) or an embodiment combining
solftware and hardware aspects that may all generally be
referred to heremn as a “circuit,” “module” or “system.”
Furthermore, the present invention may take the form of a
computer program product embodied 1n any tangible
medium of expression having computer usable program
code embodied 1n the medium.

Any combination of one or more computer usable or
computer readable medium(s) may be utilized. The com-
puter-usable or computer-readable medium may be, for
example but not limited to, an electronic, magnetic, optical,
clectromagnetic, mfrared, or semiconductor system, appa-
ratus, device, or propagation medium. More specific
examples (a non-exhaustive list) of the computer-readable
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CDROM), an

US RE46,748 E

3

optical storage device, a transmission media such as those
supporting the Internet or an intranet, or a magnetic storage
device.

Note that the computer-usable or computer-readable
medium could even be paper or another suitable medium
upon which the program 1s printed, as the program can be
clectronically captured, via, for mnstance, optical scanning of
the paper or other medium, then compiled, iterpreted, or
otherwise processed 1n a suitable manner, 11 necessary, and
then stored 1n a computer memory. In the context of this
document, a computer-usable or computer-readable medium
may be any medium that can contain, store, communicate,
propagate, or transport the program for use by or in con-
nection with the instruction execution system, apparatus, or
device. The computer-usable medium may include a propa-
gated data signal with the computer-usable program code
embodied therewith, either 1n baseband or as part of a carrier
wave. The computer usable program code may be transmit-
ted using any appropriate medium, including but not limited
to wireless, wireline, optical fiber cable, RF, efc.

Computer program code for carrying out operations of the
present invention may be written 1n any combination of one
or more programming languages, imcluding an object ori-
ented programming language such as Java, Smalltalk, C++
or the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider).

The present invention 1s described below with reference
to flowchart illustrations and/or block diagrams of methods,
apparatuses (systems) and computer program products
according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer program instructions.

These computer program 1nstructions may be provided to
a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified 1n the tlowchart and/or
block diagram block or blocks. These computer program
instructions may also be stored mm a computer-readable
medium that can direct a computer or other programmable
data processing apparatus to function 1n a particular manner,
such that the instructions stored in the computer-readable
medium produce an article of manufacture including mnstruc-
tion means which implement the function/act specified in the
flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

grammable apparatus provide processes for implementing
the functions/acts specified in the flowchart and/or block
diagram block or blocks.

Turning now to FIG. 1, an illustration of a data processing,
system 1s depicted 1n accordance with an 1llustrative
embodiment. In this illustrative example, data processing
system 100 includes communications fabric 102, which
provides communications between processor unit 104,
memory 106, persistent storage 108, communications unit

110, mput/output (I/O) unit 112, and display 114.

Processor unit 104 serves to execute instructions for
soltware that may be loaded into memory 106. Processor
unit 104 may be a set of processors, a multi-processor core,
or some other type of processor, depending on the particular
implementation. A “number”, as used herein with reference
to an 1tem, means “one or more items”. Further, processor
unit 104 may be implemented using a set of heterogeneous
processor systems 1in which a main processor 1s present with
secondary processors on a single chip. As another illustra-
tive example, processor unit 104 may be a symmetric
multi-processor system containing multiple processors of
the same type.

Memory 106 and persistent storage 108 are examples of
storage devices 116. A storage device 1s any piece of
hardware that 1s capable of storing information, such as, for
example, without limitation, data, program code 1n func-
tional form, and/or other suitable information either on a
temporary basis and/or a permanent basis. Memory 106, in
these examples, may be, for example, a random access
memory or any other suitable volatile or non-volatile storage
device. Persistent storage 108 may take various forms,
depending on the particular implementation.

For example, persistent storage 108 may contain one or
more components or devices. For example, persistent stor-
age 108 may be a hard drive, a flash memory, a rewritable
optical disk, a rewritable magnetic tape, or some combina-
tion of the above. The media used by persistent storage 108
also may be removable. For example, a removable hard
drive may be used for persistent storage 108.

Communications unit 110, 1n these examples, provides for
communications with other data processing systems or
devices. In these examples, communications unit 110 1s a
network interface card. Communications unit 110 may pro-
vide communications through the use of either or both
physical and wireless communications links.

Input/output unit 112 allows for mput and output of data
with other devices that may be connected to data processing
system 100. For example, input/output unit 112 may provide
a connection for user mput through a keyboard, a mouse,
and/or some other suitable input device. Further, mput/
output unit 112 may send output to a printer. Display 114
provides a mechanism to display information to a user.

Instructions for the operating system, applications, and/or
programs may be located in storage devices 116, which are
in communication with processor unit 104 through commu-
nications fabric 102. In these illustrative examples, the
instructions are 1 a functional form on persistent storage
108. These 1nstructions may be loaded into memory 106 for
execution by processor unit 104. The processes of the
different embodiments may be performed by processor unit
104 using computer implemented instructions, which may
be located 1n a memory, such as memory 106.

These nstructions are referred to as program code, com-
puter usable program code, or computer readable program
code that may be read and executed by a processor 1n
processor unit 104. The program code in the different

US RE46,748 E

S

embodiments may be embodied on different physical or
computer readable storage media, such as memory 106 or
persistent storage 108.

Program code 118 1s located in a functional form on
computer readable media 120 that 1s selectively removable
and may be loaded onto or transierred to data processing
system 100 for execution by processor umt 104. Program
code 118 and computer readable media 120 form computer
program product 122 1n these examples. In one example,
computer readable media 120 may be computer readable
storage media 124 or computer readable signal media 126.
Computer readable storage media 124 may include, for
example, an optical or magnetic disk that 1s inserted or
placed mto a drive or other device that 1s part of persistent
storage 108 for transfer onto a storage device, such as a hard
drive, that 1s part of persistent storage 108. Computer
readable storage media 124 also may take the form of a
persistent storage, such as a hard drive, a thumb drive, or a
flash memory, that 1s connected to data processing system
100. In some 1nstances, computer readable storage media
124 may not be removable from data processing system 100.
In these illustrative examples, computer readable storage
media 124 1s a non-transitory computer readable storage
medium.

Alternatively, program code 118 may be transferred to
data processing system 100 using computer readable signal
media 126. Computer readable signal media 126 may be, for
example, a propagated data signal containing program code
118. For example, computer readable signal media 126 may
be an electromagnetic signal, an optical signal, and/or any
other suitable type of signal. These signals may be trans-
mitted over communications links, such as wireless com-
munications links, optical fiber cable, coaxial cable, a wire,
and/or any other suitable type of communications link. In
other words, the communications link and/or the connection
may be physical or wireless 1n the 1llustrative examples.

In some 1llustrative embodiments, program code 118 may
be downloaded over a network to persistent storage 108
from another device or data processing system through
computer readable signal media 126 for use within data
processing system 100. For instance, program code stored in
a computer readable storage medium 1n a server data pro-
cessing system may be downloaded over a network from the
server to data processing system 100. The data processing
system providing program code 118 may be a server com-
puter, a client computer, or some other device capable of
storing and transmitting program code 118.

Data processing system 100 may be used to convert a
virtual 1mage from one virtual environment to another
virtual environment. For example, a virtual image may be
stored 1n persistent storage 108. Processor unit 104 may run
program code 118 and create a second virtual 1mage in
persistent storage 108. The first virtual image may be loaded,
at least 1n part, into memory 106 for the conversion. Pro-
cessor unit 104 may locate a compatibility matrix in persis-
tent storage 108 for use during the conversion. Alternatively,
data processing system 100 may receive part or all of the
compatibility matrix using communications unit 110. For
example, part or all of the compatibility matrix may be
received over a network.

The different components illustrated for data processing
system 100 are not meant to provide architectural limitations
to the manner in which different embodiments may be
implemented. The different 1llustrative embodiments may be
implemented 1n a data processing system including compo-
nents 1n addition to or 1n place of those 1llustrated for data
processing system 100. Other components shown 1n FIG. 1

10

15

20

25

30

35

40

45

50

55

60

65

6

can be varied from the illustrative examples shown. The
different embodiments may be implemented using any hard-
ware device or system capable of running program code. As
one example, the data processing system may include
organic components integrated with morganic components
and/or may be comprised entirely of organic components
excluding a human being. For example, a storage device
may be comprised of an organic semiconductor.

As another example, a storage device 1n data processing
system 100 1s any hardware apparatus that may store data.
Memory 106, persistent storage 108, and computer readable
media 120 are examples of storage devices 1n a tangible
form.

In another example, a bus system may be used to 1imple-
ment communications fabric 102 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using
any suitable type of architecture that provides for a transfer
of data between different components or devices attached to
the bus system. Additionally, a communications unit may
include one or more devices used to transmit and receive
data, such as a modem or a network adapter. Further, a
memory may be, for example, memory 106, or a cache, such
as found 1n an interface and memory controller hub that may
be present 1n communications fabric 102.

The different illustrative embodiments recognize and take
into account several considerations. For example, the dii-
terent 1llustrative embodiments recognize that starting vir-
tual machines and reinstalling operating systems to convert
virtual machines from one virtual environment to another 1s
time intensive. Additionally, user error may occur 1n 1nstal-
lation of device drivers or configuration of operating system
settings 1n the new virtual machine.

The different 1llustrative embodiments also recognize and
take 1nto account that converting the virtual machine from
one virtual environment to another virtual environment may
be performed while the virtual machine 1s offline. A virtual
machine 1s oflline when the virtual machine 1s not runming,
in a hypervisor. When the virtual machine 1s offline, the
virtual machine 1s represented 1n the form of a virtual 1image
on a physical disk.

Additionally, a compatibility matrix may be used to
identify files that should be replaced while the contents of
the old virtual machine are copied to the new wvirtual
machine. The configuration settings, device drivers, and
other software may be installed or configured during the
conversion that ensures that conversions of virtual machines
are performed consistently, regardless of the user perform-
ing the conversion.

Thus, the different illustrative embodiments provide a
method, computer program product, and apparatus for con-
verting a first image for a virtual machine formatted for a
first virtual environment. A second 1image 1s created, wherein
the second 1mage 1s non-specific to any virtual environment.
A determination 1s made whether a portion of files to be
copied from the first virtual image to the second virtual
image should be replaced using a compatibility matrix,
wherein the compatibility matrix identifies changes between
the first virtual environment and a second virtual environ-
ment. A replacement for the portion of the files 1s copied to
the second 1mage using the compatibility matrix responsive
to a determination that the portion of the files 1n the set of
files should be replaced. The file 1s copied to the second
image responsive to an absence of a determination that the
cach file in the set of files should be replaced.

Turning now to FIG. 2, an 1llustration of a virtual image
conversion environment 1s depicted 1 accordance with an

US RE46,748 E

7

illustrative embodiment. Virtual image conversion environ-
ment 200 may be implemented 1n a set of computer systems.
For example, virtual image conversion environment 200
may be implemented in one computer system, such as data
processing system 100 1n FIG. 1. Alternatively, components
of virtual image conversion environment 200 may be located
in a set of computer systems. In these examples, virtual
image conversion environment 200 1s implemented 1n com-
puter system 202.

Computer system 202 1s a data processing system, such as
data processing system 100 1n FIG. 1. Computer system 202
contains virtual environment 204, compatibility matrix 206,
virtual environment 208, and 1mage 218.

Virtual environment 204 is software that runs on com-
puter system 202. Virtual environment 204 causes computer
system 202 to run commands sent by virtual machine 210 on
hardware associated with computer system 202. For
example, virtual environment 204 may send and receive
network communications using real world hardware asso-
cliated with computer system 202 on behalf of virtual
machine 210. In this way, virtual environment 204 runs as an
intermediary between computer system 202 and virtual
machine 210. In these examples, virtual environment 204 1s
hypervisor 205. Of course, 1n some 1illustrative embodi-
ments, virtual environment 204 may contain multiple hyper-
visors 205. For example, virtual environment 204 may
contain multiple hypervisors 205 when virtual environment
204 1s running on multiple computer systems configured to
share processing operations among the computer systems,
such as a cloud environment.

Virtual machine 210 1s a collection of virtual hardware on
which other software 1s run. For example, virtual machine
210 has a virtual processor that runs an operating system.
Virtual machine 210 also may have one or more virtual hard
disk. The wvirtual hard disk stores and retrieves data as
requested by soltware running on virtual machine 210.
However, the virtual hard disks are stored on a physical disk
associated with computer system 202 in the form of 1image
212. Image 212 1s a file on the physical disk associated with
computer system 202 that contains all data virtual machine
210 stores on a virtual hard disk.

Image 212 contains files 214. Files 214 are files that are
stored 1n a file system by virtual machine 210 in response to
istructions from software running on virtual machine 210.
Files 214 may include, for example, operating system files,
data files, or other suitable files. Other examples of files 214
are executable programs, such as operating system binaries,
and device drivers.

In these examples, computer system 202 receives an input
to convert virtual machine 210 running 1n virtual environ-
ment 204 to virtual machine 216 runming on virtual envi-
ronment 208. Virtual environment 208 1s a virtual environ-
ment like wvirtual environment 204 such that wvirtual
environment 208 and virtual environment 204 have the same
hardware architecture, memory address space size for bina-
ries running in virtual environments 208 and 204, and type
and version of operating system of virtual machines 210 and
216, respectively. Hardware architecture 1s the design of the
processor being used. For example, the hardware architec-
ture may be x86. Memory address space size 1s the size of
the space that may be used by the application in memory. For
example, the memory address space size may be 32-bait.
However, virtual environment 208 uses a diflerent image
format, file system layout, operating system configuration
settings, and device drivers than virtual environment 204.

10

15

20

25

30

35

40

45

50

55

60

65

8

For example, virtual environment 204 may be Amazon EC2,
and virtual environment 208 may be VMWare ESXi1. The
input may be a user iput.

Computer system 202 creates image 218. Image 218 1s a
virtual hard disk image that 1s not specific to any virtual
environment 220. Image 218 begins as a blank image. For
example, image 218 may be a blank virtual hard disk image
in raw 1mage format 222. Raw 1mage format 222 1s a format
in which data 1s divided into sectors and stored in the 1image.

Once 1mage 218 1s created, computer system 202 pro-
cesses compatibility matrix 206. Compatibility matrix 206 1s
a data source that describes the modifications to be made to
an 1mage configured to run on a virtual machine 1n one
virtual environment to use the image in another virtual
machine 1n another virtual environment.

Compatibility matrix 206 describes configuration of file
system 223 used by virtual environment 208. For example,
in an 1llustrative environment 1n which virtual environment
208 1s Amazon EC2, compatibility matrix 206 describes file
system 223 to be created 1n 1image 218 such that image 218
contains three partitions: a root partition, a storage partition,
and a swap partition. Computer system 202 configures
image 218 for use 1n virtual environment 208 by creating file
system 223 according to the description in compatibility
matrix 206 with respect to the type of virtual environment
208.

Compatibility matrix 206 also describes changes 224 to
be made while copying image 212 to image 218 such that
image 218 1s usable on virtual machine 216 running 1in
virtual environment 208. Changes 224 are replacement {files
236 that are copied to image 218 instead of portion 230 of
files 214. Portion 230 1s a set of files described 1n compat-
ibility matrix 206 as being incompatible and/or unusable
with virtual machine 216 running in virtual environment
208. Replacement files 236 may be located 1n library of files
238. Library of files 238 1s a collection of replacement files
236. The collection may be divided 1n a set of different ways.
For example, collection of replacement files 236 may be
divided by the particular operating system, virtual environ-
ment with which the files are compatible, and/or other
suitable factors. Library of files 238 takes the form of a
folder hierarchy in one illustrative embodiment.

Compatibility matrix 206 also describes software 226 to
be stalled on 1image 218 such that image 218 1s usable 1n
virtual machine 216. For example, software 226 may consist
ol set of device drivers 228 for virtual hardware on virtual
machine 216. In one 1llustrative embodiment, set of device
drivers 228 consists of a display driver and a network
interface card driver.

Once computer system 202 identifies changes 224, and
soltware 226, computer system 202 begins copying files 214
to 1mage 218. Some of files 214 make up operating system
229. Operating system 229 is software that runs on virtual
machine 210 or virtual machine 216 to allow other software
to communicate with the virtual hardware of virtual machine
210 or virtual machine 216. For example, operating system
229 may be Fedora Linux.

While computer system 202 copies files 214, computer
system 202 also processes changes 224. Computer system
202 processes changes 224 by not copying portion 230 of
files 214 1dentified in compatibility matrix 206. Instead,
computer system 202 stores replacement files 236 1n image
218 1n place of portion 230.

Replacement files 236 are a set of {iles that are specific to
virtual environment 208. In other words, replacement {iles
236 are used when running image 218 on virtual machine
216 to allow 1mage 218 to be usable by virtual machine 216.

US RE46,748 E

9

In these examples, portion 230 consists of kernel files 232
and ram disk files 234. Kemel files 232 are files used by an
operating system, such as operating system 229, to commu-
nicate with virtual hardware, such as the virtual hardware of
virtual machine 216. Ramdisk files 234 are files loaded 1nto
the virtual main memory of virtual machine 216 during the
startup process of virtual machine 216. Of course, kernel
files 232 and ramdisk files 234 are merely examples of types
of files that may be replaced using portion 320 and replace-
ment files 236. In other 1llustrative embodiments, other types
of files may be replaced using portion 320 and replacement
files 236.

Once copying of files 214 1s complete, computer system
202 then nstalls software 226 onto 1image 218. Software 226
consists of set of device drnivers 228 1n these examples. Set
of device drivers 228 are software that describes how
operating system 229 may communicate with virtual hard-
ware 1n virtual machine 216. For example, set of device
drivers 228 may consist of a display driver, a network driver,
an put device dniver, other suitable device drnivers. Of
course, computer system 202 may also install software 226
during the copying process.

Computer system 202 then performs set of modifications
240 to operating system 229. Set of modifications 240 are
changes to configuration settings that allow operating sys-
tem 229 to be configured for virtual machine 216 1n virtual
environment 208. In other words, set of modifications 240
are changes to system configuration settings that are specific
to the virtual hardware of virtual machine 216. For example,
set of modifications 240 may consist of network settings,
disk configuration or layout settings, or other suitable set-
tings.

Image 218 1s now 1n hypervisor-specific form 242. Hyper-
visor-specific Torm 242 1s a format usable by virtual envi-
ronment 208. In these examples, virtual environment 208 1s
hypervisor 244. In some 1llustrative embodiments, computer
system 202 then associates image 218 with virtual machine
216. For example, computer system 202 may set virtual
machine 216 to use image 218 as the primary startup disk for
virtual machine 216. Virtual machine 216 may then be
started 1n virtual environment 208.

The illustration of virtual 1image conversion environment
200 1s not meant to imply physical or architectural limita-
tions to the manner in which different features may be
implemented. Other components 1 addition to and/or 1n
place of the ones illustrated may be used. Some components
may be unnecessary in some illustrative embodiments. Also,
the blocks are presented to illustrate some functional com-
ponents. One or more of these blocks may be combined
and/or divided into different blocks when implemented 1n
different illustrative embodiments.

For example, virtual environment 204 may run on com-
puter system 202, while virtual environment 208 may be run
on another computer system. Additionally, portion 230 may
contain other types of files described by compatibility matrix
206 than kernel files 232 and ram disk files 234. For
example, portion 230 may also contain library files.

Additionally, software 226 may consist of additional
soltware besides set of device drivers 228. For example,
software 226 may also consist of network management
software.

Turning now to FIG. 3, an 1illustration of a compatibility
matrix 1s depicted 1n accordance with an illustrative embodi-
ment. Compatibility matrix 300 1s an example implementa-
tion of compatibility matrix 206 in FIG. 2. Compatibility
matrix 300 describes modifications that are to be performed
when converting a virtual image from a particular hypervi-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

sor to another hypervisor. For example, compatibility matrix
300 may be used to describe the modifications to be per-
formed when converting an 1image running Fedora Linux
version 11 from VMWare ESXi1 to Amazon Machine Image.
In these examples, compatibility matrix 300 1s designed by
a human operator.

Compatibility matrix 300 has three axes 1n this 1llustrative
embodiment: operating system version axis 302, hypervisor
axis 304, and operating system type axis 306. When a
computer system converts an image irom one hypervisor to
another, the computer system 1dentifies the operating system
and version installed in the 1image running in the source
hypervisor by finding the entries on operating system type
axis 306 and operating system version axis 302 associated
with the appropriate operating system and version. For
example, the 1mage running 1n the source hypervisor may
have SuSE Enterprise Linux Server (SLES) 10.3 1nstalled.

The computer system then identifies the hypervisor run-
ning the source 1image and the target hypervisor for the new
image. The computer system uses compatibility matrix 300
to locate the entries associated with the two hypervisors that
are also associated with the appropriate operating system
and version. For example, assume the hypervisor running
the source 1image 1s Amazon Machine Image, the operating
system 1s SuSE Enterprise Linux Server version 10.3, and
the target hypervisor 1s VMWare ESXi. The computer
system would use compatibility matrix to identily entry 308
and entry 310. Each of entry 308 and 310 contain the
appropriate files, software, and configuration settings for the
respective hypervisors running the particular operating sys-
tem.

FIGS. 4 and 5 are examples of entries 308 and 310 1n
compatibility matrix 300. FIGS. 4 and 3 depict examples of
files, configuration settings, and drivers that are installed or
copied into the new 1image to run the new 1mage 1n the target
hypervisor.

Turning now to FIG. 4, an 1llustration of a source hyper-
visor entry 1 a compatibility matrix 1s depicted i accor-
dance with an 1illustrative embodiment. Source hypervisor
entry 400 1s an example implementation of entry 310 1n FIG.
3.

Source hypervisor entry 400 describes details of the
configuration of the source hypervisor image for the con-
version 1n this illustrative embodiment. The source hyper-
visor 1s an example of virtual environment 204 1n FIG. 2.
Entry 402 indicates that the image type of the image to be
converted 1s a disk image. The computer system processing
source hypervisor entry 400 uses entry 402 to identify how
the source 1mage 1s to be loaded for the copying of data to
the target image.

Entry 404 describes specifics of network configuration
used by the source hypervisor. No data 1s stored 1n entry 404,
sO no action 1s performed 1n response to entry 404. Entry 406
describes the layout of the file system 1n the source hyper-
visor. The layout of the file system may describe mount
points or drives that are used by the source hypervisor. No
data 1s stored in entry 406, so no action 1s performed 1n
response to entry 406.

Entry 408 describes the configuration of Rivest, Shamir
and Adleman (RSA) keys in the source hypervisor. A
hypervisor may use RSA keys stored in particular locations
in order to encrypt and decrypt data stored 1n the image or
communicated on a network. No data 1s stored 1n entry 408,
sO no action 1s performed 1n response to entry 408. Entry 410
describes software services that are configured to startup
with the operating system on the source hypervisor. In this
illustrative example, the VMWare Tools software may be

US RE46,748 E

11

present on the source 1mage. In such an 1llustrative example,
entry 408 may also contain instructions for removing
VMWare Tools when converting an image from a source
hypervisor to a target hypervisor. For example, the instruc-
tions may include files not to be copied, files to be replaced,
or changes to be made to particular files.

Entry 412 describes the kernel files and ram disk files used
by the source hypervisor. In this i1llustrative example, entry
412 describes that a ram disk and VM Ware-compatible
kernel files are to be installed for the source hypervisor.
Entry 412 describes information used to convert an image to
the hypervisor described by source hypervisor entry 400.
Because source hypervisor entry 400 i1s directed to the
source hypervisor in this illustrative example, the directives
in entry 412 are i1gnored.

Of course, the contents of source hypervisor entry 400 are
exemplary and should not be construed as limiting. Source
hypervisor entry 400 may have additional entries and/or
data, or fewer entries and/or less data. For example, source
hypervisor entry 400 may also have an entry describing
display settings used by the source hypervisor.

Turning now to FIG. 3, a target hypervisor entry in a
compatibility matrix 1s depicted in accordance with an
illustrative embodiment. Target hypervisor entry 500 1s an
example implementation of entry 308 in FIG. 3.

Target hypervisor entry 500 describes details of the con-
figuration of the target hypervisor for the conversion in this
illustrative embodiment. The target hypervisor 1s an example
of virtual environment 208 1 FIG. 2. Entry 502 describes
the type of 1image used by the target hypervisor. In this
illustrative example, entry 502 describes that the image 1s to
be a partition 1mage. A partition 1image 1s an image that
contains data for only particular partitions in the wvirtual
image. Thus, 1n some illustrative examples, not all partitions
used 1n the target hypervisor are contained in the virtual
image. For example, a swap partition may not be present 1n
a virtual image when entry 502 describes that the image 1s
to be a partition 1mage. Prior to files being copied to the
image, soltware installed, and modifications made, the com-
puter system converts the raw 1mage, such as image 218, to
a partition 1mage 1n accordance with entry 502.

Entry 504 indicates that the ethO network interface 1s to be
created in the target image. EthO 1s an idenftifier for a
particular network adapter in the operating system. The
computer system may install a set of device drivers, such as
set of device drivers 228 in FIG. 2, and/or make set of
modifications 240 to operating system configuration settings
to create the virtual ethO network interface.

Entry 506 describes the file system layout used by the
target hypervisor. The first drive 1s mounted at the root of the
file system (*/”’). The second drive 1s mounted 1n the file
system at the folder (*/mnt”), and the third drive 1s mounted
as swap space. Swap space 1s disk space used as an extension
of main memory when main memory 1s not large enough to
contain the data loaded into main memory. The computer
system may 1nstall a set of device drivers, such as set of
device drivers 228 1n FIG. 2, and/or make set of modifica-
tions 240 to operating system configuration settings to create
the virtual file system described 1n entry 506.

Entry 508 describes the configuration of Rivest, Shamir
and Adleman (RSA) keys in the source hypervisor. A
hypervisor may use RSA keys stored in particular locations
in order to encrypt and decrypt data stored 1n the 1mage or
communicated on a network. In this illustrative embodi-
ment, the computer system will store RSA keys in the
illustrated folder when converting the image for use 1n the
target hypervisor.

10

15

20

25

30

35

40

45

50

55

60

65

12

Entry 510 describes the software services that are run at
system startup. Since entry 310 described that VMWare
tools are to be removed 11 present in the source image, the
VMWare tools are to be removed from the image for use
under the target hypervisor. Entry 512 describes the kernel
files and ram disk files that are used by the operating system
in the virtual machine to commumnicate with the virtual
hardware 1in the virtual machine. Entry 512 describes the
kernel files that are to be installed. In some 1illustrative
embodiments, the kernel files may be located 1n a library of
files 1n which particular files are associated with the com-
binations of operating systems, versions, and hypervisors
with which they are compatible. In this illustrative embodi-
ment, the package “kernel-xenpae-2.6.16.60-
0.29.1586.rpm” 1s to be installed 1n the target image during
the conversion.

Of course, the contents of target hypervisor entry 500 are
exemplary and should not be construed as limiting. Target
hypervisor entry 500 may have additional entries and/or
data, or fewer entries and/or less data. For example, target
hypervisor entry 500 may also have an entry describing
display settings used by the target hypervisor.

With reference now to FIG. 6, a process for converting a
first image for a virtual machine formatted for a first virtual
environment 1s depicted 1n accordance with an illustrative
embodiment. The process may be implemented by computer
system 202 1n FIG. 2.

The process begins by creating a second 1image (step 602).
The second 1mage 1s non-specific to any virtual environ-
ment. For example, the second 1image may be 1n a raw
format. The process then formats the second image for a
second virtual environment (step 604). In these examples,
the process formats the second 1mage by creating a number
of partitions and a file system on each partition, as described
in a compatibility matrix with respect to the second virtual
environment. The process then determines whether a portion
of the files to be copied from the first virtual 1image to the
second virtual image should be replaced using the compat-
ibility matrix (step 606). The compatibility matrix identifies
changes between the first virtual environment and the sec-
ond virtual environment. The compatibility matrix may be
compatibility matrix 300 in FIG. 3. The changes may be
replacement files, modifications to the operating system in
the second 1mage, software to be installed, or other suitable
changes.

IT at operation 606 the process determines that the portion
of the files 1n the set of files should be replaced, the process
copies a replacement for the portion of the files to the second
image using the compatibility matrix (step 608). The
replacement files may be located in a library of files asso-
ciated with a particular operating system, version, and
virtual environment. The process determines that the portion
of the files 1n the set of files should be replaced when the
compatibility matrix describes the files that are being copied
as files that are to be replaced in the second image. For
example, kernel files and/or ram disk files may be files that
should be replaced. The process terminates thereatter.

IT at step 606 the process determines that the portion of the
files 1n the set of files should not be replaced, the process
copies the file to the second 1mage (step 610). The process
terminates thereatter.

Turning now to FIG. 7, a flowchart of a process for
converting a source 1mage for a source virtual machine
formatted for a source virtual environment to a target image
for a target virtual machine formatted for a target virtual

US RE46,748 E

13

environment 1s depicted in accordance with an 1llustrative
embodiment. The process may be performed by computer
system 202 1 FIG. 2.

The process begins by mounting the file system of the
source 1mage in the computer system (step 702). Mounting
the file system of the source image makes the contents of the
source 1mage accessible to the operating system running on
the computer system. The process then creates a list of all
files 1n the source 1image (step 704). The process then creates
a blank raw 1mage for the target hypervisor of appropriate
s1ze, creates a file system 1n the raw 1mage, and mounts the
file system to the computer system (step 706). The appro-
priate size may be nput by a user or 1dentified based on the
s1ze of the source image. The raw 1mage 1s an 1mage format
that 1s not specific to a particular hypervisor.

The process then copies the contents of the file system 1n
the source immage ito the target image, replacing {iles
described 1n the compatibility matrix with replacement files
and 1installing software as described in the compatibility
matrix (step 708). The compatibility matrix contains an
entry for the operating system running on the source image
tor the target hypervisor. The entry describes which files are
to be replaced with which files and which software and/or
device drivers are to be installed. The replacement files and
software/device drivers are used to allow the operating
system being copied to the target image to communicate
with the virtual hardware 1n the target hypervisor. The virtual
hardware 1n the target hypervisor may communicate differ-
ently and operate differently than the virtual hardware 1n the
source hypervisor.

The process then performs operating system configuration
used by the target hypervisor (step 710). The operating
system configuration may consist of modifying operating
system settings to reflect diflerent hypervisor configurations.
For example, the network configuration may be different
between the source hypervisor and the target hypervisor.

The process may also bundle the target image in the
appropriate format used by the target hypervisor. For
example, the process may compress the target image 1n
accordance with the entry in the compatibility matrix for the
target hypervisor. The process terminates thereafter.

The ftlowchart and block diagrams in the different
depicted embodiments 1illustrate the architecture, function-
ality, and operation of some possible implementations of
apparatus and methods in different illustrative embodiments.
In this regard, each block 1n the flowchart or block diagrams
may represent a module, segment, function, and/or a portion
ol an operation or step.

In some alternative implementations, the function or
functions noted 1n the block may occur out of the order noted
in the figures. For example, 1n some cases, two blocks shown
1in succession may be executed substantially concurrently, or
the blocks may sometimes be executed 1n the reverse order,
depending upon the functionality involved. Also, other
blocks may be added in addition to the 1llustrated blocks in
a flowchart or block diagram.

For example, the process may use a format other than raw
format for the image 1n step 706. The format may be any
format usable by the computer system. Additionally, the
software 1n step 708 may consist of additional programs,
such as VMWare Tools, that allow the operating system
running in the virtual machine to access the real-world
hardware more directly than through the virtual machine.

Thus, the different illustrative embodiments allow an
image for a virtual machine 1n a source virtual environment
to be converted to a target virtual environment without
starting a virtual machine associated with the source or

10

15

20

25

30

35

40

45

50

55

60

65

14

target images. The compatibility matrix allows 1mages to be
converted consistently and costing less time to perform the
conversion. Individuals may not even know the specifics of
how to convert the 1image from one to another. Rather, they
may simply provide the identities of the source and target
hypervisors. Additionally, software components and con-
figuration settings for the software components are pre-
served by the conversion. In other words, reinstallation
and/or reconfiguration of the soiftware components 1s not
performed.

Thus, the different illustrative embodiments provide a
method, computer program product, and apparatus for con-
verting a first image for a virtual machine formatted for a
first virtual environment. A second 1magge 1s created, wherein
the second 1mage 1s non-specific to any virtual environment.
A determination 1s made whether a portion of files to be
copied from the first virtual image to the second virtual
image should be replaced using a compatibility matrix,
wherein the compatibility matrix 1identifies changes between
the first virtual environment and a second virtual environ-
ment. A replacement for the portion of the files 1s copied to
the second 1mage using the compatibility matrix responsive
to a determination that the portion of the files 1 the set of
files should be replaced. The file 1s copied to the second
image responsive to an absence of a determination that the
cach file 1n the set of files should be replaced.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted 1n the block may occur out
of the order noted in the figures. For example, two blocks
shown 1n succession may, 1n fact, be executed substantially
concurrently, or the blocks may sometimes be executed 1n
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks 1n the block diagrams and/or flowchart illustration,
can be mmplemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are itended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used 1n this specification, specity the
presence ol stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, matenals, acts, and equiva-
lents of all means or step plus function elements 1n the
claims below are intended to include any structure, matenal,
or act for performing the function 1n combination with other
claimed elements as specifically claimed. The description of
the present mvention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the mnvention in the form disclosed. Many
modifications and variations will be apparent to those of

US RE46,748 E

15

ordinary skill 1n the art without departing from the scope and
spirit of the mvention. The embodiment was chosen and
described 1n order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the immvention for
various embodiments with various modifications as are
suited to the particular use contemplated.

The mvention can take the form of an enftirely hardware
embodiment, an enftirely software embodiment or an
embodiment containing both hardware and software ele-
ments. In a preferred embodiment, the mvention 1s 1mple-
mented 1n software, which includes but 1s not limited to
firmware, resident software, microcode, etc.

Furthermore, the invention can take the form of a com-
puter program product accessible from a computer-usable or
computer-readable medium providing program code for use
by or 1n connection with a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer readable medium can be any
tangible apparatus that can contain, store, communicate,
propagate, or transport the program for use by or in con-
nection with the instruction execution system, apparatus, or
device.

The medium can be an electronic, magnetic, optical,
clectromagnetic, infrared, or semiconductor system (or
apparatus or device) or a propagation medium. Examples of
a computer-readable medium include a semiconductor or
solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), a ngid magnetic disk and an optical disk.
Current examples of optical disks include compact disk—
read only memory (CD-ROM), compact disk—read/write
(CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories which provide
temporary storage of at least some program code 1n order to
reduce the number of times code must be retrieved from bulk
storage during execution.

Input/output or I/0 devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled
to the system either directly or through intervening I/0O
controllers.

Network adapters may also be coupled to the system to
ecnable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modem and Ethernet cards are just a few of
the currently available types of network adapters.

The description of the present mmvention has been pre-
sented for purposes of 1llustration and description, and 1s not
intended to be exhaustive or limited to the invention 1n the
form disclosed. Many modifications and vanations will be
apparent to those of ordinary skill in the art. The embodi-
ment was chosen and described 1n order to best explain the
principles of the invention, the practical application, and to
cnable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

What 1s claimed 1is:

1. A method for converting a first virtual 1mage for a
virtual machine formatted for a first virtual environment, the
method comprising:

10

15

20

25

30

35

40

45

50

55

60

65

16

creating a second virtual 1mage, wherein the second
virtual 1mage 1s non-specific to any virtual environ-
ment,

determiming whether a portion of files in a set of files to
be copied from the first virtual image to the second
virtual 1image should be replaced using a compatibility
matrix to produce a determination, wherein the com-
patibility matrix comprises a set of source and target
hypervisor-specific entries and that 1dentifies changes
between the first virtual environment and a second
virtual environment:

responsive to [a] tke determination [that the portion of the
files in the set of files should be replaced], taking an
action that is one of.
copving fo the second virtual image a replacement for

the portion [of the files to the second image] using

the compatibility matrnix when it is determined that
the portion of files in the set of files to be copied
should be veplaced, and

[responsive to an absence of a determination the each
file in the set of files should be replaced], copying
[the] 70 the second virtual image each file [to the

second image] in the set of files to be copied that is
not in the portion when it is determined that the
portion of files in the set of files to be copied should
not be replaced;

wherein at least one of the determining and copying steps

is carried out in software executing in a havdware
element.

2. The method of claim 1 further comprising:

formatting the second virtual 1mage for the second virtual

environment prior to performing the step of determin-
ing whether the portion of the files in a set of files 1o be
copied from the first virtual image to the second virtual
image should be replaced using the compatibility
matrix.

3. The method of claim 1 further comprising:

identitying software for the second virtual environment

using the compatibility matrix; and

installing the sotftware on the second virtual 1mage.

4. The method of claim 3, wherein the software comprises
a set of device drivers.

5. The method of claim 1 further comprising;:

identifying a set of modifications to be made to an

operating system 1n the second virtual image using the
compatibility matrix;

performing the set of modifications to the operating

system 1n the second virtual image.

6. The method of claim 5, wherein the set of modifications
are selected from network settings and disk configuration
settings.

7. The method of claim 1, wherein the portion of the files
are selected from kernel files and ramdisk files.

8. The method of claim 2, wherein the step of formatting,
the second virtual image further comprises:

creating a file system 1n the second virtual image config-

ured for the second virtual environment using the
compatibility matrix.

9. The method of claim 1, wherein the first virtual
environment 1s a first hypervisor and the second virtual
environment 1s a second hypervisor different from the first
hypervisor.

10. A computer program product comprising:

a computer readable storage medium;

computer readable program code, stored on the computer

readable storage medium, for creating a second virtual

US RE46,748 E

17

image, wherein the second virtual 1mage 1s non-specific

to any virtual environment;
computer readable program code, stored on the computer

readable storage medium, for determining whether a

portion of files in a set of files to be copied from [the] 5

a first virtual image to the second virtual image should

be replaced using a compatibility matrix fo produce a

determination, wherein the compatibility matrix com-

prises a set of source and target hypervisor-specific

entries and that identifies changes between [the] a first 10

virtual environment and a second virtual environment:

computer readable program code, stored on the computer
readable storage medium, responsive to the determina-
tion to take an action that is one of:

[for] copying to the second virtual image a replacement 15
for the portion [of the files to the second image]
using the compatibility matrix [responsive to a deter-
mination that the portion of the files in the set of files
should be replaced] when it is determined that the
portion of files in the set of files to be copied should 20
be replaced; and

[computer readable program code, stored on the computer
readable storage medium, for] copying [the] 70 the
second virtual image each file [to the second image

responsive to an absence of a determination the each 25

file in the set of files should be replaced] in the set of

files to be copied that is not in the portion when it is
determined that the portion of files in the set of files to

be copied should not be replaced.

11. The computer program product of claim 10, further 30
comprising;
computer readable program code, stored on the computer
readable storage medium, for formatting the second
virtual 1mage for the second virtual environment prior
to the computer readable program code for determining 35
whether the portion of the files in a set of files to be
copied from the first virtual image to the second virtual
image should be replaced using the compatibility
matrix.
12. The computer program product of claim 10, further 40
comprising:
computer readable program code, stored on the computer
readable storage medium, for identifying software for
the second virtual environment using the compatibility
matrix; and 45
computer readable program code, stored on the computer
readable storage medium, for mstalling the soitware on
the second virtual 1mage.

13. The computer program product of claim 12, wherein
the software comprises a set of device drivers. 50
14. The computer program product of claim 10 further

comprising;
computer readable program code, stored on the computer
readable storage medium, for identifying a set of modi-

fications to be made to an operating system in the 55

second virtual 1image using the compatibility matrix;

computer readable program code, stored on the computer
readable storage medium, for performing the set of
modifications to the operating system in the second

virtual 1mage. 60

15. The computer program product of claim 14, wherein
the set of modifications are selected from network settings
and disk configuration settings.

16. The computer program product of claim 10, wherein
the portion of the files are selected from kernel files and 65
ramdisk files.

18

17. The computer program product of claim 11, wherein
the computer readable program code for formatting the
second virtual 1image further comprises:

computer readable program code, stored on the computer

readable storage medium, for creating a file system 1n
the second virtual image configured for the second
virtual environment using the compatibility matrix.

18. An apparatus comprising;:

a bus system;

a storage device connected to the bus system, wherein the

storage device includes program code; and

a processor unit connected to the bus system, wherein the

processing unit executes the program code to create a
second virtual image, wherein the second virtual 1mage
1s non-speciiic to any virtual environment, determine
whether a portion of files in a set of files to be copied
from [the] a first virtual image to the second virtual
image should be replaced using a compatibility matrix
to produce a determination, wherein the compatibility
matrix comprises a set of source and target hypervisor-
specific entries and that 1dentifies changes between
[the] a first virtual environment and a second virtual
environment, based on the determination, take an
action that is one of: copy to the second virtual image
a replacement for the portion [of the files to the second
image] using the compatibility matrix [responsive to a
determination that the portion of the files in the set of
files should be replaced] when it is determined that the
portion of files in the set of files to be copied should be
replaced, and copy [the] to the second virtual image
each file [to the second image responsive to an absence
of a determination the each file 1n the set of files should
be replaced] in the set of files to be copied that is not
in the portion when it is determined that the portion of
files in the set of files to be copied should not be
replaced.

19. The apparatus of claim 18, wherein the processor unit
further executes the program code to format the second
virtual 1image for the second virtual environment prior to the
processor unit executing the program code to determine
whether the portion of the files in a set of files to be copied
from the first virtual image to the second virtual 1mage
should be replaced using the compatibility matrix.

20. The apparatus of claim 18, wherein the processor unit
further executes the program code to i1dentily software for
the second wvirtual environment using the compatibility
matrix, and install the software on the second virtual image.

21. The method as described in claim 1 wherein the
portion is a subset of the set of files described in the
compatibility matrix as being incompatible or unusable with
a second virtual machine to be used to run the second virtual
image in the second virtual envivonment.

22. The computer program product as described in claim
10 wherein the portion is a subset of the set of files described
in the compatibility matrix as being incompatible or unus-
able with a second virtual machine to be used to run the
second virtual image in the second virtual environment.

23. The apparatus as described in claim 18 wherein the
portion is a subset of the set of files described in the
compatibility matrix as being incompatible or unusable with
a second virtual machine to be used to vun the second virtual
image in the second virtual envivonment.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

