(19) United States

12y Reissued Patent
Van Eijndhoven et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE46712E

US RE46,712 E
Feb. 13, 2018

(54) DATA PROCESSING DEVICE AND METHOD
OF COMPUTING THE COSINE
TRANSFORM OF A MATRIX

(71)
(72)

Applicant: KONINKLIJKE PHILIPS N.V.

Inventors: Josephus Theodorus Johannes Van
Eijndhoven, Waalre (NL); Fransiscus
Wilhelmus Sijstermans, Los Altos, CA
(US)

(73) Koninklijke Philips N.V., Eindhoven

(NL)

Assignee:

(21) 14/263,659

(22)

Appl. No.:

Filed: Apr. 28, 2014

Related U.S. Patent Documents

Reissue of:

(64) Patent No.:
Issued:
Appl. No.:
Filed:

6,397,235
May 28, 2002
09/270,438
Mar. 16, 1999

(30) Foreign Application Priority Data

Mar. 18, 1998 (EP) 98200867

(51) Int. CL
GOGF 17/14
GOGF 9/30

U.S. CL
CPC

(2006.01)
(2006.01)

(52)
........ GO6F 17/147 (2013.01); GO6F 9/30014
(2013.01); GO6F 9/30036 (2013.01); GO6F

930145 (2013.01)

Field of Classification Search
CPC GO6F 9/00; GO6F 9/3001; GO6F 9/30032;
GO6F 9/30036; GO6F 9/30145; GO6F
9/30054; GO6F 17/147; GO6F 15/8015;
GO6F 9/30014; GO6F 9/30016; HO4AN

19/577
See application file for complete search history.

(58)

10

(56) References Cited
U.S. PATENT DOCUMENTS
4,689,762 A 8/1987 Thibodeau
5,128,760 A 7/1992 Chauvel et al.
5,230,057 A 7/1993 Shido et al.
5,361,367 A 11/1994 Fpyany et al.
5,404,550 A * 4/1995 Horst ..coooovvvnn.. GO6F 15/8015
(Continued)
FOREIGN PATENT DOCUMENTS
EP 755015 Al 1/1982
EP 0424618 A2 5/1991
(Continued)

OTHER PUBLICATIONS

“The Architecture of Computer Hardware and Software Systems”,
by Irv Englander, published by John Wiley & Sons, Copyright
2000.*

(Continued)

Primary Examiner — Sam Rimell

(57) ABSTRACT

A data processing device provides for registers which can be
formatted as segments containing numbers to which opera-

tions can be applied in SIMD fashion. In addition 1t 1s

Terent

possible to perform operations which combine di

segments of one register or segments at diflerent positions 1n
the dif.
thus made possible to perform multidimensional separable

erent registers. By providing specially selected it 1s

transformations (like the 2-dimensional IDCT) without
transposing the numbers 1n the registers.

1 Claim, 4 Drawing Sheets

- INSTRUCTION ISSUE UNIT

INSTRUGTICN

DECODER FUNCTIONAL UNIT
INPUT 9 12 120 12a
REGSTER | " J—grplgi—y NPT REGISTER

el @12@
Ell
52

1243 150
S1
5| *;ﬁ g
1834 <t oS3
s e — 7 122d
L
| oupursess|
ARITHMETIC
LOGIC UNIT

12b 12¢

FUNCTIONAL FUNCTIONAL

oo

UNIT T

REGISTER

14

US RE46,712 E

Page 2
(56) References Cited Jp 9305424 A 11/1997
JP 03149348 B2 3/2001
U.S. PATENT DOCUMENTS JP 3199205 B2 8/2001
JP 2008053652 A 6/2008
5,410,727 A 4/1995 Jaffe et al. KR 100190738 Bl 6/1999
5,450,603 A 9/1995 Davies WO 1997008608 Al 3/1997
5,487,133 A * 1/1996 Park et al. GO6K 9/6215 WO 9731308 /1997 oo GOOF 3/14
5,488,570 A 1/1996 Agarwal WO 9731308 Al 8/1997
5,493,513 A 2/1996 Keith et al. WO 9733236 Al 971997
5493.514 A 7/1996 Keith et al. WO WQO9733236 9/1997 ... GOG6F 17/14
5,508,942 A 4/1996 Agarwal WO 9948025 A3 9/1999
5,509,129 A 4/1996 Guttag et al. WO 1999066393 Al 12/1999
5,511,003 A 4/1996 Agarwal
5,515,296 A 5/1996 Agarwal
5,524,265 A 6/1996 B:flmer et al. OTHER PUBLICAIIONS
g:g%g:gig i g;ggg ﬁgaliﬂr;fl;t al Jamieson, L.H. et al. “FFT Algorithms for SIMD Parallel Processing
5,535,138 A 7/1996 Keith Systems”. Journal of Parallel and Distributed Computing 3, 48-71
5,535,410 A 7/1996 Watanabe et al. (1986).
2,937,338 A 7/1996 Coelho Choudhury, M.R. et al. “A 300MHz CMOS Microprocessor with
g’ggg’ggg i ;?iggg Egﬁ:ﬂ{in Multi-MediaTechnology”. ISSCC97/Session 10/High-Performance
5:559:722 A 9/1996 Nickerson Microprocessors/Paper FA 10.4. 1997 IEEE International Solid-
5,588.152 A 17/1996 Barker et al. State Circuits Conference, pp. 170-174.
5,594,679 A 1/1997 Iwata Dahle, D.M. et al. “Kestrel: Design of an 8-bit SIMD parallel
5,630,083 A * 5/1997 Carbine et al. GO6F 9/30145 processor’. (1997). In Proc. 17th Conference. on Advanced
5,636,351 A 6/1997 Lee Research in VLSL. pp. 145-162.
2,638,068 A 6/1997 Nickerson GOOF 17/147 Erickson, Grant. “RISC for Graphics: A Survey and Analysis of
2,049,135 A 711997 Pechanek et al. Multimedia Extended Instruction Set Architectures”. University of
5,703,966 A * 12/1997 Astleccc.o...... HO4N 19/577 _ ’
5,708,836 A 1/1998 Dieffenderfer et al. Minnesota, (1996).
5,710,935 A 1/1998 Barker et al. [ee,. Ruby B. “Multimedia extensions for general-purpose proces-
5,713,037 A 1/1998 Dieffenderfer et al. sors”. Signal Processing Systems, 1997. SIPS 97—Design and
5,717,944 A 2/1998 Dieftenderter et al. Implementatlon., 1997 IEEE Workshop on Nov. 3-5, 1997, pp. 9-23,
5,729,758 A 3/1998 In_oue et al. [eicester, UK.
0,134,877 A 3/1998 Kinsel et al. Witbrock, M. et al. “An Implementation of Back-Propagation
5,734,921 A 3/1998 Dapp et al. . ,
5.736.948 A 4/1998 Kobayashl ot al. Learning on GFll, a Large. SIMD Paralle:l Co.mputt.ar . School of
5,752,067 A 5/1998 Dieffenderfer et al. Computer Science, Carnegie Mellon University, Pittsburgh, PA,
5,754,457 A 5/1998 FEitan et al. 364/725.03 USA Parallel Computing Apr. 1990.
5,754,871 A 5/1998 Dieffenderfer et al. Malek, Homayoun. “Algorithms for Arithmetic Operation (SASP)
5,764,787 A 6/1998 Nickerson | in a Systolic ARR.AY of Single-Bit Processor”. Wafer Scale Inte-
5,822,608 A 1071998 Dieflenderter et al. gration, 1995. Proceedings., Seventh Annual IEEE International
5,870,019 A 2/1999 Die fenderler et al. Conference on Jan. 18-20, 1995, pp. 359-370 1n San Francisco, CA.
5,878,241 A 3/1999 Dieftenderfer et al.
5981 750 A 3/1000 Glass ef al Draper, D. et al. “An)_(86 Mlcr(_)processor with Mul_tlmedla Exten-
5:893:145 A * 4/1999 Thayer et al. 708/401 stons”. ISSCC97/Session 10/High-Performance Microprocessors/
5.909,572 A 6/1999 Thayer et al. Paper FA 10.5. Solid-State Circuits Conference in San Francisco.
5,933.650 A /1999 Van Hook et al. CA. Digest of Technical Papers. 43rd ISSCC., 1997 IEEE Interna-
5,953,241 A 9/1999 Hansen et al. tional. Feb. 8, 1997, pp. 172-173.
5,966,528 A 10/1999 Dieffenderfer et al. Shirakawa, S. et al. “Bitslice-Datapath Architecture for Multimedia
5,991,787 A 11/1999 Abel et al. Processing and Power-Consumption Reduction”. Department of
6,044,448 A 3/2000 Agrawal et al. Computer Science and Communication Engineering, PPRAM-TR-
6,047,360 A 4/2000 Ohara et al. 19, Kyushu University, May 1997 pp. 1-18.
6,058,465 A 5/2000 Nguyen Holmann, E. et al. “Single chip dual-issue RISC processor for
g:gg;:gég i " ;gggg E:E:;Lto “““““““““““““ 20%/401 lf‘)eal-tim.e MPEG2 softwarg decoding”. Journal.of VLSI Signal
6.094.715 A 7/7000 Dieffenderfer ot al rocessing Systems for Signal, Image, and Video Technology,
6,116,768 A 9/2000 Guttag et al. Springer, vol. 18, No. 2 Feb. 1998, pp. 155-164.
6,119,140 A * 9/2000 Murata et al. .oovovovvv.... 708/401 Loefller, C. et al. “Practical Fast 1-D DCT Algorithms with 11
6,175,892 Bl 1/2001 Sazzad et al. Multiplications™. Acoustics, Speech and Signal Processing, 1989,
6,381,690 Bl 4/2002 Lee ICASSP-89, vol. 2, 1989 Conference in Glasgow on May 23-26,
6,735,690 B1* 5/2004 Barry etal. GO6F 9/30054 1989, pp. 988-991.
7,509,366 B2 3/2009 Hansen MMX Arithmetic Instructions. http://www.tommesani.com/
MMX Arithmetic.html, 2008,
FOREIGN PATENT DOCUMENTS MMX Conversion Instructions. http://www.tommesani.com/
MMXConversion.html, 2008.
EP 0444368 Al 9/1991 AMD Extensions to the 3DNow! and MMX Instruction Sets
EP 0656584 Al 6/1995 Manual, 2000.
EP 0680013 A2 11/1995 Using Streaming SIMD Extensions 3 1n Algorithms With Complex
EP 723220 A2 7/1996 Arithmetic, Jan. 2004.
bD 0755015 Al 1/1997 SSSE Primer, Intel Streaming SIMD Extensions (SSE). 2008.
EP 0847551 B1 12/2012 Kalapathy. P “Hard ISofware Tnteracts the Moact Medi
P 63118847 A 5/1088 alapathy, P. “Hardware/Software Interaction on the Mpact Media
P 04242877 A /1997 Processor”, (Chromatic Research), presented on Aug. 20, 1996 at
TP 7141304 A 6/1995 the 8th Hot Chips conference (HCOS, http://www.hotchips.org/
P 249203 A 0/1996 archives/1990s/hc08/).
TP 2008249203 A 0/1996 Kloker, K.L.. et al., “Efticient FFT implementation on an IEEE
JP 9305423 A 11/1997 floating-point ngltal signal processor”. Acoustics, Speech, and

US RE46,712 E
Page 3

(56) References Cited
OTHER PUBLICATIONS

Signal Processing, 1989, ICASSP-89, International Conference,
May 23-26, 1989, pp. 1302-1305, vol. 2, Glasgow.

Ramaswamy, S. et al., “Efficient implementation of the two dimen-
sional discrete cosine transform for image coding applications on
the DSP96002 processor”. Circuits and Systems, 1993, Proceedings
of the 36th Midwest Symposium on Aug. 16-18, 1993. pp. 96-99,
vol. 1, Detroit, MI.

Kalapathy, P., “Hardware-software interactions on Mpact”. IEEE
Micro (vol. 17, Issue 2, pp. 20-26. 1997.

* cited by examiner

US RE46,712 E

| 9 4

4315193
1IN 1907
<t -“\ [DILIWHLEY
: [T 1 I o D
,_w Al ll \
|

5 ml.._i\im

LIND iV Nk u-s—._m

TWNOLLONN ©0CC 1 WNOLINN l-_-inl_.

= L]
=] _ 0zl M-
e ez 9%\ | Bzl
- Gee! 300030
M LIN TYNOILONN NOLIISN

LINA 3NSSENOILONYLON

0}

U.S. Patent

US RE46,712 E

Sheet 2 of 4

Feb. 13, 2018

U.S. Patent

US RE46,712 E

Sheet 3 of 4

Feb. 13, 2018

U.S. Patent

r SRR SR P—

J7AN
AT

VRV AND-<

T DA M
] [i
08t a6t o6t

U.S. Patent Feb. 13, 2018 Sheet 4 of 4 US RE46,712 E

FUNCTIONAL UNIT

20 INSTRUCTION
DECODER

ETIC
FIG. 42 e

FUNCTIONAL UNIT

48
INSTRUCTION DECODER INPUT

SECTION

™~ QUTPUT
SECTION

ARITHMETIC

creurs —— FIG. 4

US RE46,712 E

1

DATA PROCESSING DEVICE AND METHOD
OF COMPUTING THE COSINE
TRANSKFORM OF A MATRIX

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough

indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

This application claims the benefit or priority of and
describes the relationships between the following applica-
tions: wherein this application is a reissue of U.S. Pat. No.

6,397,235, issued May 28, 2002, from U.S. patent applica-
tion Ser. No. 09/270,438, filed Mar. 16, 1999, which claims
priority of foreign application EP 98200867 filed Mar. 18,

1998, all of which are incorporated herein in whole by
reference.

The 1nvention relates to a data processing device.

Such a data processing device 1s known from PCT patent
application No. 97/31308. This data processing device
allows for parallel processing under control of parallel
instructions like SIMD instructions (Single Instruction Mul-
tiple Data). A SIMD 1nstruction applies the same operation
a number of times in parallel. The SIMD 1nstruction typi-
cally defines two operands, normally 1n terms of register
addresses. The content of each of these operands 1s treated
as a plurality of segments of packed data. For example, the
content of a 64-bit register may be treated as four 16 bits
numbers, located at bit positions 0-15, 16-31, 32-47, 48-63
in the register respectively. When the data processing device
encounters the SIMD istruction, the same operation 1is
applied to several diflerent pairs of numbers from the
operands 1n parallel. For example, the content of bit posi-
tions 0-15 1n a first operand register 1s added to the content
of bit positions 0-15 1n a second operand register, the content
of bit positions 16-31 1n a first operand register 1s added to
the content of bit positions 16-31 in a second operand
register and so on.

The SIMD 1instructions can be used to reduce the number
ol mstructions that needs to be executed to perform a given
function. For example, consider the function of performing
a discrete cosine transform (IDCT) of individual columns of
a block of pixel values. The pixel values of diflerent rows of
the blocks are stored in different operands. In each operand,
the pixel value i1s stored 1n a segment at a position deter-
mined by 1ts column. Thus, a first register might contain a
pixel value from a first row, first column at bit positions
0-15, and a pixel value from the first row, second column at
bit positions 16-32 and so on. A second register might
contain pixel values from a second row, pixel values from
different rows being stored 1n the same way according their
column. As a result execution of a series of mstructions that
code for the operations for applying the IDCT to one column
automatically performs the IDCT for a number of columns
in parallel if the anthmetic operations are all performed
using SIMD instructions. This reduces the number of
instructions that needs to be executed.

In case of a separable two-dimensional IDCT the one
dimensional IDCT needs to be applied to individual columns
and to individual rows of the block. In this case a similar
reduction 1n the number of instructions can be obtained
when the roles of rows and columns are interchanged
between the transformation of the columns and the trans-

10

15

20

25

30

35

40

45

50

55

60

65

2

formation of the rows. The roles of rows and columns can be
interchanged by means of transposition of the block. Trans-
position brings different pixel values of a column into the
same register instead of different pixel values from the same
row. Transposition mvolves moving the content of corre-
sponding positions (corresponding to the same column)
from different registers to different positions 1n another
register. Unfortunately, transposition itself requires execu-
tion of a considerable number of additional 1nstructions. As
a result the two dimensional transform requires more than
twice the number of mstructions needed for the one dimen-
sional transform.

This limitation on the advantage of SIMD occurs more
generally 11 functions have to be programmed that require
the combination of data from noncorresponding positions in
the packed data. In this case one cannot use SIMD paral-
lelism to treat content of operands as a packed format
containing 1independent numbers, or at least additional
operations are needed to reshuille the data before SIMD
operations can be used.

It 1s an object of the invention to provide for a processing,
device as set forth 1n the preamble which makes it possible
to reduce the number of instructions that needed to be
executed even further.

Thus 1t 1s possible to program parallel operations that
make mutually different combinations of segments of the
operands, combining segments at positions in the operands
that are not equal to each other or using mutually different
operations. This 1n contrast to the prior art SIMD instruc-
tions which apply the same operation to each time to a pair
of segments located at 1dentical positions. For example, an
instruction according to the invention might cause the num-
ber stored at bit positions 0-15 of an operand register to
added to the number stored at bit positions stored at bit
positions 16-31 1n parallel with adding of the numbers stored
at bit positions 32-47 and the number stored at bit positions
48-63.

One may provide instructions both for operations that
combine segments located 1n the same operand register and
for operations that combine segments located in difierent
operand registers. Any one or more segments may be used
in more than one operation. The operations executed 1n
parallel may all be the same type of operation, say all
additions, or they may be mutually different operations, say
additions and subtractions.

Usually, only a very limited set of application specific
istructions for combining segments will be provided 1n
addition to SIMD instructions. For example, when an
instruction 1s available which provides for an operation like
addition between certain segments at diflerent positions, 1t 1s
not necessary to provide a set of instructions which program
for that operation between all possible pairs of segments.
Similarly, if an instruction 1s available which combines
certain pairs ol segments each with its own operation (at
least one of the operations being different from the others)
then 1s not necessary to provide an instruction set for all
possible combinations of operation applied to those seg-
ments. For any given application one needs to provide only
a small fraction of all possible operations or combinations of
operations and/or a small fraction of all possible combined
segments.

For a separable two-dimensional transformation on a
block the invention makes it possible to reduce the number
of required 1nstructions without transposing the block. Each
register may still contain different pixel values from one
row, with different register storing pixel values from the
same column 1n the same segment. Then the transformation

US RE46,712 E

3

of the columns will still be performed using SIMD instruc-
tions, but the transformation of the rows 1s performed by
means ol parallel operations that combine pixel values from
the same row, located 1n different segments.

For example, one might provide an IDCT instruction
which computes the IDCT of an entire row from pixel values
of that row stored 1n the different segments of the operand
registers referred to 1n the IDCT instruction. Also one might
provide operations which compute the sum and difference of
the contents of pairs of diflerent segments in a register. This
1s a type ol operation that 1s typically required i an IDCT
transforms and similar transforms.

These and other advantageous aspects of the mmvention
will be described in a non-limitative way using the following,
figures.

FIG. 1 shows a data processing device.

FIG. 2 shows an example of a data-flow diagram for an
implementation of an 8 point one dimensional IDCT.

FIG. 3 shows a data flow diagram of instructions accord-
ing to the mvention.

FIGS. 4a,b show a functional units for executing an
istruction according to the invention.

FIG. 1 shows a VLIW type (Very Long Instruction Word)
data processing device. Although the invention 1s 1llustrated
using a VLIW type device, 1t 1s not limited to such a device.
The device contains an instruction 1ssue unit 10, a number
of functional units 12a-c and a register file 14. The nstruc-
tion 1ssue unit 10 has an instruction output coupled to the
functional units 12a-c and the register file 14. The register
file 14 has read/write ports coupled to operand inputs/
outputs of the functional units 12a-c.

One functional unit 12a 1s shown in more detail. This
functional unit 12a contains an instruction decoder 120, a
number of ALU’s (Arithmetic/Logic units) 122a-d, a first
and second input register 124a,b and an output register 126.
The instruction decoder 1s connected to the ALU’s 122a-d.
The mput registers 124a,b are divided into a number of
segments. The segments of the first and second 1nput reg-
1sters 124a.b are connected to the ALU’s 122a-d.

In operation, the instruction 1ssue unit 10 accesses the

successive 1nstructions of a program and i1ssues these
instructions to the functional units 12a-c. An instruction
issued to a functional unit 12a-¢ typically contains an
opcode, two source register addresses and a result register
address (these elements of the instruction are not necessarily
1ssued simultaneously). The opcode defines the operation or
operations that the functional unit 12a-c¢ must perform. The
source register addresses refer to registers 1n the register file
14 where the operands are stored upon which this operation
or operations must be performed. The 1nstruction 1ssue unit
10 applies these addresses to the register file 14. The result
register address refers to the register in the register file 14
where the result of the operation or operations must be
stored. The instruction 1ssue unit 10 applies the result
register address to the register file 14.

Most functional units 12a-c treat the content of each
register as one number. E.g. 1f the register 1s made up of 64
bits, 1ts content 1s treated as a 64 bit number that can be
added to other 64 bit numbers, arithmetically or logically
shifted etc. However, at least some of the functional units
12a-c are capable (or also capable) of treating the content of
the registers as a set of numbers, stored in respective
segments ol the register. Special operations can be per-
formed 1n parallel on these numbers, independently of one
another: 1n such special operations carry-bits don’t carry

10

15

20

25

30

35

40

45

50

55

60

65

4

from one segment to the other and shitts don’t shift bits from
one segment to the other, any clipping 1s performed for each
segment 1ndependently etc.

Functional unit 12a i1s a functional unit that treats the
content of each register as a plurality of segments, each
segment containing a separate number. For this purpose, all
registers are notionally divided into segments 1n the same
way. When an istruction 1s executed, the content of respec-
tive segments ol the particular source registers referred to in
the 1nstruction are applied to respective ones of the ALU’s
122a-d.

In case of a SIMD 1nstruction the position of the segments
at the same position in the two source operand are supplied
to the same ALU 122a-d. For example, 11 the operand has 64
bits bit positions 0-135, 16-31, 32-47, 48-63 may constitute
four segments S0, S1, S2, S3 respectively. The content of bit
positions 0-15 of both operands 1s supplied to a first one of
the ALU’s 122a, the content of bit positions 16-31 of both
operands 1s supplied to a second one of the ALU’s 122b and
so on. Again in case of the SIMD instruction, the instruction
decoder 120 applies the same control code to all of the
ALU’s 122a-d. The ALU’s 122a-d therefore all perform the
same type of operation (e.g. addition), but on different
segments.

SIMD 1nstructions may be applied for example to com-
pute a one dimensional transform of a number of columns of
a block B of numbers B, ; 1=0.n, j=0.m), e.g. an 83x8 block
(n=7, m=7). To do so, numbers from the same rows of the
block are loaded into different segments of a register. For
example, numbers B, ,, By, By,, By; are loaded mto
segments S0, S1, S2, S3 of a first register R1 respectively,
Bg 4, Bo s, Bos, Bo 7 are loaded into segments S0, S1, S2, S3
of a second register R2 respectively, B, ,, B, |, B, ,, B 5,
are loaded 1nto segments S0, S1, S2, S3 of a third register R3
respectively, B, 4, B, 5, B, 4, B, ; are loaded mto segments
S0, S1, S2, S3 of a fourth register R4 respectively and so on.

Now assume that a program 1s available to perform the
transformation on one column, the program being expressed
in 1nstructions which include arithmetic instructions like
add, subtract, multiply etc. applied to registers which con-
tain the numbers for one column B, ; 1=0.n. If SIMD 1mstruc-
tions are used for all these arithmetic instructions then this
program will automatically compute the transform in par-
allel for a number of columns 1=0.3. Thus, in case of a block
with N-columns and P numbers 1n respective segments of
cach register, the program would need to be executed only
N/P times to transform the N columns.

In case of a separable two-dimensional transformation, all
of the columns may be transformed in this way. Subse-
quently the rows of the resulting transformed block must all
be transformed. An example of such a two dimensional
transformation 1s the two dimensional IDCT. In this case the
transformed block A, ; 1s expressed by

Aij=2/NZ, % C,C, B,

((2j+1)va/2N)

where Cu=1/sqrt(2) 1f u=0 and C =1 otherwise and the sums
run over the integers from O to N-1. This two-dimensional
transformation can be computed by first obtaining an inter-
mediate block INT, , by a one-dimensional transtormation
according to

cos ((21+1)u w/2N) cos

INT, =%, C, B

St ¥ Bl FIRY

cos ((21+1)um/2N)

and subsequently applying a one-dimensional transform to
the 1ntermediate block

A; =2/N'3, C, INT;, cos ((2j+1)va/2N)

US RE46,712 E

S

Thus, the two-dimensional transformation 1s computed as a
composition of two one dimensional transformations, one
transforming B mto INT and the other transforming INT 1nto
A (“composition” of two transformations means that one
transformation 1s applied to the result of applying the other
transformation). In the example of the IDCT 1t does not
matter which one-dimensional transformation 1s applied
first: 1n the example one sums first along the first index u of
the block B, ,, and subsequently along the second index v,
but that order may be inverted without aflecting the end
result.

Such a two stage two-dimensional transformation can be
speeded up using SIMD instructions. When the numbers
B, , of the intermediate block B are stored as described in
the preceding. 1.e. with several numbers B, , v=0, 1, 2, 3 of
a row 1n respective segments of a register, the computation
of the intermediate block INT, , can be performed by trans-
forming a number of columns (all numbers having v=0 1n the
first column, v=1 1n the second column and so on) 1n
parallel.

Similar parallel processing using SIMD instructions 1is
possible 1f the numbers from the intermediate block INT are
stored 1n the registers so that several number of a column are
stored 1n one register, e.g. 1f the segments of a first register
store INT,, 1=0.3, v=0, respectively, the segments of a
second register store INT, |, 1=4.7, v=0, the register ot a third
register INT, , 1=0.3, v=1 and so on. In this case a number of
rows ol the intermediate block INT can be transformed in
parallel using SIMD 1instructions.

However, after the computation of the intermediate block
INT from the block B, the numbers will not be stored 1n the
register in this way, with several numbers INT, ,, 1=0.3, v=0
from one column 1n a register, but instead several numbers
INT,, 170, v=0.3 from each row will be stored in each
register. This 1s because the computation of the intermediate
block requires separate one dimensional transformation of
respective columns, whereas the computation of the final
block A requires separate one dimensional transformations
ol respective rows.

In order to be able to use SIMD 1nstructions for both types
ol transformations the intermediate block needs to be trans-
posed: the numbers have to be regrouped over the registers.
This 1s a complicated operation: 1n the example of an 8x8
block with 4-segment registers one needs 16 registers and 32
operations with two-inputs for the transposition.

The invention aims at avoiding the transposition. For the
transformation of the rows the arrangement of the numbers
of the intermediate block wherein registers contain different
numbers from the same row 1s retained, and special mnstruc-
tions are used that combine these numbers from these
registers in order to perform the one dimensional transior-
mation in the row that 1s stored in these registers.

These istructions make it possible to perform a two-
dimensional separable transformation without transposition.
Without farther measures, the combination of such special
instructions for one dimension and the SIMD type of opera-
tions for two or more further dimensions can be used to
perform higher than 2 dimensional transformations as well.

In the most straightforward implementation at least one
functional unit 1s provided that 1s capable of performing the
entire IDCT of a row. In case of an 8-point IDCT using
registers that each contain four respective numbers from a
column, such an instruction would need two operand reg-
isters and two result registers.

FIG. 2 shows an example of a data-flow diagram for an
implementation of an 8 point one dimensional IDCT. The
data-flow diagram 1s based on expressions described 1n an

10

15

20

25

30

35

40

45

50

55

60

65

6

article published by C.Loefller, A.Ligtenberg and G.
Moschytz, titled “Practical Fast 1-D DCT Algorithms with
11 multiplications™, published 1n Proceedings International
Conference on Acoustics, Speech and Signal Processing
1989 (IC-IASSP ’89) pages 988-991. At the left, nodes
30a-h symbolize the numbers by means of the value of the
index v at positions v=0.7 in the row that has to be
transformed. At the right nodes 32a-h symbolize the trans-
formed numbers by means of the value of the index j at
positions 1 =0.7 1n the transformed row. The lines from the
nodes 32a-h symbolize data flow of the numbers to diflerent
operations and of data flow of the results from these opera-
tion to other operations or to the transformed numbers. The
operations are symbolized as follows. A dot with two solid
incoming lines symbolizes summation. A dot with one
incoming solid line and one incoming dashed line symbol-
1zes subtraction, the number flowing along the dashed line
being subtracted from the number flowing along the solid
line. A box with two iputs and two outputs symbolizes

rotation and factorization, that 1s, the computation of (X,
Y,) from (X,,Y,) according to

X =(Xy cosgp—Y gsIn)

Y (=0(X, cosgp+Y 5cos @)

The value of the factor a and an 1dentification of the angle
¢ are noted on the box; these are predetermined values: the
blocks can be implemented using four multiplication’s, an
addition and a subtraction (alternatively three multiplica-
tion’s and three additions can be used).

In one immplementation at least one functional unit 1s
provided which 1s capable of executing a row-IDC'T 1nstruc-
tion that causes that functional unit to IDCT-transform the
contents of the segments of 1ts operands. In the example of
an 8-point IDCT with four segments 1n each a register, this
would require two operands to transiform a row. Such an
instruction requires two result registers in which the num-
bers that represent the transformation are written 1n respec-
tive segments according to their frequency position in the
transformation.

Execution of the IDCT by such a functional unit 1s much
faster than execution by means of individual instructions at
least because the combination of numbers stored in seg-
ments at different positions 1n the operands can be realized
by wiring in the functional unit. This wiring 1s specific to the
IDCT. In addition, the data-tflow diagram of FIG. 3 shows
that a considerable amount of parallelism is possible 1n such
a Tunctional umit, so the speed of execution can be increased
turther by parallel execution of a number of operations.

Thus, the 2-dimensional IDCT transformation can be
performed for the columns using arithmetic SIMD 1nstruc-
tions to apply a one-dimensional IDCT-transformation to a
number of columns in parallel and for the rows using a
different, dedicated IDCT 1instruction to apply a functionally
identical IDCT-transformation to a row.

Some processor architectures require that functional unaits
use a standard mstruction format, typically containing an
opcode, two source register references and a result register
reference. In this case each functional unit may have two
ports connected to read ports of the register file and one port
connected to a write port of a register file. In case of an IDCT
instruction which transforms numbers stored 1n more than
one register, more than one result register will be needed to
write the transformed numbers. In architectures that allow
only one result register this may be realized 1n various ways,
for example by writing the results time-sequentially 1n
logically adjacent result registers. Alternatively, one may use

US RE46,712 E

7

a combination of two instructions issued in parallel to the
functional units. Such two instructions would normally be
used for two different functional units 1n parallel. Instead,
one uses the combination of the two 1nstructions to program
one functional unit that performs IDCT. By using this 5
combination of two 1nstructions, two separate result regis-
ters can be specified. In a processor that provides a write port
to the register file for each of the instructions that 1s 1ssued
in parallel 1t 1s moreover ensured in this way that a write port
to the register file 1s available for both results. 10

Alternatively, one might define two diflerent types of
instruction for the functional units, one for generating half
the numbers 1n a register and another one for generating the
other half of the numbers.

More generally, one may provide several dedicated 15
instructions for respective parts of the computation of the
IDCT, none of the mnstructions requiring more than a maxi-
mum number (e.g. one) of result registers. In order to select
such mstructions, one may split the IDC'T data-flow diagram
into sub-diagrams and assign a dedicated instruction to each 20
sub-diagram. By selecting only sub-diagrams with a limited
number of outputs 1t can be ensured that no more than one
result register 1s required for any of the dedicated nstruc-
tions.

FIG. 3 shows an example of a split-up into sub-diagrams 25
indicated by dashed boxes 39a-g. Fach of these boxes
defines the data-tlow of a number of a dedicated instructions
which provide combinations of operations that are executed
in parallel to help speed up the computation of transforma-
tion. The required number of segments 1n the results of each 30
instruction 1s limited to four. These instructions are espe-
cially defined so that the locations of numbers 1n respective
segments correspond to the location required for the SIMD
transiformation, that 1s, with the numbers indicated by v=0.3
at the left of FIG. 3 1n respective segments of a first register 35
R1 and the numbers indicated by u=4.7 1n respective seg-
ments ol a second register R2.

A first example of a first instruction INS1 R1,R2,R3
corresponding to a first dashed box 39a refers to the two
registers R1, R2 as operands. This instruction causes a 40
functional unit to perform the following operations in par-
allel:

Sum the number (v=0) in a first segment of the first

register R1 to the number (v=4) 1n the first segment of
the second register R2. The result 1s placed 1n a first 45
segment ol a result register R3.

Subtract the same numbers from one another and place

the result 1n a second segment of the result register R3.

Use the numbers 1n a third segment (v=2) of the first

register R1 and the third segment of the second register 50
R2 as X, and Y, 1n a rotation with a factor sqrt(2) and
a predetermined sine and cosine value. Place the result-
ing X,, Y, are in the third and fourth segment of the
result register.
FIG. 4b shows an example of a functional unit 40 for 55
executing the INS1 instruction. The functional unit 40
contains two 1put sections 42, 46 for receiving the content
of the first register R1 and the second register R2 respec-
tively, an istruction decoder 48 for setting the functional
unit into action, and arithmetic circuits 44a-c for computing 60
the sum of the first segment S0 of R1 and R2, the difference
of the first segment of R1 and R2 and the rotation of the third
segment S2 of R1 and R2. The results of these computations
1s combined 1nto the segments S0-S3 of an output section 49
for writing into the result register R3. 65

A second example of a second instruction INS2 R3,R4

corresponding to a second dashed box 39b refers to one

8

register R3 as operand. This instruction causes a functional
unit to perform the following operations 1n parallel:

Sum the numbers stored 1n the first and fourth segment of
the operand register R3 and place the result 1n a first
segment of a result register R4

Sum the numbers stored in the second and third segment
of the operand register R3 and place the result 1n a
second segment of a result register R4

Subtract the number 1n the third segment of the operand
register R3 from the number 1n the second segment of
the operand register R3 and place the result in the third
segment of the result register R4.

Subtract the number 1n the fourth segment of the operand

register R3 from the number in the first segment of the
operand register R3 and place the result in the fourth

segment of the result register R4

FIG. 4a shows an example of a functional unit 20 for
executing the INS2 instruction. The functional unit 20
contains an input section, for receiving the content of the
operand register R3, arithmetic units 24a-b, 25a-b for com-
puting the sums and subtractions; an instruction decoder 28
for setting the functional unit 20 into action and an output
section 26. The results of the sums and subtractions 1s
combined into the segments S0-S3 of the output section 26
for writing into the result register R4.

A third example of a third instruction INS3 R4,R5,R6
corresponding to a third dashed box 39c¢ refers to two
registers R4, RS as operands. This instruction causes a
functional unit to perform the following operations 1n par-
allel:

Sum the numbers stored in the first segment of the first
operand register R4 and the fourth segment of the
operand register RS and place the result 1in the first
segment of the result register R6

Sum the numbers stored in the second segment of the first
operand register R4 and the third segment of the second
operand register RS and place the result in the second
segment of the result register R6

Sum the numbers stored in the third segment of the first
operand register R4 and the second segment of the
second operand register RS and place the result 1n the
third segment of the result register R6

Sum the numbers stored in the fourth segment of the first
operand register R4 and the first segment of the second
operand register RS and place the result in the fourth
segment of the result register R6

A fourth example of a fourth instruction INS4 R4,R5,R6
corresponding to a dashed box 39h refers to two registers
R4, RS as operands. This 1nstruction causes a functional unit
to perform the following operations 1n parallel:

Subtract from the number stored 1n the first segment of the
first operand register R4 the number stored 1n the fourth
segment of the operand register RS and place the result
in the fourth segment of the result register R6

Subtract {from the number stored 1n the second segment of
the first operand register R4 the number stored 1n the
third segment of the second operand register RS and
place the result in the third segment of the result
register R6

Subtract from the number stored in the third segment of
the first operand register R4 the number stored 1n the
second segment of the second operand register RS and
place the result 1in the second segment of the result
register R6

Subtract from the number stored in the fourth segment of
the first operand register R4 the number stored 1n the

US RE46,712 E

9

first segment of the second operand register RS and
place the result 1n the fourth segment of the result
register R6
A fifth example of a fifth instruction INS5 R1,R2,R7 cor-
responding to a fourth dashed box 39d refers to two registers
R1, R2 as operands. This 1nstruction causes a functional unit
to perform the following operations 1n parallel:

Place the numbers from the fourth segment of the first
source register R1 and the second segment of the
second source register R2 into the second and third
segment of the result register R7 respectively.

Use the numbers 1n a third segment (v=2) of the second
register R2 and the second segment of the first register
R1 as X, and Y, 1n a rotation with a factor 2 and a
predetermined sine and cosine value (corresponding to
45 degrees). Place the resulting X, Y, are in the third
and fourth segment of the result register. (This rotation
can be implemented using fewer multiplication’s
because the sine and cosine of 45 degrees are equal to
cach other).

A sixth example of a sixth instruction INS6 R7,R8 corre-
sponding to a sixth dashed box 39e¢ refers to one register R7
as operand. This instruction causes a functional unit to
perform the following operations in parallel:

Sum the numbers stored in the first and third segment of
the operand register R7 and place the result 1in a first
segment of a result register R8

Sum the numbers stored 1n the second and fourth segment
of the operand register R7 and place the result 1n a
fourth segment of a result register R8

Subtract the number 1n the third segment of the operand
register R7 from the number 1n the first segment of the
operand register R7 and place the result in the third
segment of the result register R8

Subtract the number 1n the second segment of the operand
register R7 from the number 1n the fourth segment of
the operand register R7 and place the result 1 the
second segment of the result register R8

A seventh example of a seventh instruction INS7 R8,R9
corresponding to a seventh dashed box 391 refers to one
register R8 as operand. This instruction causes a functional
unit to perform the following operations 1n parallel:

Use the numbers in a first and fourth segment of the
source register R8 and as

X, and Y, 1n a rotation with a factor sqrt(2) and a

predetermined sine and cosine value. Place the resulting X, ,
Y, are 1n the first and fourth segment of the result register
R9.

Use the numbers in a second and third segment of the
source register R8 and as X, and Y, in a rotation with
a factor sqrt(2) and a predetermined sine and cosine
value. Place the resulting X, Y, are in the second and
third segment of the result register R9.

In these instructions numbers may be represented in the
registers as fixed point numbers, all with the same number
ol bits, so that on multiplication a number of least significant
bits are discarded. Almost all fixed point numbers may be
defined to be 1n a range from +1 to —1. An exception are the
results of the rotation/scalings, which are preferably fixed
point numbers 1n a range from -2 to 2. It has been found that
only insignificant accuracy 1s lost through rounding when
one uses this representation of the numbers and when the
data flow graph 1s split into mstructions as described above.
Preferably, the additions and/or multiplications in these
instructions provide for clipping of results of these mstruc-
tions if the magnitude of the result exceeds the range of
values that can be held 1n the registers. However, 1t has been

10

15

20

25

30

35

40

45

50

55

60

65

10

found that 11 the data flow graph 1s split into instructions 1n
the way shown above, clipping 1s not normally necessary.

When the data processing device provides for all of these
instructions the 8-point IDCT of a row contained in the
segments of two registers R1, R2 can be programmed with
the following program:

INS1 R1,R2,R3

INS2 R3,R4

I R1,R2,R7

R7.R8

R8,R9

R4,R9,RS

INS4 R4,
As a result the numbers making up a row of the IDCT
transform will be contained 1n the segments of register
RS5,R6. To transform a complete block these instructions
must be repeated for the other rows, with other registers as
far as necessary. Needless to say that in a VLIW processor,
with more than one functional unit, although all these
instructions INS1-INS7 may be instructions for the same
single functional unit, 1t 1s also possible that these instruc-
tions may be executed by different functional units. For
example, specialized functional units might be provided for
the mstructions which mnvolve multiplication on one hand
and instructions which mvolve only additions and subtrac-
tions on the other hand.

Different grouping of operations into instructions 1s also
possible. For example, one may combine for example the
operations of INS1 and INS2 into one instruction INSA so
that execution of INSA R1,R2,R4 1s functionally equivalent
to successive execution of INS1 R1,R2.X: INS2 X, R4:
similarly INS5, INS6, INS7 may be combined mnto an
instruction, so that execution of INSB R1,R2,R9 is equiva-
lent to successive execution of INSS5 R1,R2.X; INS6 X,Y:;
INS7 Y,R9. The mstructions INS3 and INS4 can be replaced
by SIMD additions and subtraction respectively, when the
instruction INS7 1s modified so that 1t puts its results into the
segments of the result register 1n reverse order. However, 1n
this case an additional “reverse order” instruction, which
exchanges the contents of segments 0-3 with each other and
the contents of segments 1-2 with each other 1s required.
This instruction must applied to the result of the SIMD
version ol INS4 to get the transformed number 1n the proper
order.

The number of instructions that needs to be executed to
transform the block can be reduced by providing one or
more functional units which accept the instructions INS1-
INS7 and execute the operations 1n parallel combining
different segments of the one or more operands referenced 1n
the 1nstruction. This reduces the time (number of 1nstruction
cycles) needed for the transform. Execution of the IDCT by
such a functional unit 1s much faster than execution by
means of individual 1nstructions at least because the com-
bination of numbers stored in segments at different positions
in the operands can be realized by wiring in the functional
umt. This wiring 1s specific to the IDCT. Of course, a
reduction 1n the required time 1s already achieved if the
functional units provide for only one of the additional
instructions INS1-INS7 or any combination of these mstruc-
tions. If one or more of these instructions are not provided
for, their function can be implemented using conventional
instructions.

Furthermore, the memory space needed for storing pro-
grams 15 reduced, in particular for programs which ivolve
transformations. This benefit would of course be realized
even 11 the operations 1n an instruction were not executed 1n
parallel. The reduced program space would result from

US RE46,712 E

11

instructions that involve arbitrary combinations of opera-
tions. The particular combinations INS1-INS7, however, are
not arbitrary: they have the special property that they
provide operations that combine segments as required for
computing the IDCT, so as to speed up processing and that
turthermore they combine operations that can be executed 1n
parallel to increase the speed of computing the IDCT even
turther.

The examples given above use registers with four seg-
ments to implement an 8-point two-dimensional IDCT, e.g.
64-bit registers with four 16 bit segments. Of course, the
invention 1s not limited to these numbers. One may use
segments of a different size, e.g. 8,12 or 32 bit segments (the
segment need not {ill the entire register) and/or registers with
a different number of bits, e.g. 128-bits. In the latter case a
register with 16-bit segments can store 8 numbers, for
example an entire row of an 8-bit block and the 8-point
IDCT can be executed as an instruction that requires only
one operand register and one result register.

More generally, any kind of program can be speeded up
by providing functional units which are capable of executing,
dedicated instructions imvolving (preferably parallel) execu-
tion of operations which combine operands stored 1n seg-
ments at different positions 1n the registers. The separable
transforms discussed in the preceding are but an example of
this. For a given program, suitable dedicated instructions can
be found by analyzing the data-flow of the program and
1solating often occurring combinations of operations that
combine different segments of the same one or two oper-
ands. When a suitable mstruction 1s found the instruction
decoder 120 and the switch circuit 125 are designed so that
the Tunctional unit 1s capable of handling that instruction.

Preferably these dedicated instructions are combined with
a set of SIMD instructions. In this case, one or more
functional unit either together or individually provide a
complete set of arithmetic instructions 1s provided with
SIMD data flow (combining pairs of segments at corre-
sponding positions in the operands). In addition at least one
functional unit 1s capable of executing a few selected
instructions that combine segments at different positions 1n
one or more operands of the instruction, different, that 1s,
than 1 the SIMD 1nstruction.

This 1s particularly useful for any kind of separable
transformations, not only for the IDCT. Use can be made of
this 1n for example, 2-dimensional fourier transforms or
Hadamard transforms, convolutions with 2-dimensional
separable kernels (such as a Gaussian kernel) H(x,y) which
can be wrntten as H1(x)H2(y) etc and higher than two
dimensional transformations or convolutions. In general, a
separable transform uses a one dimensional transformation
which takes a series of numbers as iput and defines a new
series ol numbers as output. A separable transformation
comprises the composition of two such one-dimensional
transformations. A {first one-dimensional transformation 1s
computed for each of a set of series, producing a set of new
series. A second transformation 1s computed for a transversal
series obtainable by taking numbers from corresponding
positions 1n series from the set of new series.

In each of these cases, the numbers that have to be
transformed may be stored in segments of operands, the
position of the segment 1n which a number is stored being
determined 1n the same way for each row by the column 1n
which the number 1s located, the numbers 1n each operand
belonging to the same row. The transformation can then be
executed 1n the row direction using the dedicated instruc-
tions and a number of times in parallel 1 a direction
transverse to the rows by means of SIMD 1nstructions.

10

15

20

25

30

35

40

45

50

55

60

65

12

What 1s claimed 1s:

[1. A data processing device comprising

an operand storage circuit for storing operands, each
subdivided 1nto a plurality of segments at respective
positions 1n the operand;

an 1nstruction execution unit for executing an 1nstruction
containing one or more operand references, each refer-
ring commonly to the segments of a respective source
operand 1n the operand storage circuit, said instruction

causing the instruction execution unit to execute a

plurality of operations in parallel and independently of

one another, each operation combining predetermined

segments from one or more of the respective source

operands, characterized in that at least one of the

operations combines segments that have mutually dif-

ferent positions 1n the one or more respective source

operands and/or that at least one of the operations
differs from the other operations.]

[2. A data processing device according to claim 1, wherein
said 1nstruction 1s referred to as a cross instruction, the
instruction execution unit also being arranged for executing
a parallel instruction containing two or more further operand
references each referring commonly to the segments of a
respective source operand in the operand storage circuit, said
parallel 1nstruction causing the mstruction execution unit to
execute a plurality of operations in parallel and indepen-
dently of one another, each operation combining predeter-
mined segments from the source operands having mutually
corresponding positions in the two or more referenced
further source operands.]

[3. A data processing device according to claim 2, pro-
grammed with a program for computing a composition of a
column transformation and a row transformation ol a matrix
having at least rows and columns,

the column transformation transforming columns each

according to a one dimensional column transformation,
to the column transformation being executed using the
parallel instruction, the two or more operands each
storing information items for different columns in
respective segments according to the column;

the row transformation transforming rows each according

to a one dimensional row transformation, the row
transformation being executed using the cross instruc-
tion, information items for the same row being stored
in respective segments of the at least one operand.]

[4. A data processing device according to claim 3, where
the row and column transformation correspond to the same
one-dimensional transformation.]

[5. A data processing device according to claim 1, wherein
the operations caused by the instruction comprise computing
a sum and a difference of two segments 1n one of the one or
more source operands.]

[6. A data processing device according to claim 1, wherein
the operations caused by the instruction result in the com-
putation of a plurality of component coetlicients of a vector
transformation, such as an IDCT or DCT, of the numbers
stored 1n the respective segments of the one or more source
operands, the data processing device storing the component
coellicients 1n segments at respective positions of a result
operand commonly referred to by the instruction.]

[7. A data processing device according to claim 6, wherein
the numbers stored in the segments of two or more of the
source operands make up an input vector, which 1s trans-
formed, the component coellicients of the transformation of
the input vector being stored 1n the segments of two or more
result operands.}

US RE46,712 E
13 14

[8. A method of transforming a matrix having at least rows respective positions in the operand wherein each oper-
and columns using a processor having segmented operand and is subdivided into the same plurality of segments at
storage circuits, the method comprising: the same respective positions; and

computing a composition of a column transformation and an instruction execution unit including an instruction

a row transformation, 5 decoder and arithmetic circuits wired to execute an
the column transformation transforming columns each instruction containing an opcode and one or more

operand references, each operand veference of the
instruction veferrving commonly to the segments of a
respective source opervand in the operand storvage cir-
10 cuit, said instruction causing the instruction decoder to
decode the instruction and set the instruction execution
unit to execute a plurality of operations consisting only
of addition and subtrvaction operations in parallel and
independently of one another to generate a vesult that
15 is written to a result vegister subdivided into the same
plurality of segments at the same respective positions
as the operands, each operation of the plurality of

form several operations upon information items for oper aﬁ?m :combf}z fngf by sp '_gdﬁc wir f}?g of r.ke arith-
the same row in parallel, the information items for mez‘xﬁ? circuits of the instruction execution unit, prec?e-
the same row being stored in respective segments of " termined segments from one or more of the r espective
an operand storage circuit referred to in the cross source operands and writing ar esult of f{’w combining
instruction, wherein the row and column transfor- to a segment of the rvesult vegister, wherein each of the
mation correspond to the same one-dimensional operations of ‘tke:-' plz{ralfty of‘ operations caused to
transformation.} execute by ffke mstructft(?n COTnbmes segments that have
[9. A computer readable medium storing a computer 25 mutually differvent positions in the one ov more respec-

program for executing the method according to claim 8.] tive source operands and f”_' least one of fkt? operations
10. A data processing device comprising: caused to execute by the instruction differs from the

an operand storage circuit for storing operands, each other operations caused to execute by the instruction.

operand subdivided into a plurality of segments at %k ok ok *

according to a one dimensional column transforma-
tion, the column transformation being executed

using at least one SIMD 1nstruction which causes the
processor to process diflerent columns 1n parallel,
using information items for the different columns
stored 1n respective segments of an operand storage
circuit referred to 1n the SIMD instruction;

the row transformation transforming rows each accord-
ing to a one dimensional row transformation, the row
transformation being executed using at least one
cross mstruction which causes the processor to per-

	Front Page
	Drawings
	Specification
	Claims

