

US00RE46701E

(19) United States

(12) Reissued Patent

Castonguay et al.

(10) Patent Number:

US RE46,701 E

(45) Date of Reissued Patent:

*Feb. 6, 2018

(54) FIBER OPTIC LOCAL CONVERGENCE POINTS FOR MULTIPLE DWELLING UNITS

(75) Inventors: Guy Castonguay, Shanghai (CN);
Terry Dean Cox, Keller, TX (US);
Thomas Shaw Liggett, Keller, TX
(US); Selena Strickland, Monclova,
OH (US); Elli Makrides-Saravanos,
Highland Village, TX (US); Brent
Michael Frazier, Haslett, TX (US);
Daniel S. McGranahan, Fort Worth,
TX (US); Raymond Glenn Jay,

Mansfield, TX (US)

(73) Assignee: Corning Cable Systems LLC, Hickory,

NC (US)

(*) Notice: This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/162,115

(22) Filed: Jun. 16, 2011

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 7,548,680
Issued: Jun. 16, 2009
Appl. No.: 12/012,144
Filed: Jan. 31, 2008

U.S. Applications:

(63) Continuation of application No. 11/653,137, filed on Jan. 12, 2007, now Pat. No. 7,349,616.

(51) **Int. Cl.**

G02B 6/00 (2006.01) H04J 14/00 (2006.01) G02B 6/44 (2006.01)

(52) **U.S. Cl.**

CPC *G02B 6/445* (2013.01); *G02B 6/4452* (2013.01); *G02B 6/4454* (2013.01); *G02B 6/4471* (2013.01)

(56) References Cited

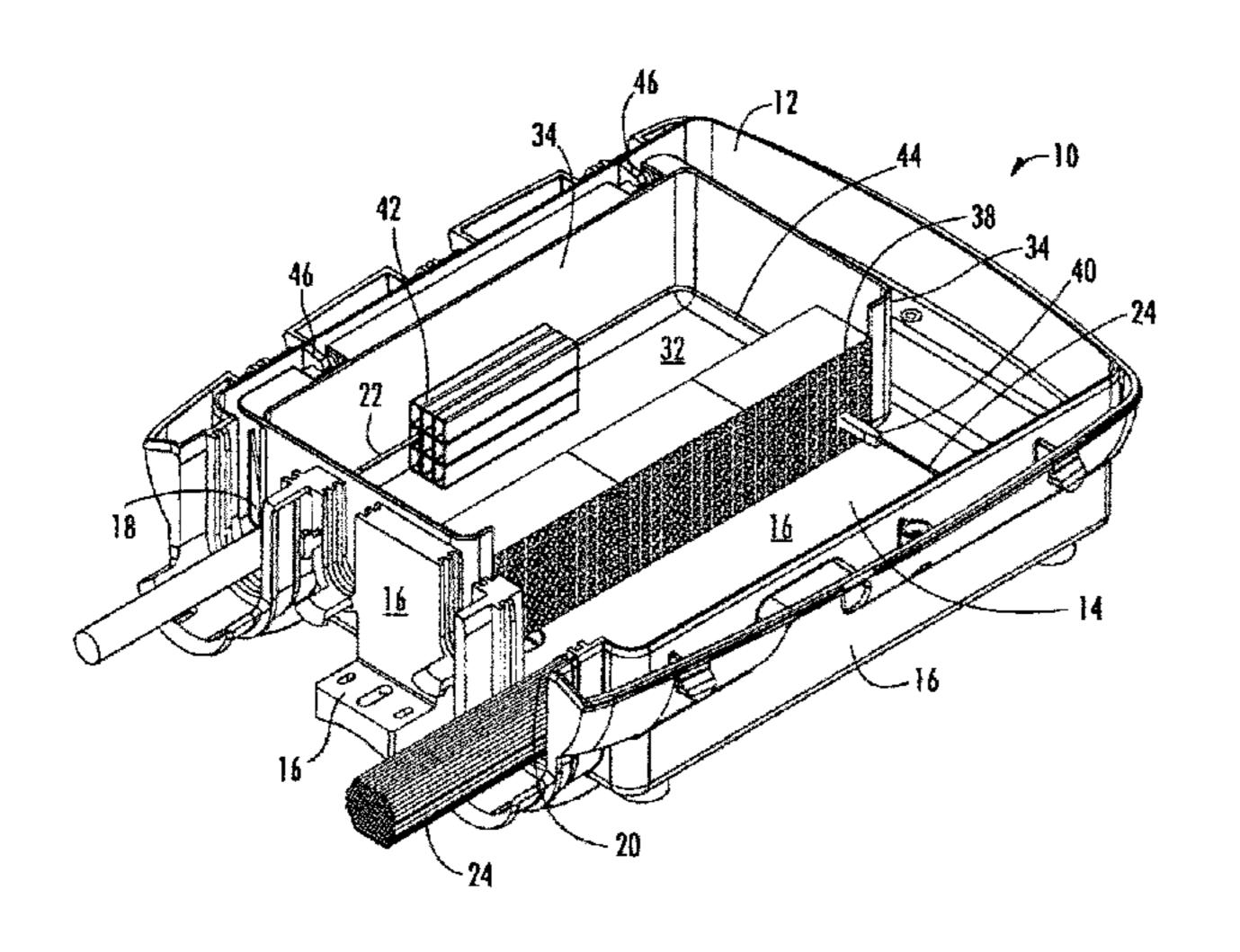
U.S. PATENT DOCUMENTS

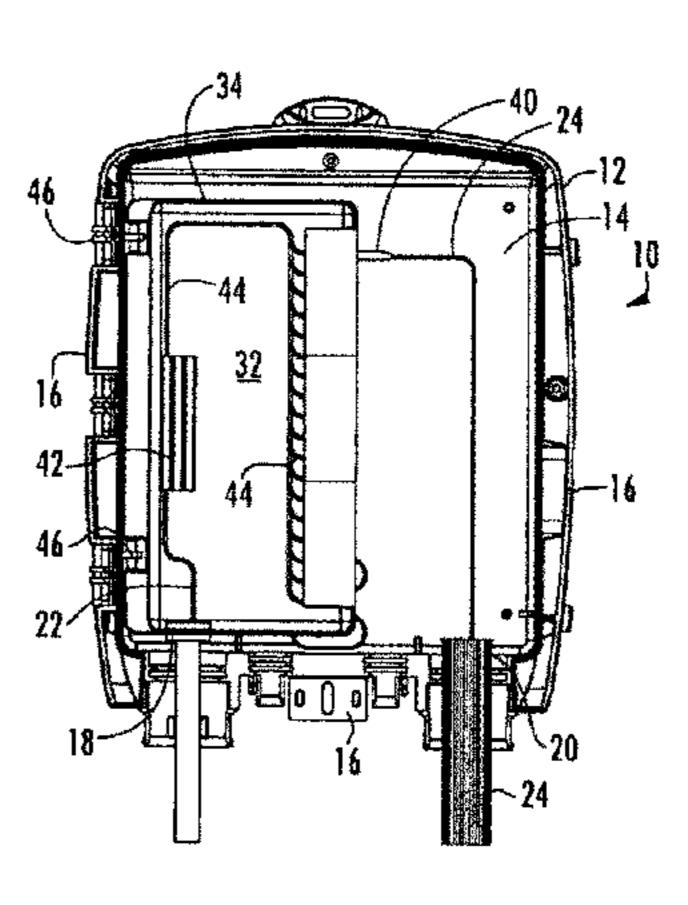
FOREIGN PATENT DOCUMENTS

CN 1632628 A 6/2005 CN 1300607CLI 2/2007 (Continued)

OTHER PUBLICATIONS

Channel Insertion Loss for 1×64 and 1×128 split EPONS. IEEE802.3 Plenary Meeting. Dallas, TX. Nov. 14-16, 2006.*


(Continued)


Primary Examiner — Deandra M. Hughes (74) Attorney, Agent, or Firm — LeClairRyan, a Professional Corporation

(57) ABSTRACT

There are provided fiber optic local convergence points ("LCPs") adapted for use with multiple dwelling units ("MDUs") that facilitate relatively easy installation and/or optical connectivity to a relatively large number of subscribers. The LCP includes a housing mounted to a surface, such as a wall, and a cable assembly with a connector end to be optically connected to a distribution cable and a splitter end to be located within the housing. The splitter end includes at least one splitter and a plurality of subscriber receptacles to which subscriber cables may be optically connected. The splitter end of the cable assembly of the LCP may also include a splice tray assembly and/or a fiber optic routing guide. Furthermore, a fiber distribution terminal ("FDT") may be provided along the subscriber cable to facilitate installation of the fiber optic network within the MDU.

85 Claims, 14 Drawing Sheets

US RE46,701 E Page 2

(52)	U.S. Cl.		7,086,539	B2	8/2006	Knudsen et al.
(32)		1 35 ; 385/24; 385/134; 385/139;	7,086,898			Johnsen et al.
			7,088,889			Takahashi et al.
	·	5/77; 385/99; 385/92; 385/125;	7,088,899			Reagan et al. Knudsen et al.
	3	398/66; 398/67; 398/70; 398/71	7,090,084 7,102,884		_	Mertesdorf et al.
(58)	Field of Classification	n Search	7,102,001			Yamazaki et al 385/39
	USPC 385/24, 13	34, 135, 136, 137, 99, 96, 100,	7,103,255		9/2006	Reagan et al.
	385/88, 8	39, 92, 94, 123, 124, 126, 127,	7,139,461			Puetz et al.
		2, 122; 398/66, 67, 70, 71, 73,	7,142,764			Allen et al.
		398/165	7,146,089 7,149,398			Reagan et al. Solheid et al.
	See application file fo	7,179,398			Solheid et al.	
	see application me re	7,171,102			Reagan et al.	
(56)	Referen	7,173,183	B2		McMahon et al.	
(00)		7,194,181			Holmberg et al.	
	U.S. PATENT	7,200,317 7,218,827			Reagan et al. Vongseng et al.	
			7,218,827			Feustel et al
		Violo et al.	7,233,731			Solheid et al.
		Carney et al. Finzel et al.	7,245,809		7/2007	Gniadek et al.
	5,187,760 A 2/1993 5,249,252 A 9/1993		7,277,620			Vongseng et al.
	, ,	Hakimi et al 372/39	7,295,747 7,298,952			Solheid et al. Allen et al.
	5,274,731 A 12/1993	White	7,230,532			Kessler et al.
	5,363,440 A 11/1994		7,330,626			Kowalczyk et al.
		Vidacovich et al. Richter	7,333,707		2/2008	Puetz et al.
	D362,255 S 9/1995		7,343,071			Laurent-Lund
		Frost et al 385/135	7,349,616 7,359,610			Castonguay et al 385/135 Vongseng
		Finzel et al.	7,366,391			Ellison et al.
		Debortoll	7,369,741			Reagan et al.
	5,734,776 A 3/1998 5,778,131 A 7/1998	Puetz Llewellyn et al.	7,400,816			Reagan et al.
		Vincent et al.	7,406,242 7,409,138		7/2008	Braga Frazier et al.
		Burt 385/142	7,418,181			Zimmel et al.
	5,946,440 A 8/1999		7,421,183			Vongseng
	6,061,492 A 5/2000 6,157,714 A 12/2000	Strause et al. Daoud	7,433,566			Bookbinder et al.
	6,160,946 A 12/2000		•			Miyadera et al 385/45 Bookbinder et al.
	6,256,444 B1 7/2001	Bechamps et al.	7,450,800			Bickham et al.
		Daoud 385/135	7,505,660			Bickham et al.
	6,263,141 B1 7/2001 6,282,360 B1 8/2001	Smith Milanowski et al.	·			Castonguay et al 385/135
		Braga et al.	7,620,282 7,680,380			Bickham et al. Johnson
	6,363,200 B1 3/2002	Thompson et al.	, ,			Smith 385/136
		Janus et al.	2002/0181925			Hodge et al.
		Puetz et al. Solheid et al.	2003/0072518			Henschel et al 385/15
	•	Blake et al.	2003/0113086 2004/0001686			Jun et al
	6,535,682 B1 3/2003		2004/0001030			Yamada et al 385/48
		Mahony 385/15	2004/0228598			
	·	Puetz et al. Broderick et al 385/125				Wang et al 385/37
	6,584,267 B1 6/2003		2005/0021391			Lu et al
	6,614,978 B1 9/2003		2005/0021392 2005/0129379			English et al 705/12 Reagan et al.
	6,631,237 B2 10/2003					Mertesdorf et al 385/135
	6,633,717 B1 10/2003	Allen et al 385/135				Manderscheid et al.
	·	Falkenberg				Ferretti, III et al.
		Lee et al	2005/0205004			Yang et al
		Puetz et al.	2006/0008251	_		Takahashi et al 385/28
	6,760,531 B1 7/2004		2006/0133753			Nelson et al.
		Smith et al 385/135 Kessler et al.	2006/0153516			Napiorkowski et al.
		Clapp et al 385/135	2006/0177190 2006/0193586			Vongseng et al 385/135
		Stanush et al.				Hoehne et al. Makrides-Saravanos
	6,796,437 B2 9/2004	<u> -</u>				et al
		Mahony 439/135 Griffiths et al.				Mudd et al 385/135
	6,815,612 B2 10/2004 11/2004		2006/0275008			
	6,850,685 B2 2/2005	Tinucci et al.	2006/0285807 2007/0003204			Lu et al 385/92 Makrides-Saravanos et al.
	, ,	Hamada Babla et al	2007/0003204			Saravanos et al 385/137
	6,925,241 B2 8/2005 6,959,131 B2 10/2005	Bohle et al. Willig	2007/0035203			Solheid et al.
	,	Belardi et al 385/127	2007/0165995			Reagan et al.
	6,983,095 B2 1/2006	Reagan et al.	2007/0189691			Barth et al.
	, ,	Herz et al	2007/0192817			Landry et al.
		Takahashi et al 385/28 Smith et al.	2007/0212010 2008/0008436			Caveney Reagan et al.
	7,000,001 102 0/2000	ommun vi ai.	2000/0000 1 30	7.3.1	1/2000	reagan et ar.

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0013910	A1	1/2008	Reagan et al.	
2008/0019655	A 1		Vongseng et al.	
2008/0025684	A 1		Vongseng et al.	
2008/0031585	A 1		Solheid et al.	
2008/0042536	A1	2/2008	Guzzo et al.	
2008/0075411	A1	3/2008	Solheid et al.	
2008/0079341	A1	4/2008	Anderson et al.	
2008/0080825	A 1	4/2008	Leon et al.	
2008/0080826	A 1	4/2008	Leon et al.	
2008/0080827	A 1	4/2008	Leon et al.	
2008/0080828	A 1	4/2008	Leon et al.	
2008/0080829	A 1	4/2008	Smith et al.	
2008/0093101	A 1	4/2008	Kessler et al.	
2008/0112675	A 1	5/2008	Lewallen et al.	
2008/0116153	A 1	5/2008	Smith et al.	
2008/0118207	A 1	5/2008	Yamamoto et al.	
2008/0124038	A 1	5/2008	Kowalczyk et al.	
2008/0124039	A 1	5/2008	Gniadek et al.	
2008/0145013	A 1	6/2008	Escoto et al.	
2008/0152292	A1*	6/2008	Wilken et al	385/135
2008/0170833	A1*	7/2008	Castonguay et al	385/135
2008/0212928	A 1	9/2008	Kowalczyk et al.	
2008/0219633	A 1	9/2008	Smith et al.	

FOREIGN PATENT DOCUMENTS

EP	0744640 A1	11/1996
EP	0744640 B1	8/2006
JP	62-27312	2/1987
JP	H02-007009 A	1/1991
JP	H11-326683 A	11/1999
JP	2001-356217 A	12/2001
JP	2002-221638 A	8/2002
JP	2003-262743 A	9/2003
JP	2003-307630 A	10/2003
JP	2004-109730 A	4/2004
JP	2004-126471 A	4/2004
JP	2004-221420 A	8/2004
JP	2004-317838 A	11/2004
JP	2005-115263 A	4/2005
JP	2005-165303 A	8/2006
JP	2006-201662 A	8/2006
JP	2006-313212 A	11/2006
JP	2006-317630 A	11/2006
WO	89/05989 A1	6/1989
WO	91/18311 A2	11/1991
WO	WO 95/06347 A1	3/1995
WO	02/33457 A2	4/2002
WO	WO 2004/086112 A1	10/2004
WO	WO 2005/050277 A2	6/2005
WO	WO 2005/088373 A1	9/2005
WO	WO 2006/050505 A1	5/2006
WO	2006112979 A2	10/2006
WO	WO2006/127457 A1	11/2006
WO	WO 2006/135524 A2	12/2006
WO	WO 2008/088675 A2	7/2008
WO	WO 2008/112179 A1	9/2008

OTHER PUBLICATIONS

Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2008/03128, Feb. 7, 2008.

Pickrell et al., "Novel Techniques for the Fabrication of Holey Optical Fibers" Spie Conference Proceedings, vol. 4578, pp. 271-282; 2001.

Penn Well Corporation, "Bringing Fiber to the multi-dwelling unit", reprinted with revisions to format, from the Oct. 2005 edition of Cabling Installation & Maintenance, Copyright 2005.

SPC TelEquip product sheet, "FiberGard Distribution Terminal 48 Fiber-Indoor/Outdoor", "The compact solution for fiber provisioning", www.spc.net/2005/Fiber%/20Optics%20FiberGard%20 Dist%20Term%2048.html.

Draka Comteq/Optical Fibre, Issue Date: Aug. 2006, Supercedes: -/-, "BendBrightXS Single Mode Optical Fibre, Enhances low macrobending sensitive, low water peak fibre, Product Type: G.652D, Coating Type: ColorLock™ and Natural", www. drakafibre.com www.draka.com, 2 pages.

International Search Report and Written Opinion for PCT/US2008/000095 (Sep. 12, 2008).

Office Action for Australian Patent Application No. 2008226892 (May 19, 2011).

Office Action for Australian Patent Application No. 2008226892 (Sep. 7, 2011).

Office Action for Canadian Patent Application No. 2,679,996 (Nov. 30, 2011).

Office Action for Canadian Patent Application No. 2,754,111 (Nov. 29, 2011).

Office Action for Canadian Patent Application No. 2,754,149 (Nov. 29, 2011).

ADC, "OmniReach FTTX Solutions. Passive Optical Splitter Modules. 6th Edition," 102902AE, Dec. 2008 Revision, Copyright 2008, 2007, 2006, 19 pages.

Corning Cable Systems, "OptiTect® Gen III Splitter Modules," Standard Recommended Procedure (SRP) 000-258, Issue 1, 6 pages (Nov. 2007).

Corning Cable Systems, "OptiTect® Gen III Splitter Modules," Standard Recommended Procedure (SRP) 000-245, Issue 7, 4 pages (Mar. 2009).

Corning Cable Systems, "Outdoor Multidwelling Unit (MDU) with Splitter Modules," Standard Recommended Procedure (SRP) 003-764, Issue 1, 16 pages (Nov. 2007).

Corning Cable Systems, "OptiTect® FDH-HDF Cabinet," Standard Recommended Procedure (SRP) 003-668, Issue 11, 20 pages (Mar. 2004).

Corning Cable Systems, "OptiTect® Premiere Cabinet FDH-HDF," Standard Recommended Procedure (SRP) 003-668, Issue 5, 26 pages (Mar. 2005).

Office Action for Child Continuation Reissue U.S. Pat. No. 14/028,338, 11 pages (dated Feb. 11, 2016).

Office Action for Child U.S. Continuation Reissue Patent U.S. Appl. No. 14/028,338 (Dec. 9, 2014).

U.S. Continuation Reissue Patent U.S. Appl. No. 14/028,338, Child Continuation Reissue Application (filed Sep. 16, 2013).

Coming Cable Systems Recommended Procedure (SRP) 003-718, Issue 2, 24 pages (May 2006).

Coming Cable Systems Standard Recommended Procedure (SRP) 003-735, Issue 4, 31 pages (Sep. 2012).

European Search Report and Opinion for European Application No. EP14180061.5, 13 pages dated Nov. 21, 2014).

Office Action for Canadian Patent Application No. 2,679,996 (Dec. 9, 2016).

Office Action for Canadian Patent Application No. 2,679,996 (Jul. 27, 2015).

Office Action for Canadian Patent Application No. 2,679,996 (Jun. 9, 2014).

Office Action for Canadian Patent Application No. 2,679,996 (Jun. 7, 2013).

Office Action for Canadian Patent Application No. 2,679,996 (Dec. 4, 2012).

Office Action for Canadian Patent Application No. 2,679,996 (Jul. 26, 2012).

Office Action for Canadian Patent Application No. 2,679,996 (Apr. 24, 2012).

Office Action for Canadian Patent Application No. 2,754,149 (Dec. 9, 2016).

Office Action for Canadian Patent Application No. 2,754,149 (Jul. 27, 2015).

Office Action for Canadian Patent Application No. 2,754,149 (Nov. 15, 2013).

Office Action for Canadian Patent Application No. 2,754,149 (Jun. 7, 2012)

7, 2013). Office Action for Canadian Patent Application No. 2,754,149 (Dec.

5, 2012).
Office Action for Canadian Patent Application No. 2,754,149 (Aug.

Office Action for Canadian Patent Application No. 2,754,149 (Aug. 7, 2012).

(56) References Cited

OTHER PUBLICATIONS

Office Action for Canadian Patent Application No. 2,754,149 (Apr. 25, 2012).

Corning® SMF—28e® Optical Fiber Product Information, PI1344, 4 pages (Jan. 2005).

Patent Cooperation Treaty, International Search Report for International Application No. PCT/US2008/000095, Sep. 12, 2008, 2 pages.

International Telecommunication Union, ITU-T G.652, Telecommunication Standardization Sector of ITU, Jun. 2005, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission media characteristics—Optical fibre cables, Characteristics of a single-mode optical fibre and cable, ITU-T Recommendation G.652, 22 pgs.

International Telecommunication Union, ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission media and optical systems characteristics—Optical Fibre Cables, Characteristics of a bending loss insensitive single mode optical fibre and cable for the access network, ITU-T Recommendation G.657, 20 pgs.

Gibson et al., Evanescent Field Analysis of Air-Silica Microstructure Waveguides, IEEE, 0-7803-7105-Apr. 1, 2001, pp. 709-710. Monro et al., "Holey Fibers with random cladding distributions" Optic Letters, vol. 25, No. 4; Feb. 15, 2000.

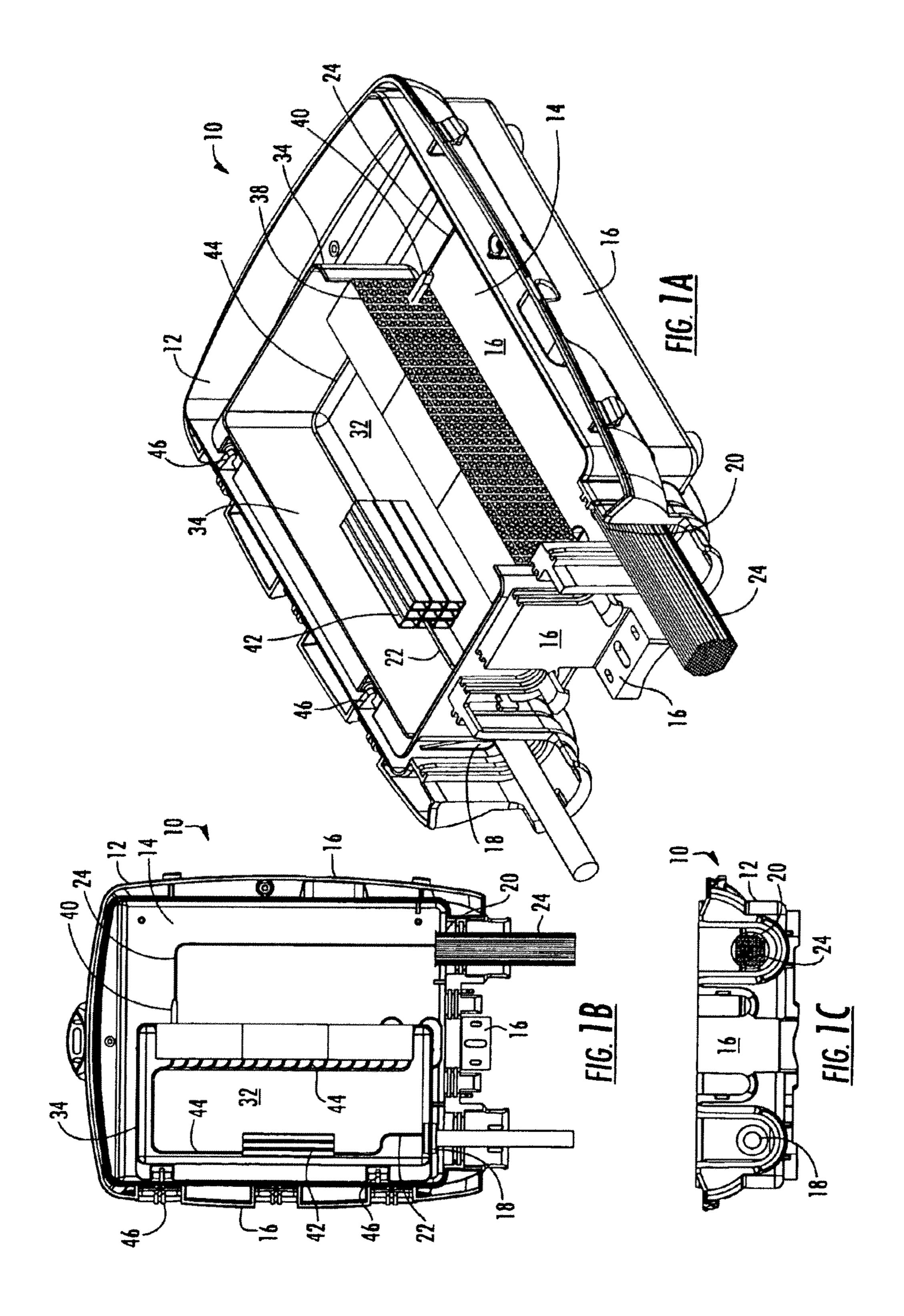
Corning Cable Systems LLC, Product Information Sheet, OptiTectTM Premier Local Convergence Cabinet, An Evolant © Solutions Product, Sep. 2006, 6 pages.

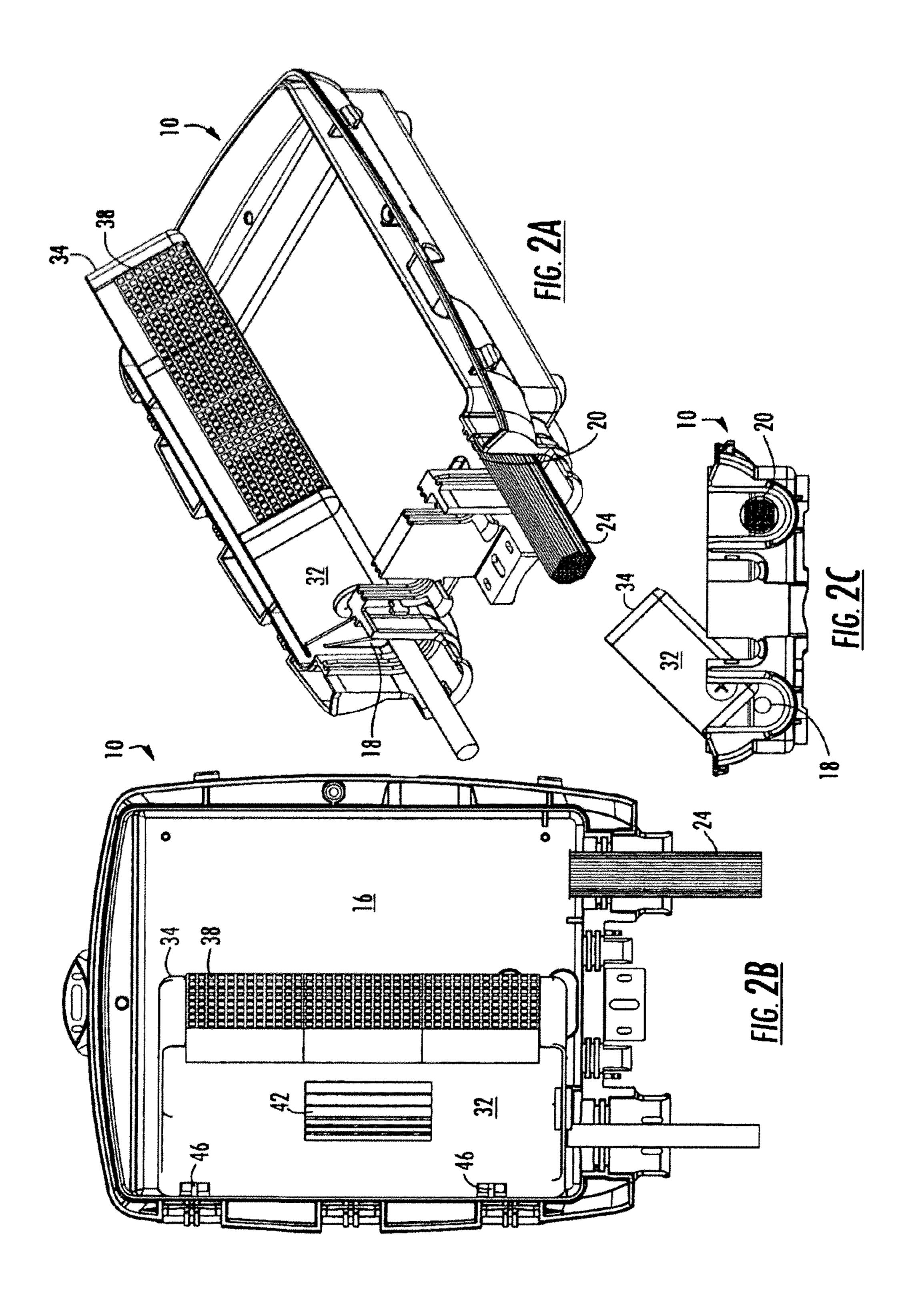
Fons, Fiber Optic Network Solutions, "Fiber Distribution Terminals", Fiber Access Terminals, Copyright © FONS Corp. 2005, www.fons.com, 3 pages.

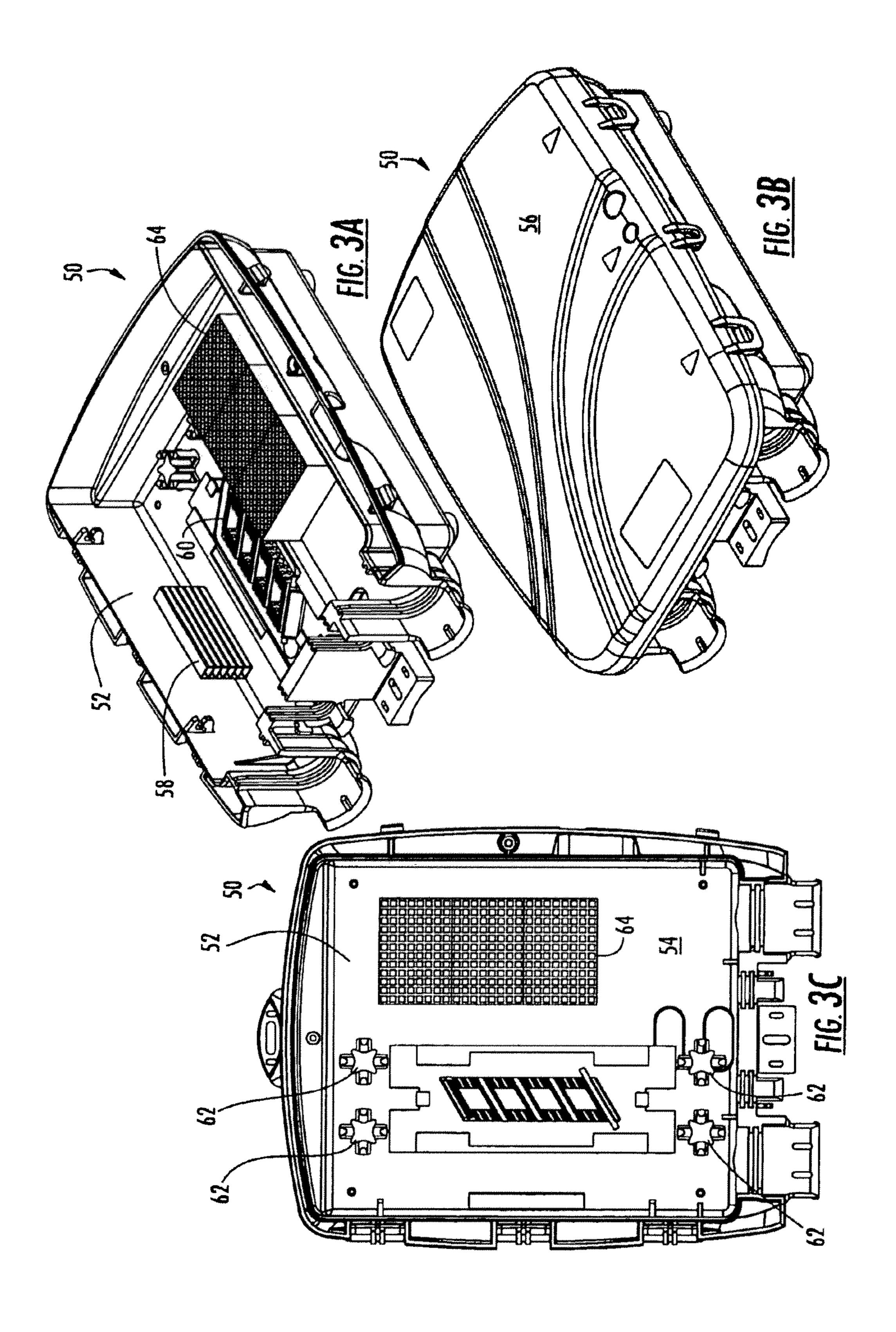
Fons, Fiber Optic Network Solutions, "Indoor Fiber Distribution Terminal", "Interior Wall Mount Terminals", Copyright © FONS Corp. 2005, www.fons.com, 3 pages.

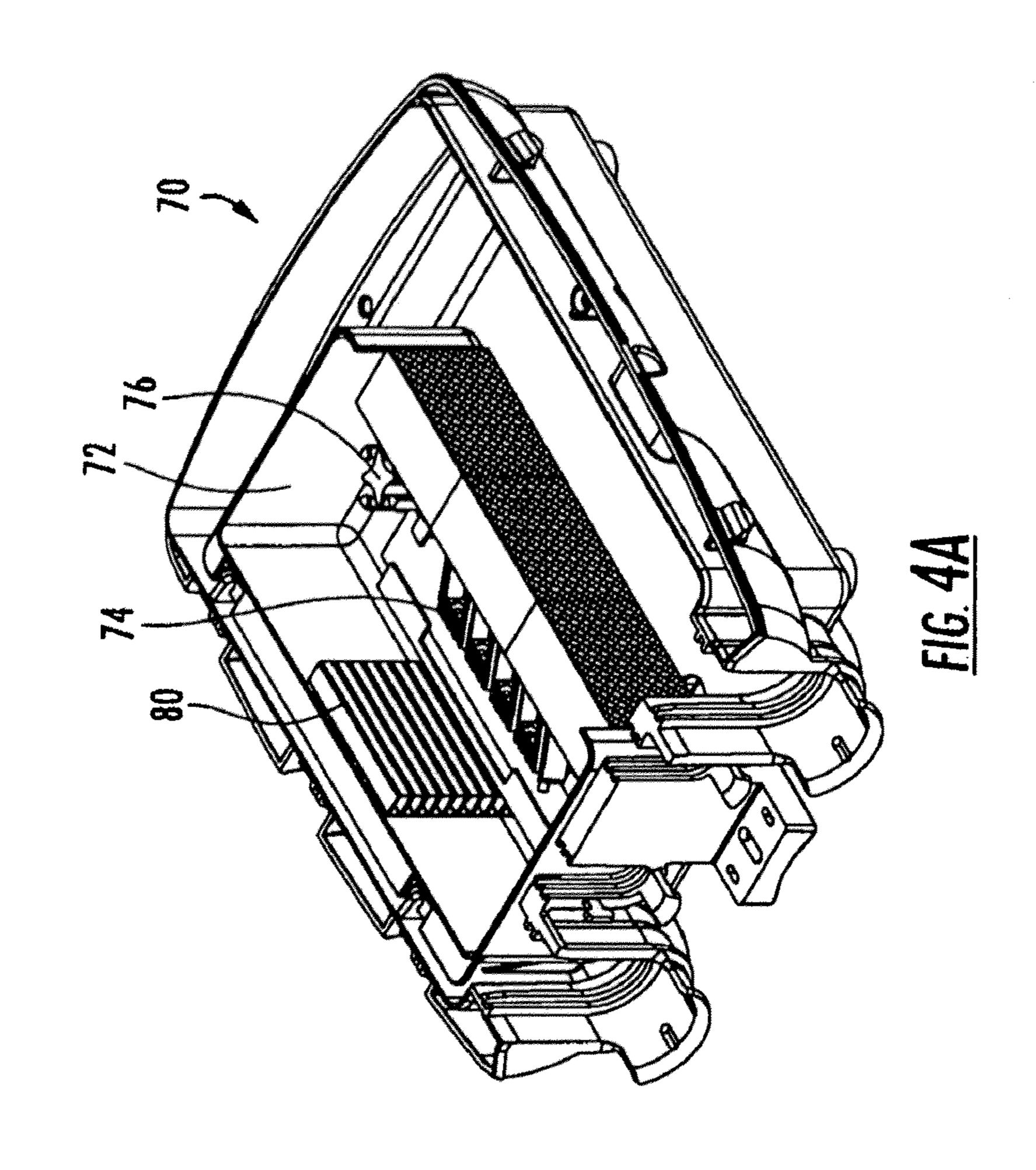
ADC Spec Sheet "OmniReachTM FTTX Solutions", "Outdoor Fiber Distribution Terminal 24 (OFDT-24)", 103335AE, Jan. 2007 Revision © 2006, 2007 www.adc.com, 4 pages.

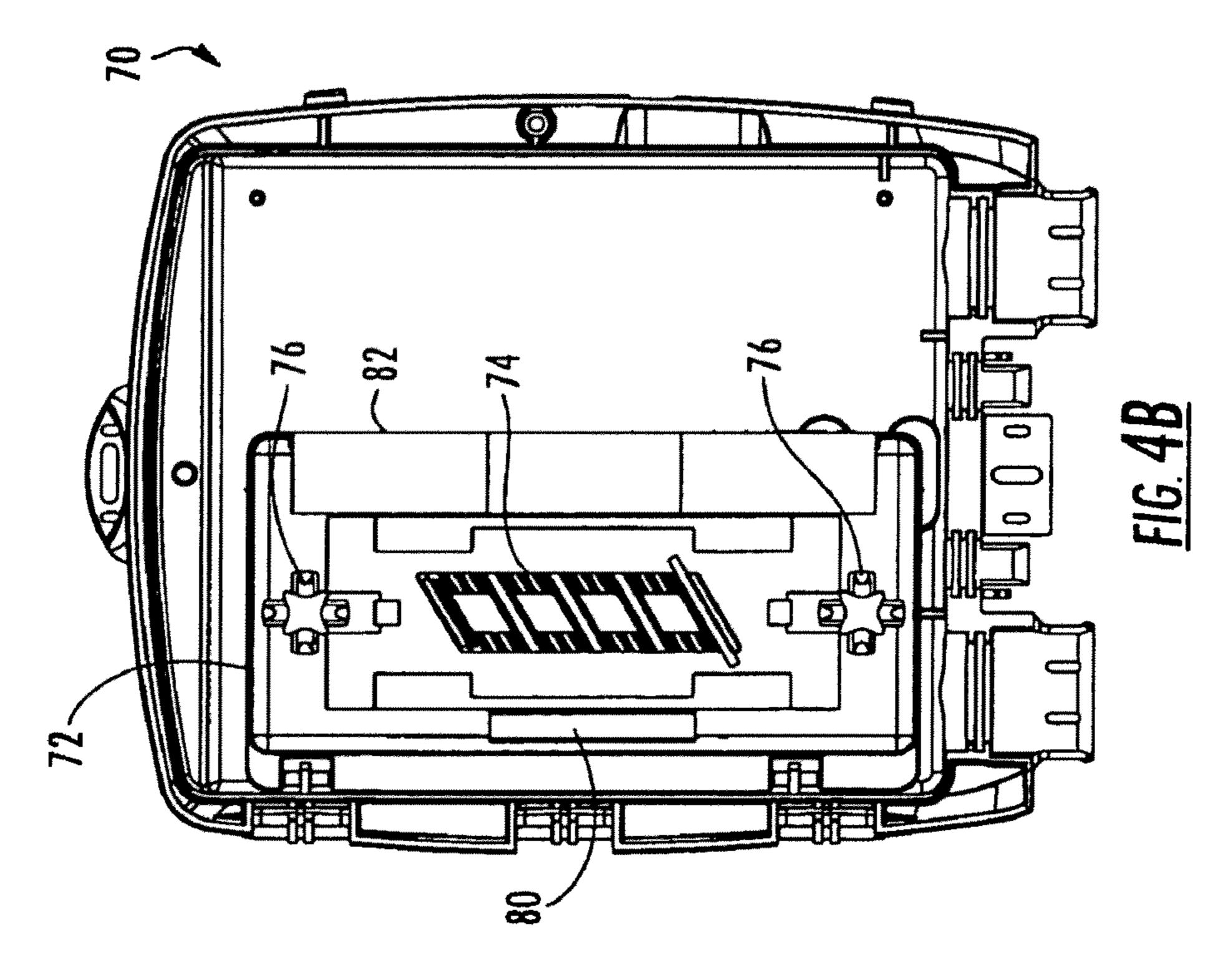
ADC Spec Sheet "OmniReachTM FTTX Solutions", "Indoor Fiber Distribution Terminal", 103266AE, Aug. 2006 Revision © 2006 www.adc.com, 4 pages.

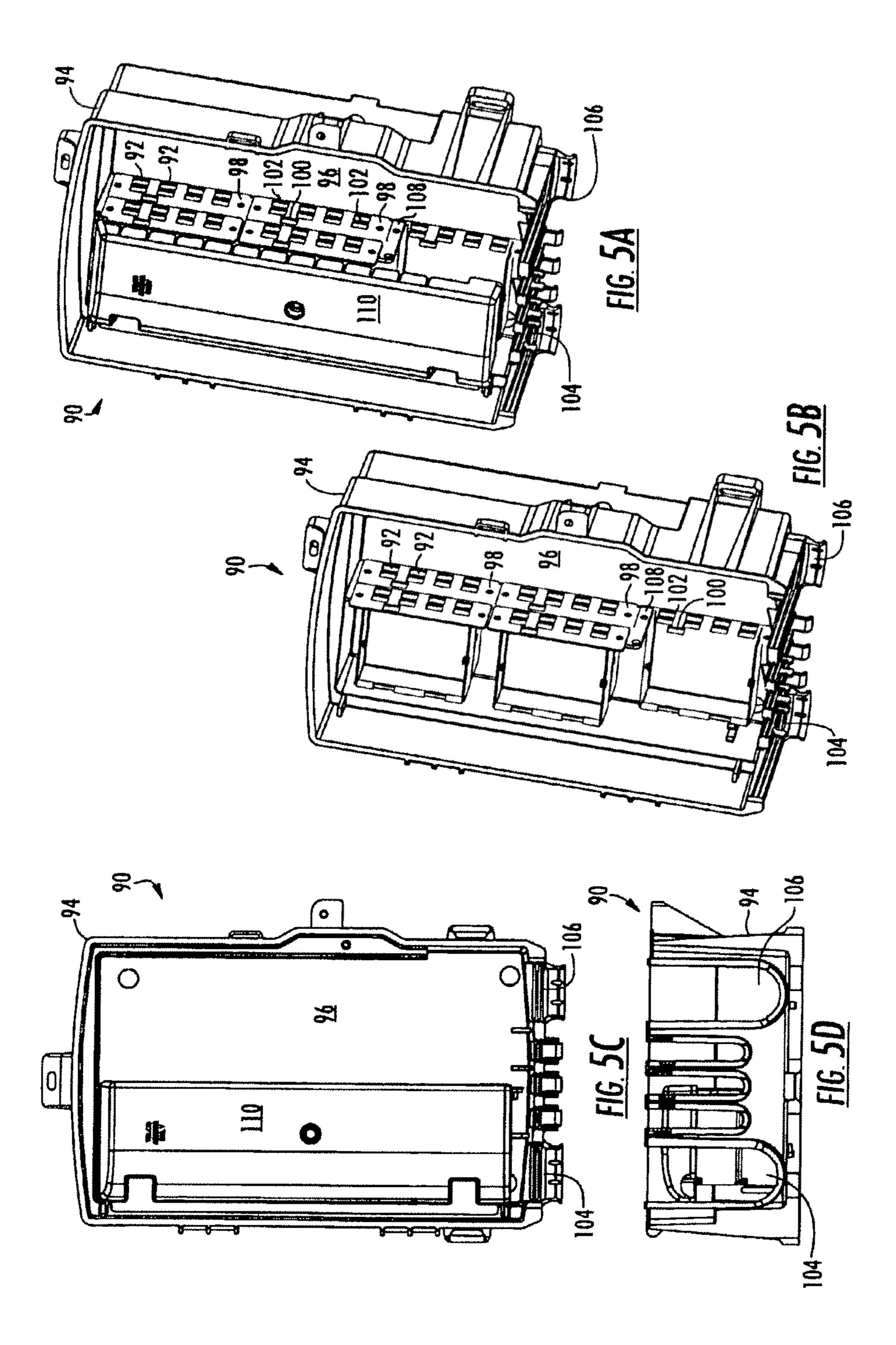

ADC Catalog "OmniReachTM FTTP Solutions", "Fiber Distribution Terminals", "FTTP Infrastructure Solutions", "Fiberglass In-Ground Mounting Sleeve", "Above Ground Cabinet Mounting", "Pad or Pole Mounting", "Accessories", 1276550 Apr. 2004, Revision © 2003, 2004 www.adc.com, 12 pages.

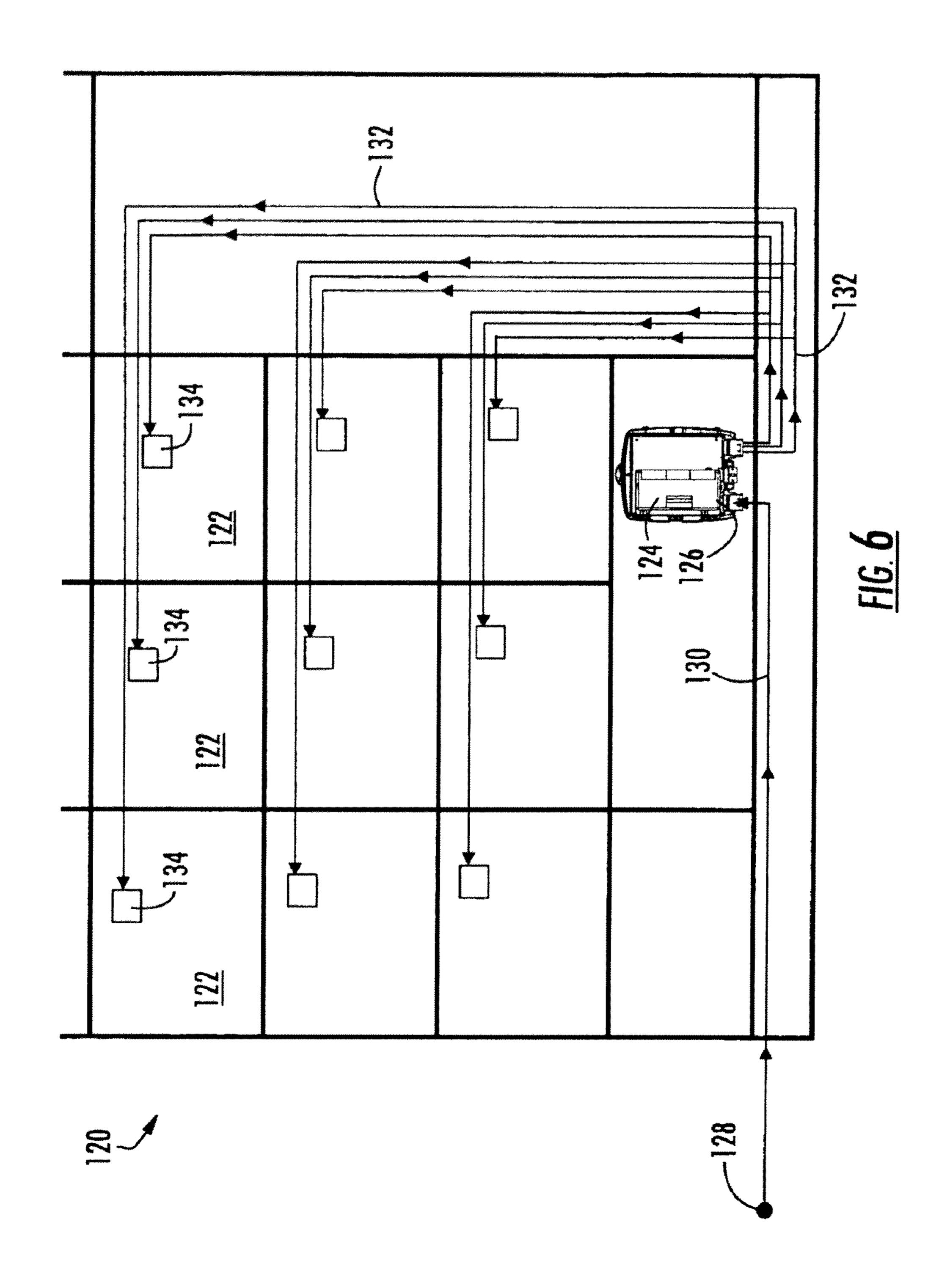

Emerson product sheet, "NetSpanTM Fiber Distribution Hub Fiber Cross-Connect Enclosure", "Outside Plant for Business Continuity", © 2006 Emerson Network Power Energy Systems, North America, www.EmersonNetworkPower.com/Energy_Systems. Com, 2 pages.

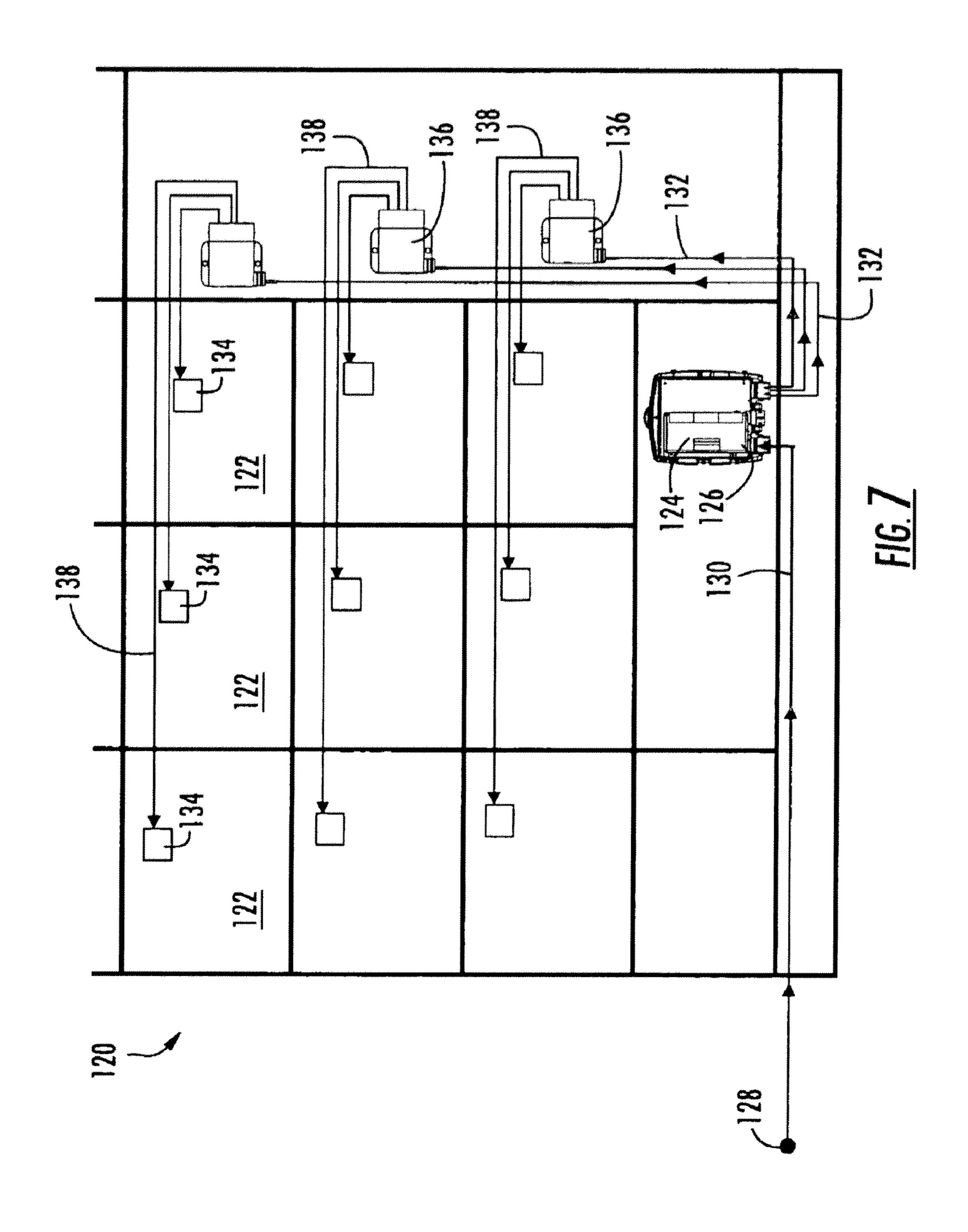

Hitachi Cable Review No. 24 "Low-low Holey Fiber", Aug. 2005, 5 pages.

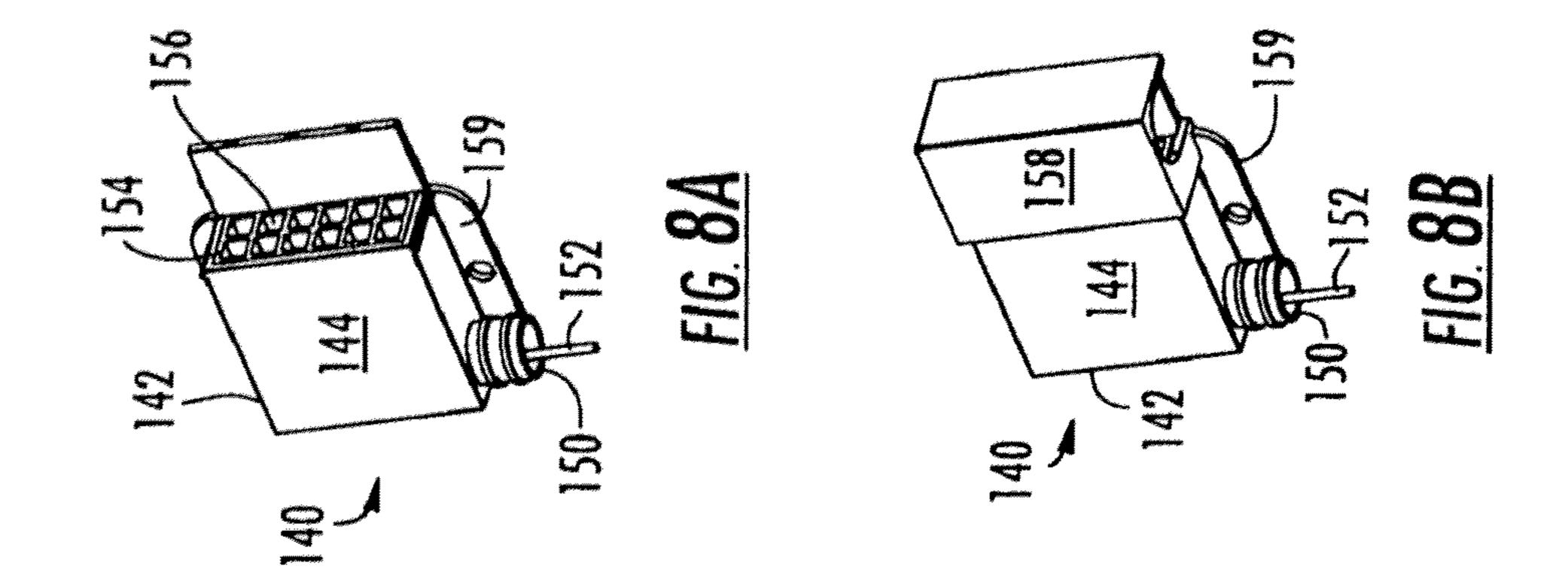

Corning Cable Systems, SRP-009-005, "Installation Instructions for the IBM Fiber Transport System-III (FTS-III)," Issue 1, Jun. 1994, 15 pages.

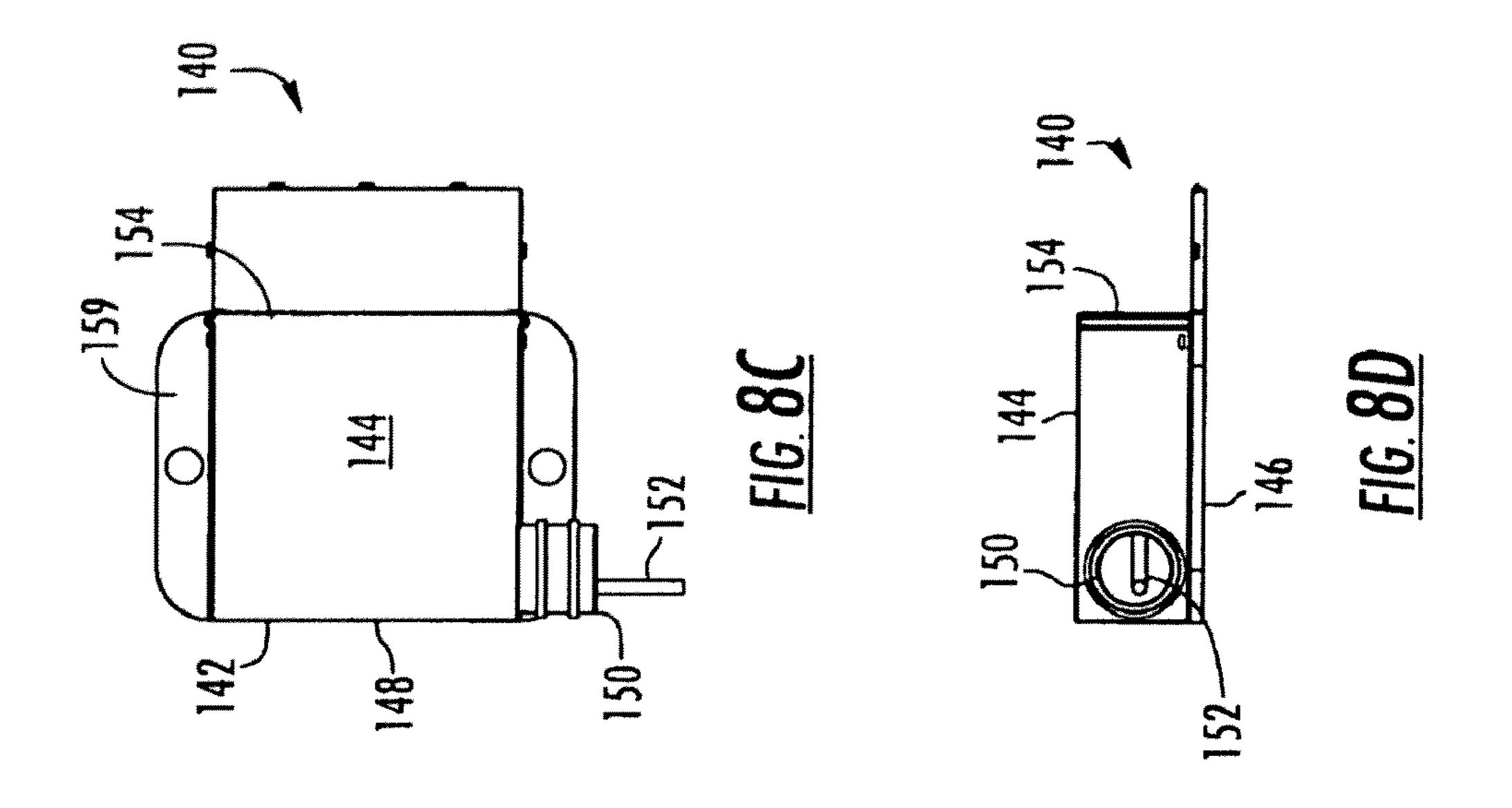

* cited by examiner

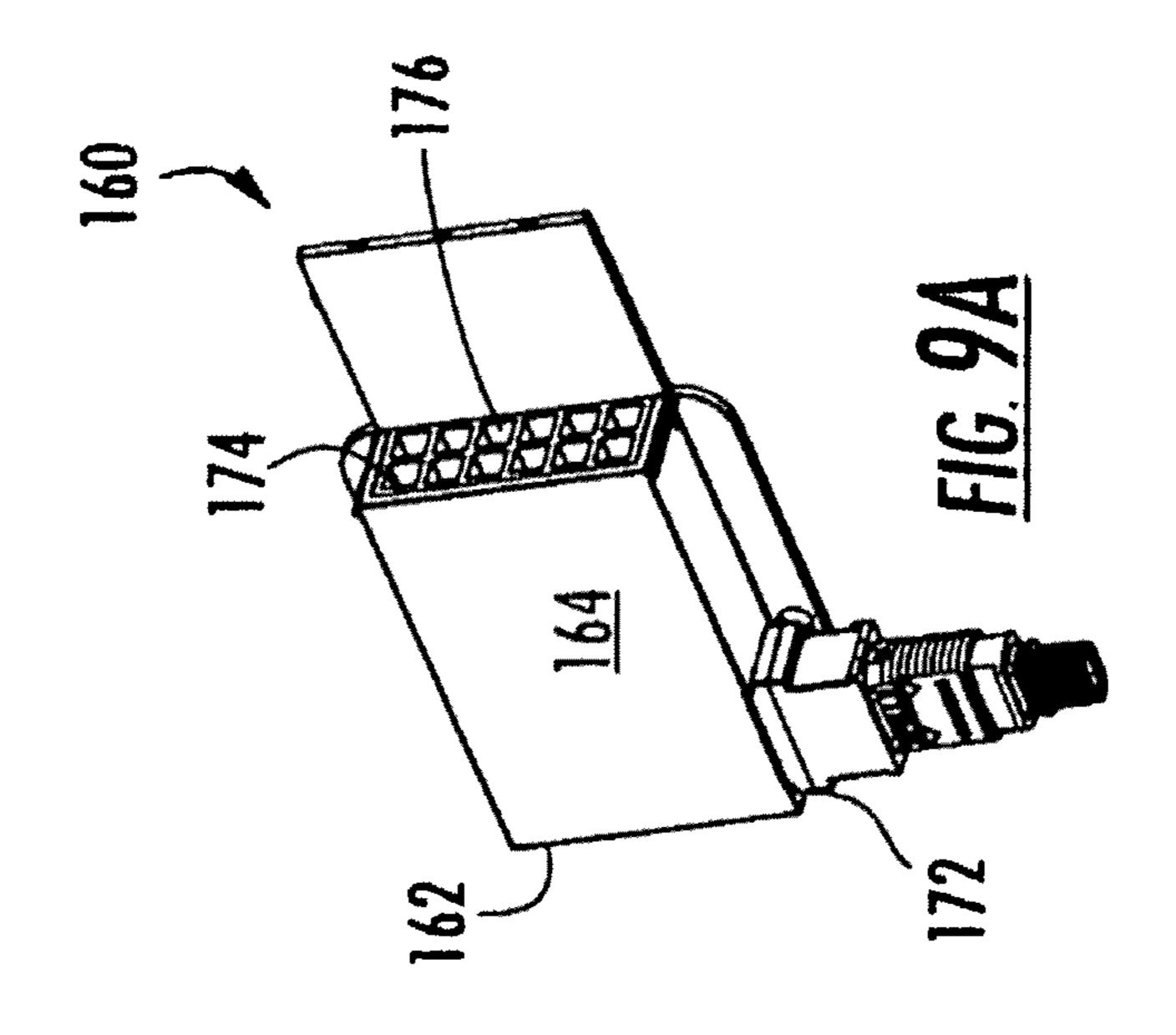


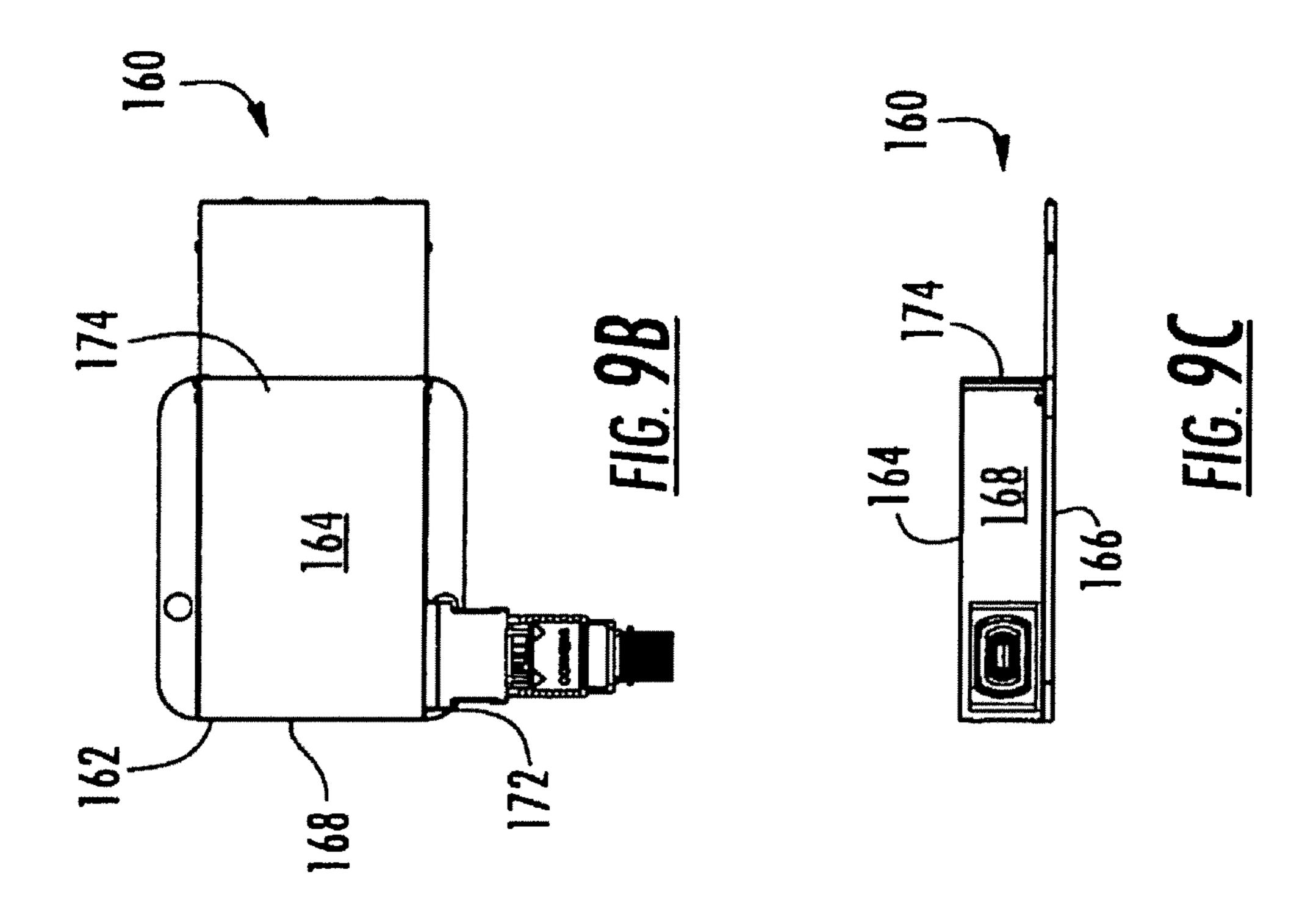


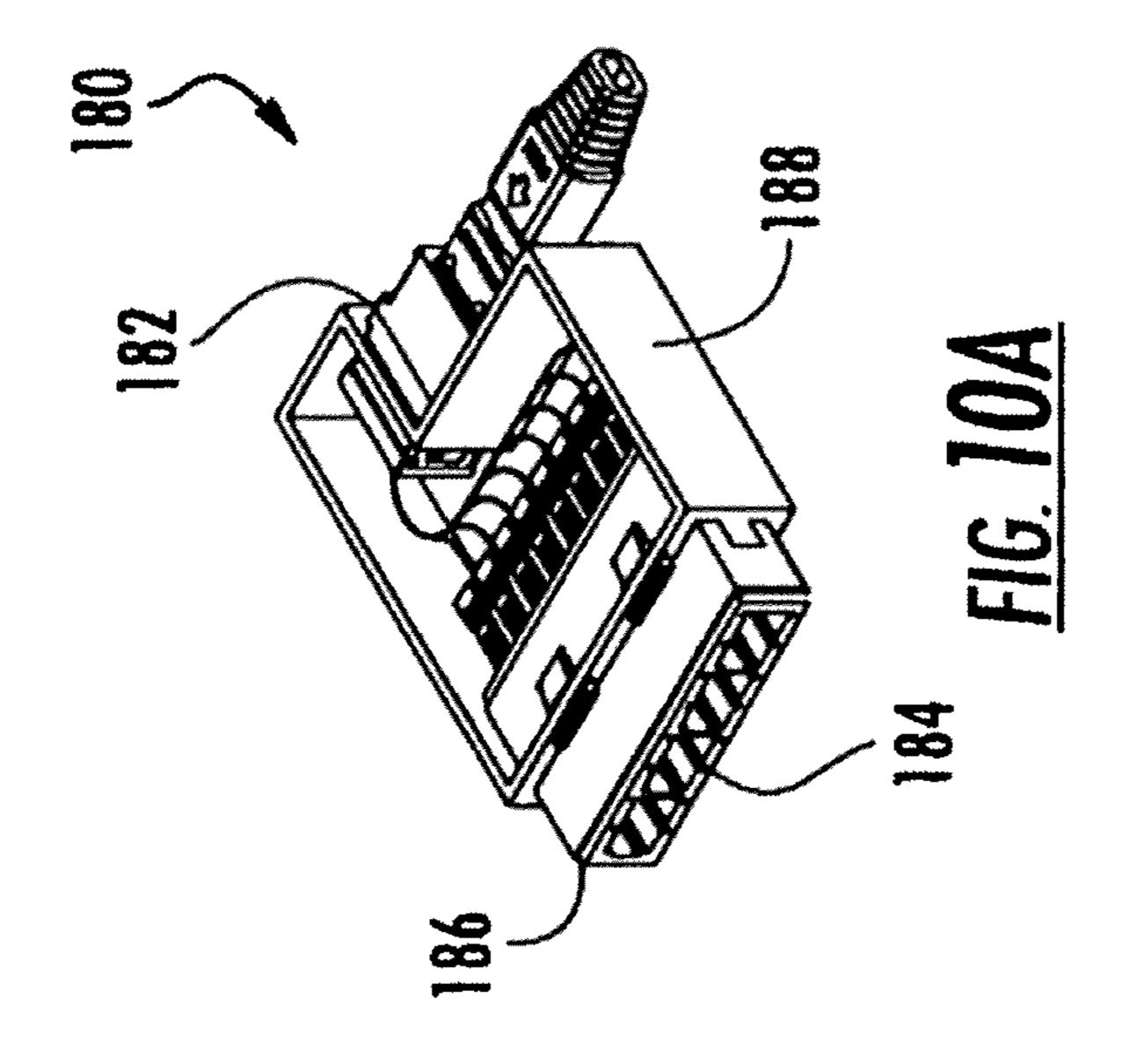


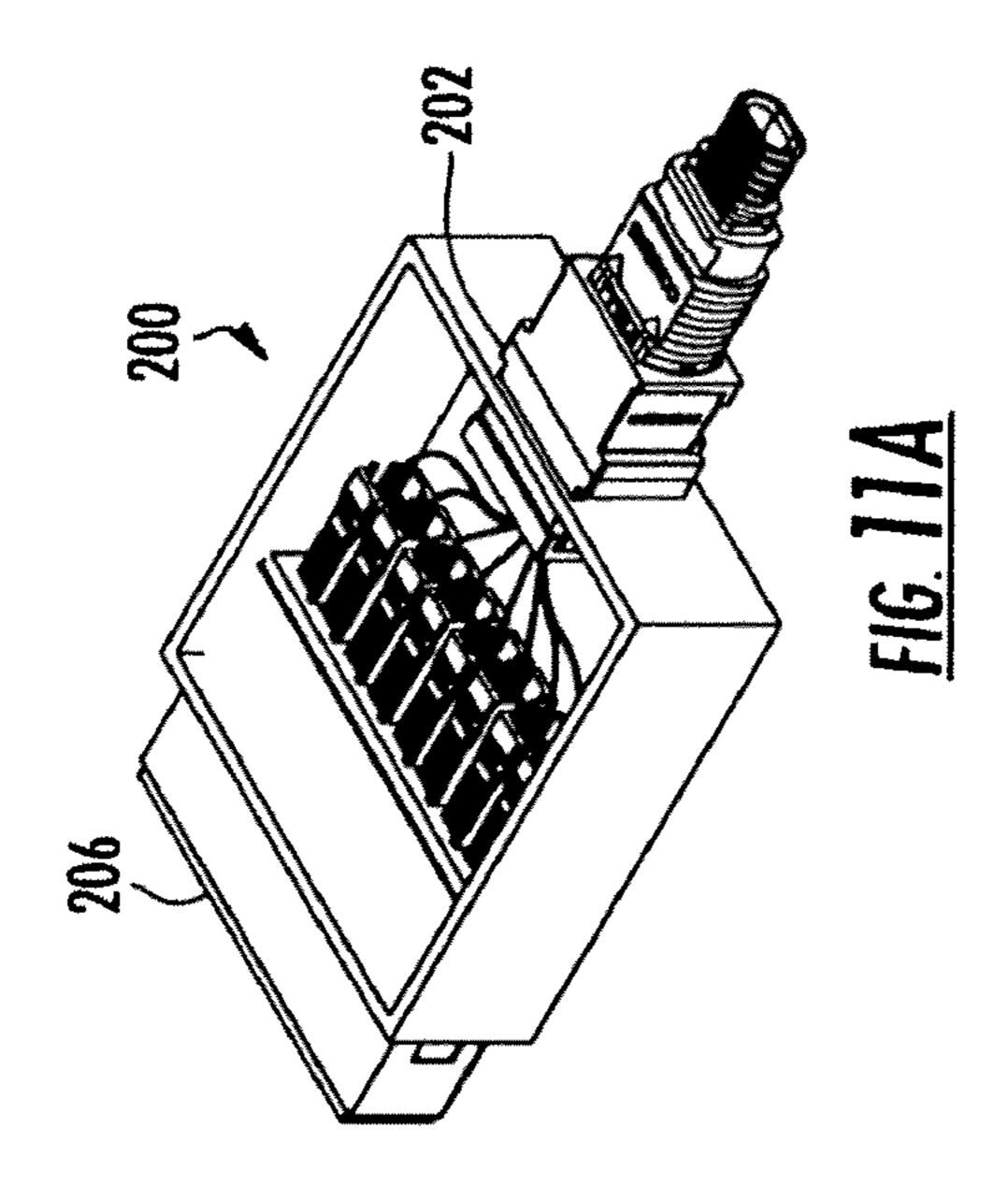


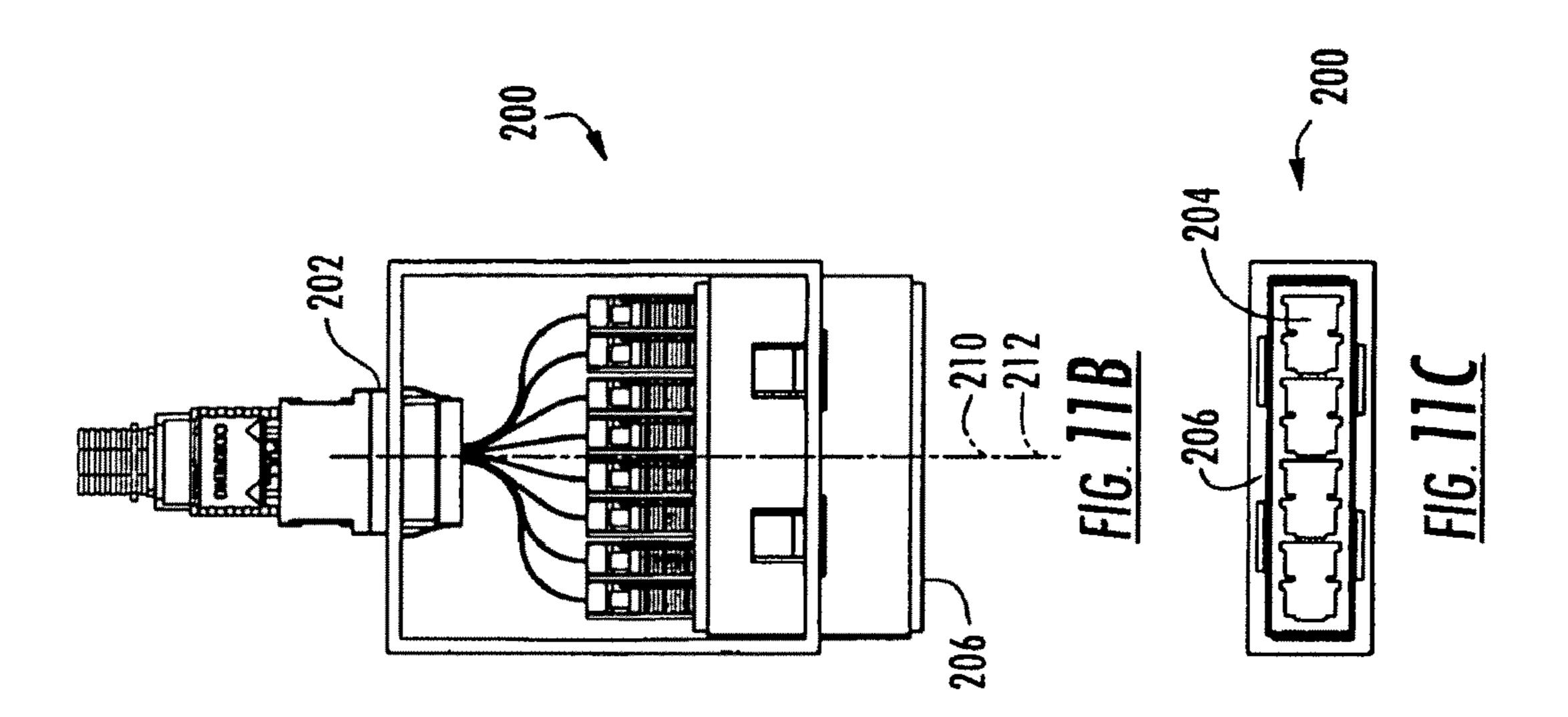


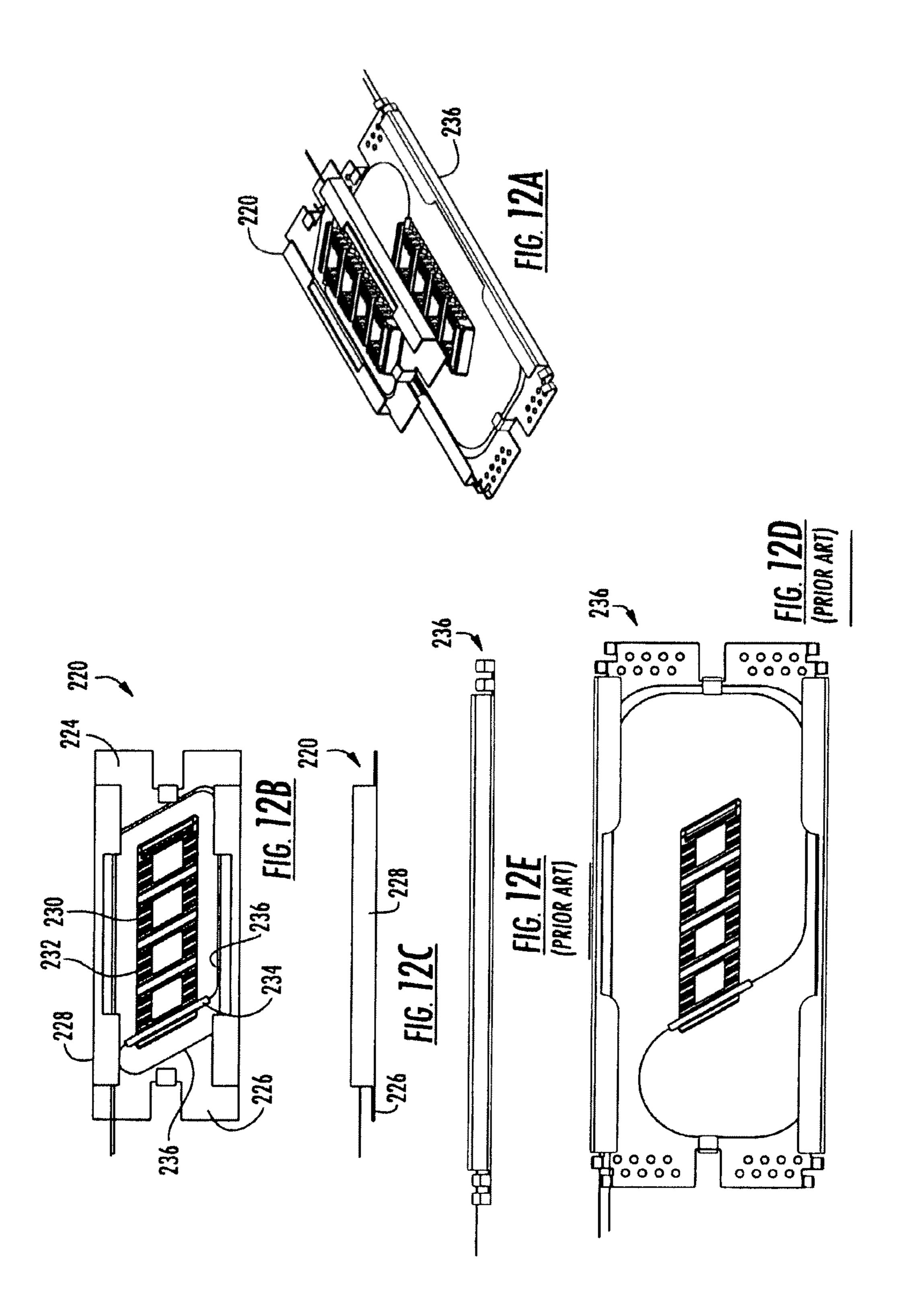


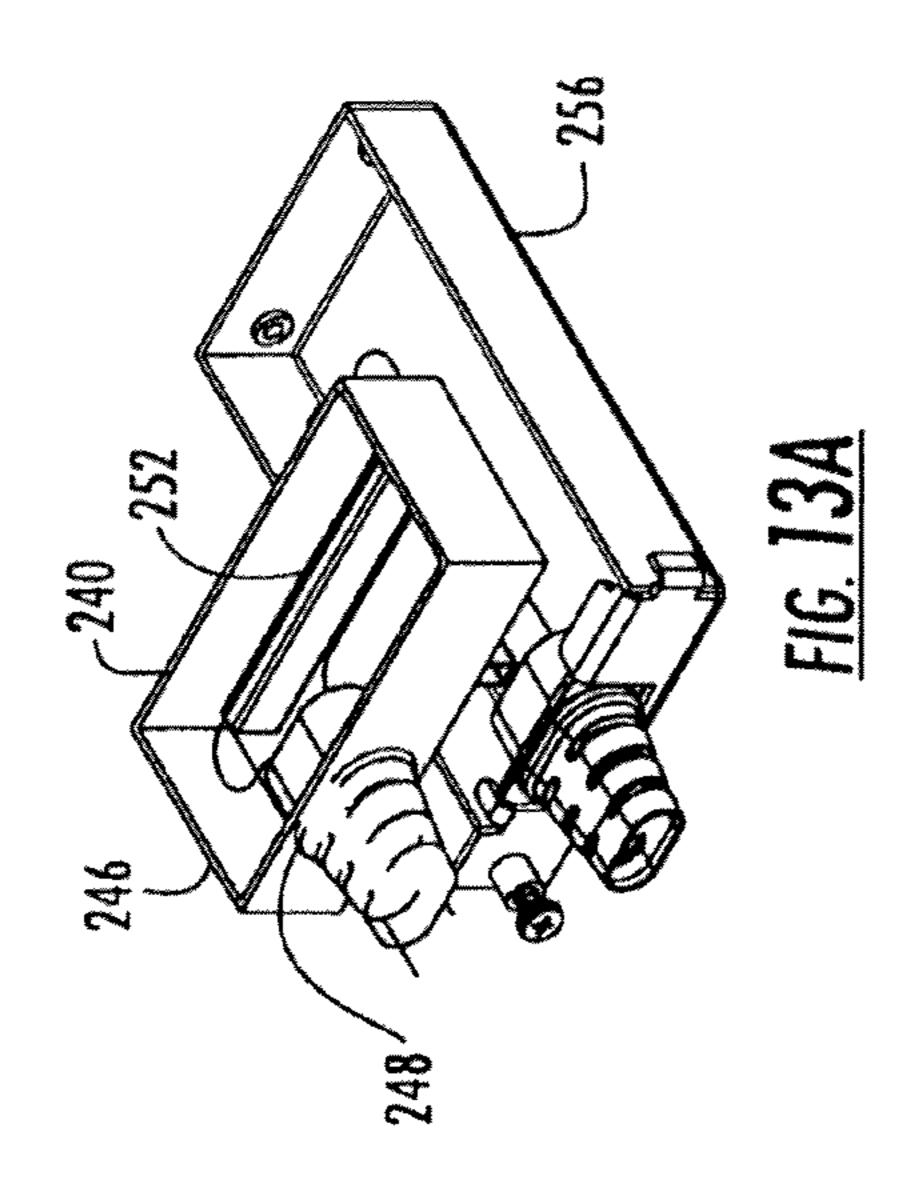


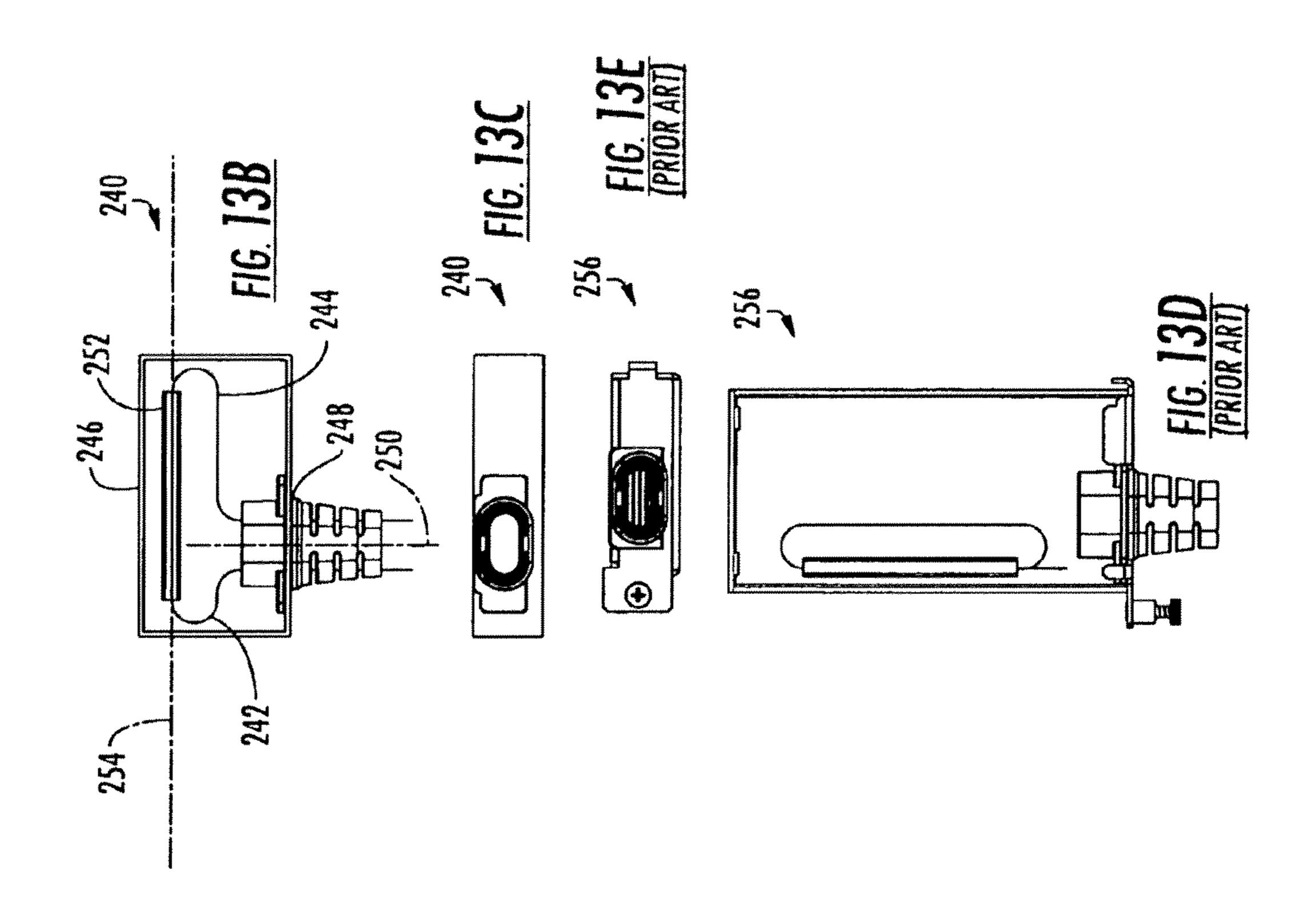


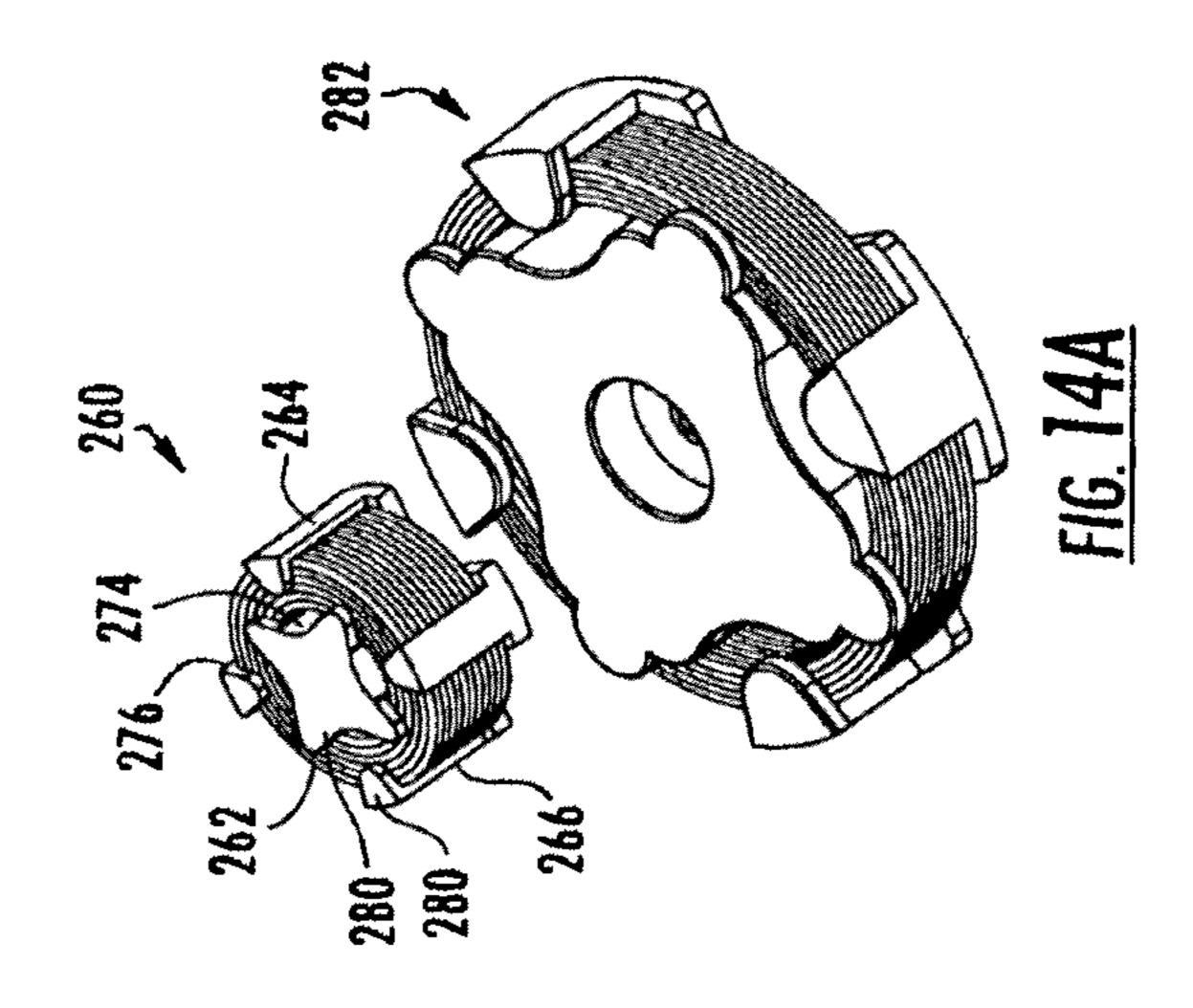


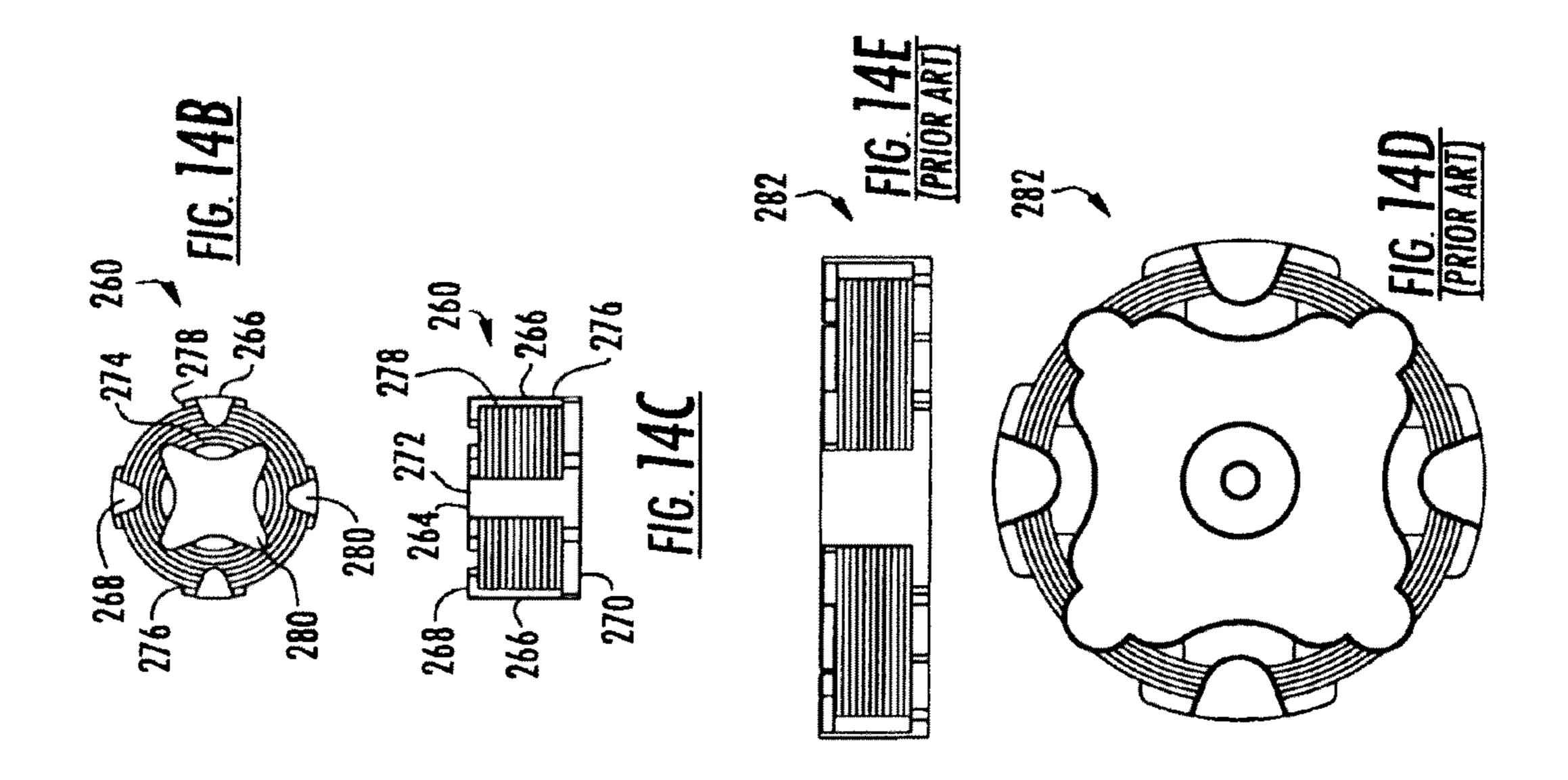












FIBER OPTIC LOCAL CONVERGENCE POINTS FOR MULTIPLE DWELLING UNITS

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue; a claim printed with strikethrough indicates that the claim was canceled, disclaimed, or held invalid by a prior post-patent action or proceeding.

More than one reissue application has been filed for the reissue of U.S. Pat. No. 7,548,680. The reissue applications are U.S. patent application Ser. Nos. 13/162,115 and 14/028, 15 338. U.S. patent application Ser. No. 14/028,338 is a continuation reissue application of the present application, which is patent application Ser. No. 13/162,115.

RELATED APPLICATIONS

The present application is a Continuation of U.S. Ser. No. 11/653,137 filed on Jan, 12, 2007 now U.S. Pat. No. 7,349, 616 *issued Mar. 25, 2008*, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is related to fiber optic local convergence points and associated fiber optic hardware, and more particularly, to fiber optic local convergence points adapted for multiple dwelling units.

2. Description of Related Art

To provide improved performance to subscribers, fiber optic networks are increasingly providing optical fiber connectivity directly to the subscribers. As part of various fiber-to-the-premises (FTTP), fiber-to-the-home (FTTH), and other initiatives (generally described as FTTX), such 40 fiber optic networks are providing the optical signals from distribution cables through local convergence points ("LCPs") to fiber optic cables, such as drop cables, that are run directly to the subscribers' premises. Such optical connectivity is increasingly being provided to multiple dwelling 45 units ("MDUs") in part because of the relatively large density of subscribers located in an MDU.

MDUs include apartments, condominiums, townhouses, dormitories, hotels/motels, office buildings, factories, and any other collection of subscriber locations that are in 50 relatively close proximity to one another. MDUs typically are all provided in a single indoor environment, such as an office or condominium; however, MDUs may also include a plurality of individual structures, such as apartment complexes. Typically, if an MDU comprises multiple structures, 55 the optical fibers extending between the structures are adapted for outdoor environments, whereas the optical fibers extending within the structures are adapted for indoor environments. Most conventional MDUs include an LCP located in a generally central and selectively accessible location, 60 such as the basement, utility closet, or the like, or the LCP may be located outside the MDU on an exterior wall, in a pedestal, in a handhole, or the like. The LCP includes at least one fiber optic cable that optically connects to a distribution cable. The LCP also includes a connection point where the 65 subscriber cables routed through the building are optically connected to the distribution cable.

2

Conventional LCPs for such MDUs are generally sized according to the number of subscribers to be serviced through the LCP, and many of the high density MDUs require large, expensive LCPs that may be difficult to install and/or transport. In addition, conventional LCPs often require skilled technicians to install the LCP and route the associated subscriber cables. Furthermore, highly skilled technicians are required to optically connect, often by splicing, the distribution cable to the LCP and to optically connect and route the subscriber cables to the LCP. Therefore, a need exists for LCPs that are cost-effective, are relatively small in size, and may be installed and maintained by relatively unskilled technicians.

BRIEF SUMMARY OF THE INVENTION

The various embodiments of the present invention address the above needs and achieve other advantages by providing LCPs and associated fiber optic hardware components that provide optical connectivity to relatively large numbers of subscribers using relative small fiber optic hardware components. In addition, some embodiments of the present invention enable installation of the LCPs and associated components by relatively unskilled technicians by removing the need to splice any of the connections between the distribution cable and the subscriber location and by providing optical fibers having significantly smaller minimum bend radii to provide more versatility when routing the subscriber cables through the building.

In one embodiment of the present invention, a fiber optic local convergence point ("LCP") adapted for use with a multiple dwelling unit is provided. The LCP is adapted to optically connect at least one optical fiber of a distribution cable to at least one subscriber optical fiber. The LCP 35 comprises a housing having an interior cavity defined by a plurality of sides and by a cover that is selectively moveable from an opened position to a closed position to thereby provide access to the interior cavity when the cover is in the opened position. The housing also includes at least one surface adapted for mounting the LCP to a structure, and the housing further comprises at least one opening through the housing for the passage of at least one optical fiber. The LCP also comprises a cable assembly with a connector end adapted for optical connection to the at least one optical fiber of the distribution cable and with a splitter end generally opposite the connector end of the cable assembly. The splitter end of the cable assembly defines a casing with an exterior surface that defines a plurality of receptacles adapted to selectively receive fiber optic connectors that are optically connected to the subscriber optical fiber. The connector end of the cable assembly is optically connected to the splitter end with at least one cable assembly optical fiber. In addition, the splitter end comprises at least one splitter that optically connects the cable assembly optical fiber with the plurality of receptacles. The splitter end of the cable assembly is adapted to be removably received within the housing of the LCP, and the splitter end is adapted to be received within the housing without opening the casing of the splitter end

Further embodiments of the present invention provide a cable assembly adapted for use in a multiple dwelling unit to optically connect at least one optical fiber of a distribution cable to at least one subscriber optical fiber. The cable assembly comprising a connector end adapted for optical connection to the at least one optical fiber of the distribution cable and with a splitter end generally opposite the connector end of the cable assembly. The splitter end of the cable

assembly defines a casing with an exterior surface that defines a plurality of receptacles adapted to selectively receive fiber optic connectors that are optically connected to the subscriber optical fiber. The connector end of the cable assembly is optically connected to the splitter end with at 5 least one cable assembly optical fiber. In addition, the splitter end comprises at least one splitter that optically connects the cable assembly optical fiber with the plurality of receptacles. Some embodiments of the present invention include at least one microstructured optical fiber in the cable assembly. The microstructured optical fiber comprises a core region and a cladding region surrounding the core region, the cladding region comprises an annular hole-containing region comprised of non-periodically disposed holes. The 15 microstructured fiber of some embodiments of the present invention has an 8 mm macrobend induced loss at 1550 nm of less than 0.2 dB/turn.

Still further embodiments provide related fiber optic hardware adapted for use in MDUs and other facilities. For 20 example, the present invention provides fiber optic splice tray assemblies defining a density of splice holders per unit of volume of the splice tray assembly of at least 5 single splices/in³ and/or at least 10 mass fusion splices/in³, fiber optic splitter modules that includes a splitter axis orthogonal 25 to an opening axis and/or that define a density of splits per unit volume of the housing of at least 5 splits/in³, fiber optic routing guides adapted to store an amount of length of optical fiber (900 µm diameter) per unit of volume of a housing of at least 10 in/in³, and fiber distribution terminals ³⁰ ("FDTs") defining a density of fiber optic output receptacles per unit of volume of the housing of at least 10 receptacles/ in³ for an input subscriber optical cable and of at least 6 receptacles/in³ for a connectorized input subscriber optical cable. All of these fiber optic hardware components provide 35 a significant improvement to the comparable conventional components, thus allowing them to be inure easily handled and allowing them to be installed in a greater number of locations based upon the network's requirements and/or the technician's preferences. Therefore, the LCPs, cable assem- 40 blies, FDTs, and other components of various embodiments of the present invention provide for cost-effective, reducedsize, and easily-installed fiber optic networks for MDUs.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale and are meant to be 50 illustrative and not limiting, and wherein:

FIG. 1A is a perspective view of a local convergence point ("LCP") in accordance with one embodiment of the present invention with the cover removed and the splitter end of the cable assembly opened;

FIG. 1B is a top view the LCP of FIG. 1A illustrating the optical fiber routing within the splitter end of the cable assembly and illustrating the subscriber optical fiber;

FIG. 1C is a side view of the bottom of the LCP of FIG. 1A illustrating the openings for the at least one cable 60 assembly optical fiber (left) and the at least one subscriber optical fiber (right);

FIG. 2A is a perspective view of a LCP in accordance with another embodiment of the present invention, illustrating the housing of the LCP removably receiving the splitter end of 65 the cable assembly by rotating the splitter end into the housing;

4

FIG. 2B is a top view of the LCP of FIG. 2A illustrating the splitter end of the cable assembly at a rotated position;

FIG. 2C is a bottom view of the LCP of FIG. 2A illustrating the splitter end of the cable assembly at a rotated position of about 45 degrees;

FIG. 3A is a perspective view of a LCP in accordance with yet another embodiment of the present invention, illustrating the housing as including a plurality of splitter modules, a splice tray assembly, fiber optic routing guides, and a subscriber termination field comprising a plurality of receptacles, wherein the LCP is free of a splitter end of a cable assembly;

FIG. 3B is a perspective view of the LCP of FIG. 3A with a cover attached and in the closed position;

FIG. 3C is a top view of the LCP of FIG. 3A illustrating the splitter modules, the splice tray assembly, the fiber optic routing guides, and the subscriber termination field;

FIG. 4A is a perspective view of a LCP in accordance with a further embodiment of the present invention, illustrating the splitter end of the cable assembly as including a plurality of splitter modules, a splice tray assembly, fiber optic routing guides, and a subscriber termination field comprising a plurality of receptacles;

FIG. 4B is a top view of the LCP of FIG. 4A illustrating the splitter modules, the splice tray assembly, the fiber optic routing guides, and the subscriber termination field within the splitter end of the cable assembly;

FIG. 5A is a perspective view of a LCP in accordance with a still further embodiment of the present invention, illustrating a plurality of splitter modules housed within the interior cavity of the housing, wherein the splitter modules define multi-fiber output receptacles;

FIG. **5**B is a perspective view of the LCP of FIG. **5**A illustrating the splitter modules with the access cover removed to allow selective installation and/or removal of the individual splitter modules;

FIG. 5C is a top view of the LCP of FIG. 5A with the access cover installed;

FIG. 5D is a side view of the bottom of the LCP of FIG. 5A illustrating the openings providing passage for the optical fibers to and from the distribution cable and/or the subscriber termination points;

FIG. 6 is a side view of a MDU that includes an LCP and associated fiber optic hardware in accordance with another embodiment of the present invention wherein the fiber optic network does not include at least one FDT such that the subscriber optical fibers are routed directly to the subscriber termination points without the use of the FDT and/or the subscriber drop optical fibers;

FIG. 7 is a side view of a multiple dwelling unit ("MDU") that includes an LCP and associated fiber optic hardware in accordance with one embodiment of the present invention, illustrating the optical signal routing from the distribution cable to LCP via the cable assembly optical fiber to the LCP, then to the FDT via the subscriber optical fiber, and finally to the subscriber termination point via the subscriber drop optical fiber;

FIG. 8A is a perspective view of a fiber distribution terminal ("FDT") in accordance with one embodiment of the present invention illustrating a single input optical cable comprising a plurality of input optical fibers and an output opening comprising a plurality of fiber optic output receptacles;

FIG. 8B is a perspective view of the FDT of FIG. 8A further comprising a removable portion adapted to selectively cover the fiber optic output receptacles when at least one connector is received in the fiber optic receptacles;

FIG. **8**C is a top view of the FDT of FIG. **8**A illustrating the mounting flanges of the FDT;

FIG. 8D is a side view of the bottom of the FDT of FIG. 8A illustrating the input opening in a sidewall as comprising a through-hole for passage of at least one input optical fiber;

FIG. 9A is a perspective view of a FDT in accordance with a further embodiment of the present invention illustrating an input opening comprising a fiber optic input receptacle and an output opening comprising a plurality of fiber optic output receptacles;

FIG. 9B is a top view of the FDT of FIG. 9A illustrating the mounting flanges of the FDT;

FIG. 9C is a side view of the bottom of the FDT of FIG. 9A illustrating the input opening in a sidewall as comprising a fiber optic input receptacle adapted to receive a multi-fiber connector of the subscriber optical fiber;

FIG. **10**A is a perspective view of a FDT in accordance with a still further embodiment of the present invention with a top cover removed, illustrating an input opening comprising a fiber optic input receptacle and an output opening comprising a plurality of fiber optic output receptacles, wherein the FDT defines an input opening axis that is generally orthogonal to an output opening axis;

FIG. 10B is a top view of the FDT of FIG. 10A illustrating 25 the internal routing of the optical fibers from the input opening to the output opening;

FIG. 10C is a side view of the output opening of the FDT of FIG. 10A illustrating the plurality of fiber optic output receptacles adapted to receive MU connectors of the sub- 30 scriber drop optical fibers;

FIG. 11A is a perspective view of a FDT in accordance with yet another embodiment of the present invention with a top cover removed, illustrating an input opening comprising a fiber optic input receptacle and an output opening 35 comprising a plurality of fiber optic output receptacles, wherein the FDT defines an input opening axis that is generally parallel to an output opening axis;

FIG. 11B is a top view of the FDT of FIG. 11A illustrating the internal routing of the optical fibers from the input 40 opening to the output opening;

FIG. 11C is a side view of the output opening of the FDT of FIG. 11A illustrating the plurality of fiber optic output receptacles adapted to receive MU connectors of the subscriber drop optical fibers;

FIG. 12A is a perspective view of a fiber optic splice tray assembly in accordance with one embodiment of the present invention illustrated above a prior art splice tray assembly, wherein the splice tray assembly of the present invention defines a significantly greater density of splice holders per 50 unit volume of the splice tray assembly as compared to the prior art splice tray assembly;

FIGS. 12B and 12C are top and side views, respectively, of the splice tray assembly of the embodiment of the present invention of FIG. 12A illustrated to scale relative to the prior 55 art splice tray assembly of FIGS. 12D and 12E;

FIGS. 12D and 12E are top and side views, respectively, of the prior art splice tray assembly of FIG. 12A illustrated to scale relative to the splice tray assembly of FIGS. 12B and 12C;

FIG. 13A is a perspective view of a fiber optic splitter module in accordance with one embodiment of the present invention illustrated above a prior art splitter module, wherein the splitter module of the present invention defines a significantly greater density of output optical fibers per 65 unit volume of the housing as compared to the prior art splice tray assembly, and wherein the splitter module of the

6

present invention defines a splitter axis that is generally orthogonal to an opening axis;

FIGS. 13B and 13C are top and side views, respectively, of the splitter module of the embodiment of the present invention of FIG. 13A illustrated to scale relative to the prior art splitter module of FIG. 13A;

FIGS. 13D and 13E are top and side views, respectively, of the prior art splitter module of FIG. 13A illustrated to scale relative to the splitter module of FIGS. 13B and 13C;

FIG. 14A is a perspective view of a fiber optic routing guide in accordance with one embodiment of the present invention illustrated above a prior art routing guide, wherein the routing guide of the present invention is adapted to store a significantly greater amount of length of optical fiber per unit volume of the housing as compared to the prior art routing guide;

FIGS. 14B and 14C are top and side views, respectively, of the routing guide of the embodiment of the present invention of FIG. 14A illustrated to scale relative to the prior art routing guide of FIG. 14A; and

FIGS. 14D and 14E are top and side views, respectively, of the prior art routing guide of FIG. 14A illustrated to scale relative to the routing guide of FIGS. 14B and 14C.

DETAILED DESCRIPTION OF THE INVENTION

The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Although apparatus and methods for providing local convergence points ("LCPs") for multiple dwelling units ("MDUs") are described and shown in the accompanying drawings with regard to specific types of LCPs and associated fiber optic hardware, it is envisioned that the functionality of the various apparatus and methods may be applied to any now known or hereafter devised LCPs and associated fiber optic hardware in which it is desired to provide optical connectivity for MDUs. Like numbers refer to like elements throughout.

With reference to FIG. 1A-14E, various LCPs and associated fiber optic hardware in accordance with various embodiments of the present invention are illustrated. It should be appreciated that the many embodiments of the present invention include various combinations of the fiber optic hardware described herein. Furthermore, certain embodiments to not include all of the components described herein, non-limiting examples of components that are not included in all embodiments include fiber optic splice tray assemblies, fiber optic routing guides, fiber distribution terminals, subscriber drop optical fibers, and others. In addition, although many embodiments referred to herein are described as having certain dimensions and densities, it should be appreciated that the dimensions are merely exemplary and limiting.

Turning now to the LCP 10 of FIGS. 1A-1C, the LCP is adapted for use with a MDU to optically connect at least one optical fiber of a distribution cable to at least one subscriber optical fiber. The LCPs described herein are intended for indoor use; however, further embodiments are adapted for indoor and/or outdoor use and may be mounted to any surface. The LCP 10 of FIGS. 1A-1C include a housing 12 comprising an interior cavity 14 defined by a plurality of

sides 16 and by a cover (not shown) that is selectively moveable from an opened position to a closed position to thereby provide access to the interior cavity when the cover is in the opened position. The interior cavity 14 of the LCP 10 is not hermetically sealed and may include a variety of 5 openings to provide access to the interior cavity. The housing 12 of FIGS. 1A-1C comprises at least one surface 16 adapted for mounting the LCP 10 to a structure (not shown) such as wall in a building to provide one non-limiting example. The housing 12 of FIGS. 1A-1C is similar to 10 standard plastic network interface device ("NID") housings offered by Corning Cable Systems of Hickory, N.C.; however, the housings of further embodiments of the present inventions include housings of any shape and/or material sufficient to provide the necessary optical connectivity, 15 environmental protection, and/or structural properties required for the particular application. The housing 12 further comprises at least one opening 18 and 20 through the housing for the passage of at least one optical fiber such as an optical fiber 22 optically connected to at least one optical 20 fiber of a distribution cable (not shown) and such as a subscriber optical fiber 24 optically connected to a subscriber termination point (not shown). It should be appreciated that the opening 20 provides passage for a plurality of subscriber optical fibers which are shown generally outside 25 the housing 12, but for illustrative purposes only one subscriber optical fiber 24 is shown inside the housing 12.

The LCP 10 of FIGS. 1A-1C also includes a cable assembly 30 comprising a connector end (not shown) adapted for optical connection to at least one optical fiber of 30 a distribution cable (not shown) of the fiber optic network. The connector end includes a preconnectorized (factoryprepared connector) end that may be conveniently connected to a connector at an access point on the distribution cable. Conversely, the connector end of further embodiments may 35 not include any connector such that the optical fiber(s) of the connector end must be spliced to the optical fiber(s) of the distribution cable at an access point (that may or may not be factory-prepared) on the distribution cable. Returning again to the embodiment of FIGS. 1A-1C, generally opposite the 40 connector end of the cable assembly 30 is provided a splitter end 32 that defines a casing 34 with an exterior surface 36 that defines a plurality of receptacles 38 adapted to selectively receive fiber optic connectors 40 that are optically connected to the at least one subscriber optical fiber 24. At 45 least one cable assembly optical fiber 22 extends from the connector end to the splitter end to optically connect the splitter end to the connector end (and the distribution cable when the LCP is installed).

The cable assembly optical fiber 22 of FIGS. 1A-1C is 50 optically connected to a splitter 42, such as a 1×8 , 1×16 , 1×32, and/or 1×64 splitters to provide non-limiting examples of splitters, that splits the optical signal from the optical fiber 22 to a plurality of pigtails 44. The pigtails 44 are optical fibers optically connected to the splitter and that 55 terminate in a connector (not shown) adapted to be received in the receptacles opposite the exterior surface 36, such that receipt of the fiber optic connector 40 by the receptacle 38 optically connects the pigtail to the subscriber optical fiber. Further embodiments of the present invention provide alter- 60 native devices to optically connect the cable assembly optical fiber to the plurality of receptacles. The splitter end 32 of FIGS. 1A-1C includes nine 1×32 splitters 42 thus providing up to 288 receptacles 38 adapted to selectively receive fiber optic connectors 40 that are optically connected 65 to the at least one subscriber optical fiber **24**. Thus the cable assembly 30 includes nine cable assembly optical fibers to

8

optically connect each of the splitters 42 to the distribution cable. However, further embodiments of the present invention include any number of cable assembly optical fibers, splitters, and receptacles, which are typically dictated by the number of subscriber termination points to be provided within the MDU (and the number of LCPs to be provided in the MDU, as some MDUs include multiple LCPs).

The splitter end **32** of the cable assembly **30** of the LCP 10 of FIG. 1A-1C is adapted to be removably received within the housing 12 of the LCP. Furthermore, the splitter end 32 of FIGS. 1A-1C is adapted to be received within the housing without opening the casing 34 of the splitter end. Therefore, the LCP 10 may be conveniently installed by a field technician by simply mounting the housing 12 to an appropriate surface, optically connecting the connector end of the cables assembly 30 to the distribution cable, and then inserting the splitter end 32 into the housing. Further embodiments of the present invention comprise an LCP that does not include a housing, but simply comprises the cable assembly, such as the cable assembly 30 of FIGS. 1A-1C. Such us of a cable assembly without the housing would be suitable for certain applications where environmental protection, security, and other considerations are less of a concern. For certain embodiments of the LCP without a housing, the casing of the cable assembly includes features to assist in the convenient mounting of the splitter end (and in some embodiments, the connector end) of the cable assembly relative to the MDU.

Turning again to the LCP 10 of the illustrated embodiments, receipt of the splitter end 32 into the housing 12 is illustrated in FIGS. 2A-2C. An interior surface of the housing 12 includes a clip 46 into which a protrusion of the casing 34 may be selectively received to create a hinge to allow the splitter end to be rotatably joined to the housing of the LCP 10. To install the splitter end 32 into the housing 12, the technician simply connects the protrusions to the respective clips 46 and then rotates the splitter end inward. The splitter end 32 is illustrated in FIGS. 2A-2C as being at about a 45 degree angle relative to the housing; however, the splitter end may rotate any amount permitted by the housing (for this example from at least 0 degrees to 90 degrees); however, further embodiments of the present invention include splitter ends that rotate at any angles relative to the housing and splitter ends that are selectively received by the housing in alternative fashions, such as with fasteners, with retaining clips requiring linear insertion or alternative insertion techniques, with adhesives, and with any suitable retention devices and/or techniques. As previously mentioned, the splitter end 32 of FIGS. 1A-2C is adapted to be received within the housing without opening the casing 34 of the splitter end. Furthermore, the splitter end of the cable assembly is adapted to be removably received within the housing 12 of the LCP 10 without requiring any splice operation and/or connectorization operation. The splitter end 32 is factory prepared to include all the necessary optical connectivity from the connector end to the plurality of receptacles such that a technician would not be required to open the casing 34. However, it should be appreciated that the casings of some embodiments of the present invention provide devices and/or techniques for selectively opening and closing the casing 34 in the field to permit selective access within the casing. Still further embodiments of the present invention include splitter ends that do not include any casing, such as the LCP 50 of FIGS. 3A-3B.

The LCP 50 of FIGS. 3A-3C is one embodiment of the present invention that does not include a casing for the splitter end 52. Rather than having an encased splitter end,

the splitter end 52 of FIGS. 3A-3C is positioned within the interior cavity 54 as individual components, preferably in the factory, but possibly in the field. FIG. 3B illustrates the cover **56** that is selectively movable from an opened position to a closed position (FIG. 3B) to provide access to the 5 interior cavity 54. The splitter end 52 of the LCP 50 may be factory prepared to include all the fiber optic hardware components shown and to allow a field technician to provide a number of operations on the various components. The splitter end **52** includes a plurality of splitters **58**, at least one 1 splice tray assembly 60, at least one fiber optic routing guide 62, and a subscriber termination field comprising a plurality of receptacles 64. By providing the fiber optic hardware components individually within the LCP 50, a network provider is given the option of purchasing the LCP with the 15 minimum amount of fiber optic hardware components required at the time of installation and then add additional components as additional subscribers need connection to the network. Still further advantages are provided by providing the splitter end **52** of FIGS. **3A-3**C. The cable assembly 20 optical fiber(s) (not shown) is routed to the splitters **58** where the optical signal is split into a plurality of optical fibers. The optical fibers may be spliced, by either single splices for individual fibers or mass fusion splicing for multi-fiber cables such as ribbon cables, and placed within the splice 25 tray assembly. The optical fibers from the splitters may be spliced to pigtails that may be inserted into a side of the receptacles 64 opposite the side into which the connector of the subscriber optical fiber will be received. Although the splice tray assembly 60 does accommodate a certain amount 30 of fiber optic slack, such as an amount of slack necessary to perform the splice operation, the fiber optic routing guides **62** also provide slack storage for the optical fibers from the splitters and/or for the pigtails. Still further embodiments of the present invention may provide additional and/or alter- 35 native fiber optic components in the interior cavity of the housing of the LCP.

Turning now to the LCP 70 of FIGS. 4A and 4B, the splitter end 72 does include fiber optic splice tray assembly 74 and fiber optic routing guides 76 within the casing 78. 40 The splitter end 72 also includes a plurality of splitters 80 and the plurality of receptacles 82 similar to the embodiments of FIGS. 1A-2C. Therefore, the LCP 70 of FIGS. 4A and 4B includes some of the functionality of the LCP 50 of FIGS. 3A-3C, while also providing the ease of installation of 45 the LCP 10 of FIGS. 1A-2C. Still further advantages can be realized by combining the various fiber optic hardware components and techniques of the embodiments of FIGS. 1A-4B and further embodiments of the present invention.

In addition to providing convenient installation of the 50 LCP within and/or near the MDU, the LCPs of certain embodiments of the present invention also provide improved density of connections, which significantly reduces the cost of the hardware and enables technicians to more easily install the LCP and associated fiber optic hardware and to 55 increase the possible places the LCP and associated fiber optic hardware may be installed and/or mounted. Whereas prior art LCPs generally define a width of 13.5 inches, a height of 15.5 inches, and a depth of 5.5 inches along the exterior of the LCP while providing only 48 receptacles for 60 subscriber optical fibers, the LCPs of the illustrated embodiments of the present invention generally define a width of 9.8 inches, a height of 12.6 inches, and a depth of 3.8 inches while providing 288 receptacles for subscriber optical fibers. Therefore, the prior art LCPs define a density of receptacles 65 per unit of volume of the housing of about 0.042 receptacles/ in³, and the LCPs of the illustrated embodiments define a

10

density of receptacles per unit of volume of the housing of about 0.614 receptacles/in³, which is a significant improvement in density that can be used to provide smaller LCPs and/or provide additional optical connectivity with the LCPs of the present invention. Various embodiments of the present invention preferably provide a density of receptacles per unit of volume of the housing from about 0.10 receptacles/in³ to about 4.0 receptacles/in³, more preferably a density of receptacles per unit of volume of the housing from about 0.25 receptacles/in³ to about 2.0 receptacles/in³, and still more preferably a density of receptacles per unit of volume of the housing from about 0.50 receptacles/in³ to about 1.0 receptacles/in³.

The LCPs of FIGS. 1A-4B include receptacles that are adapted to receive connectors of subscriber optical fibers that comprise 5 mm optical connectors, which may be arranged in relatively dense patterns as a distance of only 5 mm is required between centers in both lateral and longitudinal directions ("5 mm optical connectors"). Still further embodiments of the present invention include receptacles adapted to receive MU connectors that may also be arranged in relatively dense patterns, but require 4.5 mm to 5 mm between centers in either a lateral or longitudinal direction and about 10 mm in the opposite direction; thereby requiring slightly large volume than the 5 mm optical connectors. Additional embodiments of the present invention include receptacles adapted to receive SC, LC, ST, FC, MT-RJ, MTP, and other fiber optic connectors and adapted to receive single-mode or multimode fibers in simplex, duplex, or multi-fiber arrangements.

FIGS. **5**A-**5**D illustrate yet another LCP **90** of the present invention, wherein the LCP includes a plurality of multifiber receptacles 92 adapted to received multi-fiber connectors (nut shown) of the subscriber optical fibers. The housing **94** of the LCP **90** defines an interior cavity **96** into which a plurality of splitter modules 98 may be received. Rather than providing a cable assembly as in the embodiments discussed above, the LCP 90 is adapted to house a plurality of splitter modules 98. The splitter modules 98 of the illustrated embodiments includes a single input opening 100 and a plurality of output openings 102 to which optical fibers may be routed and connected via multi-fiber connectors (not shown). The optical fibers pass through the openings 104 and 106 similar to the embodiments described above; however, it would be possible to change the routing if desired by the technician. The splitter modules 98 include a splitter (not shown) that splits the optical signal received through the input opening 100 to the plurality of receptacles of the output openings. The splitter modules 98 are installed by fastening them to brackets 108 provided in the interior cavity 96 of the housing 94; however, further embodiments may install the splitter modules in alternative fashions, such as by providing a splitter end of a cable assembly wherein the splitter end is adapted to receive at least one splitter module within the splitter end, to describe one non-limiting example. The LCP 90 of FIGS. 5A-5D includes an access cover 110 to limit access to the splitter modules to technicians. The splitter modules of certain embodiments of the present invention include the splitter modules of FIGS. 13A-13D described in more detail below.

FIGS. 6 and 7 illustrate the LCPs (not to scale) of certain embodiments of the present invention installed in an MDU 120. The MDU 120 of FIGS. 6 and 7 comprises an apartment building having nine dwelling units 122 for illustrative purposes only. The LCP 124 is positioned on the ground floor or basement in the illustrated embodiment; however, the LCP of further embodiments is positioned at any location

relative to the MDU. The LCP **124** includes a cable assembly 126 that is optically connected to a distribution cable 128 via the cable assembly optical fiber(s) 130 as described above. As also described above, the subscriber optical fibers 132 that are connected to the receptacles of the LCP 124 exit 5 the LCP and extend throughout the MDU. The subscriber optical fibers 132 of FIG. 6 extend directly to each dwelling unit and terminate at a subscriber termination point 134, such as an adapter in a wall outlet, an adapter in a floor panel, an adapter behind a ceiling tile, or the like such that 10 the MDU. the subscriber can optically connect directly (or indirectly in some situations) to the subscriber optical fiber 132. Although the optical fibers 130 and 132 include arrows pointing in the direction of the subscriber termination points 134, it should be appreciated that optical signals may be 15 passed in either direction as required for the particular application; the arrows are merely provided for illustrative purposes.

FIG. 7 is also provided to illustrate embodiments in which the subscriber optical fiber 132 is optically connected to a 20 fiber distribution terminal ("FDT") 136 (not to scale) rather than the subscriber termination point 134. FDTs are provided to simplify the routing and installation of the optical fibers between the LCP **124** and the subscriber termination points 134 by allowing the subscriber optical fibers 132 to be 25 grouped between the LCP and FDT and then separated at the FDT. More specifically, the subscriber optical fibers 132 of FIG. 7 comprise multi-fiber cables comprising a plurality of optical fibers, such as ribbon fiber to provide one nonlimiting example. As explained more fully below, the sub- 30 scriber optical fiber 132 is separated into multiple subscriber drop optical fibers 138 that are routed from the FDT 136 to the subscriber termination points 134. As shown in FIG. 7, each floor of the MDU 120 includes a FDT, such that each of the three subscriber optical fibers **132** is divided into three 35 subscriber drop optical fibers 136. Accordingly, there are fewer optical fibers and/or cables extending between the floors of the MDU thus simplifying routing of optical fibers through the MDU. Although floors of an MDU are described in the illustrated embodiments, it should be appreciated that 40 FDTs may be used to facilitate optical fiber routing to any layout of areas within an MDU.

Turning now to the FDTs of FIGS. 8A-11C, various FDTs are included in the present invention. The FDT **140** of FIGS. **8A-8**D comprises a generally rectangular housing **142** that 45 defines a top wall 144, a bottom wall 146, and a sidewall 148 extending therebetween. The FDT 140 includes an input opening 150 defined in the sidewall 148, and the input opening is adapted to receive at least one input optical fiber. For the FDT 140 of FIGS. 8A-8D, the input opening 150 50 receives a single subscriber optical cable 152 that comprises twelve subscriber optical fibers. The FDT 140 defines a direct cable input as compared to the multi-fiber connector input of the embodiment of FIGS. 9A-9C described below. The FDT 140 of FIGS. 8A-8D also includes an output 55 opening 154 defined in the sidewall 148. The output opening 154 comprises a plurality of fiber optic output receptacles 156 adapted to receive fiber optic connectors, such as from a subscriber drop optical fiber (not shown), to optically connect the fiber optic connector to a respective one of the 60 input optical fibers. The FDTs of further embodiments of the present invention are adapted to receive any number of input optical fibers and provide any number of fiber optic output receptacles. The FDT 140 of FIG. 8B includes a removable portion 158 adapted to selectively cover the fiber optic 65 output receptacles when one or more fiber optic connectors are received in the fiber optic output receptacles to generally

12

protect the connectors from unintentional disconnection, as well as other undesirable problems that may be created by unintentional contact of foreign objects with the connectors. The removable portion 158 of FIG. 8B may be easily connected and disconnected by a technician using clips, fasteners, and the like when the technician accesses the output opening 154 and the fiber optic output receptacles 156. The FDT 140 also includes one or more mounting flanges 159 to provide easy installation of the FDT within the MDII

The FDT 140 of FIGS. 8A-8D provides a significant advantage over prior art FDTs in that the FDT **140** provides easy installation and connectivity, as well as requiring significantly less volume than prior art FDTs. Prior art FDTs typically use a housing similar to the LCP housings described above or an even larger cabinet or the like. Therefore, prior art FDTs provide for only about a density of receptacles per unit of volume of the housing of about 0.042 receptacles/in³. However, the FDT 140 of FIGS. 8A-8D generally defines (not including the mounting flanges or removable portion area) a width of 1.38 inches, a height of 1.35 inches, and a depth of 0.55 inches while providing 12 receptacles for subscriber optical fibers. Therefore, the FDT 140 provides a density of receptacles per unit of volume of the housing of about 11.7 receptacles/in³, which is a significant improvement in density over the prior art. Various embodiments of the present invention preferably provide direct cable input FDTs having a density of receptacles per unit of volume of the housing from about 1.0 receptacles/in³ to about 40 receptacles/in³, more preferably a density of receptacles per unit of volume of the housing from about 5.0 receptacles/in³ to about 20 receptacles/in³, and still more preferably a density of receptacles per unit of volume of the housing from about 10 receptacles/in³ to 0.3 about 15 receptacles/in³.

Referring now to the FDTs of FIGS. 9A-9C, a multi-fiber connector input FDT 160 is provided. The FDT 160 of FIGS. 9A-9C comprises a generally rectangular housing 162 that defines a top wall 164, a bottom wall 166, and a sidewall 168 extending therebetween. The FDT 160 includes an input opening 170 defined in the sidewall 168, and the input opening is adapted to receive at least one input optical fiber. For the FDT 160 of FIGS. 9A-9C, the input opening 170 provides a multi-fiber receptacle 172 to which a multi-fiber connecter may be selectively received. The multi-fiber connector of the subscriber optical cable (not shown) comprises twelve subscriber optical fibers. The FDT 160 of FIGS. 9A-9C also includes an output opening 174 defined in the sidewall 168. The output opening 174 comprises a plurality of fiber optic output receptacles 156 adapted to receive fiber optic connectors, such as from a subscriber drop optical fiber (not shown), to optically connect the fiber optic connector to a respective one of the input optical fibers. The FDTs of further embodiments of the present invention are adapted to receive any number of input optical fibers and to provide any number of fiber optic output receptacles.

Similar to the direct cable input FDT 140 of FIGS. 8A-8D, the multi-fiber connector input FDT 160 of FIGS. 9A-9C provides a significant advantage over prior art FDTs in that the FDT 140 provides easy installation and connectivity, as well as requiring significantly less volume than prior art FDTs. As mentioned above, prior art FDTs typically provide a density of receptacles per unit of volume of the housing of about 0.042 receptacles/in³. However, the FDT 160 of FIGS. 9A-9C generally defines (not including the mounting flanges or removable portion area) a width of 2.09 inches, a height of 1.35 inches, and a depth of 0.55 inches

while providing 12 receptacles for subscriber optical fibers. Therefore, the FDT **160** provides a density of receptacles per unit of volume of the housing of about 7.73 receptacles/in³, which is a significant improvement in density over the prior art. Various embodiments of the present invention preferably provide multi-fiber connector input FDTs having a density of receptacles per unit of volume of the housing from about 1.0 receptacles/in³ to about 40 receptacles/in³, more preferably a density of receptacles per unit of volume of the housing from about 5.0 receptacles/in³ to about 20 receptacles/in³, and still more preferably a density of receptacles per unit of volume of the housing from about 6.0 receptacles/in³ to about 12 receptacles/in³.

Referring now to the multi-fiber connector input FDTs of FIGS. 10A-11C, each FDT 180 and 200 are similar to the 15 multi-fiber connector input FDT 160 of FIGS. 9A-9C but provide the input openings 182 and 202 at slightly different positions and provide eight MU fiber optic output receptacles 184 and 204 of the output openings 186 and 206 as opposed to the twelve 5 mm fiber optic output receptacles 20 156 (for receiving 5 mm optical connectors). The FDTS 182 and 202 also do not include mounting flanges and/or the removable portion; however, further embodiments of the present invention include FDTs that include any combination of the features described herein. The FDT **180** of FIGS. 25 10A-10C includes the input opening 182 in the sidewall 188 such that the input opening defines an input axis 190 generally orthogonal to the input opening 182 and the output opening 186 defines an output axis 192 generally orthogonal to the output opening, such that the input axis and the output 30 axis are generally orthogonal to one another. The input axis 190 and the output axis 192 of the openings of the FDT 160 of FIGS. 9A-9C are also orthogonal to one another; however, the input opening of the FDT 180 of FIGS. 10A-10C has been recessed a significant amount to protect the multifiber connector 194 of the subscriber optical cable and to further reduce the amount of area required by the FDT and its related connectors. Similarly, the FDT 200 of FIGS. 11A-11C defines an input axis 210 and an output axis 212 that are generally parallel to one another. Therefore, the 40 FDTs of various embodiments of the present invention provide numerous option when selecting the proper FDT to be used in a particular location, with or without particular connectors, with a particular orientation, and the like.

FIGS. 12A-14D illustrate fiber optic hardware compo- 45 nents associated with the LCPs of various embodiments of the present invention. The fiber optic hardware components are illustrated to scale relative to similar prior art components to illustrate the differences in sizes and/or orientations achievable using microstructured optical fiber of the present 50 invention, as described more fully below. Turning now to the fiber optic splice tray assembly 220 of FIGS. 12A-12C, the fiber optic splice tray assembly comprises a frame 224 defining a base 226 and a plurality of sidewalls 228 joined to the base, wherein a volume of the splice tray assembly is 55 defined by a length of the base, a width of the base, and a height of the sidewalls. The splice tray assembly also includes a splice tray 230 comprising a plurality of splice holders 232 joined to the splice tray. The splice holders 232 are adapted to selectively receive a plurality of splices **234** 60 of optical fibers 236. The splice holders 234 are generally angled relative to the sidewalls 228 of the frame 224. At least a portion of the sidewalls 228 defines slack storage generally around the splice tray 230, wherein the slack storage provides for a sufficient amount of slack of the optical fibers 236 65 associated with the splice generally sufficient for a technician to optically connect the optical fibers with the splice

14

234. As shown best in FIG. 10B, the splice tray assembly 220 provides slack storage along only two sidewalls 228 of the frame 224.

Based in part upon the use of the microstructured optical fiber described below, the splice tray assembly 220 is adapted to provide a significant improvement in the density of splices per unit of volume of the splice tray assembly, thus reducing the size, number, and/or costs of splice tray assemblies required for a particular application. Whereas prior art splice tray assemblies 236 generally define along the exterior a width of 3.94 inches, a length of 9.34 inches, and a depth of 0.4 inches while providing 24 splice holders, the splice tray assembly of the illustrated embodiment of the present invention generally defines along the exterior a width of 2.44 inches, a length of 6.34 inches, and a depth of 0.4 inches while providing 24 splice holders. Therefore, the prior art splice tray assemblies define a density of splice holders per unit of volume of the splice tray assembly of about 1.63 single splices/in³ and about 3.26 mass fusion splices/in³, and the splice tray assembly of the illustrated embodiment defines a density of splice holders per unit of volume of the splice tray assembly of about 3.87 single splices/in³ and about 7.76 mass fusion splices/in³. Various embodiments of the present invention preferably provide a density of splice holders per unit of volume of the splice tray assembly of at least 3 single splices/in³ or at least 6 mass fusion splices/in³, more preferably a density of splice holders per unit of volume of the splice tray assembly of at least 5 single splices/in³ or at least 10 mass fusion splices/in³, and still more preferably a density of splice holders per unit of volume of the splice tray assembly of at least 8 single splices/in³ or at least 16 mass fusion splices/in³.

Turning now to the fiber optic splitter module 240 of FIGS. 13A-13C, the splitter module optically connects at least one input optical fiber 242 and a plurality of output optical fibers 244. The splitter module comprises a housing 246 having at least one opening 248 therethrough, wherein the opening defines an opening axis 250 generally orthogonal to the opening. The splitter module also includes a splitter 252 within the housing 246, wherein the input optical fiber 242 is optically connected to the plurality of output optical fibers 244 by the splitter 252. The splitter 252 defines a splitter axis 254 generally aligned with the input optical fiber 242 and the plurality of output optical fibers 244 proximate the splitter. In the splitter module **240** of FIGS. 13A-13C, the splitter axis 254 is generally orthogonal to the opening axis 250. It should be noted that the splitter module 240 does not include a slack loop for either the input optical fiber 242 or the output optical fiber 244, based in part upon the performance of the microstructured optical fiber used in some embodiments of the present invention.

Also based in part upon the use of the microstructured optical fiber described below, the splitter module 240 is adapted to provide a significant improvement in the density of output optical fiber splits per unit of volume of the splitter module housing, thus reducing the size, number, and/or costs of splitter modules required for a particular application. Whereas prior art splitter module 256 generally defines along the exterior a width of 3.07 inches, a length of 4.85 inches, and a depth of 0.92 inches while providing 32 output fiber splits, the splice tray assembly of the illustrated embodiment of the present invention generally defines along the exterior a width of 3.47 inches, a length of 1.83 inches, and a depth of 0.83 inches while providing 32 output fiber splits. Therefore, the prior art splice tray assemblies define a density of output optical fiber splits per unit of volume of the splitter module housing of about 2.34 splits/in³, and the

splice tray assembly of the illustrated embodiment density of output optical fiber splits per unit of volume of the splitter module housing of about 6.07 splits/in³. Various embodiments of the present invention preferably provide a density of output optical fiber splits per unit of volume of the splitter 5 module housing of about 4 splits/in³ to about 10 splits/in³, more preferably a density of output optical fiber splits per unit of volume of the splitter module housing of about 5 splits/in³ to about 8 splits/in³, and still more preferably a density of output optical fiber splits per unit of volume of the 10 splitter module housing of about 6 splits/in³ to about 7 splits/in³. It should be appreciated that the numbers given above are for 1×32 splitters and that additional splitter modules of the present invention generally define the same volume while including alternative numbers of splits, such 15 that the amounts given above should be adjusted accordingly based upon the splitter ratio of the actual splitter(s) used in the splitter module.

Turning now to the fiber optic routing guide **260** of FIGS. **14A-14**E, the fiber optic routing guide is adapted for use in 20 an enclosure of a fiber optic network, such as the housing (and/or splitter end of the cable assembly) of an LCP as described above, to provide one non-limiting example. The routing guide 260 is adapted to store slack of an optical fiber **262**, such as an optical fiber having an outer diameter of 900 25 µm to provide one non-limiting example. The routing guide 260 comprises a housing 264 defining an outer surface 266 generally located between a top surface 268 and a bottom surface 270. The routing guide 260 also includes a core portion 272 defining a fiber routing surface 274 along the 30 perimeter of the core portion between the top surface 268 and the bottom surface 270. The core portion 272 is generally centered in the housing 264, and the fiber routing surface is adapted to receive the routed optical fiber **262**. The routing guide 260 further includes an outer wall 276 joined 35 to the core portion 272. The outer wall 276 defines the outer surface 266 of the housing 264 and defines an inner surface 278 opposite the outer surface and facing the fiber routing surface 274 of the core portion 272. For the routing guide 260 of FIGS. 14A-14C, the fiber routing surface 278 gen- 40 erally defines a plurality of curved surfaces having a common center, the outer surface 266 generally defines a plurality of curved surfaces having a common center, and the centers for both the fiber routing surface and the outer surface correspond (same center). Tab portions **280** extend- 45 ing radially from the fiber routing surface 274 and the inner surface 278. The volume of the routing guide 260 is defined along the outer surface 266 between the top surface 268 and the bottom surface 270.

Based in part upon the use of the microstructured optical 50 fiber described below, the routing guide 260 of FIGS. **14A-14**C is adapted to provide a significant improvement in the amount of length of optical fiber stored by the routing guide per unit of volume of the housing, thus reducing the size, number, and/or costs of routing guides required for a 55 particular application. Whereas prior art routing guides 282 generally define an outer diameter along the outer surface of 2.50 inches and a height of 0.56 inches while being able to store 323 inches of 900 µm optical fiber, the routing guide of the illustrated embodiment of the present invention gen- 60 erally defines an outer diameter along the outer surface of 1.05 inches and a height of 0.56 inches while being able to store 290 inches of 900 µm optical fiber. Therefore, the prior art routing guides is adapted to store an amount of length of optical fiber per unit of volume of the housing of about 6.12 65 inches of 900 µm diameter optical fiber/in³, and the routing guide of the illustrated embodiment is adapted to store an

16

amount of length of optical fiber per unit of volume of the housing of about 13.1 inches of 900 µm diameter optical fiber/in³. Various embodiments of the present invention preferably store an amount of length of optical fiber per unit of volume of the housing of about 10 inches of 900 µm diameter optical fiber/in³ to about 20 inches of 900 µm diameter optical fiber/in³, more preferably store an amount of length of optical fiber per unit of volume of the housing of about 11 inches of 900 µm diameter optical fiber/in³ to about 18 inches of 900 µm diameter optical fiber/in³, and still more preferably store an amount of length of optical fiber per unit of volume of the housing of about 13 inches of 900 µm diameter optical fiber/in³ to about 15 inches of 900 μm diameter optical fiber/in³. Still further routing guides of further embodiments of the present invention include differently shaped and/or sized routing guides adapted to hold alternative lengths of optical fibers having alternative diameters.

Various embodiments of the present invention are adapted so to include bend performance optical fibers. One example of bend performance optical fiber is a microstructured optical fiber having a core region and a cladding region surrounding the core region, the cladding region comprising an annular hole-containing region comprised of non-periodically disposed holes such that the optical fiber is capable of single mode transmission at one or more wavelengths in one or more operating wavelength ranges. The core region and cladding region provide improved bend resistance, and single mode operation at wavelengths preferably greater than or equal to 1500 nm, in some embodiments also greater than about 1310 nm, in other embodiments also greater than 1260 nm. The optical fibers provide a mode field at a wavelength of 1310 nm preferably greater than 8.0 microns, more preferably between about 8.0 and 10.0 microns. In preferred embodiments, optical fiber disclosed herein is thus single-mode transmission optical fiber.

In some embodiments present invention, the microstructured optical fibers disclosed herein comprises a core region disposed about a longitudinal centerline and a cladding region surrounding the core region, the cladding region comprising an annular hole-containing region comprised of non-periodically disposed holes, wherein the annular hole-containing region has a maximum radial width of less than 12 microns, the annular hole-containing region has a regional void area percent of less than about 30 percent, and the non-periodically disposed holes have a mean diameter of less than 1550 nm.

By "non-periodically disposed" or "non-periodic distribution", it is meant that when one takes a cross-section (such as a cross-section perpendicular to the longitudinal axis) of the optical fiber, the non-periodically disposed holes are randomly or non-periodically distributed across a portion of the fiber. Similar cross sections taken at different points along the length of the fiber will reveal different crosssectional hole patterns, i.e., various cross-sections will have different hole patterns, wherein the distributions of holes and sizes of holes do not match. That is, the holes are nonperiodic, i.e., they are not periodically disposed within the fiber structure. These holes are stretched (elongated) along the length (i.e. in a direction generally parallel to the longitudinal axis) of the optical fiber, but do not extend the entire length of the entire fiber for typical lengths of transmission fiber.

For a variety of applications, it is desirable for the holes to be formed such that greater than about 95% of and preferably all of the holes exhibit a mean hole size in the cladding for the optical fiber which is less than 1550 nm,

more preferably less than 775 nm, most preferably less than 390 nm. Likewise, it is preferable that the maximum diameter of the holes in the fiber be less than 7000 nm, more preferably less than 2000 nm, and even more preferably less than 1550 mm, and most preferably less than 775 nm. In 5 some embodiments, the fibers disclosed herein have fewer than 5000 holes, in some embodiments also fewer than 1000 holes, and in other embodiments the total number of holes is fewer than 500 holes in a given optical fiber perpendicular cross-section. Of course, the most preferred fibers will 10 exhibit combinations of these characteristics. Thus, for example, one particularly preferred embodiment of optical fiber would exhibit fewer than 200 holes in the optical fiber, the holes having a maximum diameter less than 1550 nm and a mean diameter less than 775 nm, although useful and bend 15 resistant optical fibers can be achieved using larger and greater numbers of holes. The hole number, mean diameter, max diameter, and total void area percent of holes can all be calculated with the help of a scanning electron microscope at a magnification of about 800x and image analysis soft- 20 ware, such as ImagePro, which is available from Media Cybernetics, Inc. of Silver Spring, Md., USA.

The optical fibers disclosed herein may or may not include germania or fluorine to also adjust the refractive index of the core and or cladding of the optical fiber, but 25 these dopants can also be avoided in the intermediate annular region and instead, the holes (in combination with any gas or gases that may be disposed within the holes) can be used to adjust the manner in which light is guided down the core of the fiber. The hole-containing region may consist 30 of undoped (pure) silica, thereby completely avoiding the use of any dopants in the hole-containing region, to achieve a decreased refractive index, or the hole-containing region may comprise doped silica, e.g. fluorine-doped silica having a plurality of holes.

In one set of embodiments, the core region includes doped silica to provide a positive refractive index relative to pure silica, e.g. germania doped silica. The core region is preferably hole-free. In some embodiments, the core region comprises a single core segment having a positive maximum 40 refractive index relative to pure silica Δ_1 in %, and the single core segment extends from the centerline to a radius R1. In one set of embodiments, $0.30\% < \Delta_1 < 0.40\%$, and 3.0μm<R1<5.0 μm. In some embodiments, the single core segment has a refractive index profile with an alpha shape, 45 where alpha is 6 or more, and in some embodiments alpha is 8 or more. In some embodiments, the inner annular hole-free region extends from the core region to a radius R2, wherein the inner annular hole-free region has a radial width W12, equal to R2-R1, and W12 is greater than 1 µm. Radius 50 R2 is preferably greater than 5 μm, more preferably greater than 6 µm. The intermediate annular hole-containing region extends radially outward from R2 to radius R3 and has a radial width W23, equal to R3-R2. The outer annular region **186** extends radially outward from R**3** to radius R**4**. Radius 55 R4 is the outermost radius of the silica portion of the optical fiber. One or more coatings may be applied to the external surface of the silica portion of the optical fiber, starting at R4, the outermost diameter or outermost periphery of the glass part of the fiber. The core region and the cladding 60 region are preferably comprised of silica. The core region is preferably silica doped with one or more dopants. Preferably, the core region is hole-free. The hole-containing region has an inner radius R2 which is not more than 20 μm. In sonic embodiments, R2 is not less than 10 µm and not 65 greater than 20 µm. In other embodiments, R2 is not less than 10 µm and not greater than 18 µm. In other embodi**18**

ments, R2 is not less than 10 μ m and not greater than 14 μ m. Again, while not being limited to any particular width, the hole-containing region has a radial width W23 which is not less than 0.5 μ m. In some embodiments, W23 is not less than 0.5 μ m and not greater than 20 μ m. In other embodiments, W23 is not less than 2 μ m and not greater than 12 μ m. In other embodiments, W23 is not less than 2 μ m and not greater than 10 μ m.

Such fiber can be made to exhibit a fiber cutoff of less than 1400 nm, more preferably less than 1310 nm, a 20 mm macrobend induced loss at 1550 nm of less than 1 dB/turn, preferably less than 0.5 dB/turn, even more preferably less than 0.1 dB/turn, still more preferably less than 0.05 dB/turn, yet more preferably less than 0.03 dB/turn, and even still more preferably less than 0.02 dB/turn, a 12 mm macrobend induced loss at 1550 nm of less than 5 dB/turn, preferably less than 1 dB/turn, more preferably less than 0.5 dB/turn, even more preferably less than 0.2 dB/turn, still more preferably less than 0.01 dB/turn, still even more preferably less than 0.05 dB/turn, and a 8 mm macrobend induced loss at 1550 nm of less than 5 dB/turn, preferably less than 1 dB/turn, more preferably less than 0.5 dB/turn, and even more preferably less than 0.2 dB-turn, and still even more preferably less than 0.1 dB/turn.

The fiber of some embodiments of the present invention comprises a core region that is surrounded by a cladding region that comprises randomly disposed voids which are contained within an annular region spaced from the core and positioned to be effective to guide light along the core region. Other optical fibers and microstructured fibers may be used in the present invention. Additional features of the microstructured optical fibers of additional embodiments of the present invention are described more fully in pending U.S. patent application Ser. No. 11/583,098 filed Oct. 18, 35 2006, and provisional U.S. patent application Ser. Nos. 60/817,863 filed Jun. 30, 2006; 60/817,721 filed Jun. 30, 2006; 60/841,458 filed Aug. 31, 2006; and 60/841,490 filed Aug. 31, 2006; all of which are assigned to Corning Incorporated and the disclosures of which are incorporated by reference herein.

Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

The invention claimed is:

[1. A fiber optic splitter module for optically connecting at least one input optical fiber and a plurality of output optical fibers, the splitter module comprising:

- a housing having at least one opening therethrough, wherein the opening defines an opening axis generally orthogonal to the opening; and
- a splitter within the housing, wherein the input optical fiber is optically connected to the plurality of output optical fibers by the splitter, wherein the splitter defines a splitter axis generally aligned with the input optical fiber and the plurality of output optical fibers;

- wherein the splitter axis is generally orthogonal to the opening axis; and
- wherein the splitter module defines a density of output optical fiber splits per unit of volume of the housing of at least 5 splits/in³.
- 2. A fiber optic splitter module [according to claim 1,] for optically connecting at least one input optical fiber and a plurality of output optical fibers, the splitter module comprising:
 - a housing having at least one opening therethrough, wherein the opening defines an opening axis orthogonal to the opening; and
 - a splitter within the housing, wherein the input optical fiber is optically connected to the plurality of output 15 optical fibers by the splitter, wherein the splitter defines a splitter axis aligned with the input optical fiber and the plurality of output optical fibers;
 - wherein the splitter axis is orthogonal to the opening axis; wherein the splitter module defines a density of output 20 optical fiber splits per unit of volume of the housing of at least 5 splits/in³; and
 - wherein the input optical fiber and the plurality of output optical fibers are routed within the housing [generally] without a slack loop.
- [3. A fiber optic splitter module for optically connecting at least one input optical fiber and a plurality of output optical fibers, the splitter module comprising:
 - a housing having at least one opening therethrough, wherein the opening defines an opening axis generally 30 orthogonal to the opening; and
 - a splitter within the housing, wherein the input optical fiber is optically connected to the plurality of output optical fibers by the splitter, wherein the splitter defines a splitter axis generally aligned with the input optical 35 fiber and the plurality of output optical fibers;
 - wherein the splitter axis is generally orthogonal to the opening axis; and
 - wherein the splitter module defines a density of output optical fiber splits per unit of volume of the housing 40 from about 4 splits/in³ to about 10 splits/in³.
- [4. A fiber optic splitter module for optically connecting at least one input optical fiber and a plurality of output optical fibers, the splitter module comprising:
 - wherein the opening defines an opening axis generally orthogonal to the opening; and
 - a splitter within the housing, wherein the input optical fiber is optically connected to the plurality of output optical fibers by the splitter, wherein the splitter defines 50 a splitter axis generally aligned with the input optical fiber and the plurality of output optical fibers;
 - wherein the splitter axis is generally orthogonal to the opening axis; and
 - wherein at least one optical fiber of the plurality of output 55 optical fibers comprises a microstructured optical fiber comprising a core region and a cladding region surrounding the core region, the cladding region comprising an annular hole-containing region comprised of non-periodically disposed holes.
- [5. A splitter module according to claim 4, wherein the microstructured fiber has an 8 mm macrobend induced loss at 1550 nm of less than 0.2 dB/turn.
- **6**. A *fiber optic* splitter module [according to claim 1,] *for* optically connecting at least one input optical fiber and a 65 plurality of output optical fibers, the splitter module comprising:

- a housing having at least one opening therethrough, wherein the opening defines an opening axis orthogonal to the opening; and
- a splitter within the housing, wherein the input optical fiber is optically connected to the plurality of output optical fibers by the splitter, wherein the splitter defines a splitter axis aligned with the input optical fiber and the plurality of output optical fibers;
- wherein the splitter axis is orthogonal to the opening axis; wherein the splitter module defines a density of output optical fiber splits per unit of volume of the housing of at least 5 splits/in³; and
- wherein at least one optical fiber of the plurality of output optical fibers comprises a microstructured optical fiber comprising a core region and a cladding region surrounding the core region, the cladding region comprising an annular hole-containing region comprised of non-periodically disposed holes.
- 7. A splitter module according to claim 6, wherein the microstructured fiber has an 8 mm macrobend induced loss at 1550 [mm] *nm* of less than 0.2 dB/turn.
- 8. A fiber optic splitter module [according to claim 3,] for optically connecting at least one input optical fiber and a 25 plurality of output optical fibers, the splitter module comprising:
 - a housing having at least one opening therethrough, wherein the opening defines an opening axis orthogonal to the opening; and
 - a splitter within the housing, wherein the input optical fiber is optically connected to the plurality of output optical fibers by the splitter, wherein the splitter defines a splitter axis aligned with the input optical fiber and the plurality of output optical fibers;
 - wherein the splitter axis is orthogonal to the opening axis; wherein the splitter module defines a density of output optical fiber splits per unit of volume of the housing from about 4 splits/in³ to about 10 splits/in³; and
 - wherein the input optical fiber and the plurality of output optical fibers are routed within the housing [generally] without a slack loop.
- 9. A fiber optic splitter module [according to claim 3,] for optically connecting at least one input optical fiber and a a housing having at least one opening therethrough, 45 plurality of output optical fibers, the splitter module comprising:
 - a housing having at least one opening therethrough, wherein the opening defines an opening axis orthogonal to the opening; and
 - a splitter within the housing, wherein the input optical fiber is optically connected to the plurality of output optical fibers by the splitter, wherein the splitter defines a splitter axis aligned with the input optical fiber and the plurality of output optical fibers;
 - wherein the splitter axis is orthogonal to the opening axis; wherein the splitter module defines a density of output optical fiber splits per unit of volume of the housing from about 4 splits/in³ to about 10 splits/in³; and
 - wherein at least one optical fiber of the plurality of output optical fibers comprises a microstructured optical fiber comprising a core region and a cladding region surrounding the core region, the cladding region comprising an annular hole-containing region comprised of non-periodically disposed holes.
 - 10. A splitter module according to claim 9, wherein the microstructured fiber has an 8 mm macrobend induced loss at 1550 [mm] *nm* of less than 0.2 dB/turn.

- 11. A fiber oprtic splitter module [according to claim 4,] for optically connecting at least one input optical fiber and a plurality of output optical fibers, the splitter module comprising:
 - a housing having at least one opening therethrough, wherein the opening defines an opening axis orthogonal to the opening; and
 - a splitter within the housing, wherein the input optical fiber is optically connected to the plurality of output optical fibers by the splitter, wherein the splitter defines a splitter axis aligned with the input optical fiber and the plurality of output optical fibers;
 - wherein the splitter axis is orthogonal to the opening axis; and
 - wherein at least one optical fiber of the plurality of output optical fibers comprises a microstructured optical fiber comprising a core region and a cladding region surrounding the core region, the cladding region comprising an annular hole-containing region comprised of 20 non-periodically disposed holes; and
 - wherein the input optical fiber and the plurality of output optical fibers are routed within the housing [generally] without a slack loop.
- 12. The fiber optic splitter module of claim 2, wherein the ²⁵ splitter splits the optical signal carried by the input optical fiber into 8 optical signals.
- 13. The fiber optic splitter module of claim 2, wherein the splitter splits the optical signal carried by the input optical fiber into 16 optical signals.
- 14. The fiber optic splitter module of claim 2, wherein the splitter splits the optical signal carried by the input optical fiber into 32 optical signals.
- 15. The fiber optic splitter module of claim 2, wherein the splitter splits the optical signal carried by the input optical fiber into 64 optical signals.
- 16. The fiber optic splitter module of claim 2, wherein the housing has exterior dimensions of less than about 3.07 inches×4.85 inches×0.92 inches.
- 17. The fiber optic splitter module of claim 2, wherein at least one of the input optical fiber and the output optical fiber is a bend performance optical fiber.
- 18. The fiber optic splitter module of claim 2, wherein the plurality of output optical fibers comprise a plurality of 45 pigtails each having a connectorized end.
- 19. The fiber optic splitter module of claim 18, wherein at least one of the plurality of pigtails optically connects to a subscriber optical fiber.
- 20. The fiber optic splitter module of claim 8, wherein the 50 housing supports an optical signal split density of between about 5 splits/in³ and about 8 splits/in³ of volume.
- 21. The fiber optic splitter module of claim 8, wherein the housing supports an optical signal split density of between about 6 splits/in³ and about 7 splits/in³ of volume.
- 22. The fiber optic splitter module of claim 8, wherein the housing supports an optical signal split density of about 6.07 splits/in³ inch of volume.
- 23. The fiber optic splitter module of claim 8, wherein the splitter splits the optical signal carried by the input optical 60 fiber into 8 optical signals.
- 24. The fiber optic splitter module of claim 8, wherein the splitter splits the optical signal carried by the input optical fiber into 16 optical signals.
- 25. The fiber optic splitter module of claim 8, wherein the 65 splitter splits the optical signal carried by the input optical fiber into 32 optical signals.

22

- 26. The fiber optic splitter module of claim 8, wherein the splitter splits the optical signal carried by the input optical fiber into 64 optical signals.
- 27. The fiber optic splitter module of claim 8, wherein the housing has exterior dimensions of less than about 3.07 inches×4.85 inches×0.92 inches.
- 28. The fiber optic splitter module of claim 8, wherein at least one of the input optical fiber and the output optical fiber is a bend performance optical fiber.
- 29. The fiber optic splitter module of claim 8, wherein the plurality of output optical fibers comprise a plurality of pigtails each having a connectorized end.
- 30. The fiber optic splitter module of claim 29, wherein at least one of the plurality of pigtails optically connects to a subscriber optical fiber.
 - 31. The fiber optic splitter module of claim 11, wherein the housing supports an optical signal split density of volume of the housing of at least 5 splits/in³ of volume.
 - 32. The fiber optic splitter module of claim 11, wherein the housing supports an optical signal split density of between about 4 splits/in³ and about 10 splits/in³ of volume.
 - 33. The fiber optic splitter module of claim 11, wherein the housing supports an optical signal split density of between about 5 splits/in³ and about 8 splits/in³ of volume.
 - 34. The fiber optic splitter module of claim 11, wherein the housing supports an optical signal split density of between about 6 splits/in³ and about 7 splits/in³ of volume.
 - 35. The fiber optic splitter module of claim 11, wherein the housing supports an optical signal split density of about 6.07 splits/in³ of volume.
 - 36. The fiber optic splitter module of claim 11, wherein the splitter splits the optical signal carried by the input optical fiber into 8 optical signals.
 - 37. The fiber optic splitter module of claim 11, wherein the splitter splits the optical signal carried by the input optical fiber into 16 optical signals.
- 38. The fiber optic splitter module of claim 11, wherein the splitter splits the optical signal carried by the input optical fiber into 32 optical signals.
 - 39. The fiber optic splitter module of claim 11, wherein the splitter splits the optical signal carried by the input optical fiber into 64 optical signals.
 - 40. The fiber optic splitter module of claim 11, wherein the housing has exterior dimensions of less than about 3.07 inches×4.85 inches×0.92 inches.
 - 41. The fiber optic splitter module of claim 11, wherein at least one of the input optical fiber and the output optical fiber is a bend performance optical fiber.
 - 42. The fiber optic splitter module of claim 11, wherein the plurality of output optical fibers comprise a plurality of pigtails each having a connectorized end.
- 43. The fiber optic splitter module of claim 42, wherein at least one of the plurality of pigtails optically connects to a subscriber optical fiber.
 - 44. An optical splitter module comprising:
 - a housing having a volume; and
 - an optical splitter in the housing, wherein the optical splitter is configured to receive at least one input optical fiber carrying an optical signal and split the optical signal into a plurality of optical signals, wherein the housing supports an optical signal split density of between about 4 splits/in³ and about 10 splits/in³ of volume.
 - 45. The optical splitter module of claim 44, wherein the housing supports an optical signal split density of between about 5 splits/in³ and about 8 splits/in³ of volume.

- 46. The optical splitter module of claim 44, wherein the housing supports an optical signal split density of between about 6 splits/in³ and about 7 splits/in³ of volume.
- 47. The optical splitter module of claim 44, wherein the housing supports an optical signal split density of about 6.07 ⁵ splits/in³ inch of volume.
- 48. The optical splitter module of claim 44, wherein the optical splitter splits the optical signal carried by the input optical fiber into 8 optical signals.
- 49. The optical splitter module of claim 44, wherein the optical splitter splits the optical signal carried by the input optical fiber into 16 optical signals.
- 50. The optical splitter module of claim 44, wherein the optical splitter splits the optical signal carried by the input optical fiber into 32 optical signals.
- 51. The optical splitter module of claim 44, wherein the optical splitter splits the optical signal carried by the input optical fiber into 64 optical signals.
- 52. The optical splitter module of claim 44, wherein the 20 housing has exterior dimensions of less than about 3.07 inches×4.85 inches×0.92 inches.
- 53. The optical splitter module of claim 44, wherein each of the plurality of optical signals is carried by a respective output optical fiber.
- 54. The optical splitter module of claim 44, wherein at least one of the input optical fiber and the output optical fiber is a bend performance optical fiber.
- 55. The optical splitter module of claim 44, wherein the plurality of output optical fibers comprise a plurality of pigtails each having a connectorized end.
- 56. The optical splitter module of claim 55, wherein at least one of the plurality of pigtails optically connects to a subscriber optical fiber.
 - 57. An optical splitter module comprising:
 - a housing having a volume; and
 - an optical splitter in the housing, wherein the optical splitter is configured to receive at least one input optical fiber carrying an optical signal and split the 40 optical signal into a plurality of optical signals, wherein the housing supports an optical signal split density of at least 5 splits/in³ of volume.
- 58. The optical splitter module of claim 57, wherein the optical splitter splits the optical signal carried by the input 45 optical fiber into 8 optical signals.
- 59. The optical splitter module of claim 57, wherein the optical splitter splits the optical signal carried by the input optical fiber into 16 optical signals.
- 60. The optical splitter module of claim 57, wherein the 50 optical splitter splits the optical signal carried by the input optical fiber into 32 optical signals.
- 61. The optical splitter module of claim 57, wherein the optical splitter splits the optical signal carried by the input optical fiber into 64 optical signals.
- 62. The optical splitter module of claim 57, wherein the housing has exterior dimensions of less than about 3.07 inches×4.85 inches×0.92 inches.
- 63. The optical splitter module of claim 57, wherein each of the plurality of optical signals is carried by a respective 60 output optical fiber.
- 64. The optical splitter module of claim 63, wherein at least one of the input optical fiber and the output optical fiber is a bend performance optical fiber.
- 65. The optical splitter module of claim 63, wherein the 65 plurality of output optical fibers comprise a plurality of pigtails each having a connectorized end.

- 66. The optical splitter module of claim 65, wherein at least one of the plurality of pigtails optically connects to a subscriber optical fiber.
 - 67. An optical splitter module comprising:
- a housing having a volume; and
- an optical splitter in the housing, wherein the optical splitter is configured to receive at least one input optical fiber carrying an optical signal and split the optical signal into a plurality of optical signals, wherein the housing supports an optical signal split density of greater than about 2.34 splits/in³ of volume.
- 68. The optical splitter module of claim 67, wherein the housing has exterior dimensions of less than about 3.07 inches×4.85 inches×0.92 inches.
- 69. The fiber optic splitter module of claim 67, wherein the splitter splits the optical signal carried by the input optical fiber into 8 optical signals.
- 70. The fiber optic splitter module of claim 67, wherein the splitter splits the optical signal carried by the input optical fiber into 16 optical signals.
- 71. The fiber optic splitter module of claim 67, wherein the splitter splits the optical signal carried by the input optical fiber into 32 optical signals.
- 72. The fiber optic splitter module of claim 67, wherein the splitter splits the optical signal carried by the input optical fiber into 64 optical signals.
 - 73. The fiber optic splitter module of claim 67, wherein the housing supports an optical split density of up to about 10 splits/in³ of volume.
 - 74. An optical splitter module comprising:
 - a housing having a volume, wherein the housing has exterior dimensions of less than about 3.07 inches×4.85 inches×0.92 inches; and
 - an optical splitter in the housing, wherein the optical splitter is configured to optically connect at least one input optical fiber with a plurality of output optical fibers, and wherein the optical signal carried by the input optical fiber is split and carried by the plurality of output optical fibers.
 - 75. The fiber optic splitter module of claim 74, wherein the induced loss is less than 0.5 dB/turn.
 - 76. The fiber optic splitter module of claim 74, wherein the induced loss is less than 0.2 dB/turn.
 - 77. The fiber optic splitter module of claim 74, wherein the induced loss is less than 0.05 dB/turn.
 - 78. The fiber optic splitter module of claim 74, wherein the induced loss is less than 0.01 dB/turn.
 - 79. The fiber optic splitter module of claim 74, wherein the housing supports an optical signal split density of volume of the housing of at least 5 splits/in³ of volume.
 - 80. The fiber optic splitter module of claim 74, wherein the splitter splits the optical signal carried by the input optical fiber into 16 optical signals.
- 81. The fiber optic splitter module of claim 74, wherein the splitter splits the optical signal carried by the input optical fiber into 32 optical signals.
 - 82. The fiber optic splitter module of claim 74, wherein the splitter splits the optical signal carried by the input optical fiber into 64 optical signals.
 - 83. Ån optical splitter module comprising:
 - a housing having a volume, wherein the housing has exterior dimensions of less than about 3.07 inches×4.85 inches×0.92 inches; and
 - an optical splitter in the housing, wherein the optical splitter is configured to receive at least one input optical fiber carrying an optical signal and split the optical signal into a plurality of optical signals, each of

the plurality of optical signals carried by a respective output optical fiber, wherein the plurality of output optical fibers comprise a plurality of pigtails each having a connectorized end and wherein the housing supports an optical signal split density of between 5 about 4 splits/in³ and about 10 splits/in³ of volume.

84. Fiber optic local convergence point ("LCP"), wherein the LCP adapted for use with at least one input optical fiber and a plurality of output optical fibers, the LCP comprising: a cover;

an LCP housing comprising an interior cavity defined by a back wall and a plurality of sides and by the cover that is selectively moveable relative to the housing from an opened position to a closed position to thereby provide access to the interior cavity when the cover is 15 in the opened position, wherein the LCP housing comprises at least one opening through the LCP housing for the passage of the at least one input optical fiber and the plurality of output optical fibers;

a plurality of receptacles adapted to selectively receive 20 fiber optic connectors that are optically connected to the output optical fibers; and

a splitter module according to claim 41 that optically connects the plurality of output fibers from said optical splitter with the plurality of receptacles.

85. An LCP according to claim 84, wherein the splitter module is joined to the interior surface of the cover.

86. An LCP according to claim 84, wherein the splitter module is joined to the interior surface of the cover with one or more fasteners.

87. An LCP according to claim 84, further comprising: a splice tray assembly to splice the input optical fiber into a pig tail.

88. An LCP according to claim 84, further comprising: routing guides to generally route splitter outputs about the perimeter of the interior cavity from the splitter module to the plurality of receptacles.

89. An LCP according to claim 84, further comprising: an access cover joined to the LCP housing and generally positioned within the interior cavity of the LCP housing when the cover is in the closed position, wherein the access cover is selectively moveable relative to the housing from an opened position to a closed position to thereby provide access to the provider portion when the access cover is in the opened position and wherein the access cover defines an interior surface facing the back wall of the LCP housing when the access cover defines the closed position.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : RE46,701 E

APPLICATION NO. : 13/162115

DATED : February 6, 2018

INVENTOR(S) : Castonguay et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Left Column, following "Assignee:", delete "Corning Cable Systems LLC" and insert --Corning Optical Communications LLC-- in its place.

In the Claims

In Claim 17, Column 21, Line 43, delete "bend performance" and insert --microstructured-- in its place.

In Claim 19, Column 21, Line 48, insert --at its connectorized end-- after "connects".

In Claim 28, Column 22, Line 9, delete "bend performance" and insert --microstructured-- in its place.

In Claim 30, Column 22, Line 14, insert --at its connectorized end-- after "connects".

In Claim 41, Column 22, Line 49, delete "bend performance" and insert --microstructured-- in its place.

In Claim 43, Column 22, Line 54, insert --at its connectorized end-- after "connects".

In Claim 44, Column 22, Line 64, insert --, and wherein said at least one input optical fiber has a bend performance such that with a macrobend of 8mm to 12mm, the induced loss at a wavelength of 1550nm is less than 1dB/turn-- after "volume".

In Claim 54, Column 23, Line 26, delete "44" and insert --53-- in its place; Column 23, Line 28, delete "bend performance" and insert --microstructured-- in its place.

In Claim 55, Column 23, Line 29, delete "44" and insert --53-- in its place.

Signed and Sealed this Tenth Day of April, 2018

Andrei Iancu

Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) U.S. Pat. No. RE46,701 E

In Claim 56, Column 23, Line 33, insert --at its connectorized end-- after "connects".

In Claim 57, Column 23, Line 43, insert --, and wherein said at least one input optical fiber has a bend performance such that with a macrobend of 8mm to 12mm, the induced loss at a wavelength of 1550nm is less than 1dB/turn-- after "volume".

In Claim 64, Column 23, Line 64, delete "bend performance" and insert --microstructured-- in its place.

In Claim 66, Column 24, Line 2, insert --at its connectorized end-- after "connects".

In Claim 67, Column 24, Line 11, insert --, and wherein said at least one input optical fiber has a bend performance such that with a macrobend of 8mm to 12mm, the induced loss at a wavelength of 1550nm is less than 1dB/turn-- after "volume".

In Claim 74, Column 24, Lines 31-33, delete ", wherein the housing has exterior dimensions of less than about 3.07 inches × 4.85 inches × 0.92 inches"; Column 24, Line 37, delete "and" before "wherein"; Column 24, Line 39, insert --, wherein the housing supports an optical signal split density of between about 4 splits/in³ and about 10 splits/in³ of volume and has exterior dimensions of less than about 3.07 inches × 4.85 inches × 0.92 inches, and wherein said at least one input and said output fibers have bend performance such that with a macrobend of 8mm to 12mm, the induced loss at a wavelength of 1550nm is less than 1dB/turn-- after "fibers".

In Claim 75, Column 24, Line 40, delete "fiber optic" and insert --optical-- in its place.

In Claim 76, Column 24, Line 42, delete "fiber optic" and insert --optical-- in its place.

In Claim 77, Column 24, Line 44, delete "fiber optic" and insert --optical-- in its place.

In Claim 78, Column 24, Line 46, delete "fiber optic" and insert --optical-- in its place.

In Claim 79, Column 24, Line 48, delete "fiber optic" and insert --optical-- in its place.

In Claim 80, Column 24, Line 51, delete "fiber optic" and insert --optical-- in its place.

In Claim 81, Column 24, Line 54, delete "fiber optic" and insert --optical-- in its place.

In Claim 82, Column 24, Line 57, delete "fiber optic" and insert --optical-- in its place.

In Claim 83, Column 25, Line 6, insert --, and wherein said at least one input and said output fibers have bend performance such that with a macrobend of 8mm to 12mm, the induced loss at a wavelength of 1550nm is less than 1dB/turn-- after "volume".

In Claim 84, Column 25, Line 23, delete "according to claim 41"; Column 25, Line 25, after "receptacles", insert --, said splitter module comprising:

CERTIFICATE OF CORRECTION (continued) U.S. Pat. No. RE46,701 E

a housing having a volume; and

an optical splitter in the housing, wherein the optical splitter is configured to optically connect at least one input optical fiber with a plurality of output optical fibers, wherein the optical signal carried by the input optical fiber is split and carried by the plurality of output optical fibers, wherein the housing supports an optical signal split density of between about 4 splits/in³ and about 10 splits/in³ of volume and has exterior dimensions of less than about 3.07 inches × 4.85 inches × 0.92 inches, and wherein said at least one input and said output fibers have bend performance such that with a macrobend of 8mm to 12mm, the induced loss at a wavelength of 1550nm is less than 1dB/turn--.

In Claim 88, Column 26, Line 10, delete "generally".

In Claim 89, Column 26, Line 14, delete "generally".