USOORE46537E

(19) United States
12y Reissued Patent (10) Patent Number: US RE46,537 E

Verbaere et al. 45) Date of Reissued Patent: Sep. 5, 2017
(54) QUERYING AN OBJECT-ORIENTED DATA (56) References Cited
HIERARCHY USING RELATIONAL QUERY U.S. PATENT DOCUMENTS
LANGUAGES e -
_ o 5,761,493 A * 6/1998 Blakeley ................. GO6F 8/315
(71) Applicant: Semmle Limited, Oxford (GB) 5765.159 A 6/1908  Srinivasan
5,794,231 A 8/1998 L1 et al.
(72) Inventors: Mathieu Verbaere, Oxford (GB); Oege g’?ggjg% i * g/{ éggg gdarey et «‘:11*1 ++++++++++++++++++ 707/694
: ‘0 ,. , onge et al.
de Moor, Oxiord (GB); Elnar Hajivev, 6173200 Bl 12001 Goldberg
Oxtord (GB) 6,748,377 BL* 6/2004 Attaluri
6,763,341 B2 7/2004 Okude
(73) Assignee: Semmle Limited 6,971,085 B1* 11/2005 Alcorn .......cccccevvennne, 717/108
2004/0193575 Al 9/2004 Chen et al.
: 2004/0230584 Al1* 11/2004 Nourl ................ GO6F 17/30513
(21) Appl. No.: 14/877,992 2006/0190461 Al* 82006 Schaefer ... 707/100
_ 2007/0038651 Al* 2/2007 Bernstemn et al. ............ 707/100
(22) Filed: Oct. 8, 2015 :
(Continued)
Related U.S. Patent Documents OTHER PUBLICATIONS
Reissue of: Oege de Moor et al.,, “Keynote Address: .QL for Source Code
(64) Patent No.: 8,554,782 Analysis”, 7th IEEE International Working Conference on Source
Issued: Oct. 8, 2013 Code Analysis and Manipulation, IEEE Computer Society, Sep. 30,
Appl. No.: 13/423,766 2007.
Filed: Mar. 19, 2012 (Continued)
o Primary Examiner — Behzad Peikari
U.S. Appl - ’
- PP IC'EI’[IOH'S. o (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
(63) Continuation of application No. 12/349,761, filed on
Jan. 7, 2009, now Pat. No. 8,150,3660. (57) ABSTRACT
(60) Provisional application No. 61/019,376, filed on Jan. A novel system, computer readable storage medium and
7. 2008. method for creating re-usable queries over complex data
including hierarchies, trees and graphs 1s described. This 1s
(51) Int. Cl. achieved by an object-oriented query language, where a
GO6F 17730 (2006.01) t.;:lass. 1S a logical property of a dEl'[E.il item;, and inheritance 1s
(52) U.S. Cl implication between such properties. Virtual method calls

CPC .. GO6F 17/30395 (2013.01); GO6F 17/30401 execute all relevant method implementations in most spe-
i 7 cific classes. Expressions can be multi-valued, thus avoiding

2013.01 Do . ,
520 Field of Classification S b ( ) the need for naming intermediate results. All constructs
(58)  Field of Classification Searc closely follow the syntax of mainstream object-oriented
CPC oo GO6F 17/30395; GO6F 17/30401  [anouages like Java.
USPC ., 707/759, 760, 761, 762, 763
See application file for complete search history. 20 Claims, 15 Drawing Sheets
~ 1105
1101 z 4 S
™| creating concise and re-usabie L | implementing queries by: 1106
b ogueries over complex dats bys g !
Eo, . o T transtating construgters and
| defining OO0 query | R S (B
e mang; G'qa.: Y anngaga i methods to Datalog {see Fig. 3) <
/;/ciasses = {ggical properties 1!,
102 | (see Fig. 3 E ---------------------- ;
’ T far each constructor,
—— _ method and predicate, AP
1103 S reiat‘mg Ff‘h’?“t?_"‘ﬂem3 """""" LT introducing special variables T
- Eﬂgmai prﬁpfr;aeﬂ E ; for class and result
~virtual methoo calis ' | —
v
{see Fig. 3) AL .. I
1104 i defining a namad pradicate for 'H_ﬂ,.ﬁ 1108
dispatching on logical properties each method implementation
{0 chose most-specilic beedpl 3
Emﬂiﬂmfi‘ﬂia'{{iﬂﬁ ot method 11804 Eegtiﬁg 3 racajyar agaﬁﬁ &t
from classes{see Fig. 5) o 13110 retevant classes by invoking
; : * \\ named constructor (see FiG. &}
(See Fig. 1) é é =

{See Fig. 2}

(AMENDED)



US RE46,537 E

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2009/0077001 Al1* 3/2009 Macready et al. .............. 706/57
2010/0205171 Al1* 8/2010 Shmueli et al. .............. 707/714

OTHER PUBLICATIONS

Oege de Moor, et al., “.QL: Object-Oriented Queries Made Easy”,
GTTSE, Jul. 2-7, 2007, Braga, Portugal.

* cited by examiner



U.S. Patent Sep. 5, 2017

Sheet 1 of 15

P 105
/
o 102
useri
\\
106 \
/ \
- ' 1 103
users WWWM/
queries )
107 /
/ 104/
N / i
LASENT] ;;/

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

US RE46,537 E

107

iorary of
re-usapie
gueries




U.S. Patent Sep. 5, 2017 Sheet 2 of 15 US RE46.,537 E

202
 library of ;/
'r&wugabiag

- QuUeries
: optimization
/ 201 203 05 / 206
; -/ [ f
-
+ query —yrdatatog iR SUL
N A
Usel i 507
: w‘____)g_
;” 204
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ f A
answer relational]
aatabase

1
i
i
1
¥
W///




S. Patent

Sep. 5, 2017

@perso

-mpioyee

303

Fartiimer

=

ParftimeiManager

+ + + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + + ¥ + +
+ + + + + + + + + +

+
+
+*
+
+
+*
+
+
+*
+

* kb ko F
+ + + + + + + ¥ + +

+
+* +*

+
+ +

+*
+ +

+
+* +*

+
+ +

+*
+ +

+
+* +*

+
+ +

+*
+ +

+
+* +*

+
+
+*
+
+
+*
+
+
+*
+

* kb ko F

Sheet 3 of 15

Vianager

S RE46,537 E



U.S. Patent Sep. 5, 2017 Sheet 4 of 15 US RE46.,537 E

@person=Emplovee

----- m,..._‘

T T~ / 401

aritimer 407




U.S. Patent Sep. 5, 2017 Sheet 5 of 15 US RE46.,537 E

{lass getChairColor()
Employee grey

Cyclist green

Vianager piue

VI red
HarttimebManager | purple

++++++
++++++

+ + +
++++++
+ +

+* +*
+ +
+ + + +

+ + + *

(AMENDED)

foreach class C defining getChairColor:
if (Cle) &&
forall subclass D of C defining getChairColor: not{D{e)))
then m = definition of getChairColor in C;
return e.m()
eise skip G




U.S. Patent Sep. 5, 2017 Sheet 6 of 15 US RE46.,537 E

L — 701

; “ Datalog:
/ classes expressions /{93
| methods / &XP [ \
f instanceof // aggregaies \ )
\ cast Pure
R inherifance / Dataloa: | fl
overriding | Paiog: \‘3;/

from-where- sefecz‘ L exists, and, or,
not, recursion




U.S. Patent

cgatabase

Sep. 5, 2017

802

A S S AT R T D B S S D SR R G M S DY S S DY S S R S e |

801
,

Lo ]

[ ]

[ ]
d
r
r
r

Lgwm

T
-

4 + + % +# 1.4 F F 4+
* + % % % B 1 4 55

Sheet 7 of 15

+ + & + F kA A

A L N

US RE46,537 E

| s03
annotations
with
LN types
- 8504

LN
ass
ierarchies




U.S. Patent Sep. 5, 2017 Sheet 8 of 15 US RE46.,537 E

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Department 405

&2
-
AN

3] EN B (W EE) KN KN [l IXI EN 48 B K1 I3 LE AT EE L .'hw [ 3

-l YT" O ST R O FE T OT OO ST T OFT OO TR OFE T OTETOWT O MO ORFEOFT T OTEOE TR O TR R O"TTOATE OFEET O W - WE O FE T T W ' T M T O ET T TR MO O FE R - W T M T T FE W WO O R T .

Subsidiary 306
departments | ]

chilge

\ /

907 308

903

N

rm x A &k Ta iwr @ e ormm w3 AW AW I TR

{3
=)
b

S W W I A A B T SN I TN S I TN S T RO T U WA S T W P W M S T

,.,9@9/ \ /9?0

'#”#!ﬂ“*“***“*“:‘“**###HE*#“##Hr t. ----------------------------

chilgi 1 child12

I 4

E3E EI3X EX] 4N X [Er EF AL FIEX XX X3 &3 "X EE] EEF IN [l ‘=71 EHI N 13X ] XE XN E. N1 EE LA 7“ LAk JEA: MY A&

/

e MM M e el W gy e e e o i RN e e M Ml e S R N o B el P il b M R el A e g

Managers

Wi R R el ML W A R WM W R Gl e B PR WP R Rl b R R SRR R o R,

Fzm =» 3@ et WF KA T K1 WA OET O W K o ml e e i e w3 oz o frw AT me

ol E P MA HME X IXF XA [IB N EE AN LIX XI K3 @ 1i3r L EN ENE 3N 33 BN i3x O] XER X3 [l 1INL EE BN [I SE] ENE L EF (I NI KN I 3] EKEN SN 43X OXI XE KN LI

Ll I I R H-ii-ﬁ-l-ﬂ--ﬂ-l-i‘iﬂﬂﬂﬂhﬂﬁi”ulﬂm“mﬂ*ﬂ“ﬂﬂ”!ﬁ*ﬂiubﬂﬂiﬂ“hﬂ--ﬂli

/g‘ﬁ a12

i SHE T T A T T Y HE

manager managers

904

rl_“_l_l_l_l_h

A b s e e MR Wy A T b A T A ol e o bW o R A Tl i A e Wl e

'y vih e vt s ew P wt o w's Fm T e o vem Py et oy T e e w wE i Wt ety e Maie sy 'm Pae et il b et M W e P W OWTR TR T BT AT YR T R P TR OTRET WY T T TED R P A W e T an vy A v i vt et e bish olice pieile deinb et e B chish ol detin o sHile Aelet wie's et




U.S. Patent Sep. 5, 2017 Sheet 9 of 15 US RE46.,537 E

re-usable
' queries

........................................................................................................................

format

UsSeT




US RE46,537 E

Sheet 10 of 15

Sep. 5, 2017

U.S. Patent

(7 ‘B4 235)

m_ ﬁm.w ENIE wmmw AOTINIISUGH ﬂwwkzma

ISUHEZE J9AISI3) B BUII538] W

P o o o L L L L L L T L B L - - - - i i - - o i

3

2

m, FU{OAUL AG SB5SRIT 1UBADI3S |OTTTI

601 i
\\.\

i
¥

 uonejuswsidw) poylaul ysea |

R0TT \ﬂ \w& JIENPOIT PoLIBU B Bujuyep

H A L oA W H AL HY Py H W e AL H A Y CH Y AL W H A W e e A A

@}

mgﬁm\\

1 | \\EQ,

HNS3I PUE SSBID J0y
SURLBA IRIDDCS BUIDNPOIILI
‘B1821paid pUR poyIal

| A010NIISU0D YIBs 10
(¢ °Bi4 8a5) mmmwwmm (1 SDOUIBL
DUE SIOIINAISUOD BUiiRisSuR]

m
..
m

AQ satenb Sunulwadu

SOTT~ T

&
:

i

mm, © {1 ‘D14 935

S

(G 814 DOS)SASSL|D WO

DOUTBW 1O UOIIRIUBLUSIT LU u

31328038-1S0W 35042 O
i140004d 183180] U0 FUIYOIRaSID

e TN
(£ ‘314 005)
SI{ED POUISLU [ENIIA - |
saildadoid 183180 -

!

( ,,_wm,mm& - |
s31pledold 183180] = $955813 4
mmmmmgmm Mﬁmmw OQ m%mﬁmw i

AQ B1ED xmmaﬁﬁu JBAG mmtwgv

REELE \ U SURPID ———
Ol S3UBHISYU FUIR|B cotT1

POLL

70T
ral

Fgesn-at pue 8s1pucd guneatd //f

LOLL



U.S. Patent Sep. 5, 2017 Sheet 11 of 15 US RE46.,537 E

fransiating constructors and methods by mapping:

1112

(A \ each constructor to a E
named characteristic predicate of its class

1113 .

\ \| instanceof tests and cast eXpressions
to calls of such characteristic predicates

1114 ¥

\ exXpressions inciugding nested method

calls to a conjunction of predicate calls,
with a new named variable denoting an
intermediate result of each methoo call




U.S. Patent Sep. 5, 2017 Sheet 12 of 15 US RE46.,537 E

®
1115
\

gueries are rendered concise by using:
P N

1110 // \\ ‘3‘3119
N I S

mulli-valued operations azf}tﬁggr@b&femtmmn |
to avoid naming intermediate | z;n d?;?;?ar??ai rahge
resuits (see Fig. 9}l ~~ 77
1 ; “ ' | BAPIESSION
1118 conaition |
\ expression))

1a " notation and a + notation

| on multi-valued operations to

|| indicate a chained application
- of such operations




US RE46,537 E

Sheet 13 of 15

Sep. 5, 2017

U.S. Patent

VETT | - |o8ed gom |

[a0IAIBS qaM |

L

xm% m‘%ﬁ uo mm@ ;aaaai_.m/mmﬁ mﬂmix\f ) ammmﬂ elep jeudiieat |

(0T ‘514 935) 18ULI0} 32UNOSEIEP 3U JO BWALIS BUASIKD

ue Buizgiouue Ag $as58{2 polUualie-108[q0 JO AYdiRiBIY B pling O} wwmz %m_
$BUAL UWINOD pue SIBWL0) 804N0SEIRD JO AYjRin|d & Ul paI0]s Si RI1BD Xa|dwoo

agensue] Suiuiwessold

mmww
m_,

{BIDUBE SO Ul DIPRBGUD mmm wexa AQ Asanb _ Eh@uﬁ eoiydesd | _Ew,‘_wﬁ _m_”m_mwx_ww

6211
95N 51 10 UIBLUOD mﬁ uo mg%cmmmw

W0} AU Ul 20 ues sdendue) Alanb paluauo-10sigo syl [®

e e e el e L ol Sl e

mmﬁ.m lwwhw ‘af&.i?mm wﬂﬁ wmmwm wm mm Eww mwmm xw“mgau wc.@ummwm 1P
,,,,,,,,,,,,,,,,, \\\ S i -

Aw ‘814 995 eWBYDSs jeuoIRiSd Bullsixs ue Sunelouue Ag |
‘BSROEIED [BUOIIEIB Busixe ue Jo doj uo m%mmﬁ peiualio-103iqo _
JG AY2JRIBIY B PIING 01 Pasn 248 5adAl UWnjos pue

BSEQRIED [BUOIIRISA DIBPUEIS B Ul PBIOIS SI B1BD X2GLU0D

oo l YEBUE | b




U.S. Patent Sep. 5, 2017 Sheet 14 of 15 US RE46.,537 E

=xecuting result of transiation

1136

i

at least one search engine is targeted by
fransiating a same intermediate Datalog to
different executable formats

P

2L e s




US RE46,537 E

Sheet 15 of 15

Sep. 5, 2017

U.S. Patent

-F

2 vl Il

LINN 3OVHOLS |
gzzi”  F1EVAQNIY

LINN IDVHOLS |
IIEYACN TS

s
0ez L~

F il e - ol i e " el el e W i S Tl W P L A il L EEE;W

1+ IOVHOLS 3T8VAOWNIY | ?‘v

gLZL” T e m

o SAET MSI] mm@ﬂ C EHNLONY LS AN
o TR _ NOELY SINNWINDD
chel AHOWIN AHYONODAES

gLz

e el e ) e o e e e e Ll o e el o o e e | b e B e e e e

LIND AY1dSIT e FOVHHIINI AYTdSIa (-
1174 e qog L

e e e o e e e e e e e e o B B e e B o e o e e e B e e e e e e i e e e e e e e i e e e e e e

algL”
-

m_.aﬂ I

PO¢

pogy ¥



US RE46,537 E

1

QUERYING AN OBJECT-ORIENTED DATA
HIERARCHY USING RELATIONAL QUERY
LANGUAGES

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is [based on and claims priority from] a
continuation of U.S. patent application Ser. No. 12/349,761

filed on Jan. 7, 2009, which 1s based on and claims priority
from U.S. Provisional Patent Application No. 61/019,376,

filed on Jan. 7, 2008, the entire disclosure of each of the
above-referenced patent applications are hereby incorpo-
rated by reference 1n their entirety.

FIELD OF THE INVENTION

The present mvention relates generally to information
retrieval, 1n particular the way electronically stored data 1s
accessed via queries that are formulated 1in a programming
language. Such a special programming language for queries
1s commonly called a query language, and 1s the usual means
for creating queries over data.

BACKGROUND OF THE INVENTION

Those skilled 1n the art know that SQL (Structured Query

Language) 1s the most popular query language when the data
has been stored 1n a relational database. Another example of
a query language 1s XQuery, for data that has been stored 1n
XML format.

The principal use for such query languages has tradition-
ally been as part of a larger software system, where the
application program 1ssues queries (1n SQL or XQuery) to an
information retrieval component. In this usage scenario,
queries are rarely written by hand; instead they are generated
by the software system itself. Where they are written by
hand, the author 1s typically an expert who 1s well-trained in
query technologies.

Because of this usage within larger systems by experts, 1t
has been possible to simultaneously design queries and the
format of the data to be searched. If a query 1s awkward to
express, or mellicient, the representation of the data can be
adapted to circumvent these problems.

The above assumptions are however no longer valid in
certain recent applications, such as a query interface to a
wika site, (1.e. a site that allows users to freely create and edit
Web page content using any Web browser. Wiki supports
hyperlinks and has a simple text syntax for creating new
pages and crosslinks between internal pages on the tly),
where many ad hoc queries are written by non-expert users
and the design of the data representation cannot be changed
to facilitate queries. Since these ad hoc queries are written
by people and not by systems, 1t 1s important to be able to
draw on libraries of existing queries, so that awkward details
of the data representation can be encapsulated as common
operations, allowing the query author to pose questions 1n
the vocabulary of the problem domain that 1s familiar to the
author.

10

15

20

25

30

35

40

45

50

55

60

65

2

Accordingly, what 1s desired, and which has not until now
been developed, 1s a method and apparatus, embodied as a
query language, that allows the construction of re-usable
queries, so that non-experts can phrase questions in the
vocabulary of the problem domain. Furthermore queries in
such a language should be concise and easy to read. Finally
the language should be close 1n syntax to mainstream
programming languages, so 1t 1s easy to learn for those who
already have some programming experience.

SUMMARY OF THE INVENTION

The present nvention provides a means for creating
re-usable queries over complex data, in particular hierar-
chues, trees and graphs. This 1s aclhueved by an object-
oriented query language, where a class 1s a logical property
of a data item, and inheritance 1s implication between such
properties. Virtual method calls execute all relevant method
implementations in most specific classes. Expressions can
be multi-valued, thus avoiding the need for naming inter-
mediate results. Methods can be recursive, thus enabling
queries over recursive data. All constructs closely follow the
syntax of mainstream object-oriented languages like Java.

In one embodiment, the present immvention provides a
system, a computer readable storage medium and a method
for creating re-usable queries over complex data. The
method includes defining a re-usable object-oriented query
language with object-oriented classes treated as logical
properties, wherein each logical property 1s defined by one
or more specified classes of at least one complex data item.
Inheritance 1s used to form new class with the specified
classes, to the logical properties along with a plurality of
virtual method calls that execute all applicable method
implementations 1n at least one of the specified classes.
Dispatching 1s used on the logical properties to choose at
least one most specific implementation of an operation,
wherein a most specific implementation 1s 1 a class where
no subclasses define a same method.

The method 1n another embodiment 1includes implement-
ing queries by translating possibly recursive object-oriented
queries to pure Datalog using for each method and construc-
tor of each class, a first special variable that holds a value
that 1s a member of the class, and for each method that 1s not
a predicate, a second special variable that holds a result of
a method.

Further 1n this embodiment, the dispatching on the logical
properties Turther includes: defimng a named predicate p as
predicate p(T1x1, . . ., Tnxn) {formula} for each one of the
applicable method implementations, wherein the named
predicate p has variables x1, . . ., Xxn so as to restrict a range
of a relation, which contains tuples (x1, . . ., xn) where each
X1 has a type T1; and testing a receiver against each relevant
type and choosing the applicable method implementations,
wherein testing a type of the recetver 1s achieved by 1invok-
ing a named constructor for each class defining a method of
a relevant signature, regardless of static types.

Still, further 1 this embodiment, the method comprises at
least one of: (a) mapping each constructor to a named
characteristic predicate of 1ts class, which tests whether a
value belongs to the class, by taking a logical conjunction of
characteristic predicates of all superclasses and a property
specified 1n the constructor; (b) mapping instanceof tests and
cast expressions to calls of such characteristic predicates;
and (c¢) mapping expressions mncluding nested method calls
to a conjunction of predicate calls, with a new named
variable denoting an intermediate result of each method call.




US RE46,537 E

3

Still, further in this embodiment, at least one search
engine 1s targeted by translating a same intermediate Data-
log to different executable formats.

In another embodiment, the queries are rendered concise
by at least one of: (a) using multi-valued operations to avoid
naming intermediate results; (b) using a * notation and a +
notation on multi-valued operations to indicate a chained
application of such operations; and (c) using an aggregate
notation with variables, a range condition and an expression
(agg(vars|conditionlexpr)).

In another embodiment, the present invention stores com-
plex data 1n a standard relational database, and column types
are used to build a hierarchy of object-oriented classes on
top of an existing relational database, by annotating an
existing relational schema.

In this embodiment, the complex data can be at least one
of: (a) a data 1tem 1n a hierarchy; (b) a tree; and (c) a graph.

In another embodiment, an object-oriented query lan-
guage can be in any form depending on a domain of 1ts use,
including at least one of: (a) a textual form; a graphical form;
(b) a query-by-example user interface; and (c¢) embedded 1n
a more general programming language.

In still another embodiment, the complex data is stored 1n
a plurality of datasource formats including at least one of: (a)
a relational database; (b) a web service; (¢) a web page; and
(d) a file on hard disk; and (e) column types are used to build
a hierarchy of object-oriented classes on top of such data
formats, by annotating each relevant data format schema.

The foregoing and other features and advantages of the
present invention will be apparent from the following more

particular description of the preferred embodiments of the
invention, as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter, which 1s regarded as the invention, 1s
particularly pointed out and distinctly claimed 1n the claims
at the conclusion of the specification. The foregoing and
other features, and advantages of the invention will be
apparent ifrom the following detailed description taken in
conjunction with the accompanying drawings in which:

FIG. 1 1s a diagram 1llustrating how multiple users can
employ a library of queries that are re-usable 1n that they can
be mvoked multiple times from different queries.

FIG. 2 1s a drawing of a complete system embodying the
invention.

FIG. 3 shows a sample inheritance hierarchy for creating
re-usable queries on employee data 1n a company.

FI1G. 4 shows a Venn diagram of the values that satisiy the
characteristic properties of those classes.

FIG. 5 1s a summary of the values returned by a sample
virtual method named getChairColor.

FIG. 6 depicts an algorithm for virtual method dispatch,
exemplified on the virtual method named getChairColor.

FIG. 7 illustrates the different sublanguages of the pro-
posed query language, which are used in defimng the
meaning of the new features that enable the creation of
re-usable queries.

FIG. 8 illustrates how column types (annotations on a
normal relational schema) are used as the starting point of
building a .QL class hierarchy.

FIG. 9 illustrates how multi-valued methods are evalu-
ated.

FIG. 10 1s a block diagram of a computer system with a
multiple datasources which can be searched from a
single .QL query, according to the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

[FIGS. 11 A-11E is a block diagram giving an overview of
the components of the present invention. Solid arrows

indicate the flow between components, while dashed arrows
indicate additional levels of detail for these components.]

FIG. 114 is a flow chart depicting an example method for
creating concise and reusable queries.

FIG. 11B is a flow chart depicting an example method for
translating constructors and methods.

FIG. 11C is a flow chart depicting an example method for
rendering queries concise.

FIG. 11D is a diagram showing example of forms of
complex data, forms of an object-oriented query language,
and forms of storage of complex data.

FIG. 11E is a flow chart depicting an example method for
executing the vesult of the translation shown in FIG. 114 and
FIG. 11B.

Solid arrows indicate the flow between the steps each
example method, while dashed arrows indicate additional
levels of detail for these steps.

FIG. 12 1s a block diagram of a computer system useful
for implementing the software steps of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

It should be understood that these embodiments are only
examples of the many advantageous uses of the innovative
teachings herein. In general, statements made 1n the speci-
fication of the present application do not necessarily limait
any of the various claimed inventions. Moreover, some
statements may apply to some 1nventive features but not to
others. In general, unless otherwise indicated, singular ele-
ments may be 1n the plural and vice versa with no loss of
generality.

The objective of the invention 1s depicted i FIG. 1: the
ability to construct a library 101 of re-usable queries 1n an
object-oriented query language. These re-usable queries 1n
the library can be mvoked from other queries 102, 103 and
104, where those queries are authored by multiple users 105,
106 and 107, all of whom can share the same library of
re-usable queries.

An example flow diagram of the invention 1s shown 1n
FIGS. 11A-11E. This diagram 1s intended as an overview of
the invention, showing 1ts essential components and the
relation to other figures. The concepts introduced in the brief
description of FIGS. 11A-11E will be further explained
(with many concrete examples) afterwards. Concise and
re-usable queries over complex data are created 1101 in
three steps: first 1102 by defining an object-oriented (OO)
query language where classes are logical properties. Second
1103 by relating the notion of inheritance to those logical
properties as well as virtual method dispatch. Third 1104 by
dispatching on those logical properties to choose a most-
specific implementation of a given method from the avail-
able classes. Each of these three steps (1102, 1103 and 1104)
will be further elaborated below; they are also further
illustrated 1n other figures: 1102 1s elaborated 1n FIG. 3, 1103
in FIGS. 4, and 1104 1n FIG. 3.

The dashed lines 1n FIGS. 11A-11E indicate further levels
of detail. In particular, queries are implemented 1105 by:
1106 translating constructors and methods to clauses 1n
Datalog, a traditional query language in theoretical database
research. That 1s, 1107 for each constructor, method and
predicate, special vaniables are introduced for the current
class, and (where necessary) also for the result. The dis-
patching of virtual methods 1108 1s achieved by 1109
defining a named predicate for each method implementation,




US RE46,537 E

S

and 1110 testing a receiver of a virtual method call against
relevant classes by invoking a named constructor. The
translation to Datalog 1105 1s further explained later, and 1t
1s also illustrated by FIG. 2; 1106 1s illustrated by FIG. 7 and
1110 by FIG. 8.

The translation of constructors and methods 1111 1s
achieved by three mappings: first 1112, each constructor 1s
mapped to a named characteristic predicate of 1ts class.
Second 1113, instanceof tests and cast expressions are
mapped to calls of such characteristic predicates. Third
1114, expressions including nested method calls are mapped
to a conjunction of predicate calls, with a new named
variable denoting an intermediate result of each method call.
We shall revisit 1112, 1113 and 1114 when further describing
the mapping to Datalog.

The concise and re-usable queries 1n 1101 are rendered
concise by 1115: first 1116, the introduction 1117 of multi-
valued operations to avoid naming intermediate results and
1118 a * notation and a + notation on such multi-valued
operations to indicate their chained application. A second
device for rendering queries concise 1s an aggregate notation
1119 with variables, a range condition and an expression
(agg(vars|conditionlexpr)). Multi-valued operations are fur-
ther discussed below via multiple concrete examples; they
are also further illustrated 1n FIG. 9.

The concise and re-usable queries 1n 1101 can be applied
1120 to complex data 1s stored in a standard relational
database and column types are used to build a hierarchy of
object-oriented classes on top of an existing relational
database, by annotating an existing relational schema. This
1s Turther explained below via detailed examples, and also 1n
FIG. 8.

The complex data 1n 1101 consists of 1121 at least one
complex data item that 1s one of a hierarchy 1124 (for
instance the organization of a company), a tree 1125 (for
instance the representation of the syntax of a computer
program) or a graph 1126 (for instance of connections 1n a
social network). Further examples of complex data items
will be discussed below.

The object-oriented query language of 1101 can be 1122
in any form depending on the domain of 1ts use: textual form
1127 (the most common way of presenting queries), graphi-
cal form 1128 (which may be more suited 1n applications to
business intelligence), query-by-example 1129 (common
when non-experts wish to run a query similar to a previous
one), or embedded 1n a more general programming language
1130 (examples of such general programming languages are
Java and C++).

The concise and re-usable queries can be applied 1123 to
complex data that 1s stored in a plurality of datasource
formats, and column types are used to build a hierarchy of
object-oriented classes by annotating an existing schema of
the datasource format. The datasource format can be one of
a relational database 1131, a web service 1132, a web page
1133, or a file on hard disk 1134. This 1s further illustrated
in FIG. 10.

The result of the translation 1105 can be executed 1135 by
translating a single intermediate Datalog program to differ-
ent executable formats 1136. This concludes the description
of the overview of the mvention as depicted in FIGS.
11A-11E, and we now proceed to further elaborate the
concepts mtroduced mn FIGS. 11A-11E.

For brevity, we shall name the novel object-oriented query
language .QL. The structure of the presentation is as follows:
first we show how 1n .QL, a traditional database schema 1is
annotated to enable the construction of a class hierarchy.
Here we chose a typical toy example found 1n textbooks on

5

10

15

20

25

30

35

40

45

50

55

60

65

6

databases, namely a company database mvolving employ-
ces, departments and so on. Next, we show how a hierarchy
of concepts can be constructed on top of that annotated
schema. Finally, we proceed to describe 1n detail how .QL
may be realized by a translation of its novel features to a
more traditional query language.

Annotating a Database Schema with Types

A fictitious company named Fuzzles Inc. has a database
for 1ts company structure, and the schema for that database
1s shown below. It 1s a normal SQL schema, except that each
field has been annotated with a so-called column type. In the
schema below, column types are indicated by italic font. As
shown 1n FIG. 8, these column types 803 are a unique
teature of .QL, allowing programmers to build class hierar-
chies 804 on top of a schema 802 in a normal relational

database 801.

employee(int ssn: (@person, varchar(100) name: string ref)
department(int did: @department, varchar(100) name: string ref)
hassubsidiary(int parent: (@department ref, int child: @department ref)
worksin(int ssn: @person ref, int did: @department ref)

manages(int ssn: @person ref, int did: @department ref)

parttime(int ssn: (@person ref, float percentage: float ref)

cyclist(int ssn: (@person ref, int cycle: @cycle)

driver(int ssn: (@person ref, int car: (@car)

To take one example, the ‘ssn’ field of the ‘employee’
table has been annotated with @person. This 1n fact serves
as a declaration of the type (@person, defiming it to be the set
of values that occurs in that column in the database. By
contrast, 1n the ‘worksin’ relation, the ‘ssn’ field 1s annotated
with (@person ref, expressing the fact that there 1t 1s just a
reference to the @person type. It 1s important to distinguish
column types from the normal representation types (like
varchar (100)) that are part of the normal database schema.
In the above schema, representation types are 1n normal font
and column types are 1n 1talics.

It may appear that column types are similar to the integrity
constraints found in traditional databases, where the pro-
grammer can indicate that a field refers to another field.
Column types encode that same information (the ssn field of
worksin refers to the @person type, which are precisely the
values 1n the ssn field of employee). However, column types
have another role, namely to express that fields do not share
values. For example, the did field of the department table 1s
an integer (according to 1ts representation type), and the ssn
field of employee 1s also an integer. However, since the two
fields have different column types, the same integer cannot
appear both as a value of did and a value of ssn.

Building Classes

Shown now 1s how the vocabulary of a problem domain
(1n this case the company structure) can be encapsulated as
a hierarchy of concepts, and we call these concepts
“classes”. By creating such a hierarchy, we enable non-
experts to ask questions about the data 1n familiar terms. The
use of the word “classes” draws on an analogy with other
fields of computer programming, where 1t has proved eco-
nomical to build libraries of common operations, which can
be reused as-1s, or adapted to new requirements, without
having to reconstruct many similar queries from scratch. The
most successful paradigm for achieving such re-use 1s
object-oriented programming. Examples of object-oriented
programming libraries are the Java collection classes, and
the C++ Standard Template Library STL. A simple combi-
nation of object-oriented programming and query languages
has however long been known to be impossible (Jeflrey D.
Ullman: A Comparison between Deductive and Object-




US RE46,537 E

7

Oriented Database Systems. In: Claude Delobel, Michael
Kifer, Yoshifumi Masunaga (Eds.): Deductive and Object-
Oriented Databases, Second International Conlerence,
DOOD’91, Munich, Germany, Dec. 16-18, 1991, Proceed-
ings. Lecture Notes in Computer Science 566 Springer 1991,
ISBN 3-540-55015-1: 263-27°/. The alorementioned refer-

ence 1s hereby incorporated by reference in 1ts entirety).
However, despite that impossibility, we find 1t useful to use

the terminology of object-oriented programming in this
context, as 1t 1s familiar to those skilled in the art, and the

analogy may thus be helpful 1n creating an intuition about
the semantics as used herein.

A Class for Employees

An employee 1s any person employed by Fuzzles Inc.
Within Fuzzles, an employee’s status 1s indicated by the
colored pattern of her chair. The default 1s a grey pattern. A
chair can however have more than one color, as we shall see
shortly. Here 1s a class for defimng employees, with a
method for reporting the name of an employee, the depart-
ment she works 1n, and the color of her chair, and finally a
toString method for producing a string:

class Employee extends @person {
string getName( ) { employee(this,result) }
Department getWorksInDepartment( ) { worksin(this,result) }
string getChairColor( ) { result="grey” }
string toString( ) { result=this.getName( ) }

h

In general, a .QL class 1s a logical property. Here the
logical property 1s particularly simple, as 1t 1s just that this
occurs as a value 1n the @person column type. The body of
a method 1s a relation between two special variables named
this and result. If there are method parameters, those can also
be used 1n the method body. Note that while we use the
syntax and terminology of object-oriented programming 1n
the presentation of .QL classes, the actual meaning 1s
radically different from traditional object-oriented program-
ming languages.

Given the above Employee class, one can write a select
statement to report all employees named ‘John’, with their
department and chair colors:

from Employee €
where e.getName( ).matches(*“John %)
select e, e.getWorksInDepartment( ), e.getChairColor( )

A Class for Cyclists

In an attempt to encourage eco-friendly behavior, employ-
ees who cycle to work get a green chair. That way, all their
colleagues can see that they make a special effort. As a class,
Cyclist extends Employee, and overrides 1ts getChairColor
method:

class Cyclist extends Employee {
Cyclist( ) { cyclist(this,_) }
string getChairColor( ) { result="green” }

h

As mentioned earlier, a class 1n .QL 1s a logical property.
Here that logical property 1s that thus 1s an Employee who
turthermore occurs 1n the cyclist relation. The employee part
of the property 1s expressed by saying that Cyclist extends
Employee, whereas the cyclist part 1s specified in the con-
structor Cyclist( ). The underscore (_) indicates a don’t-care
value.

10

15

20

25

30

35

40

45

50

55

60

65

8

Again, we note the discrepancy between traditional
object-oriented programming and the notion of ‘extends’
in .QL: 1 .QL ‘extends’ 1s a form of logical conjunction, and
therefore a semantic property. By contrast, 1n a language like
Java, inheritance 1s a syntactic construct, and not a logical
operation.

When a method call e.getChairColor( s evaluated,
the .QL engine determines what the most specific classes are

for e, and 1t uses the definition of getChairColor from those
classes. This process 1s detailed 1n FIG. 6. As we shall see
shortly, 1t 1s possible to have more than one most specific
class for a value.

Modelling Departments

Next, we define a class for departments. Within Fuzzles
Inc., departments can have subsidiaries, which can have
subsidiaries of their own, and so on. A department has a
direct si1ze (everyone who works just at that level), and also
a total size, which 1s the sum of the direct sizes of all its
subdepartments including itself:

class Department extends @department {
int getDirectSize( ) { result = count(Employee ¢ |
worksin(e,this)) |
int getSize( ) { result = sum(Department d |
this.get AChild*( ) = d |
d.getDirectSize( )) }
Department getAChild( ) { hassubsidiary(this,result) }
Department getParent( ) { hassubsidiary(result,this) }
Manager getManager( ) { manages(result,this) }
string toString( ) { department(this,result) }
string getName( ) { result=this.toString( ) }

The getAChild method may return multiple results, one
for each subsidiary of this department. The method getDi-
rectSize presents a first example of an aggregate, namely to
count the number of employees who work 1n this depart-
ment. Next, in computing the total size, we apply the
getAChild method 1 a chained fashion, thus finding all
subsidiaries of the current department. To be more precise,
this.getAChild*( ) returns the results of evaluating just this,
or this.getAChild( ) or this.getAChild( )getAChild( ), . . . and
so on. We take the sum of the direct size of all departments
d obtained in this fashion.

A query to find all subsidiaries below a given department
named “Products” might read as follows:

from Department products
where products.getName( ) = “Products”

select products.getAChild*( )

To get all the managers who work for those subsidiaries,
you can simply write

from Department products
where products.getName( ) = “Products”
select products.getAChild*( ).getManager( )

Note that products.getAChild*( ).getManager( ) may
return many results. Such expressions are sometimes said to
be ‘many-valued’. The evaluation of this expression 901 1s
illustrated 1n FIG. 9. The department 902 named by the
string 905 “Products” has subsidiary departments 903,
namely children 906, 907 and 908. In turn child1l 906 has
children child11 909 child11 and child12 910. Managers 904
are depicted at the bottom of FIG. 9. Child12 has manager



US RE46,537 E

9

managerl 911 and manager2 912. Many-valued expressions
can also be used in conditions. For instance, to find all
managers (1in ‘Products’ or its subsidiaries) whose name
ends with the string ‘son’, you could write

from Department products, Manager m
where products.getName( ) = “Products™ and
products.getAChild*( ).getManager( ) = m and

m.getName( ).matches(“%son’)
select m

Many-valued expressions help write more concise queries
because there 1s no need to name intermediate results. For
instance, in the above query, 1n prior art query languages we
would have to explicitly name the result of products.getA-

Child*( ).

Classes for Various Kinds of Employee

We now turn our attention to building abstractions for
different kinds of employees. First, a part-timer 1s an
employee who works part time. For part-timers, 1t makes
sense to mtroduce an extra method that returns the percent-
age they work for:

class Parttimer extends Employee {
Parttimer( ) { parttime(this,_) }
float getPercentage( ) { parttime(this,result) }

h

A manager 1s a special kind of employee, who happens to
manage a department. The number of reports for a manager
1s the sum of the sizes of the departments he manages; 1t 1s
possible for a manager to be in charge of multiple depart-
ments at once. Managers have blue chairs.

class Manager extends Employee {

Manager( ) { manages(this, ) }

Department getManagesDepartment( ) { manages(this,result) }

string getChairColor( ) { result="blue” }

int getNumberOfReports( ) { result=

sum(Department d |

d = this.getManagesDepartment( ) |
d.getSize( )) }

It 1s 1interesting to consider what happens when a manager
cycles to work. In that case there will be two most specific
classes that define the method getChairColor: the Cycle
class (where 1t returns green) and the above Manager class
(where 1t returns blue). In such cases the .QL engine returns
both results, and indeed 1n Fuzzles Inc., cycling managers
have chairs 1n an attractive striped pattern of both blue and
green.

A manager has the title ‘vice president” when he has more
than 10 reports below him. The chairs of vice-presidents are
red:

class VP extends Manager {
VP( ) { this.getNumberOfReports( ) > 10 }

string getChairColor( ) { result="red” }

h

To 1illustrate the fine points of virtual method dispatch
in .QL, and a few of the characteristics that distinguish 1t
from prior art, let us return to our earlier query

10

15

20

25

30

35

40

45

50

55

60

65

10

from Employee e
where e.getName( ).matches(*“John %)
select e, e.getWorksInDepartment( ), e.getChairColor( )

When there 1s a vice president named John who 1s a
cyclist, he will appear twice 1n the results, once with a red
chair and once with a green chair: 1n Fuzzles Inc, eco-
friendly VPs have chairs that are striped in both red and
green. That same person will still be listed twice 1n the result
of the subtly diflerent query

from Manager e
where e.getName( ).matches(*“John %)
select e, e.getWorksInDepartment( ), e.getChairColor( )

This 1s a crucial difference with all earlier proposals for
object-oriented query languages that aim to query hierar-

chues, trees and graphs. Prior work such as that of Serge
Abiteboul, Georg Lausen, Heinz Uphofl and Emmanuel
Waller. Methods And Rules. In: Peter Buneman and Sushil
Jaodia, Proceedings of the 1993 ACM SIGMOD Interna-
tional conference on Management ol Data, pages 32-41.
ACM Press, 1993 1s typical, in that 1t considers only method
definitions 1n subtypes of the static receiver. For the second
query, that means that the definition of getChairColor 1n the
Cyclist class would not be considered. The difference 1is
important, because that implies that in these prior art query
languages, when writing a new query, we must understand
the whole class hierarchy in the library—which makes the
creation of re-usable queries much harder.

The previous query can also be written using an instan-
ceol test for guaranteeing an expression to be of a specific

type:

from Employee ¢
where e.getName( ).matches(*John %) and
¢ instanceof Manager
select e, e.getWorksInDepartment( ), e.getChairColor( )

Similarly to mainstream object-oriented languages again,
it 1s possible to cast an expression to a specific type i order
to call a method that 1s defined for that type only. For

example:

from Employee e
select e, ((Manager)e). getManagesDepartment ( )

Note that such a cast triggers no error for employees who
are not managers, but instead guarantees, like with 1nstan-
ceol, that all the returned employees are managers. It 1s
therefore again an example where the analogy with existing,
object-oriented programming languages 1s useful for build-
ing intuition, but the technical details demonstrate 1t 1s not
a straightforward combination of existing 1deas.

In one embodiment, the class defimtions may extend
multiple classes at once. For a manager that works part time,
it makes sense to compute the feasibility metric, 1.e. the ratio
of time worked divided by the number of reports times 100:

class ParttimeManager extends Parttimer, Manager {
string getChairColor( ) { result="purple” }
float getFeasibility( ) {



US RE46,537 E

11

-continued

result = (this.getPercentage( ) /
this.getNumberOfReports( )) * 100

Note the use of multiple inheritance, which 1s just logical
‘and’: a ParttimeManager 1s both a Parttimer and a Manager.
In FIG. 3, the complete class hierarchy for the above
example is shown. Each class [301-307] 301, 302, 303, 304,
305, 306, and 307 corresponds to a characteristic logical
property, and we could therefore 1dentily a class with the set

of values that satisfies that property. FIG. 4 shows a Venn
diagram of those sets for the classes [401-405] 401, 402,

403, 404, and 405 defined above. Finally, FIG. § shows the
result of running the chair color query. The process of
selecting a most-specific implementation of a method (here
getChairColor) 1s shown 1n FIG. 6.

Implementing .QL

As previously described above, the .QL query language,
provides a convenient and expressive formalism 1n which to
write queries over complex data. We discussed the object-
oriented features of .QL, which allow complex queries to be
packaged up and reused i a highly flexible fashion. These
features are essential to build up a library of queries that
corresponds to the vocabulary of a problem domain. Now an
example of how to implement .QL 1s discussed. We first
describe the mtermediate language used for .QL queries, a
deductive query language known as Datalog. We then sketch
the translation of—QL programs into Datalog. It 1s well-
known how Datalog itself can be implemented (on top of
traditional database systems, to find data on the web, or in
other sources ol semi-structured data), so details of how
Datalog 1tself may be executed are omitted.

Datalog

QL 1s a significant extension of a simple form of logic
programming known as Datalog, originally designed as an
expressive language for database queries. All .QL programs
can be translated into Datalog, and the language draws on
the clear semantics and eflicient implementation strategies
for Datalog. In this section we describe the Datalog language
betore outlining how .QL programs may be translated into
Datalog. Datalog 1s essentially a subset of .QL, and as such
we shall be using .QL syntax for Datalog programs. The
various sublanguages of .QL and Datalog are depicted in
FIG. 7: the object-oriented query language .QL 701, Datalog
with various extensions 702 and pure Datalog 703.

Predicates

A Datalog program 1s a set of predicates defining logical
relations. These predicates may be recursive, which in
particular allows the transitive closure operations to be
implemented. A Datalog predicate definition 1s of the form:

predicate p(T;xy, . . ., T,%,){formula}

This defines a named predicate p with variables x,, . . .,
x,. In a departure from classical Datalog each variable 1s
given a type. These restrict the range of the relation, which
only contains tuples (Xx,, . . ., X, ) where each x, has the type

T,

I

The body of a Datalog predicate 1s a logical formula over
the variables defined i the head of the clause. These
formulas can be built up as follows:

formula ::=

predicate(variable, . . . , variable)

10

15

20

25

30

35

40

45

50

55

60

65

12

-continued

test(variable, . . . , variable)
variable = expr
not(formula)

formula or formula

formula and formula

exists('Type variable | formula)

That 1s, a formula 1s built up from uses of predicates
through the standard logical operations of negation, disjunc-
tion, conjunction and existential quantification. In addition
to predicates, tests are allowed in Datalog programs. A test
1s distinct from a predicate 1n that 1t can only be used to test
whether results are valid, not generate results. An example
ol a test 1s a regular expression match. The test matches(*“C
%”,X) 1s mtended to match all strings beginning with “C”.
Evidently such a test cannot be used to generate strings, as
there are infinitely many possible results, but may constrain
possible values for X. In contrast, a predicate such as
employee(SSN,.NAME) may generate values—in this case,
the variables SSN and NAME are bound to each pair of

clements for which person SSN has name NAME.

Arguments to predicates are simply variables 1 Datalog,
but expressions allow the computation of arbitrary values.
Expressions are introduced through formulas such as
X=Y+1 defining the value of a variable, and include all
arithmetic and string operators. In addition, expressions
allow aggregates to be introduced:

expr ::=  variable
constant

eXpr + expr
expr * expr

aggregafte

Our definition of Datalog diflers from usual presentations
of the language 1n several respects. The first diflerence 1s
largely 1nessential. While we allow arbitrary use of logical
operators in formulas, most presentations require Datalog
predicates to be 1n disjunctive normal form, where disjunc-
tion can only appear at the top level of a predicate and the
only negated formulas are individual predicates. However,
any formula may be converted to disjunctive normal form,
so this does not represent a major departure from pure
Datalog. Expressions, on the other hand, are crucial in
increasing the expressiveness of the language. In pure Data-
log expressions are not allowed, and this extension to pure
Datalog 1s non-trivial, with an impact on the semantics of the
language.

Datalog Programs

A Datalog program contains three parts:

A query. This 1s just a Datalog predicate defining the
relation that we wish to compute.

A set of user-defined, or intensional predicates. These
predicates represent user-defined relations to be computed to
evaluate the query.

A set of extensional predicates. These represent the ele-
ments stored in the database to be queried.

The general structure of a Datalog program therefore
mirrors that of a .QL program. The query predicate corre-
sponds to the query in a .QL program, while classes and
methods may be translated to intensional predicates. Finally,
in the context of program queries the extensional predicates
define the information that i1t stored about the program.
Examples were given in the sections above beginning with
database annotations.




US RE46,537 E

13

Semantics and Recursion

The semantics of Datalog program are very straightior-
ward, 1n particular 1n comparison to other forms of logic
programming such as Prolog. A key property 1s that termi-
nation ol Datalog queries 1s not an 1ssue. The simplicity of
the semantics of Datalog programs (and by implication of
QL programs) 1s an important factor in 1ts choice as an
intermediate query language, as it 1s straightforward to
generate Datalog code. It 1s worth exploring the semantics 1n
a little more detail, however, as a few 1ssues crop up when
assigning meaning to arbitrary Datalog programs.

For our purposes, the meaning of a Datalog program 1s
that each predicate defines a relation, or set of tuples,
between its arguments. Other, more general, interpretations
ol Datalog programs are possible such as those described 1n
Allen van Gelder and Kenneth A. Ross and John S. Schlipf.
The Well-Founded Semantics For General Logic Programs.
Journal of the ACM, volume 38, number 3, pages 620-630,
1991, the teachings of which are hereby incorporated by
reference 1n 1ts entirety. An important feature 1s that these
relations should be finite, so that they may be represented
explicitly 1n a database or in memory. It 1s customary to
enforce this through range restriction, that 1s to say ensuring
that each variable that 1s an argument to a predicate should
be restricted to a fimite set. In our case, this 1s largely
straightforward, as each variable 1s typed. Column types
such as @person or (@department restrict variables to certain
kinds of information already in the database, 1n this case the
sets ol classes or reference types in the program. As there
can only be finitely many of these, any variable with such a
type 1s automatically restricted. However, primitive types
such as int are more troublesome. Indeed 1t 15 easy to write
a predicate involving such variables that defines an infinite
relation:

predicate p(int X,int Y){X=Y}

This predicate contains all pairs (X,X), where X 1s an
integer, which 1s infinite and therefore disallowed. For that
reason, the type system ofl—QL ensures that any variable of
primitive type 1s always constrained by a predicate, restrict-
ing its range to a finite set.

In the absence of recursion, the semantics of a Datalog
program 1s very straightforward. The program can be evalu-
ated bottom-up, starting with the extensional predicates, and
working up to the query. Each relation, necessarily finite by
range-restriction, can be computed from the relations it
depends on by simple logical operations, and so the results
of the query can be found.

The situation 1s more interesting in the presence of
recursion. Unlike other logic programs in which evaluation
ol a recursive predicate may fail to terminate, in Datalog the
meaning of a recursive predicate 1s simply given by the least
fixed pomnt of the recursive equation 1t defines. As an
example, consider the recursive predicate

predicate p(int X,int Y){q(X,Y) or (p(X,Z) and q(Z,
YD)}

where q denotes (say) the relation {(1,2), (2,3), (3.4)}.
Then p denotes the solution of the relation equation P=qUP;
g, 1n which ; stands for relational composition. This 1s just
the transitive closure of g, so the relation p 1s simply

p:{(l ?2)?(]‘ ?3)?(]‘ ?4)?(2?3)?(2?4)?(3 ?4)}

This least fixed point interpretation of Datalog programs
makes 1t easy to find the value of any predicate. For instance,
consider

predicate p(int X){p (X)}

5

10

15

20

25

30

35

40

45

50

55

60

65

14

This predicate would be nonterminating as a Prolog
program. However, 1n Datalog this 1s just the least solution
of the equation P=P. As every relation satisfies this equation,
the result 1s just the empty relation.

More precisely, the meaning of a Datalog program can be
defined as follows. First, break the program up into com-
ponents, where each component represents a recursive cycle
between predicates (formally, a strongly-connected compo-
nent 1 the call graph). Evaluation proceeds bottom-up,
starting with extensional predicates and computing each
layer as a least fixed point as above.

There are two technical restrictions to the use of recursion
in Datalog. The first 1s known as stratification, and 1s
necessary to deal with negation properly. The problem can
be illustrated by this simple example:

predicate p(@person X){not(p(X))}

What should this predicate mean? It 1s defined as its own
complement, so a person lies 1n p 1il 1t she does not lie n p.
There 1s no relation satisiying this property, so we cannot
assign a simple relational interpretation to this program. To
avoid this 1ssue, we only consider *stratified’ Datalog. In this
fragment of Datalog, negation cannot be used inside a
recursive cycle. That 1s, a cycle through mutually recursive
predicates cannot include negation. This 1s not a problem 1n
practice, and stratification 1s not a substantial obstacle to
eXpressiveness.

A similar problem 1s posed by our use of expressions,
which does not lie 1n the scope of classical Datalog. While
expressions increase the power of the language, their inter-
action with recursion 1s problematic. For instance, consider
the following:

predicate p(int Y){Y=0 or (Y=Z+1 and p(X,Z))}

Clearly O lies in p. Therefore 1 must also lie in p from the
recursive clause, and in this manner every number n lies in
p. The use of expressions 1n recursive calls may therefore
lead to infinite relations, and thus nontermination. In .QL
this may also lead to nonterminating queries, and so care
must be used when using arithmetic expressions 1n recursive
calls—i1, as 1n the above example, the expression can create
new values for each recursive call, then the query may be
non-terminating.

Translating .QL
The precise semantics of .QL programs are defined by
their translation 1nto Datalog programs. The overall struc-
ture of .QL programs mirrors that of Datalog programs. In
particular, the query 1n a .QL program 1s translated into a
Datalog query, while methods and classless predicates are
translated to Datalog intensional predicates.

Translating Queries

The general form of a .QL query (1gnoring order by
clauses, which merely amount to a post-processing step) 1s:

from T, x, To x5, ..., T
where formula
select e, e5, . . .

X

H K

:ek

where each e, 1s an expression, and each X, 1s a declared
variable of type T..

It 1s straightforward to translate this to a Datalog query,
which 1s just a standard predicate. The resulting relation has
k parameters (one for each selected expression), and so the
query predicate has k parameters. The varniables x, through
x, can be ntroduced as local vanables, defined by an
existential quantifier. As a result, the Datalog translation of
the above query, omitting types, 1s:



US RE46,537 E

predicate p(res,, res,, . . . , res;) {
exists (T x;, To X5, ..., T, X, |

formula,
and res; = e,
and res, = e,
and . . .

and res; = e,

where formula, 1s obtained from formula by translating
away all non-Datalog features of .QL, and 1n particular
method calls, as described below.

Translating Classes

Classes are translated into individual Datalog predicates,
representing constructors, methods and class predicates. In
most cases the translation 1s straightforward, the key aspect
being the translation of method calls.

A .QL method 1s merely a particular kind of Datalog
predicate involving two special variables—this and result.
The this variable holds the value that 1s a member of the
class, while the result variable holds the result of the method.
As an example, consider the following method to compute
a string representation of an employee:

class Employee extends @person {

string toString( ) {result="employee:”+this.getName( ) }

h

This 1s translated into the following Datalog predicate:

predicate Employee toString(Employee this, string result)
{ exists(string name |
Employee_getName(this,name) and
result="employee:”’+name)

h

The translation of parameterless methods extends to
methods taking an arbitrary number of parameters, in which
case the two parameters this and result are simply added to
the list of parameters. Apart from the translation of method
inheritance, which we will describe shortly, there are few
differences between the body of the method and the body of
the generated predicate. Class predicates are similar, but as

predicates do not return a value, the result vanable 1s not
used.

The above example highlights one of the crucial advan-
tages of .QL methods over Datalog predicates, 1n addition to
extensibility. In Datalog, 1t 1s necessary to name each
intermediate result, as 1s the case with the name variable 1n
the above example, which had to be declared with exists. In
contrast, methods returning (many) values allow queries to
be written 1n a much more concise and readable manner.

Finally, constructors are simply translated to Datalog
predicates denoting the character of each class. For instance,
consider the definition of the Manager class discussed
carlier:

class Manager extends Employee {
Manager( ) { manages(this, ) }

10

15

20

25

30

35

40

45

50

55

60

65

16

The constructor for this class 1s translated into a predicate
defining precisely those persons who are Managers. These
are the Employees that additionally occur 1n the first column
ol the manages relation 1n the database:

predicate Manager(Employee this) {
manages(this, )

h

When a class mherits from multiple classes, the transla-
tion 1s a little more complicated. Consider the class
class ParttimeManager extends Parttimer, Manager

oo

This class extends both Parttimer and Manager, and thus
a person 1s a ParttimeManager exactly when she 1s both a
Parttimer and a Manager. This 1s encoded in the generated
characteristic predicate for ParttimeManager:

predicate ParttimeManager(Manager this) {Parttimer

(this)}

Despite the fact that ParttimeManager does not define a
constructor, 1t restricts the range of values that it encom-
passes by mheritance, and thus this characteristic predicate
must be generated.

Characteristic predicates are also used for the translation
of casts and instanceof tests. To guarantee an expression € to
be of a specific type T, a call to the characteristic predicate
of T 1s generated with the expression ¢ passed as 1ts single
argument.

Translating Method Calls

In the above, we have described the translation of meth-
ods mto Datalog predicates with extra arguments this and
result, and informally shown some method calls translated
into calls to the generated predicates. In our examples, the
translation was straightforward, as the type of the receiver
was known, and so 1t was immediately apparent which
predicate should be called. However, as .QL uses virtual
dispatch, the method that 1s actually used depends on the
value 1t 1s mnvoked on, and the previous translation scheme
cannot work in general.

To illustrate the translation of method dispatch 1n .QL,
consider the following class hierarchy:

class All {
All( ) { this=1 or this=2 or this=3 or this=4 }
string foo( ) { result = “A” }

h

class OneOrTwo extends All {
OneOrTwo( ) {this=1 or this=2 }
string foo( ) {result =“B” }

h

class TwoOrThree extends All {
TwoOrThree( ) {this=2 or this=3 }
string foo( ) {result="C" }

h

As we have seen previously, each of the implementations
of foo 1s translated into a Datalog predicate:

predicate All_foo(All this, string result) { result = “A” }
predicate OneOrTwo_foo(OneOrTwo this, string result) {

result = “B”

h

predicate TwoOrThree foo(TwoOrThree this, string result) {
result = “C”

h



US RE46,537 E

17

However, when a call to the foo method 1s encountered,
the appropriate methods must be chosen, depending on the
value of the recerver of the call. .QL method dispatch selects
the most specific methods, of which there may be several
due to overlapping classes, and returns results from all most
specific methods. Only the most specific methods are con-
sidered, so that a method 1s not included 1f it 1s overridden
by a matching method.

This virtual dispatch mechanism 1s implemented by defin-
ing a dispatch predicate for each method, testing the receiver
against the relevant types and choosing appropriate meth-
ods. Testing the type of the recerver 1s achieved by invoking
the characteristic predicate for each possible class, leading to
the following dispatch method for foo:

predicate Dispatch_foo(All this, string result) {
OneOrTwo_foo(this, result)
or TwoOrThree_foo(this, result)
or (not(OneOrTwo(this)) and not(TwoOrThree(this))
and All_foo(this, result))

Let us examine this dispatch predicate a little more
closely. The parameter this 1s given type All, as this 1s the
most general possible type in this case. The body of the
predicate consists of three possibly overlapping cases. In the
first case, the foo method from OneOrTwo 1s called. Note
that this only applies when this has type OneOrTwo, due to
the type of the this parameter 1n OneOrTwo. As OneOrTwo
does not have any subclasses, its foo method cannot be
overridden, and whenever 1t 1s applicable it 1s necessarily the
most specific. The second case 1s symmetrical, considering,
the class TwoOrThree. These cases are overlapping, i
this=2, and so the method can return several results. Finally,
the third case 1s the default case. If this did not match either
of the specific classes OneOrlwo or TwoOrThree, the
default implementation 1n All 1s chosen.

Suppose now that we extend the example by adding two
turther class definitions, namely

class OnlyTwo extends OneOrTwo, TwoOrThree {
foo( ) { result = “D” }

h

class AnotherTwo extends All {
AnotherTwo( ) { this =2 }
foo( ) { result = “E” }

h

In this new hierarchy, we added two classes with exactly
the same characteristic predicate. This changes method
dispatch whenever this=2, as the newly introduced methods
are more specific than previous methods for this case. To
extend the previous example with these new classes, we
simply lift out the new implementations of foo:

predicate OnlyTwo_foo(OnlyTwo this, string result) {

result = “D”

h

predicate AnotherTwo_foo(AnotherTwo this, string result) {
result = “E”

h

and change the dispatch predicate accordingly:

predicate Dispatch_foo(All this, string result) {
OnlyTwo_foo(this, result)
or AnotherTwo_{foo(this, result)

10

15

20

25

30

35

40

45

50

55

60

65

18

-continued

or (not(OnlyTwol(this))

and OneOrTwo_{foo(this, result))
or (not(OnlyTwo(this))

and TwoOrThree_foo(this, result))
or (not(OneOrTwo(this))

and not{TwoOrThree(this))

and not (AnotherTwo(this))

and All_foo(this, result))

The only changes, apart from the introduction of cases for
the two new classes, 1s that the existing cases for OneOrTwo,
TwoOrThree and All must be amended to check whether the
method 1s indeed the most specific one.

Finally, a method call adormed with the chaining operator
+ or * 1s translated to a call to a predicate encoding the
transitive closure, or reflexive transitive closure respec-
tively, of the original method call. For instance, d.getA-
Child+( )translates to a call to:

predicate getAChildTC (Department X, Department Y) {
Department_getAChild(X.,Y) or
(getAChildTC (X,Z) and Department_get AChild(Z.,Y))

h

Embodiments

One particular way the invention can be realized 1s
depicted 1n FIG. 2. A user 201 writes a query 203, using the
library 202 of re-usable queries that 1s created via classes
in .QL. The query is translated 1into a Datalog intermediate
representation 205, and at that level optimizations are
applied. The Datalog 1s then converted into SQL 206. Next,
the SQL 1s run on a relational database 207, producing the
answer 204 and reporting 1t back to the user.

Other possible realizations are obtained by replacing SQL
and the database in FIG. 2 by other search engines. As an

example FIG. 10 1s a block diagram of a computer system
with multiple datasources [1006-1008] /006, 1007, and

1008 which can be searched by user 1001 from a single .QL
query [1002-1005] 1002, 1003, 1004, and 1005, possibly
simultaneously to return answer 1009. Note 1n particular the
differences between FIG. 2 and FIG. 10: the single database
207 has been replaced by multiple datasources 1006, 1007
and 1008. This illustrates an important aspect of the present
invention, 1.€., the capability to simultaneous search across
multiple data sources, regardless of the format the data 1s
stored 1n.

Examples of such other search engines are a search engine
for XML documents, a text-based search engine, an API for
accessing web services, anAPI for querying information on
a social networking site, any other search engine for social
networking sites, an online patent database search engine, a
search engine for financial data, enterprise search engines,
tools for software asset management (which store software
assets 1n some searchable format), and so on.

Non-Limiting Hardware Examples

Overall, the present invention can be realized in hardware
or a combination of hardware and software. The processing
system according to a preferred embodiment of the present
invention can be realized 1 a centralized fashion 1n one
computer system, or in a distributed fashion where different
clements are spread across several interconnected computer
systems and 1mage acquisition sub-systems. Any kind of




US RE46,537 E

19

computer system—or other apparatus adapted for carrying
out the methods described herein—is suited. A typical
combination of hardware and soitware 1s a general-purpose
computer system with a computer program that, when
loaded and executed, controls the computer system such that
it carries out the methods described herein.

An embodiment of the processing portion of the present
invention can also be embedded in a computer program
product, which comprises all the features enabling the
implementation of the methods described herein, and which
when loaded 1n a computer system—is able to carry out
these methods. Computer program means or computer pro-
grams 1n the present context mean any expression, in any
language, code or notation, of a set of instructions intended
to cause a system having an information processing capa-
bility to perform a particular function either directly or after
cither or both of the following a) conversion to another
language, code or, notation; and b) reproduction 1n a difler-
ent material form.

FIG. 12 1s a block diagram of an information processing
system such as a computer system useful for implementing
the software steps of the present invention. Computer sys-
tem 1200 includes a display interface 1208 that forwards
graphics, text, and other data from the communication
infrastructure 1202 (or from a frame bufler not shown) for
display on the display unit 1210. Computer system 1200 also
includes a main memory 1206, preferably random access
memory (RAM), and optionally includes a secondary
memory 1212. The secondary memory 1212 includes, for
example, a hard disk drive 1214 and/or a removable storage
drive 1216, representing a floppy disk drive, a magnetic tape
drive, an optical disk drive, etc. The removable storage drive
1216 reads from and/or writes to a removable storage unit
1218 1n a manner well known to those having ordinary skill
in the art. Removable storage unit 1218, represents a CD,
DVD, magnetic tape, optical disk, etc. which 1s read by and
written to by removable storage drive 1216. As will be
appreciated, the removable storage unit 1218 includes a
computer usable storage medium having stored therein
computer software and/or data. The terms “computer pro-
gram medium,” “computer usable medium,” and “computer
readable medium™ are used to generally refer to media such
as main memory 1206 and secondary memory 1212, remov-
able storage drive 1216, a hard disk installed 1n hard disk
drive 1214, and signals.

Computer system 1200 also optionally includes a com-
munications interface 1224. Communications interface 1224
allows software and data to be transierred between computer
system 1200 and external devices. Examples of communi-
cations interface 1224 include a modem, a network interface
(such as an Fthernet card), a communications port, a PCM-
CIA slot and card, etc. Software and data transferred wvia
communications interface 1224 are in the form of signals
which may be, for example, electronic, electromagnetic,
optical, or other signals capable of being received by com-
munications interface 1224. These signals are provided to
communications interface 1224 via a communications path
(1.e., channel) 1226. This channel 1226 carries signals and 1s
implemented using wire or cable, fiber optics, a phone line,
a cellular phone link, an RF link, and/or other communica-
tions channels.

Although specific embodiments of the invention have
been disclosed, those having ordinary skill in the art waill
understand that changes can be made to the specific embodi-
ments without departing from the spirit and scope of the
invention. The scope of the mvention 1s not to be restricted,
therefore, to the specific embodiments. Furthermore, 1t 1s

10

15

20

25

30

35

40

45

50

55

60

65

20

intended that the appended claims cover any and all such
applications, modifications, and embodiments within the
scope of the present mnvention.

What 1s claimed 1is:

1. A process [for creating re-usable queries over complex

data, the process] comprising:

[defining a re-usable object-oriented] receiving queries
defined in a first query language [with] ir which logical
properties are vepresented by object-oriented classes
[treated as logical properties], [wherein each logical
property 1s defined by one or more specified classes of
at least one complex data item] anrd in which inheri-
tance relationships between the classes represent rela-
tionships between the logical properties, and wherein
the queries include rveguests for data items having
requested logical properties;

[relating inheritance, used to form new class with the
specified classes, to the logical properties along with a
plurality of virtual method calls that execute all appli-
cable method implementations 1n at least one of the
specified classes;] and

in vesponse to the gqueries rvequesting data items having
logical properties encoded as methods of particular
classes, dispatching on the [logical properties] particu-
lar classes to choose [at least one] one or more most
specific [implementation] implementations of [an
operation] the methods, wherein a most specific imple-
mentation of a method is in a class where no [subclasses
define a same method] other classes that inherit from
the class include an implementation of the method,
wherein the dispatching on the [logical properties]
particular classes Turther includes:

[defining] identifving a named predicate p as predicate
p(T,x,, ..., T x) {formula} for each one of the
[applicable method] most specific implementations,
wherein the named predicate p has variables

X, ..., X .80 as to restrict a range of a relation,
which contains tuples (X, . . . X, ) where each x, has
a type [T] T;;

testing a receiver against each [relevant] type and
choosing [the] applicable method implementations
from the most specific implementations, wherein
testing a type of the receiver [is achieved by}
includes invoking a named constructor for each class
defining a [method of a relevant signature] most
specific implementation, regardless of static types;

[implementing queries by] translating [actual or possi-
bly recursive object-oriented] t2e queries to a second
query language using for each method and construc-
tor of each class, a first special variable that holds a
value that 1s a member of the class, and for each
method that 1s not a predicate, a second special
variable that holds a result of a method; and

[rending] rendering the queries concise by at least
using multi-valued operations to avoid naming inter-
mediate results 1n nested method calls.

2. The process as set forth in claim 1, wherein translating
the [implementing] queries includes mapping each construc-
tor to a named characteristic predicate of its class, which
tests whether a value belongs to the class, by taking a logical
conjunction of characteristic predicates of all superclasses
and a property specified 1n the constructor.

3. The process as set forth in claim [1] 2, wherein
translating the [implementing] queries includes mapping
instanceof tests and cast expressions to calls of [such] eac/
characteristic predicates.




US RE46,537 E

21

4. The process as set forth 1n claim 1, wherein transiating
the [implementing] queries includes mapping expressions
including nested method calls to a conjunction of predicate
calls, with a new named variable denoting an intermediate
result of each method call.

5. The process as set forth in claim 1, wherein [the
implementing queries by] translating [actual or possibly
recursive object-oriented] t2e queries to the second query
language produces queries in Datalog and wherein at least
one search engine 1s targeted by translating a same inter-
mediate Datalog to diflerent executable formats.

6. The process as set forth in claim 1, wherein rendering
the queries [are rendered] concise [by] irncludes at least one
of:

using a * notation and a + notation on multi-valued
operations to indicate a chained application of such
operations; [and] or

using an aggregate notation with variables, a range con-
dition and an expression (agg(varsiconditionlexpr)).

7. The process as set forth in claim 1, wherein [complex
data] at least one of the data items is stored in a [standard
relational database] data storage, and [column types are
used to build a hierarchy of object-oriented classes on top of
an existing relational database, by annotating an existing
relational schemal] relationships between the logical prop-
erties are identified in a data format definition for the data
storage stoving the data item.

8. The process as set forth 1n claim 1, wherein at least one
of the data items is a complex data item [is at] and includes
least one of:

a data 1tem 1n a hierarchy;

a tree; [and] or

a graph.

9. The process as set forth in claim 1, wherein [an
object-oriented query language 1s in any form depending on
a domain of object-oriented query language use, including}
instructions in the first query language arve vepresented in at
least one of:

a textual form:

a graphical form;

a query-by-example [user interface] form; [and] or an

embedded [in a more general] form within another pro-
gramming language.

10. The process as set forth in claim [1] 7, wherein
[complex data is stored in a plurality of datasource formats
including] tke data storage includes at least one of:

a relational database;

a web service;

a web page; [and] or

a structured data file Jon hard disk and column types are
used to build a hierarchy of object-oriented classes on
top of such data formats, by annotating each relevant
data format schemal.

11. A computer program product [for creating re-usable
queries over complex data, the computer program product]
comprising:

a non-transitory computer readable storage medium, the
non-transitory computer readable storage medium stor-
ing soltware programming instructions capable of per-
forming with a processor programming code to carry
out:

[defining a re-usable object-oriented] receiving queries
defined in a first query language [with] in which logical
properties are vepresented by object-oriented classes
[treated as logical properties], [wherein each logical
property 1s defined by one or more specified classes of
at least one complex data item] ard in which inheri-

5

10

15

20

25

30

35

40

45

50

55

60

65

22

tance relationships between the classes represent rela-

tionships between the logical properties, and wherein

the queries include rvequests for data items having
requested logical properties;

[relating inheritance, used to form new class with the
specified classes, to the logical properties along with a
plurality of virtual method calls that execute all appli-
cable method implementations 1n at least one of the
specified classes;] and

in response to the gqueries requesting data items having
logical properties encoded as methods of particular
classes, dispatching on the [logical properties] particu-
lar classes 1o choose [at least one] one or more most
specific [implementation] implementations of [an
operation] the methods, wherein a most specific imple-
mentation of a method is in a class where no [subclasses
define a same method] other classes that inherit from
the class include an implementation of the method,
wherein the dispatching on the [logical properties]
particular classes Turther includes:

[defining] identifying a named predicate p as predicate
p(T1x1, . .., Tnxn) {formula} for each one of the
[applicable method] most specific implementations,
wherein the named predicate p has variables

x1, ..., xXn so as to restrict a range of a relation,
which contains tuples (x1, . . ., xn) where each x1 has
a type T1;

testing a receiver against each [relevant] type and
choosing [the] applicable method implementations
from the most specific implementations, wherein
testing a type of the receiver [is achieved by}
includes invoking a named constructor for each class
defining a [method of a relevant signature] most
specific implementation, regardless of static types;

[implementing queries by] translating [actual or possi-
bly recursive object-oriented] t2e queries to a second
query language using for each method and construc-
tor of each class, a first special variable that holds a
value that 1s a member of the class, and for each
method that 1s not a predicate, a second special
variable that holds a result of a method; and

[rending] rendering the queries concise by at least
using multi-valued operations to avoid naming inter-
mediate results 1n nested method calls.

12. The computer program product of claim 11, wherein
translating the [implementing] queries includes mapping
cach constructor to a named characteristic predicate of 1ts
class, which tests whether a value belongs to the class, by
taking a logical conjunction of characteristic predicates of
all superclasses and a property specified in the constructor.

13. The computer program product of claim [11] /2,
wherein translating the [implementing] queries includes
mapping instanceol tests and cast expressions to calls of
[such] each characteristic [predicates] predicate.

14. The computer program product of claim 11, wherein
translating the [implementing] queries includes mapping
expressions including nested method calls to a conjunction
of predicate calls, with a new named variable denoting an
intermediate result of each method call.

15. The computer program product of claim 11, wherein
[the implementing queries by] translating [actual or possibly
recursive object-oriented] ke queries to the second query
language produces queries 1n Datalog and wherein at least
one search engine 1s targeted by translating a same inter-
mediate Datalog to different executable formats.

16. An information processing system [for creating re-
usable queries over complex data, the system] comprising:




US RE46,537 E

23

a computer memory capable of storing machine instruc-
tions; and

a processor 1n communication with said computer
memory, said processor configured to access the
memory[, the processor performing 5

a re-usable object-orniented query language defined with
object-oriented classes treated as logical properties,
wherein each logical property 1s defined by one or more
specified classes of at least one complex data i1tem;

a new class formed by relating inheritance with the .,
specified classes, to the logical properties along with a
plurality of virtual method calls that execute all appli-
cable method implementations 1n at least one of the
specified classes; and] and execute the machine instruc-
tions to perform operations coOmprising: 5

receiving queries defined in a first query language in
which logical properties arve rvepresented by object-
oriented classes, and in which inheritance relation-
ships between the classes rvepresent velationships
between the logical properties, and wherein the queries
include requests for data items having requested logi-
cal properties;

[means for] in response to the queries requesting data
items having logical properties encoded as methods of
particular classes, dispatching on the [logical proper- .,
ties] particular classes to choose [at least] one or more
of a most specific [implementation] implementations of
[an operation] the methods, wherein a most specific
implementation of a method 1s 1 class where no
[subclasses define a same method] other classes that
inherit from the class include an implementation of the
method, wherein the dispatching on the [logical prop-
erties] particular classes further includes:

[means for defining] identifying a named predicate p as
predicate p(T,x,, . . . T,x,) {formula} for each one
of the [applicable method] most specific implemen-
tations, wherein the named predicate p has vaniables
Xy, ...X . S0 as to restrict a range of a relation, which
contains tuples (x,, . .., X ) where each x, has a type

I

24

[means for] testing a receiver against each [relevant]
type and choosing [the] applicable method imple-
mentations from the most specific implementations,
wherein testing a type of the receiver [is achieved
by] irncludes invoking a named constructor for each
class defining a [method of a relevant signature] most
specific implementation, regardless of static types;

[means for implementing queries by] translating [actual
or possibly recursive object-oriented] #2e queries to
a second query language using for each method and
constructor of each class, a first special variable that
holds a value that 1s a member of the class, and for
cach method that 1s not a predicate, a second special
variable that holds a result of a method; and

[means for rending] rendering the queries concise by at
least using multi-valued operations to avoid naming
intermediate results 1n nested method calls.

17. The system of claim 16, wherein translating the
[implementing] queries includes mapping each constructor
to a named characteristic predicate of 1ts class, which tests
whether a value belongs to the class, by taking a logical
conjunction of characteristic predicates of all superclasses
and a property specified 1n the constructor.

18. The system of claim [16] /7, wherein translating the
[implementing] queries includes mapping instanceof tests
and cast expressions to calls of [such] each characteristic
predicates.

19. The system of claim 16, wherein franslating the
[implementing] queries includes mapping expressions
including nested method calls to a conjunction of predicate
calls, with a new named variable denoting an intermediate
result of each method call.

20. The system of claim 16, wherein [the implementing
queries by] translating [actual or possibly recursive object-
oriented] t/e queries to the second query language produces
queries 1n Datalog and wherein at least one search engine 1s
targeted by translating a same intermediate Datalog to
different executable formats.

¥ o # ¥ ¥



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE46,537 E Page 1 of 1
APPLICATION NO. : 14/877992

DATED : September 35, 2017

INVENTORC(S) : Mathieu Verbaere, Oege de Moor and Elnar Hajiyev

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 22, Line 22, 1n Claim 11, delete “p(T1x1,...,Tnxn)” and insert -- p(T1x4,...,TuXn) -
Column 22, Line 25, in Claim 11, delete “x1....,xn”° and 1nsert -- Xy,....Xn -

Column 22, Line 26, in Claim 11, delete “(x1,...,xn)” and msert -- (Xi,...,Xn) --.

Column 22, Line 26, in Claim 11, delete “x1” and insert -- x; --.

Column 22, Line 27, in Claim 11, delete “T1;” and insert -- T;; --.

Column 23, Line 29, in Claim 16, after “is in” insert -- a --.

Column 23, Line 35, in Claim 16, delete “p(T:x4,...TuXn)” and 1nsert -- p(T:1x4,..., TuXn) -

Column 23, Line 38, in Claim 16, delete “x;....X,.”” and msert -- Xi,...,Xn --.

Signed and Sealed this
Fourteenth Day of January, 2020

Andrei lancu
Director of the United States Patent and Trademark Office



	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

