USOORE46536E

(19) United States

12 Reissued Patent
Chasen et al.

US RE46,536 E
Sep. 5, 2017

(10) Patent Number:
45) Date of Reissued Patent:

(54) SYSTEM AND METHOD OF MANAGING 17/30958; GO6F 17/30867; GO6F
METADATA DATA 17/30595; Y10S 707/99944; Y10S
707/99933; Y108 707/99945; Y10S
(75) Inventors: Jeffrey M. Chasen, Redmond, WA 707/99935
(US); Christopher N. Wyman, Seattle, USPC e 707/713, 803, 6_§9,, 802, 769, 770,
WA (US) 707/E17.005, E17.011, E17.014, E17.017,
707/661, 726, 803, 827, 913; 84/609;
(73) Assignee: INTEL CORPORATION, Santa Clara, o 7097219, 225, 229, 246
CA (US) See application file for complete search history.
(21) Appl. No.: 12/547,341 (56) References Cited
U.S. PATENT DOCUMENTS
(22) Filed: Aug. 235, 2009
4,744,281 A 5/1988 Isozaki
Related U.S. Patent Documents 4,984,103 A * 1/1991 Nigamccccovvvorenn.. 360/74 1
Reissue of 5,046,004 A 9/1991 Tsumura et al.
(64) Patent No.: 6,760,721 (Continued)
Issued: Jul. 6, 2004
Appl. No.: 09/549,986 OTHER PUBLICATIONS
Filed: Apr. 14, 2000 Office Action mailed Apr. 1, 2009 in U.S. Appl. No. 11/452,187,

U.S. Applications:

filed Jun. 12, 2006.

(62) Daivision of application No. 11/452,187, filed on Jun. (Continued)
12, 2006, now Pat. No. Re. 42,101, which 1s an
application for the reissue of Pat. No. 6,760,721. Primary Examiner — Jalatee Worjloh
(74) Attorney, Agent, or Firm — Stoel Rives LLP
(51) Inmt. CL
GO6F 17/30 (2006.01) (57) ABSTRACT
(52) US. Cl. A system and method of the present invention allow users to
CPC .. GOG6F 17/30286 (2013.01); GO6F 17/30595 access, manage, and edit information about content data,
(2013.01); GO6F 17/30864 (2013.01); GO6F often referred to as metadata. Metadata 1s collected from
17/30867 (2013.01); GOGL 17/30038 various sources, added, and maintained in a metadata data-
(2013.01); GOOF 17/3077 2 (2013.01); Y105 base. In addition, metadata 1s dynamically read from the
707/99933 (2013.01); Y105 707/99935 metadata database and dynamically displayed 1n a graphical
(2013.01); user interface 1n an organized manner, such as a hierarchical
(Continued) tree. In the graphical user interface, a user may add, delete,
(38) Field of Classification Search and/or modity the metadata. As the user changes the meta-

CPC

GO6F 17/30864; GO6.
17/30716; GO6!
17/30991; GO6.
17/30994; GO6.
17/30489; GO6.

T)] '] '] '] ']

17/30749; GO6L

17/30286; GO6F
17/308°73; GO6F
17/30289; GO6F
17/30038; GO6F
17/30536; GO6F
17/307°72; GO6F

data, the metadata database 1s updated and the user’s
changes are propagated throughout the graphical user inter-
face such that the hierarchical tree 1s displays the changed
metadata.

18 Claims, 7 Drawing Sheets

 METADATA MANAGEMENT SYSTEM

e PO

B L

INTERFACE

e e
GRAPHICAL USERJ

.&? f'f .:‘?“_'"m_
N 274~
BUILD
PROCESS

'DATABASE COLLECTION

METADATA MANAGEMENT MODULE

ADD NODE DATA ADD
LOCATION CHANGE METADATA
PROCESS PROCESS PROCESS

e D FE
I-l_.-‘

S i
232

"""l-\.,'ll
L]
—
o~

!
|
|
E
I
!
|
|

™
TREE
METADATA NFORMATION
DATABASE _ DATABASE

US RE46,536 E
Page 2

(52) U.S. CL
CPC YI0S 707/99944 (2013.01); Y10S 707/99945

(56)

5,083,491
5,142,961
5,153,829
5,208,421
5,247,126
5,262,940
5,317,732
5,388,204
5,390,138
5,393,926
5,481,509
5,480,645
5,491,795
5,530,235
5,559,548
5,590,319
5,616,876
5,670,730
5,717,925
5,721,911
5,739,451
5,787,292
5,857,203
5,802,325
5,804,808
5,870,710
5,914,941
5,924,090
5,963,916
0,028,605
6,032,156
0,055,543
6,001,692
6,122,641
0,131,100
0,163,781
0,182,126
6,199,059
0,212,524
0,240,407
0,243,725
0,256,031
0,263,341
0,209,394

References Cited

U.S. PATENT DOCUMENTS

R R i g gl g g g g g S S i g G i i g i g g g S S e

* % % % * *

* ¥ % F F ¥ ¥ X % % ¥ ¥ ¥ % ¥ K F

1/1992
9/1992

10/1992

5/1993
9/1993

11/1993

5/1994
2/1995
2/1995
2/1995
1/1996
1/1996
2/1996
6/1996
9/1996

12/1996

4/1997
9/1997
2/1998
2/1998
4/1998
7/1998
1/1999
1/1999
1/1999
2/1999
6/1999
7/1999

10/1999

2/2000
2/2000
4/2000
5/2000
9/2000

10/2000
12/2000

1/2001
3/2001
4/2001
5/2001
6/2001
7/2001
7/2001
7/2001

(2013.01)
Fields
Paroutaud
Furuya et al.
Lisle et al.
Okamura et al.
Sussman
Gerlach, Jr. et al.
Tobias, II et al.
Milne et al.
Johnson
Knowlesoooovvvvivvnninnnn, 386/224
Suh et al.
Beaudet et al.
Stefik et al.oooono, 235/492
Davis et al.
Cohenetal.eeee.. 707/4
Cluts
Grewe et al.ooevnenn. 84/609
Harper et al. 707/102
Haetalccovvvininil. 707/100
Winksy et al. 84/609
Ofttesen et al. 713/300
Kauffman et al. 707/200
Reed et al.
Contois
Ozawa et al. 704/500
Janky ... 370/313
Krellensteincee..... 707/5
Kaplane..l. 705/7.29
Conrad et al. ... 707/3
Marcus ...coooeevvvveiinnnnn, 707/803
Christensen et al. 707/104.1
Thomas et al. 707/200
Williamson et al. 707/103 R
Zellweger ... 707/104.1
Wess, Jr. oo, 707/103 X
Nathan et al. 725/134
Dahan et al. 707/3
Weissman et al. 707/101
Chang et al. 707/2
Hempleman et al. 715/210
Menyer et al. 707/203
Smiley ..o 707/103 R
Kenner et al. 709/217

0,282,548
0,310,848
6,311,194
6,317,761
0,363,377
6,389,426
6,405,215
0,430,575
6,449,341
6,452,609
6,760,721
0,928,433
6,976,229
6,981,040
RE42,101
2001/0008471
2002/0045960

w "

o o% % W% % %

vellvelveiveiivelveivelvelveRvvive

Al*

8/2001
10/2001
10/2001
11/2001

3/2002

5/2002

6/2002

8/2002

9/2002

9/2002

7/2004

8/2005
12/2005
12/2005

2/2011

7/2001

4/2002

Burner et al. 707/104.1
Uekl oovviiiiiriiiiiiininin, 369/53.37
Sheth et al. 707/505
[Landsman et al.

Kravets et al. 707/4
Turnbull et al. 707/102
Yaungoooeeevvvvnnnnnn 707/104.1
Dourish et al. 707/200
Adams et al.oo.o... 379/9
Katinsky et al. 715/716
Chasen et al.

Goodman et al. 707/713
Balabanovic et al. 715/838
Konig et al.

Chasen et al.

Naohara et al. 360/15
Phillips et al. 700/94

OTHER PUBLICATTIONS

Notice of Allowance mailed Aug. 16, 2010 in U.S. Appl. No.

11/452,187, filed Jun. 12, 2006.

Office Action mailed Oct. 24, 2002 1n U.S. Appl. No. 09/549,986,
filed Apr. 14, 2000.
Office Action mailed May 21, 2003 in U.S. Appl. No. 09/549,986,
filed Apr. 14, 2000,
Office Action mailed Dec. 4, 2003 1n U.S. Appl. No. 09/549,986,
filed Apr. 14, 2000,
Notice of Allowance mailed Mar. 23, 2004 in U.S. Appl. No.

09/549,986, filed Apr. 14, 2000,

SupalNova MP3 Explorer, The best way to organise your MP3 files
just got better!, web page at http://www.millstone.demon.co.uk/
download/mp3exp.htm, as available via the Internet and printed

May 29, 2006 (2 pgs.).

Waugh, Andrew, Article entitled “Specifying metadata standards for
metadata tool configuration”, Published by Elsevier Science B.V.
1998, Computer Networks and ISDN Systems 30, pp. 23-32.

Beard, M. Kate, et al., Article entitled “Multilevel and Graphical
Views of Metadata”, IEEE, Downloaded Jan. 16, 2010, pp. 1-10.
Beard, et al., “Multilevel and Graphical Views of Metadata,”
Research and 1echnology Advances in Digital Libraries, pp. 256-

265, 1998,

Pachet, et al., “A Combinatorial Approach to Content-based Music
Selection,” Multimedia Computing and Systems, pp. 457-462, Jun.

7, 1999,

Wold, et al., “Content-Based Classification, Search, and Retrieval of
Audio,” IEEE Multimedia, IEEE Computer Society, vol. 3, pp.

27-36, 1996.

* cited by examiner

US RE46,536 L

Sheet 1 of 7

Sep. 5, 2017

U.S. Patent

QSN APNIS @-:-
SOIOAD 4 &3----

}SIAD|d MON &----
mpm__\nu_&ﬂ_ m

| | SHODU] :qﬂ ‘
: }S11y /24U % m_m_ _

MO0y By
| ____dod iy
||| T<iunies g
| 34U3% % m_
Il ‘4 c 021SSDI)) AIdWIS Byl HouluoWyI0Yy SSIDIOA & WNgpy I
CEY Ot ¥ m ID2ISSD|) ,:o Aldwis ay] Assngag oleAY _n %
1S1) 1y % I
/C/ IDDISSD) 3 Aldwg ayy }1DZON 0}i2ou0) &

R o) e sy W e T | I
—— T POO@Q®

sa}I§ suondQ s(03U0) MIIA WPT 24
@@_ _M_ wo.iboig 1aAD|4 o1pny

L L

oA

A AN

US RE46,536 L

Sheet 2 of 7

Sep. 5, 2017

U.S. Patent

0

ASVHVLIVQ
NOILVAYOSN
3341

SVEVLIVJ
VIVAVLIN

———
I

/ffdﬁﬂw

NOILOFTIOCD JSVEVLIVU

QMJ.N\\ +

SSH3008a
NOILVIO
JJON daV

55300dd
FONYHO
Vivd

553004d
VIVOVLIN
aay

LT Pl A

ATOAONW INJWNAOVNVYIN VIVAVLIN

SS53008d
aing

cic

Q\N\

JOVIYILNI
435N WOIHJIYYHO

oce

WILSAS INIWIOVNVW VIVAVLIIN

U.S. Patent Sep. 5, 2017 Sheet 3 of 7 US RE46,536 E

300

START

/'J/”é?

SORT DATA

F75

BEGINNING WITH THE FIRST RECORD,
FOR EACH RECORD:

START AT TOP OF IREE

I

BEGINNING WITH THE FIRST CATEGORY IN
THE GROUPING, FOR EACH CATEGORY
IN THE GROUPING:

JII0

IS THE
CATEGORY VALUE ALREADY)ES
A CHILD NODE IN
THE TREE

NO IIE

ADD CATEGORY VALUE AS
A CHILD NODE IN THE TREE

F4

MOVE TO THE NODE THAT REPRESENTS
| THE CATEGORY VALUE IN THE TREE

/’ SO0

ADD CURRENT RECORD TO THE
CURRENT NODE OF THE TREE

NEDEY

J60

END

ol

U.S. Patent Sep. 5, 2017 Sheet 4 of 7 US RE46,536 E

~LO0

START

470

S THE NODE

IN THE TABLEL
?

NO 420
ADD NODE TO TABLE

L3

YES

ADD LOCATION TO NODE’'S
ENTRY IN THE TABLE

J

44

FIG, #

U.S. Patent Sep. 5, 2017 Sheet 5 of 7 US RE46.,536 E

——500

START
/5767

RECEIVE CHANGES TO DATA

Jra——

530

"HANGE TO

NON-—-LEAF NODE e
?

YES

/5‘5157

FOR EACH SUB—NODE, UPDATE THE
CLASSIFICATION VALUE THAT CHANGED

S50

BEGINNING WITH THE FIRST LEAF NODE THAN
CHANGED, FOR EACH CHANGED LEAF NODE:

S6

| LOCATION TABLE

570
/‘

FOR EACH LOCATION. LOCATE THE NODE IN
THE TREE AND UPDATE THE NODE

—2E5C

UFPDATE THE NODE LOCATION TABLE

FIG O

U.S. Patent Sep. 5, 2017 Sheet 6 of 7 US RE46,536 E

600

START

/5 70

RECEIVE CHANGES
T0 DATA

UPDATE DATABASL
COLLECTION

620

BEGINNING AT THE ROOT
NODE, FOR EACH NODLE
IN THE TREE

640

1S
ANYTHING [N
THE NODE
CHANGED
7

YES

660 650

NO

DIRTY

NODESTATE = CLEAN | | NODESTATE =

END FOR A ¢77

U.S. Patent

Sep. 5, 2017 Sheet 7 of 7

00

START

METATADATA
DATABASE

e,

IS
INFORMATION INNYES
A LOCAL

DATABASE
' ?

NO
21y

1S
INFORMATION
WITH CONTENT

DATA
”?

YES

NO

— 740 |

IS
INFORMATION |
A REMOITLE

YES

DATABASE
?

NO SO0
/

!

| QUERY USER FOR !NFORMAT%ON

US RE46,536 L

760

OBTAIN INFORMATION AND SAVL
IN METADATA DATABASE

D

END

FIG

US RE46,5360 E

1

SYSTEM AND METHOD OF MANAGING
METADATA DATA

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

Notice: Movre than one reissue application has been filed
for the reissue of US. Pat. No. 6,760,721. The reissue
applications ave U.S. patent application Ser. No. 11/452,

187, which was filed on Jun. 12, 2006, and U.S. patent
application Ser. No. 12/547,341 (the present application),

which was filed on Aug. 25, 2009 and is a divisional of U.S.
patent application Ser. No. 11/452,187. Accordingly, the

present application is a divisional reissue application of

U.S. Pat. No. 6,760,721.

FIELD OF THE INVENTION

The system and method of the present invention relate
generally to the field of managing metadata.

BACKGROUND

The increased reliance on digital data has led to a need for
detailed information about the digital data as well as tech-
niques for managing and controlling this detailed informa-
tion. This detailed information 1s known as “metadata.” For
example, there 1s a high demand for audio data, and accord-
ingly, there 1s a high demand for metadata about the audio
data such as, for example, the artist or speaker name, album
name, genre, number of songs, and so forth.

While access to metadata provides the public with a vast
amount of information, i1t 1s often diflicult to manage the
metadata. For example, keeping track of various audio {files
as well as the immense amount of metadata for each audio
file can be a diflicult task.

One common problem 1s that conventional approaches do
not allow the user to easily view and access the metadata.
For example, 1t 1s typical for a user to have hundreds or even
thousands of audio files making it diflicult for the user to sift
through each file of metadata. A user may have to look
through hundreds or through thousands of files to find the
desired file.

Another common problem 1s that conventional
approaches fail to provide users with control over the
metadata such as the ability to make changes to a piece of
metadata or a set of metadata. For example, a user may want
to alter the genre of an audio file by changing the genre from
Jazz to New Age.

SUMMARY OF THE INVENTION

In one embodiment, the present imnvention 1s a method for
dynamically organizing metadata located in a database of
metadata for presentation to a user 1n a display. The method
comprises receiving a plurality of categories of metadata
wherein the plurality of categories of metadata represent a
hierarchical representation of the metadata; querying a data-
base of metadata to produce a set of metadata query results;
arranging the metadata query results 1n a hierarchical rep-
resentation of metadata based at least upon a subset of the

5

10

15

20

25

30

35

40

45

50

55

60

65

2

plurality of categories; and presenting the hierarchical rep-
resentation of metadata to a user 1n a graphical display.

Another embodiment of the present invention 1s a method
of dynamically updating a display of metadata to a user. The
method comprises storing metadata in a database; displaying
a hierarchical representation of a subset of the metadata to
a user; receiving a change to at least a portion of the subset
of metadata displayed to the user; processing the change to
update the corresponding portion of the subset of metadata
in the metadata database; determining which portions of the
hierarchical representation are aflected by the change;
updating the portions of the hierarchical representations
aflected by the change; and displaying the updated hierar-
chical representation to the user.

Another embodiment of the present invention 1s a meta-
data management system used to access, manage, and edit
information about content data. The metadata management
system comprises a metadata database that includes infor-
mation about content data; a metadata management module
used to access the information about content data in the
metadata database; and a graphical user interface configured
to communicate with the metadata management module, to
dynamically access the information about content data 1n the
metadata database, and to dynamically present an organized
grouping ol at least a portion of the iformation about
content data for display to a user.

Another embodiment of the present invention 1s a method
for presenting metadata in a database. The method com-
prises obtaining a hierarchy of category nodes; querying the
database for a set of metadata; dynamically arranging the set
of metadata 1n the hierarchy of category nodes; and present-
ing the set of metadata in the lierarchy of category nodes to
a user.

Another embodiment of the present invention 1s a method
for presenting metadata in a database. The method com-
prises displaying a set of metadata from a metadata database
in a hierarchy of category nodes; receirving a change to a
portion of the set of metadata; and dynamically updating the
display of the set of metadata and the hierarchy of category
nodes to reflect the change.

Another embodiment of the present invention 1s a method
for dynamically presenting metadata 1n a hierarchical form.
The method comprises executing a search on a database, to
obtain a set of search results, wherein the database stores
metadata; receiving a set of user preferences for viewing the
search results wherein the user preferences are based on
properties ol the metadata; dynamically generating a tree
structure based on the search results and the set of user
preferences; dynamically determining a layout of the tree
structure; dynamically mapping the search results onto the
tree structure based on the layout; and dynamically display-
ing the tree structure.

Another embodiment of the present invention 1s a method
ol obtaining information about content data wherein infor-
mation about content data i1s stored in a database and
displayed 1n a graphical user interface using a standard data
structure. The method comprises obtaining an i1dentifier
related to a set of content data; creating a request for
information about the set of content data using the identifier;
processing the request for mmformation; receiving a set of
request mformation 1n response to the request for informa-
tion; and storing the set of request information a database.

For purposes of summarizing the invention, certain
aspects, advantages, and novel features of the invention are
described herein. It 1s to be understood that not necessarily
all such advantages may be achieved in accordance with any
particular embodiment of the invention. Thus, for example,

US RE46,5360 E

3

those skilled 1n the art will recognize that the invention may
be embodied or carried out in a manner that achieves one
advantage or group ol advantages as taught herein without
necessarily achieving other advantages as may be taught or
suggested herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example display from one embodi-
ment of the present invention.

FIG. 2 illustrates a high-level block diagram of one
embodiment of the present invention.

FIG. 3 illustrates a flowchart of one embodiment of
building a tree grouping.

FIG. 4 illustrates a flowchart of one embodiment
adding an entry to the node location table.

FIG. 5 illustrates a flowchart of one embodiment
processing a data change.

FIG. 6 illustrates a flowchart of one embodiment
processing a data change.

FIG. 7 illustrates a flowchart of one embodiment
adding metadata.

of

of

of

of

DETAILED DESCRIPTION

A system and method which represent one embodiment
and example application of the mvention will now be
described with reference to the drawings. Vanations to the
system and method which represent other embodiments waill
also be described. In one disclosed embodiment, the system
and method are used to dynamically represent audio meta-
data using a master tree and a node table. It will be
recognized, however, that other embodiments may use only
one of these two types of data structures and/or different
types of data structures to help users organize and access
data. In addition, other types of data may also be used.

For purposes of illustration, one embodiment will be
described 1n the context of a master tree and node table for
organizing and accessing audio metadata and audio data
within an audio playing device such as, for example, Real-
Jukebox™, While the inventors contemplate that the present
invention 1s not limited by the type of content data and/or
metadata to be managed and that the types of data may
include video, audio, audio-visual, slideshow, image and
text, and so forth, the figures and descriptions relate to an
embodiment of the invention using audio metadata and
audio content data. Furthermore, the details of the master
tree, node table, and of specific implementations are set forth
in order to illustrate, and not to limit, the invention. The
scope of the invention 1s defined by the appended claims.

These and other features will now be described with
reference to the drawings summarized above. The drawings
and the associated descriptions are provided to illustrate
embodiments of the invention, and not to limit the scope of
the mnvention. Throughout the drawings, reference numbers
are re-used to indicate correspondence between referenced
clements. In addition, the first digit of each reference num-
ber indicates the figure 1n which the element {first appears.

I. Overview

Audio metadata, such as track name, artist, album, genre,
track number, length, and so forth, 1s collected from various
sources, added, and maintained 1n a metadata database. A

metadata management module dynamically reads metadata
from the metadata database, organizes the metadata into

groupings using a groupings tree, combines the groupings

10

15

20

25

30

35

40

45

50

55

60

65

4

tree with other trees to form a master tree, combines
metadata relating to the selected grouping into a node table,
and presents the master tree and the node table 1n a graphical
user interface. In the graphical user interface, a user may
add, delete, and/or modily the metadata in the master tree
and/or the node table. As the user changes the metadata, the
metadata database 1s updated and the user’s changes are
propagated throughout the graphical user interface. The user
may also use the master tree and the node table to begin
playing an audio file and/or a set of audio files.

The top node of the master tree represents a root node.
The next level of the master tree represents root nodes of
subtrees such as the groupings tree and the playlist tree. The
lowest-level nodes of the master tree represent audio meta-
data of individual audio tracks, while the other nodes
represent groupings (or sub-groupings) of audio tracks. This
relationship structure allows the master tree to include
various types ol trees. For example, the groupings tree
provides ways to group and categorize audio metadata, such
as, for example, by Album, Artist, Genre, and so forth as
well as by nested groupings such as, for example, Artist/
Album, Genre/Artist, Genre/Artist/Album, and so forth. The
groupings may be based upon fields of the metadata data-
base as well as other groupings, categories, and/or prefer-
ences created by the user, hard-coded into the system, and so
forth. The playlist tree provides ways to create or provide
ordered lists of audio tracks.

The master tree and the node table are dynamically
populated and displayed to the user. In addition, when a user
makes any changes to the master tree and/or the metadata in
the node table, both the master tree and the node table may
be dynamically updated. In one embodiment, the master tree
and the node table are dynamically updated without having
to rebuild the entire master tree and the entire node table.
Instead, the changes may be propagated throughout the
master tree and node table through the use of a node location
table that tracks the locations of the node within the master
tree.

One benefit of this embodiment 1s that the metadata
management system can read metadata from the metadata
database and dynamically organize the metadata for display
in the graphical user interface. Thus the metadata can be
stored 1n a basic format and still presented to the user 1n an
accessible format without requiring extensive or time con-
suming processing of the metadata.

Another benefit of this embodiment 1s that the user is
given access to the metadata to make additions, changes,
and/or deletions through an easy to use graphical user
interface. Using the graphical user interface, the user has
access to the data through interface tools such as, for
example, menus, windows, pointing devices, drag and drop
teatures, and so forth. For example, rather than having to
manually edit each piece of the metadata, the user can use
the interface tools to add data, move data into new categories
and/or groupings, and so forth.

An additional benefit of this embodiment 1s that the
metadata information may be displayed 1n the graphical user
interface using organizational techniques. Rather than hav-
ing to traverse vast amounts of metadata to find a particular
record, the user 1s istead presented with an organized view
of the metadata. This embodiment allows the metadata to be
presented 1n a variety of categories using a variety of
subtrees. The user may create custom categories as well as
custom subtrees atlfording much flexibility and user control.
For example, one user may create groupings for the Genres
Rock and Jazz, while another user may create groupings for
the Artists Styx and Abba. In addition, one user may group

US RE46,5360 E

S

data into categories that are often used such as Artist/Genre/
Album, while another user may create customized playlists.

A Tfurther benefit of this embodiment 1s the ability to
dynamically update the data in the database collection as
well as the data displayed in the graphical user interface.
Thus, when users make changes to the metadata and/or the
groupings or categories, the changes are made in the data-
base and propagated throughout the graphical user intertace
such that the user 1s seeing an accurate representation of the
metadata database. The user can view changed data without
having to reread all of the data and regenerate the entire
display. Instead, this embodiment provides fast, dynamic
updating of the view of the data within the graphical user
interface without causing much delay and/or inconvenience
to the user.

Another benefit of this embodiment 1s that the user can
update multiple sets of metadata with stmple changes 1n the
graphical user interface. For example, 1f a user has one
thousand files with the genre value as Pop and the user wants
to change the genre to Rock, the user can rename the genre
grouping from Pop to Rock and all of the nodes within that
genre grouping may be updated to reflect the genre value

change. This feature saves the user from having to manually
edit each of the metadata files one-by-one.

An additional benefit of this embodiment 1s that the user
may update the metadata located in the individual content
data files with the current metadata in the metadata database.
For example, a user may select a command wherein the data
within the metadata database i1s then copied to the appro-
priate MP3 header file that includes the metadata. For
example, 11 a user changes the Genre of an audiofile from
Rock to Pop 1n the graphical user interface and then executes
an update MP3 file command, then the user’s MP3 file will

also automatically be updated such that the Genre 1s changed
from Rock to Pop 1n the MP3 file.

II. Sample Display

FIG. 1 illustrates an example program display of a graphi-
cal user interface. In FIG. 1, an audio player program display
110 includes two windows, a tree window 120 that includes
a master tree 122, with an example groupings tree 124 and
an example playlist tree 126, and a table window 130 that
includes a node table 132 with an example set of audio
metadata.

The tree window 120 displays the master tree 122. In the
exemplary master tree 122, there are two subtrees, Master
Library 124 and Playlists 126. The Master Library subtree
124 represents a groupings tree and 1llustrates ways to group
or categorize the audio metadata 1n the metadata database.
The Master Library subtree’s 124 grouping includes five
groupings, Artist, Album, Genre, Genre/Artist, and All
Tracks. Furthermore, the Genre grouping includes four
sub-groupings, <blank>, Classical, Pop, and Rock. The
Playlists subtree 126 provides ways to group or categorize
the audio metadata 1into custom playlists, (1.e., lists of tracks
that the user wants played 1n a specific order). Users can
create custom playlists indicating the order in which the user
would like to listen to the audio files. The Playlists subtree
126 includes three playlists, New Playlist, Favorites, and
Study Music.

The table window 130 displays a node table 132 that
includes mformation about the node that 1s selected 1n the
tree window 120. This information includes details about the
audio tracks that fall within the selected node. A user may
display a node table 132 by selecting a grouping such as, for

10

15

20

25

30

35

40

45

50

55

60

65

6

example, by using a mouse to click on the desired node 1n
the tree window 120. Other methods of selecting a grouping

are discussed below.

In FIG. 1, the Master Library—Genre—Classical group-
ing was selected, and thus, the metadata for audio tracks that
have the value “Classical” in the Genre field 1n the database
are displayed as audio track records in the node table 132
within the table window 130. In the exemplary table window
130, three audio track records are shown: Concerto by
Mozart, Reverie by Debussy, and Vocalise by Rachmaninofl.
In one embodiment, the user may begin playing the audio
file of a track record by selecting an audio track for playback
such as, for example, by using a mouse to double click on
any field of the audio track record in the node table 132.
Other methods of selecting an audio track record for play-
back are discussed below. In another example, the user may
select a higher level node, such as the Genre node located
under the Master Library—Genre grouping. The node table
132 may then display the sub-groupings of the Genre node
such as, for example, <blank>, Classical, Pop, and Rock, as
well as collective information about the tracks within the
sub-groupings such as, for example, the total number of
tracks, total length, and total size.

III. The Metadata Management System

FIG. 2 represents an overview ol one embodiment of a
metadata management system 200. In one embodiment, the
metadata management system 200 manages descriptive data,
herein after referred to as metadata, about content data. For
example, 1f the content data 1s a set of audio files, the
corresponding metadata may include information about the
audio files such as, for example, the album, artist or speaker,
genre, the unique 1dentitying characteristic of a track, and so
forth. In another embodiment, the content data may be a set
of video files, and the corresponding metadata may include
information about the video files such as, for example, the
genre, video length, leading actors, parent advisory rating,
and so forth. It 1s recognized that 1n other embodiments, the
metadata management system 200 may manage other types
ol content data and/or metadata.

In FIG. 2, the metadata management system 200 includes
a metadata management module 210 that communicates
with a graphical user intertace 220 and a database collection
230. The metadata management module 210 includes a build
process 212, an add node location process 214, a data change
process 216, and an add metadata process 218. Furthermore,
the database collection 230 includes a metadata database
232 as well as a tree information database 234.

As used herein, the word module, whether 1n upper or
lower case letters, refers to logic embodied 1n hardware or
firmware, or to a collection of software instructions, possibly
having entry and exit points, written 1 a programming
language, such as, for example, C++. A software module
may be compiled and linked into an executable program, or
installed 1n a dynamic link library, or may be written 1n an
interpretive language such as BASIC. It will be appreciated
that software modules may be callable from other modules
or from themselves, and/or may be mvoked in response to
detected events or interrupts. Software instructions may be
embedded 1n firmware, such as an EPROM. It will be further
appreciated that hardware modules may be comprised of
connected logic units, such as gates and tlip-tlops, and/or
may be comprised of programmable units, such as program-
mable gate arrays or processors. The modules described
herein are preferably implemented as software modules, but
may be represented 1n hardware or firmware.

US RE46,5360 E

7

In one embodiment, the metadata management system
200 1s implemented on a user computer (not shown). The
user computer 1s a device which allows a user to access the
content data and/or the metadata. While the term user
computer 1s used, 1t 1s recognmized that 1n other embodiments,
the metadata management system 200 may be implemented
on other systems such as, for example, a portable computing
device, a portable audio player, a portable video player, a
server, a computer workstation, a local area network of
individual computers, an interactive television, an interac-
tive kiosk, a personal digital assistant, an interactive wireless
communications device, a handheld computer, a telephone,
a router, a satellite, a smart card, an embedded computing
device, or the like.

In one embodiment, the user computer 1s a conventional,
general purpose computer using one or more miCroproces-
sors, such as, for example, a Pentium processor, a Pentium
IT processor, a Pentium Pro processor, an xx86 processor, an
30351 processor, a MIPS processor, a Power PC processor, or
an Alpha processor. In one embodiment, the user computer
runs an appropriate operating system, such as, for example,
Microsoft® Windows® 3.X, Microsoft® Windows 98,
Microsolt® Windows® NT, Microsoft® Windows® CE,
Palm Pilot OS, Apple® MacOS®, Disk Operating System
(DOS), UNIX, Linux®, or IBM® OS/2® operating systems.

In one embodiment, the metadata management system
200 includes or 1s connected to a player module (not shown).
For example, the metadata management system 200 may
include an audio player, a video player, and so forth such that
a user may access the content data as well as the metadata
using the graphical user interface 220.

A. Metadata Management Module

In one embodiment, the metadata management system
200 includes a metadata management module 210. As indi-
cated above, the metadata management module 210 com-
municates with the graphical user interface 220 and the
database collection 230.

The metadata management module 210 works 1n concert
with the graphical user interface 220 to build the master tree
122 displayed in the tree window 120 and the node table 132
displayed 1n the table window 130. The metadata manage-
ment module 210 may be requested to build the master tree
122 and the node table 132 upon the occurrence of several
events such as, for example, upon user request (e.g., select-
ing the “refresh” button or via a menu option), upon an
automatic request when the audio player program 1s opened,
and so forth. In other embodiments, the metadata manage-

ment module 210 may generate a portion of or the entire
master tree 122 and/or the node table 132 off-line.

As 1ndicated above, 1n one embodiment, the metadata
management module 210 may generate several types of trees
(sometimes referred to as subtrees) and combine the trees
into a master tree 122 for display in the tree window 120.
The metadata management module 210 may combine the
trees by creating a root node and attaching the various trees
as children of the root node. It 1s recognized that the various
trees may be combined 1n other manners that are well known
to those skilled in the art. Furthermore, 1n other embodi-
ments, the audio data tree may represent a combination of
several types of trees and/or a single type of tree.

In one embodiment, the metadata management module
210 may also generate the node table 132 for display in the
table window 130. As discussed above, the node table 132
displays additional information about the selected grouping.
In one embodiment, a default selected grouping may be
stored 1n the tree information database 234 wherein the
default selected grouping may be based on one or more

10

15

20

25

30

35

40

45

50

55

60

65

8

factors such as, for example, the last grouping that the user
selected, the most popular grouping that has been selected,
a pre-selected grouping, and so forth. To build the node table
132, the metadata management module 210, queries the
metadata database 232 for records that fall within the
selected grouping. In one embodiment, 1f the selected node
1s a leal node, the node table 132 may display metadata
pertaining to the audio tracks that fall within the selected
grouping. If the selected node 1s a non-leaf node, the node
table 132 may display collective information about the
tracks within the sub-groupings of the selected grouping.
For more information on the node table 132, see the section
below entitled Graphical User Interface—Node Table.

The metadata management module 210 illustrated i FIG.
2 includes a build process 212, an add node location process
214, a data change process 216, and an add metadata process
218. For more information on these process, see the section
below entitled Metadata Management Module Processes.
The metadata management module 210 may include other
processes (not shown) such as, for example, a process for
combining one or more grouping trees into a groupings tree
124, combining one or more trees (e.g., groupings tree 124,
playlist tree 126, etc.) into a master tree 122, and so forth.
B. Graphical User Interface

In one embodiment, the metadata management system
200 includes a graphical user interface 220 (“*GUI”). The
GUI 220 1n FIG. 2 presents information to the user such as
the content data and metadata. The GUI 220 may also allow
the user to view the data, change the view of the data, access
data (e.g., for playback), modily data, delete data, and/ or add
new data to the database collection 230.

The GUI 220 may be implemented as a module that uses
text, graphics, audio, video, and other media to present data
and to allow interaction with the data. The GUI 220 may be
implemented as a combination of an all points addressable
display such as a cathode-ray tube (CRT), a liqud crystal
display (LCD), a plasma display, or other types and/or
combinations of displays; input devices such as, for
examples a mouse, trackball, touch screen, pen, keyboard,
volice recognition module, and so forth; and software with
the appropriate interfaces which allow a user to access data
through the use of stylized screen elements such as, for
example, menus, windows, dialog boxes, toolbars, controls
(e.g., radio buttons, check boxes, sliding scales, etc.), and so

forth.

As 1llustrated 1n FIG. 1, 1n one embodiment, the GUI 220
may display a master tree 122 1n the tree window 120 and
a node table 132 1n the table window 130.

1. Master Iree

As 1ndicated above, the master tree 122 provides various
ways to group and categorize audio data. In one embodi-
ment, the master tree 122 displays nodes that have at least
one child (non-leaf nodes) such that the leat nodes are not
displayed in the master tree 122, but are instead displayed 1n
a table format in the node table 132. It 1s recognized that 1n
other embodiments, the leat nodes as well as the non-leaf
nodes may be displayed in the master tree 122. In addition,
the GUI 220 allows the user to expand a subtree of the
master tree 122 1n order to view the subtrees children.

The master tree 122 1s preferably 1n the form of a directed
acyclic graph (a tree that allows a child node to have
multiple parents). While this embodiment uses an acyclic
graph representation, it 1s recognized that 1n other embodi-
ments, other types ol graphs or trees may be used such as,
for example, B* trees, optical trees, binary trees, n-way
trees, balanced trees, min-max trees, Huthinan trees, splay
trees, AVL trees, and so forth. Furthermore, other data

US RE46,5360 E

9

structures, such as, for example, files, lists, arrays, records,
tables, and so forth, or a combination of data structures may

be used.

2. Node Table

As indicated above, the node table 132 displays additional
information about the node that 1s selected 1in the master tree
122. In one embodiment, if the selected node 1s a leaf node,
the node table 132 may display metadata pertaining to the
audio tracks that fall within the grouping as audio track

records. The node table 132 in FIG. 1 includes the fields
Track Name, Artist, Album, Genre, CD Track #, and Length

and 1s arranged 1n a standard table format wherein the rows
represent audio track records and the columns represent
categories or attributes of data within the metadata database
232. If the selected node 1s a non-leat node, the node table
132 may display collective information about the tracks
within the sub-groupings of the selected node such as, for
example, the total number of tracks, total length, and total
s1ze. For example, 1f the selected node 1s Artist under the
grouping Master Library—Artist, the node table 132 may
then display the sub-groupings of the Artist node such as, for
example, Debussy, Mozart, and Rachmaninoil, as well as the
total number of tracks, total length, and total size of audio
files data for each artist.

It 1s recognized that in other embodiments different cat-
cgories, attributes, and/or collective information may be
used that include fewer fields of the metadata database 232,
additional fields of the metadata database 232, user custom-
1zed categories, as well as other categories. In addition, some
or all of the exemplary categories or attributes may be
omitted from the node table 132.

The node table 132 1s preferably 1n the form of a standard
table wherein data 1s arranged 1n rows and columns such that
multiple audio track records are visible 1n the table window
130. It 1s recogmized that other formats may be used. For
example, the table window 130 may display individual
records, a tree of records, a linked list of records, and so
torth. It 1s recognized that 1n other embodiments, other types
of data structures such as, for example, trees, files, lists,
arrays, records, and so forth, or a combination of data
structures may be used.

C. Database Collection

In one embodiment, the metadata management system
200 includes a database collection 230. The database col-
lection 230 1n FIG. 2 includes a metadata database 232 and
a tree information database 234.

1. Metadata Database

The metadata database 232 includes metadata about the
audio content data. The metadata may include information
such as track name, artist, album, genre, CD track number,
length, format, quality, comments, date and/or time last
played, date and/or time the track was created, file size, file
location, protection tlag, as well as other types of informa-
tion related to the audio file. The metadata may include fields
that are used 1n standards such as, for example, ID3vl1,
ID3v2, 1D3v2.3.0, and so forth, as well as other fields that
are created by other parties, by users, by content providers,
and so forth. As indicated above, it 1s also recognized that 1in
other embodiments, the metadata database 232 may manage
other types of content data and/or metadata.

In one embodiment, the metadata database 232 includes
the metadata as well as the content data. For example, the
metadata database 232 may include the audio files as well as
the metadata that corresponds to the audio files. In another
embodiment, the content data may be stored in a different
database and/or only a subset of the content data may be

10

15

20

25

30

35

40

45

50

55

60

65

10

stored 1n the metadata database 232. It 1s recognized that the
metadata database 232 may be implemented as several
separate databases.

2. Tree Information Database

The tree information database 234 includes data about the
trees within the master tree 122. This information may
include tree types, groupings, node names, node locations,
and so forth. For example, the tree information database may
include grouping tables that include data about the grouping
tree structure wherein the grouping tables include informa-
tion such as, for example, the names of the nodes, the
relationship between nodes, whether the node 1s a standard
node or customized node, and so forth. In addition, the tree
information database 234 may include playlist tables that
define the various playlists and include information about
the playlists such as, for example, data/time created, name of
the creator, and so forth. The tree information database 234
may also include node location tables that define the location
ol nodes 1n the subtrees and/or the master tree 122.

It 1s recognized that the tree information database 234
may include other types of information as well. In addition,
in other embodiments, the tree information database 234
may be implemented as several separate databases.

3. Additional E

Embodiments

The database collection 230 may also 1include other data-
bases (not shown) for performing various management
tasks. For example, the database collection 230 may include
a user preferences database that includes information on the
types of audio content and metadata that the user prefers
and/or the user’s favorite web sites for downloading audio
content and metadata.

In connection with the database collection 230, 1n one
embodiment, there may be several processes (not shown)
such as ID generators, number generators, statistic genera-
tors, session generators, and temp storage units that work
with the database collection 230.

In one embodiment, the database collection 230 1s 1imple-
mented using CodeBase, a semi-relational database offered
by Sequiter. CodeBase 1s a high-speed xBase-compatible
database engine that works with C/C++, Visual Basic, Del-

phi1 and Java under standalone and client/server environ-
ments. It 1s recognized that the database collection 230 may
be implemented using a different type of relational database,
such as Sybase, Oracle, Microsoft® SQL Server, and so
forth as well as other types of databases such as, for
example, a flat file database, an entity-relationship database,
and object-oriented database, a record-based database, and
so forth.

Moreover, while the database collection 230 depicted 1n
FIG. 2 1s comprised of several separate databases, 1t 1s
recognized that 1n other embodiments, the database collec-
tion 230 may contain other databases or some of the data-
bases may be omitted and/or combined. In addition, the
database collection 230 may be implemented as a single
database with separate tables or as other data structures that
are well know 1n the art such as linked lists, binary trees, and
so forth.

In one embodiment, the database collection 230 may be
connected to a backend component (not shown) that recerves
database requests via servlets, small programs that run on
servers, and sends a corresponding, request 1o the database
collection 230. It 1s recognized that 1n other embodiments
data access may be performed differently, for example, a
different type of backend component may be used, or the
database collection 230 may be accessed directly.

US RE46,5360 E

11

IV. Metadata Management Module Processes

The metadata management module 210 illustrated in FIG.
2 includes a build process 212, an add node location process

214, a data change process 216, and an add metadata process
218.

A. Build Process

The build process 212 1s used to dynamically build a
grouping tree that represents a grouping wherein the group-
Ing 1s a category or a set of categories by which the data may
be grouped. For example, one grouping may be Artist while
another grouping may be Genre/Artist, and yet another
grouping may be Genre/Artist/ Album.

For example, Table 1 represents a sample set of audio

metadata.

TABLE 1
Track Name Artist Album Genre Length
Always B XXX Funk 2:34:35
Bird A YYY Pop 1:56:22
Rhythm C YYY Pop 3:21:48
Speed A /77 Rock 2:15:03

The field names are located in the first row and represent
categories, and the metadata information, also referred to as
a category value, 1s shown in the subsequent rows. For

Terent cat-

example, the category Track Name has four di
cgory values: Always, Bird, Rhythm, and Speed; and the

category Artist has three diflerent category values: A, B, and
C.

A tree based on the grouping “Artist” for the data in Table

1 may look like the following, wherein the grouping is
“Artist” that includes one category, Artist:

OR¢

Bird | | Speed ‘ Always \

Rhythm

The circles represent categories from the groupings and the
squares represent the audio track records which are the leat
nodes of the tree. The top node (or root note of this
grouping) represents the grouping name. The next level of
nodes represents the category values for the category Artist
category. The leal nodes represent the audio track records
(and/or a reference to the records).

To turther illustrate, a tree based on the grouping “Genre/
Artist” for the data 1n Table 1 may look like the following,
wherein the grouping 1s “Genre/Artist” that includes two

categories, lirst Genre and second Artist:

10

15

20

25

30

35

40

45

50

55

60

65

) WO

‘ Bird

Always ‘ ‘ Rhythm‘ ‘ Speed‘

The root node represents the grouping name. The next level
ol nodes under the root node represent the category values
for the Genre category and the next level of nodes represent
the category values for the Artist category. The leal nodes
represent the audio track records (and/or a reference to the
records).

In the next example, a tree based on the grouping “Genre/
Artist/ Album™ for the data in Table 1 may look like the
following, wherein the grouping i1s “Genre/Artist/ Album”™

that includes three categories, first Genre, second Artist, and
third Album:

Genre/

Artist

Album
S ® @
) WE© C
® OO0 @
Always‘ ‘Bird ‘Rhythm‘ ‘Speed‘

The root node represents the grouping name. The next level
of nodes under the root node represent the category values
for the Genre category; the next level of nodes represent the
category values for the Artist category; the third level of
nodes represent the category values for the Album category.
The leal nodes represent the audio track records (and/or a
reference to the records).

One embodiment of a build process 212 will now be
described with reference to FIG. 3, though 1t 1s recognized
that a variety of methods may be used to implement the build
tree process.

The build process 212 begins at a start state 300 and then
proceeds to a state 310. In state 310, the build process 212
sorts the data by the first category 1n the grouping, then by
the second category 1n the grouping, and so forth for each
category 1n the grouping and then proceeds to a state 315. In
state 315, beginning with the first record of the sorted data,
and continuing until all of the records have been traversed
(states 315 and 3535), the build process 212 proceeds to a

US RE46,5360 E

13

state 320. In state 320, the build process 212 creates a
grouping name node as the top of the tree and moves the

current location to the top of the tree. Proceeding to a state
325, beginning with the first category in the grouping, and

continuing until all of the categories 1n the grouping have

ofiojelc
Bird‘ Speed‘ ‘Always ‘Rhythm‘ B)
‘Always

been traversed (states 325 and 345), the build process 212
proceeds to a state 330. In state 330, the build process 212
determines 1f the category value 1s already a child node 1n
the tree. If the category value for the current record i1s not
already a child node 1n the current location of the tree, the
build process 212 proceeds to a state 335 and adds the
category value as a child node 1n the current location of the
tree and proceeds to a state 340. If the category 1s already a
child node in the current location of the tree, the build
process 212 proceeds to state 340. In state 340, the build
process 212 moves the current location to the node that
represents the category value and proceeds to a state 345. In
state 345, the buld process 212 returns to state 325 if there
are any more categories in the grouping. Once all of the
categories 1n the grouping have been traversed (states 323
and 345), the build process 212 proceeds to a state 350. In
state 350, the build process 212 adds the current record to the
current node of the tree and proceeds to a state 355. In state
355, the build process 212 returns to state 315 if there are
any more records that have not been traversed. Once all of
the records have been traversed, the build process 212
proceeds to an end state 360.

As indicated above, 1t 1s recognized that other methods of
building a grouping tree may also be used. In addition,
various methods for improving efliciency may also be used
using tools such as recursion and other data management
tools that are well-known to those skilled 1n the art. For
example, the build process 212 may build the entire tree first
without leal nodes before adding any of the records. In
addition, the build process 212 may recursively add nodes
down one path of a tree and then add all records that fall
within that path before moving onto the next path of the tree.

It 1s recognized that the various grouping trees may be
combined to form a groupings tree 124, such as, for

Groupings

14

example, by creating a root node and attaching each of the
grouping trees to the root node as a child node. A sample
groupings tree 124 that corresponds to the data in Table 1
includes the grouping tree “Artist,” the grouping ftree
“Genre/Artist,” and the grouping tree “Genre/ Artist/ Album”™
may look like the following:

Tree

(Genre/
Artist (enre/
Artist
Album
Pop Rock
A C C
ONOIORC
‘Bird‘ Rhythm| [Speed

35

40

45

50

55

60

65

© OO @

‘ Bird

‘ Rhyt}un‘ ‘ Speed

Always ‘

B. Add Node Location Process

The add node location process 214 1s used to track the
various locations of nodes in the master tree 122. In one
embodiment, as the leaf-nodes are being added to any of the
trees to be displayed 1n the tree window 120, the metadata
management module 210 tracks the various locations in
which the node 1s located and stores the data in the tree

information database 234. As indicated above, the master
tree 122 1s preferably an acyclic graph that allows nodes to
have multiple parent nodes. Thus, each time a node 1s added
to a tree, the metadata management module 210 tracks and
stores the node’s location information 1n a data structure,
such as a node location table, though 1t 1s recogmized that a
variety of data structures may be used such as, for example,
a list, a tree, an array, a database, and so forth. The node
location table may then be stored in the tree information
database 234.

Table 2 illustrates a sample node location table that
corresponds to the node locations of the example nodes used

in the Build Process section above based upon the sample
data of Table 1.

TABLE 2

Node Location 1 Location 2 Location 3

Always Artist-B Genre/Artist- Genre/Artist/ Album-Funk-B-XXX
Funk-B

Bird Artist-A Genre/Artist- Genre/Artist/ Album-Pop-A-YYY
Pop-A

Rhythm Artist-C Genre/Artist- Genre/Artist/ Album-Pop-C-YY'Y
Pop-C

Speed Artist-A Genre/Artist- Genre/Artist/ Album-Rock-C-ZZ7
Rock-C

While Table 2 includes only three locations, 1t 1s recog-
nized that in other embodiments, the node location table may

US RE46,5360 E

15

include N locations where N 1s a positive integer. In addi-
tion, some nodes may have more locations than others. For
example, 1f the node Speed 1s 1n two of the user’s playlists
and Always 1s not in the user’s playlists, then Speed may
have two more locations than Always.

One embodiment of an add node location process 214 will
now be described with reference to FIG. 4, though 1t 1s
recognized that a variety of methods may be used to 1mple-
ment an add node location process 214. In one embodiment,
the add node location process 214 1s executed each time a
node 1s added to any of the trees 1n the master tree 122.

The add node location process 214 begins at a start state
400 and then proceeds to a state 410. In state 410, the add
node location process 214 determines whether the node
exists 1n the node location table. If the node does not exist
in the node location table, the add node location process 214
adds the node to the node location table in state 420 and
proceeds to a state 430. I the node already exists in the node
location table, then the node location process proceeds to
state 430. In state 430, the add node location process 214
adds the current location of the node to the node’s first
empty location field 1n the node location table and proceeds
to an end state 440.

C. Data Change Process

The data change process 216 1s used to dynamically
integrate changes into the database collection 230 as well as
the master tree 122 and/or the node table 132. As indicated
above, the user has access to add, change, or delete data 1n
the tree window 120 and/or the table window 130 and the
metadata management module 210 dynamically updates the
master tree 122 and the node table 132 to retlect the user’s
additions, changes, and/or deletions. One embodiment of a
data change process 216 is illustrated in FIG. 5.

Beginning at a start state 500, the data change process 216
proceeds to a state 510. In state 510, the data change process
216 receives a user’s changes to data. For example, a user
may reclassily a song from the genre Jazz to the genre New
Age by using a mouse to drag the song from the Jazz node
to the New Age node. In another example, a user may
change the value of a grouping (e.g., rename a grouping) by
selecting the grouping and typing in a new value. The user
may also create a new playlist by selecting one or more
audio tracks and copying them into a playlist node. The user
may make the changes using various actions such as, for
example, typing and changing any of the fields of informa-
tion, dragging and dropping one of the nodes 1nto a diflerent
grouping, adding a new grouping using the menu system,
and so forth. When a user drags, one node to a different
grouping, the node will then inherit the characteristics of the
new grouping (1.e., be reclassified), and the metadata data-
base 232 will be updated accordingly. For example, 11 the
audio track entitled “Always” was located under the Genre/
Artist grouping Funk—B and the user moved 1t to Pop—A,
the Genre value of the “Always” track may be updated to
Pop and the Artist value may be updated to B.

The data change process 216 then proceeds to a state 520.
In state 520, the data change process 216 updates the
database collection 230 (e.g., the metadata database 232
and/or the tree information database 234) with the changes
and proceeds to a state 530. In state 530, the data change
process 216 determines whether the change was made to a
leal node or a non-leaf node. If the change was made to a
non-leal node, then the data change process 216 proceeds to
state 540 wherein for each sub-node (e.g. children, grand-
chuldren, and so forth) of the non-leafl node, the data change
process 216 updates the classification or field value that
changed and proceeds to a state 550. If the change was made

10

15

20

25

30

35

40

45

50

55

60

65

16

to a leal node, then the data change process 216 proceeds to
state 550. In state 550, beginning with the first leal node that
was changed, and continuing until all of the leaf nodes that
were changed (states 550 and 590) are processed, the data
change process 216 proceeds to a state 560. In state 560, the
data change process 216 looks up the leaf node 1n the node
location table and proceeds to a state 570. In state 570, for
cach location in the node location table entry, the data
change process 216 locates the node 1n the master tree 122,
updates the node and proceeds to a state 580. In state 580,
the data change process 216 updates the node location table
to retlect any location changes and proceeds to a state 590.
In state 590, the data change process 216 returns to state 550
if there are more changed leal nodes that have not been
updated. Once all of the changed leal nodes have been
updated, the data change process 216 proceeds to an end
state 393.

It 1s recognized that in other embodiments, the data
change process 216 may be immplemented in a different
manner. For example, the node location table may be limited
to nclude only those nodes that are displayed 1n the graphi-
cal user iterface 220 such that the data change process 216
updates only those nodes that are being displayed in the
graphical user intertace 220. In other embodiments, the data
change process 216 may be implemented without using a
node location table.

An additional embodiment of the data change process 216
1s 1llustrated 1n FIG. 6. Beginning at a start state 600 the data
change process 216 proceeds to a state 610. In state 610, the
data change process 216 receives a user’s changes to data
and proceeds to a state 620. In state 620, the data change
process 216 updates the database collection 230 (e.g., the
metadata database 232 and/or the tree information database
234) with the changes and proceeds to a state 630. In state
630, beginning with the root node, and continuing until all
of the nodes in the tree (states 630 and 670) are traversed,
the data change process 216 proceeds to a state 640. In state
640, the data change process determines whether anything 1n
the node has been changed. If anything in the node has been
changed, the data change process proceeds to a state 650
wherein a Node State 1s set to DIRTY, and proceeds to a state
670. If the node has not been changed, the data change
process proceeds to a state 660 wherein the Node State 1s set
to CLEAN, and proceeds to state 670. In state 670, the data
change process 216 returns to state 630 if there are nodes
that have not been traversed. Once all of the nodes have been
traversed, the data change process 216 proceeds to an end
state 680. Thus, at then end of the process, each node 1n the
tree has been marked as DIRTY or CLEAN. The next time
the node 1s accessed, (e.g., selected by the user), then the
node 1s regenerated to retlect the changes, and the changes
are recursively propagated to any of the accessed node’s
sub-nodes.

It 1s recognized that in other embodiments, the data
change process 216 may be implemented 1n a different
manner. For example, additional, fewer, and/or different
states may be used to track the changes to the nodes; a
non-recursive process may be implemented; each node in
the tree may be regenerated before the node 1s accessed; and
so forth.

It 1s also recognized that the leaf-nodes may contain
references to leal node data such that when the leaf node
data 1s changed, the changes may be automatically propa-
gated to the other locations in which the leaf node resides.
D. Add Metadata Process

The add metadata process 218 1s used to find and add
metadata to the metadata database 232. In one embodiment,

US RE46,5360 E

17

the add metadata process 218 is triggered 1t there 1s no
information in the metadata database 232 for an audio track.
In other embodiments, the add metadata process 218 may be
triggered 11 there 1s information in the metadata database 232
for an audio track, but certain portions of the information 1s
missing. In such embodiments, when new data 1s found that
includes data that contlicts with the existing data, the add
metadata process 218 may default to overwriting the old
data, keeping the old data, keeping the old data only 1f the
user had edited the data, or use other defaults.

One embodiment of an add metadata process 218 1s
illustrated 1n FIG. 7. The embodiment depicted in FIG. 7
looks for data if there 1s no information i1n the metadata
database 232 for a track and thus, there are no conflicts. As
previously indicated, it 1s recognized that an add metadata
process 218 may be implemented using other defaults.

Beginning at a start state 700, the add metadata process
218 proceeds to a state 710. In state 710, the add metadata
process 218 determines whether there 1s information for the
designated track in the metadata database 232. The track
may be designated using a variety ol methods such as, for
example, by placing a CD 1n the CD-ROM drive, by having
the user select a group of tracks, by preselecting a group of
tracks, and so forth. If there i1s already information for the
designated track in the metadata database 232, the add
metadata process 218 proceeds to an end state 770. If the
information 1s not already in the metadata database 232, the
add metadata process 218 proceeds to a state 720. In state
720, the add metadata process 218 determines whether the
information 1s located 1n a local database. The local database
may be, for example the CDPlayer.am file as well as any
other database or file of metadata that may be stored on or
accessed by the add metadata process 218. If the information
1s 1n a local database, the add metadata process 218 proceeds
to a state 760 wherein the add metadata process 218 obtains
a copy of the mnformation and saves the information 1n the
metadata database 232 and proceeds to the end state 770. IT
the information 1s not 1n the local database, the add metadata
process 218 proceeds to a state 730. In state 730, the add
metadata process 218 determines whether the information 1s
located with the content data. For example, if the content
data 1s stored on a CD-ROM, then CD-ROM 1s checked for
metadata information. If the content data 1s stored in an
encoded data file such as, for example an MP3 file, the
encoded data file 1s checked for metadata information. It the
information 1s with the content data, the add metadata
process 218 proceeds to a state 760 wherein the add meta-
data process 218 obtains a copy of the information and saves
the information in the metadata database 232 and proceeds
to the end state 770. If the information 1s not with the content
data, the add metadata process 218 proceeds to a state 740.
In state 740, the add metadata process 218 determines
whether the information i1s located 1n a remote database. For
example, the adding data process may contact a remote
database of audio metadata and perform a lookup of the
designated track(s) to look for and retrieve the correspond-
ing metadata. The corresponding metadata may then be sent
to the add metadata process 218. The contact with the remote
database may be through a variety of mediums such as, for
example, a direct network connection, a dial-up connection,
an internet connection, and so forth. If the information 1s 1n
the remote database, the add metadata process 218 proceeds
to a state 760 wherein the add metadata process 218 obtains
a copy of the mnformation and saves the information 1n the
metadata database 232 and proceeds to the end state 770. IT
the information i1s not in the remote database, the add
metadata process 218 proceeds to a state 750. In state 750,

10

15

20

25

30

35

40

45

50

55

60

65

18

the add metadata process 218 queries the user for the
information and the add metadata process 218 proceeds to a
state 760 wherein the add metadata process 218 obtains a
copy of the entered information, saves the information in the
metadata database 232, and proceeds to the end state 770.

In one embodiment, the graphical user interface 220 may
also be updated each time the metadata database 232 1is
updated. In addition, 1t 1s recognized that a subset of the
various checks for data described above may be used. For
example, 1n one embodiment, the add metadata process 218
may only look 1n a local database and a remote database.

In another embodiment, metadata information may also
be added by user-initiated actions. For example, a user may
drag and drop a set of metadata information the user
received 1n an e-mail or on a disk into the graphical user
interface 220. Furthermore, the user may also initiate the add
metadata process 218 wherein the user requests to be
queried for information about the metadata. In other
embodiments, metadata information may also be added by
other processes. For example, i1 a user downloads a file, the
download process may automatically import metadata infor-
mation ito the metadata database 232. In another example,
when the user updates the audio playing program, audio
playing program may automatically trigger a lookup of any
missing metadata information.

V. Conclusion

While certain embodiments of the mvention have been
described, these embodiments have been presented by way
of example only, and are not intended to limit the scope of
the present invention. Accordingly, the breadth and scope of
the present invention should be defined 1n accordance with
the following claims and their equivalents.

What 1s claimed 1s:

[1. In a user computer, a method comprising:

generating a graphical representation of a plurality of

metadata database entries corresponding to, audio/
video content to be played by a media player applica-
tion, each metadata entry stored locally at the user
computer 1n the metadata database and characterized 1n
accordance with a plurality of attributes that are asso-
ciated with the audio/video content and shared between
one or more of the plurality of metadata database
entries;

recerving user mput to manually modify one of the shared

attributes;
recharacterizing in the metadata database, those of the
plurality of metadata database entries characterized by
the modified one of the shared attributes; and

dynamically updating the graphical representation of the
one or more ol the plurality of metadata database
entries based upon the user input.}

[2. The method of claim 1, wherein the audio/video
content 1s played by the media player application in response
to a metadata entry being selected by the user.]

[3. The method of claim 1, wherein the user may manually
perform at least one of a metadata addition, metadata
deletion, and a metadata modification via the graphical
representation. J

[4. The method of claim 1, wherein the audio/video
content comprises an MP3 file.}

[5. The method of claim 1, wherein the metadata database
is stored separate from the audio/video content.]

[6. The method of claim 1, wherein the graphical repre-
sentation further comprises a plurality of content grouping
trees, each representing one or more of the plurality of

US RE46,5360 E

19

metadata database entries and characterized in accordance
with at least a first of the one or more attributes.}

[7. The method of 6, wherein the graphical representation
turther comprises a table including metadata entries corre-

20

[20. The method of claim 14, wherein the audio/video
content comprises an MP3 file.}

[21. The method of claim 14, wherein the table includes
metadata entries corresponding to leal nodes of a selected

sponding to nodes of a selected one of the plurality of > one of the plurality of content grouping trees.}

content grouping trees.]

[8. The method of 7, wherein the table includes metadata
entries corresponding to leal nodes of the selected one of the
plurality of content grouping trees.]

[9. The method of 6, wherein the plurality of content
grouping trees comprises a hierarchical folder structure.]

[10. The method of 9, wherein the plurality of content
grouping trees comprises a hierarchical folder structure
wherein the hierarchical folder structure 1s selectively
expandable based upon user input.}

[11. The method of claim 1, wherein the graphical rep-
resentation further comprises a table including metadata
entries characterized in accordance with at least a subset of
the plurality of attributes associated with the audio/video
content.]

[12. The method of claim 1, wherein the metadata data-
base 1s a hierarchically arranged database contaiming the
plurality of metadata database entries corresponding to a
plurality of audio/video content.]

[13. The method of claim 1, wherein the attributes asso-
ciated with the audio/video content comprise a selected one
of a title, artist, genre, and track name.]

[14. In a user computer, a method comprising:

generating a graphical representation of a plurality of

metadata entries characterizing audio/video content to

be played by a media player application, wherein the

metadata 1s stored locally at the user computer in a

metadata database and characterized in accordance

with one or more attributes associated with the audio/

video content, the graphical representation including,

a plurality of content grouping trees, with each content
grouping tree representing one or more metadata
entries characterized 1n accordance with a first of the
one or more attributes; and

a table including metadata entries corresponding to
nodes of a selected one of the plurality of content
grouping trees;

receiving user mput to manually modify at least one of
the attributes associated with the audio/video con-
tent; and

dynamically updating the graphical representation of
the metadata and the metadata database to retlect the
user input.]

[15. The method of claim 14, wherein a user may rechar-
acterize a metadata entry by graphically associating the
metadata entry displayed 1n the table with a second content
grouping tree corresponding to a second of the one or more
attributes.]

[16. The method of claim 15, wherein the metadata entry
inherits characteristics associated with the second content
grouping tree.]

[17. The method of claim 14, wherein the table comprises
a plurality of attribute ficld names 1including at least one of
track name, artist, album, genre and track length.]

[18. The method of claim 14, wherein the audio/video
content 1s played by the media player application 1n response
to a metadata entry being selected by the user.]

[19. The method of claim 14, wherein the user may
manually perform at least one of a metadata addition,
metadata deletion, and a metadata modification via the
graphical representation.]

10

15

20

25

30

35

40

45

50

55

60

65

[22. An apparatus comprising:
a storage medium having a plurality of programming
instructions stored therein, the programming instruc-
tions designed to
generate a graphical representation of a plurality of
metadata database entries corresponding to, audio/
video content to be played by a media player appli-
cation, each metadata entry stored locally in the
metadata database and characterized in accordance
with a plurality of attributes that are associated with
the audio/video content and shared between one or
more of the plurality of metadata database entries,

receive user mput to manually modify one of the shared
attributes,

recharacterize 1n the metadata database, those of the
plurality of metadata database entries characterized
by the modified one of the shared attributes, and

dynamically update the graphical representation of the
one or more of the plurality of metadata database
entries based upon the user input; and

at least one processor coupled with the storage medium to
execute the programming instructions.}

[23. The apparatus of claim 22, wherein the programming
istructions are further designed to play the audio/video
content 1n response to a metadata entry being selected by the
user.]

[24. The apparatus of claim 22, wherein the programming
instructions are further designed to facilitate at least one of
a metadata addition, metadata deletion, and a metadata
modification by a user via the graphical representation.]

[25. The apparatus of claim 22, wherein the graphical
representation further comprises a plurality of content
grouping trees, each representing one or more of the plu-
rality ol metadata database entries and characterized in
accordance with at least a first of the one or more attributes.}

[26. The apparatus of 25, wherein the graphical represen-
tation further comprises a table including metadata entries

corresponding to nodes of a selected one of the plurality of
content grouping trees.]

[27. The apparatus of 26, wherein the table includes
metadata entries corresponding to leal nodes of the selected
one of the plurality of content grouping trees.}

[28. The apparatus of 25, wherein the plurality of content
grouping trees comprises a hierarchical folder structure.]

[29. The apparatus of 28, wherein the plurality of content
grouping trees comprises a hierarchucal folder structure
wherein the hierarchical folder structure 1s selectively
expandable based upon user input.}

[30. The apparatus of claim 22, wherein the graphical
representation further comprises a table including metadata
entries characterized in accordance with at least a subset of
the plurality of attributes associated with the audio/video
content.]

[31. The apparatus of claim 22, wherein the metadata
database 1s a hierarchically arranged database containing the
plurality of metadata database entries corresponding to a
plurality of audio/video content.]

[32. The apparatus of claim 22, wherein the attributes
associated with the audio/video content comprise a selected
one of a title, artist, genre, and track name.}

US RE46,5360 E

21

[33. An apparatus comprising:
a storage medium having a plurality of programming
istructions stored therein, the programming instruc-
tions designed to
generate a graphical representation of a plurality of 5
metadata entries, characterizing audio/video content
to be played, wherein the metadata 1s stored locally
in a metadata database and characterized 1n accor-
dance with one or more attributes associated with the
audio/video content, the graphical representation 10
including a plurality of content grouping trees, with
cach content grouping tree representing one or more
metadata entries

characterized in accordance with a first of the one or
more attributes, and a table including metadata 15
entries corresponding to nodes of a selected one of
the plurality of content grouping trees,

receive user mput to manually modify at least one of
the attributes associated with the content, and

dynamically update the graphical representation of the 20
metadata and the metadata database to retlect the
user input; and

at least one processor coupled with the storage medium to
execute the programming instructions.]

[34. The apparatus of claim 33, wherein the programming 25
instructions are further designed to facilitate a user in
recharacterizing a metadata entry by graphically associating,
the metadata entry displayed in the table with a second
content grouping tree corresponding to a second of the one
or more attributes.] 30

[35. The apparatus of claim 33, wherein the table com-
prises a plurality of attribute field names including at least
one of track name, artist, album, genre and track length.]

[36. The apparatus of claim 33, wherein the audio/video
content comprises an MP3 file.} 33
[37. The apparatus of claim 33, wherein the programming
instructions are further designed to play the audio/video
content 1n response to a metadata entry being selected by the

uset.]

[38. The apparatus of claim 33, wherein the programming 40
istructions are further designed to facilitate at least one of
a metadata addition, metadata deletion, and a metadata
modification by a user via the graphical representation.]

39. A method of selecting at least one track from a
plurality of tracks stored in a portable computing device 45
executing a plaver module including at least one of an audio
plaver and a video playver, the portable computing device
configured to present a hierarchical tree on a display of the
portable computing device, the plurality of tracks accessed
according to a hievarchy of the hievarchical tree, the hier- 50
archy having a plurality of categories, subcategories, and
items rvespectively in a first, second, and thivd level of the
hierarchy, the method comprising:

receiving, using one or move processors, a selection of a
category in the first level of the hierarchical tree on the 55
portable computing device executing the player module
including the at least one of an audio plaver and a
video plaver;

displayving, using the one or more processors, the subcat-
egories belonging to the selected category as child 60
nodes of the selected category in a listing presented in
the second level of the hierarchical tree;

receiving, using the one or move processors, a selection of
a subcategory in the second level of the hierarchical
lree; 65

displaving, using the one or move processors, the items
belonging to the selected subcategory as child nodes of

22

the selected subcategory in a listing presented in the
third level of the hievarchical tree; and

accessing, using the one or more processors, at least one

track based on a selection made in one of the levels of
the hierarchical tree,

wherein veceipt of the selection in the first level of the

hierarchical tree results in an expansion of the hievar-
chical tree to display the child nodes of the selected
category and rveceipt of the selection in the second level
of the hievarchical tree results in an expansion of the
hierarchical tree to display the child nodes of the
selected subcategory.

40. The method of selecting a track as vecited in claim 39
wherein the accessing at least one track comprises selecting
an item in the third level of the hiervarchical tree and playing
at least one track associated with the selected item.

41. The method of selecting a track as recited in claim 39
wherein the accessing at least one track comprises one of

plaving or adding to a plavlist at least one track associated

with a selected one of the category, subcategory, and item.
42. The method of selecting a track as recited in claim 39

further comprising selecting one of the items displaved in

the third level of the hierarchical tree and presenting a
listing of items associated with the selected item as child
nodes of the selected item in a fourth level of the hierarchical
lree.

43. The method of selecting a track as vecited in claim 39
wherein the category genre is selected in the first level of the
hierarchical tree from available categories that include at
least artist, album, and genve; and the subcategories listed
in the second level of the hievarchical tree comprise a listing
of at least one genre type and one of the at least one genre
tvpe is selected.

44. The method of selecting a track as recited in claim 39
wherein the track is a music track, accessing at least one
track comprises accessing a track title in the third level of
the hierarchical tree, and the track is played in response to
the access.

45. The method of selecting a track as recited in claim 39
wherein the category selected in the first level of the hier-
archical tree is from a top level of the hierarchy.

46. The method of selecting a track as vecited in claim 39
wherein the category selected in the first level of the hier-
archical tree is a category from a level at least one level
below the top level of the hierarchy.

47. The method of selecting a track as recited in claim 39
wherein the plurality of categories comprise a list of artist
names, the plurality of subcategories comprise a list of
album names and the plurality of items comprise a list of
track names.

48. The method of selecting a track as recited in claim 39
wherein the accessing at least one track comprises selecting
a subcategory in the second level of the hievarchical tree and

plaving a plurality of tracks associated with the selected

subcategory.

49. The method of selecting a track as vecited in claim 39
wherein the accessing at least one track comprises selecting
a subcategory and adding the tracks associated with the
selected subcategory to a playlist.

50. The method of selecting a track as recited in claim 39
wherein the accessing at least one track comprises selecting
an item in the thivd level of the hiervarchical tree and adding
at least one track associated with the selected item to a

plavlist.

51. The method of selecting a track as recited in claim 39

further comprising veceiving usev input to modify an attvi-

bute of at least one track of the corresponding tracks.

US RE46,5360 E

23

52. The method of selecting a track as rvecited in claim 51
further comprising updating a tree information database
and a display of the hiervarchical tree based on the received
userv input, the tree information database comprising data
regarding the hievarchy of the hierarchical tree.

53. The method of selecting a track as recited in claim 39
further comprising updating a tree information database
based on one or more added tracks, the tree information
database comprising data vegarding the hievarchy of the
hierarchical tree.

54. The method of selecting a track as recited in claim 39
wherein the hievarchical tree and the hierarchy of the
hierarchical tree arve in the form of a divected acyclic graph.

55. A method of selecting at least one track from a
plurality of tracks stored in a portable computing device
executing a player module including at least one of an audio
plaver and a video plaver, the portable computing device
configured to present a hierarchical tree on a display of the
portable computing device, the plurality of tracks accessed
according to a hievarchy of the hievarchical tree, the hier-
archy having a plurality of categories, subcategories, and
items rvespectively in a first, second, and thivd level of the
hierarchy, the method comprising causing one ov more
processors [o:

receive a selection of a category in the first level of the

hierarchical tree on the portable computing device
executing the playver module including the at least one
of an audio player and a video player;
display the subcategories belonging to the selected cat-
egory as child nodes of the selected category in a listing
presented in the second level of the hierarchical tree;

receive a selection of a subcategory in the second level of
the hierarchical tree;
display the items belonging to the selected subcategory as
child nodes of the selected subcategory in a listing
presented in the third level of the hierarchical tree;

access at least one track based on a selection made in one
of the levels of the hierarchical tree;

10

15

20

25

30

35

24

receive user input to modify an attrvibute of at least one

track of the corresponding tracks; and

update a tree information database and a display of the

hierarchical tree based on the veceived user input, the
tree information database comprising data vegarding
the hievarchy of the hiervarchical tree.

56. A method of selecting at least one track from a
plurality of tracks stored in a portable computing device
executing a playver module including at least one of an audio
plaver and a video plaver, the portable computing device
configured to present a hievarchical tree on a display of the
portable computing device, the plurality of tracks accessed
according to a hievarchy of the hievarchical tree, the hier-
archy having a plurality of categories, subcategories, and
items respectively in a first, second, and third level of the
hierarchy, the method comprising:

receiving a selection of a category in the first level of the

hierarchical tree on the portable computing device
executing the player module including the at least one
of an audio player and a video player;

displaving the subcategories belonging to the selected

category as child nodes of the selected category in a
listing presented in the second level of the hievarchical
lree;

receiving a selection of a subcategory in the second level

of the hierarchical tree;

displaying the items belonging to the selected subcategory

as child nodes of the selected subcategory in a listing

presented in the third level of the hierarchical tree;
accessing at least one track based on a selection made in

one of the levels of the hierarchical tree; and
updating a tree information database based on one or

movre added tracks, the tree information database com-
prising data regarding the hierarchy of the hierarchical
lree.

	Front Page
	Drawings
	Specification
	Claims

