(19) United States
12y Reissued Patent

L.asser

USOORE46446E

(10) Patent Number: US RE46.,446 E
45) Date of Reissued Patent: Jun. 20, 2017

(54)

(71)

(72)

(73)

(21)
(22)

METHOD AND SYSTEM FOR

FACILITATING FAST WAKE-UP OF A FLASH

MEMORY SYSTEM

Applicant: SanDisk Technologies LL.C, Plano, TX

(US)

Inventor: Menahem Lasser, Kohav-Yair (IL)

Assignee: SanDisk Technologies LL.C, Plano, TX

(US)
Appl. No.: 14/459,885

Filed: Aug. 14, 2014
Related U.S. Patent Documents

Reissue of:

(64)

Patent No.: 3,244,958
Issued: Aug. 14, 2012
Appl. No.: 11/382,056
Filed: May 8, 2006

U.S. Applications:
(60) Provisional application No. 60/678,902, filed on May

(51)

(52)

(58)

(56)

9, 2005.

Int. CI.

GoOol 11/14 (2006.01)

GoOol 12/02 (2006.01)

U.S. CL

CPC ... GO6l’ 1171441 (2013.01); GO6F 12/0246
(2013.01)

Field of Classification Search

CPC i, GO6F 11/1441; GO6F 12/0246

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,937,425 A 8/1999 Ban
6,026,465 A * 2/2000 Millsetal. 711/103

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1 524 603 Al 4/2005
JP 2003-015929 A 1/2003
(Continued)

OTHER PUBLICATTIONS

EPO, “European Search Report,” corresponding European Patent
Application No. EP 06 72 8339, mailed on Mar. 3, 2009, 6 pages.

(Continued)

Primary Examiner — Mary Steelman

(74) Attorney, Agent, or Firm — Vierra Magen Marcus
LLP

(57) ABSTRACT

Methods, systems and computer-readable code for maintain-
ing flash data structures 1n accordance with events of a flash
memory system are disclosed. Both an events log as well as
at least one flash management table are maintained 1n flash
memory. For at least one point 1n time, a most recently
stored flash memory table 1s indicative of an earlier state of
the flash memory system, while at least one event that 1s
more recent than the earlier state 1s stored 1n the events log.
During power-up, the flash management table 1s retrieved
from flash memory. If the most recent event of the flash
memory table 1s earlier than the most recent event of the
events log, events are retrieved from the events log 1n order
to update the flash memory table. Optionally, the updated
flash memory table 1s saved to flash memory.

5,671,388 A * 9/1997 Hasbunccovvvvnnn 711/103
5,682,497 A * 10/1997 Robinsoncccceuv..... 711/103 57 Claims, 11 Drawing Sheets
CPU
150
Host
Host interface Flash
Device RAM IROM Memory
110 180
Controller 140
Memory Module 120
Flash Memory System 100

US RE46,446 E

Page 2
(56) References Cited OTHER PUBLICATTONS
U.S. PATENT DOCUMENTS EPO, “Examiner’s Substantive Report,” corresponding European
Patent Application No. EP 06 728 339, mailed on Jul. 7, 2009, 4
6,282,605 B1* 82001 Mooreoooeeevvvviinnnnn, 711/103 noes
6,442,662 B1* 8/2002 Komatsuc..c.......... 711202 Pase> , , | o
6,456,528 Bl 9/2002 Chen The Patent Oflice of the People’s Republic of China, “Notification
6,510,488 B2 1/2003 l.asser ... 711/103 of the First Oflice Action,” corresponding Chinese Patent Applica-
6,678,785 B2 1/2004 Lasser tion No. 200680021190.9, mailed on Sep. 4, 2009, 8 pages (includ-
6,788,575 B2* 9/2004 Kozakai et al. 365/185.09 ing translation.).
6,943,026 B2 : 9/2005 Keays ... 7117103 The Patent Office of the People’s Republic of China, “Notification
g’g;g’ﬁgg Eé . L %//388?3 iru;l:le.et alt‘ . T11/103 of the First Office Action,” corresponding Chinese Patent Applica-
076, asheim et al. 1 - : - -
750803232 B2 5 7/2006 Aashelm et a ““““““““““ 71/205 EOD lNrf' 200680021190'95 malled oIl Ma‘r’ 185 6 pages (lnCIHdlng
7,139,883 B2* 11/2006 Aasheim et al. 711/156 anslation.). e e e
2003/0163594 Al 2/2003 Aasheim et al. The Patent Oflice of Japan, “Notification of Reasons of Rejection,
2004/0111582 Al* 6/2004 Maeda et al 711/202 corresponding Japanese Patent Application No. 2008-510721,
2005/0141312 Al* 6/2005 Sinclair et al. 365/222 mailed on Sep. 17, 2010, 9 pages (including translation.).
The Patent Oflice of Japan, “Notification of Reasons of Rejection,”
FOREIGN PATENT DOCUMENTS corresponding Japanese Patent Application No. 2008-510721,
malled on Jun. 28, 2011, 6 pages (including translation.).
JP 2004-234188 A 8/2004

JP 2006-040168 A 2/2006 * cited by examiner

U.S. Patent Jun. 20, 2017 Sheet 1 of 11 US RE46,446 E

o T b -

CPU
150

il R Ty
reigyralirabllysdememeni. il
okl P Ay

-; Host ‘ _
Host Interface | | | f 1\,{ Flash | |
Device RAM RO Memory
(d || 170 | 160 130

110 | 180)

Controller 140

Memory Module 120

Flash Memory System 100

FiG.1

U.S. Patent Jun. 20, 2017 Sheet 2 of 11 US RE46,446 E

For t=t, Translation Table 200

393

172

1023 085

U.S. Patent Jun. 20, 2017 Sheet 3 of 11 US RE46,446 E

For t=t, where t,>t, Translation Table 200

C T L e

Virtual Block Physmal Block

FiG.2B

0

|

1022
1023

U.S. Patent Jun. 20, 2017 Sheet 4 of 11 US RE46,446 E

Wait for
Next Event

Process 210
. YCh!

Update Table(s) in
Volatile Memory (e.g. RAM) 214
In Accordance with the Event

206

Increment POlnterMost Recent Event 218
and Save 1n Flash

v

Record Event
In Event Ls:::cIr 111 Flas

h 222

Has a “Save
Table” Condition

Been Met?
YES /
Se’t POilltBI' Most Recent Table Sav

226
Save Into Flash Memory = Pointery, ., gecent Event
One or more Tables 230 And save in Flash Memory

234 |

NO

FI1G.3

U.S. Patent Jun. 20, 2017 Sheet 5 of 11 US RE46,446 E

Event Log 300
Event 1
Event 2

Event 1-1
Event |
Event 1+1

POlnterMost Recent Table Save

"""""

P(’lnterMost Recent Event

Event M-1
Event M

FiG.4

U.S. Patent Jun. 20, 2017 Sheet 6 of 11 US RE46,446 E

] Wait for next event 206

1= | Process Event 210
218

Update Table(s) in 214
Volatile Memory (e.g. RAM)
In Accordance with the Event

Increment

POinterMost Recent Event
And Save in Flash 218

Set POlnterMost Recent Table Save
- POlnterMost Recent Event

I And save in Flash Memory Record Event n Event

234 Log In Flash According to
Position of the Log
Pointer 222

Save One or more Tables
To Flash Memory

230

1=1+1 240

FIG.S

U.S. Patent Jun. 20, 2017 Sheet 7 of 11 US RE46,446 E

-~ Wait for
Next Event 2_0_;__6_
Process 210
T —

Update Table(s) in
Volatile Memory (e.g. RAM) 21 4
In Accordance with the bvent

Increment Pointer,; . recent Event 218
and Save in Flash

Record Event _
In Event Log 1n Flash -%_-2-?3 ’

Is the

Event a
“Major Event™?

226D

NO

YES

Set POlnterMast Recent Table Sav

Save Into Flash Memory = Pointery, ., recent Event
One or more Tables 230 And save in Flash Memory

234

U.S. Patent Jun. 20, 2017 Sheet 8 of 11 US RE46,446 E

Power-Up 410

Retrieve Table(s) from Flash Memory 414

Retrieve POlnterMost Recent T'able Save
From Flash 418

I

! Scan Flash Log and

Determine P()in'ua-r:fi Hf”fln 422

lSet Pointergyp= PoInteryog pecent Table save #20

Poimnter cyvp =

POlnterMost Recent Event
l?

] 430
Retrieve event N~
Pointed to by Save Table(s) to
Pointer,» 434 Flash Memory
And Save

Pomnt ., » as

Update Table(s) = : POinterMost Recent Table Save
In accordance with To Flash Memory 446
Retrieved Event 433

Advance Proceed with Regular
Pointerrcyp Operation 4350

442 FI1(G.7

U.S. Patent Jun. 20, 2017 Sheet 9 of 11 US RE46,446 E

Event Log 300
Event 1
Event 2
Event 1-1
Temp, . | . Fvent] <— Most Recent
Pointer Event 1+1 Table Save
Event M- Most
Event M-1 Recent Event

Event M

F1G.SA

U.S. Patent Jun. 20, 2017 Sheet 10 of 11 US RE46,446 E

Event Log 300
Event]
Event 2
Event 1-1
Temp Event 1 ~Most Recent
: o B Table Save
POlnteI' uuuuuuuu Jvent 1+]_
Event M-2%T Most
Event M-1 Recent Event

Event M

U.S. Patent Jun. 20, 2017 Sheet 11 of 11 US RE46,446 E

Event Log 300

Event 1

Event 2

Event 1-1

Event | Most Recent
Event 1+1 Table Save

. Most
Pointer Event M-1 Recent Event

\ Event M

STOP

FI1G.8C

US RE46,446 E

1

METHOD AND SYSTEM FOR
FACILITATING FAST WAKE-UP OF A FLASH
MEMORY SYSTEM

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims the benefit of U.S. Provi-
sional Patent Application No. 60/678,902, filed May 9, 2005
by the present inventor.

FIELD OF THE INVENTION

The present invention relates to methods and systems for
maintaining data structures that are useful for facilitating a
wake-up of a flash memory management system.

BACKGROUND

U.S. Pat. No. 6,510,488 of Lasser entitled “Method For
Fast Wake-Up of a Flash Memory System™ discloses a
method and system for allowing a flash memory system to
achieve a fast wake-up time after powering 1t up even 1f the
flash system software relies on management tables whose
generation from scratch 1s time-consuming. This fast wake-
up time 1s achieved without sacrificing data integrity. The
alorementioned patent of Lasser 1s incorporated by reference
tor all purposes as 1f tully set forth herein.

As explained 1n Lasser, using flash memory devices for
computer data storage traditionally requires some software
translation layer that sits between the host computer’s oper-
ating system and the device low-level access routines. This
1s so because the flash technology has some usage limita-
tions, which make i1t 1impossible to access it 1n a simple
random-access linear method. One such limitation 1s the
inability to randomly overwrite any desired memory loca-
tion. Therefore, the writing of new content mnto a flash
memory location may require first erasing the whole block
containing that location (preserving the contents of any other
locations still needed), and only then wrnting the new
content.

The translation layer presents to the hosting operating
system a virtual view of a random-access addressable array
of independent data sectors, while hiding and handling the
details of mapping those virtual addresses into their real
locations 1n the flash media. This translation mechanism 1s
far from trivial, and an example of such a flash memory
translation layer 1s disclosed in Amir Ban’s U.S. Pat. No.
5,937,425, which 1s incorporated as if fully set forth herein.
Ban discloses a method for implementing a mapping mecha-
nism between virtual and physical flash addresses. Another
example of such as system 1s detailed in U.S. Pat. No.
6,678,785, which 1s also incorporated as if fully set forth
herein.

The translation process relies on internal translation tables
that provide the flash system software with the information
required for converting the host computer data access
requests to the actual flash access requests. These translation
tables are constructed by the software during system wake-

10

15

20

25

30

35

40

45

50

55

60

65

2

up (or at later time, 11 so requested by the hosting software),
based on control information stored within the flash device.
Even though it 1s theoretically possible not to construct such
tables and instead to use only the raw control data from the
flash, this 1s practically unusable as the response time to an
access request would be too slow. This 1s so because
accessing data on flash 1s much slower than accessing data
in regular computer RAM memory, and also because the
memory tables are usually optimized for efhiciency in the

type ol operations required during runtime, while the flash-
stored control data 1s not.

For example, a flash physical unit might contain the
number of the virtual unit mapped to 1it. During program
runtime we may Irequently need to translate a virtual umt
number 1nto 1ts physical counterpart. If we have to rely only
on flash-stored control data, we may need to scan all units
until we find one with the specified virtual unit number, a
very long process by the standards of a sitmple media access.
However, by scanning the flash device once on system
wake-up and constructing a table mapping each virtual unit
number nto a corresponding physical unit number, we are
able to later do such mappings very efliciently.

The problem 1s that scanning the flash data storage device
on system wake-up might take a long time, especially for
high capacity devices. This 1s especially annoying for sys-
tems and devices in which a user expects immediate turn-on
(1.e. cellular phones, PDAs, etc.). Simply storing the tables
in the flash may work for read-only devices, such as flash
devices storing only computer executable code, which 1s not
changeable by the user. However, merely storing the tables
in flash will not succeed when using devices used to store
data which might be changing frequently (such as text files
or spreadsheets in a PDA). This 1s so because when con-
tinuously writing to the device and changing 1ts contents, the
contents of the translation tables also change. It 1s not
practical to update the copy of the tables in the flash each
time they change 1n memory, because the mncurred overhead
will slow the system considerably. Consequently, a differ-
ence will be accumulated between the tables stored 1n tlash
and the “correct” ones 1n memory. Now if the user switches
the power ofl and then turns 1t back on, without updating the
tables, the software will read incorrect translation tables
from flash, and the results might be data loss when writing
new data.

According to some embodiments disclosed 1n Lasser, this
problem may be solved by storing translation tables 1n the
flash and adding some means for the software to mvalidate
the translation tables 1n a way that 1s detectable whenever
reading them. Possible implementations (but not the only
implementations) include adding a checksum value that
makes the sum of all entries equal some fixed known value,
or adding a validity flag to the stored tables. Additionally,
one should ask the application software to call a specific
function in the translation layer before shutting the system
down.

In these ways the flash memory device 1s able to imitiate
fast wake-ups when the system undergoes an orderly shut
down, and reverts to regular wake-ups when the system
undergoes an un-orderly shut down.

While this solution 1s useful for many cases, there are
situations where this solution may not be adequate. A first
example where the solution may not be adequate 1s where
sudden power failures are frequent and 1t 1s expected that
many (or even most) of the power-up events will encounter
invalid stored tables and will result 1n regular wake-ups that
are slow.

US RE46,446 E

3

A second example where the solution may not be
adequate 1s where the operating system of the appliance
hosting the flash memory system does not provide the
soltware application with a service for orderly dismounting
or shutting down. While complex operating systems like
Linux do provide such service, there are many simpler and
smaller operating systems that are designed for starting up
the storage system upon power-on and never shut 1t down.
In such cases the methods of Lasser will result 1n every
power-up of the system doing a regular wake-up of the flash
management system, gaining nothing from those methods.

A third example where the solution may not be adequate
1s where there 1s a strict limit on the length of the time
interval between powering the system up and having it ready
for operation. So even 1f power failures are rare and almost
all power-up cases result in a fast wake-up of the flash
management system, 1t 1s still unacceptable that a power
tailure will cause a later regular power-up sequence, regard-
less of how rare this occurs.

For the purpose of this disclosure, the term “block™ 1s
defined as the smallest unit of the flash memory that can be
crased 1n a single operation. The term “page” 1s defined as
the smallest unit of flash memory that can be written (also
called “programmed™) 1n a single operation. Typically, a
block contains many pages.

For the purpose of this disclosure, the terms “flash man-
agement system’ and “flash file system”™ are synonyms and
may be used interchangeably. Each of these terms refers to
a software module that manages the storage of data 1n a flash
memory device, regardless whether the interface exported
by the module 1s file-oriented (with commands like “open
f1le” or “write file”) or block-oriented (with commands like
“read block™ or “write block™), and regardless whether the
soltware module runs on a controller dedicated solely for
flash management or on the same host computer on which
the applications using the storage system are running.

There 1s thus a widely recognized need for, and it would
be highly advantageous to have, a method and system that
can always guarantee a fast wake-up of the flash memory
system, without compromising the integrity of the flash data
structures.

SUMMARY

Some or all of the aforementioned needs, and other needs,
may be satisfied by several aspects of the present invention.

The present inventor 1s now disclosing a technique
whereby one or more flash management tables are updated
and saved 1n non-volatile flash memory after some but not
after all events of the flash memory system. When waking
up, 11 1t turns out that a given tlash management table stored
in the non-volatile flash contains out-of-date information, 1t
1s still possible to use the stored table(s) to facilitate system
wake-up, and there 1s no requirement to invalidate the
out-of-date table. Instead of invalidating this table, the
out-of-date flash table memory table saved in flash memory
betore shut down and/or power loss may, when waking up,
be used to re-construct the “proper” table (i.e. reflecting a
current state of the system). In particular embodiments, this
1s carried out by concurrently maintaining in flash memory
an events log, When waking up, data stored 1n the events log
may be used to update the flash memory table and thereby
maintain data integrity even 1if there was not an orderly exit
betore loss of power or shut-down. In particular embodi-
ments, the deriving of an “up-to-date” from an “out-of-date”™

10

15

20

25

30

35

40

45

50

55

60

65

4

table stored in flash memory may be faster than the con-
structing of an up-to-date table by scanming the tlash storage
device.

It 1s now disclosed for the first time a method of main-
taining flash data structures in accordance with events of a
flash memory system. The method presently disclosed
method 1ncludes (a) maintaining in flash memory at least
one flash management table whose contents are indicative of
a state of the tflash memory system; (b) maintaining in the
flash memory an events log, wherein, for at least one point
in time, (1) a most recently stored the at least one flash
management table 1s indicative of an earlier state of the flash
memory system; and (11) at least one event more recent than
the at least earlier state 1s stored in the at least events log.

According to some embodiments, during the at least one
point 1 time, a most recent event 1s stored 1n the events log.

According to some embodiments, during the at least one
point 1 time a current state of the flash memory system 1s
reflected by contents of the stored events log and the stored
at least one flash management table. This feature may be
useiul for maimtaining data integrity so that updated flash
management tables may be later constructed, for example,
when waking up.

According to some embodiments, the presently disclosed
method further comprises (¢) generating from the at least
one table indicative of the earlier state and from the events
log at least one table indicative of a more current state of the
flash memory system

According to some embodiments, the more current state
1s a most current state of the flash memory system at a time
of the generating.

According to some embodiments, the generating 1is
cllected when waking up.

According to some embodiments, the maintaining of the
at least one management table includes, at another point 1n
time distinct from the at least one point 1n time, synchro-
nizing the at least one flash management table to a latest
recorded event of the events log.

According to some embodiments, the maintaining of the
at least one flash management table 1n the flash memory
includes periodically synchronizing in the flash memory the
at least one flash management table to a current state.

According to some embodiments, the maintaining of the
at least one flash management table 1n the flash memory
includes, for every Nth change of state of the flash memory
system, synchronizing in the flash memory the at least one
flash management table to a current state, wherein N>=2.

According to some embodiments, the maintaining of the
at least one flash management table in the flash memory
includes: 1) upon occurrence of a change of state of a {first
pre-determined type, synchronizing in the flash memory the
at least one flash management table to a current state; and 11)
upon occurrence of a change of state of a second pre-
determined type, not synchronizing in the flash memory the
at least one flash management table to the current state.

According to some embodiments, a frequency for which
the at least one flash management table 1s updated in the
flash memory 1s determined 1n accordance with an avail-
ability of resources of the flash memory system.

According to some embodiments, the at least one flash
management table includes a translation table which maps
virtual block numbers into physical block numbers.

According to some embodiments, the at least one flash
management table includes a free blocks table.

According to some embodiments, the maintaining
includes maintaining a plurality of the flash management
tables 1n the flash memory.

US RE46,446 E

S

According to some embodiments, the maintaining in the
flash memory of an events log includes writing data to the
flash memory using a faster writing mode of the flash
memory.

According to some embodiments, the flash memory pro-
vides both MLC and SLC modes, and the maintaining in the
flash memory of an events log 1s carried out using the SLC
mode.

According to some embodiments, the maintaining of the
log 1s carried out as part of caching operations of the flash
memory system.

It 1s now disclosed for the first time a method of waking
up m a flash memory system. The presently disclosed
method 1ncludes 1) When waking up, (a) reading from tlash
memory at least one flash management table describing a
state of the flash memory system; (b) reading from the flash
memory an events log containing records of pre-stored
events of the flash memory system; (¢) for at least one event
stored 1n the events log, updating the at least one flash
management table 1n accordance with changes effected by
the at least one event.

According to some embodiments, the updating is repeated
until the at least one flash management table 1s updated in
accordance with a most recent event of the events log.

According to some embodiments, the at least one flash
management table includes a translation table which maps
virtual block numbers 1nto physical block numbers.

According to some embodiments, the at least one flash
management table includes a free blocks table.

According to some embodiments, a plurality of the flash
management tables are read from the flash memory and
updated.

It 1s now disclosed for the first time a flash memory
system comprising (a) a tlash memory for storing data; and
(b) flash management software for maintaining data struc-
tures used for accessing the flash memory, wherein the flash
management software 1s operative to: 1) maintain 1n the flash
memory at least one tlash management table whose contents
are indicative of a state of the flash memory system; and b)
maintain 1n the flash memory an events log, such that, for at
least one point 1n time, 1) a most recently stored the at least
one flash management table 1s indicative of an earlier state
of the flash memory system; and II) at least one event more
recent than the earlier state 1s stored in the events log.

It 1s now disclosed for the first time a flash memory
system comprising (a) a flash memory for storing data; and
(b) flash management software for maintaiming at least one
data structure used for accessing the flash memory, wherein,
when waking up, the flash management software 1s opera-
tive to: (1) read from flash memory at least one flash
management table describing a state of the flash memory
system; (1) read from the flash memory an events log
containing records of pre-stored events of the tflash memory
system; (111) for at least one event stored in the events log,
update the at least one flash management table in accordance
with changes eflected by the at least one event.

It 1s now disclosed for the first time a computer readable
storage medium having computer readable code embodied
in the computer readable storage medium, the computer
readable code comprising instructions for maintaining flash
data structures 1n accordance with events of a flash memory
system, wherein the instructions comprise instructions to:
(a) maintain 1n flash memory at least one tlash management
table whose contents are indicative of a state of the flash
memory system; (b) maintain 1n the flash memory an events
log, wherein, for at least one point in time: (1) a most recently
stored the at least one flash management table 1s indicative

10

15

20

25

30

35

40

45

50

55

60

65

6

ol an earlier state of the flash memory system; and (11) at
least one event more recent than the earlier state 1s stored 1n
the events log.

It 1s now disclosed for the first time a computer readable
storage medium having computer readable code embodied
in the computer readable storage medium, the computer
readable code comprising instructions for maintaining flash
data structures i1n accordance with events of a flash memory
system, wherein the mstructions comprise mstructions to: (1)
When waking up, (a) read from flash memory at least one
flash management table describing a state of the flash
memory system; (b) read from the flash memory an events
log containing records of pre-stored events of the flash
memory system; (c¢) for at least one event stored in the
events log, update the at least one flash management table 1n
accordance with changes eflected by the at least one event.

It 1s now disclosed for the first time a method of main-
taining tlash data structures in accordance with events of a
flash memory system, the method comprising (a) maintain-
ing in tlash memory at least one flash management table
whose contents are indicative of a state of the flash memory
system; (b) maintaining in the flash memory an events log;
and (c¢) concurrent with the maintaining of the at least one
flash management table, maintaining in the flash memory
data uniquely 1dentifying a specific event of the events log.

In some embodiments, the specific event 1s a most recent
event corresponding to the contents of the at least one table
(for example, a most recent event that has influenced and/or
modified the contents of the table).

It 1s now disclosed for the first time a method of main-
taining flash data structures in accordance with events of a
flash memory system. The method presently disclosed
method includes (a) maintaining in flash memory at least
one flash management table whose contents are indicative of
a state of the flash memory system; (b) maintaining in the
flash memory an events log; and c¢) concurrent with the
maintaining of the events log, maintaining in the flash
memory data uniquely identifying a specific event of the
events log.

According to some embodiments, the maintaining of the
umquely 1dentiiying data includes maintaining in the flash
memory an indication of a most recent event of the events
log.

These and further embodiments will be apparent from the
detailed description and examples that follow.

BRIEF DESCRITION OF THE DRAWINGS

FIG. 1 1s a block diagram of an exemplary tlash memory
system 1n accordance with some embodiments of the present
ivention.

FIGS. 2A-2B provide an illustration of an exemplary
translation table 1n accordance with some embodiments of
the present mnvention.

FIGS. 3, 5-6 provide flow-charts describing various rou-
tines for maintaining in flash memory one or more flash
management tables and an events log 1n accordance with
some embodiments of the present invention.

FIGS. 4, 8A-8C provide illustrations of an exemplary
events log in accordance with some embodiments of the
present 1nvention.

FIG. 7 provides a flow chart of an exemplary routine for
waking up.

DETAILED DESCRIPTION

The present mnvention will now be described 1n terms of
specific, example embodiments. It 1s to be understood that

US RE46,446 E

7

the mvention 1s not limited to the example embodiments
disclosed. It should also be understood that not every feature
of the presently disclosed method, device and computer-
readable code for maintaining data structures in accordance
with events of a flash memory system 1s necessary to
implement the mvention as claimed 1n any particular one of
the appended claims. Various eclements and features of
devices are described to fully enable the mvention. It should
also be understood that throughout this disclosure, where a
process or method 1s shown or described, the steps of the
method may be performed 1n any order or simultaneously,
unless 1t 1s clear from the context that one step depends on
another being performed first.

The presently disclosed methods, system and computer-
readable code for maintaining data structures may be usetul
tor facilitating a “fast-wakeup™ of the flash memory system,
for example, in environments where frequent power failures
may be encountered. Nevertheless, this should not be con-
strued as a limitation of the present invention, and 1s merely
disclosed as one non-limiting application of the presently
disclosed techmiques for maintaining flash memory system
data structures.

More specifically, presently disclosed techniques may be
used to provide a fast wake-up of a flash management
system, even under conditions 1 which unexpected power
tailures frequently occur, without sacrificing data integrity.

FIG. 1 1s a block diagram of a non-limiting exemplary
flash memory system 100 1in accordance with some embodi-
ments of the present invention. The exemplary system
includes a memory module 120 for storing data, and a host
device 110 (for example, a microcomputer, a smart card
terminal, or any other device) which communicates with the
memory module 120 via a host interface 180.

The memory module includes flash memory 130 of any
type, as well as a controller 140 which accesses the flash
memory in accordance with read and/or write and/or erase
requests received through the host interface 180. For the
example 1llustrated 1n FIG. 1, the controller includes a CPU
150, ROM 160 (where the code executed by the CPU 1s
stored), and RAM 170 used by the CPU for supporting its
code execution.

This block diagram of the non-limiting example FIG. 1 1s
representative of typical nonvolatile storage modules, such
as SecureDigital flash memory cards or portable USB flash
drives.

Flash Management Tables

It 1s noted that flash memory systems 100 typically store
one or more flash management tables in volatile memory, for
example, in RAM 170 of the memory module 120, in RAM
of the host device 110, or 1n any other appropriate location.
One non-limiting example of such a flash management table
1s a translation table which provides an address translation
from a virtual block number to a physical block number, a
mapping that exists 1n many flash managements systems, as
for example 1n the system of U.S. Pat. No. 5,937,425, It 1s
noted that the same concepts and methods are also appli-
cable to any other type of a flash management table, for
example a free blocks table that represents which blocks are
free to use and which are not, a table that represents a
mapping from a virtual block number into a group of one or
more physical block numbers, etc.

For the purpose of this disclosure a “flash management
table” 1s any table contaiming data used by the flash man-
agement system for supporting the operation of its algo-
rithms, where the data in the table at any specific point in
time represents some aspect of the state of the storage
system at that specific time. For example, 11 the flash

10

15

20

25

30

35

40

45

50

55

60

65

8

management table 1s a table containing a bit per each block
of the flash memory, with the bit indicating whether the
corresponding block 1s free to use or not, then the contents
of the table at a first point of time are a first pattern of bits
that represents the aspect of the state of the system regarding
which of the blocks are free and which are not at that time.
At a later point of time the pattern of bits 1n that table may
be different than in the first point, implying a different mix
of free and non-iree blocks caused by some free blocks
becoming non-iree and some non-free blocks becoming
free.

Over time, the data stored in the flash memory may
change, and various ancillary data related to the flash
memory may also change. The “state” of the tlash memory
system changes over time as different events (for example,
write requests, housekeeping operations, etc) of the flash
management system occur.

It 1s noted that each flash management table represents
one or more aspects ol a total “state” of the flash manage-
ment system. Thus, any given flash management table or set
of tables does not necessarily represent the full state of the
system, just some aspect of 1t. In the example of a free blocks
table mentioned above the knowledge of which blocks are
free and which are not 1s certainly not enough for defining
the complete state of the system. A non-free block may
contain just a single used page, or 1t may be that all of 1ts
pages are written with valid data. This 1s not reflected by the
free blocks table but by either other flash management tables
or by some other means, but still that table does represent
some aspect of the system state and therefore falls within the
definition of a flash management table.

Thus, when particular flash memory table(s) representing
a “current state” or an “earlier state” or a “later state” or a
“most recent state” of the flash memory system are stored 1n
volatile or non-volatile memory, this represents an “earlier”
or “current” or “later” or “most recent” state of the aspect of
the flash memory system represented by the particular flash
memory table(s).

Over time, the flash management table moves between a
sequence of states, each state representing, for a given time,
one or more aspects of the tlash memory system at the time.
The aspect of the state of the system that 1s modeled by the
table switches between discrete states with clear-cut transi-
tion points that correspond to events of the tflash memory
system.

An Exemplary Flash Management Table

FIG. 2A shows the contents of an exemplary flash man-
agement table that maps a virtual block number into a
physical block number at a first point in time (t=t,). The
table 1s indexed by a virtual block number and produces the
physical block number that currently contains the data of the
corresponding virtual block. In practical implementations
there may be no need to allocate space for storing the virtual
block numbers as the table 1s ordered by those virtual block
numbers and therefore can be directly indexed to the correct
entry. However, for the convenience of presentation the table
1s shown as 1f both columns are physically represented.

The state of the virtual-to-physical mapping represented
in FIG. 2A 1s such that 1f virtual block number 2 has to be
accessed, then the table tells us the corresponding physical
block 1s block number 172. At some point 1n time commands
sent to the flash management system (or internal housekeep-
ing operations taken by the system even without external
commands, such as garbage collection operations) may
cause the mapping to change. For example a command that
writes new data into virtual block number 2 and thus
over-writes 1ts previous data may cause the flash manage-

US RE46,446 E

9

ment system to assign another physical block to correspond
to virtual block number 2, and the new data 1s stored 1nto that
block.

FIG. 2B shows the contents of the virtual-to-physical
flash management table after that change occurred at a later
time (t=t,). Now virtual block number 2 corresponds 1n the
table to physical block number 777 and no longer to physical
block 172. Thus, the table switched from a first state to a
second state. Any change in the contents of a tlash manage-
ment table 1s defined as a state change of that table.

It should be emphasized that 1t 1s not the case that every
write operation occurring in the flash management system
causes a change of state in all 1ts flash management tables.
For example, 1t physical block 172 had some of its pages
unused and a write operation 1s directed to virtual block
number 2, such that according to the algorithms of the tlash
management system the new data 1s stored 1nto those unused
pages ol physical block 172, then no change 1s made to the
virtual-to-physical mapping and the table remains
unchanged following that write operation. Thus the rate of a
flash management table state changes is typically lower than
the rate of operations carried out within the system. Also, i
multiple tlash management tables are maintained within the
same flash management system (each representing a differ-
ent aspect of the system’s state), then each of the tables may
change 1its state at different points 1n time.

Storing Data Structures (1.e. Table(s) and an Events Log)
which are Useful when Waking Up

As explained above, when 1nitializing the system after a
power-up, it may be necessary for the management software
to create in RAM a fully updated copy of any flash man-
agement table 1t uses. In order to achieve a fast wake-up of
the system, 1t 1s usually not acceptable to regenerate the
contents of the tables only from data scattered throughout
the blocks of the storage system, as this 1s too slow. The
opposite alternative of saving a copy of a table into the
non-volatile flash memory each time its state changes 1s also
not acceptable because 1t adds a high overhead and reduces
the system performance.

Techniques provided by various embodiments of the
present invention provide a compromise between these two
prior art approaches. Thus, a flash management table may be
saved 1nto the non-volatile flash memory only for some state
changes, but not every time there 1s a state change.

This 1s 1llustrated 1n FIG. 3, which describes an exemplary
routine for maintaining, 1n flash memory, data structures of
the flash management system in accordance with some
embodiments of the present invention. As used herein,
‘maintaining in flash memory’ includes storing in flash
memory. Typically, maintaining in flash memory includes
maintaining the table and/or relevant data for populating the
table 1 volatile memory/RAM, and for a plurality of points
in time, saving in flash memory an updated version of the
table (1.e. synchronized to a current state of the flash memory
system).

In accordance with the non-limiting embodiment of FIG.
3, 1t 1s noted that 1n non-limiting embodiments, for some
points 1n time, the system may be i1dle, and the system may
wait 206 for a next event. Upon processing 210 an event of
the flash management system, one or more tables typically
are updated 214 1n volatile memory in accordance with the
event that has occurred. These table(s) may or may not be
updated in non-volatile tlash after a given event.

Description of an Exemplary Events Log

The present inventor 1s now disclosing that in situations
where the flash management table 1s saved after the occur-
rence of some but not all events, it may be useful to also

10

15

20

25

30

35

40

45

50

55

60

65

10

maintain in flash memory a events log. In exemplary
embodiments, this events log contains a plurality of records,
where each record includes data describing a particular
cvent ol the flash management system Although not a
limitation of the present invention, it 1s noted that typically
this events log 1s updated 1n flash memory after each event.
This may be useful for maintaining data integrity for situ-
ations where updated table(s) (1.e. updated 1n accordance
with a latest event of the flash memory system) are not
always saved 1n tlash memory.

For embodiments where data integrity 1s provided (i.e.
even 1 there 1s loss of power), typically, at any given
moment of time, one of the following conditions is true: a)
a table updated 1n accordance with a most recent event 1s
stored 1n the non-volatile flash, b) a table updated 1n accor-
dance with an earlier state (1.e. earlier than a most recent
cvent, 1.e. other events have transpired in the flash memory
system since “earlier” event) 1s stored 1n flash memory, and
the events log stored 1n flash memory includes records of all
cvents that have transpired since the time of the “earlier
event.”

One exemplary implementation of the events log 1s a
sequential queue 1 which every event that aflects the state
of the system (1.e. the state of the “at least one aspect of the
system” stored 1n the one or more flash management tables)
1s registered, be 1t an external write command, an internal
house-keeping operation, or any other event aflecting the
state. A non-limiting possible implementation of such a
sequential events log, graphically illustrated 1n FIG. 4, 1s a
cyclic queue that folds back to 1ts lowest address after
reaching its highest address. According to the example of
FIG. 4, the size of the cyclical queue 1s “M” (up to M events
may be stored).

According to the example of FIG. 4, two pointers are
maintained, typically in flash. One pointer (in FI1G. 4 point-
ing to event M-2) 1s denoted as Pointer,,ror rrcenr srenvr
This pointer points to the last registered entry in the log.
Whenever a new entry has to be added to the log, the pointer
1s first cyclically incremented to point to the next entry
position (step 218 of FIG. 3) and then the new entry (step
222 of FIG. 3) 1s recorded 1n the point-to entry.

It 1s noted that repetitively recording 222 events of the
flash memory system 1n the events log 1s defined as “main-
taining the events log 1n tflash memory.”

Typically, the Pointer,, 57 zzcent zvens 1S saved 218 in
flash (either explicitly, or implicitly, by storing indicative
data 1n the log such that the position of
Pointer, ,»cr recenvr vear May be determined). In one
example there is no explicit Pointer, ;- xrcmnvy srenyand
the events log is structured so that one may identify its latest
entry by scanning its contents, without requiring additional
information. According to this example, this feature can
casily be implemented by including a “generation” field
within each entry, the generation being a number that
increments on each successive entry. The latest entry in the
log 1s then the entry with the highest generation field. Other
implementations for achieving this feature (for example,
storing an explicit Pointer, , o+ recrnvr zrear) are also pos-
sible. i i

It 1s appreciated that the data indicative of
Pointer, ;o rrcrnvr mren AY be stored 1n any location 1n
flash, and not necessarily in together with the events log in
a single location in flash.

According to the non-limiting example of the “cyclical
queue”, 1 the space allocated to the log 1s large enough so
that 1t does not ever {ill up between two successive saving
operations of any flash management table, then there 1s no

US RE46,446 E

11

need to monitor the contents of the queue and the new
entries can safely over-write the oldest entries at the end of
the queue.

The second pointer 1n FIG. 4,
Pointer, ;s recent m481E saves Wil now be described. As
shown 1n FIG. 3, the flash management table(s) are saved
230 into flash for some but not for all events of the flash
memory system (1.e. only for events for which a “save table”™
condition has been met 226—this condition 1s discussed
below). Thus, 1n some embodiments, whenever tflash man-
agement table(s) are saved to non-volatile flash, an updated
indication Pointer,,or rrcenvr minre sqpe O the most
recent event is also 234 saved. At this time, the flash
management tables saved 1n the non-volatile flash are said to
be “synchronized to a latest state” or “latest event” of the
flash memory system. At this time, the “gap” illustrated 1n
FIG. 4 disappears.

When the log 1s subsequently updated without (for at least
one event) saving updated table(s) in flash memory, the
Pomter, ,ncr nrcenvr manre sqpe starts to lag behind the
most recent event (represented by
Pomter, ,scr rrcenvr zvear), and the gap i1s re-created.

Referring to step 230, it is noted that when the table
indicative of the current state of the flash memory system 1s
saved 1n the non-volatile flash, this 1s defined as “synchro-
nizing the table 1in flash memory to a current state.”

Overall, the process where the flash management table(s)
are stored in flash memory aifter various events (but not
necessarily after all events) 1s defined as “maintaining the
table 1n flash memory.” At different points 1n time, another
version of the flash management table(s) (typically, each
subsequent version indicative of a later state of the flash
memory system) 1s thus stored in flash memory. Thus, the
“maintaining the table 1 flash memory” does not require
that for any given moment the table most recently saved in
the flash memory 1s synchromzed with the current state of
the flash memory system. Inspection of FIG. 3 indicates that
there may be periods of time where the most recently stored
flash memory table(s) are indicative of an earlier state of the
flash memory system (i.e. a state of the system before more
recent events occur 1n the flash memory system).

It 1S noted that the indication
Pointer, o+ recevr 7anre <43z May later be retrieved from
the flash, for example, after power up of the flash system. By
comparing Pointer,os7 recENT EVENT with
Pomter, ,rcr nrcenvr manre sqpve, 1t may be determined at
any given time whether or not the save flash management
table(s) reflects the most recent state (1.e. the aspect of the
state represented 1n the table) of the system.

While the above implementation of the events log 1s very
simple and easy to implement, it 1s not the only possible one
and other implementations are also possible.

It 1s noted that 1n some embodiments, the data recorded
for each event of the events log includes at least all the data
that 1s required to re-generate the eflects of the event that
caused 1t on the state of the system. There 1s no need to
record the actual data related to the event 1n the events log,
and 1n exemplary embodiments, the actual data 1s not
recorded. For example if the event 1s a command from an
external host system to write one page of data, the corre-
sponding record in the log contains the virtual address of the
sector to write, but not the data to write.

As noted above, 1n some embodiments, the
Pointer, ;- »zcenvr zrea May be saved alter every event,
while data indicative of Pointer,, oo, rrcrnr 74nre sqpe 1S
only saved after some events, when the table(s) is updated

in flash.

10

15

20

25

30

35

40

45

50

55

60

65

12

Policies for Determining when to Save an Updated Flash
Management Table(s) to Non-Volatile Flash Memory

Any policy for determining what constitutes an event for
which the updated table 1s saved into flash memory—i.e. the
“save condition” of step 226 1s within the scope of the
present mvention.

The present inventor 1s disclosing a number of policies 1n
accordance with particular embodiments of the present
invention.

In a first embodiment (illustrated 1n FIG. 5), the table 1s
saved every Nth change of state of the table, where N 1s
pre-determined. N can be as small as 2 when the saving
overhead 1s low, or 1t can be as high as 100 or even more,
for example, when the saving overhead 1s high. Thus, as
illustrated 1n FIG. 5, a counter variable 1s 1nitialized 218 to
be zero. After each event, this counter variable i1s incre-
mented 240. If the counter variable exceeds 244 the pre-
determined value N, one or more tables are saved to flash

memory 230, and the Pointer,, s recenvt usre save 18
synchronized In tlash memory with the most recent event of

the event of the events log.

In a second embodiment (i1llustrated 1n FIG. 6), the “save
table” condition (as 1t appears 1n step 226) 1s determined in
accordance with the change of state triggered by a most
recent event. For that purpose state changes are classified as
either ‘minor’ changes or ‘major’ changes. Changes in the
table state that are minor do not cause an immediate (1.¢.
betore processing 210 the next event) saving of the table (1.¢.
the “NO” branch after step 226B), while changes that are
major do cause an i1mmediate saving. A non-limiting
example for a classification of changes to minor and major
1s a free blocks tlash management table where a change that
changes a free block 1nto a non-free block 1s considered
minor, while a change that changes a non-ifree block into a
free one 1s considered major. Other embodiments for poli-
cies ol when to save a flash management table to non-
volatile tlash memory are also possible.

In a third embodiment the table(s) 1s saved periodically,
whenever a pre-determined time interval expires. There 1s
typically a tradeoil between how often the table 1s updated,
and the amount of system resources expended in saving the
flash management table(s) to non-volatile flash. On the other
hand, saving the management table(s) more often means
that, on average, a table retrieved from tlash memory during
wake-up 1s more likely to be more updated, thereby provid-
ing for a faster wake-up. It 1s noted that any time interval 1s
within the scope of the present mvention. In exemplary
non-limiting embodiments, the time interval 1s between a
tenth of a second and 5 or more minutes.

In a fourth embodiment, the frequency by which the table
1s updated 1s determined in accordance with an availability
of system resources. In one example, when the controller
140 handles many read/write/erase requests, or during a
period of time when there are many housekeeping opera-
tions, the flash management table(s) are saved to non-
volatile flash less often, i order to conserve system
resources. During periods of “low usage” when the system
1s otherwise 1dle or subjected to a low level of usage, 1t may
be possible to save the flash management table(s) to non-
volatile tlash mole often without a significant impact upon
flash system performance. Saving the flash management
table(s) more often to flash may allow for a faster wake-up,
especially 1n situations when was not an orderly exat (for
example, an unexpected power loss).

As not every state change triggers a saving of the table, a
gap or a mismatch 1s eventually created between the last
saved copy of a table and 1ts most updated copy 1n RAM.
Whenever the table 1s saved, the gap 1s eliminated and the

two copies (1.e. the copy 1n volatile RAM memory and the

US RE46,446 E

13

copy stored 1n non-volatile flash) become 1dentical, but then
again new changes of state that do not cause saving of the
table create a gap again.

Waking-Up

In some embodiments, when an application makes an
orderly exit, updated tlash management table(s) (i1.e. updated
in accordance with most recent events of the flash memory
system) are saved to tlash memory. When waking up, these
flash management table(s) are then retrieved from flash
memory.

When there 1s no orderly exit, 1t 1s possible, when waking
up, to retrieve the “out of date” flash management table(s)
from flash memory into volatile memory, and then, 1n
accordance with records stored 1n the events log, update, 1n
volatile memory, the out of date tflash management table.

Thus, embodiments provided by the present invention
obviate the need to mvalidate out of date tables as disclosed
in Lasser U.S. Pat. No. 6,510,488.

FIG. 7 provides a flow chart describing an exemplary
wake-up routine in accordance with some embodiments of
the present mnvention. After powering up 410, the flash
management system retrieves 414 the saved copy of a flash
management table. Then the flash management system
retrieves 418 Pointer,,ror recenvr miare sqpe Which points
to the most recent event at a time that the flash management
table(s) was saved to the non-volatile flash.

Next the flash management system determines 422 Poin-
ter, . »er rrcenT ErenvT 10T €Xample, by scanning the events
log and identifying its latest entry, or by retrieving an
explicit value from non-volatile flash memory, or by any
other technique Pointer,,,s; recevr zrenr polnts to the
latest logged event—the latest that transpired just before the
system was shut down.

If the system was shut down immediately following the
last saving of the flash management table and before an
additional change of state of the table occurred (for example,
if there was an “orderly exit,” or in any other situation), then
the two pointers (1.e. Pomnter, nor rrcenvr rinre sqpe and
Pointer, ., rrcrnvs srens) should be identical. If, however
one or more state changes of the flash management table(s)
occurred after the last saving of the table and before system
shut down, then a difference should be seen between the two
pointers.

Pomter,,,or recenvr manre sqpe points to the most recent
event in the events log for which the saved table already
reflects the eflects on the table’s state. All the events that
appear 1n the log following that event, up to the last event 1n
the log that 1s pointed to by Pointer,,or rrcernr zpenvr are
not yet reflected in the saved table. i i

At this point, 1t 1s possible to “play back™ the new events
not yet reflected 1n the table. Towards this end, the entries
from the events log (1.e. “pre-stored” events saved to the
events log before the most recent power-up 410) may be
read 434 one by one from oldest (1.e. pointed to by Point-
€y rosT RECENT T4RIE sqpe) 10 newest (1.e. pointed to by
Pointer,,»cr rrcevr rreas)- FOr €ach such event, the flash
management table(s)’ state may be updated 438 (for
example, 1n volatile memory) exactly 1in the same way as the
original event aflected that state. Towards this end, in some
non-limiting implementations, it may be advantageous to
define a “temporary” pointer Pointer ..., ,» which functions as
an “iterator” variable, and points to a currently handled
event of the events log. Initially, the value of Pointer ., ,» 1s

set 426 to Pointery,osr recent usre sqave (@S shown 1n

FIG. 8A).
For each event (1.e. as 1illustrated mm FIGS. 8A-8C)

retrieved 434 from the log table, each flash management

5

10

15

20

25

30

35

40

45

50

55

60

65

14

table (if there 1s more than one) 1s updated 438 to reflect the
specific state changes applying to it. After handling each
event (for example, pointed to by Pointer -, ») stored 1n the
events log, the pointer (for example, Pointer,.,,») may be
advanced 442 to point to the next event of the event log.
Once the latest log entry 1s processed (see FIG. 8C), the
Pointer ., ~~Pointer, <+ recervr epevr) €qual and we are
done. Determining if a given log entry is the “latest” log
entry may, in some embodiments, be effected by comparing
430 the value of an “iterating” pointer (for example, Poin-

terypasp) With Polntery o5, recenr event
At this point, when

Pointer, .y ~Pointery o7 recenr svent the flash manage-
ment table(s) are now fully updated and each reflects its
most recent state as 1t had been before system shut down.

Optionally, one or more now updated flash management
table(s) are saved 446 into the non-volatile flash memory
(along with an updated Pointer, ;57 recenr zusrE save)s SO
that any future re-generation of the tables (if it will be
required) will start from the current state.

After i1t 1s determined that the flash memory table(s) are
updated 1n volatile memory and optionally in non-volatile
memory, it 1s possible then to proceed 450 with regular
operation of the tlash memory system
General Discussion about Performance

One benefit provided by certain embodiments of the
present invention 1s that the reading of the saved copy of the
flash management table plus the playing back of the log
entrics not yet reflected in the saved copy of the table
typically takes much shorter time than the re-creation of the
table from scratch by scanning the many blocks of the
storage system. If the system was shut down after saving the
table before additional state changes occurred (for example
if there 1s an orderly exit, or it we are “lucky” enough
to shut down when Pomter,,,cr preenvr zrervr—
Pointer, o, rrcrnvs rinr e <qvr)s then the wake-up time, in
some embodiments, would be the fastest, the same as in the
method of Lasser when an orderly shutdown took place. But
even 11 some state changes took place after the last saving of
the table, the wake-up time of the system may not be as bad
as would occur with the method of Lasser when there was
no orderly shutdown. In many situations, only a few entries
of the log have to be read and their eflects on the tables’ state
re-created. The exact time this takes typically depends on the
number of entries that have to be played back. This in turn
may depend on the rate with which the table i1s saved to
non-volatile memory. The higher the rate the fewer entries
that are to be played back on average and the faster the
wake-up on average. On the other hand, the higher the
saving rate the higher the time spent in saving overhead
during regular operation of the system.

One other factor that may be relevant 1s the overhead
spent for writing the events log entries. Typically, in embodi-
ments where data integrity 1s provided, the log 1s written to
on every event, which means 1t has to be written on every
system state change that might affect a flash management
table’s state.

One might wonder whether the overhead costs of main-
taining the events log are not higher than the overhead of
saving the flash management table on each state change.
Thus, 1n some embodiments, the flash management system
may be designed to write events records to the events log
writing 1n the fastest manner. Towards this end, 1t may be
possible to employ a faster writing mode (for writing at least
one of records to the events log and data indicative of the
flash management table(s) into non-volatile flash memory)

US RE46,446 E

15

when the flash media provides more than one writing mode.
An example 1s a tlash system using flash memory devices
providing both Multi-Level Cell (MLC) and Single-Level
Cell (SLC) modes. Such device 1s disclosed by Chen 1n U.S.
Pat. No. 6,456,528, which is incorporated as if fully set forth
herein. While the “regular data™ stored in the system (for
example, data passed with a write request from the host
device 110) 1s written using the slower MLC mode for
achieving the highest storage density, the events log 1is
written using the much faster SLC mode.

Maintaining a Log as Part of Caching Operations of the
Flash Memory System

In some embodiments, one or more presently disclosed
techniques may ofler particular advantages in situations
where the events log has to be maintained anyway regardless
ol considerations of flash management tables. This may be
the case when the flash management system employs cach-
ing for the incoming data, where the incoming data 1s stored
a first time 1n a first location 1n the flash memory upon 1its
arrival, and at a later time 1s moved to a second location for
long-term storage. As used herein, “caching” i1s the writing
to the first location.

Thus, 1n such systems, the storing of the data 1n the first
location (1.e. the caching) can be implemented 1n a way that
will also provide the functionality of the events log. In such
case there 1s then no extra overhead cost for implementing
the log, and the benefit of the methods of the present
invention are the highest.

While the above explanations were mainly focused on a
single flash management table within the flash management
system, the mvention 1s equally applicable to multiple flash
management tables, each representing a diflerent aspect of
the state of the system. If multiple tables exist, each can be
saved using its own saving policy, not necessarily at the
same points 1n time. On power-up, flash management table
may be reconstructed using the methods presented above,
with the same events log serving for all tables.

Additional Discussion about Presently Disclosed Systems

The presently disclosed techniques may be implemented
using any combination of hardware, firmware and software.

In one non-limiting example, the saving of flash manage-
ment tables and their recovery and reconstruction upon
power up are all performed by controller 140, or more
precisely—by CPU 150 executing code from ROM 160.
This 1s however not the only system architecture possible for
using the present mnvention. For example, it 1s also possible
that the methods of the invention are implemented by code
executed 1n host computer 110, as will be the case when the
storage module 1s an on-board NAND flash device and there
1s no stand-alone controller. Another possibility 1s that the
methods of the invention are at least partially implemented
by host computer 110 and partially implemented by con-
troller 140. All these architectures and many others are
within the scope of the present invention.

In the description and claims of the present application,
cach of the verbs, “comprise” “include” and “have”, and
conjugates thereol, are used to indicate that the object or
objects of the verb are not necessarily a complete listing of
members, components, elements or parts of the subject or
subjects of the verb.

All references cited herein are incorporated by reference
in their entirety. Citation of a reference does not constitute
an admission that the reference 1s prior art.

The articles “a” and “an” are used herein to refer to one
or to more than one (i.e., to at least one) of the grammatical
object of the article. By way of example, “an element”
means one element or more than one element.

10

15

20

25

30

35

40

45

50

55

60

65

16

The term “including” 1s used herein to mean, and 1s used
interchangeably with, the phrase “including but not limited”
to.

The term “or” 1s used herein to mean, and 1s used
interchangeably with, the term “and/or,” unless context
clearly indicates otherwise.

The term “such as” 1s used herein to mean, and 1s used
interchangeably, with the phrase “such as but not limited to”.

The present invention has been described using detailed
descriptions of embodiments thereof that are provided by
way of example and are not intended to limit the scope of the
invention. The described embodiments comprise different
features, not all of which are required 1n all embodiments of
the invention. Some embodiments of the present invention
utilize only some of the features or possible combinations of
the features. Vanations of embodiments of the present
invention that are described and embodiments of the present
invention comprising different combinations of features
noted 1n the described embodiments will occur to persons of
the art.

What 1s claimed 1s:
1. A method of maintaining flash data structures in accor-
dance with events of a flash memory system, the method
comprising;
a) maintaining in flash memory a first flash management
table whose contents are indicative of a state of the
flash memory system including a virtual to physical
address mapping for at least a first portion of the flash
memovry system,
b) maintaining in volatile memory a second flash man-
agement table whose contents are indicative of a state
[of the] of the flash memory system including a virtual
to physical addvess mapping for the first portion of the
flash memory system; and
¢) maintaining 1n said flash memory an events log,
1) wherein the method 1s carried out such that for at
least one point 1n time, the first flash management
table that 1s stored 1n said flash memory represents an
carlier state of the flash memory system; and
11) wherein said earlier state of the flash memory system
1S
A) earlier than a most recent event, the most recent
event being stored 1n the events log 1n said tlash
memory and retlected 1n the second flash manage-
ment table 1n the volatile memory; and

B) later than a most recent power up of the flash
memory system.

2. The method of claim 1 whereimn for said at least one
point 1 time a current state of the flash memory system 1s
reflected by contents of said events log stored 1n said flash
memory and said first flash management table stored 1n said
flash memory.

3. The method of claim 1 wherein said maintaining of said
first management table includes, at another point 1n time
distinct from said at least one point 1n time, synchronizing
said first flash management table to a latest recorded event
of said events log.

4. The method of claim 1 wherein said maintaining of said
first flash management table in said flash memory 1ncludes
periodically synchronizing in said flash memory said first
flash management table to a current state.

5. The method of claim 1 wherein said maintaining of said
first flash management table 1n said tlash memory 1ncludes,
for every Nth change of state of the tlash memory system,
synchronizing 1n said flash memory said first flash manage-
ment table to a current state, wherein N>=2.

US RE46,446 E

17

6. The method of claim 1 wherein said maintaining of said
first flash management table 1n said flash memory includes:
1) upon occurrence of a change of state of the flash
memory system_of a first pre- determined type, syn-
chronizing in said flash memory said first flash man-
agement table to a current state; and

11) upon occurrence ol a change of state of the flash
memory system of a second pre- determined type, not
synchronizing in said flash memory said first flash
management table to said current state.

7. The method of claim 6 wherein said maintaining of said
events log includes, upon a given said occurrence of a
change of state of said first pre-determined type, recording
to said events log 1n said flash memory, a plurality of events
of the tflash memory system that occur:

1) after said given occurrence of said change of state of

said {irst pre-determined type; and

11) before a first power-down of the flash memory system
that occurs after the change of state of the first pre-
determined type.

8. The method of claim 7 wherein said recording of said
plurality of events to said events log in said flash memory 1s
carried out before said first power-down of the flash memory
system that occurs after the change of state of the first
pre-determined type.

9. The method of claim 1 wherein a frequency for which
said first flash management table 1s updated in said flash
memory 1s determined 1n accordance with an availability of
resources of the tlash memory system.

10. The method of claim 1 wherein first flash management
table includes at least one of (1) a translation table which
maps virtual block numbers into physical block numbers and
(1) a free blocks table.

11. The method of claim 1 where the method 1s carried out
such that said earlier state of the tlash memory system 1s
carlier than a second most recent said event stored 1n said
events log 1n said tlash memory.

12. The method of claim 1 wherein said events log
maintaining in said flash memory 1s carried out such that
cach event 1s recorded 1n flash memory before an occurrence
ol a respective next event of the flash memory system.

13. The method of claim 1 further comprising:

d) generating at least one table indicative of a state of the
flash memory system that 1s more current than said
carlier state from:

1) said event log stored in said flash memory, and
11) said first flash management table that is:

A) stored 1n said flash memory; and

B) no more current than said earlier state.

14. The method of claim 13 wherein said more current
state 1s a most current state of the flash memory system at a
time of said generating.

15. The method of claim 13 wherein said generating 1s
cllected when waking up.

16. The method of claim 1 wherein the method 1s carried
out such that at least one of said at least one point 1n time 1s
subsequent to a handling of a most recent event by the flash
management system.

17. The method of claim 16 wherein said earlier state of
the flash memory system 1is:

C) earlier than each event of a plurality of diflerent events

stored 1n said events log 1n said flash memory.

18. The method of claim 1 wherein the maintaining of said
first flash management table 1n said flash memory further
includes:

1) at a time when a plurality of events of the flash memory

system have occurred since a most recent update of said

10

15

20

25

30

35

40

45

50

55

60

65

18

first management table 1n said tlash memory, deciding,

in accordance with a cardmality of said plurality,

whether or not to synchronize, 1n said flash memory,
said first flash management table to a current state of
the flash management system; and

11) contingent on said deciding, synchronizing, in said
flash memory, said first management table to said
current state of the flash management system.

19. The method of claim 1 wherein the maintaining of said
first flash management table 1n said flash memory further
includes:

1) at a time when a plurality of events of the tflash memory
system have occurred since a most recent update of said
first tflash management table 1n said flash memory,
deciding, 1n accordance with an amount of time that has
clapsed since said most recent update of said first
management table in said flash memory, whether or not
to synchromize, 1n said flash memory, said first flash
management table to current state of the flash manage-
ment system; and

11) contingent on said deciding, synchronizing, in said
flash memory, said at least one flash management table
to said current state of the flash management system.

20. The method of claim 1 wherein the maintaining of said
first tlash management table 1n said flash memory further
includes:

1) determining whether or not an event of the flash
memory system changes a non-free block into a free
block;

1) 1n accordance with results of said determining, decid-
ing whether or not to synchromize, in said flash
memory, said first flash management table to a current
state of the flash management system; and

111) contingent on said deciding, synchronizing, in said
flash memory, said first flash management table to said
current state of the flash management system.

21. The method of claim 20 wherein the determining 1s a
determining of whether or not a most recent event of the
flash memory system changes a non-ifree block into a free
block.

22. The method of claim 20 wherein the determining and
the deciding are carried out at a time when a plurality of
events of the flash memory system have occurred since a
most recent update of said first flash management table 1n
said flash memory.

23. A method of waking up 1n a flash memory system, the
method comprising:

I) When waking up,

a) reading from flash memory at least one flash man-
agement table describing a state of the flash memory
system, the at least one flash management table
including at least one out of date virtual to physical
address mapping at a time of waking up;

b) reading from said flash memory an events log
containing records of pre-stored events of the flash
memory system; and

c) for at least one event stored in said events log,
updating said at least one flash management table 1n
accordance with changes eflected by said at least one
event.

24. The method of claim 23 wherein:

1) said reading of said events log includes reading from
said flash memory a record of a most recent event of the
flash management system; and

1) said updating includes updating said at least one flash
management table 1 accordance with a most recent
event of said events log.

US RE46,446 E

19

25. The method of claim 23 wherein said at least one flash
management table includes a translation table which maps
virtual block numbers into physical block numbers.

26. The method of claim 23 wherein:

1) said reading from said flash memory of said events log
includes reading records of every event that occurred
more recently than a most current said flash manage-
ment table, said every event including a plurality of
distinct events:

11) said updating includes updating said most current flash
management table in accordance with a respective
change efllected each event of said every more recent
event.

27. The method of claim 23 wherein:

1) said reading from said flash memory of said at least one
flash management table includes reading at least one
obsolete table that describes a state of the flash memory
system that 1s earlier than as a most recent event of said
flash-read events log; and

11) said updating includes updating said at least one
obsolete table 1n accordance with at least one said more
recent event of said flash-read events log.

28. The method of claim 23 wheremn said updating
includes, for each event of a plurality of events stored in said
events log, updating said at least one flash management table
in accordance with a respective change effected by said each
event of said plurality of events.

29. A flash memory system comprising:

a) a flash memory for storing data;

a.1) a central processing umt (CPU); and

b) flash management software for maintaining at least one
data structure used for accessing said flash memory,

wherein, when waking up, said flash management soft-
ware 1s configured to, as a result of execution on said

CPU, cause said CPU to:

1) read from flash memory at least one flash manage-
ment table describing a state of the flash memory
system, the at least one flash management table
including at least one out of date virtual to physical
address mapping at a time of waking up;

1) read from said flash memory an events log contain-
ing records of pre-stored events of the flash memory
system:

111) for at least one event stored in said events log,
update said at least one flash management table 1n
accordance with changes eflected by said at least one
event.

30. The system of claim 29 wherein said execution of said
flash management soitware 1s operative such that:

1) said reading of said events log includes reading from
said flash memory a record of a most recent event of the
flash management system; and

11) said updating includes updating said at least one flash
management table i accordance with a most recent
event of said events log.

31. The system of claim 29 wherein said execution of said

flash management software 1s operative such that:

1) said reading from said flash memory of said at least one
flash management table includes reading at least one
obsolete table that describes a state of the flash memory
system that is earlier than [as] a most recent event of
said flash-read events log; and

11) said updating includes updating said at least one
obsolete table 1n accordance with at least one said more
recent event of said flash-read events log.

[32. The system of claim 29 wherein said execution of

said flash management software 1s operative such that:

5

10

15

20

25

30

35

40

45

50

55

60

65

20

1) said reading from said flash memory of said at least one
flash management table includes reading at least one
obsolete table that describes a state of the flash memory
system that 1s earlier than as a most recent event of said
flash-read events log;

11) said updating includes updating said at least one
obsolete table 1n accordance with at least one said more
recent event of said flash-read events.]

33. A non-transitory computer readable storage medium
having computer readable code embodied 1n said computer
readable storage medium, said computer readable code
comprising instructions for waking up 1n a flash memory
system, wherein said instructions comprise instructions to:

1) When waking up.

a) read from flash memory at least one flash manage-
ment table describing a state of the tlash memory
system, the at least one flash management table
including at least one out of date virtual to physical
address mapping at a time of waking up;

b) read from said flash memory an events log contain-
ing records of pre-stored events of the flash memory
system:

¢) for at least one event stored in said events log, update
said at least one flash management table 1n accor-
dance with changes eflected by said at least one
event.

34. A flash memory system comprising;:

a) a flash memory for storing data;

b) a volatile memory for storing data;

¢) a central processing unit (CPU); and

d) a flash management soiftware for maintaiming data
structures used for accessing said flash memory,

1) wherein said flash management soitware 1s config-
ured to, as a result of execution on said CPU, cause
said CPU to:

A) maintain 1n said flash memory a first flash man-
agement table whose contents are indicative of a
state of the flash memory system including a
virtual to physical address mapping for at least a
first portion of the flash memory system;

B) maintain in said flash memory an events log; and

C) maintain in said volatile memory a second flash
management table including a virtual to physical
address mapping for the first portion of the flash
memory system,

11) wherein said execution of said flash management
soltware 1s further operative such that, for at least
one point 1n time, said first flash management table
that 1s stored 1n said flash memory represents an
carlier state of the flash memory system; and

111) wherein said earlier state of the flash memory
system 1S
A) earlier than a most recent event, said event stored

in said events log 1n said tlash memory;

B) earlier than a most recent [even] event represented
in the second flash management table stored in the
volatile memory; and

C) later than a most recent power up of the flash
memory system.

35. The system of claim 34 wherein said execution of said
flash management soitware 1s operative such that said earlier
state of the flash memory system 1s earlier than a second
most recent said event stored in said events log 1n said flash
memory.

36. The system of claim 34 wherein said execution of said
flash management software 1s operative such that said events
log maintaining 1n said flash memory 1s carried out such that

US RE46,446 E

21

cach event 1s recorded 1n flash memory before an occurrence
ol a respective next event of the flash memory system.
37. A non-transitory computer readable storage medium
having computer readable code embodied 1n said computer
readable storage medium, said computer readable code
comprising instructions for maintaining flash data structures
in accordance with events of a flash memory system,
wherein said instructions comprise instructions to:
a) maintain 1 tlash memory a first flash management
table whose contents are indicative of a state of the
flash memory system including a virtual to physical
address mapping for at least a first portion of the flash
INemory system,
b) maintain 1n volatile memory a second flash manage-
ment table whose contents are indicative of a state of
the [of the] flash memory system including a virtual to
physical address mapping for the first portion of the
flash memory system; and
¢) maintain 1n said flash memory an events log,
1) wherein for at least one point 1n time, the first flash
management table that 1s stored 1n said flash memory
represents an earlier state of the flash memory sys-
tem; and
11) wherein said earlier state of the flash memory system
1S
A) earlier than a most recent event, the most recent
event being stored 1n the events log 1n said flash
memory and 1n the second flash management table
in the volatile memory; and

B) later than a most recent power up of the tlash
memory system.

[ii) wherein said earlier state of the flash memory
system 1s earlier than a most recent event stored in
said events log 1n said flash memory and reflected 1n
said second flash management table.]

38. A method of maintaining flash data structures in
accordance with events of a flash memory system, the
method comprising:

a) maintaining 1n flash memory a first flash management
table whose contents are indicative of a state of the
flash memory system including a virtual to physical
address mapping for at least a first portion of the flash
Memory system,

b) maintaining in volatile memory a second flash man-
agement table whose contents are indicative of a state
of the Jof the] flash memory system including a virtual
to physical addvess mapping for the first portion of the
flash memory system; and

¢) maintaining 1n said flash memory an events log such
that each event 1s recorded 1n tflash memory before an
occurrence of a respective next event ol the flash
memory system
1) wherein the method 1s carried out such that for at

least one point 1n time, said first flash management
table that 1s stored 1n said flash memory represents an
carlier state of the flash memory system; and

11) wherein said earlier state of the flash memory system
1s earlier than a most recent event stored in said
events log 1n said flash memory and reflected 1n said
second flash management table.

39. The method of claim 38 wherein the method 1s carried
out such that at least one of said at least one point 1n time 1s
subsequent to a handling of a most recent event by the flash
management system.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

40. A flash memory system comprising;:

a) a flash memory for storing data;

b) a volatile memory used for storing data related to the
control and use of the flash memory;

¢) a central processing unit (CPU); and

d) flash management soitware for maintaining data struc-
tures used for accessing said flash memory,

1) wherein said flash memory management software 1s
configured to, as a result of execution on said CPU,
cause said CPU to:

A) maintain 1n said flash memory a first flash man-
agement table whose contents are indicative of a
state of the flash memory system including a
virtual to physical address mapping for at least a
first portion of the flash memory system;

B) maintain 1n said volatile memory a second flash
management table whose contents are indicative
of a state of the flash memory system including a
virtual to physical address mapping for the first
portion of the flash memory system; and

C) maintain 1n said flash memory an events log such
that each event 1s recorded 1n flash memory before
an occurrence ol a respective next event of the
flash memory system and

11) wherein said execution of said flash management
soltware 1s further operative such that, for at least
one point in time, said first flash management table
represents an earlier state of the flash memory sys-
tem; and

111) wherein said earlier state of the flash memory
system 1s earlier than a most recent said event stored
in said events log 1n said flash memory and reflected
in the second flash management table 1n the volatile
memory.

41. A non-transitory computer readable storage medium
having computer readable code embodied 1n said computer
readable storage medium, said computer readable code
comprising instructions for maintaining flash data structures
in accordance with events of a flash memory system,
wherein said instructions comprise instructions to:

a) maintain 1n tlash memory a first flash management
table whose contents are indicative of a state of the
flash memory system including a virtual to physical
address mapping for at least a first portion of the flask

memovry system,
b) maintain in volatile memory a second flash manage-
ment table whose contents are indicative of a state of
the tlash memory system including a virtual to physical
address mapping for the first portion of the flash
memory system; and
¢) maintain in said tlash memory an events log such that
cach event 1s recorded in tlash memory belfore an
occurrence of a respective next event of the flash
memory system
1) wherein for at least one point 1n time, said first tlash
management table that 1s stored 1n said flash memory
represents an earlier state of the flash memory sys-
tem; and

11) wherein said earlier state of the flash memory system
carlier than a most recent said event stored in said
events log 1n said flash memory and retlected 1n the
second flash management table 1n volatile memory.

42. A method of maintaining flash data structures in

accovdance with events of a flash memory system, the
method comprising operating a processor to:

US RE46,446 E

23

a) maintain a first flash management table, wherein
maintaining the first flash management table comprises
saving data to the first flash management table at a first
lime;

b) maintain an events log, wherein maintaining the events
log comprises saving data to the events log at a second
time, the second time occurving after the first time,
wherein the data saved to the events log at the second
time corresponds to an event that has transpirved since
the fivst time, the first flash management table including
at least one out of date virtual to physical address
mapping at the second time; and

c) responsive to determining that an update of the first
flash management table is vequived, operating the pro-

cessor to update the first flash management table in
accovdance with the data stoved in the events log.

43. The method of claim 42, wherein the second time
corresponds to a time at which a most recent event of the
flash memory system occurved, and the first time corre-
sponds to a time at which an earlier event of the flash
memory system occurred.

44. The method of claim 43, wherein the processor is
operated to determine that an update of the first flash
management table is rvequived if the processor determines
that:

a number of events of the flash memory system that
occurred since the first time is greater than a predefined
threshold number.

45. The method of claim 43, wherein the processor is
operated to determine that an update of the first flash
management table is rvequived if the processor determines
that:

an elapsed period of time since the first time is greater
than a predefined threshold time.

46. The method of claim 43, wherein the processor is
operated to determine that an update of the first flash
management table is rvequived if the processor determines
that a power up of the flash memory system was performed
at a time after the first time.

47. The method of claim 43, wherein the processor is
operated to determine that an update of the first flash
management table is vequived in accordance with available
system resources.

48. The method of claim 43, wherein the data saved to the
events log at the second time is indicative of the most vecent
event and the data saved to the first flash management table
at the first time is indicative of the earlier event.

49. The method of claim 48, wherein the processor is
operated to determine that an update of the first flash
management table is requirved in accovdance with an event
tvpe of the most recent event.

5

10

15

20

25

30

35

40

45

50

24

50. The method of claim 42, wherein the processor is
operated to maintain the first flash management table in
flash memory.

51. The method of claim 50, wherein the processor is
operated to maintain the events log in flash memory.

52. The method of claim 51, wherein the processor is
further operated to:

maintain a second flash management table in volatile

memory, wherein data is saved to the second flash
management table at a third time, the thivd time occur-
ving dfter the first time.

53. The method of claim 42, wherein the processor is
further operated to:

save, in flash memory, an indication of the first time and

the second time.

54. A method of managing wake up in a flash memory
system, the method being performed as part of a wake up
process and comprising operating a processor to:
read, from the flash memory system, at least a first flash
management table, the first flash management table
contents including at least one out of date virtual to
physical address mapping prior to the wake up process;

read, from the flash memory system, an events log; and

responsive to determining that data was saved to the
events log more vecently than data was saved to the first
flash management table, operating the processor to
update the first flash management table in accordance
with the events log.

55. The method of claim 54, wherein determining that
data was saved to the events log more recently than data was
saved to the first flash management table comprises:

identifying a first time at which data was most vecently

saved to the flash management table;

identifving a second time at which data was most recently

saved to the events log; and

determining that data was saved to the events log more

recently than data was saved to the first flash manage-
ment table if the second time occurred movre vecently
than the first time.

56. The method of claim 53, further comprising operating
the processor to:

determine, in accovdance with the first time and the

second time, a number of events to be included in the
first flash management table; and

update the first flash management table to reflect the

determined number of events.

57. The method of claim 54, wherein the processor is
operated to vead the first flash management table from flash
Memory.

58. The method of claim 355, wherein the processor is
operated to read the events log from flash memory.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

