USOORE46404E
(19) United States
12y Reissued Patent (10) Patent Number: US RE46,404 E
Kim et al. 45) Date of Reissued Patent: May 16, 2017
(54) FLASH MEMORY MANAGEMENT METHOD (52) U.S. CL
CPC GO6F 12/0246 (2013.01); GO6F 3/0679
(71) Applicant: Samsung Electronics Co., Ltd., (2013-91)5 Goor 13/4239 (2013.01);
Suwon-s1 (KR) (Continued)
(58) Field of Classification Search
(72) Inventors: Bum-Soo Kim, Seongnam (KR); CPC .. GO6F3/1 026/ (7)346&0(23652%% i}%ggj gggg
(ui-Young Lee, Yongin-si (KR); 2212/2022; GOGE 3/0616; GOGF 3/0656
Jong-Min Kim, Yongin-si (KR); Contined
Ji-Hyun In, Secongnam (KR); Je-Sung (Continued)
Kim, Newton, MA (US); Sam-Hyuk (56) References Cited
Noh, Scoul (KR); Sang-Lyul Min,
Seoul (KR); Dong-Hee Lee, Seoul U.S. PAITENT DOCUMENTS
(KR); Jae-Yong Jeong, Hwaseong 966133 A 111993 Tavlor f ol
: . ,260, aylor et al.
(KR); YOO'K““_ChO: Seoul (KR); 5388,083 A * 2/1995 Assar etal. ... 365/185.33
Jong-Moo Choi, Yongjin (KR) (Continued)
LID., Samsung-ro, Yeongtong-gu,
Suwon-s1, Gyeonggi-do (KR) Jp 05-241741 A * 9/1993
JP 05-282889 A * 10/1993
(21) Appl. No.: 14/628,462 (Continued)
(22) Filed: Feb. 23, 2015 OTHER PUBLICATIONS
Related U.S. Patent Documents Jim Handy, The Cache Memory Book, Academic Press, 1993, pp.
Reissue of: 1-107 and 240-269.
(64) Patent No.: 6,938,116 -
Tssued: Aug. 30, 2005 Primary Examiner — Majid A Banankhah
Appl. No.: 10/029,966 (74) Attorney, Agent, or Firm — Muir Patent Law, PLLC
Filed: Dec. 31, 2001

o (37) ABSTRACT
U.S. Applications:

(60) Continuation of application No. 13/151,735, filed on A flash memory management method 1s provided. Accord-
Jun. 2. 2011, now Pat. No. Re. 45,577, which is a ing to the method, when a request to write the predetermined

data to a page to which data has been written 1s made, the

(Continued) predetermined data is written to a log block corresponding,
_ o o to a data block containing the page. When a request to write
(30) Foreign Application Priority Data the predetermined data to the page again is received, the
predetermined data 1s written to an empty free page in the
Jun. 4j 2001 (KR) 10-2001-31124 lOg block. Even if the same page 1S requested to be con-
tinuously written to, the management method allows this to
(51) Int. CL. H be processed in one log block, thereby improving the

gggﬁ igj ‘og 88828; eflectiveness 1n the use of flash memory resources.

GO6F 3/06 (2006.01) 20 Claims, 12 Drawing Sheets
(WRTE)
l
SEARCH LOG POINTER TABLE | ~1401
WITH LOGICAL ADDRESS

15 PAGE
AT SAME POSITION
USABLE?

FREE PAGE BE
RWRERS'TEP TO ALLOCATED IN LOG
Cono.ee .N“"E‘Jé”s BLOCK? ALLOCATE LOG BLOCK
BLOCK AFTER BLOCK MERGE
Fm WRITE TO — —
(407~ ALLOCATED PAGE WRITE TO PAGE
AT SAME POSITION
1405 l /
M 1410
UPDATE LOG
POINTER TABLE

!
(o)

US RE46,404 E
Page 2

(52)

(58)

(56)

Related U.S. Application Data

division of application No. 11/848,005, filed on Aug.
30, 2007, now Pat. No. Re. 44,052, which 1s an
application for the reissue of Pat. No. 6,938,116.

U.S. (1
CPC e, GO6F 2212/2022 (2013.01); GO6F
2212/7203 (2013.01)
Field of Classification Search
USPC e, 711/103, 159, 170, E12.008
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
5404485 A * 4/1995 BAN ooocovooieereieeren 711/202
5479.638 A 12/1995 Assar et al.
5,485,595 A * 1/1996 Assaretal. 711/103
5,528,764 A * 6/1996 Hetlcooovvvviviiniinn, 710/113
5,530,828 A 6/1996 Kaki et al.
5,696,929 A * 12/1997 Hasbun et al. 711/103
5,717,886 A * 2/1998 Miyauchi, 711/103
5,745,418 A 4/1998 Ma et al.
5,778,427 A 7/1998 Hagersten et al.
5,802,554 A 9/1998 Caceres et al.
5,845,313 A * 12/1998 Estakhri et al. 711/103

=

5,800,083
5,933,308
5,937,425
5,956,473
5,999,446
6,000,006
0,263,398
0,298,428
6,327,639
0,418,506
0,564,286
0,587,915
6,704,835
0,760,805
0,836,816
2001/0040827 Al

2002/0002652 Al
2002/0144059 Al*

A

A

i i g g

2002/0166022
2005/0144358

1/1999
8/1999
8/1999
9/1999
12/1999
12/1999
7/2001
10/2001
12/2001
7/2002
5/2003
7/2003
3/2004
7/2004
12/2004
11/2001
1/2002
10/2002
11/2002
6/2005

Sukegawa 711/103
Ma et al.

Ban

Ma et al.

Harar et al.

Bruceet al. 711/103
Taylor et al.

Munroe et al.

Asnaashart 711/103
Pashley et al. 711/103
DaCosta ..cooovvvvivieininnnn, 711/103
KiIMm oo, 711/103
(Garner

LaSSer vovvviivieiiiiiieinennns, 711/103
Kendall

Dosaka et al.

Takahashi 711/103
Kendalloovvvvinnnnn, 711/118
SUZUKIL oo, 711/103

Conley et al.

FOREIGN PATENT DOCUMENTS

P
JP
JP
JP
W

* cited by examiner

07-154870 A

09-097205 A

10-040175 A
2001-521220 A

O WO 99/21063 Al

2
3
3
2
3

6/1995
4/1997
2/1998
11/2001
4/1999

U.S. Patent May 16, 2017 Sheet 1 of 12 US RE46,404 E

DATA BLOCKS
LOG BLOCKS

U.S. Patent May 16, 2017 Sheet 2 of 12 US RE46,404 E

FIG. 3

LOGICAL ADDRESS

DATA BLOCK

U.S. Patent May 16, 2017 Sheet 3 of 12 US RE46,404 E

FIG. 4

FLASH MEMORY

MAP

LOG BLOCKS

DATA BLOCKS

FREE BLOCKS

U.S. Patent May 16, 2017 Sheet 4 of 12 US RE46,404 E

FIG. ©

FLASH MEMORY

CHECK POINT

LOG BLOCKS

DATA BLOCKS

FREE BLOCKS

U.S. Patent May 16, 2017 Sheet 5 of 12 US RE46,404 E

FIG. 6

LOG POINTER TABLE

ENTRY FLASH MEMORY
—
r
|
LOGICAL l l
ADDRESS
ENTRY
FIG. 7
PAGE
le—— BLOCK ADDRESSING —== ADDRESSING -}
log_blk phy_blk page #0
page #1
page #2

page #N

U.S. Patent May 16, 2017 Sheet 6 of 12 US RE46,404 E

FIG. 8
phy_blk | page #0
page '

page 12 FLASH MEMORY

page #15

page #0 B
page #

.................
lllllllllllllllllllllll
llllllllllllll
...................
IIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIII

log_blk | phy_blk

l

page #15

L]

......................

llllllllllll
llllllllllllllllllllllll
lllllllllllllllll

..................
..................

llllll
'''''''''''''''''''''''''''''''

log_blk | phy_blk Teage #0

page #2

L
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

DATA BLOCK R RORIRs

page #15

U.S. Patent May 16, 2017 Sheet 7 of 12 US RE46,404 E

FIG. 9

FLASH MEMORY

LOG POINTER TABLE ENTRY

I |o§;_blk I phy_F}llf | page #0 k I-
| page #1 “

oge 2
page IG BLOCK I

DATA BLS

U.S. Patent

DATA BLOCK

INVALID

INVALID
INVALID

VALID

VALID

May 16, 2017 Sheet 8 of 12 US RE46,404 E
FIG. 10
FREE BLOCK LOG BLOCK
FREE VALID
FREE -
FREE \ VALID
FREE VALID
FREE
FIG. 11
DATA BLOCK LOG BLOCK
INVALID VALID

INVALID
VALID FREE

FREE

FREE

VALID

VALID

U.S. Patent

SWITCH MERGE
COPY MERGE

May 16, 2017 Sheet 9 of 12

FIG. 12

A AA ST Y

AT TS
VSIS

VAL IS

VAL ALY,

WRITE

AAAA SIS A A 2
7SI IS

7

LSS LSS

ERASE
L
77
s, ERASABLE

US RE46,404 L

SIMPLE MERGE

SWITCH MERGE
COPY MERGE

FREE PAGE
VALID PAGE

e INVALID PAGE

U.S. Patent May 16, 2017 Sheet 10 of 12

FIG. 13

SEARCH LOG POINTER TABLE| 4 30
WITH LOGICAL ADDRESS

1302

IS ENTRY FOUND? o

YES
SEARCH FOR ENTRY 1303

1504

IS REQUESTED NO

PAGE FOUND?

YyES 1305

US RE46,404 L

1306

READ PAGE READ PAGE
IN LOG BLOCK IN DATA BLOCK

U.S. Patent May 16, 2017 Sheet 11 of 12 US RE46,404 E

FIG. 14

SEARCH LOG POINTER TABLE 1401
WITH LOGICAL ADDRESS

1402

1S O
ENTRY FOUND? \

1403 YES

1408

IS PAGE
AT SAME POSITION
_ USABLE?

NEW LOG BLOCK ~~YES

BE ALLOCATED?

CAN

FREE PAGE BE
ALLOCATED IN LOG

NO
BLOCK?

ALLOCATE LOG BLOCK
YES AFTER BLOCK MERGE

WRITE TO
CORRESPONDING
PAGE IN LOG
BLOCK

1404 WRITE TO
ALLOCATED PAGE WRITE TO PAGE
AT SAME POSITION
1405

1410
UPDATE LOG
POINTER TABLE

U.S. Patent May 16, 2017 Sheet 12 of 12 US RE46,404 E

FIG. 15

1501

ARE ALL

SIMPLE NO PAGES IN LOG BLOCK
MERGE 1508 LOCATED AT SAME
' POSITIONS?
r=-—- -~ -—-"=-—--—=-—=-""-"=—7"—""="7""7"77 1
| WRITE RECOVERY |
. INFORMATION . YES
L —— __ 4 1502
1507 ARE ALL . NO
ALLOCATE FREE BLOCKS RGeS RS - 1511
TO COPY VALID PAGES X i
OF LOG BLOCK ; WRITE RECOVERY :
YES . INFORMATION |
1508 IR ¥
P SWITCH|MERGE
COPY REMAINING 7
UNCOPIED PAGES FROM Fomm READ VALID PAGES OF
DATA BLOCK WRITE RECOVERY DATA BLOCK AND COPY
9 INFORMATION THEM TO LOG BLOCK
1509 2 e -

UPDATE ADDRESS CONVERSION
INFORMATON SO THAT FREE UPDATE ADDRESS CONVERSION

BLOCK IS NEW DATA BLOCK INFORMATON SO THAT LOG 1504
1510

FRASE LOG BLOCK AND
DATA BLOCK AND UPDATE ERASE LOG BLOCK TO 1505
FREE BLOCK LIST UPDATE FREE BLOCK LIST

BLOCK IS NEW DATA BLOCK

END

US RE46,404 E

1
FLASH MEMORY MANAGEMENT METHOD

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

10

This application is a continuation reissue application of
application Ser. No. 13/151,735 filed on Jun. 2, 2011, which
is a divisional reissue application of application Ser. No.
11/848,005 filed Aug. 30, 2007, now U.S. Pat. No. Re. 15
44,052, which is a reissue application of application Ser. No.
10/029,966 filed Dec. 31, 2001, now U.S. Pat. No. 6,938,
116, issued on Aug. 30, 2005. Notice: Movre than one reissue
application has been filed for the reissue of U.S. Pat. No.
6,938,116. The reissue applications ave this application, 20
application Ser. No. 13/151,735, application Ser. No.
11/848,005 (now issued as U.S. Pat. No. Re. 44,052), and
application Ser. No. 13/134,225 (now issued as U.S. Pat. No.
Re. 45,222), all of which are reissue applications of appli-
cation Ser. No. 10/029,966 (now U.S. Pat. No. 6,938,116). 25
Application Ser. No. 11/848,005 is a reissue application of
application Ser. No. 10/029,966, both Ser. No. 13/151,735
and Ser. No. 13/134,225 are divisional veissue applications
of application Ser. No. 11/548,005, and this application is a

continuation reissue application of Ser. No. 13/151,733. 30

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to a flash memory, and more
particularly, to a flash memory management method for use

in a flash memory-based system. The present application 1s
based on Korean Patent Application No. 2001-31124 filed

Jun. 4, 2001.

2. Description of the Related Art

Flash memories are a special type of a nonvolatile
memory capable of electrically erasing and programming
data. Flash memory based storage devices have low power
consumption and small size compared to magnetic disc
memory based devices. Thus, since flash memories can be
substituted for magnetic disk memories, much research and
development 1s actively 1n progress. Flash memories are
expected to recerve considerable attention as storage devices
for mobile computing devices such as digital cameras,
mobile phones, or personal digital assistants (PDAs).

In magnetic disc drives, new data can be written over
previous old data. However, in flash memories, a block
needs to be erased before 1t 1s rewritten with new data; that
1s, memory cells are returned to an original state 1n which
data can be written. This operation 1s called “erase”. An
erase operation typically requires much more time than a
write operation. Furthermore, since the erase operation 1s
performed 1n blocks whose size 1s much larger than what the
write operation requires, even a portion requested not to be
written to may be erased. In this case, the unnecessarily
erased portion needs to be reclaimed through a write opera-
tion. In the worst scenario, a request to write (overwrite) data
requires one erase operation and write operations to recover
the portion erased by the erase operation. Due to 1nconsis-
tency between units on which erase and write commands are
executed, write performance 1s signmificantly lower than read
performance. Furthermore, the write performance of a flash

35

40

45

50

55

60

65

2

memory 1s lower than that of a magnetic disc based storage
device that inevitably mvolves a delay due to mechanical

operation. Thus, improving write performance 1s essential 1n
designing a tlash memory based device.

U.S. Pat. No. 5,388,083 proposes a content addressable
memory (CAM) system for converting a logical address
requested by a user to a physical address 1n a flash memory
while avoiding an erase cycle by writing altered data into an
empty block in order to prevent a delay due to erase-before-
write. However, implementation of the CAM system
requires additional costly circuits. U.S. Pat. No. 5,485,595
proposes an approach which mvolves writing a logical
address 1nto an extra region of each page and sequentially
comparing each of the logical addresses while avoiding an
erase cycle by writing altered data into an empty space upon
a write request. However, 11 a unit of read operation 1s large
like 1n a NAND-type flash memory, the address conversion
mechanism requires a large amount of time 1n reading
address conversion mformation scattered around the flash
memory, thereby degrading system performance.

U.S. Pat. No. 5,845,313 proposes a flash memory storage
architecture 1n which a linear address conversion table for
performing a direct address conversion 1s constructed 1n a
special RAM by scanning a logical address stored 1n a tlash
memory during a system reset. However, a RAM of a large
storage capacity 1s required to store the address conversion
table. For example, to store an address conversion table of
a flash memory based storage device having a storage
capacity of 32 MB and a page size of 512 bytes, 128 KB of
RAM is required assuming that 2 bytes are provided for each
of 65,536 pages. The storage capacity 1s too large for a
small-scale system having few resources such as mobile
equipment.

U.S. Pat. No. 5,404,485 proposes an approach for allo-
cating a new block (replacement block) for write operation
and writing data to the allocated block. However, since a
new block continues to be allocated for write operation, a
plurality of different versions of blocks to which the same
page 1s written exist. That 1s, at least one replacement block
needs to be provided for every block, thereby significantly
reducing the capacity of a flash memory. A page to be written
to a new block must be written at the same position as the
position at which the page was written to the previous block.
When the page 1s frequently updated but the remaining
pages are rarely updated, only the content of the specific
page 1s changed while the remaining pages contain a plu-
rality of the same replacement blocks, thereby wasting a lot
ol storage space 1n a flash memory. Thus, this approach 1is
not suitable for small-scale systems such as mobile equip-
ment.

SUMMARY OF THE INVENTION

To solve the above problems, 1t 1s an object of the present
invention to provide a flash memory based system and
management method therefor capable of improving the
performance of a tflash memory.

It 1s another object of the present invention to provide a
flash memory based system and management method there-
for, which allow for consistent data recovery in an emer-
gency such as power cut-ofl.

It 1s still another object of the present invention to provide
a flash memory based system and management method
therefor, which prevent degradation of system performance
in an environment where data updates to a specific page are
frequently made such as a DOS file system based on a file

allocation table (FAT).

US RE46,404 E

3

Accordingly, to achieve the above objects, the present
invention provides a method for writing predetermined data
to a flash memory. The method includes the steps of: (a)
receiving a request to write the predetermined data to a page
to which data has been written; (b) writing the predeter-
mined data to a log block corresponding to a data block
contaiming the page; (¢) receiving a request to write the
predetermined data to the page again; and (d) wrnting the
predetermined data to an empty free page in the log block.

Preferably, step (b) may include the step (b11) of writing
the predetermined data to an empty free page or the steps of
(b21) allocating the log block; and (b22) writing the prede-
termined data to an empty page at the same position as the
requested page in the data block.

In another embodiment, a method for writing predeter-
mined data to a flash memory includes the steps of: (a)
receiving a request to write the predetermined data to a page;
(b) allocating a log block 1-1 corresponding to a first data
block containing the page; (c¢) writing the predetermined
data to an empty page 1n the log block 1-1; (d) recerving a
request to write the predetermined data to the page again;
and (e) writing the predetermined data to an empty free page
in the log block 1-1.

Preferably, step (b) comprises the steps of: (b1) perform-
ing a block merge to create a third data block based on a
second data block and a second log block corresponding to
the second data block; and (b2) allocating a free block
obtained by performing an erase operation on the second
data block as the log block 1-1.

Preferably, step (b1) 1s performed when a free block to be
allocated as the log block 1-1 does not exist or when all
pages of the existing log block corresponding to the first data
block have been used.

More preferably, step (b1) may include the step of (b11)
performing a switch merge to change the second log block
to the third data block when pages of the second log block
are arranged 1n the same order that pages of the second data
block are arranged, and the pages of the second log block
correspond one-to-one to the pages of the second data block.
Step (b1) may include the step of (b12) performing a copy
merge to copy corresponding pages of the second data block
to free pages 1n the second log block and create the third data
block when the pages 1n the second log block are requested
to be written only once. Step (bl) may include the step of
(13) performing a simple merge to copy the latest pages 1n
the second log block to free pages of a free block to which
data has not been written and copy a corresponding page of
the second data block to the remaining free pages thereof,
thereby creating the third data block.

Most preferably, step (e) includes the steps of: (el)
allocating a new log block 1-2 11 a free page does not exist
in the log block 1-1; and (e2) writing the predetermined data
to a free page 1n the log block 1-2. Step (el) may include the
steps of: (ell) performing a switch merge to change the log
block to a second data block when pages of the log block 1-1
are arranged in the order in which pages of the first data
block are arranged and the pages of the log block 1-1
correspond one-to-one to the pages of the first data block,
and (el2) allocating a free block obtained by performing an
crase operation on the first data block as the log block 1-2.
Step (el) may include the steps of (€21) performing a copy
merge to copy corresponding pages in the first data block to
a Iree page 1n the log block 1-1 when pages 1n the log block
1-1 are requested to be written only once; and (e22) allo-
cating a free block obtained by performing an erase opera-
tion on the first data block as the log block 1-2. Step (el)
may 1nclude the steps of: (€31) performing a simple merge

10

15

20

25

30

35

40

45

50

55

60

65

4

to copy the latest pages 1n the log block 1-1 to free pages of
a free block and copy a corresponding page of the first data
block to the remaiming iree pages thereof, thereby creating
a second data block; and (e32) allocating a free block
obtained by performing an erase operation on the first data

block or the log block 1-1 as the log block 1-2.

Preferably, step (€2) may include the step of (€21) writing
the predetermined data to a free page at the same position as
the requested page 1n the data block.

The present invention also provides a method for reading
predetermined data from a flash memory. The method
includes the steps of: (a) searching a log pointer table for an
entry 1 which a block address portion of a logical address
of a requested page 1s recorded; (b) checking whether the
logical address of the requested page exists in the found
entry; and (c) referring to a physical address of a corre-
sponding log block recorded in the found entry and a
position at which the logical address of the requested page
1s written to the found entry and accessing a corresponding
page of the log block. Preferably, in step (¢), the correspond-
ing page in the log block 1s accessed at the same position as
the position to which the logical address of the requested
page 1s written to the found entry.

The present invention also provides a method for man-
aging a flash memory including a data block and a log block
for writing data for updating the data block. The method
includes the steps of (a) when pages of a first data block are
arranged 1n the same order 1n which pages of a first log block
corresponding to the first data block are arranged and all the
pages of the first data block map one-to-one with the pages
of the first log block, changing the first log block to a second
data block; and (b) updating address conversion informa-
tion.

In another embodiment, a method for managing a flash
memory 1mncluding a data block and a log block for writing
data for updating the data blocks includes the steps of: (a)
when pages 1n a first log block are requested to be written
only once, copying a corresponding page of a first data block
to a free page of the first log block 1n order to create a second
data block; and (b) updating address conversion informa-
tion.

In another embodiment, a method for managing a tlash
memory including a data block and a log block for writing
data for updating the data block includes the steps of: (a)
copying the latest pages 1n a first log block to a free block
to which data has not been written and copying a corre-
sponding page of a first data block corresponding to the first
log block to a remaining iree page to create a second data
block; and (b) updating address conversion information.

Preferably, prior to step (a), the flash memory manage-
ment method further includes the step of (a0) writing
recovery information for recovering data in the event of a
system failure during the step (a) or (b).

Preferably, the flash memory management method turther
includes the step of (c¢) recovering data referring to the
recovery information in the event of a system failure during
the step (a) or (b).

The recovery imnformation includes a list of free blocks, a
list of log blocks, and a log pointer table which is the data
structure for managing the log blocks. The log pointer table
contains log pointer table entries corresponding one-to-one
to the log blocks, each entry mapping a physical address of
a log block to a logical address of a corresponding data block
and storing logical addresses of requested pages of a data
block in the order 1n which pages of a corresponding log
block are physically arranged.

US RE46,404 E

S

In another embodiment, a method for managing a tlash
memory 1mcluding a data block and a log block for writing,
data for updating the data blocks includes the steps of: (a)
allocating a predetermined region to a flash memory and
writing lists of data blocks and log blocks and a data
structure for managing the log blocks to the predetermined
region as recovery information; (b) checking states currently
being written to the flash memory based on the recovery
information in the event of a system failure to determine
whether an error occurs; and (¢) if the error occurs, recov-
ering data based on the recovery information.

BRIEF DESCRIPTION OF THE DRAWINGS

The above objects and advantages of the present invention
will become more apparent by describing 1n detail preferred
embodiments thereof with reference to the attached draw-
ings in which:

FIG. 1 1s a block diagram of a flash memory based system
according to a preferred embodiment of the present inven-
tion;

FIG. 2 1s a reference diagram for explaining blocks for
storing ordinary data provided 1n the flash memory of FIG.
1 according to the present invention;

FIG. 3 1s reference diagram for explaining a read opera-
tion for a log block and a data block;

FI1G. 4 1s a reference diagram for explaining sections 1into
which the flash memory of FIG. 1 1s divided according to an
embodiment of the present ivention;

FIG. 5 1s a reference diagram for explaining sections into
which the flash memory of FIG. 1 1s divided according to
another embodiment of the present mvention;

FIG. 6 1s a reference diagram for explaining a log pointer
table:

FIG. 7 shows the structure of an entry of a log pointer
table;

FIG. 8 shows the relationship between a log pointer table
and a tlash memory;

FIG. 9 1s a reference diagram for explaining an erasable
block;

FIG. 10 1s a conceptual diagram of a simple merge;

FIG. 11 1s a conceptual diagram of a copy merge;

FIG. 12 shows changes 1n blocks when a block merge
according to the present invention 1s performed;

FI1G. 13 15 a flowchart of a read operation according to the
present mvention;

FI1G. 14 1s a flowchart of a write operation according to the
present mvention; and

FIG. 15 1s a flowchart of a block merge operation.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

Referring to FIG. 1, a flash memory based system
includes a flash memory 1, a read-only memory (ROM) 2,
a random access memory (RAM) 3, and a processor 4. In
combination with program codes typically recorded in the
ROM 2, the processor 4 1ssues a series of read or write
commands to read data from and write data to the tlash
memory 1 or the RAM 3. Write and read operations are
performed on the tlash memory 1 1n accordance with a flash
memory management method according to the present
invention. The ROM 2 and the RAM 3 store application
program codes executed by the processor 4 or related data
structures.

Referring to FIG. 2, the flash memory 1 includes a
plurality of data blocks and log blocks corresponding to at

10

15

20

25

30

35

40

45

50

55

60

65

6

least some of the plurality of data blocks. A data block 1s a
block for storing any ordinary data, and a log block 1s a
block provided for recording modified data 11 a predeter-
mined part of a data block 1s to be modified. Thus, a plurality
of log blocks corresponding to the plurality of data blocks
contain modified pages of the corresponding data blocks.
Pages stored 1n the log blocks have priority over the coun-
terparts stored 1n the corresponding data blocks to be
referred to. In this specification, the pages having first
priority are called “valid pages™, and pages 1gnored by the
valid pages even as physically valid data 1s recorded in the
ignored pages are called “invalid pages™ 1n a logical sense.

Referring to FIG. 3, upon a request of a user to read a
predetermined page at a predetermined logical address, the
processor 4 refers to a log pointer table recorded 1n the RAM
3 to check whether a log block corresponding to the prede-
termined page exists. If a corresponding log block exists, a
check 1s made as to whether the requested page 1s validly
stored 1n the log block. It the requested page 1s validly stored
in the log block, the page stored in the log block 1s read. If
not, a corresponding page stored in the data block corre-
sponding to the log block 1s read. The log pointer table waill
be described below.

FIG. 4 15 a reference diagram showing regions into which
the flash memory 1 1s divided according to an embodiment
of the present invention. Referring to FIG. 4, the flash
memory 1 1s divided into a map region, a log block region,
a data block region, and a free block region. The map region
stores address conversion information, the log block region
1s provided for log blocks, the data block region 1s provided
for data blocks to store ordinary data, and the free block
region 1s provided for allocating log blocks or data blocks.
Here, the flash memory 1 1s logically divided to form the
four regions. Thus, physically, the four regions, 1n particular,
the data block region, the log block region, and the free
block region could discontinuously exist in the flash
memory 1 1n several scattered regions.

FIG. 3 1s reference diagram showing regions into which
the flash memory 1 1s divided according to another embodi-
ment of the present invention. Referring to FIG. §, the flash
memory 1 1s divided into a map region, a check point region,
a log block region, a data block region, and a free block
region. In this embodiment, the check point region 1s addi-
tionally provided. Recovery information required for data
recovery 1s recorded in the check point region. Similar to the
regions shown in FIG. 4, the map region stores address
conversion mformation, the log block region 1s provided for
allocating log blocks, the data block region records ordinary
data, and the free block region 1s provided for allocating log
blocks or data blocks. The address conversion information
and the recovery information stored 1n the map region and

the check point region, respectively, will be described below
in detail.

The log pointer table refers to a data structure for man-
aging log blocks. The log pointer table contains a logical
address of a data block, a physical address of a correspond-
ing log block, and ofiset values (a logical address of a
requested page) of updated pages 1n the corresponding data
block arranged 1n the same order in which pages 1n the log
block are physically arranged. According to the present
invention, the processor 4 scans a log block region to
construct the log pointer table 1n the RAM 3. Referring to
FIG. 6, the log pointer table contains entries corresponding
to each of the log blocks. Upon receiving a request to read
data from or write data to a specific location 1n the flash
memory 1 along with a logical address of a predetermined

US RE46,404 E

7

page, the processor 4 refers to the log pointer table to access
a log block or a data block depending on the presence of a
corresponding entry.

FIG. 7 shows the structure of a log pointer table entry.
Referring to FIG. 7, the log pointer table entry contains a
logical address log _blk of a data block and a physical
address phy_blk of a corresponding log block. Also, the log
pointer table entry records logical addresses page #0,
page#l, . . ., page #N of corresponding pages in the log
block 1n an order in which pages in the data block are
recorded.

For example, assuming that a block contains sixteen
pages and a logical address 1s 02FF (hexadecimal number),
the first three digits “02F” denote a block address and the
last digit “F” denotes an oilset value of a requested page 1n
a log block. Thus, a check 1s made as to whether O2F exists
among logical addresses log_blk stored 1n the logical pointer
table to confirm the presence of a corresponding log block.
IT the corresponding log block exists, it 1s checked whether
the logical address 02FF of the requested page or the oflset
value F 1s recorded 1n the corresponding entry to locate an
updated page 1n the log block. For example, if page #0 1s F,
the requested page 1s recorded 1n the first physical page in
the log block.

In this way, a portion of a requested logical address, that
1s, a block address portion thereot, 1s used to check whether
a log block exists and access the block. This technique 1s
called “block addressing”. Then, the entire logical address
being requested or an offset value 1s used to access a page
in the corresponding log block, which 1s called “page
addressing”’. Thus, the present invention adopts both block
addressing and page addressing to enable the same page
updated many times to be recorded 1n one log block.

FIG. 8 1s a reference diagram showing the relationship
between the log pointer table and the flash memory 1. As
shown 1n FIG. 8, the logical address log_blk of a data block
1s used to search for a log block corresponding to the data
block, and then a physical address phy_blk 1s used to find a
location to which the corresponding log block 1s written.
Furthermore, according to the present invention, logical
addresses page #0, page #1, . . . , page #15 of pages 1n the
corresponding log block are written to the log pointer table
entry. In this embodiment, each block contains sixteen
pages.

Basically, updated pages are written to the log block at the
same positions as those at which the corresponding pages
are located 1n the data block. Actually, 11 an updated page 1s
first written to the log block, the updated page may be
written at the same position as the corresponding page of the
data block. However, 1f the updated page i1s to be updated
again, 1t 1s not always possible to be written at the same
position as the corresponding page of the data block. That 1s,
if the predetermined page in the corresponding data block 1s
updated once again before updating the remaining pages in
the data block once, the predetermined page 1s written to an
empty space of the log block.

FIG. 9 1s a reference diagram for explaining an erasable
block. If all pages 1n a data block are updated only once,
pages ol a log block map one-to-one with those of the data
block. In this case, since the log block contains all the
content of the data block, data loss does not occur even 1 the
data block 1s erased. The (entirely shadowed) data block
where valid data does not exist any more 1s called an
“erasable block”. The erased block 1s called a “free block™.
The erasable block can be erased any time, and the free
block can be allocated as a data block or a log block when
necessary for the application.

10

15

20

25

30

35

40

45

50

55

60

65

8

Meanwhile, the present mnvention involves performing a
block merge. The block merge 1s performed when a write
operation 1s repeated so that a page that can be written does
not exist 1n the log block. In this case, the log block and the
corresponding data block are merged to create a new data
block while erasing the previous log block to be a free block.
In particular, a block merge performed when all pages 1n a
data block are updated only once to arrange the pages 1n the
data block 1n the order in which pages are located in the log
block 1s called a “switch merge”.

In contrast, 1f the page arrangement 1n a log block 1s not
the same as that 1n a corresponding data block, a simple
merge 1s performed. Furthermore, the simple merge 1s
performed when all pages of the log block are currently
written or read so a new log block needs to be allocated for
a newly requested write operation. In this case, the log block
to be merged may have a free page.

If all the pages 1n a log block are updated only once,
empty pages are filled with corresponding pages of a data
block to change the log block to the data block. This 1s called
a “copy merge”. That 1s to say, there are three types of block
merges; a switch merge, a simple merge, and a copy merge.

As described above with reference to FIG. 9, the switch
merge 1s performed by changing a log block 1n which all
pages of a corresponding data block are updated only once
to a data block. This change 1s made by updating address
conversion information without copying of data that have
been written to the data block or the log block. That 1s,
address conversion mformation recorded in a map region 1s
updated so that the corresponding log block 1s mapped to a
logical address requested by the user. The map region stores
address conversion information for every block to enable
block addressing. Here, an invalid page refers to a page
ignored by valid pages, and in actual implementation, the
invalid page may be physically valid.

As shown i FIG. 10, a simple merge i1s performed to
create a new data block by writing valid pages of a data
block and a corresponding log block at the same positions in
a new Iree block as the positions at which the valid pages
were written to the data block and the log block. Thus, the
merged data block and the log block can be erasable blocks.

As shown in FIG. 11, a copy merge 1s performed by
copying valid pages written to the existing data block to free
pages 1n a corresponding log block. The existing data block
1s changed to an erasable block. As described, invalid pages
used 1n the block merge are to pages not firstly referred to,
and 1n actual implementation, they may be physically valid
pages.

FIG. 12 shows changes in blocks as a block merge
according to the present invention 1s performed. Referring to
FIG. 12, a free block 1s changed to a log block or a data
block. A log block 1s changed to a data block through a
switch merge or a copy merge or to an erasable block
through a simple merge. A data block 1s changed to an
erasable block through a switch merge, a copy merge, or a
simple merge. An erasable block 1s erased to be a free block
again.

To perform a block merge, lists for free blocks and
crasable blocks residing 1n the flash memory 1 are required.
The lists for free blocks and erasable blocks refer to a data
structure recorded in the RAM 3 along with a log pointer
table. The lists may be recorded in the map region and the
check point region of the flash memory 1.

A list of free blocks, a list of erasable blocks, and a log
pointer table must be reconstructed 1n the RAM 3 during a
system reset. The check point region 1s allocated according
to an embodiment of the present invention for recording

US RE46,404 E

9

recovery information required for quick and thorough recov-
ery of these data structures. If the check point region 1is
provided, the list of free blocks, the list of erasable blocks,
and the list of log blocks described above are stored in the
check point region as recovery information. In particular, the
check point region also stores a plan log that lists which type
of block merge 1s to be performed and changes in blocks as
a result of the block merge 1 order to prevent loss of
information due to an overwhelmed system, unexpected
power outage and the like, which may occur during the
block merge. More specifically, the plan log contains the
type of block merge to be performed, and physical addresses
of a block changed from a free block to a data block, of a
block changed from a data block to a free block, and of a
block changed from a log block to a free block.

Furthermore, the check point region stores mmformation
necessary for construction of the address conversion infor-
mation such as a location where address conversion infor-
mation 1s stored. The location of the check point region 1tself
1s recorded 1n a predefined block 1n the flash memory 1.

Based on the above configurations, a method for flash
memory management according to a preferred embodiment
of the present invention will now be described. For ease of
understanding, the flash memory management method 1s
divided 1nto a method of constructing and reconstructing a
data structure upon a system startup, a method for reading
data from the flash memory 1, and a method for writing data
to the flash memory 1.

First, a flash memory management method used during a
system startup means a method for constructing or recon-
structing a data structure. That 1s, the method nvolves
constructing address conversion information as well as data
structures 1ncluding a list of free blocks, a list of erasable
blocks, a list of log blocks, and a log pointer table for write
and read operations, and examimng the integrity of the
constructed information to reconstruct the data structures
based on recovery information if reconstruction 1s needed.
When the system of FIG. 1 1s mitialized, the processor 4
must construct the log pointer table and the lists of free
blocks, erasable blocks and log blocks. To accomplish this,
the processor 4 reads recovery information from most
recently written pages stored in the check point region of the
flash memory 1. This 1s because, 1f the recovery information
1s sequentially written, most recent recovery information 1s
written to a page located immediately before a free page
(empty page) firstly found 1n the check point region. How-
ever, the order 1n which the recovery information 1s written
may be changed when necessary for the application as long,
as 1t 1s possible to identily the most recently written page.

The log pointer table 1s constructed by scanning all pages
of each log block designated in the recovery information to
read a logical address stored in a logical block address
portion for each page. Since the map region also sequentially
stores address conversion information, a lastly written page
(the page immediately betore a first free page) 1s considered
to be changed most recently, and address conversion infor-
mation can be constructed based on the lastly written page.
The free block list and the erasable block list can also be
readily reconstructed based on the recovery information.

Next, the constructed information including the log
pointer table and the lists of free blocks, erasable blocks and
log blocks 1s venfied by referring to a plan log. That 1s, 1t
should be verified whether the constructed information is the
same as real conditions when the operation of the system 1s
stopped during a block merge. More specifically, 1f the
system ceases to operate upon writing recovery mformation
to the check point region, upon performing a block merge,

10

15

20

25

30

35

40

45

50

55

60

65

10

upon updating address conversion information in the map
region, and upon performing an erase operation, verification
1s needed. For each case, 1t 1s checked whether the con-
structed information 1s consistent with real conditions, and
it not, the constructed information 1s reconstructed as fol-
lows:

1. When the system ceases to operate upon writing
recovery information to the check point region, a first free
page from the recovery information written 1n the check
point region 1s located to check whether the found page 1s
actually an empty page by reading data stored therein. If the
free page 1s not empty, it 1s determined that the system
ceased to operate while writing recovery information to the
check point region. Since this occurs before actually writing
data, 1t 1s not necessary to perform a recovery procedure, and
finally recorded recovery information is 1gnored.

2. When the system ceases to operate during a block
merge, 1t 1s checked whether data has been properly written
to all pages of a block listed 1n the plan log as a block to be
changed to a data block. If a page, 1I any, 1s not valid, 1t 1s
determined that the system ceased to operate during a block
merge. In this case, a block merge 1s performed again to
recover data appropriately.

3. When the system ceases to operate while updating
address conversion information, a logical address 1s read
from a block listed 1n the plan log as a block to be changed
to a data block to check whether the logical address 1s
consistent with the information stored in the map region. If
not, 1t can be determined that the system ceased to operate
while updating the address conversion iformation. In this
case, data can be appropriately recovered by moditying the
address conversion information based on the logical address
read from the data block and a corresponding physical
address.

4. When the system ceases to operate during an erase
operation, 1t 1s checked whether blocks listed 1n the plan log
as a block to be changed to a free block are actually empty
blocks. If a block 1s a not free block (11 all pages 1n the block
are not empty), an erase operation 1s performed on the
written block again.

When required data structures are constructed and then
integrity verification 1s completed 1n the manner previously
described through a flash memory management method used
upon system startup, read and write operations can be
performed.

FIG. 13, 1s a flowchart of a read operation according to the
present invention. The processor 4 searches for a log block
in which a page being requested exists, and reads the
requested page from the found log block. More specifically,
the processor 4 sequentially searches a log pointer table for
an entry corresponding to a logical address of a requested
page (step 1301). Since the logical address of the requested
page consists of a block addressing portion and a page
addressing portion, an entry 1s searched for by referring to
the block addressing portion. If a matched entry 1s found
(step 1302), 1t 1s checked whether the requested page exists
in the found entry (step 1303). If the requested page 1s found,
the page 1s read (step 1305). In this case, if two or more
identical pages are found, a lastly found page among those
except for one existing at the position of the same offset
value 1s determined to be the latest one, and that page 1s read.
If a match 1s not found 1n the step 1302, or 11 the requested
page does not exist 1 a log block (step 1304), a correspond-
ing page of a data block 1s read based on the requested
logical address (step 1306).

FIG. 14 1s a flowchart of a write operation according to the
present imnvention. The processor 4 firstly searches for a log

US RE46,404 E

11

block 1n which a page being requested exists. If the log block
1s found, 1t checks whether a page 1n the log block at the
same position as the requested page 1s usable. It the corre-
sponding page 1s usable, writing 1s performed on the page.
I1 1t 1s not usable, writing 1s performed on another page that
1s usable 1n the log block. If a usable page does not exist 1n
the log block, a new log block 1s allocated to perform writing,
at the same position.

More specifically, the processor 4 searches a log pointer
table for an entry based on a logical address of a page being,
requested (step 1401). If the entry 1s found (step 1402),
which means that a log block corresponding to the logical
address exists, an entry 1s searched to check whether a page
having the same oflset value as the requested page 1s usable
(step 1403). If the page 1s usable, a write operation 1s
performed on the corresponding page (step 1404). Here, the
usable page refers to an empty page (Ifree page) that has not
been written to. The presence of a free page can be deter-
mined by whether a page 1s valid (the page 1s firstly referred
to or data 1s written to the page). Next, a physical address of
the page on which the write operation has been performed
corresponding to the logical address 1s written to the corre-
sponding entry of the log pointer table. In this case, the write
request by the user 1s completed by one write operation in
the flash memory 1.

If the corresponding log block 1s found, but the page
having the same offset has been used (step 1403), it 1s
checked whether another free page in the log block can be
allocated (step 1406), and a write operation 1s performed on
the allocated free page (step 1407). If two or more free pages
exist, the log block 1s sequentially searched from the start to
allocate a page closest to the page corresponding to the
requested page to which data have been already written.
Then, a physical address of the allocated page corresponding
to the logical address of the requested page 1s written to the
corresponding entry of the log pointer table (step 1405).

If an entry corresponding to the requested page i1s not
found as a result of searching the log pointer table, 1t 1s
checked whether a new log block can be allocated (step
1408). I free blocks to be allocated as the new log block
exist, one of the free blocks 1s allocated as the new log block
(step 1408). If a free block does not exist, the free block 1s
created by performing a block merge and then allocated as
the new log block (step 1409). A write operation 1s per-
formed on a page 1n the allocated log block having the same
oflset value as the requested page (step 1410). Then, a
corresponding entry 1s created in the log pointer table (step
1405).

FIG. 15 1s a flowchart of a block merge operation.
Referring to FIG. 15, a block merge 1s performed in different
ways depending on the arrangement of pages 1n a log block.
More specifically, the processor 4 checks whether all pages
of a log block are located at the same positions as those of
a corresponding data block (step 1501). If so, 1t 1s next
checked whether all the pages of the log block are valid (step
1502). I1 all pages 1n the log block are arranged 1n the same
order 1n which those of the data block are arranged and they
are valid, a switch merge 1s performed. Before performing a
switch merge, the processor 4 writes recovery information to
the check point region (step 1503). The step 1503 may be
omitted according to the choice of a system designer. To
perform a switch merge, the processor 4 updates address
conversion imnformation stored 1n the map region so that the
log block 1s a new data block (step 1504). That 1s, if the log
block 1s changed to the new data block, since a physical
address corresponding to the logical address 1s changed 1n
view of the user, the address conversion information must be

10

15

20

25

30

35

40

45

50

55

60

65

12

updated. Actually, the updated address conversion informa-
tion can be written to a first free page 1n the map region.
Similarly, the map region sequentially stores the address
conversion mformation, and if a free page does not exist, a
free block 1s allocated for the map region to write the
information to the allocated free block. The allocation of a
free block 1s made in the same manner as described with
reference to FIG. 14. Then, the data block 1s changed to an
erasable block, the data block is erased, and a free block list
recorded in the check point region 1s updated (step 1505).

If any pages 1n the log block are not arranged at the same
position as a corresponding page of the data block, a simple
merge 1s performed. Similarly, the processor 4 writes recov-
ery information to the check point region before performing
a simple merge (step 1506). The step 1506 may be omitted
according to the choice of the system designer. Then, free
blocks are allocated to copy valid pages of the log block to
some of the free blocks (step 1507). Corresponding pages of
the data block are copied to the remaining free blocks (step
1508). Address conversion information in the map region 1s
updated so that the free blocks are new data blocks (step
1509). The allocation of free blocks 1s made in the manner
described with reference to FIG. 14. The log block and the
data block are changed to an erasable block, the log block
and the data block are erased, and a free block list recorded
in the check point region 1s updated (step 1510).

If all pages of the log block are arranged in the same
manner 1 which those of the data block are arranged but
some of the pages in the data block do not exist 1n the log
block, a copy merge 1s performed. Similarly, the processor
4 writes recovery information to the check point region
betfore performing a copy merge (step 1511).

The step 1511 may be omitted according to the choice of
the system designer. Then, valid pages of the data block are
read to copy them to the log block (step 1512). Address
conversion mformation stored in the map region 1s updated
so that the log block 1s a new data block (step 1504), and
then the data block 1s erased and a free block list stored in
the check point region 1s updated (step 1505).

In this way, 11 the log block for updating data 1s not found,
a free block 1s allocated, the free block 1s changed to a log
block, and writing to the log block 1s performed. If only one
free block remains so 1t 1s not allocated as a log block, one
of the existing log blocks 1s arbitrarily selected to perform a
block merge, thereby creating a new free block. Then, the
free block 1s allocated as a log block. In this invention, costs
required for a block merge and usability of blocks should be
appropriately considered. The usability of blocks may vary
depending on the type of application program to be
executed. Replacement algorithms may not be specified 1n
this mnvention. Thus, the present invention may be imple-
mented using common replacement algorithms such as least
recently used (LRU).

As described above, the present invention provides a
method for flash memory management for improving the
performance of a flash memory. Conventionally, 1n order to
update a part of one data block, the remaining parts are also
copied or a large amount of address conversion information
1s needed. However, the present invention allows the same
page to be continuously updated within one log block,
thereby 1mproving the eflectiveness of flash memory
resources. Furthermore, the present invention allows data to
be recovered consistently in the event that a system mal-
functions due to power outage during a block merge.

What 1s claimed 1s:

[1. A method for writing predetermined data to a flash
memory, the method comprising the steps of:

US RE46,404 E

13

(a) receiving a request to write the predetermined data to
a page to which data has been written;

(b) writing the predetermined data to a log block corre-
sponding to a data block containing the page;

(c) recerving a request to write the predetermined data to
the page again; and

(d) writing the predetermined data to an empty free page
in the log block.]

[2. The method of claim 1, wherein the step (b) comprises
the step (b11) of writing the predetermined data to an empty
free page.]

[3. The method of claim 1, wherein the step (b) comprises
the steps of:

(b21) allocating the log block; and

(b22) writing the predetermined data to an empty page at
the same position as the requested page in the data
block.]

[4. The method of claim 1, wherein the data block is
configured to store data and the log block 1s configured to
store data which has been modified.]

[S. A method for writing predetermined data to a flash
memory, the method comprising the steps of:

(a) recerving a request to write the predetermined data to

a page;

(b) allocating a log block 1-1 corresponding to a first data
block containing the page;

(¢) writing the predetermined data to an empty page in the
log block 1-1;

(d) receiving a request to write the predetermined data to
the page again; and

(¢) writing the predetermined data to an empty free page
in the log block 1-1.}

[6. The method of claim 5, wherein the step (b) comprises

the steps of:

(b1) performing a block merge to create a third data block
based on a second data block and a second log block
corresponding to the second data block; and

(2) allocating a free block obtained by performing an
erase operation on the second data block as the log
block 1-1.]

[7. The method of claim 6, wherein the step (bl) is
performed when a free block to be allocated as the log block
1-1 does not exist.}

[8. The method of claim 6, wherein the step (bl) is
performed when all pages of the existing log block corre-
sponding to the first data block have been used.]

[9. The method of claim 6, wherein the step (b1) com-
prises the step of (b11) performing a switch merge to change
the second log block to the third data block when pages of
the second log block are arranged in the same order that
pages of the second data block are arranged, and the pages
of the second log block correspond one-to-one to the pages
of the second data block.]

[10. The method of claim 6, wherein the step (bl)
comprises the step of (b12) performing a copy merge to copy
corresponding pages of the second data block to free pages
in the second log block and create the third data block when
the pages 1n the second log block are requested to be written
only once.]

[11. The method of claim 6, wherein the step (b1l) com-
prises the step of (13) performing a simple merge to copy the
latest pages 1n the second log block to free pages of a free
block to which data has not been written and copy a
corresponding page of the second data block to the remain-
ing free pages thereof, thereby creating the third data block.}

[12. The method of claim 5, wherein thestep (e) comprises
the steps of:

5

10

15

20

25

30

35

40

45

50

55

60

65

14

(el) allocating a new log block 1-2 i1 a free page does not
exist 1n the log block 1-1 and
(¢2) writing the predetermined data to a free page 1n the

log block 1-2.}

[13. The method of claim 12, wherein the step (el)

comprises the steps of:

(e¢11) performing a switch merge to change the log block
to a second data block when pages of the log block 1-1
are arranged in the order 1n which 5 pages of the first
data block are arranged and the pages of the log block
1-1 correspond one-to-one to the pages of the first data

block, and

(e12) allocating a free block obtained by performing an
erase operation on the first data block as the log block
1-2.]

[14. The method of claim 12, wherein the step (el)
comprises the steps of: (€21) performing a copy merge to
copy corresponding pages in the first data block to a free
page 1n the log block 1-1 when pages 1n the log block 1-1 are
requested to be written only once; and

(e¢22) allocating a free block obtained by performing an
crase operation on the first data block as the log block
1-2.]

[15. The method of claim 12, wherein the step (el)

comprises the steps of:

(€31) performing a simple merge to copy the latest pages
in the log block 1-1 to free pages of a free block and
copy a corresponding page of the first data block to the
remaining iree pages thereol, thereby creating a second
data block; and

(¢32) allocating a free block obtained by performing an
crase operation on the first data block or the log block

1-1 as the log block 1-2.]
[16. The method of claim 12, wherein the step (e2)

comprises the step of (e21) writing the predetermined data
to a free page at the same position as the requested page in

the data block.]
[17. The method of claim 5, wherein the first data block
1s configured to store data and the log block 1-1 1s configured
to store data which has been modified.]
18. A method of operating a nonvolatile memory includ-
ing a plurality of memory blocks each of which is a minimum
unit of erase, the method comprising:
receiving a first update request for instructing to write
second data to a first logical address corresponding to
a first page, to which first data has been written, among
a plurality of pages of a first data block;

in vesponse to the first update request, writing the second
data to a first free page of a first log block correspond-
ing to the first data block;

receiving a second update vequest instructing to write

thivd data to the first logical addvess;

if no second free page for the third data exists in the first

log block and no free block which is allocatable as a
second log block exists, processing a second data block
including invalid data as an erasable block so as to
create a first free block; and

allocating the first free block as the second log block and

writing the thivd data to a third free page of the second
log block,

wherein each of the plurality of memory blocks is allo-
catable as one of a data block, a log block, a free block,
and an ervasable block.
19. The method of claim 18, further comprising, if the
second free page exists in the first log block, writing the thirvd
data to the second free page of the first log block

US RE46,404 E

15

20. The method of claim 18, wherein the processing the
second data block as the evasable block so as to create the
first free block comprises performing a switch merge to
switch a third log block corresponding to the second data
block to the second data block.

21. The method of claim 18, wherein the processing the
second data block as the evasable block so as to create the
fivst free block comprises performing a copy merge to copy
valid data of the second data block to a free page of the thivd
log block corresponding to the second data block.

22. The method of claim 18, wherein the processing the
second data block as the evasable block so as to create the
first free block comprises performing a simple mervge to copy
valid data of the second data block and valid data of a thivd
log block corresponding to the second data block, to the
third data block.

23. The method of claim 18, wherein the processing the
second data block as the erasable block so as to create the
first free block comprises:

writing to a plan log a tvpe of a block merge performed
to process the second data block as an erasable block
and information about a block transitioned from the
second data block; and

updating recovery information including at least one of a

data block list, a free block list, an ervasable block list,
and a log block list of the nonvolatile memory based on
the plan log.

24. The method of claim 23, further comprising, when the
nonvolatile memory is initialized, performing a recovery
operation on the nonvolatile memory based on the recovery
information.

25. The method of claim 24, wherein the performing the
recovery operation comprises.

checking a first free page of a check point region in which

the recovery information is stoved; and

if data exists in the first free page of the check point

region, determining that an operation of the nonvolatile
memory is stopped during update of the recovery
information.

26. The method of claim 24, wherein the performing the
recovery operation comprises.

if data of at least one of pages of a block transitioned from

the second data block is not valid, determining that an
operation of the nonvolatile memory is stopped during
the block merge with respect to the second data block;
and

performing a block mervge with vespect to the second data

block again.
27. The method of claim 24, further comprising updating
address conversion information due to the block merge of
the second data block in a map region of the nonvolatile
memory, wherein the performing the recovery operation
comprises.
comparing a logical addvess of each of pages scanned
from the block transitioned from the second data block
and addrvess conversion information of the map region;

if the logical address of each of the scanned pages is
different from the address conversion information of the
map vegion, determining that an operation of the
nonvolatile memory is stopped during update of the
address conversion information; and

updating the address conversion information based on the

logical address of each of the scanned pages.

28. The method of claim 24, wherein the processing the
second data block as the evasable block so as to create the
fivst free block comprises erasing the second data block so
as to create the first free block,

10

15

20

25

30

35

40

45

50

55

60

65

16

wherein the performing of a recovery operation com-

prises:

if data is written to at least one page of the second data

block, determining that an operation of the nonvolatile
memory Iis stopped during ervase of the second data
block; and

performing an evase with respect to the second data block

again.

29. The method of claim 18, further comprising:

in response to the first update vequest, if the first log block

is not allocated and no free block that is allocatable as
the first log block exists, processing a fourth data block
among the data blocks as an ervasable block so as to
create a second free block; and

allocating the second free block as the first log block.

30. The method of claim 18, further comprising, in
response to the first update vequest or the second update
request, updating a logical addvess of the first data block, a
physical address of the first log block or the second log
block, and a log pointer table including an offset value of a
page written in the first log block or the second log block.

31. The method of claim 30, further comprising:

receiving a request for reading the first logical address;

and

in vesponse to the rvequest for veading, accessing one of

the first data block, the first log block, and the second
log block by referring to the log pointer table.

32. A method of operating a nonvolatile memory includ-
ing a plurality of memory blocks each of which is allocatable
as one of a data block, a log block, a free block, and an
erasable block, the method comprising:

receiving a first update request for instructing to write

second data to a first logical address corresponding to
a first page, to which first data is written, among a
plurality of pages of a first data block;

if no first log block corresponding to the first data block

exists, processing a second data block including invalid
data as an evasable block so as to create a first free
block;

allocating the first free block as the first log block and

writing the second data to a first free page of the first
log block;

receiving a second update vequest for instructing to write
thivd data to the first logical addvess; and

in vesponse to the second update vequest, if a second free
page of the first log block exists, writing the thivd data
to a second free page of the first log block.

33. The method of claim 32, further comprising:

if the second free page for the thivd data does not exist in
the first log block and no free block that is allocatable
as a second log block exists, processing a thivd data
block including invalid data as the erasable block so as
to create a second free block; and

allocating the second free block as the second log block
and writing the thivd data to a third free page of the
second log block.

34. The method of claim 32, wherein the processing the

second data block as the evasable block so as to create the

fivst free block comprises performing one of a switch merge

to switch a third log block corresponding to the second data
block to the second log block, a copy merge to copy valid
data of the second data block to a free page of a thivd log
block, and a simple merge to copy valid data of the second
data block and valid data of the third log block to a fourth
data block.

US RE46,404 E
17 18

35. The method of claim 32, wherein the processing the receiving a second update vequest for instructing to write
second data block as the erasable block so as to create the third data to the first logical address;
first free block comprises: if no second free page for the third data exists in the first

writing to a plan log a tvpe of a block merge performed
to process the second data block as an erasable block
and information about a block tramsitioned from the
second data block; and

updating recovery information including at least one of a

log block and no free block that is allocatable as a
second log block exists, processing a second data block
including invalid data as an evasable block so as to
create a first free block; and

data block list, a free block list, an erasable block list, creating recovery information corresponding to a block
and a log block list of the nonvolatile memory based on 0 merge performed to process the second data block as
the plan log. an erasable block.
36. A method of operating a nonvolatile memory includ- 37. The method of claim 36, wherein the creating the
ing a plurality of memory blocks which ave allocatable as recovery information comprises.:
one of data blocks, log blocks corresponding to the data writing to a plan log a type of the block merge performed
bl(?c.ksj free blocks, and erasable blocks, the method com- 5 to process the second data block as the erasable block
prising. and information about a block transitioned from the
receiving a first update request for instructing to write second data block: and

second data to a first logical address corresponding to updating the recovery information including at least one

a first page, to which first data is written, among a of a data block list, a free block list, an erasable block

. pluralily of pages of a first dala block,: . 20 list, and a log block list of the nonvolatile memory
in vesponse to the first update request, writing the second based on the plan log

data to a first free page of a first log block correspond-
ing to the first data block; * % % ok ok

	Front Page
	Drawings
	Specification
	Claims

