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1

SWITCHING DEVICE HAVING A
NON-LINEAR ELEMENT

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a Reissue of U.S. Pat. No. 8,767,441

B2 issued Jul. 1, 2014 that claims priority to and 1s a
continuation-in-part of U.S. application Ser. No. 13/149,
757, filed May 31, [2012. This application also] 2011, now
issued as U.S. Pat. No. 8,502,185 on Aug. 6, 2013, and that
claims prionity to U.S. application Ser. No. 13/290,024, filed
Nov. 4, 2011, now issued as U.S. Pat. No. §,467,227 on Jun.
18, 2013, which 1s a non-provisional of U.S. Application No.
61/410,035, filed Nov. 4, 2010, U.S. Application No.
61/712,171, filed Oct. 10, 2012, and U.S. application No.

61/786,100, filed Mar. 15, 2013. These cited documents are
incorporated by reference herein, for all purposes.

JOINT RESEARCH AGREEMENT

The presently claimed invention was made by or on
behalf of the below listed parties to a joint university-
corporation research agreement. The joint research agree-
ment was in eflect on or before the date the claimed
invention was made and the claimed 1invention was made as
a result of activities undertaken within the scope of the joint
research agreement. The parties to the joint research agree-
ment are The University of Michigan and Crossbar, Incor-
porated.

BACKGROUND

The present mvention 1s related to switching devices.
More particularly, the present invention provides a structure
and a method for forming non-volatile resistive switching
memory devices characterized by a suppression of current at
low bias and a high measured ON/OFF resistance ratio.

The success of semiconductor devices has been mainly
driven by an intensive transistor down-scaling process.
However, as field eflect transistors (FE'T) approach sizes less
than 100 nm, problems such as short channel eflfect start to
prevent proper device operation. Moreover, such sub 100 nm
device size can lead to sub-threshold slope non-scaling and
increased power dissipation. It 1s generally believed that
transistor based memories such as those commonly known
as Flash memory may approach an end to scaling within a
decade. Flash memory 1s one type of non-volatile memory
device.

Other non-volatile random access memory (RAM)
devices such as ferroeclectric RAM (Fe RAM), magneto-
resistive RAM (MRAM), organic RAM (ORAM), and phase
change RAM (PCRAM), among others, have been explored
as next generation memory devices. These devices often
require new materials and device structures to couple with
s1licon based devices to form a memory cell, which lack one
or more key attributes. For example, Fe-RAM and MRAM
devices have fast switching characteristics and good pro-
gramming endurance, but their fabrication is not CMOS
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compatible and size 1s usually large. Switching for a
PCRAM device uses Joules heating, which inherently has
high power consumption. Organic RAM or ORAM 1s
incompatible with large volume silicon based fabrication
and device reliability 1s usually poor.

As 1ntegration ol memory devices increases, the size of
clements 1s reduced while the density of elements 1n a given
area 1s increased. As a result, dark current or leakage current
becomes more of a problem, where leakage current can
return a false result for a read operation or cause an
unmintentional state change 1n a cell. The problem of leakage
current 1s particularly acute in two-terminal devices, 1n
which multiple memory cells can form leakage paths
through interconnecting top and bottom electrodes.

Conventional approaches to suppressing leakage current
in switching devices include coupling a vertical diode to a
memory element. However, the external diode approach has
several disadvantages. In general, the diode {fabrication
process 1s a high temperature process, typically conducted
above 500 degrees Celsius. Because most diodes rely on a
P/N junction, it 1s diflicult to scale the diode height to
achieve a memory and diode structure with a desirable
aspect ratio. And finally, a conventional diode 1s only
compatible with a unipolar switching device, and not a
two-way bipolar device. It 1s therefore desirable to have a
robust and scalable method and structure for a highly
integrated memory that 1s not adversely afiected by leak
currents.

BRIEF SUMMARY OF THE INVENTION

The present mvention 1s generally related to switching
devices. More particularly, the present invention provides a
structure and a method for forming a non-volatile memory
cell using resistive switching. It should be recognized that
embodiments according the present invention have a much
broader range of applicability.

In a specific embodiment, a switching device includes a
substrate; a first electrode formed over the substrate; a
second electrode formed over the first electrode; a switching
medium disposed between the first and second electrode;
and a nonlinear element disposed between the first and
second electrodes and electrically coupled 1n series to the
first electrode and the switching medium. The nonlinear
clement 1s configured to change from a {irst resistance state

to a second resistance state on application of a voltage
greater than a threshold.

The switching device includes a RRAM 1n an embodi-
ment.

The switching device include a PCRAM 1n an embodi-
ment.

The present invention has a number of advantages over
conventional techniques. For example, embodiments of the
present invention allow for a high density non-volatile
memory characterized by high switching speed, low leakage
current characteristic, and high device yield. Depending on
the embodiment, one or more of these may be achieved.
These and other advantages will be described below 1n more
detail in the present specification.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments will hereinafter be described 1n
conjunction with the appended drawings, wherein like des-
ignations denote like elements, and wherein:
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FIG. 1 illustrates a non-volatile memory device including
a memory cell that has a bottom electrode, a switching

medium, and a top electrode according to an embodiment of
the present invention;

FI1G. 2 illustrates 1I-V resistance switching characteristics
of a resistive memory cell;

FIG. 3A illustrates a two-terminal memory cell that 1s
placed mn an ON state by applying a program voltage
V orocrars 10 the top electrode;

FIG. 3B illustrates a two-terminal memory cell that 1s
placed 1n an OFF state by applying an erase voltage V . , o
to the top electrode;

FIG. 4 illustrates a memory array including a leakage
current,

FIG. 5 illustrates a non-volatile memory cell including a
nonlinear element according to an embodiment of the pres-
ent 1nvention;

FIG. 6A 1llustrates I-V characteristics of a digital nonlin-
car element subjected to a voltage sweep;

FIG. 6B 1illustrates I-V characteristics of a switch com-
bined with a digital nonlinear element 1n an 1mitially OFF
state subjected to a positive voltage sweep;

FIG. 6C illustrates I-V characteristics of a switch com-
bined with a digital nonlinear element 1n an 1mtially OFF
state subjected to a negative voltage sweep;

FIG. 6D illustrates I-V characteristics of a switch com-
bined with a digital nonlinear element 1n an mitially ON
state subjected to a positive voltage sweep;

FIG. 6F 1illustrates I-V characteristics of a switch com-
bined with a digital nonlinear element 1 an mitially ON
state subjected to a negative voltage sweep:;

FIG. 7A illustrates I-V characteristics of an analog non-
linear element subjected to a positive voltage sweep;

FIG. 7B illustrates 1-V characteristics of a switch com-
bined with an analog nonlinear element in an mitially OFF
state subjected to a positive voltage sweep;

FIG. 7C illustrates I-V characteristics of a switch com-
bined with an analog nonlinear element 1n an mitially OFF
state subjected to a negative voltage sweep;

FIG. 7D 1illustrates I-V characteristics of a switch com-
bined with an analog nonlinear element 1n an mitially ON
state subjected to a positive voltage sweep;

FIG. 7E illustrates I-V characteristics of a switch com-
bined with an analog nonlinear element 1n an mitially ON
state subjected to a negative voltage sweep; and

FIG. 8A 1illustrates I-V characteristics of a non-volatile
memory cell including a nonlinear element according to an
embodiment of the present invention; and

FIG. 8B illustrates a memory array including leakage
currents.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

The present invention 1s generally directed to a memory
device. More particularly, the present invention provides a
structure and a method for a resistive switching cell having
a nonlinear element. The switching cell may be used 1n a
Resistive Random Access Memory (RRAM) or any highly
integrated device. It should be recognized that embodiments
of the present invention can have a broader range of appli-
cability. Although the present mvention 1s described with
respect to specific embodiments, the embodiments are only
used for illustrative purposes and should not be considered
limiting.

RRAM 1s typically a two terminal device in which a
switching element 1s sandwiched between a top electrode
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and a bottom e¢lectrode. The resistance of the switching
clement 1s varied by applying a voltage to the electrodes or
a current through the switching element. Resistive switching
can be bipolar or unipolar. In bipolar switching, the change
in resistance of the switching element depends on polarity
and a magnitude of a current or voltage based applied
clectrical signal. In the case of umipolar switching, the
change 1n resistance of the switching element depends only
on the magnitude of the applied voltage or current and
typically 1s a result of Joule heating within the switching
clement. Embodiments of the present invention are
explained with respect to a two-terminal RRAM device
using bipolar switching, but are not limited thereto. As used
herein, the terms “RRAM” or “resistive memory cell” refer
to a memory cell or memory device that uses a switching
medium whose resistance can be controlled by applying an
clectrical signal without ferroelectricity, magnetization, and
phase change of the switching medium. The present inven-
tion 1s not limited to implementation n RRAM, e.g., the
invention may be implemented using the phase change
RAM.

FIG. 1 1illustrates a resistive memory cell 100 1n a non-
volatile memory device, e.g., a semiconductor memory chip.
The memory cell includes a bottom electrode 102, a switch-
ing medium 104, and a top electrode 106 according an
embodiment of the present invention. The switching
medium 104 exhibits a resistance that can be selectively set
to various values and reset using appropriate control cir-
cuitry. The memory cell 100 1s a two-terminal resistive
memory device, e.g., RRAM, 1n the present embodiment.
Terms such as “top” or “bottom” are used for illustrative
purpose only and should not construe to be limiting.

In the present embodiment, the memory cell 100 1s an
amorphous-silicon-based resistive memory cell and uses
amorphous silicon (a-S1) as the switching medium 104. The
resistance of the switching medium 104 changes according
to formation or retrieval of a conductive filament inside the
switching medium 104 according to a voltage applied to the
clectrodes. In an embodiment, the switching medium 104 1s
substantially free of dopants. In another embodiment, the
switching medium 104 1s a-Si1 doped with boron. In some
embodiments, the resistive switching layer includes a silicon
oxide, e.g. a silicon sub oxide, (e.g S1xOy, where x O0<y<=1,
0<x<2,) or sub-oxide material such as Ge, SixGey, and
S1xGeyOz. It should be understood that any such sub-oxide
refers to a non-stoichiometric oxide. An example of this 1s
silicon oxide: stoichiometric silicon oxide 1s S102, and
non-stoichiometric oxide may be S10x where 0<x<2. In
various embodiments, other forms of non-stoichiometric
oxide may be formed or grown using various fabrication
techniques.

The top electrode 106 1s a conductive layer containing
silver (Ag) and acts as the source of filament-forming 1ons
in the a-S1 structure. Although silver 1s used 1n the present
embodiment, 1t will be understood that the top electrode 106
can be formed from various other suitable metals, such as
gold (Au), nickel (N1), aluminum (Al), chromium (Cr), 1ron
(Fe), manganese (Mn), tungsten (W), vanadium (V), and
cobalt (Co). In certain embodiments, the bottom electrode
102 1s pure metal, a boron-doped electrode, or other p-type
polysilicon or silicon-germanium, which 1s 1n contact with a
lower-end face of the a-Si1 structure. In an embodiment, the
memory cell 100 1s configured to store more than a single bit
of information, e.g., by adjusting the external circuit resis-
tance, as explained 1n application Ser. No. 12/575,921, filed
on Oct. 9, 2009, which 1s entitled “Silicon-Based Nanoscale
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Resistive Device with Adjustable Resistance” and 1s incor-
porated by reference 1n 1ts entirety.

FIG. 2 illustrates resistance switching characteristics of
the memory cell 100 according to an embodiment of the
present ivention. The switching medium 104 displays a
bipolar switching eflect. The resistance of the switching
medium 104 changes depending on the polarity and mag-
nitude of the voltage signal applied to the switching medium
104 via the top electrode 106 and the bottom electrodes 102.
The memory cell 100 1s changed 1nto an ON state (low
resistance state) when a positive voltage equal to or greater
than a threshold program voltage (also referred to as a
“program voltage”) Vrnonaraar 1S applied. In an embodi-
ment, the program voltage ranges between 1 volt to 5 volts
depending on the matenals used for the switching medium
104 and the top electrode 106. In another embodiment, the
program voltage ranges between 1 volt and 3 volts. The
memory cell 100 1s switched back to an OFF state (lugh
resistance state) when a negative voltage equal to or greater
than a threshold erase voltage (also referred to as “‘erase
voltage™) V.., 15 applied. In an embodiment, the erase
voltage ranges from -2 volts to =5 volts. The cell state 1s not
aflected 11 the voltage applied 1s between two threshold
voltages Vopoarir, and Vo, o, which enables a low-
voltage read process. Once the memory cell 100 1s set to a
specific resistance state, the memory cell 100 retains the
information for a certain period (or retention time) without
clectrical power.

FIG. 2 illustrates a current-voltage (I-V) relationship
through a switching operation of a non-rectifying memory
cell 100. Electrical current flows from the top electrode 106
to the bottom electrode 102 when the potential applied to the
top electrode 106 1s positive potential with respect to the
bottom electrode 102. On the other hand, current flows 1n the
reverse direction 1f the potential applied to the top electrode
106 1s negative with respect to the bottom electrode 102.

FIGS. 3A and 39 illustrate a switching mechanism of the
memory cell 100 during the ON and OFF states according to
an embodiment of the present mvention. The switching 1n
the switching medium 104 1s based on formation and
retrieval of a conductive filament, or a plurality of filaments,
in a filament region 1n the switching medium 104 according
to the program and the erase voltages applied to the bottom
clectrode 102 and the top electrode 106 of the memory cell
100.

FIG. 3 A illustrates the memory cell 100 that 1s placed in
an ON state by applying the program voltage V .5 »r 41, 1O
the top electrode 106. The switching medium 104, made of
a-S1, 1s provided between the bottom electrode 102 and the
top electrode 106. An upper portion of the switching
medium 104 includes a metallic region (or conductive path)
302 that extends from the top electrode 106 to approxi-
mately 10 nm above the bottom electrode 102. The metallic
region 302 1s formed during an electroforming process when
a slightly larger voltage than a subsequent switching voltage,
e.g., 3~5 V, 1s applied to the top electrode 106. This large
voltage causes the electric field-induced diffusion of the
metal 1ons from the top electrode 106 toward the bottom
clectrode 102, thereby forming a continuous conductive path
312. A lower portion of the switching medium 104 defines
a lllament region 304, wherein the filament 310 1s formed
when the program voltage V ornoen 41, 18 applied after the
clectroforming process. The continuous conductive path 312
and the filament 310 can also be formed together during the
clectroforming process. The filament 310 comprises a series
of metal particles, which are trapped 1n defect sites 1n a
lower portion of the switching medium 104 when the
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program voltage V ~» »=r 41, applied provides suflicient acti-
vation energy to push a number of metal 1ons from the
metallic region 302 toward the bottom electrode 102.

The filament 310 1s believed to be comprised of a col-
lection of metal particles that are separated from each other
by the non-conducting switching medium 104 and that do
not define a continuous conductive path, unlike the continu-
ous conductive path 312 in the metallic region 302. The
filament 310 extends about 2 to 10 nm depending on
implementation. The conduction mechanism 1n an ON state
1s electrons tunneling through the metal particles 1n the
filament 310. The cell resistance 1s dominated by the tun-
neling resistance between the metal particle 306 and the
bottom electrode 102. The metal particle 306 1s a metal
particle in the filament region 304 that 1s closest to the
bottom electrode 102 and that 1s the last metal particle n the
filament region 304 1 an ON state.

FIG. 3B 1illustrates the memory cell 100 that 1s placed 1n
an OFF state by applying an erase voltage V . , < to the top
clectrode 106. The erase voltage exerts suflicient electro-
magnetic force to dislodge the metal particles trapped 1n the
defects sites of the a-Si1 and retrieves at least part of the
filament 310 from the filament region 304. The metal
particle 308 that 1s closest to the bottom electrode 102 1n an
OFF state 1s separated from the bottom electrode 102 by a
distance greater than the metal particle 306 during an ON
state. This increased distance between the metal particle 308
and the bottom electrode 102 places the memory cell 100 1n
a high resistance state compared to an ON state. In an
embodiment, the resistance ratio between ON/OFF states
ranges from 10E3 to 10E7. Memory cell 100 behaves like a
resistor 1n an ON state and a capacitor 1n an OFF state (1.¢.,
the switching medium 104 does not conduct a current in any
meaningiul amount and behaves as a dielectric 1n an OFF
state). In an 1implementation, the resistance 1s 10E5 Ohm 1n
an ON state and 10E10 Ohm in an OFF state. In another
implementation, the resistance 1s 10E4 Ohm 1n an ON state
and 10E9 Ohm 1n an OFF state. In yet another implemen-
tation, the resistance 1s at least 10E7 Ohm 1n an OFF state.

FIG. 4 1llustrates a portion of an array 400 that 1s 1n a
crossbar configuration 1n which the (common) top electrodes
and the (common) bottom electrodes are arranged 1n an
orthogonal manner according to an embodiment of the
present 1nvention. An array of such crossbar structures
includes a plurality of parallel (common) top electrodes and
a plurality of parallel (common) bottom electrodes with
switching elements disposed between the intersection
regions of the (common) top electrodes and the (common)
bottom electrodes. Certain limitations may exist in such a
configuration, as described below.

Four memory cells 402, 404, 406, and 408 are shown.
Memory cells 404 and 406 share a common {first top elec-
trode 410, while cells 402 and 408 share a common second
top electrode 418. The first top electrode 410 and the second
top electrode 418 are arranged parallel to each other.
Memory cells 402 and 404 share a common {irst bottom
clectrode 412 and cells 406 and 408 share a common second
bottom electrode 420. The first bottom electrode 412 and the
second bottom electrode 420 are spatially arranged parallel
to each other. In addition, each of the top electrodes 1s
configured to be non-parallel to each of the bottom elec-
trodes.

To determine a state of a target cell which has a high
resistance state, a voltage 1s applied and a current flowing
through the target cell 1s measured. If some cells in the
crossbar array are 1n low resistance states, the voltage
applied to the target cell can cause a leakage current to tlow
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through the untargeted cells instead. In this case the cells
causing the leakage, including the target cell, are intercon-
nected through shared electrodes. The leakage current can
form a current path, commonly known as a sneak current or
a sneak current path, through these untargeted cells. Such a
sneak current can cause undesirable behavior in a switching
array.

For example, in an exemplary array, cells 402, 404, and
406 are at a low resistance ON state, and cell 408 1s at a high
resistance OFF state. Because the ON state 1s characterized
by a low resistance, a sneak path 416 may be formed
allowing current to tlow through cells 402, 404, and 406.
Thus, when a read voltage 1s applied to target cell 408,
leakage current flowing along sneak path 416 may cause an
erroneous reading of an ON state result.

In some embodiments, a sneak path can be very short,
existing 1 as few as two forward biased cells and one
reverse biased cell. In addition, once started, a sneak path
can propagate throughout the array through cells 1n the ON
state. The most common conductive path 1 a switching
array 1s the shared top and bottom electrodes. Sneak path
416 1s only one example of a sneak path passing leakage
current through an array.

To mitigate problems caused by leakage current in a
swr[chmg array, a nonlinear element (NL =) may be included
in a resistive switching device. NLEs can be generally
divided into two categories: an NLE that exhibits digital-like
behavior, or “digital NLE,” and an NLE that exhibits analog-
like behavior, or an “analog NLE,” both of which are
described in detail separately below. The categories of
digital and analog behavior are not strictly defined, so it 1s
possible for a particular NLE to have properties that are
characteristic of both digital and analog behavior, or some-
where 1 between. In i1ts most basic form, an NLE 1s an
clement that has a nonlinear response with respect to volt-
age, for instance, with a nonlinear I-V relationship. In most
embodiments, the relationship 1s characterized by a high
resistance state at low amplitude voltages and a lower
resistance state at higher amplitude voltages, with a nonlin-
car transition from the high resistance state to the low
resistance state. Unlike a switching medium, an NLE does
not have a memory characteristic; an NLE returns to an
original state when a voltage 1s no longer applied. An NLE
that 1s suitable for suppressing leak currents 1s characterized
by a high resistance state at a low bias, a lower resistance
state at a higher bias, and a threshold between the states.

In an embodiment, an NLE 1s a two terminal device which
shows an apparent threshold eflect such that the resistance
measured below a first voltage 1s significantly higher than
the resistance measured above a second voltage. In a typical
embodiment, the resistance below the first voltage 1s more
than 100 times greater than the resistance above the second
voltage. In other embodiments, the ratio may be 1n the range
of about 100 to about 500 times, 1n the range of about S00
times to about 1000 times, 1n the range of about 1000 times
to about 10,000 times, or the like, depending upon specific
engineering requirements of the NLE matenal. In some
embodiments, the first and second voltages are different, and
are typically referred to as a hold voltage V,,;» and
threshold voltage V -, respectively. In other embodiments,
the first voltage and second voltage may be the same. In
various embodiments, these relatlonsths may exist i both
polarities of voltage, or only 1n one polarity, and the NLE
can be a single material or multiple layers of different
materials.

As shown 1n FIG. 5, to mitigate the eflects of leakage
current 1 a memory cell 500, an NLE 304 1s electrically
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coupled 1n series to the top electrode 508, bottom clectrode
502, and switching medium 506. An NLE 504 may be
disposed between the bottom electrode 502 and switching
medium 506. In other embodiments, the NLE 1s disposed
between the top electrode 508 and the switching medium
506. Higher temperatures may be experienced by the lower
portions ol a semiconductor device during various semicon-
ductor processes, so an NLE that 1s located lower 1n a stack
structure may be designed to withstand higher temperatures
than an NLE located further from the substrate.

The behavior of a digital NLE 1s characterized by abrupt
changes in current at certain voltages, which may be referred
to as threshold voltages. Such behavior 1s 1llustrated 1n FIG.
6A, which shows the results of a voltage sweep in an
embodiment with respect to current on an NLE that 1s not
coupled to a resistive switching device. As positive bias
voltage 1s applied to the NLE, the NLE is 1n a resistive state
characterized by high resistance until 1t reaches the threshold
voltage V ;. After this threshold has been reached, the
NLE will retain its conductive state until the applied voltage
drops below a hold voltage V., . Thus a NLE that 1s 1n
a conductive state by having a voltage applied above V .,
will continue to have a low resistance so long as a voltage
above V 7y 15 supplied to the NLE, after which 1t reverts
to the original high-resistance state. An NLE does not have
a memory characteristic, so the same I-V relationship is
experienced every time a voltage 1s applied from an original
state.

Referring back to FIG. 6A, when a negative bias voltage
1s applied that 1s more negative than a threshold voltage
erz: an abrupt transition 1s experienced, and the resistance
in the NLE 1s significantly reduced. The NLE retains its low
resistance state until the voltage becomes less negative than
a value V,,;,, at which point the NLE reverts to an
original high resistance state. Although FIG. 6 A shows an
embodiment with symmetrical I-V behavior between posi-
tive and negative bias performance, in other embodiments
the relationship 1s not symmetrical.

FIGS. 6B to 6F show I-V relationships of an embodiment
where an NLE 1s coupled to a memory cell (“combined
device™), 1n this case a digital NLE. Memory cell 500 1s an
example of such a combined device. If the memory cell
depicted 1n those figures was not coupled to the NLE, 1t
would have an I-V response according to FIG. 2. Turning to
FIG. 6B, an I-V curve showing a program operation switch-

ing a cell from an mitially OFF state to an ON state 1s shown.
To establish a conductive ON state 1n a cell, a voltage above
V oroarirse 18 applied. V oo 5e0 41/ 18 the program voltage
for the combined device, which switches the combined
device from an OFF state to an ON state. V5, -~ 15 the
hold voltage of a combined device, which performs in
essentially the same way as V,,, »~, described above. In a
preferred embodiment, V., 1s less than V ,,, which 1s
less than V ., 5cr 4as

The relationships between I-V performance 1n a memory
cell, an NLE, and a combined device can also be explained
through equations. The equations assume that both the NLE
and the switching medium switch instantly (e.g., a few nsa
tew hundreds of ns) when experiencing a threshold voltage.
In addition to the definitions given above, the following
variables are designated:
R, ,-~~—1he OFF state resistance of a memory element
R, ,-~—=1he ON state resistance of a memory element
R.o-z=The OFF state resistance of an NLE

~on—lhe ON state resistance of an NLE
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Using these variables, the relationship between the hold
voltage of a combined device and the hold voltage of an
NLE can be expressed as:

VHOLDC1=((RMON+RNONYRNON)VHOLD1

The value for the program voltage of the combined device
can be expressed as:

VPROGRAMC =small{large((RMOFF+RNOFF)/
RNOFF)VTH1,VPROGRAM),large(VTHI,
((RMOFF+RNOFF)/RMOFF)VPROGRAM) }

Where “small” indicates the smaller of two values 1n a set,
and “large” indicates the larger of two values 1n a set. In
most embodiments, the V., ,-r.a1, 15 significantly higher
than V ;,, and V on 5:r sas 18 thus similar to Vo, 56z 4as

FIG. 6C shows the result of a negative voltage sweep of
the same switch in an OFF state. Because 1t 1s already 1n the
OFF state, a negative voltage does not cause an erase
operation, and the cell remains 1 a high resistance OFF
state.

FIGS. 6D and 6E show I-V relationships of a combined
device (e.g. memory cell 500) where the memory cell 1s
initially in a low-resistance ON state. FIG. 6D shows a read
operation, where the read voltage must be greater than
threshold voltage V ., ~, to return an accurate read value. As
the read voltage drops below the hold voltage V., ; 1, the
resistance 1n the cell increases substantially. The threshold
voltage of the combined device 1s related to the threshold
voltage of the NLE through the following equation:

VTHC1=((RMON+RNOFF)/RNOFF)VTH1 =VTHI

Thus, the read threshold voltage of the combined device 1s
approximately the same as the threshold voltage of the NLE,
Of Virgc1=V a1 -

Similarly, as seen 1n FIG. 6E, an erase operation must
overcome a second threshold value V ., to allow current
to start flowing through the cell, and the switch i1s changed
to a high-resistance OFF state at voltage V. , <~ Like the
positive threshold Voltage the negative threshold voltage of
the combined device 1s about the same as the negative
threshold voltage of the NILE. The value of the erase voltage
Vo » e 11 @ combined device can be expressed as:

VERASEC=large((RMON+RNON)/RMON)VE-
RASE,VTH2)

The relationship between the negative threshold voltages of
a discrete and combined device can be expressed as:

VTHC2=((RMON+RNOFF)/RNOFF)VTH2=VTH2.

So that in most embodiments, V .=V ...

Various embodiments of a digital NLE can be made of
many different materials. For example, a dlgltal NLE can be
a threshold device such as a film that experiences a field-
driven metal-insulating (Mott) transition. Such materials are
known 1n the art, and include VO, and doped semiconduc-
tors. Other threshold devices include material that experi-
ences resistance switching due to electronic mechanisms
observed 1n metal oxides and other amorphous films, or
other volatile resistive switching devices such as devices
based on anion or cation motion in oxides, oxide hetero-
structures, or amorphous films. A digital NLE can also be 1n
the form of a breakdown element exhibiting soit breakdown
behavior such as S10,, HiO,, and other dielectrics.
Examples of such breakdown elements are described in

turther detail by application Ser. No. 12/826,633, filed on
Jun. 29, 2010, which 1s entitled “Rectification E

Element for
Resistive Switching for Non-volatile Memory Device and
Method,” and 1s imncorporated by reference 1n its entirety. In
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other embodiments, the NLE may be a solid electrolyte
material. The solid electrolyte material can include be chal-
cogenmide based such as GexSy, GexSey, SbxTey, AgxSey,
and CuxSy, or can be metal oxide based such as WOx, T10x,
AlOx, HIOx, CuOx, and TaOx, where O<x<appropriate
stoichiometric value (e.g. 2, 3, etc.) (e.g. GeS, GeSe, WO3,
or SbTe, and the like).

As 1s known 1n the art, the precise values of threshold,
hold, program and erase can be adjusted for different
embodiments by changing the form of and materials used for
the NLE and the memory cell. In various embodiments the
threshold voltage for the NLE can be about the same as the
hold voltage, the program voltage, or both. In other embodi-
ments the threshold voltage for the NLE can exceed the

program and erase voltages of a resistive switching device.

An analog NLE differs from a digital NLE 1n that 1ts I-V
relationship 1s characterized by a more gradual transition
when current starts to flow through the element. As shown
in FIG. 7A, which 1llustrates the response of an analog NLE
to a voltage sweep, the current transition follows an expo-
nential-like curve. The transition or threshold 1s therefore
less abrupt than a digital NLE. Threshold voltage values
where substantial current starts to tlow through an analog
NLE are designated as V , and V; for positive and negative
bias wvalues, respectlvely Another significant difference

between an analog and digital NLE 1s that an analog NLE
does not experience the hysteretic hold voltage characteristic
of a digital NLE.

FIGS. 7B to 7E show I-V characteristics of a combined
device with an analog NLE. As shown 1n FIG. 7B, when a
program voltage V.roerire 18 applied to a combined
device where the switch 1s 1mitially 1n an OFF state, the
switch changes to a low resistance ON state. The
V oroarire 18 approximately the sum of the V , of the NLE
and the Von5:0 41, 01 the switch as shown in FIG. 2, or
V orocrire™=Y Y oo oar e As a result, the programming
voltage of a combined device with an analog NLE 1s
typically higher than the programming voltage of a switch-
ing element alone.

Turning now to FIG. 7C, a negative voltage sweep of a
combined device 1 an OFF state 1s shown. Because the
switch 1s already 1n an OFF state, the negative voltage does
not mduce a state change, and the switch remains 1n a high
resistance state.

FIG. 7D shows the result of a read operation 1n a
combined switch that 1s 1n an ON state. In the present
embodiment, V , <V .-, ~<V or5ar 4170 BECause the switch
1s already 1n a low-resistance ON state, current tlow above
the threshold voltage V , - 1s characterized by low resistance.
Circuitry can detect the current tlow, resulting in a positive
read result. The value tier V , 1s not aflected by the switching
apparatus in most embodiments, so typically V , =~V ,.

FIG. 7E shows an I-V curve for an erase operation in a
combined device. To change the switch from the ON state to
the OFF state, a voltage of V., .~ 1s applied to the
combined device, thereby increasing the resistance of the
switch. The voltage required to complete an erase operation
in a combined device 1s normally the sum of the erase value

of t“’le discrete switch and the threshold value of the analog
NL.

E, or Vigasec=V eraset Vs
An analog NLE can be any element that exhibits the

above described behavior. Examples of suitable materials
include a punch-through diode, a Zener diode, an 1mpact
ionization (or avalanche) element, and a tunneling element
such as a tunneling barrier layer. Such elements can be
tabricated using standard fabrication techmques.
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In most embodiments, |V ,, VoI<IV opocrires Y erase!. AS
1s known 1n the art, the precise threshold values ot V , V,,
program, and erase can be adjusted for different embodi-
ments by changing the form of and materials used for the
NLE and the memory cell. In various embodiments the
threshold voltage for the NLE can be about the same as the
program voltage. In other embodiments the threshold volt-
age can exceed the program and erase voltages.

In other embodiments, a resistive switching cell may be
configured to retain multiple resistive states. That 1s, rather
than being configured to have binary states of ON and OFF,
a cell can retain a plurality of resistance states. An array of
such switches has the same limitations regarding leakage
current, and would similarly benefit from the inclusion of an
NLE.

FIGS. 8A-B illustrate examples according to various
embodiments of the present invention. In various embodi-
ments of the present invention, as discussed 1n FIG. 4, when
a program (or read or erase) voltage 1s applied to a target cell
408, ¢.g. across second top electrode 418 and second bottom
clectrode 420, a sneak path 416 may allow a sneak path
current to flow through cells 402, 404 and 406. To reduce
this, a non-linear element, described above (e.g. NLE 504 in
FIG. 5), was mncorporated in each memory cell. The char-
acteristics of an example NLE was illustrated in FIG. 6A.
More particularly, when a voltage across the NLE exceeded
VTHI the resistance for the NLE switched from a relatively
non-conductive state to a relatively conductive state.
Accordingly, in an example, to program target cell 408, a
program voltage would be applied to target cell 408 that
would exceed VIHI and exceed the programming voltage
of target cell 408 (VProgram, FIG. 8A). In another example,
to read target cell 408, a read (or program) voltage would be
applied to target cell 408 that would exceed VTHI, but
would be less than the programming voltage of target cell
408 (VProgram, FIG. 8A).

In an example described 1n co-pending application Ser.
No. 13/290,024, filed Nov. 4, 2011, incorporated by refer-
ence above, the read voltage to the target cell was limited to
be no greater than three times the threshold voltage of the
nonlinear element. This three times number assumed that
unselected top electrodes and unselected bottom electrodes
in the memory array were allowed to float. By way of
explanation, using the numbering of FIG. 4 above, in FIG.
8B, the read voltage would not only be applied across target
cell 408, but also across sneak path 416 through cells 402,
404 and 406. In such a configuration, 1f the read (or
program) voltage exceeded three times the voltage threshold
(e.g. 3xVTH]1) of the non-linear element, the voltage across
non-linear element of 402, for example, would also exceed
VTHI1. Accordingly, the NLE of 402 would switch to a
relatively-conductive state, and sigmificant current could
flow through the sneak path 416. It was recognized in the
above 1ncorporated patent application, that to reduce sneak
path current, unselected cells, e.g. 402, 404 and 406 had to
have voltages applied that were lower than the threshold
voltage (e.g. VTHI1) of the non-lincar elements. For
example, when the read (or program) voltage (V408) is
applied across target cell 408, the resultant relationships
should be met: voltage across cell(s) V402<VTHI, voltage
across cell(s) V404<VTHI1, and voltage across cell(s)
406<<VVTHI. Additionally, the voltages across these unse-
lected cells should be greater than VITH2 (FIG. 8A). By

observing such conditions, 1t 1s understood that NLEs of

unselected cells (along sneak paths) should have voltages
across hem such that they remained non-conductive, see
suppressed region 800 1n FIG. 8A.
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In various embodiments of the present invention, in the
example of FIG. 4, during a read operation (for example),
when the read voltage Vread 1s applied to target cell 408, the
voltage Vread (e.g. VIHI<Vread (V408)<Vprogram, e.g.
Vread=2 volts) 1s applied to second top electrode 418 and
ground (e.g. Vg, e.g. Vg=0 volts) 1s applied to the second
bottom electrode 420. In the case of a program operation
V408>Vprogram. To reduce power consumption/require-
ments of the memory, the inventors have recognized that 1t
1s advantageous to set unselected bit lines (e.g. top elec-
trodes/conductors) and unselected word lines (e.g. bottom
conductors/electrodes) to voltages other than floating during
a read operation. The specific voltages may vary, and are
generally guided by the following concepts.

For a read (or program or erase) operation, for memory
cells, e.g. memory cells 402, that share second top electrode
418 (e.g. selected bit line), the difference (V402) between
the voltage across second top electrode 418 (VSBL) and
unselected word lines, (e.g. first bottom electrode 412)
(VUSWL) should be less than the voltage threshold of the
NLE of memory cells such as memory cell 402. In variable
format: VSBL-VUSWL<VTHI1 or V402<VTHI1 (FIG. 8A).
This condition would imnhibit the NLE memory cells such as
memory cell 402 from entering into relatively non-conduc-
tive states. It should be noted that, depending upon the
polarity of V402, to mnhibit the NLE of memory cells, such
as memory cell 402 from become relatively non-conductive
iIn a reverse-bias condition, the relationship maybe
VTH2<V402<VTHI. This was graphically illustrated by the
flat region 1 FIG. 6D (0 to VI'HCI1), and the flat region 1n
FIG. 6E (VTHC2 to 0), i1llustrated together 1n region 800 1n
FIG. 8A. These restrictions are desirable also 1n program or
erase operations upon memory cell 408. In other memory
configurations, these specific relationships and polarities
may be changed.

For a read (or program or erase) operation, for memory
cells, e.g. memory cells 406, that share second bottom
clectrode 420 (e.g. selected word line), the difference V406
between the voltage across unselected bit lines (e.g. first top
clectrode 410) (VUSBL) and second bottom electrode 420
(e.g. selected word line) (VSWL) should be less than the
voltage threshold of the NLE of memory cells such as
memory cell 406. In variable {format: VUSBL-
VSWL<VTHI V406<VTHI. This condition would inhibit
the NLE of memory cells such as memory cell 406 from
entering into relatively non-conductive states. It should be
noted that, depending upon the polarity of V406, to inhibit
the NLE of memory cells, such as memory cell 406 from
become relatively non-conductive in a reverse-bias, the

relationship maybe VIH2<V406<VTHI1. This was graphi-
cally illustrated by the flat region 1n FIG. 6D (0 to VIHC1),
and the flat region 1n FIG. 6E (VIHC2 to 0), illustrated
together 1n region 800 1 FIG. 8A. These restrictions are
desirable also 1n program or erase operations upon memory
cells 404. In various embodiments, VI'HI1 and IVTH2| may
be different, or similar. In other memory configurations,
these specific relationships and polarities may be changed.

For a read (or program or erase) operation, for memory
cells, e.g. memory cells 404, that share unselected word
lines (e.g. first bottom electrode 412), the difference (V404)
between the voltage across unselected bit lines (e.g. first top
clectrode 410) (VUSBL) and unselected word lines (e.g. first
bottom electrode 412) (VUSWL) should be less than the
voltage threshold of the NLE of memory cells such as
memory cells 404. In vaniable format: VUSBL-
VUSWL<VTHI1 or V404<VTHI1. This condition would

inhibit the NLE of memory cell 404 from entering into a
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relatively non-conductive state. It should be noted that
depending upon the polarity of V404, to inhibit the NLE of
memory cells, such as memory cell 404 from become

relatively non-conductive 1n a reverse-bias, the relationship
maybe VTH2<V404<VTHI1. This was graphically 1llus-

trated by the flat region 1 FIG. 6D (0 to VIHCI1), and the
flat region 1 FIG. 6E (VTHC2 to 0), 1llustrated together 1n
region 800 1n FIG. 8A. These restrictions are desirable also
In program or erase operations upon memory cells 404. In
other memory configurations, these specific relationships
and polarities may be changed.

FIGS. 8A-B illustrate an example according to various
embodiments of the present invention. In one example of the
above, the programming voltage Vprogram=2 volts, the

positive threshold voltage (VTHI) of the NLE=1 volt, and
the negative threshold voltage (VIH2) of the NLE=-2 volts.
In such a configuration, to perform a program operation, the
selected word line (e.g. second bottom electrode 420) 1s
grounded (VSWL=0 volts), and selected bit line (e.g. second
top electrode 418) (VSBL) i1s greater than the positive
threshold voltage (e.g. VIHI1 (1 volt)<VSBL, Vprogram (2
volts)). Thus, Vprogram=V408. Additionally, the unselected
word lines (e.g. first bottom electrode 412) are set to about
1.5 volts (VUSWL=1.5 wvolts), accordingly, the voltage
across memory cells such as memory cells 402 are less than
the NLE switching voltage (e.g. VITH2 (~2 volts)<V402 (2
volts—1.5 volts=0.5 volts)<VTHI1 (1 wvolts). Further, the
unselected bit lines (e.g. first top electrode 410) (VUSBL)
are set to about 0.5 volts, accordingly, the voltage across
memory cells such as memory cells 406 are thus less than
the NLE switching voltage (e.g. VIH2 (-2 volts)<V406 (0.5
volts—0 volts=0.5 volts)<VTHI1 (1 volts). Still further, from

above the unselected bit lines (e.g. first top electrode 410)
are set to about 0.5 volts (VUSBL=0.5 volts), and the

unselected word lines (e.g. first bottom electrode 412.)
(VUSWL) are set to about 1.5 volts (VUSWL=1.5 volts). In
such a configuration, because the bottom electrodes (e.g.
412) have a higher voltage than the top electrodes (e.g. 410),
memory cells, such as memory cells 404 are in a reverse bias
voltage region. Accordingly, the voltage across memory
cells such as memory cell 404 are less than the NLE
switching voltage VTHI, but also need to be greater than
VTH2: (e.g. VIH2 (-2 Volts)<V404 (0.5 volts—1.5 volts=-
1.0 volts)<VTHI1 (1 volts). As mentioned above, these
restrictions are also desirable 1n write and erase operations.
For example in a read case VIHI1<Vread (V408)<Vpro-
gram; and 1n an erase case Verase (V408)<VTH2.

In various embodiments, based upon the voltages V408,
V402, V406, V404, and the like, the current requirements of
memory cells may be computed during read, program, or
erase operations. For example, power consumption for
memory cells such as memory cells 402 (along the selected
bit line second top clectrode 418) 1s the number of cells
times the current across memory cells (V402 (e.g. 0.5
volts)/resistance of NLE 1n relatively non-conductive state);
plus power consumption for memory cells such as memory
cells 406 (along unselected bit lines, first top electrode 410)
1s the number of cells times the current across memory cells
(V406 (ec.g. 0.5 volts)/resistance of NLE 1n relatively non-
conductive state); plus power consumption for memory cells
such as memory cells 404 (along unselected bit lines, first
top electrode 410, and along unselected word lines, first
bottom electrode 412) 1s the number of cells times the
current across the memory cells (V404 (e.g. -1 volt)
resistance of NLE 1n relatively non-conductive state). In
some embodiments, setting of the bias voltages of unse-
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lected bit lines 410 (VUSBL) and unselected word lines may
412 (VUSWL) be made considering the power consumption
described above.

In one example, using a large array (e.g. 100x100) of
memory cells, if the voltage of the unselected bit lines (e.g.
first top electrode 410) (VUSBL) and the unselected word
lines (e.g. first bottom electrode 412) (VUSWL) are sub-
stantially the same the voltages, V404 1s small (e.g. about 0).
Accordingly, the power consumption of these memory cells
(99 cellsx99 cells=9801 cells) 1s small (e.g. about 0), and
power consumed/required 1s computed, consumed, mainly
from the memory cells along the selected bit line 418 (99
cells along the second top electrode 418) and from the
memory cells along the selected word line 420 (99 cells
along the second bottom electrode 420). In one example of
this VSBL=4V, VSWL=0V, VUSBL=2V, VUSWL=2V.

Although certamn of the above passages have been
described with respect to a read operation, it should be
understood that the above also apply to other operations,
such as programming operations and erase operations. In
cach of these situations, embodiments of the present inven-
tion incorporating NLE elements within a memory cell help
to reduce sneak paths/currents through unselected memory
cells. More particularly, for memory cells 402, 404 and 406
along sneak path 416, the voltages across these cells should
be within a NLE non-conductive (suppressed) region 800,
illustrated i FIG. 8 A, to reduce sneak path current. This 1s
in comparison with the graph illustrated in FIG. 2, for
embodiments without NLE-type elements.

In other embodiments, NLEs with different threshold
voltages may be used, resistive switching material having
different program and erase voltages may be used, different
voltages may be applied to bias unselected word lines and/or
unselected bit lines, diflerent polarity materials may be used,
and the like. Still other embodiments may be applied to
unipolar-type memory cells.

In light of the present patent disclosure, one of ordinary
skill 1n the art will recogmize that 1n other embodiments, the
voltages for selected bit lines, unselected bit lines, selected
word lines, unselected word hnes NLE threshold Voltages
read voltages, and the like may vary from those 1llustrated
above, depending upon specific engineering requirements,
¢.g. power consumption, performance, and the like

The examples and embodiments described herein are for
illustrative purposes only and are not intended to be limiting.
Various modifications or alternatives in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application and scope of
the appended claims.

We claim:

1. Method for operating a memory comprising:

applying a read voltage to the memory, wheremn the

memory comprising a plurality of cells including at
least a first cell, a second cell, a third cell, and a fourth
cell,

wherein the first cell and the second cell are coupled to a

first top electrode,

wherein the third cell and the fourth cell are coupled to a

second top electrode,

wherein the first cell and the third cell are coupled to a first

bottom electrode,
wherein the second cell and the fourth cell are coupled to
a second bottom electrode,

wherein each cell of the plurality of cells comprises a
resistive switching material stack comprising a resis-
tive switching material overlying a non-linear switch-
ing element material,
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wherein the resistive switching material 1s characterized
by a first voltage associated with switching from a
non-conductive state to a conductive state,

wherein the non-linear switching element matenal 1s

characterized by a second voltage associated with

switching from a non-conductive state to a conductive

state,

herein the second voltage 1s less than the first voltage,

herein the read voltage 1s between the first voltage and

the second voltage, and

wherein applying the read voltage to the memory com-
prises applying the read voltage to the first top elec-
trode while grounding the first bottom electrode to
thereby cause non-linear switching element material of
the first cell to be in the conductive state, while

maintaining non-linear switching element material of
the second cell, the third cell, and the fourth cell to
remain in the non-conductive state; [and}

detecting a read current across the first cell in response to

the read voltage[.];

whevrein the rvesistive switching matevial is characterized

by a third voltage associated with switching from the
conductive state to the non-conductive state;

wherein the non-linear switching element material is

charactervized by a fourth voltage associated with
switching from the non-conductive state to the conduc-
tive state; and

wherein the third voltage is less than the fourth voltage.

2. The method of claim 1 wherein a resistance of the
non-conductive state 1s related to a resistance of the con-
ductive state 1n a range of ratios selected from a group
consisting of: about 100 to about 500 times greater, about
500 to about 1000 times greater, about 1000 times to about
10,000 times greater.

3. The method of claim 1 wherein while applying the read
voltage to the first top electrode while grounding the first
bottom electrode, a voltage across the second cell 1s main-
tained at less than the second voltage.

[4. The method of claim 1

wherein the resistive switching material 1s characterized

by a third voltage associated with switching from the
conductive state to the non-conductive state;

wherein the non-linear switching element matenal 1s

characterized by a {fourth voltage associated with
switching from the non-conductive state to the conduc-
tive state; and

wherein the third voltage is less than the fourth voltage.]

5. The method of claim [4] / wherein while applying the
read voltage to the first top electrode while grounding the
first bottom electrode, a voltage across the fourth cell 1s
maintained at greater than the fourth voltage to thereby
maintain the non-linear switching element material of the
third cell 1n the non-conductive state.

6. The method of claim [4] / wherein while applying the
read voltage to the first top electrode while grounding the
first bottom electrode, the method further comprises apply-
ing a fifth voltage between ground and the read voltage to
the second bottom electrode.

7. The method of claim 6 wherein while applying the read
voltage to the first top electrode while grounding the first
bottom electrode, the method further comprises applying a
sixth voltage between ground and the read voltage to the
second top electrode.

8. The method of claim 7 wherein a difference between
the sixth voltage and the fifth voltage 1s greater than the
fourth voltage.
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9. The method of claim 1 further comprising;:

applying a write voltage to the memory, wherein the write
voltage exceeds the first voltage, wherein applying the
write voltage to the memory comprises applying the
write voltage to the first top electrode while grounding
the first bottom electrode to thereby cause the resistive
switching material of the first cell to be in the conduc-
tive state.

10. The method of claim 9 wherein applying the write
voltage to the first top electrode comprises applying the
write voltage to the first top electrode while grounding the
first bottom electrode to thereby cause the non-linear switch-
ing element material of the first cell to switch from the
non-conductive state to the conductive state.

11. Amemory operated according to the method described
in claim 1.

12. A memory comprising;

a plurality of cells including at least a first cell, a second
cell, a third cell, and a fourth cell, wherein each cell of
the plurality of cells comprises a resistive switching
material stack comprising a resistive switching material
overlying a non-linear switching element matenal,
wherein the resistive switching material 1s character-
1zed by a first voltage associated with switching from a
non-conductive state to a conductive state, wherein the
non-linear switching element maternial 1s characterized
by a second voltage associated with switching from a
non-conductive state to a conductive state, wherein a
second voltage 1s less than the first voltage;

a plurality of top electrodes including a first top electrode
and a second top electrode, wherein the first cell and the
second cell are coupled to the first top electrode, and
wherein the third cell and the fourth cell are coupled to
the second top electrode;

a plurality of bottom electrodes including a first bottom
electrode and a second bottom electrode, wherein the
first cell and the third cell are coupled to the first bottom
electrode, and wherein the second cell and the fourth
cell are coupled to the second bottom electrode,
wherein a read current path 1s associated with the first
cell, wherein non-read current paths are associated with
the second cell, the third cell, and the fourth cell,
wherein the non-linear switching element material of
the first cell 1s configured to reduce resistance of the
read current path, and wherein the non-linear switching

element material of the second cell, the third cell, and
the fourth cell are configured to increase resistance of
the non-read current; [and}

a voltage source coupled to the plurality of top electrodes
and to the plurality of bottom electrodes, wherein the
voltage source 1s configured to provide a plurality of
voltages to the plurality of top electrodes and to the
plurality of bottom electrodes|.];

wherein the resistive switching material is characterized
by a third voltage associated with switching from the
conductive state to the non-conductive state;

wherein the non-linear switching element material is
characterized by a fourth voltage associated with
switching from the non-conductive state to the conduc-
tive state; and

wherein the third voltage is less than the fourth voltage.

13. The memory of claim 12

wherein the non-linear switching element material of the
first cell 1s configured to be 1n the conductive state
dependent upon a read voltage that 1s greater than the
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second voltage but less than the first voltage, that 1s
applied to the first top electrode while grounding the
first bottom electrode; and

wherein the voltage source 1s configured to provide the
read voltage.

14. The memory of claim 12

wherein the non-linear switching element material of the
second cell 1s configured to be 1n the non-conductive
state dependent upon a read voltage that 1s greater than
the second voltage but less than the first voltage, 1s
applied to the first top electrode while grounding the
first bottom electrode; and

wherein the voltage source 1s configured to provide the
read voltage.

15. The memory of claam 14 wherein when the read
voltage 1s applied to the first top electrode while grounding
the first bottom electrode, a voltage greater than ground 1s
applied to the second bottom electrode such that a voltage
across the second cell 1s less than the second voltage.

16. The memory of claim 12 wherein the resistive switch-
ing material 1s selected from a group consisting of: an
amorphous silicon material, a silicon sub-oxide, a silicon
germanium sub-oxide.

17. The memory of claim 12 wherein each of the plurality
of bottom electrodes comprises a metal or a conductive
s1licon material selected from a group consisting of: a doped
polysilicon[,] and a doped silicon germanium material.

[18. The memory of claim 12

wherein the resistive switching material 1s characterized
by a third voltage associated with switching from the
conductive state to the non-conductive state;

wherein the non-linear switching element material 1s
characterized by a {fourth voltage associated with
switching from the non-conductive state to the conduc-
tive state; and

wherein the third voltage is less than the fourth voltage.]
19. The memory of claim 12

wherein the non-linear switching element material of the
fourth cell 1s configured to be 1n the non-conductive
state dependent upon a read voltage that 1s greater than
the second voltage but less than the first voltage, that 1s
applied to the first top electrode while grounding the
first bottom electrode; and

wherein a voltage diflerence greater than the fourth volt-
age 1s applied to the fourth cell.

20. The memory of claim 12

wherein the voltage source 1s configured to provide a read
voltage to the first top electrode, wherein the voltage
source 1s configured to provide a fifth voltage to the
second bottom electrode and a sixth voltage to the
second top electrode, wherein a voltage difference
between the second top electrode and the second bot-
tom electrode 1s greater than the fourth voltage.

21. The memory of claim 12 wherein a ratio between the
resistance of the first cell compared to a vesistance of the
second cell is greater than 1:1000.

22. The memory cell of claim 12 wherein the non-linear
switching material is selected from a group consisting of: a
solid electrolvte material and a metal sub-oxide.

23. The memory cell of claim 12 wherein the non-linear
switching material is bi-polar.

24. The memory cell of claim 12 wherein the non-linear
switching material consists of multiple layers of materials.
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25. A method for operating a memory comprising:
applyving a program voltage to the memory, wherein the
memory comprising a plurality of cells including at
least a first cell, a second cell, a thivd cell, and a fourth
cell
whevrein the first cell and the second cell are coupled to
a first top electrode,
whevrein the thivd cell and the fourth cell are coupled to
a second top electrode,
whevrein the first cell and the thivd cell are coupled to
a first bottom electrode,
whevrein the second cell and the fourth cell arve coupled
to a second bottom electrode,
wherein each cell of the plurality of cells comprises a
resistive switching material stack comprising a resis-
tive switching material having crystal defect regions
and a non-linear switching element material,
wherein each cell is characterized by a first first-
polarity voltage associated with the resistive switch-
ing material switching from a non-conductive state
to a conductive state and a first second-polarity
voltage associated with the rvesistive switching mate-
rial switching from the conductive state to the non-
conductive state,
wherein each cell is charvacterized by a second first-
polarity voltage and a second second-polarity volt-
age associated with the non-linear switching element
material switching from a second non-conductive
state to a second conductive state,
whevrein the second first-polarity voltage is less than the
first first-polarity voltage,
whevrein the first second-polarity voltage is less than the
second second-polarity voltage,
whevrein the program voltage is greater than ov equal to
the first first-polarity voltage, and
wherein applying the program voltage to the memory
comprises applyving the program voltage to the sec-
ond top electrode;
grounding the second bottom electrode;
applying a first bias to the first top electrode and applying
a second bias to the first bottom electrode;
causing a non-linear switching element material of the
Jourth cell to enter the conductive state and causing a
vesistive switching material of the fourth cell to enter
the conductive state,
maintaining non-linear switching element materials of the
first cell, the second cell, and the thivd cell in the
non-conductive state in vesponse to the applving the
program voltage, grounding the second bottom elec-
trode, the applyving the first bias and the applying the
second bias; and
removing the program voltage from the second top elec-
trode, whereby the non-linear switching element mate-
vial of the fourth cell veturns to the non-conductive
state, and wherein the resistive switching material of
the fourth cell remains in the conductive state.
26. The method of claim 25
wherein applying the program voltage to the second top
electrode while grounding the second bottom electrode
causes metal particles from the second top electrode to
diffuse into crystal defect regions of the resistive
switching material of the fourth cell; and
wherein after rvemoving the program voltage from the
second top electrode, the metal particles from the
second top electrode remain trapped in the crystal
defect vegions of the rvesistive switching material of the

Jourth cell.
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27. The method of claim 25 wherein while applying the
program voltage to the second top electrode while ground-
ing the second bottom electrode, a voltage across the second

cell is maintained at less than the second first-polarity
voltage.

28. The method of claim 25

wherein the first and second first-polarity voltages are
positive; and

wherein the first and second second-polarity voltage are
negative.

29. The method of claim 28 wherein
applying the first bias to the first top electrode comprises

applving a first bias voltage less than the second
fivst-polarity voltage to the first top electrode; and

wherein a voltage across the second cell in response to the
applving the first bias voltage is less than the second
first-polarity voltage.

30. The method of claim 29

wherein applving the second bias to the first bottom
electrode comprises applying a second bias voltage to
the first bottom electrode;

wherein a voltage difference between the program voltage
and the second bias voltage is less than the second
first-polarity voltage,; and

wherein a voltage across the third cell is less than the
second first-polarity voltage.

31. The method of claim 30

wherein a voltage across the first cell comprises a thivd
second-polarity voltage; and

wherein the second second-polarity voltage is less than
the thivd second-polarity voltage.
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32. The method of claim 25 wherein a resistance ratio

between the second conductive state to the second non-
conductive state of the non-linear switching element mate-
rial is within a range of about 1,000 to about 10,000.

33. The method of claim 25 further comprising:
applving an erase voltage to the second top electrode;

further grounding the second bottom electrode;
further biasing the first top electrode;

Jurther biasing the first bottom electrode to thereby cause

the non-linear switching element material of the fourth
cell to enter the conductive state and cause the rvesistive
switching material of the fourth cell to enter the non-
conductive state, while maintaining non-linear switch-
ing element materials of the first cell, the second cell,
and the thivd cell in the non-conductive state; and

removing the erase voltage from the second top electrode,
whereby the non-linear switching element material of
the fourth cell returns to the non-conductive state, and
wherein the resistive switching material of the fourth
cell remains in the non-conductive state.

34. The method of claim 33, wherein:

the further biasing the first top electrode comprises apply-
ing a first bias voltage less than the second first-
polarity voltage to the first top electrode; and

a voltage across the second cell in vesponse to the

applying the first bias voltage is greater than the
second second-polarity voltage and less than the sec-
ond first-polarity voltage.
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