(19) United States
12y Reissued Patent

(10) Patent Number:

USOORE46201E

US RE46,201 E

Selinger et al. 45) Date of Reissued Patent: Nov. 8, 2016
(54) METHOD AND CONTROLLER FOR 5,943,283 A 8/1999 Wong et al.
PERFORMING A SEQUENCE OF 6,034,882 A 3/2000 Johnson et al.
6,119,245 A 9/2000 Hiratsuka
COMMANDS 6,181,599 Bl 1/2001 Gongwer
6,185,122 Bl 2/2001 John t al.
(71) Applicant: SanDisk Technologies Inc., Plano, TX 6,230,233 Bl 5/9001 L%fg?-g;l Zt :1‘
(US) (Continued)
(72) Inventors: gg‘;;"iig S;;L“?E:é Sé‘i J(‘E?gﬂ)_CA (US); FOREIGN PATENT DOCUMENTS
Chaoyang Wang, Cupertino, CA (US) EP | 146 428 10/2001
WO WO 2005/066773 7/2005
(73) Assignee: SANDISK TECHNOLOGIES LLC, WO WO 2009/088920 7/2009
Plano, TX (US)
OTHER PUBLICATIONS
(21) Appl. No.: 14/243,620
‘ Arya, P, “A Survey of 3D Nand Flash Memory”, EECS Int’l
(22) Filed: Apr. 2, 2014 Graduate Program, National Chiao Tung University, 2012, pp.
Related U.S. Patent Documents [-11.
Reissue of: (Continued)
(64) Patent No.: 8,595,411
Issued: Nov. 26, 2013 Primary Examiner — Angela M Lie
‘;Iljpcll No.:]1)2/ 65262525009 (74) Attorney, Agent, or Firm — Brinks Gilson & Lione
1led: ec. 30,
(51) Int.Cl (37) ABSTRACT
GO6F 13/00 (2006.01) The embodiments described herein provide a method and
GO6F 12/12 (2016.01) controller for performing a sequence of commands. In one
(52) U.S. CL embodiment, a controller receives a command from a host to
CPC oo GOG6F 12/126 (2013.01) Perform a memory operation in a flash memory device,
(58) Field of Classification Search wherein the command comprises at least one bit that indi-
USPC 711/103 cates whether the command 1s a stand-alone command or 1s
Qee 7 hcatlon ﬁleforcomletesearch .ﬁi.sto part of a sequence of commands. The controller analyzes the
bP P - at least one bit to determine whether the at least one bait
(56) References Cited indicates that the command 1s a stand-alone command or 1s

U.S. PATENT DOCUMENTS

5,404,485 A 4/1995 Ban
5,434,825 A 7/1995 Hararn
5,532,962 A 7/1996 Auclair et al.
5,799,168 A 8/1998 Ban
5,818,757 A 10/1998 So et al.
5,937,425 A 8/1999 Ban

part of a sequence of commands. If the at least one bit
indicates that the command 1s a stand-alone command, the
controller performs the command. If the at least one bit
indicates that the command 1s part of a sequence of com-
mands, the controller performs the command as part of the
sequence ol commands.

28 Claims, 11 Drawing Sheets

//-'400
(*410

i

Mamory Operation in a Flash

Receive a Command from a Host to Perform a

Memory Device

;

L

- 420

Detarmine if the at Least One

Analyze at Least One Bit in the Command to

the Command {s a Stand-Alone Command or Is
Fan of a Sequanca of Commands

Bit Indicates that

' ikl

Stand-Alone
Cormmand?

440\ ¥

Yas

Y (,»-430

Perform the Command as
Part of the Sequence of
Commands

Perform the Command

US RE46,201 E

Page 2
(56) References Cited 2003/0065899 A1 4/2003 Gorobets
2003/0079077 Al 4/2003 Piau et al.
U.S. PATENT DOCUMENTS 2003/0097520 Al 5/2003 Lai et al.
2003/0099134 Al 5/2003 Lasser et al.
6,420,215 Bl 7/2002 Knall et al. 2003/0135688 AL 72003 Tai
6.426.893 Bl 7/2002 Conley et al. 2003/0206442 Al 11/2003 Tang et al.
6,498,851 B1 12/2002 Wong 2004/0103234 Al 5/2004 Zer et al.
6,591,330 B2 7/2003 T.asser 2004/0205418 Al 10/2004 Sakaue et al.
6,594,183 Bl 7/2003 Lofgren et al. 2005/0050235 Al 3/2005 Chor
6,624,773 B2 9/2003 Wong 2005/0055479 Ath 3/2005 Zer et al.
6,631,085 B2 10/2003 Kleveland et al. 2005/0092846 Al 5/2005 Lai et al.
6,683,817 B2 1/2004 Wei et al. 2005/0172065 Al 8/2005 Keays
6,694,415 B2 2/2004 March et al. 2005/0180209 Al 8/2005 Lasser
6,715,044 B2 3/2004 Lofgren et al. 2005/0207231 Al 9/2005 Kim
6,721,820 B2 4/2004 Zilberman et al. 2005/0237814 Al 10/2005 Li et al.
6,760,805 B2 7/2004 T.asser 2005/0286306 A1 12/2005 Srinivasan et al.
6,988,175 B2 1/2006 T.asser 2006/0184709 Al 8/2006 Sukegawa et al.
7,012,835 B2 3/2006 Gonzalez et al. 2006/0239450 A1 10/2006 Holtzman et al.
7,081,377 B2 7/2006 Cleeves 2007/0047306 Al 3/2007 Roohparvar
7,120,729 B2 10/2006 Gonzalez et al. 2007/0074093 Al 3/2007 Lasser
7,136,973 B2 11/2006 Sinclair 2007/0088940 Al 4/2007 Conley
7.149,119 B2 12/2006 Fasoli 2007/0170268 Al 7/2007 Lee
7,152,940 B2* 12/2006 HayasaKicccocoovvvn.. 347/19 2007/0263440 Al 11/2007 Cornwell et al.
7170788 Bl 1/2007 Wan et al. 2008/0046630 Al 2/2008 Lasser
7,171,536 B2 1/2007 Chang et al. 2008/0046641 Al 2/2008 Lasser
7.177.191 B2 7/2007 Fasoli et al. 2008/0151618 Al 6/2008 Sharon et al.
7.177.977 B2 2/2007 Chen et al. 2008/0158948 Al 7/2008 Sharon et al.
7.187.583 B2 3/2007 Yang et al. 2008/0243954 Al 10/2008 Augenstein et al.
7,218,552 Bl 5/2007 Wan et al. 2010/0023800 Al 1/2010 Haran et al.
7,224,607 B2 5/2007 Gonzalez et al. 2011/0040924 A1 2/2011 Selinger
7,234,049 B2 6/2007 Choi et al. 2011/0041005 Al 2/2011 Selinger
7,239,556 B2 7/2007 Abe et al. 2011/0041039 Al 2/2011 Haran et al.
7,262,994 B2 8/2007 Fong et al.
7,295,473 B2 11/2007 Fong et al.
7,345,907 B2 3/2008 Scheuerlein OTHER PUBLICATIONS
;:ggiﬁgg E% 3//3882 g:;i:li ilt' a1 Nowak,. E. et al., “Intrins.;ic Fluctuations in Vertical. Nand Flash
7,355,889 B2 4/2008 Hemink et al. Memories”, 2012 Symposium on VLSI Technology Digest of Tech-
7,362,604 B2 4/2008 Scheuerlein nical Papers, 2012, pp. 21-22.
7,306,029 B2 4/2008 Kagan Notification of the First Office Action (with translation) for Chinese
7,379,330 B2 5/2008 Conley et al. patent application No. 200680035631.0, 14 pages, Jul. 13, 2010.
7,379,334 B2 5/2008 Mur_akanu et al. Cooke, J., Microsoft WinHec 2007, “Flash Memory Technology
7,392,343 B2 6//“2008 Oshima Direction”, Apr. 30, 2007, pp. 1-11.
7,406,572 Bl 7/2008 Ngu}{en Denali Software, “Spectra. TM. NAND Flash File System”, http://
7,426,137 B2 9/2008 Hemink . pog .
7.433.241 B2 10/2008 Dong et al www.denali.com/en/products/spectra.sub.--iIs.1sp, copyright 1994-
7.433,246 B2* 10/2008 Lee ..o GliC 11/5621 2009, retrieved on Aug. 6, 2009, pp. I-3.)
365/189 14 EE Times Asia, ““Toshiba Mixes LBA to NAND Flash Memory”,
7.436,713 B2 10/2008 Hemink http://www.eetasia.com/ARTP.sub.--8800428816.sub.--499486.
7,440,318 B2 10/2008 Fong et al. HTM, posted on Aug. 9, 2006, 1 page.
7,440,323 B2 10/2008 Lutze et al. “Innovation, Simplify Embedded NAND Flash Design”,
7,443,736 B2 10/2008 Samachisa Adverstisement, 1 page.
7,447,065 B2 11/2008 Fong et al. Toshiba LBA-NAND Simplifies Integration, http://www.toshiba.
7,447,066 B2 11/2008 Conley et al. com/taec/adinfo/embeddednand/images/LBAblockDiagram.ip-g,
g’jgg’gg? E% i égggg Eem!ﬂi et a%. retrieved on Aug. 4, 2009, 1 page.
463, emink et al. « o
7464259 B2 12/2008 Sukegawa et al. pAa:‘eailam, Flash Standards for Embedded Systems,” Aug. 2008, 22
7,468,911 B2 12/2008 Lutze et al. AR
2468912 Bo 19/2008 Dl;jg ol Office Action for U.S. Appl. No. 11/806,701 dated Jun. 22, 2009, 35
7,475,184 B2 1/2009 Lee pages.
7.477.547 B2 1/2009 T.in Office Action for U.S. Appl. No. 11/806,702, dated Jun. 18, 2009,
7,495,956 B2 2/2009 Fong et al. 14 pages.
7,499,326 B2 3/2009 Hemink “Open NAND Flash Interface Specification”, Revision 2.1, Jan. 14,
7,631,245 B2 12/2009 Lasser 2009, pp. 1-201.
7,708,828 B2* 8/2010 Leecooeinin, G11C 11/5621 Schwaderer, W. et al., “Understanding I/O Subsystems, First Edi-
365/185.03 tion”, Adaptec Press, 1996, pp. ii-iii, 82-87, 176-191.
2*02333? g E% L 511/%81 é giem et al. | Serial ATA, “High Speed Serialized AT Attachment™, Revision 1.0a,
S 180981 B2* 52012 Kapil et al 711/159 Jan. 7, 2003, 2 pages. (litle page and p. 144).
85875936 B2 5/202 Alfmeier e‘t .‘:11 ““““““““ TOShib& TCSSNVGlSBBFTOO/TCSSNVGISSBFTOOO Teﬂtativej
2750287 Bl1* 8701 Mirichigni | T11/103 Toshiba MOS Digital Integrated Circuit Silicon Gate CMOS, Oct.
8,281,062 B2 10/2012 Hahn et al. 30, 2003, pp. 1-37. | -
8,386,699 B2* 2/2013 Yeh ovoovoioeieeieeiea, 711/103 Wikipedia, “Southbridge (Computing)”, http://en.wikipedia.org/
8,429,330 B2 4/2013 Wan et al. wiki/Southbridge.sub.--(computing), Retrieved on Aug. 4, 2009, pp.
8,443,263 B2 5/2013 Selinger et al. 1-2.
8,659,028 B2* 2/2014 Scheuerlein et al. 257/74 Office Action directed against U.S. Appl. No. 11/806,702, 9 pages,
2001/0028523 A1 10/2001 Moro et al. Feb. 25, 2010.
2003/0028704 Al 2/2003 Mukaida et al. Application as Filed for U.S. Appl. No. 14/133,979, filed Dec. 19,
2003/0051118 Al 3/2003 Wu et al. 2013, 121 pages.

US RE46,201 E
Page 3

(56) References Cited
OTHER PUBLICATIONS

Application as Filed for U.S. Appl. No. 14/136,103, filed Dec. 20,
2013, 56 pages.

Jang et al., “Vertical Cell Array using TCAT('Terabit Cell Array
Transistor) Technology for Ultra High Density NAND Flash
Memory,” 2009 Symposium on VLSI Technology Digest of Techni-
cal Papers, pp. 192-193, 20009.

“Notification of the First Office Action” (with translation) for
Chinese patent application No. 200680035631.0, 14 pages, Jul. 13,
2010.

Cook, J., Microsoft WinHec 2007, “Flash Memory Technology
Direction”, Apr. 30, 2007, pp. 1-11.

Cooke, J., Powerpoint Presentation, Flash Memory Summut,
“NAND 101, An Introduction to NAND Flash and How to Design
It 1n to Your Next Product”, Aug. 8, 2006, pp. 1-68.

Denali Software, “Spectral™ NAND Flash File System™, http://
www.denali.com/en/products/sepctra_ fIs.1sp, copyright 1994-
2009, retrieved on Aug. 6, 2009, pp. 1-3.

EE Times Asia, “Toshiba Mixes LBA to NAND Flash Memory”,
http://www.eetasia.com/ARTP__8800428816_ 499486 HTM,
posted on Aug. 9, 2006, 1 page.

Grimsrud, K., Powerpoint Presentation, “Intel Developer Forum™,
2007, pp. 1-30.

Heye, R., Powerpoint Presentation, “Microsoft WinHec 2008
Advancing the Plattorm-MLC NAND i1n the PC, Planning for
Success”, 2008, pp. 1-34.

“Innovation, Simplify Embedded NAND Flash Design™, Advertise-
ment, 1 page.

Inoue, A. et al., “NAND Flash Applications Design Guide, System
Solutions from Toshiba America Electronic Components, Inc.”,
Revision 1.0, Apr. 2003, pp. 1-29.

Roohparvar, F., Powerpoint Presentation, Flash Memory Summut,
“The Future of Wireless Flash”, Aug. 2006, pp. 1-29.

“Simplity MLC NAND Design with Toshiba Embedded NAND
Solutions”, http://www.toshiba.com/taec/adinfo/embeddednand/,
retrieved on Aug. 4, 2009, 2 pages.

Toshiba LBA-NAND Simplifies Integration, http://www.toshiba.
com/taec/adinfo/embeddednand/images/LL. BAblockDiagram.ipg,
retrieved on Aug. 4, 2009, 1 page.

Cooke, “Micron e-MMC Embedded Memory Simplifies High
Capacity Storage for Mobile and Embedded Solutions,” 2007, 7
pages.

Abraham, “Flash Standards for Embedded System,” Aug. 2008, 22
pages.

Ex Parte Quayle Action for U.S. Appl. No. 11/326,336, dated Jul.
30, 2009, 13 pages.

Office Action for U.S. Appl. No. 11/806,701, dated Jun. 22, 2009,
35 pages.

Office Action for U.S. Appl. No. 11/806,702 , dated Jun. 18, 2009,
14 pages.

“Open NAND Flash Interface Specification” , Revision 2.1, Jan. 14,
2009, pp. 1-201.

“Samsung Electronics Develops World’s First Eight-Die Multi-
Chip Package for Multimedia Cell Phones”, http://www.samsung.
com/us/business/seimconductor/newsView.do?news 1d=628.0,
Jan. 10, 2005,

Schwanderer, W. et al., “Understanding I/O Subsystems, First

Serial ATA “High Speed Serialized AT Attachment™, Revision 1.0a,
Jan. 7, 2003, 2 pages (title page and p. 144).

Supplemental FEuropean Search Report and Opinion for European
Patent Application No. 06796108.6, May 7, 2009, 8 pages.

Toshiba TCS8NVG2DABFTO0/TCS8NVG2DI9BFT000 Tentative,
Toshiba MOS Digital Integrated Circuit Silicon Gate CMOS, Oct.
30, 2003, pp. 1-37.

U.S. Appl. No. 12/165,141 entitled, “Partial Scrambling to Reduce
Correlation,” filed Jun. 30, 2008, inventors: Or1 Stern, Tal Heller,
and Menahem Lasser.

U.S. Appl. No. 12/199,023 entitled “A Portable Storage Device
With an Accelerated Access Speed”, filed Aug. 27, 2008, inventors:
Judah Gamliel and Donald Ray Bryant-Rich.

U.S. Appl. No. 12/209,697 entitled, “Method for Scrambling Data

in which Scrambling Data and Scrambled Data are Stored in
Corresponding Non-Volatile Memory Locations,” filed Sep. 12,
2008, inventors: Jun Wan, Yupin K. Fong, and Man L. Mui.

U.S. Appl. No. 12/251,820 entitled, “Method for Page—and Block
Based Scrambling in Non-Volatile Memory,” filed Oct. 15, 2008,
inventors: Eran Sharon and Idan Alrod.

U.S. Appl. No. 12/539,394 entitled, “Controller and Method for
Interfacing Between a Host Controller in a Host and a Flash
Memory Device”, filed Aug. 11, 2009, inventors: Eliyahou Harari,
Richard R. Heye and Robert D. Selinger.

U.S. Appl. No. 12/539,407 entitled, “Controller and Method for
Detecting a Transmission Error Over a NAND Interface Using Error
Detection Code™, filed Aug. 11, 2009, inventor: Robert D. Selinger.
U.S. Appl. No. 12/539,417 entitled, “NAND Flash Memory Con-
troller Exporting a NAND Interface”, filed Aug. 11, 2009, inventors:
Eliyahou Harari, Richard R. Heye, Robert D. Selinger and
Menahem Lasser.

U.S. Appl. No. 12/539,379 entitled, “Controller and Method for
Providing Read Status and Spare Block Management Information in
a Flash Memory System,” filed Aug. 11, 2009, inventor: Robert D.
Selinger.

“USB 2.0 High-Speed Flash Drive Controller, ST72681”, Revision
Feb. 6, 2009 (previous revisions May 2005-Jan. 2009), pp. 1-34.
Wikipedia, “Southbridge (Computing)”, http://en.wikipedia.org/
wiki/Southbridge_ (computing), Retrieved on Aug. 4, 2009, pp. 1-2.
Extended European Search Report and Opinion for European Patent
Application No. 09009022.6-1233, Sep. 21, 2009, 9 pages.
“ONFI Working on Next-Generation NAND Specifications: ONFI
3.0 and EZNAND,” 1 page, Jan. 6, 2010,

“Micron NAND Flash Memory: MT29F4G0O8AAA,
MT29F8GOSBAA, MT29F8GOSDAA, MT29F16GOSFAA,” http://
download.micron.com/pdf/datasheets/flash/nand/4gb_ nand__
m40a.pdf, 1 page, 2006.

“Siemens Internal Flash Data Management,” 2 pages, Siemens AG
2006.

Examination Report for EP Application No. 09009022.6-1233, 6
pages, May 4, 2010.

Examination Report for EP Application No. 06796108.6-1233, 5
pages, Feb. 17, 2010.

Notice of Ground for Refusal for Korean Patent Application No.
10-2008-7007225, 5 pages, May 11, 2010.

Oflice Action directed against U.S. Appl. No. 11/806,701, 27 pages,
Feb. 25, 2010.

Office Action direct against U.S. Appl. No. 11/806,702, 9 pages,
Feb. 25, 2010.

U.S. Appl. No. 12/650,263 entitled, “Method and Controller for
Performing a Copy-Back Operation,” filed Dec. 30, 2009, inventors:
Robert D. Selinger, Gary Lin, Paul Lassa, and Chaoyang Wang.

* cited by examiner

US RE46,201 E

1 Ol
(s) j9lj0Jjuon 9
- = 0
1= 0cl 0 € LZL
. € suoloun 4 }
3 } PYIO J0o))
7 (s)ao1A8(] A (s)o|npo S E
AIOWS = }

Useld : u
= " el gz | |
~ _N
) . pu |
2 .. — S[NPO [04UOD) Ocl
-
~ B

00l

U.S. Patent

U.S. Patent Nov. 8, 2016 Sheet 2 of 11 US RE46,201 E

:200
Controller Flash
| ' 230] Memory
Device(s)

Controller
Package Flash Memory Device(s)
Package
260
FIG. 2A 270
200
Controller -— Flash
Memory
Device(s)
Multi-Chip Package 230
FIG. 2B 280

Flash
Controller | Memory
Device(s)

FIG. 2C

230

£ Ol

US RE46,201 E

0B8] 18(|OJUO] (ONWN SoeOIU}

apIg opIS

ysei ISOH
—
Cop
= e .
ik “_ . ;o '
@ K | suopoung | "
7 oo _ YO 40} | v soppoyul
75 b (s)eoepaiul __ Joju]

0ce “ m L aNYN | (S)eINPO | ' gNWN m L 2€E
C o odA i , odAp
N I : 0Ge . _

o 4 soH TR 10||05u0D
M (8}@2IAa(] A | - " “
. Alowsiy ! 0%¢ i
< yse|- v " S|NPON “
W _ _ |O1IUOD) _
Z __. _,_ "

\ i

f'-_-—_-_

s sy e e JEa

00¢

U.S. Patent

U.S. Patent Nov. 8, 2016 Sheet 4 of 11 US RE46,201 E

/ 400

410

Receive a Command from a Host to Perform a

Memory Operation in a Flash Memory Device

420

~Analyze at Least One Bit in the Command to

Determine if the at Least One Bit Indicates that

the Command Is a Stand-Alone Command or Is
Part of a Sequence of Commands

Stand-Alone
Command?

No Yes

440 430

Perform the Command as

Part of the Sequence of Perform the Command
Commands

FIG. 4

US RE46,201 E

Sheet 5 of 11

Nov. 8, 2016

U.S. Patent

g Old

sng Alepuooss
o ettt N3 eleq(tleueld ssa1ppy/ | Jeueld

Lo XaxXe0)- @@@@@@@
@0@@ QogXen Xeu X1 X2oX1o)Xt0g @‘@

Sng Aewild

eleq(| leueld =G0 yum ssalppy[} jsueld elegiolsueld
003 eprqjojousg sse.ppy[ojeueld ’
- uax Xraxoa)~<o3 Xey Xed X1eX2o)X0Xis0 (D
- @..T,.l...l,. - -
SSelppyl i jeue)d wmm.__uuio. ..mMm,_M)

- @@@@@@@@@@@
DE— , O DODED

=80 yiim ssalppylolaueld

US RE46,201 E

Sheet 6 of 11

Nov. 8, 2016

U.S. Patent

9 DI

90U ereq(| |aueld ssaippy[LJoueld

— S O SO

ereqlojeueld sselppy[0leue|d

QGrpxua) - XraXoa)~—er X X Xzaxi0)og
~— GopXua) X Xoa)-—eu Xed X1 X2o X ko Xlog)~-
ele([1]eue|d 1=g) UM ssaippv] | Joueld
Lonosleq g9
AQY3d=g/™H [
~ — @YX X9X00—EaxeaX XeoxioXin
ereqlo]sueld =80 Yum ssaippyloleueid

US RE46,201 E

. ATeTE e

-

2 O
. LoLOBIaQ 80

s i

; o AQH=a/M TH_i

-

: 0 ¢ . e

L=g0 UM Ssaippy|leueld L=g0) Yum ssalppyioleue|d

U.S. Patent

US RE46,201 E

Sheet 8 of 11

Nov. 8, 2016

U.S. Patent

V8 Dl
05 1€
\\\ 090€
0L0€
0LLE
06 F\m\ S INIONS

NOILO3HE00

QuUOwOEELa2a JUX

ta
3
G
O
3
3
Q
D
3
=

S
S
- NOILJAHONI
S 003
«
Q
¥ +
o |
E.h "] SNg YYLNIO
- a
n 0
g J 0€0¢
W N
v 3
S
3 D
08LE - S 0 WYYg ¥OSSIo0Ud
3
ol 3INGOW
09LE 3OV4HILNI 050t Ov0E
HSV 14 020 0LOT
Ovie |
HITIOULNOD GNVN

00t

S41S8103Y
SSJHGAY

d315i04d
ONYANNOD .
S 1NAON
H O
-
. _)
LINM 4
TOUINOD

ATNAON
JOVIY3LNI
1SOH

1)2 6}

QLLE

TO=2<

N
‘.

US RE46,201 E

Sheet 9 of 11

Nov. 8, 2016

081L

U.S. Patent

OvFE

g8 9ld OPEE~
I
$320]0 [el100dge 38 w
30}y LUBISA T
_— 190jD WoysAge mMm
1953y WIOISAQe—— TR~ —
EEEL A S W
| J8jj0Quo)
; __ §8z¢ | dnue
2, _ooge
v R ,
SR g m__ﬁwcﬁ ommm|\4_%8 oV
Ewmll_ X11el JaAe NN gHY
T 4n A 4
~__ e ‘ f
- 3 S ¥ 2
S e m,u.._. aulbug
~ _cmmrw BEETE :ozmw.mcu WYNQa | | oy @poa m
7 ysejd . - !
TOVANILNI a L -~ \ \ T B w)
ONVN 0£ZE 022e Olct w m ous | @ IOGEE
T m g | osee 0vZE | § [ow | &
.,....J:......\ w m) K1)

US RE46,201 E

|
o
. —
-~
-
- PN
L
_.nnu _ 1sanbay |
T~ | _umm.W_ |
1 *

A ary Jv
e | VYINGH
o
—
g |
3
W omvn\L
2 |

W cm@m#
- _
Nl | snje)s | J
19]s169y WaSAS ﬂ Vﬁ ﬁ —
- \ |
02GE |
i - i
_ e e e OUAG | i
L b 0 | VIS _ |
NOT NOTNOT I2NO | |
- i
(10 Ualeiaid | ._ |
mmmml\w |
oE[F o el |
} BB pESY 3 s
— — } | T }
oese ~ = — |2}
s I X
S ~ } _ 1
_
13j01u0s
R}E(] PUB PUBLILLON 1
QUASY
\l 1 — 0ESE
0956¢ 9 - mnua 2 % %
Q Za o & w | | “_
B SN A L w |
Osid | Oid pwo
1PPY puUBLULLOY pJ OLGE
N NO L
0GGe OvGE

NIH 1INO

U.S. Patent

ey ————

004E

US RE46,201 E

Sheet 11 of 11

Nov. 8, 2016

U.S. Patent

0S5e

0856 -

Q0¥ —

06ve

GPoe

as old

L TRRTR
e

T

Ar1

snjels
1o _Smels |
Jaysibay wia)sAsg
02GE
S ,ﬁ
Qdld
eyeq SIIAA
o T]
19)j04L0

2le(] pue puewiwon

». 77, o)
g2y gaf
Y |
L ey 014
NA PUEILLIO
] N
QLbE 00Pe

P e e S

XN [eubig

gt

——

OUAS |
oIS |
IINO

XN 1eubis

*
_||— |

WIH IdNO |

e

Ocre

..

US RE46,201 E

1

METHOD AND CONTROLLER FOR
PERFORMING A SEQUENCE OF
COMMANDS

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

BACKGROUND

NAND flash memory devices are commonly used to store
data by a host, such as a personal computer. A host can
communicate with a NAND flash memory device using a

NAND interface, such as Open NAND Flash Interface
(ONFI). Typically, a host sends commands to a NAND flash
memory device one-command-at-a-time and waits until the
NAND flash memory device completes the first command
before sending another command. However, some NAND
flash memory devices have a cache register that can store an
additional command. In this way, while the NAND flash
memory 1s processing a first command, the host can send a
second command to be stored in the cache 1n the NAND
flash memory device. Once the NAND flash memory device
completes the first command, 1t can turn to the second
command stored in the cache register. The cache register 1s
designed to store only a single command, and both the
command being processed and the cached command are
treated as stand-alone commands that are executed one-
command-at-a-time. Other NAND flash memory devices
have memories that are organized into multiple planes,
where each plane has 1ts own cache register. So, a NAND
flash memory device having four planes of memory would
have four cache registers, one for each plane. However, each
cache register 1s still designed to store only a single com-
mand, and both the command being processed and the
cached command are treated as stand-alone commands that
are executed one-command-at-a-time.

SUMMARY

The present mvention 1s defined by the claims, and
nothing in this section should be taken as a limitation on
those claims.

By way of itroduction, the embodiments described
below provide a method and controller for performing a
sequence of commands. In one embodiment, a controller
receives a command from a host to perform a memory
operation 1n a tlash memory device, wherein the command
comprises at least one bit that indicates whether the com-
mand 1s a stand-alone command or 1s part of a sequence of
commands. The controller analyzes the at least one bit to
determine whether the at least one bit indicates that the
command 1s a stand-alone command or 1s part of a sequence
of commands. If the at least one bit indicates that the
command 1s a stand-alone command, the controller performs
the command. If the at least one bit indicates that the
command 1s part of a sequence ol commands, the controller
performs the command as part of the sequence of com-
mands.

Other embodiments are disclosed, and each of the
embodiments can be used alone or together in combination.
The embodiments will now be described with reference to
the attached drawings.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a system of an embodiment
comprising a controller, a host, and one or more flash
memory devices.

FIGS. 2A, 2B, and 2C are block diagrams illustrating
different arrangements of a controller and flash memory
device(s) of an embodiment.

FIG. 3 1s a block diagram of an exemplary controller of
an embodiment.

FIG. 4 1s a flow chart of a method for performing a
sequence of commands of an embodiment.

FIG. § 1s a timing diagram of a multi-plane read operation
of an embodiment.

FIG. 6 1s a timing diagram of a multi-plane program
operation of an embodiment.

FIG. 7 1s a ttiming diagram of a multi-plane block erase
operation of an embodiment.

FIGS. 8A, 8B, 8C, and 8D are block diagrams of exem-

plary controllers of an embodiment.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EMBODIMENTS

Introduction

Some ol the following embodiments are directed to a
method and controller for performing a sequence of com-
mands. Before turning to these and other embodiments, a
general overview of exemplary controller architectures and
a discussion of NAND interfaces and NAND interface
protocols are provided.

Exemplary Controller Architectures

Turning now to the drawings, FIG. 1 1s a system of an
embodiment 1n which a controller 100 1s 1n communication
with a host 120 (having a host controller 121) through a first
interface 1235 and i1s 1n communication with one or more
flash memory device(s) 130 through one or more second
interface(s) 135. (The number of second interface(s) 133 can
match the number of tflash memory device(s) 130, or the
number of second interface(s) 1335 can be greater than or less
than the number of flash memory device(s) 130 (e.g., a
single second interface 135 can support multiple tlash
memory device(s)).) As used herein, the phrase “in commu-
nication with” means directly mn communication with or
indirectly 1 communication with through one or more
components, which may or may not be shown or described
herein.

A “host” 1s any entity that 1s capable of accessing the one
or more flash memory device(s) 130 through the controller
100, either directly or indirectly through one or more com-
ponents named or unnamed heremn. A host can take any
suitable form, such as, but not limited to, a personal com-
puter, a mobile phone, a game device, a personal digital
assistant (PDA), an email/text messaging device, a digital
camera, a digital media (e.g., MP3) player, a GPS navigation
device, a personal navigation system (PND), a mobile
Internet device (MID), and a TV system. Depending on the
application, the host 120 can take the form of a hardware
device, a soltware application, or a combination of hardware
and software.

“Flash memory device(s)” refer to device(s) containing a
plurality of flash memory cells and any necessary control
circuitry for storing data within the flash memory cells. In
one embodiment, the flash memory cells are NAND
memory cells, although other memory technologies, such as
passive element arrays, including one-time programmable
memory elements and/or rewritable memory elements, can

US RE46,201 E

3

be used. (It should be noted that, in these embodiments, a
non-NAND-type tlash memory device can still use a NAND
interface and/or NAND commands and protocols.) One
example of a passive element array 1s a three-dimensional
memory array. As used herein, a three-dimensional memory
array relers to a memory array comprising a plurality of
layers of memory cells stacked vertically above one another
above a single silicon substrate. In this way, a three-dimen-
sional memory array 1s a monolithic integrated circuit struc-
ture, rather than a plurality of integrated circuit devices
packaged or die-bonded 1n close proximity to one another.
Although a three-dimensional memory array 1s preferred,
the memory array can instead take the form of a two-
dimensional (planar) array. The following patent documents,
which are hereby incorporated by reference, describe suit-
able configurations for three-dimensional memory arrays, 1n
which the three-dimensional memory array 1s configured as

a plurality of levels, with word lines and/or bit lines shared
between levels: U.S. Pat. Nos. 6,034,882; 6,185,122; 6,420,

2135; 6,631,085; and 7,081,377. Also, the flash memory
device(s) 130 can be a single memory die or multiple
memory dies. Accordingly, the phrase “a flash memory
device” used i the claims can refer to only one flash
memory device or more than one flash memory device.

As shown 1n FIG. 1, the controller 100 also comprises a
control module 140 for controlling the operation of the
controller 100 and performing a memory operation based on
a command (e.g., read, write, erase, etc.) and an address
recerved from the host 120. As used herein, a “module” can
include hardware, software, firmware, or any combination
thereol. Examples of forms that a “module” can take
include, but are not limited to, one or more of a micropro-
cessor or processor and a computer-readable medium that
stores computer-readable program code (e.g., software or
firmware) executable by the (micro)processor, logic gates,
switches, an application specific integrated circuit (ASIC), a
programmable logic controller, and an embedded microcon-
troller, for example. (The following sections provide
examples of the various forms a “module” can take.) As
shown 1n FI1G. 1, the controller 100 can include one or more
additional modules 150 for providing other functionality,
including, but not limited to, data scrambling, column
replacement, handling write aborts and/or program failures
(via safe zones), read scrubbing, wear leveling, bad block
and/or spare block management, error correction code
(ECC) functionality, error detection code (EDC) function-
ality, status functionality, encryption functionality, error
recovery, and address mapping (e.g., mapping of logical to
physical blocks). The following sections provide more
details on these functions, as well as additional examples of
other functions.

While the controller 100 and flash memory device(s) 130
are shown as two separate boxes i FIG. 1, it should be
understood that the controller 100 and flash memory device
(s) 130 can be arranged in any suitable manner. FIGS. 2A,
2B, and 2C are block diagrams illustrating different arrange-
ments of the controller and flash memory device(s). In FIG.
2A, the controller 200 and the flash memory device(s) 230
are packaged in diflerent packages 260, 270. In this embodi-
ment, an inter-die interface can interface between the con-
troller 200 and the flash memory device(s) 230. As used
heren, an “inter-die interface” (e.g., an inter-die NAND
interface) 1s operative to interface between two distinct units
of electronic circuitry residing on distinct dies (e.g., to
provide the necessary physical and logical infrastructure for
the distinct units of electronic circuitry to communicate with
cach other, for example, using one or more specific proto-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

cols). Thus, the inter-die interface includes the necessary
physical elements (e.g., pads, output, input drivers, etc.) for
interfacing between the two distinct units of electronic
circuitry residing on separate dies.

In FIG. 2B, the controller 200 and the flash memory
device(s) 230 both reside within a common multi-chip
package 280. In this embodiment, an 1nter-die interface can
interface between the controller 200 and the flash memory
device(s) 230 fabricated on two distinct dies that are pack-
aged 1n the common multi-chip package 280. In FIG. 2C, the
controller 200 and the flash memory device(s) 230 are
integrated on a same die 290. As another alternative, the
controller 200 and/or flash memory device(s) 230 can be
fabricated on two distinct dies, where one or both of these
dies has no package at all. For example, 1n many applica-
tions, due to a need to conserve space, memory dies are
mounted on circuit boards with no packaging at all.

It should be noted that in each of these arrangements, the
controller 200 1s physically located separately from the host.
This allows the controller 200 and flash memory device(s)
230 to be considered a separate circuitry unit, which can be
used 1n a wide variety of hosts.

As noted above with reference to FIG. 1, the controller
100 communicates with the host 120 using a first interface
125 and communicates with the flash memory device(s) 130
using second interface(s) 1335. In general, the first and
second interfaces 125, 135 can take any suitable form.
However, 1n a presently preferred embodiment, which will
be described below in conjunction with FIG. 3, the first and
second interfaces 125, 135 are both NAND interfaces that
use NAND interface protocols. Before turning to FIG. 3, the
following section provides a general discussion of NAND
interfaces and NAND interface protocols.

NAND Interfaces and NAND Interface Protocols

A NAND interface protocol 1s used to coordinate com-
mands and data transiers between a NAND flash device and

a host using, for example, data lines and control signals,
such as ALE (Address Latch Enable), CLE (Command

Latch Enable), and WE# (Write Enable). Even though the
term “NAND interface protocol” has not, to date, been
formally standardized by a standardization body, the manu-
facturers of NAND flash devices all follow very similar
protocols for supporting the basic subset of NAND flash
functionality. This 1s done so that customers using NAND
devices within their electronic products could use NAND
devices from any manufacturer without having to tailor their
hardware or soitware for operating with the devices of a
specific vendor. It 1s noted that even NAND vendors that
provide extra Iunctionality beyond this basic subset of
functionality ensure that the basic functionality i1s provided
in order to provide compatibility with the protocol used by
the other vendors, at least to some extent.

A given device (e.g., a controller, a flash memory device,
a host, etc.) 1s said to comprise, include, or have a “NAND
interface™ 1 the given device includes elements (e.g., hard-
ware, soltware, firmware, or any combination thereof) nec-
essary for supporting the NAND interface protocol (e.g., for
interacting with another device using a NAND interface
protocol). (As used herein, the term “interface(s)” can refer
to a single interface or multiple mterfaces. Accordingly, the
term “interface” in the claims can refer to only one interface
or more than one interface.) In this application, the term
“NAND Interface protocol” (or “NAND interface” in short)
refers to an interface protocol between an initiating device
and a responding device that, in general, follows the proto-
col between a host and a NAND flash device for the basic
read, write, and erase operations, even 1f 1t 1s not fully

US RE46,201 E

S

compatible with all timing parameters, not fully compatible
with respect to other commands supported by NAND
devices, or contains additional commands not supported by
NAND devices. One suitable example of a NAND interface
protocol 1s an interface protocol that uses sequences of
transierred bytes equivalent 1n functionality to the sequences
of bytes wused when terfacing with a Toshiba

TC58NVGIS3B NAND device (or a Toshiba
TC358NVG2D4B NAND device) for reading (opcode 00H),
writing (opcode 80H), and erasing (opcode 60H), and also
uses control signals equivalent 1n functionality to the CLE,
ALE, CE, WE, and RE signals of the above NAND device.

It 1s noted that a NAND interface protocol 1s not sym-
metric 1n that the host—not the flash device—initiates the
interaction over a NAND interface. Further, an interface
(e.g., a NAND mterface or an interface associated with
another protocol) of a given device (e.g., a controller) may
be a “host-side 1nterface” (e.g., the given device 1s adapted
to interact with a host using the host-side interface), or the
interface of the given device may be a “flash memory
device-side interface” (e.g., the given device 1s adapted to
interact with a flash memory device using the flash memory
device-side 1mnterface). The terms “flash memory device-side
interface,” “flash device-side interface,” and “flash-side
interface” are used interchangeably herein.

These terms (1.e., “host-side 1interface” and “flash device-
side interface”) should not be confused with the terms
“host-type intertace” and ““tlash-type interface,” which are
terminology used herein to differentiate between the two
sides of a NAND interface protocol, as this protocol 1s not
symmetric. Furthermore, because 1t 1s the host that initiates
the 1nteraction, we note that a given device 1s said to have
a “host-type interface” 1f the device includes the necessary
hardware and/or soiftware for implementing the host side of
the NAND interface protocol (1.e., for presenting a NAND
host and initiating the NAND protocol interaction). Simi-
larly, because the flash device does not mitiate the interac-
tion, we note that a given device 1s said to have a “flash-type
interface” 11 the device includes the necessary hardware
and/or software for implementing the flash side of the
NAND protocol (1.e., for presenting a NAND flash device).

Typically, “host-type mterfaces” (i.e., those which play
the role of the host) are “flash device-side interfaces™ (1.e.,
they interact with flash devices or with hardware emulating
a flash device) while “flash device-type interfaces” (i.e.,
those which play the role of the flash device) are typically
“host-side 1nterfaces™ (i.e., they interact with hosts or with
hardware emulating a host).

Because of the complexities of NAND devices, a “NAND
controller” can be used for controlling the use of a NAND
device 1n an electronic system. It 1s possible to operate and
use a NAND device directly by a host with no intervening,
NAND controller; however, such architecture suffers from
many disadvantages. First, the host has to individually
manipulate each one of the NAND device’s control signals
(e.g., CLE or ALE), which 1s cumbersome and time-con-
suming for the host. Second, the support of error correction
code (ECC) puts a burden on the host. For at least these
reasons, “no controller” architectures are usually relatively
slow and 1neflicient.

In some conventional controller architectures, a NAND
controller interacts with a flash memory device using a
NAND interface and interacts with a host using a standard,
non-NAND interface, such as USB or SATA. That 1s, 1n
these conventional controller architectures, the NAND con-
troller does not export a NAND interface to the host. Indeed,
this 1s reasonable to expect, as a host processor that does not

5

10

15

20

25

30

35

40

45

50

55

60

65

6

have built-in NAND support and requires an external con-
troller for that purpose typically does not have a NAND
interface and cannot directly connect to a device exporting
a NAND interface and, therefore, has no use of a controller
with a host-side NAND interface. On the other hand, a host
processor that has built-in NAND support typically also
includes a built-in NAND controller and can connect
directly to a NAND device, and, therefore, has no need for
an external NAND controller.

“NAND Flash Memory Controller Exporting a NAND
Interface,” U.S. Pat. No. 7,631,245, which 1s hereby incor-
porated by reference, discloses a new type of NAND con-
troller, characterized by the fact that the interface 1t exports
to the host side 1s a NAND interface. In this way, the NAND
controller exports to the host the same type of interface that
1s exported by a standard NAND flash memory device. The
controller also preferably has a NAND interface on the flash
memory device side as well, where the controller plays the
role of a host towards the NAND flash memory device and
plays the role of a NAND device towards the host.

Exemplary NAND Flash Memory Controller Exporting a
NAND Interface

Returning to the drawings, FIG. 3 1s a block diagram of
an exemplary controller 300 of an embodiment. As shown 1n
FI1G. 3, the controller 300 includes a control module 340 for
controlling the operation of the controller 300 and, option-
ally, one or more additional modules 350 for providing other
functions. Examples of other functions include, but are not
limited to, data scrambling, column replacement, handling
write aborts and/or program failures (via safe zones), read
scrubbing, wear leveling, bad block and/or spare block
management, error correction code (ECC) functionality,
error detection code (EDC) functionality, status functional-
ity, encryption functionality, error recovery, and address
mapping (e.g., mapping of logical to physical blocks).
Additional 1information about these different functional
modules and how they are used in exemplary controller
architectures 1s provided later in this document and can be
found m U.S. patent application Ser. Nos. 12/539,379;
12/539,394; 12/539,407; and 12/539,41°7; which are hereby
incorporated by reference.

Returning to the drawings, as also shown in FIG. 3, the
controller 300 includes one or more tlash memory device-
side NAND interface(s) 335 for interfacing with one or more
NAND flash device(s) 330 (e.g., 1-8 memory dies). Further-
more, 1t 1s noted that the flash memory device-side NAND
interface 335 1s also a host-type NAND interface (1.e., that
it 1s adapted to imitiate the interaction over the NAND
interface and to present a host to a NAND flash device(s)
330). The controller 300 also includes a host side NAND
interface 325 for interfacing to a host 320 (having a host
controller 321) that supports a NAND 1nterface protocol.
This host side NAND interface 325 1s also a flash memory-
type NAND interface (e.g., the controller 300 1s adapted to
present to the host 320 a NAND flash memory storage
device). Examples of NAND interfaces include, but are not
limited to, Open NAND Flash Interface (ONFI), toggle
mode (ITM), and a high-performance flash memory inter-
face, such as the one described 1n U.S. Pat. No. 7,366,029,
which 1s hereby incorporated by reference. The controller
300 may optionally include one or more additional host-side
interfaces, for interfacing the controller 300 to hosts using
non-NAND interfaces, such as SD, USB, SATA, or MMC
interfaces. Also, the interfaces 325, 335 can use the same or
different NAND 1nterface protocols.

It should be noted that the controller 300 and flash
memory device(s) 330 can be used in any desired system

US RE46,201 E

7

environment. For example, 1n one implementation, a product
manufactured with one or more controller 300/flash memory
device(s) 330 units 1s used 1n a solid-state drive (SSD). As
another example, the controller 300 can be used 1n OEM
designs that use a Southbridge controller to interface to flash
memory devices.

There are several advantages of using a NAND flash
memory controller that exports a NAND interface to a host.
To appreciate these advantages, first consider the realities of
current controller architectures. Today, there are two types of
NAND interfaces: a “raw” interface and a “managed” inter-
tace. With a raw interface, the basic memory 1s exposed with
primitive commands like read, program, and erase, and the
external controller 1s expected to provide memory manage-
ment functions, such as ECC, defect management, and tlash
translation. With a managed interface, through some higher
level interface, logical items such as sectors/pages/blocks or
files are managed, and the controller manages memory
management functions.

However, the set of firmware required to “manage” the
NAND can be divided into two categories. The first category
1s generic flash software that mostly manages the host
interface, objects (and read/modify/write sequences), and
caching. This 1s referred to as the “host management™ layer.
The second category 1s flash-specific management function-
ality that does, for example, the ECC, data scrambling, and
specific error recovery and error prevention techniques like
pro-active read scrubbing and copying lower-page blocks to
prevent data loss due to write aborts, power failures, and
write errors. This 1s referred to as the “device management”™
layer.

The first category of software i1s relatively constant and
may be provided by various companies, including OS ven-
dors, chipset and controller vendors, and embedded device
vendors. In general, let’s assume there are M specific
systems/OSes/ASICs that may want to use flash 1n their
designs. The second set 1s potentially proprietary to indi-
vidual companies and even specific to certain memory
designs and generations. In general, let’s assume there are N
different memory specific design points. Today, this 1s an
all-or-nothing approach to tlash management—either buy
raw NAND or managed NAND. This also means that a
solution must incorporate one of the M system and host
management environments with one of the N memory
device management environments. In general, this means
that either (1) a flash vendor with the second kind of
knowledge must provide all layers of a solution, including
ASIC controller and host interface software, and do M
different designs for the M different host opportunities, or
(2) any mndependent ASIC and firmware company has little
opportunity to customize their solutions to specific memory
designs without doing N different designs, or (3) two com-
panies have to work together, potentially exposing valuable
trade secrets and IP and/or implement different solutions for
cach memory design. This can also produce a time-to-
market delay if M different host solutions have to be
modified to accept any new memory design or vice versa.

By using a NAND flash memory controller that exports a
NAND interface to a host, a new logical interface i1s pro-
vided that uses existing physical NAND interfaces and
commands, such as legacy asynchronous, ONFI, or TM, to
create a new logical interface above raw or physical NAND
and below logical or managed NAND, create “virtual” raw
NAND memory with no ECC required 1n the host controller,
and disable host ECC (since 0 ECC 1s required from the host
to protect the NAND memory). This new logical interface
also can provide, for example, data scrambling, scrubbing,

10

15

20

25

30

35

40

45

50

55

60

65

8

disturbs, safe zone handling, wear leveling, and bad block
management (to only expose the good blocks) “beneath” this
interface level.

This different logical interface provides several advan-
tages over standard flash interfaces or managed NAND
interfaces, including ONFI Block Abstraction (BA) or
Toshiba LBA. For example, separation of the memory-
specific functions that may vary from memory type and
generation (e.g., NAND vs. 3D (or NOR) and 3xnm vs.
4xnm vs. 3xnm) allows for different amounts of ECC,
vendor-unique and memory-unique schemes for error pre-
vention and correction schemes, such as handling disturbs
and safe zones, and allows vendor-unique algorithms to
remain “secret” within the controller and firmware. Addi-
tionally, there 1s greater commonality between technology
(and vendors) at this logical interface level, which enables
quicker time to market. Further, this allows much closer to
1:1 command operation, meaning improved and more-pre-
dictable performance versus managed NAND or other
higher level interfaces.

There are additional advantages associated with this con-
troller architecture. For example, 1t allows for independent
development, test, and evolution of memory technology
from the host and other parts of the system. It can also allow
for easier and faster deployment of next generation memo-
ries, since changes to support those memories are more
localized. Further, 1t allows memory manufactures to protect
secret algorithms used to manage the raw flash. Also, page
management can be integrated with the file system and/or
other logical mapping. Thus, combined with standard exter-
nal iterfaces (electrical and command sets), this architec-
ture makes 1t easier to design in raw flash that 1s more
transparent from generation to generation.

There 1s at least one other secondary benefit from the use
of this architecture—the controller 300 only presents a
single electrical load on the external interface and drives the
raw flash imternal to the MCP. This allows for potentially
greater system capacity without increasing the number of
tflash channels, higher speed external interfaces (since fewer
loads), and higher-speed internal interfaces to the raw flash
devices (since very tightly-controlled internal design (sub-
strate connection) 1s possible).

Another advantage associated with the controller of this
embodiment 1s that 1s can be used to provide a “split bus”
architecture through the use of different host and memory
buses, potentially at different speeds (1.e., the bus between
the host and the controller can be different from the bus
between the controller and the flash memory device(s)). (As
used herein, a “bus” 1s an electrical connection of multiple
devices (e.g., chips or dies) that have the same interface. For
example, a point-to-point connection 1s a bus between two
devices, but most interface standards support having mul-
tiple devices connected to the same electrical bus.) This
architecture 1s especially desired 1n solid-state drives (SSDs)
that can potentially have hundreds of flash memory devices.
In conventional SSD architectures, the current solution 1s to
package N normal flash memory devices in a multi-chip
package (MCP), but this still creates N loads on a bus,
creating N times the capacitance and inductance. The more
loads on a bus, the slower 1t operates. For example, one
current architecture can support a 80 MHz operation with
1-4 devices but can support only a 40 MHz operation with
8-16 devices. This 1s the opposite of what 1s desired—higher
speeds 11 more devices are used. Furthermore, more devices
imply the need for greater physical separation between the
host and the memory MCPs. For example, 1f 16 packages
were used, they will be spread over a relatively large

US RE46,201 E

9

physical distance (e.g., several inches) in an arbitrary topol-
ogy (e.g., a bus or star-shaped (or arbitrary stub) topology).
This also reduces the potential performance of any electrical
interface. So, to obtain, for example, 300 MHz of transfers
(ignoring bus widths), either four fast buses or eight slow
buses can be used. But, the fast buses could only support
tour flash memory devices each, or 16 total devices, which
1s not enough for most SSDs today. If the buses run faster,
the number of interface connections (pins and analog inter-
faces) can be reduced, as well as potentially the amount of
registers and logic in the host.

Because the controller 300 1n this embodiment splits the
interconnection between the host and the raw flash memory
device(s) 1nto a separate host side interface and a flash side
interface with a bufler in between, the host bus has fewer
loads and can run two to four times faster. Further, since the
memory bus 1s internal to the MCP, 1t can have lower power,
higher speed, and lower voltage because of the short dis-
tance and finite loads involved. Further, the two buses can
run at different frequencies and different widths (e.g., one
side could use an &-bit bus, and the other side can use a
16-bit bus).

While some architectures may insert standard transceivers
to decouple these buses, the controller 300 of this embodi-
ment can use buflering and can run these interfaces at
different speeds. This allows the controller 300 to also match
two ditferent speed buses, for example, a flash side interface
bus running at 140 MB/sec and an ONFI bus that runs at
either 132 or 166 MB/sec. A conventional bus transceiver
design would have to pick the lower of the two buses and run
at 132 MB/sec 1n this example, while the controller 300 of
this embodiment can achieve 140 MB/sec by running the
ONFI bus at 166 MB/sec and essentially have idle periods.
Accordingly, the controller 300 of this embodiment provides
higher performance at potentially lower cost and/or lower
power and interface flexibility between different products
(e.g., diflerent speed and width host and memory buses,
tewer loads on the host 1n a typical system (which enables
faster operation and aggregation of the memory bus band-
width to the host interface), and different interfaces on the
host and memory side with interface translation).

As mentioned above, a single controller can also have
multiple flash side interface(s) 335 to the tlash memory
device(s), which also enables further parallelism between
raw flash memory devices and transfers into the controller,
which allows the flash side interface to run slower (as well
as faster) than the host side interface 325. A single controller
can also have multiple host side interfaces that may be
connected to different host controller interfaces to allow for
greater parallelism 1n accessing the flash memory device(s),
to share the controller, or to better match the speed of the
flash side intertace (which could be faster than the host side
interface for the reasons described above).

Another advantage of importing a NAND 1nterface to a
host relates to the use of a distributed controller architecture.
Today, flash memory devices are typically implemented
with a single level of controller. In large solid-state drives
(SSDs), there may be tens or even hundreds of flash devices.
In high-performance devices, 1t may be desirable to have
parallel operations going on in as many ol these flash
devices as possible, which may be power constrained. There
are interface specs today at 600 MB/sec, and these are still
increasing. To reach this level of performance requires very
tast controllers, memories, and ECC modules. Today, high
performance controllers are built with either one or a small
number of ECC modules and one or two microprocessors to
handle memory device management. Since some of the

10

15

20

25

30

35

40

45

50

55

60

65

10

functions are very localized to the memory devices them-
selves, such as ECC, with the controller 300 of this embodi-
ment, a two-tiered network of devices can be utilized.
Specifically, the host 320 can manage the host interface and
high-level mapping of logical contents, and one or more
controllers 300 can manage one or more raw NAND flash
memory devices to provide local management of memory
device functions (e.g., ECC) and parallelism 1n the execu-
tion of these functions due to parallel execution of the
controller 300 and the host 320 and parallel execution of
multiple controllers 300 handling different operations in
parallel on different memories 320. In contrast to conven-
tional controllers in SSDs, which perform memory device
management functions 1n one place, by splitting these func-
tions 1into two layers, this architecture can take advantage of
parallel performance 1n two ways (e.g., between host and
slave, and between many slaves). This enables higher total
performance levels (e.g., 600 MB/sec) without having to
design a single ECC module or microprocessor that can
handle that rate.

Yet another advantage of this archutecture 1s that a higher-
level abstraction of the raw memory can be developed, such
that system developers do not need to know about error
recovery or the low-level details of the memory, such as
ECC and data scrambling, since the controller 300 can be
used to perform those functions in addition to handling
memory-specific functions such as read, erase, and program
disturbs, and safe zones. This level of support 1s referred to
herein as “corrected” flash,” which 1s logically in between
raw flash and managed NAND. On the other hand, this
architecture 1s not fully managed memory in the sense of
page or block management at a logical level and may require
the host to provide for logical-to-physical mapping of pages
and blocks. However, the controller 300 can still present
some flash memory management restrictions to the host and
its firmware, such as: only full pages can be programmed,
pages must be written 1n order within a block, and pages can
only be written once before the entire block must be erased.
Wear leveling of physical blocks to ensure that they are used
approximately evenly can also be performed by the control-
ler 300; however, the host 320 can be responsible for
providing this function. Also, the controller 300 preferably
presents the host 320 with full page read and write opera-
tions 1nto pages and blocks of NAND. The characteristics of
logical page si1ze and block size will likely be the same as the
underlying NAND (unless partial page operations are sup-
ported). The majority of the spare area 1n each physical page
in the raw NAND will be used by the controller 300 for ECC
and 1ts metadata. The controller 300 can provide for a
smaller number of spare bytes that the using system can
utilize for metadata management.

Embodiments Relating to Performing a Sequence of
Commands

As described 1n the background section above, when a
host communicates with a NAND flash memory device
using a NAND interface, such as Open NAND Flash Inter-
tace (ONFI), the host typically sends commands to a NAND
flash memory device one-command-at-a-time and waits
until the NAND flash memory device completes the first
command before sending another command. Even when the
NAND flash memory device has a cache register that can
store an additional command, both the command being
processed and the cached command are treated as stand-
alone commands that are executed one-command-at-a-time.
With the following embodiments, a controller between the
host and one or more NAND flash memory devices can be
used to group a sequence of commands together and process

US RE46,201 E

11

them together, even though the commands are received from
the host one-command-at-a-time. This allows the controller
to perform multi-plane, pipelined, and queued commands.

While any suitable architecture can be used, these
embodiments will be described 1n conjunction with the
architecture shown in FIG. 3. In this architecture, the host
320 1s aware of the logical operations it wants performed and
uses a standard NAND interface to 1ssue standard com-
mands to a “smarter” controller 300. The controller 300 can
then, when appropriate, group a sequence of commands
together and process them as a group, even though the
commands are received from the host 320 one-command-
at-a-time. However, 1t should be noted that the use of NAND
interfaces and other details from FIG. 3 and the correspond-
ing discussion should not be read into the claims unless
explicitly recited therein.

In this embodiment, the control module 340 in FIG. 3
takes the form of circuitry designed to operate to perform the
acts shown in FIG. 4. As used herein, “circuitry” can take the
form of one or more of a microprocessor or processor and a
computer-readable medium that stores computer-readable
program code (e.g., soltware or firmware) executable by the
(micro)processor, logic gates, switches, an application spe-
cific mtegrated circuit (ASIC), a programmable logic con-
troller, and an embedded microcontroller, for example.
Examples of such components are discussed below.

Turning now to the flowchart 400 1n FIG. 4, the controller
300 receives a command from the host 320 to perform a
memory operation in the flash memory device 330 (act 410).
In this embodiment, the command comprises at least one bit
that indicates whether the command 1s a stand-alone com-
mand or 1s part of a sequence of commands. The at least one
bit can be any number of bits and, in one embodiment, 1s a
single bit that 1s one of a plurality of reserved address bits
in the command. In this particular example, the at least one
bit 1s the most sigmificant address bit and will be referred to
herein as a “continuation bit” or “chaining bit” (or “CB”).

When the command 1s received, the controller 300 ana-
lyzes the CB to determine whether 1t indicates that the
command 1s a stand-alone command or 1s part of a sequence
of commands (act 420). If the CB indicates that the com-
mand 1s a stand-alone command (e.g., CB=0), the controller
300 performs the command (act 430). However, if the CB
indicates that the command 1s part ol a sequence of com-
mands (e.g., CB=1), the controller 320 performs the com-
mand as part of the sequence of commands (act 440). That
1s, the controller 300 would translate the command as a
super-command set where 1t can be a representation of for
example, (1) a command 1n a group of commands targeted
to all planes, (2) a command 1n a group of commands that
should be treated together as an atomic command sequence,
(3) or a command that 1s part of a sequential group of
commands with incremental addresses. Thus, 1n this
example, a string of commands with CB=1 would be treated
by the controller 300 as part of a sequence of commands to
be processed together, with the last command in the group
having CB=0.

This capability can be exposed 1n a vendor-unique portion
of a parameter page, which can indicate that the device
supports CB processing and which commands or types of
commands can be executed with the CB set. The parameter
page can also mdicate a maximum queue depth (e.g., equal
to the number of planes or greater) and whether diflerent
operations (e.g., writes and erases) can be combined. It may
also be desirable to have the host firmware imndicate whether
the CB mode 1s to be used, which can be done via a Set
Feature command. So, the host 320 can generate multiple

10

15

20

25

30

35

40

45

50

55

60

65

12

standard 10 commands, each with the CB set, to a NAND
device driver. The NAND device driver would then interact
with NAND bus master hardware to execute each CB
command as a normal command. Accordingly, these
embodiments can be used to create overlapped writes (or
other commands) to multiple planes (or even multiple dies)
in a single logical unit (LUN) without defining a new
command.

There are several advantages associated with these
embodiments. For example, providing a controller that can
perform a sequence of commands can help maximize per-
formance of a flash die by executing two or more overlapped
operations (e.g., reads, programs (writes), or erases), Ire-
quently to different planes. Consider the situation in which
the host wants to send ten read commands to the controller.
Without these embodiments, the host would need to wait for
one read command to be completed before sending the next
read command. This waiting time can be long and degrade
performance. With these embodiments, the host 320 can
send the entire sequence of the read commands back-to-back
without waiting for any of these commands to be completed,
and the controller 300 would internally deal with all ten read
commands. This provides improved performance over sys-
tems 1n which the host needs to wait for a response from the
controller before sending an additional command. That 1s, 1n
this embodiment, the controller 300 would send a response
back to the host 320 after the entire sequence of commands
have been received rather than after each command has been
received.

There are several different operation types that can be
used 1n these embodiments, and they can generally fall into
two categories: (1) commands that transfer any data before
status or (2) commands that transier data after status. A
program operation 1s an example of the first category, while
reads are examples of the second. An erase command does
not perform a data transier and can be considered another
example of the first category. For operations in the first
category, the controller 300 can return a status after each
program part. Consider, for example, a single program
command sequence can consist of (1) command, (2) address,
(3) data transfer, and (4) device busy until status returned.
The controller 300 can quickly return a “good” status 1n step
4 (unless something was wrong) and then proceed to accept
other commands and process them similarly. When the last
command 1s received with CB=0, the controller 300 can
complete the operation of the set of commands and then
return status for the entire sequence. A non-zero status can
be further defined to require reading other feature bytes or
reading a special address to indicate which operations failed
(as this would not be a normal event, fast processing for this
may not be needed). A sequence of erase commands can also
be sent as above, with step 3 eliminated.

These embodiments also provide an advantage over prior
NAND flash memory device that use a cache register, as
those prior devices only store a single command, and both
the command being processed and the cached command are
treated as stand-alone commands that are executed one-
command-at-a-time. Further, NAND flash memory devices
that have a cache register typically can only cache write,
read, and erase commands, whereas these embodiments can
be used to store any type of command, as the CB bit instructs
the controller 300 that an incoming command 1s a pipelined
command.

As mentioned above, these embodiments can be used to
allow command queuing and/or a transaction mechanism,
where multiple commands can be sent and either staged for
execution and/or executed as a group. For example, if the

US RE46,201 E

13

flash memory device 330 1s organized into a plurality of
planes, the controller 300 can perform each command 1n the
sequence of commands 1n a different one of the plurality of
planes. As another example, 1 the sequence of commands 1s
an atomic command sequence, the controller 300 can per-
form the sequence of commands together as a group. As yet
another example, 1f the sequence of commands contains
incremental addresses, the controller 300 can perform these
commands by pre-fetching information from the incremen-
tal addresses. A parameter page or Set Feature parameter can
indicate whether incremental addresses refer to incremental
addresses 1n the same plane or to the same address in
different planes. FIGS. 5-7 provide timing diagrams that will
illustrate exemplary operations of these embodiments.

Turning first to FIG. 3, 1s a timing diagram of a multi-
plane read operation of an embodiment. In this example, 1t
1s assumed that the host 320 will have identical page
addresses for all planes 1n the flash memory device 330. As
shown 1n this timing diagram, the host 320 issues a read
command (00) AddrO(30)—referred to as PCMD[A]—with
the CB bait set to 1. The controller 300 receives the command
and detects the CB bit in the address field. In this example,
“incremental addresses™ refer to the same address 1n difler-
ent planes. Thus, multi-page read commands 1n this example
are 1ssued by the controller 320 to the selected flash memory
device die, with the same block and page addresses to all
planes. After tR (Page read time), all pages requested are
ready, and the corresponding page of data for the PCMDIJ[A]
1s transierred from the flash memory device 330 to the
controller 300. The controller 300 can perform optional data
management functions, such as de-scrambling and ECC
correction. While the management function 1s executing, the
controller 300 may i1mtiate data transier for other planes’
ready data to the same block and page address, i1 there 1s no
resource restriction in the controller 300.

The host 320 will discover the command PCMD[A] 1s
ready via the ready/busy signal or by polling the status or
extended status register and mmitiate data transier from the
controller 300. After that, the host 320 1ssues the next Read
command—(00)Addr1(30)—referred as PCMD[B]—to
read the same block/page to the next plane, with the CB bt
set as well, shown as “Plane[1]Address with CB=1" in FIG.
5. The controller 300 maintains a counter to distinguish 1f the
CB command 1s the first command that need to perform
multi-page read commands to the selected flash memory
device die. If the CB command 1s a continuation command
of the set, no new page read 1s 1ssued to the tlash memory
die. I the request data has been transferred to the controller
300, the status of PCMDI[B] shall be marked as ready.
Otherwise, the controller 300 may need to 1nitiate the data
transierred from the die’s register, optionally perform de-
scrambling and ECC correction, and mark the status for
PCMDIB] as ready. For these following CB command, the
page read time tR 1s saved, and hence, plane interleaved
performance 1s achieved.

FIG. 6 1s a timing diagram of a multi-plane program
operation of an embodiment. In this embodiment, the host
320 1ssues a page program command ((80) Addr Data-in
(10))—referred as PCMDJ[A]—with CB=1 to start the multi-
plane program. The controller 300 receives the command
and detects the CB bit 1n the address field. The controller 300
can have pre-defined logic to determine 1f the command 1s
the last command of the multi-plane operation. If the com-
mand 1s not the last command, the controller 300 can mark
the LUN Status to be ready. In the mean time, 1f possible, the
controller 300 can 1ssue the multi-page program command

to the die on the secondary bus with (80)Adddr Data-in(11).

10

15

20

25

30

35

40

45

50

55

60

65

14

The host 320 can discover that the LUN 1s ready, and 1t can
1ssue the next page program command ((80) Addr Data-in
(11))—retferred as PCMDI[B]—with CB=1 and addressed to
the next plane, shown as “Plane[1] Address with CB=1" 1n
FIG. 6. The host 320 can check that the LUN 1s ready and
repeat PCMD[B] until the last plane. For the last plane, the
host 320 can 1ssue the next page program command ((80)
Addr data-in (10))—retferred as PCMD|[C]—with CB=0 and
addressed to the last plane. The controller 300 may discover
the PCMDI[C] 1s the last command of the set. If so, the
controller 300 can i1ssue command (80) Addr Data-in (10),
which starts the tPROG for all planes after the data-in 1s
completed. The plane interleaved performance 1s thus
achieved. In this embodiment, there 1s no additional address
restriction for multi-plane program since addresses are
received before the die command can be 1ssued.

Referring now to FIG. 7, FIG. 7 1s a timing diagram of a
multi-plane block erase operation of an embodiment. In
operation, the host 320 would 1ssue a Block Frase command
((60) BAddr (DO0))—referred to as PCMD[A]—with CB
set=1 to start a multi-plane block erase. The controller 300
receives the command and detects the CB bit in the address
fiecld. The controller 300 can have pre-defined logic to
determine 1f the command 1s the last command of the
multi-plane operation. If the command 1s not the last com-
mand, the controller 300 can mark the LUN status to ready.
When the host 320 discovers that the LUN 1s ready, 1t 1s able
to 1ssue the next block erase command ((60) BAddr (D0))—
referred as PCMD[B]—with CB set to the next plane. The
controller 300 may discover the PCMDI[B] 1s the last com-
mand of the set. It so, the controller 300 1ssues a multi-block
erase command to performance block erase on all planes 1n
a single tBERS period, so to achieve plane interleaved
operation. In this embodiment, there 1s no additional address
restriction for the multi-plane block erase operation, since
addresses are received before the die command can be
1ssued.

Exemplary NAND Flash Memory Controller Embodi-
ment

This section discusses an exemplary controller architec-
ture and provides more details on some of the various
functional modules discussed above. As noted above, a
“module” can be implemented 1n any suitable manner, such
as with hardware, software/firmware, or a combination
thereof, and the functionality of a “module” can be per-
formed by a single component or distributed among several
components 1n the controller.

Returning now to the drawings, FIG. 8A 15 a diagram of
a presently preferred implementation of the NAND control-
ler 300 of FIG. 3. It should be understood that any of the
components shown in these drawings can be implemented as
hardware, software/firmware, or a combination thereof. In
this implementation, the first NAND Interface 325 1n FIG. 3
1s 1mplemented by the Host Interface Module (“HIM”)
3010. The HIM 3010 15 a collection of logic that supports the
“host side mterface™ as a “tlash device-type interface.” The
HIM 3010 Comprlses a first-in-first-out (“FIFO”) module
3080, a control unit 3090, a cyclic redundancy check
(“CRC”) module 3100 (although another type ol error
detection code (“EDC”) module can be used), a command
register 3110, an address register 3120, and a host direct
memory access (“HDMA™) unit 3130. In this embodiment,
the HIM 3010 takes the form of an ONFI HIM. As will be
discussed 1n more detail below, some HIMs receive a
high-level request from a host controller for a relatively-
large amount of data that spans several pages, and the
NAND controller determines what actions are needed to

US RE46,201 E

15

satisfy the request. In contrast, an ONFI HIM receives
several smaller-sized requests (e.g., for individual pages)
from a host controller, so the ONFI HIM 1s required to
simultaneously handle multiple (e.g., eight) read and write
requests.

Returming to FIG. 8 A, the second NAND Interface 335 of
FIG. 3 1s implemented here by a Flash Interface Module
(“FIM”) 3020. In a current embodiment, the FIM 3020 1s
implemented as a collection of logic and a low-level pro-
grammable sequencer that creates the “device side interface”
as a “host-type interface.” In this embodiment, the FIM 3020
comprises a command register 3140, an address register
3150, an ECC encode module 3160, an ECC decode module
3170, a data scrambler 3180, and a data descrambler 3190.

Internal to the NAND controller 300 1s a processor 3040,
which has local ROM, code RAM, and data RAM. A central
bus 3030 connects the processor 3040, the HIM 3010, the
FIM 3020, and the other modules descrlbed below and 1s
used to transfer data between the different modules shown.
This bi-directional bus 3030 may be either an electrical bus
with actual connections to each internal component or an
Advanced High-Speed Bus (“AHB”) used 1n conjunction
with an ARC microprocessor, which logically connects the
various modules using an interconnect matrix. The central
bus 3030 can transmits data, control signals or both. The
NAND controller 300 also comprises a bufler RAM
(“BRAM”) 3050 that 1s used to temporarily store pages of
data that are either being read or written, and an ECC
correction engine 3060 for correcting errors. The NAND
controller 300 further comprises an encryption module 3070
for performing encryption/decryption functions.

The NAND controller 300 can further comprise a column
replacement module, which 1s implemented here by either
the FIM sequencer, firmware in the processor 3040, or
preferably 1 a small amount of logic and a table located in
the FIM 3020. The column replacement module allows the
flash memory device(s) 330 (FIG. 3) to contain information
on bad column locations. The bad column address informa-
tion 1s contained 1n the flash memory device(s) 330 and 1s
scanned by firmware prior to any read or write operation.
After firmware scans the flash memory device(s) 330, it
builds a bad column address table with the bad column
location to be used by the column replacement module. On
flash write operations, the column replacement module
inserts the data (OxFFFF) for the address that 1s detected 1n
a bad column address table. On flash read operations, data
from the bad column address will be discarded.

With the components of the NAND controller 300 now
generally described, exemplary write and read operations of
the NAND controller 300 will now be presented. Turming,
first to a write operation, the FIFO 3080 in the HIM 3010
acts as a bufler for an incoming write command, address,
and data from a host controller and synchronizes those
clements to the system card domain. The CRC module 3100
checks the incoming information to determine 1f any trans-
mission errors are present. (The CRC module 3100 1s an
example of the EDC module discussed above.) The CRC
module generates or checks an error detection code to check
for transmission errors as part ol an end-to-end data protec-
tion scheme. If no errors are detected, the control unit 3090
decodes the command received from the FIFO 3080 and
stores 1t 1n the command register 3110, and also stores the
address 1n the address register 3120. The data received from

the host controller 1s sent through the HDMA AHB interface
3130 to the BRAM 3050 via the central bus 3030. The
control unit 3090 sends an interrupt to the processor 3040,
in response to which the processor 3040 reads the command

5

10

15

20

25

30

35

40

45

50

55

60

65

16

from the command register 3080 and the address register
3120 and, based on the command, sets up the data path in the
FIM 3020 and stores the command i the FIM’s command
register 3140. The processor 3040 also translates the address
from the NAND interface 325 into an internal NAND
address and stores 1t 1n the FIM’s address register 3150. If
logical-to-physical address conversion i1s to be performed,
the processor 3040 can use a mapping table to create the
correct physical address. The processor 3040 can also per-
form one or more additional functions described below. The

processor 3040 then sets up a data transfer from the BRAM
3050 to the FIM 3020.

The FIM 3020 takes the value from the address register
3150 and formats it in accordance with the standard of the
NAND interface 335. The data stored 1n the BRAM 3050 1s
sent to the encryption module 3070 for encryption and 1s
then sent through the data scrambler 3180. The data scram-
bler 3180 scrambles the data and outputs the data to the
FIM’s ECC encoder 3160, which generates the ECC parity
bits to be stored with the data. The data and ECC bits are
then transferred over the second NAND interface with the
write command to the flash memory device(s) for storage.
As an example of an additional function that may occur
during writes, 1 protection for write aborts or program
tailures 1s enabled and 11 the write request 1s to an upper page
address, the processor 3040 can send a read command to the
flash memory device(s) over the second NAND interface for
the corresponding lower page and then send a program
command to have 1t copied into a sale zone (a spare
scratchpad area) by writing 1t back to another location in the
flash memory device(s) 330. If an error occurs 1n writing the
upper page, the lower page can still be read back from the
sale zone and the error corrected. (This 1s an example of the
module discussed above for handling write aborts and/or
program failures via sale zones.)

Turning now to a read operation, the HIM 3010 receives
a read command from a host controller, and the processor
3040 reads the command and logical address. If logical-to-
physical address conversion 1s to be performed, the firmware
in the processor 3040 could use a mapping table to create the
correct physical address. ('This 1s an example of the address
mapping module discussed above.) The firmware then sends
the physical address over the second NAND interface 335 to
the flash memory device(s) 330. After the read access, the
data 1s transferred over the NAND interface, decoded and
used to generate the syndrome data for error correction,
descrambled by the data descrambler 3190, and then sent
over the central bus 3030 to the BRAM 3050. The ECC
correction engine 3060 1s used to correct any errors that can
be corrected using the ECC on the data that is stored in the
BRAM 3050. Since the ECC may be computed and stored
in portions of a physical page, the processor 3040 can be
interrupted as each portion of the page i1s recerved or
corrected, or once when all of the data 1s transferred. The
encryption module 3070 then performs a decryption opera-
tion on the data. The timing described above 1s flexible since
the first NAND interface 325 and the second NAND inter-
face 335 may operate at diflerent speeds, and the firmware
can transier the data using either store-and-forward tech-
niques or speed-match bullering. When the data 1s sent back
to the host controller, 1t 1s sent through the HIM 3010, and
the transmission CRC 1s sent back to the host over the first
NAND 1nterface 325 to check for transmission error.

As mentioned above, 1n addition to handling commands
sent from the host controller, the processor 3040 may
perform one or more additional functions asynchronously or
independent of any specific command sent by the host. For

US RE46,201 E

17

example, i the ECC correction engine 3060 detects a
correctable soit error, the ECC correction engine 3060 can
correct the soit error and also interrupt the processor 3040 to
log the page location so that the corresponding block could
be read scrubbed at a later point in time. Other exemplary
background tasks that can be performed by the processor
3040 are wear leveling and mapping of bad blocks and spare
blocks, as described below.

Turning again to the drawings, FI1G. 8B 1s a block diagram
showing a more detailed view of a NAND controller of an
embodiment. As with the controller shown 1n FIG. 8A, the
controller 1 this embodiment contains an ONFI HIM 3200
and a FIM 3260 that communicate through a central bus
(here, an Advanced Microcontroller Bus Architecture
(“AMBA”) High-performance Bus (“AHB”) multi-layer
matrix bus 3270 for the data path and an advanced peripheral
bus (“APB”) 3330 for the command path). The ONFI HIM
3200 and the FIM 3260 can be associated with any of the
processors. For example, the ONFI HIM 3200 can be
associated with an ARC600 microprocessor 3280 (with a
built-in cache 3285) that runs ARC code stored in a MRAM
3290. In general, the ARC600 3280 is used to service
interrupts from the ONFI HIM 3200 and manages the data
path setup and transfers information to the flash control
RISC 3250. The flash control RISC 3250 1s the micropro-
cessor that can be used with the FIM 3260 and, 1n general,
handles the function of setting up the FIM 3260 by gener-
ating micro-control codes to various components in the FIM
3260. More particularly, the flash control RISC 3250 sets up
the flash direct memory access (“FDMA”) module 3440 in
the FIM 3260, which communicates with the AHB bus 3270
and generates the AHB bus protocol commands to read data
from the DRAM 3220. The flash control RISC 3250 also sets
up the EDC module 3450, which contains the ECC encoder
and decoder. The MRAM 3240 stores code used to run the
flash control RISC 3250.

The NAND controller in this embodiment also contains a
ROM 3210 that stores 1nstruction code to get the controller
running upon boot-up. Additional components of the NAND
controller include a DRAM 3220, an ECC correction engine
3230, an encrypt module 3300, an APB bridge 3310, an
interrupt controller 3320, and a clock/reset management
module 3340.

The encryption module 3300 enciphers and deciphers 128
bit blocks of data using either a 128, 192, or 256 bit key
according to the Advanced Encryption Standard (AES). For
write operations, after data 1s received from the host and sent
to the BRAM 3050 (FIG. 8A) by the ONFI HIM, the
ARC600 processor 3280 creates a control block with defined
parameters of the encipher operations. The encryption mod-
ule 3300 then performs the encipher operations and stores
the resulting data to BRAM 3050 and interrupts the ARC600
processor 3280 to indicate that the data i1s ready. For read
operations, after the ECC engine completes error correction
in the BRAM 3050, the ARC600 processor 3280 creates a
control block with defined parameters of the decipher opera-
tions. The encryption module 3300 then performs the deci-
pher operations and stores the resulting data to the BRAM
3050 and mterrupts the ARC600 processor 3280 to indicate
data 1s ready.

Turning now to the ONFI HIM 3220 and the FIM 3260 in
more detail, the ONFI HIM 3220 comprises an ONFI
interface 3350 that operates either 1n an asynchronous mode
or a source synchronous mode, which 1s part of the ONFI
standard. (Asynchronous (or “async”) mode 1s when data 1s
latched with the WE# signal for writes and the RE# signal
for reads. Source synchronous (or “source (src) sync™) 1s

10

15

20

25

30

35

40

45

50

55

60

65

18

when the strobe (DQS) 1s forwarded with the data to indicate
when the data should be latched.) The ONFI HIM 3200 also
contains a command FIFO 3360, a data FIFO 3370, a data
controller 3380, a register configuration module 3400, a host
direct memory access (“HDMA”) module 3380, and a CRC
module 3415, which function as described above 1n con-
junction with FIG. 8 A. The ONFI HIM 3200 further con-
tains an APB terface 3390 and an AHB port 3420 for
communicating with the APB bus 3330 and the AHE bus
3270, respectively. The FIM 3260 comprises an EDC mod-
ule 3450 that includes an EDC encoder and an EDC decoder,
a tlash protocol sequencer (“FPS”) 3430, which generates

commands to the NAND bus based on micro-control codes
provided by the flash control RISC 3250 or the ARC600

microprocessor 3280, an FDMA 3440, a data scrambler/de-
scrambler 3470 and a NAND interface 3460.

The scrambler/descrambler 3470 performs a transforma-
tion of data during both flash write transfers (scrambling)
and flash read transfers (de-scrambling). The data stored 1n
the tlash memory device(s) 330 may be scrambled 1n order
to reduce data pattern-dependent sensitivities, disturbance
ellects, or errors by creating more randomized data patterns.
By scrambling the data 1n a shifting pattern across pages 1n
the memory device(s) 330, the reliability of the memory can
be improved significantly. The scrambler/descrambler 3470
processes data on-the-fly and i1s configured by either the
ARC600 processor 3280 or the Flash Control RISC 3250
using register accesses. ECC check bit generation 1s per-
formed after scrambling. ECC error detection 1s performed
prior to de-scrambling, but correction 1s performed after
descrambling.

The NAND controller 1n this embodiment processes write
and read operations generally as described above with
respect to FIG. 8A. For example, for a write operation, the
command FIFO 3360 and the data FIFO 3370 store an
incoming write command and data, and the CRC module
3415 checks the incoming information to determine 1f any
transmission errors are present. If no errors are detected, the
data controller 3380 decodes the command received from
the command FIFO 3360 and stores 1t in a command register
in the register configuration module 3400. The address
received from the host controller 1s stored in the address
register 1n the register configuration module 3400. The data
received from the host controller 1s sent through the HDMA
3410 to the DRAM 3220. The data controller 3380 then
sends an mnterrupt to the ARC600 3280 or the Flash Control
RISC 3250, which reads the command from the command
register, reads the address from the address register, and
passes control to the flash control RISC 3250 to set up the
FIM 3260 to start reading the data from DRAM 322 and
perform ECC and data scrambling operations, the result of
which 1s sent to the tlash memory device(s) 330 for storage.
The ARC600 microprocessor 3280 and/or the FIM 3260 can
perform additional operations. For example, the FIM 3260
can perform column replacement, and the following opera-
tions can be performed using the ARC600 microprocessor
3280 together with the FIM 360: bad block and spare block
management, salfe zones, read scrubbing, and wear leveling.
These operations are described 1n more detail below.

For a read operation, the ONFI HIM 3200 sends an
interrupt to the ARC600 microprocessor 3280 when a read
command 1s received. The ARC600 microprocessor 3280
then passes the command and address information to the
flash control RISC 3250, which sets up the FPS 3430 to
generate a read command to the NAND flash memory
device(s) 330. Once the data 1s ready to be read from the
NAND flash memory device(s) 330, the FPS 3430 starts

US RE46,201 E

19

sending read commands to the NAND bus. The read data
goes through the NAND interface unit 3460 to the data
descrambler 3470 and then through the EDC module 3450,
which generates the syndrome bits for ECC correction. The
data and syndrome bits are then passed through the FDMA
3440 and stored 1n the DRAM 3220. The flash control RISC
3250 then sets up the ECC correction engine 3230 to correct
any errors. The encrypt module 3300 can decrypt the data at
this time. The ARC600 microprocessor 3280 then receives
an interrupt and programs the register configuration module
3400 in the ONFI HIM 3200 to state that the data 1s ready
to be read from the DRAM 3220. Based on this information,
the ONFI HIM 3200 reads the data from the DRAM 3220
and stores 1t 1n the data FIFO 3370. The ONFI HIM 3200
then sends a ready signal to the host controller to signal that
the data 1s ready to be read.

As mentioned above, unlike other HIMs, an ONFI HIM
receives several smaller-sized requests (e.g., for individual
pages) from a host controller, so the ONFI HIM 1s required
to simultaneously handle multiple (e.g., eight) read and
write requests. In this way, there 1s more bi-directional
communication between the ONFI HIM and the host con-
troller than with other HIMs. Along with this increased
frequency 1 communication comes more parallel process-
ing to handle the multiple read and write requests.

FIGS. 8C and 8D 1illustrate the logical operations of an
ONFI HIM for read and write operations, respectively.
Turning first to FIG. 8C, the ONFI HIM 3480 of this
embodiment recerves a read command from a host controller
through an ONFI bus 3490. The ONFI HIM 3480 can
operate 1n an asynch or a source synch mode and commu-
nicates the read command to a command FIFO 3540 via
signal multiplexors 3500, 3530. (The ONFI HIM 3480 can
be used 1n an async mode and source sync mode using the
Async and ONFI source sync components 3510, 3520,
respectively.) The ONFI HIM 3480 also stores the address
received from the host controller 1n a logical unit number
(“LUN"") address FIFO 3550. (The NAND controller in this
embodiment supports multiple logical units, which are
treated as independent entities that are addressable by LUN
addresses.) The command and address are read from the
FIFOs 3540, 3550 into a command and data controller 3560,
which synchronizes these items. The command and data
controller 3560 then sends an interrupt to the system register
controller 3570, which generates an interrupt to the ARC600
microcontroller. The ARC600 microcontroller then reads the
LUN address from the register in the system register con-
troller 3570, and the process of reading data from the flash
memory device(s) 1s as described above. When all the read
data 1s written to the DRAM, the ARC600 microprocessor
program the status register in the system register controller
3570 to inform the ONFI HIM 3480 that the data 1s ready to
be read. The ONFI HIM 3480 then reads the data through the
HDMA 3580 using the read request control unit 3585. The
read data 1s stored in the read data FIFO 3590, which 1s
partitioned for each LUN 35935. Once that 1s done, a ready
indicator 1s stored in the status register, and the data is
streamed to the host controller.

Turning now to FIG. 8D, 1n a write operation, a write
command 1s received from a host controller through an
ONFI 3410 bus. The ONFI HIM 3400 communicates the
write command to a command FIFO 3460 via signal mul-
tiplexors 3420, 3450. (The ONFI HIM 3400 can be used in
an async mode and source sync mode using the Async and
ONFI source sync components 3430, 3440, respectively.)
The ONFI HIM 3400 also stores the address received from

the host controller 1n a logical unit number (“LUN"") address

10

15

20

25

30

35

40

45

50

55

60

65

20

FIFO 3470. The data received from the host controller 1s
stored 1n a write data FIFO 3520. The command and address
are read from the FIFOs 3460, 3470 into a command and
data controller 3480, which synchronizes these items. The
command and data controller 3480 then sends an interrupt to
the system register controller 3490, which generates an
interrupt to the ARC600 microcontroller. The ARC600
microcontroller then reads the LUN address from the reg-
ister 1n the system register controller 3490, and the process
of setting-up the controller from a write operation 1s as
described above. The HDMA 3530 has an AHB port 3540 1n
communication with the AHB bus 3550 and sends the data
to the DRAM. The CRC module 3545 checks for transmis-
s10on errors 1n the data. Once the data has been stored 1n the
flash memory device(s) 330 and the tlash memory device(s)
330 indicate ready and the status of program operation 1s
successiul or fail, a ready indicator 1s stored in the status
register 1n the system register controller 3490, indicating
that the ONFI HIM 3400 1s ready for another command from
the host controller. Returning to FIG. 8A, the NAND con-
troller 300 can also handle program failures and erase
tailures. As the NAND flash memory device(s) 330 attached
to the flash interface module 3020 (hereafter FIM) are
programmed, the NAND memory device(s) 330 report the
success or failure of the program operation to the NAND
controller 300 (or optionally to the ONFI Host through the
host mterface module 3010 (hereafter HIM)). The NAND
memory device(s) 330 may experience some number of
program failures over the expected life of the memory due
to defects 1n the NAND cells or due to the limited endurance
the NAND cells have with regard to erase and program
cycles.

The NAND memory device(s) 330 will return a FAIL
status to the controller 300 when the program page operation
does not complete successiully. The controller processor
3040 (FIG. 8A) or flash protocol sequencer 3430 (FIG. 8B)
verifies the success or failure of each program page opera-
tion. Generally, the failure of any single program page
operation will cause the processor 3040 (or optionally the
ONFI Host) to regard the entire NAND block (which may
contain multiple pages) to be detective. The defective block
will be retired from use. Typically, the controller 300 wall
copy the data that was not successfully programmed and any
data 1 preceding pages in the defective block to another
replacement block (a spare block). The controller 300 may
read preceding pages mnto the BRAM 3050 using the FIM
3020, the data de-scrambler 3190, and the ECC decoder
3170 and applying ECC correction as needed. The data 1s
then written to the replacement block using the FIM 3020 in
the normal fashion.

One aspect of program failures 1s that a failure program-
ming one page may corrupt data in another page that was
previously programmed. Typically, this would be possible
with MLC NAND memory which 1s organized physically
with upper and lower logical pages sharing a word-line
within the memory array. A typical usage would be to
program data 1into a lower page and subsequent data into the
upper page. One method to prevent the loss of data in the
lower page when a program failure occurs when programs-
ming the upper page on the word-line 1s to read the lower
page data prior to programming the upper page. The lower
page data could be read into the controller BRAM 3050 and
could additionally be programmed 1nto a scratch pad area 1n
the non-volatile tflash memory device(s) 330, sometimes
called a “sate zone.” The data thus retained in the BRAM
3050 or sate zone would then be protected from loss due to
a programming failure and would be available to be copied

US RE46,201 E

21

to the replacement block, particularly 1n cases where the data
was corrupted 1n the lower page of the NAND memory
device(s) 330 and could no longer be read successiully.

It 1s possible that some NAND failure modes could
similarly corrupt data in other areas of the memory array,
such as on adjacent word lines. This method of reading other
potentially vulnerable data into the controller BRAM 3050,
and/or saving the data into a scratch pad or sale zone area
could also be used to protect data 1n these circumstances.

As the NAND flash memory device(s) 330 attached to the
FIM 3020 are erased, the NAND memory device(s) 330
report the success or failure of the block erase operation to
the NAND controller 300 (or optionally to the ONFI Host
through the HIM 3010). The NAND memory device(s) 330
will return a FAIL status to the controller 300 when the erase
operation does not successiully complete. The controller
processor 3040 or circuits 1n the flash protocol sequencer
3430 venifies the success or failure of each erase operation.
Generally, the failure of any erase operation will cause the

processor 3040 (or ONFI Host) to regard the entire NAND
block to be defective. The defective block will be retired
from use and a spare block used 1n 1ts place.

The NAND controller 300 can also handle program
disturbs, erase disturbs, and read disturbs within the flash
memory device.

The internal NAND programming operations could pos-
sibly eflect, or disturb, other areas of the memory array,
causing errors when attempting to read those other areas.
One method to prevent failures from program disturb is to
perform reads or “read scrubbing” operations on potentially
vulnerable areas in conjunction with programming opera-
tions, 1 order to detect disturb eflects before they become
uncorrectable or unrecoverable errors. Once a disturb con-
dition 1s detected (by high soft error rates during the read
scrubbing operation), the controller processor 3040 (or the
external ONFI host) can copy the data to another area 1n the
flash memory device(s) 330.

The internal NAND erase operations could possibly
ellect, or disturb other areas of the memory array, causing
errors when attempting to read those other areas. One
method to prevent failures from erase disturb 1s to perform
reads or “read scrubbing” operations on potentially vulner-
able areas 1n conjunction with erase operations, 1n order to
detect disturb eflects before they become uncorrectable or
unrecoverable errors. Once a disturb condition 1s detected,
the controller processor 3040 (or the external ONFI host)
can copy the data to another area in the flash memory
device(s) 330.

The internal NAND read operations could possibly effect,
or disturb other areas of the memory array, causing errors
when attempting to read those other areas. The disturb
ellects can sometimes accumulate over many read opera-
tions. One method to prevent failures from program disturb
1s to perform reads or “read scrubbing” operations on
potentially vulnerable areas in conjunction with read opera-
tions, 1 order to detect disturb eflects before they become
uncorrectable or unrecoverable errors. Once a disturb con-
dition 1s detected, the controller processor 3040 (or the
external ONFI host) can copy the data to another area 1n the
flash memory device(s) 330.

Referring now to FIG. 8A, the NAND controller 300
handles read errors 1n the following manner. Typically, the
data that 1s programmed 1nto the NAND memory device(s)
330 through the FIM 3020 has an error detection or error
correction code appended and stored with the data in the
NAND array. The controller 300 uses the ECC encoder 3160

tor this function. When such data 1s read from the flash array

10

15

20

25

30

35

40

45

50

55

60

65

22

to the BRAM 3050, the ECC decoder 3170 re-generates the
ECC code from the data and compares it to the ECC code
that was appended to the data when programmed into the
flash. If the data 1s 1dentical to the data that was written, the
ECC circuits indicate that there 1s no data error present. If
some difference in the read data i1s detected, and the difter-

ence 1s small enough to be within the capability of the ECC
to correct, the read data (typically contained in the BRAM
3050) 1s “corrected” or modified to restore it to the original
value by the ECC correction engine 3060, as controlled by
the processor 3040. ITf the data errors exceed the ECC
correction capability, an “uncorrectable” read error occurs.
Typically, an uncorrectable read error would result 1n an
error status being returned to the Host interface when read.

One method to prevent uncorrectable read errors, or to
recover when an error 1s detected, 1s for the controller 300
(or the external ONFI host) to retry the read operation. The
retry may use shifted margin levels or other mechanisms to
decrease the errors within the data, perhaps eliminating the
errors or reducing the number of errors to a level that 1s
within the ECC correction capability.

Optionally, when a read error i1s recovered, or 1if the
amount of ECC correction needed to recover the data meets
or exceeds some threshold, the data could be re-written to
the same or to another block 1n order to restore the data to
an error-iree or improved condition. The original data loca-
tion may optionally be considered as defective, in which
case 1t could be marked as defective and retired from use.

Referring again to FIG. 8 A, the NAND controller 300 can
also handle write aborts. Write aborts are the unexpected
loss of power to the controller 300 and NAND memory
device(s) 330 while a program or erase operation 1s 1n
progress. The loss of power can result 1n incomplete pro-
gramming or erase conditions 1n the NAND memory device
(s) 330 that could result 1n uncorrectable read errors. In some
cases, such as with MLC NAND, other pages that share a
word line (1.e., a lower page) could be corrupted by an
aborted program operation on the upper page of a word line,
much like the program failure condition described above.

There are several methods to reduce or eliminate write
abort errors, or minimize their impact. One method 1s to use
a low voltage detection circuit to notify the processor 3040
that the power has been interrupted. The processor 3040 can
then allow current program or erase operations to fimish but
not allow new operations to start. Ideally, the current opera-
tions would have enough time with suflicient power to
complete.

An alternative method, perhaps used in conjunction with
the low voltage detection method, 1s to add capacitance or a
battery (or some alternative power supply source) to the
power supply circuits to extend the power available to
complete program or erase operations.

Another method 1s to provide a scratch pad “sate zone”
similar to that described above. Any “old” data that exists 1n
lower pages that may be vulnerable during an upper page
program could be read and saved 1n the safe zone before the
upper page program 1s started. That would provide protec-
tion for previously-programmed data 1n case of a power loss
event. In some implementations, 1t may be acceptable to not
be able to read data that was corrupted in a write abort
situation, but other possibly un-related older data must be
protected.

Another method 1s to search for potential write abort
errors when the controller 1s powered on. IT an error 1s found
that can be determined (or assumed) to be a result of a write
abort, the error data may be discarded. In this situation, the

US RE46,201 E

23

controller 300 effectively reverts back to previous data, and
the interrupted operation 1s as if 1t did not happen.

Referring again to FI1G. 8A, the NAND controller 300 can
also conduct wear leveling on the memory. Wear leveling 1s
a method to increase overall product endurance and lifetime
by more evenly distributing block usage amongst all physi-
cal blocks than would otherwise occur as a result of normal
flash management algorithms. This 1s done by forcing “cold”
blocks to the spare blocks pool, which will 1n turn be used
for host data updates, and, at the same time, moving the data
from “cold” blocks, which are not updated by the host, to a
“hot” block. This swap will result in mixing up “hot” and
“cold” blocks. The swap can be done either randomly or
cyclically, choosing blocks for the swap, or choosing them
on the basis of a hot count (number of program-erase cycles)
analysis. The swap can be done periodically, say in every
100 block cycles, typically calibrated by a system parameter
to balance between overall system performance and evening,
of block usage to balance wear and performance overhead.

An example high level sequence 1s:

1. Schedule wear leveling operation

2. Identity “hot” and “cold” blocks by either hot count
analysis or on random or cyclic basis.

3. Copy data from the selected “cold” block to the
selected “hot” free block 1n the free block pool.

4. Release the “cold” block to the free block pool. As a
result, the free block pool 1s populated by a cold block
instead of hot one.

Some operations can be skipped, like analysis-based
blocks selection. The wear level operation 1tself can also be
skipped 1f block wear distribution 1s detected as even.

The wear level operations and hot count management are
performed 1n firmware by the processor 3040, such that the
host controller 121 (FIG. 3) will not be aware of these
housekeeping flash block level operations

Referring to FIG. 8A, the controller 300 can also imple-
ment read scrubbing on the flash memory device(s) 330
upon detection of a read disturb. Read operations to one area
of the NAND memory array within the flash memory
device(s) 330 may aflect or disturb other areas of the
memory array, causing cells to shift from one state to
another, and ultimately causing bit errors when attempting to
read data previously stored to those other areas. The disturb
ellects can accumulate over many read operations, eventu-
ally leading to a number of bit errors that may exceed the
data correction capabilities of the system. The errors that
exceed the system correction capabilities are referred to as
uncorrectable errors. One method to prevent failures from
program disturbs 1s to perform reads or “scrubbing” opera-
tions on potentially vulnerable areas, in order to detect
disturb eflects before they become uncorrectable or unre-
coverable errors. Once a disturb condition 1s detected,
typically by detecting that there are a number of bits 1n error
on the data read, the processor 3040 can move the data to
another area 1n the memory generally by copying the data to
another area of the NAND memory array in order to
“refresh” it.

Read scrub copy 1s usually triggered by correctable ECC
error discovered by the ECC correction engine 3060 (FIG.
8A), erther 1n blocks read during the course of a host read
operation, an internal system read operation, or by a sched-
uled read scrub scan. System read operations are those
needed by the flash storage system to read firmware, param-
cters, or mapping information stored in the NAND flash.
Read scrub scan 1s a read of all data 1n a block to determine
whether any data contained therein has been disturbed.
Blocks are selected for a read scrub scan typically when they

10

15

20

25

30

35

40

45

50

55

60

65

24

have been partially read during the course of a host read or
system read operation, but may also be selected using other
criteria, such as randomly, or via deterministic sequencing
through the blocks of memory. Because a read scrub scan
operation takes time and aflects data throughput of the
system, the system may select blocks for read scrub scan
only periodically or infrequently, by use of a random selec-
tion, a counter, or other mechanisms. The frequency of
scheduling may be calibrated to balance between the system
performance needs, and the frequency require to detect
disturbed data before it becomes uncorrectable. Upon detec-
tion of a correctable error that has some number of bits in
error above a pre-defined threshold, the read scrub copy 1s
scheduled for the block.

Read scrub copy 1s a method by which data 1s read from
the disturbed block and written to another block, after
correction of all data which has correctable ECC error. The
original block can then be returned to the common free block
pool and eventually erased and written with other data. Read
scrub scan and read scrub copy scheduling will be done 1n
the NAND controller 300 in firmware by the processor 3040,
such that the host controller 121 will not be aware of these
housekeeping tlash block level operations.

CONCLUSION

It 1s mtended that the foregoing detailed description be
understood as an illustration of selected forms that the
invention can take and not as a definition of the invention.
It 1s only the following claims, including all equivalents that
are mtended to define the scope of this invention. Also, some
of the following claims may state that a component 1is
operative to perform a certain function or configured for a
certain task. It should be noted that these are not restrictive
limitations. It should also be noted that the acts recited 1n the
claims can be performed 1n any order—not necessarily in the
order 1n which they are recited.

What 1s claimed 1s:

[1. A method for performing a sequence of commands, the
method comprising:

performing 1n a controller in communication with a host

and a flash memory device:

receiving a command from the host to perform a
memory operation 1n the flash memory device,
wherein the command comprises at least one bit that
indicates whether the command 1s a stand-alone
command or 1s part of a sequence of commands;

analyzing the at least one bit to determine whether the
at least one bit indicates that the command 1s a
standalone command or 1s part of a sequence of
commands;

if the at least one bit indicates that the command 1s a
stand-alone command, performing the command;
and

if the at least one bit indicates that the command 1s part
of a sequence of commands, performing the com-
mand as part of the sequence of commands, wherein
cach of the commands 1n the sequence of commands
includes a command code.}

2. The method of claim [1] 3, wherein the flash memory
device 1s organized 1nto a plurality of planes, and wherein
cach command in the sequence of commands 1s performed
in a different one of the plurality of planes.

3. [The method of claim 1,] A method for performing a
sequence of commands, the method comprising:

performing in a controller in communication with a host

and a flash memory device:

US RE46,201 E

25

receiving a command from the host to perform a
memory operation in the flash memory device,
wherein the command comprises at least one bit that
indicates whether the command is a stand-alone
command or is part of a sequence of commands;

analyzing the at least one bit to determine whether the
at least one bit indicates that the command is a
stand-alone command or is part of a sequence of
commands;

if the at least one bit indicates that the command is a
stand-alone command, performing the command;
and

if the at least one bit indicates that the command is part
of a sequence of commands, performing the com-
mand as part of the sequence of commands, wherein
each of the commands in the sequence of commands
includes a command code wherein the sequence of
commands comprises an atomic command sequence,
and wherein the commands 1n the sequence of com-
mands are performed together as a group.

4. The method of claim [1] 3, wherein the sequence of
commands comprise sequential commands with incremental
addresses.

5. [The method of claim 1,] 4 method for performing a
sequence of commands, the method comprising:

performing in a contrvoller in communication with a host

and a flash memory device:

receiving a command from the host to perform a
memory operation in the flash memory device,
wherein the command comprises at least one bit that
indicates whether the command is a stand-alone
command or is part of a sequence of commands;

analyzing the at least one bit to determine whether the
at least one bit indicates that the command is a
stand-alone command or is part of a sequence of
commands;

if the at least one bit indicates that the command is a
stand-alone command, performing the command;
and

if the at least one bit indicates that the command is part
of a sequence of commands, performing the com-
mand as part of the sequence of commands, wherein
each of the commands in the sequence of commands
includes a command code;

wherein the at least one bit 1s a single bit and wherein the

single bit is one of a plurality of veserved address bits.

[6. The method of claim 5, wherein the single bit is one
of a plurality of reserved address bits.]

7. The method of claim [1] 3, wherein at least one bit in
a last command 1n the sequence of commands indicates that
the command 1s a stand-alone command.

8. The method of claim [1] 3, wherein the sequence of
commands are received by the controller one command at a
time.

9. The method of claim 8 further comprising sending a
response back to the host either after the entire sequence of
commands have been received or after each command in the
sequence of commands has been received.

[10. A controller for performing a sequence of commands,
the controller comprising:

a first interface configured to transier data between a host

and the controller;

a second interface configured to transfer data between the

controller and a flash memory device; and

circultry operative to:

receive a command from the host to perform a memory
operation in the flash memory device, wherein the

10

15

20

25

30

35

40

45

50

55

60

65

26

command comprises at least one bit that indicates
whether the command 1s a stand-alone command or
1s part of a sequence of commands;

analyze the at least one bit to determine whether the at
least one bit indicates that the command 1s a stand-
alone command or 1s part of a sequence ol com-

mands;

if the at least one bit indicates that the command 1s a
stand-alone command, perform the command; and

if the at least one bit indicates that the command 1s part
of a sequence of commands, perform the command
as part of the sequence of commands, wherein each
of the commands in the sequence of commands
includes a command code.}

11. The controller of claim [10] /2, wherein the flash

memory device 1s organized into a plurality of planes, and
wherein each command in the sequence of commands 1s
performed 1n a different one of the plurality of planes.

12. [The controller of claim 10,] 4 controller for perform-
ing a sequence of commands, the contvoller comprising:

a first interface configured to transfer data between a host

and the controller;

a second interface configured to transfer data between the

controller and a flash memory device; and

circuitry operative to:

receive a command from the host to perform a memory
operation in the flash memory device, wherein the
command comprises at least one bit that indicates
whether the command is a stand-alone command or
is part of a sequence of commands;

analyze the at least one bit to determine whether the at
least one bit indicates that the command is a stand-
alone command or is part of a sequence of com-
mands;

if the at least one bit indicates that the command is a
stand-alone command, perform the command,; and

if the at least one bit indicates that the command is part
of a sequence of commands, perform the command
as part of the sequence of commands, wherein each
of the commands in the sequence of commands
includes a command code;

wherein the sequence of commands comprises an atomic

command sequence, and wherein the commands 1n the
sequence of commands are performed together as a
group.

13. The controller of claim [10] /2, wherein the sequence
of commands comprise sequential commands with 1ncre-
mental addresses.

[14. The controller of claim 10, wherein the at least one
bit is a single bit.}

15. [The controller of claim 14,] A4 controller for perform-
ing a sequence of commands, the controller comprising:

a first interface configured to transfer data between a host

and the controller;

a second interface configured to transfer data between the

controller and a flash memory device; and

circuitry operative to:

receive a command from the host to perform a memory
operation in the flash memory device, wherein the
command comprises at least one bit that indicates
whether the command is a stand-alone command or
is part of a sequence of commands;

analyze the at least one bit to determine whether the at
least one bit indicates that the command is a stand-
alone command or is part of a sequence of com-
mands;

US RE46,201 E

27

if the at least one bit indicates that the command is a
stand-alone command, perform the command,; and

if the at least one bit indicates that the command is part
of a sequence of commands, perform the command
as part of the sequence of commands, wherein each
of the commands in the sequence of commands
includes a command code;

wherein the at least one bit is a single bit, and

wherein the single bit 1s one of a plurality of reserved

address bits.

16. The controller of claim [10] /2, wherein at least one
bit 1n a last command 1n the sequence of commands indicates
that the command 1s a stand-alone command.

17. The controller of claim [10] /2, wherein the sequence
of commands are received by the controller one command at
a time.

18. The controller of claim 17, wherein the processor 1s
turther operative to send a response back to the host either

aiter the entire sequence of commands have been received or
alter each command 1n the sequence of commands has been
received.

19. The controller of claim [10] /2, wherein at least one
of the first and second 1nterfaces comprises a NAND 1nter-
face configured to transier data using a NAND interface
protocol.

20. The controller of claim [10] /2, wherein both the first
and second interfaces comprise a NAND interface config-
ured to transier data using a NAND interface protocol.

10

15

20

25

28

21. The method of claim 3, wherein the flash memory
device comprises a three-dimensional memory.

22. The method of claim 21, wherein the three-dimen-
sional memory is a passive element array.

23. The method of claim 21, wherein word lines and/or bit
lines in the three-dimensional memory are shaved between
levels.

24. The controller of claim 12, wherein the flash memory
device comprises a three-dimensional memory.

25. The controller of claim 24, wherein the three-dimen-
sional memory is a passive element array.

26. The controller of claim 24, wherein word lines and/or
bit lines in the three-dimensional memory are shared
between levels.

27. The method of claim 5, wherein the flash memory
device comprises a three-dimensional memory.

28. The method of claim 27, wherein the three-dimen-
sional memory is a passive element array.

29. The method of claim 27, wherein word lines and/or bit
lines in the three-dimensional memory ave shaved between
levels.

30. The controller of claim 15, wherein the flash memory
device comprises a three-dimensional memory.

31. The controller of claim 30, wherein the three-dimen-
sional memory is a passive element array.

32. The controller of claim 30, wherein word lines and/or
bit lines in the three-dimensional memory arve shared
between levels.

	Front Page
	Drawings
	Specification
	Claims

