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PROGRAMMING NON-VOLATILE STORAGEL
INCLUDING REDUCING IMPACT FROM
OTHER MEMORY CELLS

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough indi-

cates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

BACKGROUND

1. Field

The present invention relates to technology for non-vola-
tile storage.

2. Description of the Related Art

Semiconductor memory has become more popular for use
in various electronic devices. For example, non-volatile semi-
conductor memory 1s used in cellular telephones, digital cam-
eras, personal digital assistants, mobile computing devices,
non-mobile computing devices and other devices. Electrical
Erasable Programmable Read Only Memory (EEPROM) and
flash memory are among the most popular non-volatile semi-
conductor memories.

Both EEPROM and flash memory utilize a tloating gate
that 1s positioned above and insulated from a channel region
in a semiconductor substrate. The tloating gate 1s positioned
between the source and drain regions. A control gate 1s pro-
vided over and 1nsulated from the floating gate. The threshold
voltage of the transistor 1s controlled by the amount of charge
that 1s retained on the floating gate. That 1s, the minimum
amount of voltage that must be applied to the control gate
before the transistor 1s turned on to permit conduction
between 1ts source and drain 1s controlled by the level of
charge on the tloating gate. Thus, a memory cell (which can
include one or more transistors) can be programmed and/or
erased by changing the level of charge on a floating gate 1n
order to change the threshold voltage.

Each memory cell can store data (analog or digital). When
storing one bit of digital data (referred to as a binary memory
cell), possible threshold voltages of the memory cell are
divided into two ranges which are assigned logical data “1”
and “0.” In one example of a NAND type flash memory, the
threshold voltage 1s negative after the memory cell 1s erased,
and defined as logic *“1.” After programming, the threshold
voltage 1s positive and defined as logic “0.” When the thresh-
old voltage 1s negative and a read 1s attempted by applying O
volts to the control gate, the memory cell will turn on to
indicate logic one 1s being stored. When the threshold voltage
1s positive and a read operation 1s attempted by applying O
volts to the control gate, the memory cell will not turn on,
which indicates that logic zero 1s stored.

A memory cell can also store multiple levels of information
(referred to as a multi-state memory cell). In the case of
storing multiple levels of data, the range of possible threshold
voltages 1s divided into the number of levels of data. For
example, 11 Tour levels of information 1s stored, there will be
four threshold voltage ranges assigned to the data values
“117, 107, “01”, and *“00.” In one example of a NAND type
memory, the threshold voltage after an erase operation 1s
negative and defined as “11.” Positive threshold voltages are
used for the states of “107, “01”, and “00.” If eight levels of
information (or states) are stored 1n each memory cell (e.g. for
three bits of data), there will be eight threshold voltage ranges
assigned to the data values “0007, 0017, “010,*011” =100,
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2

“1017, “110” and “111.” The specific relationship between
the data programmed 1nto the memory cell and the threshold
voltage levels of the memory cell depends upon the data

encoding scheme adopted for the memory cells. For example,
U.S. Pat. No. 6,222,762 and U.S. Patent Application Publi-

cation No. 2004/0255090, both of which are incorporated

herein by reference in their entirety, describe various data
encoding schemes for multi-state flash memory cells. In one
embodiment, data values are assigned to the threshold voltage
ranges using a Gray code assignment so that 11 the threshold
voltage of a floating gate erroneously shiits to 1ts neighboring
physical state, only one bit will be affected. In some embodi-
ments, the data encoding scheme can be changed for different
word lines, the data encoding scheme can be changed over
time, or the data bits for random word lines may be inverted to
reduce data pattern sensitivity and even wear on the memory
cells. Different encoding schemes can be used.

1

When programming an EEPROM or flash memory device,
such as a NAND tlash memory device, typically a program
voltage 1s applied to the control gate and the bit line 1s
grounded. Electrons from the channel are injected into the
floating gate. When electrons accumulate 1n the floating gate,
the floating gate becomes negatively charged and the thresh-
old voltage of the memory cell 1s raised so that the memory
cell 1s 1n a programmed state. More information about pro-
gramming can be found mn U.S. Pat. No. 6,859,397, titled
“Source Side Self Boosting Technique For Non-Volatile
Memory,” and in U.S. Patent Application Publication 2005/
0024939, titled “Detecting Over Programmed Memory,” both
of which are incorporated herein by reference 1n their entirety.
In many devices, the program voltage applied to the control
gate during a program operation 1s applied as a series of
pulses 1n which the magnitude of the pulses 1s increased by a
predetermined step size for each successive pulse.

Many non-volatile storage systems include an array of
memory cells arranged 1n columns and rows. Control lines
(e.g., word lines, bit lines, or other types of control lines)
connect to the various rows and columns. In one example,
word lines are used to access rows of memory cells while bit
lines are used to access columns of memory cell. In this
arrangement, the series of pulses of the program voltage are
applied to a selected word line that 1s connected to a set of
selected memory cells. Each of the selected memory cells
receiving the pulses potentially has its threshold voltage
raised in response thereto. As the memory cells reach their
target threshold voltage, they are locked out from further
programming. It has been observed that as memory cells
become locked out, they interfere with the expected program-
ming rate of their neighbor memory cells. This effect can
cause the neighbor memory cells to overshoot their intended
target threshold voltage and, therefore, become over-pro-
grammed. In some cases, an over-programmed memory cell
will cause an error when being read.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a top view of a NAND string.

FIG. 2 1s an equivalent circuit diagram of the NAND string.

FIG. 3 1s a block diagram of anon-volatile memory system.

FIG. 4 15 a block diagram depicting one embodiment of a
memory array.

FIG. 5 1s a block diagram depicting one embodiment of a
sense block.

FIG. 6 depicts an example set of threshold voltage distri-
butions and describes a process for programming non-volatile
memory.
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FIGS. 7A-I show various threshold voltage distributions
and describe a process for programming non-volatile

memory.

FIGS. 8 1s a table depicting one example of an order of
programming non-volatile memory.

FI1G. 9 depicts a tlow chart describing one embodiment of
a process for programming non-volatile memory.

FIG. 10 depicts a tlow chart describing one embodiment of
a process for programming non-volatile memory elements.

FIGS. 11 A-C depict portions of two example neighboring,
memory cells.

FI1G. 12 depicts a set of

FIG. 13 depicts a set of

FIG. 14 depicts a set of program pulses and verity pulses.

FIG. 15 depicts a set of program pulses and verity pulses.

FIG. 16 depicts example waveforms.

FIG. 17 1s a flow chart describing one embodiment of a
process for determining whether a condition exists.

FIG. 18 1s a block diagram of one embodiment of a circuit
that determines whether a condition exists.

FIG. 19 1s a flow chart describing one embodiment of a
process for determining whether a condition exists.

FIG. 20 1s a block diagram of one embodiment of a circuit
that determines whether a condition exists.

FIG. 21 1s a flow chart describing one embodiment of a
process for determining a trigger point to change the pro-
gramming process.

FIG. 22 1s a flow chart describing one embodiment of a
process for determining a trigger point to change the pro-
gramming process.

FIG. 23 1s a flow chart describing one embodiment of a
process for determining a trigger point to change the pro-
gramming process.

FIG. 24 1s a flow chart describing one embodiment of a
process for dynamically adjusting a trigger voltage.

FIG. 25 15 a block diagram illustrating some of the com-
ponents that implement the process of FIG. 24.

FIG. 26 15 a flow chart describing one embodiment of a
process for dynamically adjusting a trigger voltage.

FI1G. 27 1s a block diagram illustrating some of the com-
ponents that implement the process of FIG. 26.

program pulses.
program pulses.

DETAILED DESCRIPTION

Technology 1s described herein that reduces the impact of
interference between neighboring memory cells during pro-
gramming.

In one set of embodiments, memory cells are divided 1nto
two or more groups. In one example, the memory cells are
divided 1nto odd and even memory cells; however, other
groupings can also be used. Prior to a first trigger, a first group
of memory cells are programmed together with a second
group of memory cells using a programming signal that
increases over time. Subsequent to the first trigger and prior to
a second trigger, the first group of memory cells are pro-
grammed separately from the second group of memory cells
using a programming signal that has been lowered 1n magni-
tude 1n response to the first trigger. Subsequent to the second
trigger, the first group of memory cells are programmed
together with the second group of memory cells with the
programming signal being raised in response to the second
trigger. Before and after both triggers, the first group of
memory cells are verified together with the second group of
memory cells. Some embodiments may make use of the first
trigger without using the second trigger.

The technology described herein can be used with various
types of non-volatile storage systems. One example 1s a flash

5

10

15

20

25

30

35

40

45

50

55

60

65

4

memory system uses the NAND structure, which includes
arranging multiple transistors 1n series, sandwiched between
two select gates. The transistors 1n series and the select gates
are referred to as a NAND string. FIG. 1 1s a top view showing
one NAND string. FIG. 2 1s an equivalent circuit thereot. The
NAND string depicted 1n FIGS. 1 and 2 includes four tran-
sistors 100, 102, 104 and 106 in series and sandwiched
between a first (or drain side) select gate 120 and a second (or
source side) select gate 122. Select gate 120 connects the
NAND string to a bit line via bit line contact 126. Select gate
122 connects the NAND string to source line 128. Select gate
120 1s controlled by applying the appropriate voltages to
select line SGD. Select gate 122 1s controlled by applying the
appropriate voltages to select line SGS. Each of the transis-
tors 100, 102, 104 and 106 has a control gate and a floating
gate. For example, transistor 100 has control gate 100CG and
floating gate 100FG. Transistor 102 includes control gate
102CG and a floating gate 102FG. Transistor 104 includes
control gate 104CG and floating gate 104FG. Transistor 106
includes a control gate 106CG and a floating gate 106FG.
Control gate 100CG 1s connected to word line WL3, control
gate 102CG 1s connected to word line WL2, control gate
104CG 1s connected to word line WL1, and control gate
106CG 1s connected to word line WLO.

Note that although FIGS. 1 and 2 show four memory cells
in the NAND string, the use of four memory cells 1s only
provided as an example. A NAND string can have less than
four memory cells or more than four memory cells. For
example, some NAND strings will include eight memory
cells, 16 memory cells, 32 memory cells, 64 memory cells,
128 memory cells, etc. The discussion herein 1s not limited to
any particular number of memory cells 1n a NAND string

A typical architecture for a flash memory system using a
NAND structure will include several NAND strings. Each
NAND string 1s connected to the source line by its source
select gate controlled by select line SGS and connected to 1ts
associated bit line by its drain select gate controlled by select
line SGD. Each bit line and the respective NAND string(s)
that are connected to that bit line via a bit line contact com-
prise the columns of the array of memory cells. Bit lines are
shared with multiple NAND strings. Typically, the bit line
runs on top of the NAND strings 1n a direction perpendicular
to the word lines and 1s connected to one or more sense
amplifiers.

Relevant examples of NAND type flash memories and their
operation are provided in the following U.S. Patents/Patent
Applications, all of which are incorporated herein by refer-
ence: U.S. Pat. Nos. 5,570,315, 5,774,397, 6,046,935, 6,456,
528; and U.S. Pat. Publication No. US2003/0002348. The
discussion herein can also apply to other types of flash
memory in addition to NAND, as well as other types of
non-volatile memory.

Other types of non-volatile storage devices, 1n addition to
NAND flash memory, can also be used. For example, non-
volatile memory devices are also manufactured from memory
cells that use a dielectric layer for storing charge. Instead of
the conductive ﬂoatmg gate elements described earlier, a
dielectric layer 1s used. Such memory devices utilizing
dielectric storage element have been described by Eitan et al.,
“NROM: A Novel Localized Trapping, 2-Bit Nonvolatlle
Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11,
November 2000, pp. 543-345. An ONO dlelectrlc layer
extends across the channel between source and drain diffu-
sions. The charge for one data bit 1s localized 1n the dielectric
layer adjacent to the drain, and the charge for the other data bat
1s localized 1n the dielectric layer adjacent to the source. For

example, U.S. Pat. Nos. 5,768,192 and 6,011,725 disclose a
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nonvolatile memory cell having a trapping dielectric sand-
wiched between two silicon dioxide layers. Multi-state data
storage 1s 1mplemented by separately reading the binary
states of the spatially separated charge storage regions within
the dielectric. Other types of non-volatile storage can also be
used.

FIG. 3 illustrates a memory device 210 having read/write
circuits for reading and programming a page (or other unmit) of
memory cells (e.g., NAND multi-state tlash memory or other
type) 1n parallel. Memory device 210 may include one or
more memory die or chips 212. Memory die 212 includes an
array (two-dimensional or three dimensional) of memory
cells 200, control circuitry 220, and read/write circuits 230A
and 230B. In one embodiment, access to the memory array
200 by the various peripheral circuits 1s implemented 1n a
symmetric fashion, on opposite sides of the array, so that the
densities of access lines and circuitry on each side are reduced
by half. The read/write circuits 230A and 230B 1nclude mul-
tiple sense blocks 300 which allow a page of memory cells to

be read or programmed in parallel. The memory array 200 1s
addressable by word lines via row decoders 240A and 2408

and by bit lines via column decoders 242A and 242B. Word
lines and bit lines are examples of control lines. In a typical
embodiment, a controller 244 1s included 1n the same memory
device 210 (e.g., a removable storage card or package) as the
one or more memory die 212; however, the controller can also
be separate. Commands and data are transferred between the
host and controller 244 via lines 232 and between the con-
troller and the one or more memory die 212 via lines 234.

Control circuitry 220 cooperates with the read/write cir-
cuits 230A and 230B to perform memory operations on the
memory array 200. The control circuitry 220 includes a state
machine 222, an on-chip address decoder 224 and a power
control module 226. The state machine 222 provides chip-
level control of memory operations. The on-chip address
decoder 224 provides an address interface between that used
by the host or a memory controller to the hardware address
used by the decoders 240A, 2408, 242A, and 242B. The
power control module 226 controls the power and voltages
supplied to the word lines and bit lines during memory opera-
tions. In one embodiment, power control module 226
includes one or more charge pumps that can create voltages
larger than the supply voltage.

In one embodiment, one or any combination of control
circuitry 220, power control circuit 226, decoder circuit 224,
state machine circuit 222, decoder circuit 242A, decoder
circuit 2428, decoder circuit 240A, decoder circuit 2408,
read/write circuits 230A, read/write circuits 230B, and/or
controller 244 can be referred to as one or more managing
circuits. The one or more managing circuits perform the pro-
cesses described herein.

FI1G. 4 depicts an exemplary structure of memory cell array
200. In one embodiment, the array of memory cells 1s divided
into a large number of blocks (e.g., blocks 0-1023, or another
amount) of memory cells. As 1s common for flash EEPROM
systems, the block 1s the unit of erase. That 1s, each block
contains the minimum number of memory cells that are
erased together. Other units of eras can also be used.

A block contains a set of NAND stings which are accessed
via bit lines (e.g., bit lines BL.0-BL69623) and word lines
(WLO0, WL1, WL2, WL3). FIG. 4 shows four memory cells
connected 1n series to form a NAND string. Although four
cells are shown to be included 1n each NAND string, more or
less than four can be used (e.g., 16, 32, 64, 128 or another
number or memory cells can be on a NAND string). One
terminal of the NAND string 1s connected to a corresponding,
bit line via a drain select gate (connected to select gate drain
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line SGD), and another terminal 1s connected to the source
line via a source select gate (connected to select gate source
line SGS).

Each block 1s typically divided into a number of pages. In
one embodiment, a page 1s a unit ol programming. Other units
of programming can also be used. One or more pages of data
are typically stored 1n one row of memory cells. For example,
one or more pages ol data may be stored 1n memory cells
connected to a common word line. A page can store one or
more sectors. A sector includes user data and overhead data
(also called system data). Overhead data typically includes
header information and Error Correction Codes (ECC) that
have been calculated from the user data of the sector. The
controller (or other component) calculates the ECC when
data 1s being programmed into the array, and also checks 1t
when data 1s being read from the array. Alternatively, the
ECCs and/or other overhead data are stored 1n different pages,
or even different blocks, than the user data to which they
pertain. A sector of user data 1s typically 512 bytes, corre-
sponding to the size of a sector 1n magnetic disk drives. A
large number of pages form a block, anywhere from 8 pages,
for example, up to 32, 64, 128 or more pages. Different sized
blocks, pages and sectors can also be used.

FIG. 5 1s a block diagram of an 1individual sense block 300
partitioned 1nto a core portion, referred to as a sense module
480, and a common portion 490. In one embodiment, there
will be a separate sense module 480 for each bit line and one
common portion 490 for a set of multiple sense modules 480.
In one example, a sense block will include one common
portion 490 and eight sense modules 480. Each of the sense
modules 1 a group will communicate with the associated
common portion via a data bus 472. One example can be
found 1 U.S. Patent Application Publication 2006/0140007,
which 1s incorporated herein by reference in 1ts entirety.

Sense module 480 comprises sense circuitry 470 that deter-
mines whether a conduction current in a connected bit line 1s
above or below a predetermined level. In some embodiments,
sense module 480 includes a circuit commonly referred to as
a sense amplifier. Sense module 480 also includes a bit line
latch 482 that 1s used to set a voltage condition on the con-
nected bit line. For example, a predetermined state latched in
bit line latch 482 will result 1n the connected bit line being
pulled to a state designating program inhibit (e.g., Vdd).

Common portion 490 comprises a processor 492, a set of
data latches 494 and an I/0 Interface 496 coupled between the
set of data latches 494 and data bus 420. Processor 492 per-
forms computations. For example, one of its functions 1s to
determine the data stored 1n the sensed memory cell and store
the determined data 1n the set of data latches. The set of data
latches 494 1s used to store data bits determined by processor
492 during a read operation. It 1s also used to store data bits
imported from the data bus 420 during a program operation.
The imported data bits represent write data meant to be pro-
grammed 1nto the memory. I/O interface 496 provides an
interface between data latches 494 and the data bus 420.

During read or sensing, the operation ol the system 1s under
the control of state machine 222 that controls (using power
control 226) the supply of different control gate voltages to
the addressed memory cell(s). As it steps through the various
predefined control gate voltages corresponding to the various
memory states supported by the memory, the sense module
480 may trip at one of these voltages and an output will be
provided from sense module 480 to processor 492 via bus
472. At that point, processor 492 determines the resultant
memory state by consideration of the tripping event(s) of the
sense module and the information about the applied control
gate voltage from the state machine via mnput lines 493. It then
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computes a binary encoding for the memory state and stores
the resultant data bits into data latches 494. In another

embodiment of the core portion, bit line latch 482 serves

double duty, both as a latch for latching the output of the sense
module 480 and also as a bit line latch as described above.

It 1s anticipated that some implementations will include
multiple processors 492. In one embodiment, each processor
492 will include an output line (not depicted 1n FIG. 5) such
that each of the output lines 1s wired-OR’d together. In some
embodiments, the output lines are inverted prior to being
connected to the wired-OR line. This configuration enables a
quick determination during the program verification process
of when the programming process has completed because the
state machine recewving the wired-OR line can determine
when all bits being programmed have reached the desired
level. For example, when each bit has reached 1ts desired
level, a logic zero for that bit will be sent to the wired-OR line
(or a data one 1s mnverted). When all bits output a data O (or a
data one inverted), then the state machine knows to terminate
the programming process. In embodiments where each pro-
cessor communicates with eight sense modules, the state
machine may (in some embodiments) need to read the wired-
OR line eight times, or logic 1s added to processor 492 to
accumulate the results of the associated bit lines such that the
state machine need only read the wired-OR line one time.

Data latch stack 494 contains a stack of data latches corre-
sponding to the sense module. In one embodiment, there are
three (or four or another number) data latches per sense mod-
ule 480. In one embodiment, the latches are each one bit.

During program or verily, the data to be programmed 1s
stored 1n the set of data latches 494 from the data bus 420.
During the verity process, Processor 492 monitors the veri-
fied memory state relative to the desired memory state. When
the two are 1n agreement, processor 492 sets the bit line latch
482 so as to cause the bit line to be pulled to a state designating
program inhibit. This inhibits the memory cell coupled to the
bit line from further programming even 1f it 1s subjected to
programming pulses on 1ts control gate. In other embodi-
ments the processor iitially loads the bit line latch 482 and
the sense circuitry sets 1t to an 1inhibit value during the verify
process.

In some i1mplementations (but not required), the data
latches are implemented as a shiit register so that the parallel
data stored therein 1s converted to serial data for data bus 420,
and vice versa. In one preferred embodiment, all the data
latches corresponding to the read/write block of m memory
cells can be linked together to form a block shiit register so
that a block of data can be input or output by serial transier. In
particular, the bank of read/write modules 1s adapted so that
cach of 1ts set of data latches will shift data 1n to or out of the
data bus 1n sequence as 1f they are part of a shiftregister for the
entire read/write block.

Additional mformation about the sensing operations and

sense amplifiers can be found i (1) United States Patent
Application Pub. No. 2004/0057287, “Non-Volatile Memory

And Method With Reduced Source Line Bias Errors,” pub-
lished on Mar. 25, 2004; (2) United States Patent Application
Pub No. 2004/0109357/, “Non-Volatile Memory And Method
with Improved Sensing,” published on Jun. 10, 2004; (3) U.S.
Patent Application Pub. No. 2005/0169082; (4) U.S. Patent
Publication 2006/0221692, titled “Compensating for Cou-
pling During Read Operations of Non-Attorney Volatile
Memory,” Inventor Jian Chen, filed on Apr. 5, 2003; and (5)
U.S. Patent Publication 2006/01358947, titled “Reference
Sense Amplifier For Non-Volatile Memory,” Inventors Siu

Lung Chan and Raul-Adrian Cernea, filed on Dec. 28, 2005.
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All five of the immediately above-listed patent documents are
incorporated herein by reference 1n their entirety.

At the end of a successiul programming process (with
verification), the threshold voltages of the memory cells
should be within one or more distributions of threshold volt-
ages for programmed memory cells or within a distribution of
threshold voltages for erased memory cells, as appropriate.
FIG. 6 illustrates example threshold voltage distributions (or
data states) for the memory cell array when each memory cell
stores three bits of data. Other embodiment, however, may
use more or less than three bits of data per memory cell (e.g.,
such as four or more bits of data per memory cell).

In the example o F1G. 6, each memory cell stores three bits
of data; therefore, there are eight valid data states S0-S7. In
one embodiment, data state S0 1s below O volts and data states
S1-S7 are above 0 volts. In other embodiments, all eight data
states are above 0 volts, or other arrangements can be 1imple-
mented. In one embodiment, the threshold voltage distribu-
tion SO0 1s wider than distributions S1-S7.

Each data state corresponds to a unique value for the three
bits stored in the memory cell. In one embodiment, S0=111,
S1=110, S2=101, S3=100, S4=011, S5=010, S6=001 and
S7=000. Other mappings of data to states S0-S7 can also be
used. In one embodiment, all of the bits of data stored 1n a
memory cell are stored 1 the same logical page. In other
embodiments, each bit of data stored 1n a memory cell corre-
spond to different pages. Thus, a memory cell storing three
bits of data would include data 1n a first page, a second page
and a third page. In some embodiments, all of the memory
cells connected to the same word line would store data 1n the
same three pages of data.

In some embodiments, the memory cells connected to a
word line can be grouped 1n to different sets of pages (e.g., by
odd and even bit lines, or by other arrangements).

In some prior art devices, the memory cells will be erased
to state S0. From state S0, the memory cells can be pro-
grammed to any of states S1-57. In one embodiment, known
as full sequence programming, memory cells can be pro-
grammed from the erased state S0 directly to any of the
programmed states S1-S7. For example, a population of
memory cells to be programmed may first be erased so that all
memory cells 1n the population are 1n erased state S0. While
some memory cells are being programmed from state S0 to
state S1, other memory cells are being programmed from
state S0 to state S2, state S0 to state S3, state S0 to state S4,
state S0 to state S5, state SO to state S6, and state S0 to state
S7. Full sequence programming 1s graphically depicted by the
seven curved arrows of FIG. 6.

FIGS. 7A-71 disclose another process for programming,
non-volatile memory that reduces the etlect of floating gate to
floating gate coupling by, for any particular memory cell,
writing to that particular memory cell with respect to a par-
ticular page subsequent to writing to adjacent memory cells
for previous pages. The process of FIGS. 7A-71 1s a three step
programming process. Prior to the first step, the memory cells
will be erased so that they are 1n the erase threshold distribu-
tion of state SO.

The process of FIGS. 7A-71 assumes that each memory
cell stores three bits of data, with each bit being 1n a different
page. The first bit of data (the leftmost bit) 1s associated with
the first page. The middle bit 1s associated with the second

page. The rightmost bit 1s associated with the third page. The
correlation of data states to data 1s as follows: S0=111,
S1=110, S2=101, S3=100, S4=011, S5=010, S6=001 and
S7—=000. However, other embodiments can use other data
encoding schemes. (e.g., such as gray codes so that only one
bit changes between neighboring states).
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When programming the first page (as described i FIG.
7A), 11 the bit 1s to be data “1”” then the memory cell will stay
in state SO (threshold voltage distribution 502). If the bit 1s to
be data “0” then the memory cell 1s programmed to state S4
(threshold voltage distribution 504). After adjacent memory
cells are programmed, capacitive coupling between adjacent
floating gates may cause the state S4 to widen as depicted 1n
FIG. 7B. State S0 may also widen, but there 1s sufficient
margin between S0 and S1 to 1gnore the etffect. More 1nfor-
mation about capacitive coupling between adjacent floating,
gates can be found in U.S. Pat. Nos. 5,867,429 and 6,657,891,
both of which are incorporated herein by reference 1n their
entirety.

When programming the second page (see FIG. 7C), 1f the
memory cell 1s 1n state S0 and the second page bit 1s data “1”
then the memory cell stays 1n state S0. In some embodiments,
the programming process for the second page will tighten
threshold voltage distribution 501 to a new S0. If the memory
cell was 1n state SO and the data to be written to the second
page 1s “0”’, then the memory cell 1s moved to state S2 (thresh-
old voltage distribution 506). State S2 has a verily point
(lowest voltage) of C*. If the memory cell was 1n state S4 and
the data to be written to the memory cell 1s *“1” then the
memory cell remains 1n S4. However, state S4 1s tightened by
moving the memory cells from threshold voltage distribution
504 to threshold voltage distribution 508 for state S4, as
depicted in FIG. 7C. Threshold voltage distribution 508 has a
verily point of E* (as compared to E** of threshold voltage
distribution 504). If the memory cell 1s 1n state S4 and the data
to be written to the second page 1s a “0”” then the memory cell
has 1ts threshold voltage moved to state S6 (threshold voltage
distribution 510), with a verily point of G*.

After the adjacent memory cells are programmed, the
states S2, S4 and S6 are widened due to the floating gate to
floating gate coupling, as depicted by threshold voltages dis-
tributions 506, 508 and 510 of FIG. 7D. In some cases, state
S0 may also widen.

FIGS. 7E, 7F, 7G and 7H depict the programming of the
third page. While one graph can be used to show the program-
ming, the process 1s depicted 1n four graphs for visibility
reasons. After the second page has been programmed, the
memory cells are etther 1 states S0, S2, S4 or S6. FIG. 7E
shows the memory cell that 1s in state S0 being programmed
tor the third page. FIG. 7F shows the memory cell that 1s state
S2 being programmed for the third page. FIG. 7G shows the
memory cell thatis in state S4 being programmed for the third
page. FIG. 7TH shows the memory cell that 1s 1n state S6 being,
programmed for the third page. FIG. 71 shows the threshold
voltage distributions after the processes of FIGS. 7E, 7F, 7G
and 7H have been performed on the population of memory
cells (concurrently or serially).

If the memory cell 1s 1n state SO and the third page data 1s
“1” then the memory cell remains at state S0. I the data for
the third page 1s “0” then the threshold voltage for the
memory cell 1s raised to be 1n state S1, with a verity point of
B (see FIG. 7E).

If the memory cells 1n state S2 and the data to be written in
the third page 1s “1”, then the memory cell will remain 1n state
S2 (see FIG. 7F). However, some programming will be per-
formed to tighten the threshold distribution 506 to a new state
S2 with a verity point of C volts. ITthe data to be written to the
third page 1s “0,” then the memory cell will be programmed to
state S3, with a verily point of D volts.

If the memory cell 1s 1n state S4 and the data to be written
to the third page 1s “1” then the memory cell will remain in
state S4 (see FIG. 7G). However, some programming will be
performed so that threshold voltage distribution 508 will be
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tightened to new state S4 with a verily point of E. If the
memory cell 1s 1n state S4 and the data to be written to the third
page 1s “0” then the memory cell will have 1ts threshold
voltage raised to be 1n state S5, with a verily point of F.

I the memory cell 1s 1n state S6 and the data to be written
to the third page 1s “1” then the memory cell will remain 1n
state S6 (see FI1G. 7TH). However, there will be some program-
ming so that the threshold voltage distribution 510 1s tight-
ened to be 1n new state S6, with a verity point at . If the third
page data 1s “0” then the memory cell will have 1ts threshold
voltage programmed to state S7, with a verify point at H. At
the conclusion of the programming of the third page, the
memory cell will be 1n one of the eight states depicted in FIG.
71.

FIG. 8 depicts one example of an order for programming,
the pages of a set or memory cells. The table provides the
order for programming with respect to the four word lines
(WLO0, WL1, WL2 and WL3) of FIG. 4; however, the table can
be adapted to accommodate more or less than four word lines.
The first page of the memory cells connected to WLO are
programmed, followed by the programming of the first page
of the memory cells connected to WL1, followed by the
programming of the second page of the memory cells con-
nected to WLO0, followed by the programming of the first page
of the memory cells connected to WL2, followed by the
programming of the second page of the memory cells con-
nected to WL1, etc.

FIG. 91s a flow chart describing a programming process for
programming memory cells connected to a selected word
line. In one embodiment, the process of FIG. 9 15 used to
program a block ol memory cells. In one implementation of
the process of FIG. 9, memory cells are pre-programmed in
order to maintain even wear on the memory cells (step 550).
In one embodiment, the memory cells are preprogrammed to
state S7, a random pattern , or any other pattern. In some
implementations, pre-programming need not be performed.

In step 552, memory cells are erased (1n blocks or other
units) prior to programming. Memory cells are erased 1n one
embodiment by raising the p-well to an erase voltage (e.g., 20
volts) for a suflicient period of time and grounding the word
lines of a selected block while the source and bit lines are
floating. Due to capacitive coupling, the unselected word
lines, bit lines, select lines, and the common source line are
also raised to a significant fraction of the erase voltage. A
strong electric field 1s thus applied to the tunnel oxide layers
of selected memory cells and the selected memory cells are
erased as electrons of the floating gates are emitted to the
substrate side, typically by Fowler-Nordheim tunneling
mechanism. As electrons are transferred from the floating
gate to the p-well region, the threshold voltage of a selected
cell 1s lowered. Frasing can be performed on the entire
memory array, on individual blocks, or another unit of cells.
In one embodiment, after erasing the memory cells, all of the
erased memory cells will be 1n state SO (see FIG. 6).

At step 554, soit programming 1s performed to narrow the
distribution of erased threshold voltages for the erased
memory cells. Some memory cells may be 1n a deeper erased
state than necessary as a result of the erase process. Soit
programming can apply programming pulses to move the
threshold voltage of the deeper erased memory cells closer to
the erase verily level. For example, looking at FIG. 6, step 554
can include tightening the threshold voltage distribution asso-
ciated with state S0. In step 556, the memory cells of the block
are programmed as described herein. The process of FIG. 9
can be performed at the direction of the state machine using
the various circuits described above. In other embodiments,
the process of FIG. 9 can be performed at the direction of the
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controller using the various circuits described above. After
performing the process of FIG. 9, the memory cells of the
block can be read.

FIG. 10 1s a flow chart describing one embodiment of a
process for performing programming on memory cells con-
nected to a common word line. The process of F1G. 10 can be
performed one or multiple times during step 356 of FI1G. 9.
For example, the process of FIG. 10 can be used to perform
the full sequence programming of FIG. 6, in which case the
process of FIG. 10 would be performed once for each word
line. In one embodiment, the programming process 1s per-
formed 1n an order that starts from the word line closest to the
source line, working toward the bit line. The process of FIG.
10 can also be used to perform the programming of a page of

data for a word line, with respect to the programming process
of FIGS. 7A-I, in which case the process of FIG. 10 would be
performed three times for each word line. Other arrangements
can also be used. The process of FIG. 10 1s performed at the
direction of the state machine 222.

Typically, the program signal (also called a program volt-
age) 1s applied to the control gate during a program operation
as a series of program pulses. In between programming pulses
are a set of verily pulses to enable verification. In many
implementations, the magnitude of the program pulses is
increased with each successive pulse by a predetermined step
s1ze. In step 608 o1 F1G. 10, the programming voltage (Vpgm)
1s 1mtialized to the starting magmtude (e.g., ~12-16V or
another suitable level) and a program counter PC maintained
by state machine 222 1s mnitialized at 1. In step 610, a program
pulse of the program signal Vpgm 1s applied to the selected
word line (the word line selected for programming). The
unselected word lines receive one or more boosting voltages
(e.g.,~9 volts) to perform boosting schemes known 1n the art.
If amemory cell should be programmed, then the correspond-
ing bit line 1s grounded. On the other hand, 11 the memory cell
should remain at 1ts current threshold voltage, then the cor-
responding bit line 1s connected to V., to mhibit program-

ming. More information about boosting schemes can be
found 1n U.S. Pat. No. 6,859,397 and U.S. Patent App. Pub.

2008/0123425, both of which are incorporated herein by
reference.

In step 610, the program pulse 1s concurrently applied to all
memory cells connected to the selected word line so that all of
the memory cells connected to the selected word line are
programmed together. That 1s, they are programmed at the
same time (or during overlapping times). In this manner, all of
the memory cells connected to the selected word line wall
concurrently have their threshold voltage change, unless they
have been locked out from programming.

In step 612, the states of the selected memory cells are
verified using the appropriate set of target levels. Step 612 of
FIG. 10 1ncludes performing one or more verily operations. In
general, during verily operations and read operations, the
selected word line 1s connected to a voltage, a level of which
1s specified for each read and verify operation (e.g. see B, C,
D, E, F, G and H of FIG. 71) 1n order to determine whether a
threshold voltage of the concerned memory cell has reached
such level. After applying the word line voltage, the conduc-
tion current of the memory cell 1s measured to determine
whether the memory cell turned on 1n response to the voltage
applied to the word line. If the conduction current 1s measured
to be greater than a certain value, then 1t 1s assumed that the
memory cell turned on and the voltage applied to the word
line 1s greater than the threshold voltage of the memory cell.
If the conduction current 1s not measured to be greater than
the certain value, then 1t 1s assumed that the memory cell did
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not turn on and the voltage applied to the word line 1s not
greater than the threshold voltage of the memory cell.

There are many ways to measure the conduction current of
a memory cell during a read or verily operation. In one
example, the conduction current of a memory cell 1s mea-
sured by the rate 1t discharges or charges a dedicated capacitor
in the sense amplifier. In another example, the conduction
current of the selected memory cell allows (or fails to allow)
the NAND string that included the memory cell to discharge
the corresponding bit line. The voltage on the bit line 1s
measured after a period of time to see whether 1t has been
discharged or not. Note that the technology described herein
can be used with different methods known 1n the art for
veritying/reading. More information about verifying/reading,
can be found in the following patent documents that are
incorporated herein by reference in their entirety: (1) United

States Patent Application Pub. No. 2004/0057287, “Non-
Volatile Memory And Method With Reduced Source Line
Bias Errors,” published on Mar. 25, 2004; (2) United States
Patent Application Pub No. 2004/0109357, “Non-Volatile
Memory And Method with Improved Sensing,” published on
Jun. 10, 2004; (3) U.S. Patent Application Pub. No. 2005/
0169082; and (4) U.S. Patent Publication No. 2006/0221692,
titled “Compensating for Coupling During Read Operations
of Non-Volatile Memory.”

If 1t 1s detected that the threshold voltage of a selected
memory cell has reached the appropnate target level, then the
memory cell 1s locked out of further programming by, for
example, raising 1ts bit line voltage to Vdd during subsequent
programming pulses. A pass voltage (e.g. ~10 volts) 1s
applied to the unselected word lines during a programming
operation (e.g., step 610). The unselected word lines (at the
pass voltage) couple to the unselected bit lines (at Vdd),
causing a voltage (e.g. approximately eight volts) to exist n
the channel of the unselected bit lines, which prevents pro-
gramming. Other schemes for locking out memory cells from
programming (and boosting) can also be used with the tech-
nology described herein.

Looking back at FIG. 10, 1n step 614 (“verify status™) it 1s
checked whether all of memory cells have reached their target
threshold voltages. If so, the programming process 1s com-
plete and successiul because all selected memory cells were
programmed and verified to their target states. A status of
“PASS” 1s reported 1n step 616. Note that 1n some implemen-
tations, 1n step 614 1t 1s checked whether at least a predeter-
mined number of memory cells have been properly pro-
grammed. This predetermined number can be less than the
number of all memory cells, thereby allowing the program-
ming process to stop before all memory cells have reached
their appropnate verily levels. The memory cells that are not
successiully programmed can be corrected using error cor-
rection during the read process.

If, 1n step 614, it 1s determined that not all of the memory
cells have reached their target threshold voltages, then the
programming process continues. In step 618, the program
counter PC 1s checked against a program limit value (PL).
One example of a program limit value 1s 20; however, other
values can be used. If the program counter PC 1s not less than
the program limit value, then 1t 1s determined 1n step 630
whether the number of memory cells that have not been
successiully programmed 1s equal to or less than a predeter-
mined number. If the number of unsuccessiully programmed
memory cells 1s equal to or less than the predetermined num-
ber, then the programming process 1s flagged as passed and a
status of PASS 1s reported. In many cases, the memory cells
that are not successiully programmed can be corrected using
error correction during the read process. If however, the num-
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ber of unsuccessiully programmed memory cells 1s greater
than the predetermined number, the program process 1s
flagged as failed and a status of FAIL 1s reported 1n step 634.

If, 1n step 618, 1t 1s determined that the Program Counter
PC 1s less than the Program Limit value PL, then the process 5
continues at step 619 during which time the Program Counter
PC is incremented by 1. In step 620, it 1s determined whether
the previous program pulse was applied to all bit lines (other
than the bit lines locked out because the associated memory
cell either reached its target or 1s to remain 1n the erased state) 10
or only applied to a subset of bit lines that still need program-
ming. As will be discussed below, there are certain circum-
stances when the system will only program odd bit lines or
only program even bit lines. If the system 1s programming all
bit lines that need programming then the next step 1s step 622 15
(see “together” result of step 620). If the system 1s program-
ming only even bit lines or only odd bit lines that need to be
programmed, then the next step after step 620 1s step 640 (see
“separate” result of step 620).

In step 622, 1t 1s determined whether a trigger has occurred. 20
In one embodiment, a trigger has occurred when the magni-
tude of the program voltage Vpgm (e.g., a program pulse)
reaches a trigger voltage. Other embodiments could use other
triggers (e.g., based on time, number of bits programmed,
number of pulses, current, etc.). If the trigger has not 25
occurred, then program voltage Vpgm 1s stepped up to the
next magnitude 1n step 624. For example, the next pulse will
have a magnitude greater than the previous pulse by a step
s1ze (e.g., a step size of 0.1-0.4 volts). After stepping the
program voltage Vpgm, the process loops back to step 610 30
and the next program pulse (at the new magnitude set 1n step
624) 1s applied to the selected word line so that programming
on all bit lines (except those memory cells locked-out because
they are at their target state) occurs. The process continues
from step 610 as described above. 35

The trigger of step 622 1s set so that it signals or otherwise
indicates a lock-out condition that involves capacitive cou-
pling. In general, there 1s capacitive coupling between neigh-
boring tloating gates. When both neighboring floating gates
(first floating gate and second floating gate) are being pro- 40
grammed, the capacitive coupling remains constant and/or
predictable. When the first floating gate locks-out from pro-
gramming because 1t reaches 1ts target state, the voltage
potential of that first floating gate will increase because of
boosting. Because the first floating gate has the higher voltage 45
potential, capacitive coupling to the second floating gate
increases. The higher capacitive coupling will increase the
voltage on the second floating gate, which will increase the
speed of programming of the second floating gate. This can
cause over-programming. The risk over over-programming 1s 50
greater at the transition from the slower programming (when
both neighbor memory cells are still being programmed) to
the faster programming (when a memory cell 1s being pro-
grammed and its neighbor memory cell 1s mhibited from
programming ). 55

FIG. 11A shows two neighboring floating gates 806 and
810. Each floating gate 806 and 810 1s positioned above
respective active arcas 804 and 808. A common word line
polysilicon layer 802 acts as control gates for both floating
gates and also provides a shield 805 between the tloating 60
gates. Shield 805 reduces coupling between floating gates

806 and 810. FIG. 11 A shows both floating gates being pro-
grammed; therefore, their active areas are set at zero volts. As
described above, 1 one of the floating gates 1s locked-out
from programming, its active area will be boosted up to 65
between 7 and 10 volts, thereby boosting the voltage potential
of the respective tloating gate and causing increased capaci-
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tive coupling to its neighbor floating gate. The neighbor tloat-
ing gate will then program faster. Faster programming could
cause over-programming.

Although shield 805 between the floating gates 806 and
810 helps to reduce the capacitive coupling, when a large
voltage 1s applied to the word line, the polysilicon shield 8035
becomes depleted. For example, FIG. 11B shows the same
two tloating gates 806 and 810 with a dotted line 812 1n the
word line polysilicon layer 802. The area below dotted line
812 is depleted. Because the area below dotted line 812 1s
depleted, it does not provide full shielding to the capacitive
coupling described above.

FIG. 11C shows the same two floating gates 806 and 810
with the depleted region below dotted line 812. However,
FIG. 11C shows floating gate 806 being locked-out from
programming. Therefore, active area 804 1s at a high voltage
which causes floating gate 806 to be at a high voltage.
Because floating gate 806 1s at a higher voltage and shield 805
1s depleted, the capacitive coupling between tloating gates
806 and 810 will cause floating gate 810 to have a higher
potential and, therefore, program faster.

In one embodiment device characterization (including
simulation) 1s used to determine at what word line voltage the
polysilicon word line layer 802 becomes depleted so that
coupling occurs, as described with respect to FIG. 11C. In
other embodiments, this word line voltage can be measured
by testing actual silicon. In some embodiments, every piece
of silicon can be tested. In other embodiments, a sample of
parts can be tested and the measured voltage can be used on an
entire group ol parts. Other means for determining the voltage
that starts depletion can also be used.

That word line voltage 1n which the depletion 1s severe
enough to cause increase in programming speed as described
above 1s the trigger voltage used 1n step 622 of FIG. 10. Thus,
if the magnitude of the Vpgm program pulse has reached the
trigger voltage for which there is suificient depletion in the
word line polysilicon layer to allow coupling, then the trigger
1s met and the process proceeds to step 630 of FIG. 10. The
condition at which the word line polysilicon layer 1s depleted
and allows coupling when one neighbor 1s locked-out and the
other neighbor 1s still programming, thereby potentially
speeding up the programming, 1s referred to herein as the
lock-out condition.

Another embodiment of a trigger for step 622 1s when at
least a predetermined amount of the memory cells (e.g., the
memory cells connected to both the odd word lines and the
even word lines) that are supposed to be programmed to a
particular set of one or more data states have successtully
been programmed to the particular set of one or more data
states. For example, the trigger could be when all of the
memory cells mtended to be programmed to state S1 have
been verified to have successtully reached data state S1. In an
alternative, the system can test for all, or a predetermined
number of memory cells, intended to be programmed to state
S1 being verified to have successtully reached data state S1.
The predetermined number would be all of the memory cells
intended to reach data state 1 less a small number that can be
corrected during the read process using error correction codes
(or other error recovery process). In another alternative,
instead triggering based on memory cells reaching one data
state (e.g., data stat S1), the system can trigger based on

memory cells reaching multiple data states, such as data states
S1, S2 and S3 (the lowest three states). Other sets of data

states can also be sued.

When there 1s a reasonable chance that the lock-out con-
dition exists (signaled by the trigger of step 622), the system
will program memory cells connected to odd bit lines sepa-
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rately from memory cells connected to even bits lines. In this
manner, the coupling from neighbors 1s fully predictable
since 1t 15 guaranteed, for a given memory cell that will be
programmed by the next programming pulse, that 1ts neigh-
bors on the same word lines are inhibited. Because it 1s known
that both neighbors are inhibited and that inhibiting both
neighbors speeds up the programming (which can lead to
over-programming ), the system will reduce the voltage mag-
nitude of the program pulses of Vpgm to compensate for the
lock-out condition. That 1s, lowering the voltage magnitude
of the program pulses of Vpgm slows down programming,
which should compensate for the lock-out condition speeding,
up the programming.

In step 630 of FIG. 10, the voltage magnitude of the pro-
gramming signal (e.g., the program pulses) 1s reduced. In
some embodiments, the voltage magnitude 1s reduced by 0.5
volts. In other embodiments, the reduction in voltage can be
different than S volts. In some embodiments, the reduction 1s
voltage magnitude of the program signal 1s based on a param-
cter that 1s set at the time of manufacturing, product design,
testing, or another time. After a sample set of parts are manu-
factured for a given process or design, engineers can test how
much the lock-out condition effects the speed of program-
ming and then choose an appropriate amount of voltage to
lower the program signal to counter act the lock-out condi-
tion. Device simulation can also be used to determine an
appropriate amount of voltage to lower the program signal to
counter act the lock-out condition.

In step 632, a program pulse 1s applied to the selected word
line 1n order to program only those memory cells connected to
even bit lines. Thus, the even bit lines will be at zero volts
while the odd bit lines will have Vdd applied. During step
632, only even bit lines will be programmed. After step 632 1s
performed, step 634 1s performed, which includes applying a
program pulse to the same selected word line. During step
634, only memory cells connected to odd bit lines will be
programmed. Thus, step 634 will include applying zero volts
to odd bit lines and Vdd to even bit lines. Thus, steps 632 and
634 include applying two successive program pulses to the
same word line (and, thus, to the same set of memory cells
connected to that word line); however, only even memory
cells are programmed during the first pulse (step 632) and
only odd memory cells are programmed during the second
pulse (step 634). Therefore, memory cells connected to even
bit lines (even memory cells) are programmed separately
from memory cells connected to odd bit lines (odd memory
cells). For example, 11 WL2_1 15 the selected word line (see
FIG. 4), then memory cells connected to BL0, BL2, BLL4 and
WL2_1 will be programmed 1n step 632 and memory cells
connected to BL1, BL3, BL5 and WL2_1will be programmed
in step 634. Although the odd memory cells recerve the pro-
gram pulse of step 632, they are inhibited from programming
during step 632. Although the even memory cells recerve
program pulses during step 634, they are inhibited from pro-
gramming during step 634. After step 634, the process loops
back to step 612 and memory cells on even bit lines and odd
bit lines are all verified together (unless, in some 1implemen-
tations, they have previously been locked out because they
reached their target). The process continues from step 612, as
described above. There 1s no verily operation performed
between steps 632 and 634.

Looking back at F1G. 4, ablock of memory cells 1s depicted
(block 1). In one embodiment, the memory cells along a word
line are broken up into two groups. The first group are all
those memory cells connected to odd bit lines (e.g., BL1,
BL3, BLS, .. .). The second group includes all memory cells
connected to even bit lines (e.g., BL0, BL.2, BL4,...). Ascan
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be seen from FIG. 4, the even bit lines and odd bit lines are
interleaved. Thus, the group of memory cells connected to the
even bit lines are interleaved with the memory cells connected
to the odd bit lines. If only even bit lines are being pro-
grammed, then all of the memory cells connected to the odd
bit lines would be locked-out. This would guarantee a situa-
tion where any memory cell being programmed would have
both 1ts neighbors locked-out. Although this could cause cou-
pling, since it 1s guaranteed that both neighbors are locked-
out, the coupling 1s predictable and constant. As a result,
over-programming is not likely. The memory cells connected
to a word line can be divided into more than two groups and
can be divided into types of groups other than odd and even
groups.

I, 1n step 620, 1t 1s determined that the previous iteration of
program-verily applied separate pulses for even and odd bit
lines, then the process continues at step 640. the system
decides whether to continue proving the compensation for the
potential lock-out condition.

In one embodiment of step 640, the system ends the com-
pensation (e.g., separate pulses for odd and even bit line
programming) when the number of programming pulses (or
program-verily iterations) has reached a predetermined num-
ber. For example, the system can test for whether PC 1s less
than a predetermined number.

In another embodiment of step 640, the system ends the
compensation (e.g., separate pulses for odd and even bit line
programming) when at least a predetermined amount of the
memory cells (e.g., the memory cells connected to both the
odd word lines and the even word lines) that are supposed to
be programmed to a particular set of one or more data states
have successiully been programmed to the particular set of
one or more data states. For example, the system can end
compensation when all or almost all memory cells intended
for data state S6 have successiully been verified to be 1n S6.
Or, the system can end compensation when all or almost all
memory cells intended for data states S5 and S6 have suc-
cessiully been verified to be in S5 and S6, respectively. The
system can test for all memory cells intended for a data state
to be successiully programmed or all minus a small predeter-
mined number that can be corrected during the read process
using error correction codes (or other error recovery process).

In another embodiment of step 640, the system ends the
compensation (e.g., separate pulses for odd and even bit line

programming ) when 1t 1s determined that the chance of addi-
tional lock-out conditions 1s low. As discussed above, a lock-
out condition occurs when one memory cell 1s being pro-
grammed, a neighbor memory cell 1s locked-out from
programming, and the word line voltage 1s high enough. A
lockout condition causes faster programming. Over-pro-
gramming can occur when there 1s a transition from slower
programming to faster programming. Thus, in one embodi-
ment, the system checks to see if there are potential transi-
tions from slow to fast programming that can occur due to
onset of the lockout condition. The system checks for poten-
tial transitions from slow to fast programming by checking
the potential number of new/additional lock-out conditions.
In some embodiments, the system can tolerate a small number
of errors because these errors can be corrected during the read
process using error correction schemes known in the art.
Theretore, 11 the number of potential lock-out conditions 1s
small enough, the system can tolerate the potential for error
and not have to correct for 1t during programming.

I1, 1n step 640, it 1s determined that the compensation will
not end at this time, then the process proceeds to perform
steps 632 and 634 which includes programming memory




US RE45.910 E

17

cells on even bit lines separately and at a different time than
programming memory cells on odd bit lines.

If, 1n step 640, it 1s determined that the compensation will
end at this time, then the memory system will continue the
programming process by programming odd and even bit lines
together. In one embodiment, the system will also raise the
magnitude of the programming voltage (step 642) when
switching back to programming odd and even bit lines
together. After raising the magnitude of the programming,
voltage 1n step 642, the process continues at step 610 and
applies the next programming pulse to program memory cells
on both odd and even bit lines. In some embodiments, step
642 is skipped so that the magnitude of the programming
voltage 1s not raised when switching back to programming,
odd and even bit lines together.

Step 642 1ncludes raising the magnitude of the program-
ming voltage. In one embodiment, the magnmitude of the pro-
gramming voltage 1s raised by a predetermined fixed amount
to obtain the desired speed of programming. In another
embodiment, the magnitude of the programming voltage 1s
raised to a value based on a magnitude of the programming,
signal (which had been increasing at a particular rate) had 1t
not been lowered 1n response to determiming that the trigger
exists (step 622). That, had magnitude of the programming
voltage Vpgm not been lowered 1n step 630, 1t would now be
at amagnitude of X volts. Therefore, step 642 includes raising
the magnitude of Vpgm to X volts.

In one example implementation, the magnitude of the pro-
gramming voltage Vpgm 1s raised to its target in one step (step
642). In another implementation, the magnitude of the pro-
gramming voltage Vpgm 1s raised to its target over multiple
steps. For example, the magnitude of the programming volt-
age Vpgm can be raised to its target voltage over a set of
multiple program-verily iterations (steps 610 and 612). Con-
sider that at the time 1t 1s decided to end the compensation 1n
step 640, the programming voltage Vpgm 1s lower than it
would have been 11 1t was never lowered 1n step 630 by 0.7
volts. In this alternative, the programming voltage Vpgm can
be raised 0.45 volts for the next programming pulse 1n step
610 and then raised an additional 0.45 volts for the subsequent
programming pulse 1n the next iteration of step 610. The
programming voltage Vpgm 1s raised 0.9 v mstead o1 0.7 v to
account for the step of 0.2 v volts between programming
pulses. To accomplish this, the subsequent step 624 must be
modified to raise the programming voltage Vpgm by 0.45
rather than the step o1 0.2. In another alternative, the program-
ming voltage Vpgm 1s raised to its target over more than two
steps (e.g., three steps or more than three steps).

I, 1n step 640, 1t 1s determined that the potential number of
new/additional lock-out conditions 1s low, then the compen-
sation will continue and the memory system will continue the
programming process by programming odd and even bit lines
separately. Thus, the process will continue by performing
steps 632 and 634, which includes programming memory
cells on even bit lines separately and at a different time than
programming memory cells on odd bit lines.

FIG. 12 1s an example wavetorm for the program voltage
Vpgm. The signal of FIG. 12 includes pulses 702, 704, 706,
708, 710, 712, 714, 716, 718, 720, 722, 724, 726, 728, 730,
732, 734 and 736. Program pulses 702-720 are all applied
prior to the trigger. Each of the magnitudes ol those pulses are
less than the trigger voltage. Pulses 702-720 are applied as
part of iterations of step 610 of FI1G. 10. After applying pulse
720, the trigger voltage has been reached (e.g., the magnitude
of Vpgm 1s greater than the trigger voltage) and the process
performs the programming of even bit lines separately from

odd bit lines (step 632 and step 634). Therefore, FIG. 12
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shows two pulses at 722 and 724, having the same magnitude.
Programming pulse 722 1s for programming memory cells
connected to even bit lines (step 632) and program pulse 724
1s for programming memory cells connected to odd bit lines
(step 634); however, both pulses 722 and 724 are both applied
to the same selected word line. As per step 630, the magnitude
of pulses 722 and 724 1s lower than the magnitude of pulse
720. In the example of FIG. 12, the process continues pro-
gramming odd and even bit lines separately (first program-
ming even bit lines and subsequently programming odd bit
lines). For example, pulses 726 and 728 (which have the same
magnitude as each other, but larger magnitude than pulses
722/724) are the next iteration of steps 632 and 634 of FIG.
10. Pulses 730 and 732 are a subsequent iteration of steps 632
and 634. Pulses 734 and 736 are the final iteration of steps 632
and 634 1n the example of FIG. 12. After applying pulses 734
and 736, all memory cells have appropriately verified (or
enough memory cells have verified) so that the process 1s
successiully completed.

FIG. 13 provides another example wavelorm for the pro-
gramming pulse of Vpgm. The example of FIG. 13 includes
the programming process transitioning from all bit line pro-
gramming (step 610) to separate programming for even and
odd bit lines (steps 632 and 634 ), and then transitioning back
to all bit line programming (via steps 640 and 642). Program-
ming pulses 750, 752, 754,756, 758, 760, 762, 764, 766 and
768 are applied during iterations of step 610. After program-
ming pulse 768, the trigger voltage has been reached and the
process performs steps 632 and 634 to program memory cells
connected to even bit lines with programming pulse 770 and
memory cells connected to odd bit lines with programming
pulse 772. Due to step 630 of FIG. 10, the voltage magnmitude
of pulses 770 and 772 are lower than pulse 768. FIG. 13 shows
three 1terations of steps 632 and 634. In the second iteration of
steps 632 and 634, programming pulse 774 1s used to program
memory cells connected to even bit lines and program pulse
776 1s used to program memory cells connected to odd bit
lines. In the third iteration of steps 632 and 634, programming
pulse 778 1s used to program memory cells connected to even
bit lines and programming pulse 780 1s used to program
memory cells connected to odd bit lines. After applying pro-
gramming pulse 780 1n step 634, 1t 1s determined that the
incidence of lock-out condition 1s low. Therefore, process
will perform step 642 and raised the magnitude of the pro-
gram voltage Vpgm back to where 1t would have been 11 the
compensation was not provided and a programming pulse
782 1s applied (in step 610) to program memory cells con-
nected to all bit lines (except those memory cells that have
been locked-out because they have reached their target state).
The next 1teration of the process of FIG. 10 would include
applying one programming pulse 784 in step 610. After
applying programming pulse 784, it 1s determined that
enough memory cells have verified and the programming
process has completed successtully. Note that dashed line 785
indicates how the magnitude of the programming signal
Vpgm was 1ncreasing prior to the compensation (€.g., prior to
programming odd/even bit lines separately) and indicates that
programming pulse 782 has a magnitude equal to the magni-
tude of the programming signal had 1t not been lowered 1n
response to determining that the trigger exists,

As described above, a set of verily operations are per-
formed between programming pulses. In one embodiment, a
verily pulse 1s applied to the selected word line for each verity
operation. For example, if there are eight potential data states
that memory cells can be 1n, then there will be seven verily
operations and, therefore, seven verity pulses. FIG. 14 shows
an example of programming pulses 706, 708 and 710 (see
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also FI1G. 12) and the verity pulses that are applied between
the programming pulses 706, 708 and 710. Each verify pulse
of FIG. 14 1s associated with a verily operation, as described
above.

FI1G. 15 also shows programming pulses with verify pulses
in between. FIG. 15 shows programming pulses 722, 724,
726, 728, 730 and 732 of FIG. 12. These six programming
pulses are associated with applying programming pulses after
the trigger voltage has been reached. Therefore, odd and even
memory cells are programmed separately. As discussed
above, programming pulse 722 programs memory cells con-
nected to even bit lines while programming pulse 724 pro-
grams memory cells connected to odd bit lines. In one
embodiment, there are no verily operations between pro-
gramming pulses 722 and 724. Subsequent to program pulse
724 and prior to the next pair of pulses 726, 728, a set of verity
pulses are applied 1 order to perform verily operations.
Between pulses 726 and 728, there are no verily operations
performed. Subsequent to pulse 728 and prior to the next pair
of pulses (730, 732), a set of verily pulses are applied in order
to perform a corresponding set of verily operations.

FIG. 16 depicts the behavior various signals during pro-
gramming. More specifically, FIG. 16 shows the operation
during one 1teration of steps 610, 632 or 634 of FIG. 10. The
depicted program operation can be grouped into a Bit Lines
Pre-charge Phase, a Program Phase and a Discharge Phase.

During period (1) of the Bit Lines Pre-charge Phase, the
source select transistor 1s turned off by maintaining SGS at
0V while the drain select transistor 1s turned on by SGD going
high to VSG, thereby allowing a bit line to access a NAND
string. During period (2) of the Bit Lines Pre-charge Phase,
the bit line voltage of a program-inhibited NAND strmg (BL
inhibit) 1s allowed to rise to a predetermined voltage given by
VDD. When the bit line voltage of the program-inhibited
NAND string rises to VDD, the program-inhibited NAND
string will float when the gate voltage SGD on the drain select
transistor drops to VDD 1n period (3). The bit line voltage of
a programming NAND string (BL pgm) 1s actively pulled
down to OV. In some alternative embodiments, the bit line
voltage of the programming NAND string 1s biased based on
whether one or both of 1ts neighbors 1s in program-inhibit
mode or not. More information about this bias can be found in
U.S. Pat. No. 7,187,385, incorporated herein by reference in
its entirety.

During period (4) of the Program Phase, the unselected
word lines (WL _unsel) are set to VPASS to enable boosting
of the NAND string. Since a program-inhibited NAND string
1s floating, the high VPASS applied to the control gates of the
unaddressed memory transistors boost up the voltages of their
channels and charge storage elements, thereby inhibiting pro-
gramming. VPASS 1s typically set to some intermediate volt-
age (e.g., ~10V) relative to Vpgm (e.g., ~12-24V).

During period (5) of the Program Phase, the programming,
voltage Vpgm 1s applied to the selected word line (WL_sel) as
a programming pulse. The memory cells being inhibited (i.e.,
with boosted channels and charge storage units) will not be
programmed. The selected memory cells (connected to the
selected word line) will be programmed. During period (6) of
the Discharge Phase, the various control lines and bit lines are
allowed to discharge.

FIG. 17 1s a flow chart describing an embodiment of a
process for determining whether to end the compensation
because the chance of additional lock-out conditions 1s low
(performed during step 640 of FIG. 10). In step 8350, each
memory cell 1s compared to 1ts neighboring memory cell
along the same word line. In step 852, the system counts the
number X of potential transitions into lock-out condition. A
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potential lockout condition exists 1f two neighbor memory
cells are both still being programmed because one of the
neighbors can potentially reach its target before the other and
lockout. Thus, in one embodiment, step 852 includes count-
ing the number of pairs of neighboring memory cells that are
still being programmed. I the number of potential lockout
conditions 1s greater than a threshold (step 854), then the
chance of additional lock-out conditions 1s not low (step 858).
If the number of potential lockout conditions 1s not greater
than a threshold, then the chance of additional lock-out con-
ditions 1s low (step 856 ). The threshold of step 854 1s set based
on the number of bits that can be corrected by error correction
codes (or other error recovery process). For example, one
embodiment includes an error correction code that can fix up
to seven bits of incorrect data (amounting to approximately
0.01 percent of the data). Thus, i1f the number of potential
lockout conditions 1s less than seven, then the chance of
additional lock-out conditions 1s low (step 856). Other thresh-
olds can also be used. In another embodiment, step 850 would
include only a subset of memory cells being compared to their
neighbors, and the results would be extrapolated for the entire
population and compared to the threshold.

FIG. 18 1s a block diagram of one example of hardware that
can implement the process of FIG. 17. Data latches 494 (see
FIG. 5) for all the memory cells provide data to shift register
880. In one embodiment, shift register 880 can include the
actual data latches 494. Shift register 880 includes all the data
for all of the bit lines. The data 1s shifted out one bit at a time,
first into one bitregister 882 and then into one bit register 884.
The data in register 882 and the data from register 884 are sent
to NOR gate 886. The output of NOR gate 886 15 sent to
accumulator 888. The output of accumulator 888 1s provided
to state machine 222, which determines whether the number
of potential lockout conditions 1s not greater than a threshold.
The circuit of FIG. 18 counts the incidences where neighbor-
ing bit lines store 0-0. In one example, to configure the sense
circuitry to apply the appropriate voltage on the bit line, a data
latch 1s used to store an indication of whether the particular
memory cell should be programmed or inhibited from pro-
gramming. In one embodiment, the respective data latch will
store one (1) 1f the bit line 1s to be inhibited and will store zero
(0) 1f the bit line 1s to be set up for programming. Opposite
polarities can also be used. Thus, the circuit of FIG. 18 will
look for neighboring bit lines where the data are 0-0 and count
the number of times that happens using accumulator 888. IT
the number of times that the accumulator 888 counts 0-0 1s
greater than the threshold, then the state machine concludes
that the chance of additional lock-out conditions is not low.

FIG. 19 describes another embodiment of determining
whether the chance of additional lock-out conditions 1s low
(performed during step 640 of FIG. 10). In step 902, the
number of memory cells that are still being programmed are
counted. In an alternative, the number of memory cells that
are locked out are counted. In step 904, it 1s determined
whether the number of memory cells still being programmed
1s less than a threshold. If the number of memory cells still
being programmed 1s less than the threshold (step 904), then
the chance of additional lock-out conditions 1s low (step 906).
If the number of memory cells being locked-out 1s not less
than the threshold, then the chance of additional lock-out
conditions 1s not low (step 908). In one embodiment, the
threshold could be set so that if only 0.4% of the memory cells
are still being programmed (or 99.6% are locked out) then the
chance of additional lock-out conditions 1s low. Other thresh-
olds can also be used.

FIG. 20 1s a block diagram depicting one example of hard-
ware that can be used to implement the process of FIG. 19.
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FIG. 20 shows each of the processors 492 for each of the
groups ol bit lines (e.g., one processor 492 for 8 bit lines) 1n
communication with a comparator circuit 920. Each of the
processors will indicate whether their respective bit lines are
being programmed or locked-out. Comparator 920 includes a
circuit for counting the number of bit lines that are locked out.
In one embodiment, this can be accomplished by providing
the data from the latches discussed above. Comparator 920
can access a parameter 922 which indicates the threshold (see
step 904) and compare that threshold to the sum of bit lines
locked out. The output of comparator 920 1s sent to state
machine 222.

Looking back at FIG. 10, a trigger 1s used (step 622) to
change the programming process from programming odd and
even memory cells together to programming odd and even
memory cells separately. One embodiment includes using
device characterization (including simulation) to determine
an appropriate trigger voltage. In some embodiments, the
trigger voltage can be trimmed separately for each integrated
circuit. That 1s, subsequent to manufacturing the integrated
circuits, each integrated circuit can be tested. Based on that
test, the trigger voltage can be set or adjusted.

FIGS. 21, 22 and 23 are flow charts describing three
embodiments for trimming or setting the trigger value. The
processes of F1GS. 21-23 can be performed on one block. The
data from that one block can then be used for all the blocks on
that memory device. In one alternative, multiple blocks can be
tested and the results applied to all blocks. In another alter-
native embodiment, the processes of FIG. 21-23 can be per-
formed on every block and each block will then have 1ts own
trigger value. In one embodiment, only one word line 1s tested
in a block. In other embodiments, more than one word line
can be tested and the results averaged or otherwise combined.
In other implementations, other units (e.g., word line, groups
of word lines, page, sector, etc.) can be selected for testing.

In step 1002 of FIG. 21, the particular block (or blocks)
under test 1s erased. The process will then program the even
cells on one selected word line. In one embodiment, only one
word line will recerve programming. Based on that one word
line, a new trigger value will be determined for the entire
block, entire chip, or the entire memory system. In other
embodiments, multiple word lines can be programmed and
the data can be averaged or each word line can have 1ts own
trigger value. In step 1004, memory cells connected to the
selected word line are programmed. The programming pro-
cess of step 1004 includes all of the memory cells connected
to the odd bit lines and even bit lines be enabled for program-
ming and applying programming pulses with increasing mag-
nitude until the programming pulses reach a magnitude of
Vpgm_test. In one embodiment, the Vpgm_ test 1s initially set
at two volts below the trigger voltage determined from device
characterization. The programming process of step 1004 1s
similar to the process of FIG. 10 with the exception that after
step 620, the process continues at step 624 (there 1s no step
622 or 630-642). After the programming process of step 1004
1s complete, then the top and bottom of the threshold voltage
distribution for the memory cells connected to even bit lines
are measured 1n step 1006. In step 1008, the block 1s erased.

In step 1010, the memory cells connected to the even bit
lines are again programmed; however, the memory cells con-
nected to the odd bit lines are inhibited from programming for
all of the programming pulses of step 1010. Step 1010
includes applying a series of programming pulses with
increasing magnitude until the magnitude of a program pulse
1s equal to the same Vpgm_ test as step 1004. In step 1012, the
threshold voltage distribution of the memory cells connected
to the even bit lines 1s measured. In step 1014, the top and
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bottom of the threshold voltage distributions measured in
steps 1012 and 1006 are compared. In one embodiment, the
lower bounds of the two threshold voltage distributions are
compared. In another embodiment, the upper bounds of each
threshold voltage distribution are compared. If the difference
between the lower bounds (or upper bounds) of the threshold
voltage distributions i1s not greater than a threshold, then
Vpgm_test is increased by a predetermined amount (e.g., 0.5
volts or other value) and the process repeats by looping back
to step 1002. If the difference between the lowest points of the
two threshold voltage distributions 1s greater than a threshold,
then the trigger voltage (from the value determined by device
characterization) 1s modified to become the current value of
Vpgm_test 1in step 1020. In some embodiments, Vpgm_ test
can be turther modified by adding some margining offset to
account for consideration that the sample size may not cap-
ture the actual worst case. In one embodiment, the threshold
of step 1016 1s equal to 0.5 volts and the program pulse step
s1ze used for programming in steps 1004 and 101015 0.4 volts.

FIG. 22 provides another embodiment of a process for
determining or trimming the trigger voltage. In step 1050, the
block under consideration 1s erased. With the memory cells
connected to the odd bit lines selected for programming 1n
cach 1teration of the programming process, the memory cells
connected to the even bit lines are programmed until their
threshold voltage reaches a target level of VX volts 1n step
1052. VX can be set by experimentation. One example value
of VX 1s 3.5 volts. In step 1054, the number of programming
pulses needed to properly program the memory cells con-
nected to even bit lines during step 20352 1s recorded. In step
1056, the block under consideration 1s erased. In step 1038,
the memory cells connected to even bit lines are programmed
again until their threshold voltage has reached Vx volts. In
step 1058, the memory cells connected to the odd bit lines are
always inhibited for each cycle. In step 1060, the number of
program pulses needed to program the memory cells 1n step
1058 1s recorded. In step 1062, the number of pulses for each
of the tests (steps 1054 and 1060) are compared. It1s predicted
that the number of pulses measured 1n step 1060 will be fewer
than the number of pulses measured 1n step 1054. This dii-
ference 1n number of pulses indicates a magnitude of the
interference effect associated with the lock-out condition
described above. If the difference 1s greater than a threshold,
then the trigger voltage 1s set to the magnitude of the last pulse
from the programming process of step 1058. If the difference
1s not greater than the threshold, then the voltage VX 1s
increased (e.g., by 0.5 volts) and the process loops back to
step 1050 to repeat the tests. In one example, the threshold of
step 1064 1s equal to one pulse. Other thresholds can also be
used.

FIG. 23 1s another embodiment for determining or trim-
ming the trigger voltage. In step 1102, the selected block or
blocks are erased. In step 1104, the memory cells connected
to even bit lines are programmed until their threshold voltage
1s equal to a voltage Vy. During the programming process of
step 1104, the memory cells connected to the odd bit lines are
always selected for programming. In step 1106, the number of
memory cells connected to even bit lines that are over-pro-
grammed are measured. For example, an 1deal threshold volt-
age distribution can be estimated based on simulation and an
upper level can be determined for that 1deal threshold voltage
distribution. ITthe threshold voltage of a memory cell exceeds
an upper limit of that 1deal distribution, that memory cell 1s
over programmed. For example, looking at FIG. 71, state S6
has a lower bound G and an upper bound OP. If a memory cell
has a threshold voltage greater than OP, then that memory cell
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1s over-programmed. In other embodiments, the compare
level for over-programming could be different.

Looking back at FIG. 23, in step 1108, one more program-
ming pulse 1s applied to the selected word line. While that
programming pulse 1s being applied at step 1108, all memory
cells connected to odd bit lines are inhibited from program-
ming. Those memory cells that reached threshold voltage of
Vy 1 step 1104 will remain locked-out during step 1108.
Thus, the programming pulse of step 1108 will only program
those memory cells which had not already reached a thresh-
old voltage of Vy. In step 1110, the number ol over-pro-
grammed memory cells 1s again measured. In step 1112, the
number of over-programmed cells measured 1n step 1110 1s
compared to the number of over-programmed memory cells
measured in step 1106. If the difference 1n the number of
over-programmed memory cells 1s greater than a threshold,
then the trigger voltage 1s set to the magnitude of the pulse
applied 1n step 1108. One example of a threshold from step
1114 1s five memory cells. If the difference 1s not greater than
the threshold (step 1114), then the voltage level of Vy 1s
increased (e.g., by 0.5 volts) at step 1116 and the process
loops back to step 1102 and repeats.

In some embodiments, a non-volatile storage system can
make dynamic adjustments to the triggering voltage in order
to account for changes due to environmental or usage condi-
tions, such as cycling history, temperature, etc. FIG. 24 1s a
flow chart describing one embodiment for dynamically
changing the trigger voltage based on the number of program/
erase cycles. A program/erase cycle includes performing an
erase process and a program process. As the non-volatile
storage system performs many programming/erase cycles,
charge may get trapped 1n the dielectric region between the
floating gate and the channel. This condition may decrease
the depletion region discussed above with respect to FIGS.
11A-C. Therefore, as the device becomes cycled many times,
it may be possible to increase the trigger voltage so that the
separate programming of odd and even memory cells happens
later 1n the programming process. In step 1240 o1 FI1G. 24, the
memory device performs X program/erase cycles. In one
example, X program cycles could be 10,000 program/erase
cycles. Other values for X could also be used. After perform-
ing X program/erase cycles, the trigger voltage 1s raised (e.g.,
by 0.5 volts) 1n step 1242. After raising the trigger voltage in
step 1242, the memory system will perform Y program/erase
cycles 1n step 1244. In one example, Y program/erase cycles
could be 5,000 program/erase cycles. In step 1246, the trigger
voltage will again be raised (e.g., by 0.2 volts). After raising,
the trigger voltage 1n step 1246, the memory system will
continue performing program/erase cycles (step 1248). FIG.
24 shows the memory device raising the trigger voltage twice.
However, 1n other embodiments, the trigger voltage can be
raised only once or more times than twice. Different values of
X andY can be determined based on device characterization
or experimental means.

FIG. 25 1s a block diagram of one example of components
used to perform the process of FIG. 24. FIG. 25 shows state
machine 222 1n communication with register 1282 storing a
trigger parameter and register 1284 storing a cycle parameter.
Compensation circuit 1286 1s also 1n communication with
register 1282 and register 1284. The trigger parameter 1s an
indication of the trigger voltage (or other trigger). The trigger
parameter can be an identification of a voltage magnitude, a
pulse number, or something else. The cycle parameter can
indicate the number or program/erase cycles that have been
performed. Based on the value of the cycle parameter, the
compensation circuit will update the trigger parameter, when
appropriate. For example, compensation circuit 1286 may
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update the trigger parameter as part of step 1242 and 1246 of
FIG. 24. State machine 222 will use the trigger parameter
during step 622 of FIG. 10.

FIG. 26 1s a flow chart describing an embodiment for
dynamically adjusting the trigger voltage based on tempera-
ture. In step 1302, the memory system will measure the tem-
perature. In one embodiment, the memory system can include
a temperature sensor. Based on the measured temperature, the
trigger voltage can be adjusted 1n step 1304. It 1s anticipated
that the depletion region should be worse at cold temperatures
so the trigger should happen earlier in the program process.
This can be done by lowering the trigger voltage when there
1s a cold temperature. If the temperature measured 1n step
1302 1s colder than a preset number, the trigger voltage can be
lowered. If the temperature measured 1n step 1302 1s higher
than the preset number, then the trigger voltage can be raised.
In another embodiment, state machine 222 can store a table
which associates ranges of temperature with trigger voltages.
In step 1302, state machine 222 will read the temperature and
in step 1304, state machine 222 will look up a trigger value 1n
a table using the temperature as a key to the table. The trigger
voltage found 1n the table will be stored 1n a parameter for use
during the programming process. In another embodiment, a
compensation circuit will read the measured temperature and
adjust the trigger voltage in step 1304. In step 1306, the
system will perform programming using the trigger voltage
set 1n step 1304. After a certain amount of performing pro-
gramming, the process will loop back to step 1302, the tem-
perature will be measured again and the trigger value can be
optionally adjusted in step 1304. In one embodiment, the loop
of steps 1302-1306 can be performed for every programming
process. In alternative embodiments, the process can be per-
formed every N cycles or every N time periods, etc.

FIG. 27 1s a block diagram depicting one example of com-
ponents that can implement the process of FIG. 26. F1G. 27
shows state machine 222 in communication with register
1350 storing a trigger parameter. The trigger parameter 1s an
indication of the trigger voltage (or other trigger). The trigger
parameter can be an identification of a voltage magnitude, a
pulse number, or something else. Compensation circuit 1352
1s 1n communication with register 1350 and temperature sen-
sor 1354. Temperature sensor 1354 outputs a signal (voltage
or current) indicative of temperature. Based on the output of
temperature sensor 1354, compensation circuit 1352 will
update the trigger parameter. For example, compensation cir-
cuit 1352 may update the trigger parameter as part of step
1304 of FI1G. 26. The update of the trigger parameter may be
performed continuously, periodically, or on demand.

One embodiment includes programming together and veri-
tying together a first group ol non-volatile storage elements
and a second group of non-volatile storage elements using a
programming signal, determining that a first condition exists,
lowering the programming signal in response to determining
that the first condition exists, and programming the first group
ol non-volatile storage elements separately from program-
ming the second group of non-volatile storage elements using
the lowered programming signal 1n response to determining
that the first condition exists.

In one example, the first group of non-volatile storage
clements and the second group of non-volatile storage ele-
ments are connected to a common control line and receive the
programming signal on the common control line. One
example of a common control line 1s a word line.

One embodiment includes a plurality of non-volatile stor-
age elements, including a first group of non-volatile storage
clements and a second group of non-volatile storage ele-
ments, and one or more managing circuits 1n communication
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with the non-volatile storage elements. The one or more man-
aging circuits program together and verily together the first
group of non-volatile storage elements and the second group
ol non-volatile storage elements using a programming signal.
The one or more managing circuits determiming that a first
condition exists and lower the programming signal 1n
response to determiming that the first condition exists. The
one or more managing circuits program the first group of
non-volatile storage elements separately from programming,
the second group of non-volatile storage elements using the
lowered programming signal in response to determining that
the first condition exists.

One embodiment includes a method for programming non-
volatile storage. Before a first trigger, the method includes
programming together and veriiying together a first group of
non-volatile storage elements and a second group of non-
volatile storage elements using a common programming sig-
nal that includes programming pulses that increase over time
to a reference magnitude at the first trigger. After the first
trigger, the method includes programming the first group of
non-volatile storage elements separately from programming,
the second group ol non-volatile storage elements using sepa-
rate programming pulses that are lower in magnitude than the
reference magnitude and verifying the first group of non-
volatile storage elements together with the second group of
non-volatile storage elements.

The foregoing detailed description of the invention has
been presented for purposes of illustration and description. It
1s not intended to be exhaustive or to limit the invention to the
precise form disclosed. Many modifications and variations
are possible 1 light of the above teaching. The described
embodiments were chosen 1n order to best explain the prin-
ciples of the invention and 1ts practical application, to thereby
enable others skilled 1n the art to best utilize the invention 1n
various embodiments and with various modifications as are
suited to the particular use contemplated. It 1s intended that
the scope of the invention be defined by the claims appended
hereto.

What 1s claimed 1s:

1. A method for programming non-volatile storage, com-
prising;:

programming together and verifying together a first group

ol non-volatile storage elements and a second group of
non-volatile storage elements using a programming sig-
nal;

determining that a first condition exists;

lowering the programming signal 1n response to determin-

ing that the first condition exists; and

programming the first group of non-volatile storage ele-

ments separately from programming the second group
of non-volatile storage elements using the lowered pro-
gramming signal 1n response to determining that the first
condition exists.

2. The method of claim 1, wherein:

the first group of non-volatile storage elements and the

second group of non-volatile storage elements are con-
nected to a common control line and recerve the pro-
gramming signal on the common control line.

3. The method of claim 1, further comprising;

verifying the first group of non-volatile storage elements

together with the second group of non-volatile storage
clements after determining that the first condition exists.

4. The method of claim 3, wherein:

the first group of non-volatile storage elements and the

second group of non-volatile storage elements are con-
nected to a common control line and receive the pro-
gramming signal on the common control line.
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5. The method of claim 1, further comprising:

determiming that a second conditions exists; and

programming together and veritying together the first
group of non-volatile storage elements and the second
group ol non-volatile storage elements using the pro-
gramming signal in response to determining that the
second conditions exists.

6. The method of claim 1, further comprising;

determining that a second conditions exists;

raising the programming signal in response to determining
that the second condition exists; and

programming together and veritying together the first
group of non-volatile storage elements and the second
group ol non-volatile storage elements using the raised
programming signal 1n response to determining that the
second conditions exists.

7. The method of claim 6, wherein:

the determining that the second condition exists comprises
determining at least a predetermined amount of non-
volatile storage elements of the first group of non-vola-
tile storage elements and the second group of non-vola-
tile storage elements that are supposed to be
programmed to a subset of one or more data states have
successiully been programmed to the subset of one or
more data states.

8. The method of claim 6, wherein:

determiming that the second condition exists comprises
determining that a predetermined amount of program-
ming has been performed.

9. The method of claim 1, further comprising:

determining that a second conditions exists;

in response to determining that the second condition exists,
raising the programming signal over a set ol multiple
program-verily iterations; and

programming together and veritying together the first
group ol non-volatile storage elements and the second
group of non-volatile storage elements using the raised
programming signal in response to determining that the
second conditions exists.

10. The method of claim 9, wherein:

prior to the determiming that the first condition exists the
programming signal had a magnitude that was increas-
ing at a particular rate; and

the raising the programming signal comprises raising the
programming signal to a value based on a magnitude of
the programming signal had it not been lowered in
response to determining that the first conditions exists.

11. The method of claim 1, turther comprising:

determining that a second conditions exists, prior to the
determining that the first condition exists the program-
ming signal had a magnitude that was increasing at a
particular rate;

in response to determining that the second condition exists,
raising the programming signal to a value based on a
magnitude of the programming signal had it not been
lowered 1n response to determining that the first condi-
tions exists; and

programming together and verilying together the first
group of non-volatile storage elements and the second
group of non-volatile storage elements using the raised
programming signal in response to determining that the
second conditions exists.

12. The method of claim 1, wherein:

the determining that the first condition exists comprises
determining at least a predetermined amount of non-
volatile storage elements of the first group of non-vola-
tile storage elements and the second group of non-vola-
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tile storage elements that are supposed to be
programmed to a particular set of one or more data states
have successtully been programmed to the particular set
ol one or more data states.

13. The method of claim 1, wherein:

the first group of non-volatile storage elements and the
second group of non-volatile storage elements are being
programmed to a group of data states; and

the particular set of one or more data states are a subset of
the group of data states that are closest to the erased state.

14. A method for programming non-volatile storage, com-

prising;:

before a first trigger, programming together and veriiying
together a first group of non-volatile storage elements
and a second group of non-volatile storage elements
using a common programming signal that includes pro-
gramming pulses that increase over time to a reference
magnitude at the first trigger; and

after the first trigger, programming the first group of non-
volatile storage elements separately from programming
the second group of non-volatile storage elements using
separate programming pulses that are lower 1n magni-
tude than the reference magnitude and veritying the first
group ol non-volatile storage elements together with the
second group of non-volatile storage elements.

15. The method of claim 14, further comprising:

in response to [the] a second trigger, raising a magnitude of
the common programming signal; and

in response to the second trigger, programming together
and verifying together the first group of non-volatile
storage elements and the second group of non-volatile
storage elements using the common programming sig-
nal after being raised 1n response to the second trigger.

16. The method of claim 14, wherein:

the first group of non-volatile storage elements and the
second group ol non-volatile storage elements are multi-
state NAND flash memory devices that are connected to
a common word line.

17. The method of claim 14, further comprising:

in response to [the] a second trigger, raising a magnitude of
the common programming signal to a value based on a
magnitude of the common programming signal had 1t
not been lowered after the first trigger; and

in response to the second trigger, programming together
and verifying together the first group of non-volatile
storage elements and the second group of non-volatile
storage elements using the common programming sig-
nal after being raised 1n response to the second trigger.

18. A non-volatile storage apparatus, comprising;

a plurality of non-volatile storage elements including a first
group ol non-volatile storage elements and a second
group of non-volatile storage elements; and

one or more managing circuits in communication with the
non-volatile storage elements, the one or more manag-
ing circuits program together and verity together the first
group ol non-volatile storage elements and the second
group of non-volatile storage elements using a program-
ming signal, the one or more managing circuits deter-
mining that a first condition exists and lower the pro-
gramming signal 1n response to determining that the first
condition exists, the one or more managing circuits pro-
gram the first group of non-volatile storage elements
separately from programming the second group of non-
volatile storage elements using the lowered program-
ming signal in response to determining that the first
condition exists.
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19. The apparatus of claim 18, wherein:

the first group of non-volatile storage elements and the
second group of non-volatile storage elements are con-
nected to a common control line and recerve the pro-
gramming signal on the common control line.

20. The apparatus of claim 18, wherein:

the first group of non-volatile storage elements and the
second group of non-volatile storage elements are multi-
state non-volatile storage elements.

21. The apparatus of claim 18, wherein:

the one or more managing circuits verily the first group of
non-volatile storage elements together with the second
group of non-volatile storage elements after determining
that the first condition exists.

22. The apparatus of claim 18, wherein:

the one or more managing circuits determine that a second
conditions exists; and

the one or more managing circuits program together and
verily together the first group of non-volatile storage
clements and the second group of non-volatile storage
clements using the programming signal 1n response to
determining that the second conditions exists.

23. The apparatus of claim 18, wherein:

the one or more managing circuits determine that a second
conditions exists:

the one or more managing circuits raise the programming
signal 1n response to determining that the second condi-
tion exists; and

the one or more managing circuits program together and
verifying together the first group of non-volatile storage
clements and the second group of non-volatile storage
clements using the raised programming signal 1n
response to determining that the second conditions
exi1sts.

24. The apparatus of claim 18, wherein:

the one or more managing circuits determine that a second
conditions exists:

in response to determining that the second condition exists,
the one or more managing circuits raise the programs-
ming signal over a set of multiple program-verily itera-
tions; and

the one or more managing circuits program together and
verilying together the first group of non-volatile storage
clements and the second group of non-volatile storage
clements using the raised programming signal 1n
response to determining that the second conditions
exists.

25. The apparatus of claim 24, wherein:

prior to the determining that the first condition exists the
programming signal had a magnitude that was increas-
ing at a particular rate; and

the one or more managing circuits raise the programming
signal to a value based on a magnitude of the program-
ming signal had it not been lowered in response to deter-
mining that the first conditions exists.

26. The apparatus of claim 18, wherein:

the one or more managing circuits determine that a second
conditions exists;

prior to the determining that the first condition exists the
programming signal had a magnitude that was increas-
ing at a particular rate;

in response to determining that the second condition exists,
the one or more managing circuits raise the program-
ming signal to a value based on a magnitude of the
programming signal had it not been lowered 1n response
to determining that the first conditions exists; and
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the one or more managing circuits program together and
veritying together the first group of non-volatile storage
clements and the second group of non-volatile storage
clements using the raised programming signal 1n
response to determining that the second conditions
ex1sts.

27. The method according to claim I, wherein:

the first group of non-volatile storage elements and the
second group of non-volatile storage elements arve part
of a three dimensional memory structure.

28. The method according to claim 5, wherein:

the first group of non-volatile storage elements and the
second group of non-volatile storvage elements are part
of a three dimensional memory structure.

29. The method according to claim 14, wherein:

the first group of non-volatile storage elements and the
second group of non-volatile storvage elements arve part
of a three dimensional memory structure.

30. The non-volatile storage system accovding to claim 18,

wherein.

the plurality of non-volatile storage elements ave part of a
three dimensional memory structure.

31. The non-volatile storage system according to claim 18,

wherein:

the plurality of non-volatile storage elements ave part of a
three dimensional memory arrvay; and

the plurality of non-volatile storage elements include stor-
age areas disposed above a substrate.
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