USOORE45697E

(19) United States

12y Reissued Patent US RE45,697 E

(10) Patent Number:

Lin et al.

45) Date of Reissued Patent:

Sep. 29, 2015

(54) SYSTEM, METHOD AND MEMORY DEVICE
PROVIDING DATA SCRAMBLING
COMPATIBLE WITH ON-CHIP COPY
OPERATION

(71) Applicant: SanDisk Technologies Inc., Plano, TX
(US)

(72) Inventors: Jason T Lin, Santa Clara, CA (US);
Steven S Cheng, Sunnyvale, CA (US);
Shai Traister, San Jose, CA (US)

(73) Assignee: SanDisk Technologies Inc., Plano, TX

(US)

(21)  Appl. No.: 14/242,610

(22) Filed: Apr. 1,2014
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 8,301,912
Issued: Oct. 30,2012
Appl. No.: 12/345,921
Filed: Dec. 30,2008

U.S. Applications:
(60) Provisional application No. 61/018,096, filed on Dec.

31, 2007.
(51) Imt. CL.

G11B 20/00 (2006.01)
(52) U.S. CL

CPC o GI11B 20/0021 (2013.01)
(58) Field of Classification Search

CPC ... G11B 20/0021; GO6F 12/0246; GO6F

12/1408; GO6F 21/72; GO6F 21/725; GO6F

21/79; GO6F 2212/1032; GO6F 2221/2107;

G11C 11/5628; G11C 16/0483; G11C

16/3418; G11C 16/3427;, G11C 7/1006

USPC e 713/193

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,987,959 A 12/1996 Tsukude
5,592,436 A 1/1997 Toda
5,619,576 A * 4/1997 Shaw ........coooiiieiiiinnnnn, 380/44
5,689473 A 11/1997 Toda
(Continued)
OTHER PUBLICATIONS

International Search Report and Written Opinion for App. No. PCT/
US2008/088625, dated Mar. 19, 2009, 7 pages.

(Continued)

Primary Examiner — Jason Proctor
(74) Attorney, Agent, or Firm — Brinks Gilson & Lione

(57) ABSTRACT

Data scrambling techniques implemented externally to a flash
memory device are disclosed which can be used 1n concert
with flash memory on-chip copy functionality operating
internally to the flash device, thus supporting high perfor-
mance copying operations. All the data stored in the flash may
be scrambled, including headers and control structures.
Robust file system operation may be achieved, including the
capability to tolerate a power loss at any time, and yet be able
to relocate data internally within the flash without having to
de-scramble and then re-scramble the data. An exemplary
hardware based solution has little or no 1mpact on overall
system performance, and may be implemented at very low
incremental cost to increase overall system reliability. The
data scrambling technique preferably uses a logical address,
such as logical block address or logical page address, rather
than a physical address, to determine a seed scrambling key.

71 Claims, 15 Drawing Sheets

Data Pattern Scrambler/Descrambler Block Diagram

150 Scrambler

CLK Seed SKN

3Z-bit Unscrambled 160 162
Data from Host
Key
152 154 Generator

32-bit XOR logic 190

128

32-bit Scrambled
Data to Memory

164

—~-168



US REA45,697 E

Page 2
(56) References Cited 2007/0217608 Al 9/2007 Shimasaki
2007/0220197 Al 9/2007 Lasser
US. PATENT DOCUMENTS 2008/0151618 Al 6/2008 Sharon et al.
2008/0158948 Al 7/2008 Sharon et al.

5,706,248 A 1/1998 Toda 2008/0215798 Al 9/2008 Sharon et al.

5911,062 A 6/1999 Taki 2008/0317246 A1  12/2008 Manders et al.

5915,025 A * 6/1999 Taguchietal. ................ 380/44 2009/0083485 Al 3/2009 Cheng

5,943,283 A 8/1999 Wong et al. 2009/0150596 Al 6/2009 Cheng

6,094,368 A 7/2000 Ching

6307776 Bl  10/2001 So et al. OLIHER PUBLICATIONS

6,549,468 B2 4/2003 Zitlaw et al. _ o

6,621,745 Bl 9/2003 Manea European Supplementary Search Report and Written Opinion for EP

6,684,289 Bl 1/2004 Gonzalez et al. App. No. 08869563.0, dated Mar. 11, 2011 1n, 5 pages.

6,856,572 B2 2/2005 Scheuerlein et al. Application as Filed for U.S. Appl. No. 14/133,979, filed Dec. 19,

§O77355 B2 122003 Callaway et al 2013, 121 pages

977, allaway et al. . :

7.012.835 B2 39006 Gonzaler of al QA(%DF;C;?;E;SS Filed for U.S. Appl. No. 14/136,103, filed Dec. 20,

giggﬁgg E% 1 égggg g:ﬁ:ﬁg.leetiil* Jang et al., “Vertical Cell Array using TCAT('Terabit Cell Array

7.349,267 B2 3/2008 Kuroda Transistor) Technology for Ultra High Density NAND Flash

7464216 B2  12/2008 Gorobets Memory,” 2009 Symposium on VLSI Technology Digest of Technical

7,512,813 B2* 3/2009 Goodnow etal. ............. 713/193 Papers, pp. 192-193, 2009,

8,187,936 B2 5/2012 Alsmeler et al. Arya, P., “A Survey of 3D Nand Flash Memory”, EECS Int’l Gradu-
2003/0126451 Al* 7/2003 Gorobets ................ 713/189 ate Program, National Chiao Tung University, 2012, pp. 1-11.
2005/0141329 Al 6/2005 Beat Nowak, E. et al., “Intrinsic Fluctuations in Vertical NAND Flash
2005/0144365 A ¥ 6/2005 Gorobetsetal. ............. 711/103 Memories”, 2012 Symposium on VLSI Technology Digest of Techni-
2005/0201401 AT 9/2005 Lasser cal Papers, 2012, pp. 21-22.

%882835233? i ggggg Ezzzz International Search Report and Written Opinion mailed Mar. 19,
5006/01561 80 A_'h 22006 Tomlin 2009 for App. No. PCT/US2008/088625, 7 pages.

2006/0184724 A /2006 Meir et al. Europena Supplementary Search Report and Written Opinion,
2007/0089034 Al 4/2007 Litsyn et al. mailed Mar. 11, 2011 in EP App. No. 08869563.0, 5 pages.
2007/0124652 Al 5/2007 Litsyn et al.

2007/0208905 Al 9/2007 Litsyn et al. * cited by examiner



U.S. Patent Sep. 29, 2015 Sheet 1 of 15 US RE45,697 E

103 105

Py ik sheh . —

L lnlal  dubiek bl ol p— I I I BN L

l

—— ]

|

T EET DT T T B B B W el ey e o T BN T T B T S T e

o
oy
N
=
r
Cad
-
a2 S

o

116

LB LB _ R _W N =N =N T W I§f I 1 EEE bl by S S B DN B BN B B B . R S S B e L i N B W W R T T N S —

T

T

Tkl Bl Bl v T . -

2
I
oy
I
1
]
i
¢
I
I
—-
I
. |

BITLINEQ  BIT LINE 1 BIT LINE N

FIG. 1 (prior art)

Single Bit-per-cell

(SBC) 122

Number

FIG. 2A of Cells "

| >
0 Threshold Voltage

MBC

Conventianal Made: _
L ower Page Programming Wppar Page Progremming

J.‘.‘

130 ., ; 130 743, v 136
Sate §aB e 0 R TN

UpperPage 1 1 © O A | N AR A S
lowerPage 1 0 0 1 LT ; y i E AL BL L T
;.1-1 ,1 " u,-iaﬁ u-; -I 5 ﬂ.l{fn naeﬁ 1{01 H }

MBC
LM Mode: {.ower Page Programming Upper Page Programming

o DL 2 U: VN

140 - e 4{1485 1'3'[.)__“9{ 2 ;“,v}\l e <6
T ’ ' S U I Y i

i

%m P % %‘L % % 8‘3'&- -\."'- ; N ' < b v _ T ‘-':.d \

pper Page fE LMy Te Y Dl il el

lowerPage 1 1 0 O ‘.{“Lﬂ} EUTRUTRRIOR OO O O Sk U TN S e
"11” 15101'-' ll.-f?i} Hgf!ﬂ l)ﬂﬁn l!-,-lau r

FIG. 2C



US RE45,697 L

Sheet 2 of 15

Sep. 29, 2015

U.S. Patent

g¢ Ol ve Ol
JSOH 0} Ele( Mo_.“_mmq_,_og __%.wm_
pBIqUIBIOSUN 1IG-Z€ PAGUERS G-¢E
8L1 | oc| )

9/ 100l YOX 119-¢¢

951,

2160] YOX }9-Z¢

- I0)BJBUSY) ol " q~|  101BIBUaD - Fooe
Koy £y
AJOWBIA WOl BIB(] . . . 1SOH WOl Ele(
78l DBIqWEIOG 1I0-7¢ v~ 291~ 09l pa|qUEIISUN NG-Z§
NAS P9aS M0 NMS  P83S MO
I9|qWelosa(] 0zt 19|qUIBINS 05t

welbe|q 3oo0|g Jejquelosaq/Ie|quielog uisned eleq



Sheet 3 of 15 US RE45.697 E

U.S. Patent Sep. 29, 2015

Exemplary Sequence based on Seed of 0x71
rotating left with 8-bit shifter

01110001
T
TN
10111000 | Key0) | 11100010
N Ve
/ \ T /
(x Key7 | Seed . Reyl )
f;im_gf’i R {
|
{,,-"f HH‘ /f' /!_\Hx
/ \ '
01011100( Key6 | | Key2 | 11000101
\R‘ // " f.—"
RT/ “‘“n?_,
\ /
X’F S T ’-
/ A e N
( Keyd ) | Key3 jl
T T \
‘hxu,fﬁx / A - \\u;"} FIG. 4

00010111

Exemplary Sequence based on Seed of 0x695334C6
rotating left with Shifter size of 32

Rotation Length: 32 #t of Cnt
Rotation Direction: Left 0's 16

1's 16
Key Kay Shifter Qutput
Sequence # | Byte3 T Byte2 — Bytel .. ByteQ
Ox69CT734CH 0 | 01101001 11000111 00110100 11000110
0xD38E698C 1 | 11010011 10001110 01101001 10001100
OxA71CD319 2 | 10100111 00011100 11010011 00011001
Ox4E39A633 3 | 01001110 00111001 10100110 00110011
0x9C734C66 4 110011100 01110011 01001100 01100110
Ox38E698CD 5 | 00111000 11100110 10011000 11001101
0x71CD318A 6 | 01110001 11001101 00110001 10011010!
O0xE39A5334 { 7 | 11400011 10011010 01100011 00110100
OxC734C669 8 | 11000111 00110100 11000110 01101001
Ox8E698CD3 9 | 10001110 01101001 10001100 11010011
Ox1CD319A7 10 | 00011100 11010011 00011001 10100111
Ox30AB334E 11 | 00111001 10100110 00110011 01001110
0x734CB69C 12 { 01110011 01001100 01100110 10011100
OxEB98CD38 13 | 11100110 10011000 11001101 00111000
OXxCD319A71 14 | 11001101 00110001 10011010 0111000
NDx9AB334FE3 15 { 10011010 01100011 00110400 11100041
0x34C669C7 16 | 00110100 11000110 01101001 41100011
Ox698CD38E 17 | 01101001 10001100 11010011 10001110
O0xD319A71C 18 | 11010011 00011001 10100111 00011100
OxAB334E39 19 | 10100110 00110011 01001110 00111001
Ox4CBB3C73 20 | 01001100 01100110 10011100 01110011
0x98CD38E6 21 | 10011000 11001101 00111000 11100110
Ox319A71CD 22 | 00110001 10011010 01110001 11001107
OxB334E30A 23 | 01100011 00110100 11400011 10011010
OxC669C734 24 | 11000110 01101001 11000111 00110100
0x8CD38F69 25 | 10001100 11010011 10001110 01101001
Ox19A71CD3 26 | 00011001 10100114 00011100 11010011
0x334E39A6 27 | 00110011 01001110 00111001 10100110
OX669C734C 28 | 01100110 10011100 01110011 01001100 FIG. 5
OxCD38EB98 29 | 11001101 00111000 11100110 10011000 .
Ox9A71CD 31 30 | 10011010 01110001 11001101 00140001
Ox34E39A63 31 | 00110100 11100011 10011010 01100011




US RE45,697 L

Sheet 4 of 15

Sep. 29, 2015

U.S. Patent

9 OId

(INIT QHOM OL AN
QHOM WO ONINOILISNVYHL)
SANIT Lid NMOQ ONISHIAYHL

(NMS)
HIGNNN A3
ONILYVLS

_ CASY :” 280y __ ;mlx.. __I| o>®L ..._.._ JrEE)N : gAY __ GAoY __ rASY,

_ Aoy _ ¢ = 135440 IOVd
v Zhey _ ¢ = 135440 39vd

@E% 7 | Aoy __H Aoy __ L gAe) __. WNEN *o o _ chay __ vhay :I.?wx .|__|N>®x
! { { _ _

ey | v = 138440 39V
:

GLZ pLZ X 012
%NA _ 0Aa) ; | gAO) : 0EAS)H __ 6choY _ ® o _ yhey __ chay __ A : | Ao 0Ae) 0= 138440 39V
90 0T 207
0 L€ 0t 6¢ y 9 4 | 0 135440 qQ4OM-a
(3NIT Lig OL 3NI 39Vd 40 39V
——— 1IGNOY4) INTQHOM ——— e » ® SAYOM L118-Z¢€ 40 Q¥OM
V ONOTV ONISHIATY L ININOISENS 119-2€ 1Y

(SAIN 119-2€ ONILYLOY Z€ ONIMOHS “9'3)
002 SANIT 119 3HL NMOQ OSTV ANV ‘SANIT a4OM
JHL SSOHOY SATM ONINEIWYHEDS 40 NOILYLOY



U.S. Patent Sep. 29, 2015 Sheet 5 of 15 US RE45,697 E

Byte Offset Number Example with 32-bit Keys and
Sector 0 size of 518 Bytes

Key# 0 Key#0 Key# 1 Keyi 2
Byte Offset#l 0 1 2 3 p 1 2 31la 1 2 3|0 @4 2 3
Sector Byte#
(Cxcluaing eCCJ O L 2 3 212 513 514 515 516 517 000 001 00z Q03 004 005
I‘— Sector 6 ———— o I - Sector ] —————— .
FIG 7 Column_Start byte for Sector 1
Corresponds
Exemplary SKN Calculation toFig. 7
Page |Sector|Sector Format|Sector|Column|Column|#Keys perfPage |D-Word| .| Byte:
| Offset | No. Hdr  User | Size | Start | End Sector |[Offsef] Offset |- SKN |[Offset
0 0 6 512 | 518 0 0205 | o0 00 [ 00 00 0
0 1 2 D12 014 206 0407 129 2/4 00 01 01 2
O 2 Z 512 514 408 0609 258 00 02 02 0
O 3 2 o212 014 60A 080B 386 2/4 00 02 02 2
0 4 2 212 514 80C 0AQD 515 00 03 03 0
0 S 2 912 514 AQE OCOF 643 2/4 Q0 03 03 2
0 6 2 512 | 514 C10 OE11 | 772 00 04 04 0
0 7 2 512 | 514 E12 1013 | 9002/4 | 0O 04 04 2
0 8 2 512 514 1014 1215 1029 00 05 05 0
0 9 2 012 914 1216 1417 1157 2/4 00 05 05 2
0 10 2 512 514 1418 1619 1286 00 06 06 0
0 11 2 512 514 161A 181B 1414 2/4 00 06 06 2
0 12 2 212 214 181C 1A1D | 1543 00 07 Q7 0
0 13 2 512 514 TA1E 1C1F 1671 2/4 00 07 07 2
0 14 2 012 514 1C20 TE21 1800 Q0 08 08 O
0 15 2 512 | 514 | 1E22 | 2023 | 1928 2/4 | 00 08 08 | 2
1 0 6 912 218 O 0205 0 01 00 01 0
1 1 2 512 514 206 0407 129 2/4 O1 01 02 2
1 2 2 512 | 514 408 0609 | 258 01 02 03 0
1 3 2 512 514 60A 080B 386 2/4 01 02 03 2
1 4 2 512 514 80C 0AOD 515 01 03 04 0O
1 5 2 512 514 AQE OCOF 643 2/4 01 03 04 2
1 6 2 512 514 C10 OE11 712 01 04 05 0
1 7 2 212 514 E12 1013 900 2/4 01 04 05 2
1 8 2 512 | 514 | 1014 | 1215 | 1029 0 05 06 0
1 9 ? 512 | 514 1216 | 1417 | 1157 274 | 0~ 05 06 2
1 10 2 512 | 514 1418 | 1619 | 1286 01 06 07 0
1 11 2 H12 514 161A 181B 1414 2/4 01 06 07 2
1 12 2 512 214 181C TA1D | 1543 01 07 08 0
1 13 2 512 514 1A1E 1C1F | 1671 2/4 01 07 08 2
1 14 2 512 514 1C20 1E21 1800 01 08 09 0
1 15 VA 512 214 1E22 2023 1928 2/4 | 01 08 09 2

FIG. 8



U.S. Patent Sep. 29, 2015 Sheet 6 of 15 US RE45,697 E

Exemplary “calculated” sequence of 8-bit keys

01110001
10111000 01011100
KEW Seed Keyﬁ

10001011

11100010 @
11000101 M @ @

00101110

00010111

FIG. 9

Byte Offset Number example with 32-bit keys and
2062-byte ECC pages

Key# ( Key# 6 Key# 10 Key# 15
ByteOffset#! 0 1 2 3 0 1 Z 3 {0 1 2 3 0 L 2 3
ECC Page Byte#:
(Excluding ECC); 0 1 2 3 i 12056 2057 2058 2059 12060 2061|000 001 { 002 003 004 Q05

€————  BCCPaged — Nl  ECCPagel —

D-Word Offset Number = 0 D-Word Offset Number =3

Byte Offset Number = 0 Byte Oitset Number =2
Header bytes = 14 Header bytes = 14.

Data bytes:j 12*4:2048 Data b_Yt&S:‘:I-*S 12=2045%.
Total = 2062 bytes. Total = 2062 bytes.

FiG. 10



US RE45,697 L

Sheet 7 of 15

Sep. 29, 2015

U.S. Patent

kb Ol

Z 0l PIZ 9¥GL | L£0C Ve8! 2902
0 L0 LE0L | 6281 0101 2902
Z €0 ?/cGLS | dl0o} 308 2907
0 1 00 0 | doso | 0 2902

£
C
)

0
______________________________________________________________ [pa@l | [xeHl | [xeH] | [o2q] [0o2a]  [o22a] [22dl
jospo | 19syo |obed 90a| pu3 }4e1S 321G 19s ipH|  oN
aikg | piom-a |aed sA M# | uwnjo) | uwnjo) |abed 9o3| jewloq abed 9o3| abed 903

................................................

S31AQ Y07 l8sn SAoM rAS 'sAay] "ON
SEMNe Pl IPH s91A¢ b 921G Ad)

sabed 003 81Ag-g90z Aejdwex3
10} sanjeA J81s1bay 19510 a1Ag pue 18syO PIOA-(



U.S. Patent

SKN Register Values for Exemplary 2062-byte ECC Pages

Sep. 29, 2015

Sheet 8 of 15

US RE45,697 L

0
|
2
3
4
O
6
7
o
9
10
11
12
13
14
15
16
17
10
19

W W NN MNPNNDNODNDDDDNDDNDN
- O O O NG O A~ W O

FIG. 12

23

——
~]

29

coowowhoYonhbhoG

N
~N 3

10

.
o)



U.S. Patent Sep. 29, 2015 Sheet 9 of 15 US RE45,697 E

Page Offset

Application Byte

5 Bits 5 Bits

Exemplary 2K Byte ECC Page Header Format, including 5-bit Page
Offset Field (e.g., for each of four Sectors in an ECC Page)

ECC Pagc Hcader Layout (14 Bytcs)

Sector 1 Sector 2 Page Header Data
Header  Header Header Header LBA or Other Data Unused

The Page Header Data field holds either the LBA or other parameters related to sector O.

Sector Header Layout (2 Bytes)
Page Offset SD Application

5 Bits 5 Bits
Bits 11-15 Bits 6-10

Sector id
6 Bits
Bits 0-5

FIG. 14



U.S. Patent Sep. 29, 2015 Sheet 10 of 15 US RE45,697 E

T

mapping
FIG. 15

Page
Offset
Value

Reverse

C
1
Z
3
31
a0
29
28
4
5
6
7
27
26
25
24
8
g
10
11
23
22
21
20
2
3
4
5
9
8
17
16

-

11110
111071

(actually stored in FLASH]
0
1
2
3
1F
1E
B .
1C
4
5
6
7
1B
1A
19
18
8
9
A
B

7
16
15
14
C
D,
E
F
13
12
11
10

11111
11100
00100
00101
11011
11010
11001
11000
01000
1 01 01001
10111
10110
10107
10100
01101
01110
10011
10010
10001
10000

00010
00011
00110
01011

Mapped Page Offset Code
11 0] 00111

o
i

G | 00000 0

r

MAPPED PAGE
OFFSET CODE

1 00
0 0 0

41001101001 11000 1

1

1'

0

0
3011010011000 110 ol 00001

110011
100110
G0 1101

'
-

XOR

10100111000 1
1010011100011 10 0§ 01010

BITS 11-15 OF
SCRAMBLING KEY0 (FROM

011100011
00511100011 10011010

0100111000171 100 1
HEADER FORMAT)

$.0,100111000 "
11001101001 100 0 1

110011010011 000 1 1

Ox69C734C6
1

200111000 1

---------------
——————

1110001110011 0100][] 01100
B0 0111001101001 10] 01111

4301001 10001100110
201100011001 170100
17000111001101001 1
3011100110100 1100
Q@1 171001101001 1000

6100110001100 110 1
3001100011001 1010
0001100110100 11
10011010011 10001 1
0110100111000 111

9001100110100
901100110100 1
“H1100110100 11

[
01

1

]

..........................................
..........................................................
............................

5@@??1 000111700110 100"1

------------------------------------

WA101001100C0110011

661100011001 1010°0 -

..........

. -

----------------------------------------------------------
...........................

---------------------------------------

..... 1-'-'1-'-"1-'-@ _Q'q-l-;:]@f-lf— # # (:}{:}T‘-':)@ @1—”%1—5@ {:};:j
= DX &

051101001 10001100 -
0:0:41 0001100110100 1

...................
..............

LI |
----------------------------------

10 00
I O Js e B2 0 K

1

Default Seed Key
0
0 0
16

1
1
1

1
0 vt TalaTatt
1000 11

-
1
0001 1

11 000
1000 1
00011

-
wr
i

Page Offset and SKN Scrambling Lookup Table, for the first ECC page in a physical page
PAGE CODE

Reverse
mapping
Table

Page
Offset
Value

e T - - - “un'm o - - - Tt . . =T - 4 - - T et = * - = B - 4 L e e R . - . h ' i " = = = =
e A R R I Y - - . a T . 1 . nn 0 I VR0 fF . i R - . a'a s R AR
R . . . - - - r - - . . . - a - . - - - - -
4 Ak - n o ommonteaa A == = = m = = 7iamnowiE " a'a L= - 4 T momomom LA - r o wwow s . aat TN . an PR A m A - P S - A _ _i L - AL .
R Y B SR o R R R R AT o T RO R, IROEgO SRR R R TR A S O SO L S e T g e e e e e R g FE e S s RAREEN P
- - - . L] L] . + nndd - L - - 04 a
e et 0 e R e et T R ey " (LM BT DT e . r] LR ERC Rt N T R e I B S ' T R e . LB P e L LR R B T e LN e, R .:.'.' i, " :. ..:.. e nhnt, A Eee .
tl,eprw nn na - 4R r o+ [] BN 00+ 0 [ ] [ ] [ ] g w1 - B EA LB 4 ' ddd ugp o ¥ + ik a nw o X
N B I I A BT e e e i i L PR P I Y 1 ' B T i P e S I e L 1Fa au N r
+ 1 1 01 hddpg 070 -4011 ol d = g qn n - %4 r Ad Bd s | a g+ 0 b 40 1 0 kb b1 1 [ R+ Ehd I [ B ] [] + "
1 am1 - mEmLoE RO '
- omom ' - - .
' e . . .
a M = afi- 1 O
o L (] L L] B L}
. e ata - . .
- 1 .k PR - = LI ] [l
nomommooap e e -
== A s rmom 1 A s .o
. P N N - .
. . . a - -
- .- - P A i 0 H
_ LN o s a .
n - oa [ - ., '
L I — o '
- - - = s B p= g L . I} .
roan . ] i, =
. PRl et N -
" B - . . L.
LI - - 1T.lll L} L}
L] - - . LI L}
L maom PR .
LR I I e Y
o . T .
L) = 1 T =
v . . . '
B - e e a e e
- . " .
. .




U.S. Patent Sep. 29, 2015 Sheet 11 of 15 US RE45,697 E

EnE L I
AN ER
ey
P AL L -u
:l:l:r:l :lﬁ; ]
[ ] | § -i :
_ll.-i."lll :l‘. " r""" m m L N ED L B m :ﬂ L3 r“"“ :Lﬂ L " ‘-ﬁ #l D m G m
- - ?
spbge o N O N m N 9 TPm - QO m © N O - = = @ N ZZ KN
OOUY Hala A
:I o n :;:ll-:lll:ll:-
R R B
- :
L]
B
L]

: B e A e e R B R e L B T Ly o M B S L T, T M e T T T B T e B i g M L T L M b o B T R T N R R L R A R B e Tt R B B e e
R
ks

L |
H .. TR E TR LAY T e g s e AL TETL RS kg T ' ey R E L N TR Ty B A TR WA N L LR L R CER LR NN R LN LA UEE L LR EE B L R T TR TN LAY WALT AL LE AN L TREL LWL LR R Y RN AN
]

¥ -

- l.
re

L]

L]
I-I-i-l:
N o M~ <+ O W -

— ™ 0 O < v'e, — ¢ St €< © I~
L
L& {7} ") — —
* e
“En . l.:|. O R ]

L
n

AR A LEREERAARARERRATRR R AR AR R RRE AR AR LR AR R R R N R R R N A A R R R R R R R R R R R R T R e R A R L R A A R I T L S S A R LS R R R EE R

FIG. 16

r

PSS oo Yoo oo LR

23
8
4

21
30
14
1

TRt E Rty R R TR T E Rt e R kT R T e e iy R T A T e et R e E e h ke T EE R I N Y T A et r e e e e R s e o M R e e e TETE R ETa E E TR e e R W B e e e m wETE O TEmTECERTE W s m oy ey mr W WM

E LR

£
2

)

i

Qo o~ o o ~ I~
R oo~ Yo QoF B o NO e - w8 R~ o

—

8
16

T
f_‘}

S
-
i

IR R L - R R R R R LRl PR L RS L L AN LN R R R R R R R R ER LR R R RE A LR RN R ELERLE R R L ERR L E R LR R LR AR L R R R RN RN RELLELLEERLRLEEREE R R R R R YR R R AR R R R R R A R R R A R R L EEEE R R LI R Y R R L R

1
l'i!i"

ey Mo i P M T T e e T T e B P e e e L T L T T e e e e e L L e o T L T T M B M T e e e e T T M T M T T e e My My M T M M L M et e e e T e e o T e T P e T e B e M T

e

A A ke e e T R T R T P A b, T e, e L e et L L R T L U e R, e L e T e e T R L e e e e e, U R, R L T

I"I.I-‘..I:III.. .I-

14

N ™ 3 0 N 0 < W0 @ W — W M~ T o)
&N 02 N0 O N~ TP~ o JTlLorrnwggASELTAR

21
11

P

LA

Bkl L R L Ry mmyws g e L BE R EELELLY bR R A cRE Rk ochch ooy momw LMoy E W OWmR ELNEL LA LETRLLEALALLES B chmm omoyd oy omomh o omomyopwopm ooy g =gl EALET LR ETWLAYREE T A mchyon mmom s mmy my oy pnnygnd WAL LAY kR F N oy ok h ooy

T e e ey R TR R R R LA R R E AR RN T AR TR AN R R E NI R W R R MR R EE T LRI REECE R AR EE G R R F N P TR R R EE O EE IR P TR EE R R E A REE R AR EE A A R e u T E R R IR R IR WA PRI AR PR E R TR R R R R R P AN R AT IR AT AR R Wk

SKN Values
(showing the exemplary ECC Page crossing boundaries)

e o
CwunTITHaLLL ol 0L 2L 0022038320
SR

] .II-I.I.I‘l--

P&

EREET R R R A EE R TR I EE R AT T R L AR R R R d e e R e A E Y EET Y R E A I EE AT E R A TR AT R T R R R R R R e T e e I EE Y PN A P R E AR AR v R R R T R R R ket hhER T EE Y R A TR E R R R A AR A R E RN AR R R m Y e e s rCuTr e bR

6
0
’
7
6
14
24
17
9
12
25
8
23
8
27
31
6
2
18
9
C
24
18
14
&
"
28
30
12
12
14
14

---------

T r *¥Y¥FI IS FEYT I FAEA EN S EEA FEFA&EATL d8 Eorbhes ressmr Py Y ™"FFYEFSESPF ERIAFEFIAdEdAERT

' AAEd S = add Bd Ffm agy gueygpT*T FET IR FEFERI] RS FEFANAA L By ydy ypps po ey ap IR NN Y NN NN RN RS Ak padhddds sm e g rmme ™

" B~ rB s o222 -~8RoocFEEHowrgnrfod

.......
. = e
--------
------
[

AR RT T EEEI RN AR AR T AR Y I R T R I R T I R R T R R E R T R T TR R TN T R I R e R E I IR T RN R R R T RN TR IR N E R R A YRR AR i AR F AP ET R R R E P R R R R F R R AR CEE I R AR R AR YRR R LRI N F R R R AN R R AR R I F R R R W

M L o e M M T e T B i, e 1 L L e R L L e e L o e o o e L e L L S L L L T L b L e L e L L L R A A L L L e e L e e T e B L T, T,

14
17
20
23
20
29
0
4
7
10
13
16
18
22
25
28
31
1

11

.
.
T L R W N, T N R R e mmnw  RE b h h  Eh ee , L  Rm n b e b B e i, Tt e MWL R ML MR L AT e B e B o s e T T, R e N R B R N Rt R Ry b R T b e o T e e

o N g O @D
Y- == v xr— o

28

~mw s~ T 220200485 N Y 0 SN &Ko

i By g i T Ty g o o T, By T Ty g gy B By By b By By M e e e e e e e e T ey T T T T T e T T By By Ry, B B B Rk B By B By de B e e e T T T e Ty T T e e e T Ty e T T e Ty Ty Tt T T e T T Ty T T B I B B R R R Rt e e e e e e e e T e Ty T T T T T T T T T e T T T Ty B B Ty R gk BBy Bl Rt ey e e e Sy T e T Tr T R T TE TR

JJJJJJ r

ars

a
¥

ar

T

13
14
15
16
17
18
19
20
22
23

21

Flo — v e 0 L~ oD

24
25
26
27
28
29
30
31

SKN

LR I T B B
— ™ ™ ™

JoSL0 ebeq



U.S. Patent

| Done by FW \

M

FW clears D-word
offset + Byte offset

registers

Sep. 29, 2015 Sheet 12 of 15 US RE45,697 E

Initialization

Scan control and recent
block list and resolve open
update blocks

Wait for memory access ta) <
be initiated . ;

H——

Bypass
Scrambler?

Calc. Page offset,
D-Word offset and byte |
offset (Section 4.4.2).
Load SKN Registers

Yes

| Chunk of Data and Key is !
: feed infe XOR circuit

Sl e mmm

Chunk of Data is scrambled !
unscrambled {

Shitter 1s clocked to output

]
]
' incoming unscrambied
' new Key in sync with
I
-

scrambled Chunk of Data

FW sels Aulo
______________________ | Increment bit

No

Physical Page

crossing’

Yes

— - Yes

FIG. 17



U.S. Patent Sep. 29, 2015 Sheet 13 of 15 US RE45,697 E

Data In[31:01

Data_Qut[31:0]

Control Data In

Addressi4:0] » Scrambler |

RIW —>| Module
Control SELL. —>

Reset —>
Clock —>

FIG. 18



US RE45,697 L

33333939
33333333
33493333
33333333
33333393
33333333
33333333
33333333
33333333
33333933
33333333
33333333
| 3333339
33333333
33333334
33333339
43334433
33333333
33433339
33333333
33333333
33333335
33333333
43333333
3333333
33333333
33339335
34433334
33333333
33333333
394333331
33333339

9l 9lAg

Sheet 14 of 15

Sep. 29, 2015

U.S. Patent

EEEEEEEE] IEEEEEEEE] EEEEEEEE
33333333{ 33333333} 33339333
33333333| 33333333 33333333
33333393| 33333333 3933333
33333373 33333333 33333333
33333333 33333333| 33333333
13333333 33333333| 3339333
33333334| 33333333 | 3333333
33333333| 33333333 33333333
133333733 33333333| 333339
33933393| 39333333 | 33333331
33333333} 33333333 33333333
13333373 39333333 333339
33333333| 33333333 33333333
13333333} 39933333 33323333

14343434 343334333 34433333

EEEEESEER
44344434
EEREEEEE
FEREEEER
34443333
33344334
EEEEESER
EEEEEEER
EEEEEEEE
433433444
443334311
343333433
43343434
3443343
333344333
EEEEEEEE
43433334
343343333
43333344
d433334:]
4333333
3333444
4343333
EEEEEERE
3333434
43343343:
EEEEEEEE
J433333:

REEEEREE
33335543
REEEEEEE
=EEERERE
43333744
EEEEERER
43333344
=EEEEEEE
33343333
EEEEEERE
=EEEEEES
33334547
EEEEEEERE
43343331
33333333
44343334
43343443
43333333
33344333
43334333
EEEEEERE
33443333
43333333
4444433
335493334
34343333
434543331
34413334
13333435| 34333333
J443334f 49444334

33339393] 39333393
33333333| 33333333
33333333{ 33333333
33333333| 33333333
33333333 33333333
33333333 | 33333333
33333333| 33333323
313333333| 33333333
33333333 33333333
333933333| 33333393
33333333 | 33333333
33333333| 33333333
33333333 33333333
33333333 | 33333333
33333333| 33333333
33333333 | 33333333
33333333 | 33333993
33333333} 33333333
33333333| 33333333
33333333 | 33333333
33333333 33333333
33333333} 33333333
33333333| 33333333
33333333| 33333333
33333333 33333333
33333333 | 33333333
33333333 33333331
33333333| 33333333
33333333 33333333
33333333 33333333
33333333| 33333333
33333333| 33333333

44433434
334334333
34444333
443433
34333434
543333333
4433333
34443433
31333433
33344333
33334347
33434443
13133444
33433434
34333335
43434334
EEEEEREE
33334333
EEEEEEEE
344434933
33334433
333433434
EEEEEEEE
3333333
EEEEREEE
34433333
43333433
34341343
EEEEEERE!
43334444
EEREEEER
334333333

34344343 494d49d3d
33333333 43395334
11433444} 99dd8d44d
44333444 98494138
433333431 d998833d
33444333 998HE33E
1d1344-44} ggddydddd
14333335 dgddd43d
14333443 454908439
14993434 | 2499983449
44443934 995944348
14343344 98848344
14444443 | db8dd44d
43443993 999949333
33343433 | 9958H33E
4313443444 9ddadddd
43333344 9894443
43333334 48800334
34343334 | 99999339
34333344 | 99839349
343333331 d83dg3 3
13343344 999443349
44443334 | 998393 4Y
4343344331 89948314
14443933 949494989339
43333344 | 9499949339
13493334 | 99884344
11343434 949899339
34333433 | 95998334
44443443 | 39944434

185dd349dd
398648489
J844d5dd
1d48d46d
389d3ad8
3H8Hd84d
-ddHddE8d
mparsisteistshs
JaHgHYHY
19840444
41daddEdd
JHddd5HY
18dd8ddd
3498895494
1889495434
1g498d994d
1&84d8ad
J0bbdEEy
33ddda8d
J4tddedd
3£88d88d
188ddadd
3daddgdd
shataiaicigis]s
18854844
14959ddad
1d88dE4Y
3589d4884
15dddaad
J4ddddEdy

dddd3044
ddadv30a
dHudvd04
d88dv3va
gadaydyo
dHddv404d
Headvdod
ddg9dvavv
ddadvavv
dHddv307
ddddvdod
gaddvYIvo
dyddvdvo
d8adv30d
dH3advd0d
da8gvivy
ddddavdvv
{8ddv303
ddgdvdO
gdgdy3vo
d8ddvayO
d8ddvy]0d
ddddvdod
qa88vIvvY
gdadvavv
ddadvyd0
gdddvdd4
gaddvy3avo
adgadvdyvO
d98dv304d

J3844Hd4| 9ddd98dd
35495538 | 99559549
419d84dd{ 998944584
13998444 | 9985dddd
33443844 9ddddtua
F3H8H9d3 | d8853d984
331994498 | dd44ddEd
J39d39dd| 99899334
J18HHddd | HdHddydd
d3888ddd | 99989849
43999442 | 49484349
d1ddb84dd| dgEHdEdd
d-dddddd | dddddddd
d3998ddd| 29d94d83d
H39d4884 | 9898934854
vodd8dad| d4d9ddaad
Y¥Odd8ddd| 99a4ddad
J88dd8d4 | 98834598
39dgdddd | dddddddd
389494930 | 9ddddaddd
15908988dd| 989gdddtd
199848dd| dg8d3add
30d3499d9| 939998ad
Jdddadad| dgdad4dad
28d935ddd| 49849444
d94ddddd| 99994544
HYdd9dddd | 99959849
guddadda| 4890dddd
ddd39ddd| 99949994
dd9gddddd| 99449984dd
43445333 | 49894344 3888864 | 99ddva04d] 899998844 | 89884994 | 89543844
434443344 9dad941d| 38889584 d949d9084 | 449dd88ad | d389dd8dd | §98933dd

garg] govgl  vamd]  eaMd]  caMal Lang

ddddaadd
8494949884
Hagdd4td
HdGdH4add
ddaddgnd
dd8d4aad
daddd8td
dd3addgdd
BHEHYdEd
ddEd9agdd
d48949d49884d
88d9du8d
gHeddddd
dd849dEdd
HEddd88d
dgdddadd
d933dd9d
HH85044d
Hda8dddd
ddaddadd
8d98ad88d
§d8gdddd
dd9dddddd
ddddysay
gddgdddd
999ad3dd
H49d99dd
gd8d4d98d
939d9dddd
Hdddd8dd

33333333 33333393 | 33339933
33333333} 33933333 33333333
33333333 MMNMMMMm_mwmmmmmm

43333443 | 33343333} 34443333
43393333 33433434 { 33343534
334343333 394334333 33333333
434339333 | 43334394} 23433337
339344433 34433334 44433443
J3333343] 33433333 33443433
33334434} 33344333 | 34443433
33333333 33933333} 33433333
13433333 333333343 33333333
33393333 39434333 | 3333533
FEEEEERE mmmmmmmmfmmmmmmmm
334334445 33943334 | 334333334 43333334} 23333434
43343445 33233334 | 43433343 933443333 33333335

Gravc| rra/a] sieda| ol e

(aul| pJom Yyaoes Jo saljAg 9| 1s41) buimoys)
_lep 44X buneadal pajquieiosun jo salejs |92 Alowsw Ase|dwax]

15
3l
PL
J}
i
el
o
8l
L}
oL
Gl
L
el
¢l
2
Ol
10
90
PO
20
QU
e
60
80
L0
90
G0
¥0
€0
lt
10
00



US RE45,697 L

Sheet 15 of 15

Sep. 29, 2015

U.S. Patent

1 32008VVI 4 | SV 08V 300VVO 34 | dOVVOOVY | D28vW3ad8 | vwoOdvy3

0¢ Iid

Vw0390V | Davvanog] voaaovva [Dovvadov| voagovwo | avva noav
gOVYOOVY | 300avvoa | Ovvooavy 1 300vvo3g | ovwoowva | Doavvoad
NOWYIDOY I Ywo3aovY | 08vv3N08 | Y380y D { OvWID0oVY 1Y O3E0VYD
3DOVYD3A | 90VV IOV { 3008VYOA | DWVD08VY | D0VYDIED | DY VOOV
YOIEIVYD | DOWWI IOV | YWOIAIWY | D8YYI008 | DIFOVYID | OYVAIIYY
IVY20avY | 300vvo3d] aovwdovY | 40083 | vyaodyy3a | 00wyD3a0
NEYYID0A | Y390y D DovvaADOV | Y0300V | SvvanDgy | 93800 D
3228VV0T | DV 008vY | 300vY034 [ 8oV AV | Doavwoad | vyoodvv3
YWwOo3govy | 29vva00g | vOIaoVYO [ DOVVIOV dummuéu_%uom{
GOVYDOVY | 3D08vv03 | Dvv00avY [ 300vv03a | OV 20vY3 | D0avyHad
WAV YWDIGIVY | D8WI009 [ Y389 | oI DAY [ YO3g0veD
300vv038|90vVoovY | 3009vY03 | OwY 0EVY | 00vY03dD | Ovvo vy
¥D3IA0VYD| DOVYI00V| YWOIB0WY | 08YV3008 | 0360VWDD | OvA00NY
WYIDEVY | IDOVYVIIS| SOV [T00avv03a tyvooawya [Dovyo3as
Navva0g| voadovv ol Dovvaoov] vwoaaovy | avyanoav [o3gowos
3D08VVO3 | DVYO0EVY| A00vvD38 | 90VVYOIvY | D0awWwoIg | vwoogvy3
YWO3IgowY [ 08vv300g| YOIgovva [ DovyInov| vo3gowy D | avvInoay
gOVYOOVY | 302avyDa | Ovvoodvy | 300vv03d | DV DOVYa | D0gvyDad
20vva00v | wwo3govy | 08w3008| vo380wW D | DYW3D0VY [ YO 3dovYD
I9OWYYIg 1 8oVV WY | 3008wvo3 [ oy 20avy | Dovyaaag s | ovvd vy
¥2380VYD | 20¥VI D0V YWOIFIVY | D9vvaD08 | D3EIVYID | DVYIOIVY
35049v3 | 30av303g| g83380vy | 3888330V | 33808Y33 | 08v303ad

JAGIVY O | YV IIVV | DJFOVVY I W3 208V |83V 30303
YY00dvYVYa | D0VV O340 | WWOOVYVID | DdvvO3Id0 | OvvIOVIY
Gyy3208V 1 03d0¥YO0 | YA OWWO | D180YVY 30| 00dvvavD
JEVVIIG | Vv OOHYYT | OWVOIGIV{ VY IOVWW1 O | V30 ov4av
YO3gdovWWI | Gvv3 008V | 380V I8 | VWA DWW O | VaIVOVOV
AVYYIWYE | D0dWvOdd | VI odvYvda ] vV IAHOV | DOVYIY Y
DVVIDDVWY | VO3V I | VY3 D08YV | 3d0vVI0H| D08V VvYYY
J0YYI380| IVWOIVVI | 0avvI380 | VOO avv3d | VOIvEE DD
IOV I VY2 VY Ommuéou_%oo% g4y00204
YY20avYd [ DOV D430 | YWOOVVYI0 | DdvyD3d0 | OvviOvay
gyv3008V [ D38IWWID | YY320WW I [ Od8IVVIO | 20dvvHvD
22GVV3ad | YWOOGVYd | OVY 0380V | YWIOVYW3 0| V300vdav
VI3HOVVD | Gvv3D0dV | 5OV VI OOWW I | VEIVOVOV
DVYIIVYI | D08vydIg| voodvyvad | OvvI3aov | D0vWOv3V

SYYI0OWY | voagovyo | vwanoawy | 3g0vvonal noavvryy
30¥v0380| DvvoovY3a | 08vvo3gn | vooawwao | voovagoo
3399vv09 | wva 0wy [ 9389wy o | wwanoavy |gavo o003
wynoavva | owvoaan| veoowan] oavvoaas | ovvaovav
avv300aY | 9380w wanowwo | oagowwoo | ooavvaro
yaavea3a) wooawya | ovvoaeov| vwoawa o vanovaay
vo3aowwo | avwanoav | 3gowooal vwanowo | vaavovoy
a33govv3 | agga3ove | 3gogvase| avanasas | seavovay

VIEWVIIV | dIVOVIADV
Q2IVdavaI | DyvId3d0
33VIOVY | DEvVVO33
VWv42208v _ 2vd0oJ3d
YagvyYd20 [ VOOVl | VIYVOOVd
943ov83Y | ¥v3043dY | vyvdavoo
QH3YIIYY | DavvOaY | dOd0Yv3 0
VIVVYIOdY | 320VVHEd | 303 208vV
VOdWW IV | ddv0d¥ad { E3vv300V
D20VdAVD | VY0333 0| IvOvaIVD
JFIVOIVYS | D8vVWH4043 | d8VOOVYD
YYY300dY | JOVdII3d[ 22¥008VY
VOHYVIOD | AY208VId | 2J9YvI0VE
0302vE3Y | YW30333V | OvvEdVOD

0930V | 2avvI0aY | 3000vY3 0
vOVYD0gY | 300vvaad | 83300dvy

VIuvW OOV | 94w 0dvdd | 30vWIO0Y
QAJVLAVI | Dvy D430 | dDAYHIVO
J3VI0VV | OdYV10d3 | J3IVOOVVD
YVV40208V | D0VE003d | VYOO dvY
VOHvYY30D | dYO0dVod | vavvoOvd

V3VVI00V
gyavadvo
AGYO0YVO
YOVOIEYY

VVOOavY 1 4

JHVVIO IV | 4

IYIIVVED | JAVVOOvd
Y3004V | 20vaavood
oO¥V3DV | IVIOVYIO
JJIVHAYI | wWdO0avY
dAVO0VY0 | 2dvva00Y
IVVO0EVVY | 300VRdvO
DHYV IOV | HIVOOWYD
J0VHIVID| WY 20avY
SYJ0VVI0 | 2avvI0vd
Yv320dvVv | D0vHavad
JEVVIDIV|IVIOVYIO
JO0VddYO | YW322dvY
g3vO VYO | VYA DOV

L cE |

YV I0Vd | EIvI0VY0
JOVHAV DO | WV 008vY
AYO0VV3D | 28V IOVE

YW40249vV | D0vddvOD

VOOV

300VHIVI | Y30 0avY
g3vo0ovYyJd| 28vv3 00V
83V008Y3 | 199V 0334

g3gavoa3 Téoﬁ.& vavE33a8

08vv3008 | YO3GovYD | D03 DDV | YwO38oVY | vva D08y | I380WWO D Jd3VOOVY | D8VYOOHY | BVOOVYHD

IYVIOOWY | VO d90VYO| VV3d008VV | 3doVvo 04| D08VVVYY OEVYIIVd | &

302dvV03 | DvY0avV| F00vv04d | BOVVIIVY | D0avwi3g | v d0dvwwd
YV 340V | 283028 VIHOVVYO | DIVWVADIV | VIFHOWWI 1 eV D04V
HOVY2OVY | 302dVWO 3| D¥VI28YY [400VVvI38] DYV IOV | D0dvvodg
AOYV420V | YOGV | OEWIDId | vOddOvWO | DVVIOOVV | VOJdIVYVO [ Y3000V | D330WWID | VWD 2vVO [ Od3OWOID | D09vvdvO
VY2 HAVVIIVY | 2008VY 4 [ DWW I08VV | DDVYI3d O [ IVWIIW I | D29VvIdH | VWIIEVYd | IVWIIHOV| WOV It v1233viav
YOJ90WW I | S0VVI V| YWI3dIW [ DHYY3 008 | 238IVVI D | DYYIOOVY | VOIGIVVD | dvv320aV | 3doW O 08| YW1 20WWI | VEIVIVIY
AVWI0dvY | J00VVO3E| d0WOIWY | 302dWWO3 | YY208VYd | D0¥WIddD | OVVIIOVYD | D0dvvDdd| VOoavvd 0| v I3d V| DOVYIVIY

DAYV IH8D | DVVI0VV | JEVVI3d0 | VI28vWdI [ VOIVdd 0
239V I DYV DV O3ETVY I3 Y3 00dv v |83V 0003

YYI0dVVa | D0WVI3d0 | WIOWWID| 08V O4dD | DVVHOV3IY

VIVYO2dY | 300VVEHa | dv430avV
YOHVY 2OV | ddvO3vdd | 9gvv3aD0Y
S99VEAYD | OV 043301 400Va3vO
33VO0VV3 | Odvv103d | 33VO0vVO
Y- 028V | 00vdI34d] DYVIawY
YOavYvYd00 | 3y 02dv0Od | 29vvOOvd
J420Yd3V | Y¥30343V | SOvdavO0

JOVEIVIO

VYO0 aW |

FVIOVYD
Y 20dVV

IYOOVYID| 08w OOVE
YW320dvY | 20vE3vol)
0EVYID OV | 3YDOVYaD
100vg3Y0| ww300awy
gAVOIVYD | D8WWw3aA DOV

ML EL

JHVVYI028 | VOIHIVV I | DOVVEIIV] WOIEIVY | 8vv3028V | D38IWI D [OVVIIIWY | VOI8IvVD | VW2 28V | 4ddvvI 28| D08VVWWWY | D43VOIVY | O8vv D08V | IvIIvVY30

JAVYOIIHO| AYVIIVVI | DGV VI8 | Voo gYvwII | VOOVEE IO | VOVYOOdY | 300VEYYD| vY300gYV

AVIIWO

oLafgdl  cLafg]  vieMgl elakg]  ziakgl  Liaka] ol edgl G ad v akd £ 3149

(oul] pJom yoea Jo sajAgq 91 1841 Buimoys)
2IEP 44X0 buneada. pajquieloas Jo sajels |19 Alowsw Alejdwax3

T
3.
Pl
o
a
e}
L
8l

L
)

Gl
bl
€l
cl
LL
i)’

a0
PO
20
G0
0
60
g
L0
90
40
4t
€0
¢0
L0
00

1M



US RE45,697 E

1

SYSTEM, METHOD AND MEMORY DEVICE
PROVIDING DATA SCRAMBLING
COMPATIBLE WITH ON-CHIP COPY
OPERATION

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough indi- 10
cates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATION(S) 15

This application claims the benefit under 35 U.S.C. §119
(e) of U.S. Provisional Application No. 61/018,096 filed on
Dec. 31, 2007 and entitled “System, Apparatus, and Method
tor Memory Device Data Scrambling Usable with On-Chip 20
Copy Operation” by Jason T. Lin, Steven S. Cheng, and Shai
Traister, which application 1s incorporated herein by refer-
ence 1n 1ts entirety.

BACKGROUND 25

The present invention relates generally to flash memory
storage systems, and more specifically to such a system 1n
which data to be written to the flash memory 1s scrambled to
help reduce certain data pattern-dependent sensitivities and 30
disturbance etfects.

A “flash file system” provides a system of data storage and
manipulation on a flash memory device that allows the device
to emulate a magnetic disk. A flash file system enables appli-
cations or operating systems to interact with a flash memory 35
device not using physical addresses but rather using logical
addresses (sometimes called virtual addresses). An interme-
diate software layer between the software application and the
physical memory system provides a mapping between logical
addresses and physical addresses. Some systems that imple- 40

ment logical-to-physical address mapping are described in
U.S. Pat. No. 5,404,485 to Ban, in U.S. Pat. No. 5,937,425 to

Ban, and 1n U.S. Pat. No. 6,591,330 to Lasser, all three of
which patents are incorporated herein by reference 1n their
entirety. 45
NAND flash memories are inherently susceptible to spe-
cific data patterns. For example, programming many cells on
the same bit line to the same data state, or many cells on the
same word line to the same data state, may cause program
disturb effects which may alter the cell charge distribution 50
and shitt one or more cells to a different data state. Such fixed
repetitive data patterns are not uncommon 1n bit patterns
frequently written to flash memories, particularly those writ-
ten to certain blocks, such as control blocks, within a flash file
system. Such control blocks are used by the file system, for 55
example, to keep track of logical-to-physical address map-
ping information, and other immformation about the various
data blocks. At times, programming even a few word lines to
specific data states may also cause such disturb effects. These
disturb effects, as well as others, are particularly problematic 60
in memory arrays storing multiple bits per cell (1.e., MBC
arrays), also known as “multiple level cell” (MLC) arrays,
and these effects can cause one or more cells to generate a
read error as a function of specific user data patterns. Certain
program disturb effects are described 1n U.S. Pat. No. 7,023, 65
739 to Chen, et al., (the *739 patent), the disclosure of which
1s incorporated herein by reference in 1ts entirety.

2

To address this 1ssue, techniques have been devised using
system level data scrambling or randomization to eliminate

the particularly problematic data patterns in the user data and
control blocks before programming into a flash device. In this
context, the act of scrambling or randomizing data refers to
breaking up the bit patterns associated with the memory cell
states along memory bit-lines and word-lines. However, such
data scrambling techmques implemented outside the NAND
memory are incompatible with the use of Flash Memory
On-Chip-Copy or Copy-Back operations, and cannot achieve
the system performance that would otherwise be attainable.
Such an on-chip-copy operates on chunks of data to autono-
mously relocate data from one physical memory location to
another physical memory location. This provides higher per-
formance and requires less power consumption than is
achievable without using on-chip copy operation, in which
data 1s read from the device and communicated off-chip to a
companion device (e.g., a tlash controller device), then re-
written ito a different physical location of the NAND
memory. However, an on-chip copy operation performed on
data that 1s scrambled based on a physical memory address
will unintentionally associate the scrambled data with a new
key/seed, and results 1n the mability to properly descramble
the data using the incorrect new key/seed to retrieve the
original mntended data.

SUMMARY

The present invention provides for data scrambling tech-
niques 1mplemented externally to a flash memory device
which can be used in concert with flash memory on-chip copy
functionality operating internally to the flash device, thus
supporting high performance copying operations. Many
modern flash memory sub-systems implement “tlash file sys-
tems”” which frequently utilize garbage collection techniques,
and can benelit greatly from such on-chip copy functionality.
In addition, the techniques may be implemented to provide,
for example, a hardware based solution which has little or no
impact on overall system performance, and which may be
implemented at very low incremental cost, to provide a cost-
elfective solution for increasing overall system reliability.

The data scrambling technique preterably uses a logical
address, such as a logical page address, rather than a physical
page address, to determine a seed scrambling key. The logical
page address 1s determined from the logical block address of
the data, and thus does not restrict the physical placement of
the scrambled data 1n memory. As a result, on-chip copy
operations may be used. Since the logical page address of the
data remains unchanged even 1f the data is relocated by an
on-chip copy operation, the same seed scrambling key may be
used to descramble the data. This seed scrambling key 1s used
to scramble the user data 1n a particular portion of the block,
but as additional data 1s written across a single word line, and
as additional data 1s written along bit lines, the scrambling key
1s deterministically varied to generally “randomize” the data
states.

The 1invention also provides for robust file system opera-
tion, 1including the capability to tolerate a power loss at any
time, and be able to re-initialize a flash memory and recon-
struct the mapping of the various blocks stored therewithin, to
properly descramble and read back data 1n order to identify
data types and data relocations due to on-chip-copy opera-
tions. All the data stored in the flash may be scrambled,
including headers and control structures. The scrambling key
information may be stored in the page headers to enable
extraction of the scrambling key 1itself, from the scrambled
data, during inmitialization. In some embodiments, different




US RE45,697 E

3

scrambling methods are used to scramble information 1n con-
trol structures to support mitialization and debug processes.

In certain embodiments, the data scrambling can be done
cifectively by hardware, firmware, or software using a sim-
plistic method involving XOR logic and a deterministic num-
ber of Scrambling Keys by bitwise rotating a predetermined
initial Scrambling Key Seed, thereby creating a sequence of
revolving scrambling keys, each with an assigned key num-
ber. The scrambling keys (1.e., “scrambler” keys) can be
deduced for any logical group of data with knowledge of the
first scrambling key number used in the logical group, which
may be referred to as the Starting Key Number (SKN).

SKN’s can be associated with the logical group memory
address and used for scrambling data. The SKN itself, as well
as other header (or overhead) information, can be scrambled
in the same method as user data bits. In some embodiments,
the Flash Controller Firmware (FW) or System Host Soft-
ware need only set the SKN at the beginning of each memory
transaction. Within the transaction, the scrambler may be
configured to automatically generate subsequent Scrambling
Keys as additional groups of data are written or read.

ECC encoding can be applied to the scrambled SKN bits
separately or applied together with the associated scrambled
user data bits. ECC encoded scrambled SKN bits and ECC
encoded scrambled user data bits may be then stored 1n the
Flash Memory. ECC generation/correction can be done either
before or after scrambling/descrambling. The ECC parity
bytes may or may not be scrambled, even though the header
and data portions are scrambled.

In some embodiments, the Flash Controller Firmware or
System Host Software having prior knowledge of Scrambler
Key generation mechanism and data scrambling method can:
(a) mimic the Data Scrambler operations; (b) efficiently build
a table (e.g., 32 entries) forward mapping desired scrambled
SKN’s to logical addresses (e.g., using the default seed); and
(¢) efficiently build a table with reverse mapping of logical
addresses to desired scrambled SKN’s.

During system 1initialization, an exemplary system may
perform the following to 1dentily the data types and logical
grouping locations stored 1n Flash Memory: (a) Flash Con-

troller Firmware (FW) or System Host Software generates the
forward and reverse mapping tables for the desired scrambled
SKN’s; (b) with the Hardware Scrambler disabled, the first
sector of each memory block 1s scanned to extract the first
scrambled SKN stored in that memory block (e.g., within the
first several bytes of each sector); (¢) using the extracted
scrambled SKN, the Flash Controller Firmware or System
Host Software looks up the reverse mapping table to deter-
mine the unscrambled SKN; (d) with the Hardware Scram-
bler enabled, the first sector 1s read again but descrambled
using the unscrambled SKN as the key (alternatively, the FW
may use the SKN and perform the descrambling of the header
without reading the data again); and (e) the memory block
type 1s 1dentified and stored 1n the Flash Controller RAM.
After system 1nitialization, the Flash Controller Firmware
or System Host Software may control the assignment of
physical memory locations for storing logical groups of data,
use the logical group address as the scrambling and descram-
bling key/seed, and use the forward mapping table of desired
scrambled SKN’s to store the scrambled SKN associated with
the logical group 1n the Flash Memory. The Flash Controller
Firmware or System Host Software may perform memory
read operations using the logical group addresses as the key/
seed for descrambling the user data bits. Logical sector data
may be physically relocated on the Flash Memory by on-

10

15

20

25

30

35

40

45

50

55

60

65

4

chip-copy operation(s) at any time. The controller 1s aware
when an on-chip copy 1s performed, and can re-map the data
accordingly.

In one aspect the mvention provides a method for storing
information in a non-volatile memory which, 1n an exemplary
embodiment, includes determining a starting key based upon
a seed key and a logical page address associated with a group
of data; randomizing the group of data using a deterministic
sequence of keys corresponding to the starting key; and stor-
ing the randomized group of data into a physical page of the
non-volatile memory.

In another aspect the invention provides a method for stor-
ing information in a non-volatile memory which, in an exem-
plary embodiment, includes determining a page offset num-
ber using a logical block address of a memory page;
determining a starting key based upon a seed key and the page
offset number; scrambling page data using a deterministic
sequence of scrambling keys corresponding to the starting
key; storing mto a header of a physical page of the non-
volatile memory an 1dentifier corresponding to the page offset
number; and storing the scrambled page data into the physical
page.

In another aspect the invention provides an apparatus
which, 1n an exemplary embodiment, includes a non-volatile
memory, and a memory controller configured to determine a
starting key based upon a seed key and a logical page address
associated with a group of data; randomize the group of data
using a deterministic sequence of keys corresponding to the
starting key; and store the randomized group of data into a
physical page of the non-volatile memory.

The methods of the present invention may be implemented
by software, by hardware, or by a combination of both. Such
software may be soltware executed on a host computer which
reads and writes the data (e.g., within a software device driver
supporting the storage device), or may be firmware executed
within a memory controller that interacts with the host com-
puter and controls the memory media. Such hardware may be
implemented either within the memory controller or within
the memory media, 1rrespective of whether the memory con-
troller and the memory media reside on two separate dies or
reside on a common die. All of the above configurations and
variations are within the scope of this mvention.

The foregoing summary 1s mtended to help mtroduce the
invention, and should not be viewed as limiting, as the inven-
tion 1s defined by the claims. Moreover, the inventive con-
cepts and embodiments described herein are specifically con-
templated to be used alone as well as 1n various combinations.
Accordingly, other embodiments, variations, and 1mprove-
ments not described herein are not necessarily excluded from
the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent to
those skilled 1n the art by referencing the accompanying
drawings.

FIG. 1, labeled prior art, 1s a schematic diagram of a NAND
memory array.

FIGS. 2A, 2B, and 2C are diagrams depicting various
programmed memory states 1n a single-bit-per-cell memory,
and 1n a multiple-bit-per-cell memory.

FIGS. 3A and 3B depict conceptually a scrambler block
and a descrambler block in accordance with the present
invention.

FIG. 4 1s a diagram of an exemplary sequence of 8-bit
scrambling keys.



US RE45,697 E

S

FIG. 5 1s atable depicting an exemplary sequence of 32-bit
scrambling keys.

FIG. 6 1s a diagram depicting the use of different scram-
bling keys for different words of a page, and for different
pages.

FI1G. 7 1s a diagram 1illustrating a sector boundary falling in
the middle of a scrambling key.

FIG. 8 1s a table illustrating exemplary values of several
scrambling parameters relevant to each o1 16 sectors within a
physical page.

FIG. 9 1s a diagram of another exemplary sequence of 8-bit
scrambling keys.

FIG. 10 1s another diagram 1llustrating a sector boundary
falling 1n the middle of a scrambling key.

FIG. 11 1s a table illustrating exemplary values of several
scrambling parameters relevant to each of 4 ECC pages
within a physical page.

FIG. 12 1s a table illustrating exemplary SKN values for
cach of 4 ECC pages within a physical page, and for each of
32 physical pages.

FI1G. 13 1s a diagram depicting an exemplary header format
for a single-sector ECC page.

FIG. 14 1s a diagram depicting another exemplary header
format for a 2K Byte ECC page.

FIG. 15 1s an exemplary page mapping table in accordance
with some embodiments of the present invention.

FIG. 16 1s an exemplary SKN table 1n accordance with
some embodiments of the present invention.

FI1G. 17 1s a flowchart of exemplary operation of a scram-
bler 1n accordance with some embodiments of the present
invention.

FIG. 18 1s a diagram of an exemplary scrambler block in
accordance with some embodiments of the present invention.

FIG. 19 1s a table depicting memory cell states of
unscrambled repeating OxFF data patterns.

FIG. 20 1s a table depicting memory cell states of
scrambled data corresponding to that shown in FI1G. 19, after
scrambling 1n accordance with certain embodiments of the
present invention.

The use of the same reference symbols 1n di:
ings indicates similar or identical 1tems.

terent draw-

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

Referring now to FIG. 1, a schematic diagram 1s shown
representing a portion of a typical NAND memory array 100.
The portion shown may represent a two-dimensional array
having only one plane of memory cells, or may represent one
level of three-dimensional memory array having more than
one plane of memory cells stacked on top of each other. The
exemplary NAND string 102 includes thirty-two memory cell
transistors connected 1n series, each gated by a respective one
of a plurality of thirty-two word lines 111 (individually
labeled WLO, WL1, ..., WL30, WL31). The NAND string
102 also includes a block select device 114 for coupling one
end of the NAND string to a bit line 103 1n accordance with a
block select signal BS0 conveyed on node 113, and further
includes a second block select device 116 for coupling the
other end of the NAND string to a shared bias node 101 1n
accordance with a block select signal BS1 conveyed on node
115.

Each NAND string 102, 104, 106 1s disposed within the
same block 124 within the memory array, and each 1s respec-
tively coupled to 1ts associated bit line 103, 105, 107. The
memory cells in the NAND strings (1.e., those gated by one of
the word lines) typically incorporate a tloating gate structure,

10

15

20

25

30

35

40

45

50

55

60

65

6

or may icorporate a charge storage dielectric layer between
the gate and the underlying channel, so that the threshold
voltage of the memory cell device may be altered by program-
ming and erasure. The various block select devices (e.g., 114,
116) are typically normal MOS devices (1.e., non-program-
mable), but in certain memory technologies may be fabri-
cated identically to the memory cell devices. While this
exemplary NAND array 100 shows thirty-two word lines 1n a
NAND block, other numbers of word lines per block are
possible, such as 16, 64, 88, or any other value, although a
number equal to an integral power of two 1s typically imple-
mented.

Thus, a typical NAND memory cell array may be general-
1zed as having a memory cell represented by the intersection
of each bit-line and word-line. Traditionally, each memory
cell stores one bit of information, which 1s accomplished by
supporting two states of the memory cell. One state represents
a logical “0” and the other state represents a logical “17.
Frequently, the two states may be implemented by having a
floating gate situated above the cell’s channel (the area con-
necting the source and drain elements of the cell’s transistor),
and having two valid states for the amount of charge stored
within the floating gate. Typically, one state 1s with zero
charge 1n the tloating gate and 1s the 1nitial unwritten state of
the cell after being erased (commonly defined to represent the
“1” state) and another state 1s with some amount of negative
charge 1n the floating gate (commonly defined to represent the
“0” state). Having negative charge in the gate causes the
threshold voltage of the cell’s transistor (1.e. the Voltage that
has to be applied to the transistor’s control gate 1 order to
cause the transistor to conduct) to increase. It 1s then possible
to read the stored bit by checking the threshold voltage of the
cell—it the threshold voltage 1s in the higher state then the bat
value 15 “0” and 11 the threshold voltage 1s 1in the lower state
then the bit value 1s “1”. Actually there 1s no need to accu-
rately read the cell’s threshold voltage—all that 1s needed 1s to
correctly 1dentily in which of the two states the cell 1s cur-
rently located. For that purpose 1t 1s enough to make a com-
parison against a reference voltage value that 1s in the middle
between the two states, and thus to determine 1f the cell’s
threshold voltage 1s below or above this reference value.

FIG. 2A shows graphically how this works. Specifically,
FIG. 2A shows the distribution of the threshold voltages of a
large population of cells. Because the cells 1n a flash device
are not exactly identical in their characteristics and behavior
(due, for example, to small variations in impurities concen-
trations or to defects in the silicon structure), applying the
same programming operation to all the cells does not cause all
of the cells to have exactly the same threshold voltage. (Note
that, for historical reasons, writing data to a flash memory 1s
commonly referred to as “programming’” the flash memory.)
Instead, the threshold voltage 1s distributed. Cells storing a
value of “1” typically have a negative threshold voltage, such
that most of the cells have a threshold voltage close to the
value shown by the left peak 120, with some smaller numbers
of cells having lower or higher threshold voltages. Similarly,
cells storing a value of “0” typically have a positive threshold
voltage, such that most of the cells have a threshold voltage
close to the value shown by the night peak 122, with some
smaller numbers of cells having lower or higher threshold
voltages.

It 1s increasingly common for memory cells to store more
than 1 bit of information, using a techmque conventionally
called “Multi Level Cells” or MLC for short. However, this
nomenclature 1s misleading, because the previous type of
flash cells also has more than one level: they have two levels,
as described above. Theretore, the two kinds of flash cells are




US RE45,697 E

7

referred to herein as “Single Bit Cells” (SBC) and “Multi-Bit
Cells” (MBC). The improvement brought by the MBC flash 1s
the storing of two (or more) bits 1n each cell. In order to
simplily the explanations, the two-bit case 1s emphasized
herein. It should however be understood the present invention
1s equally applicable to flash memory devices that support any
number of bits per cell. In order for a single memory cell to
store two bits of information, the memory cell must be able to
be programmed in one of four different states. As the cell’s
“state” 1s represented by 1ts threshold voltage, 1t 1s clear an
MBC cell should support four different valid ranges for 1ts
threshold voltage. FIG. 2B shows an exemplary threshold
voltage distribution for a typical MBC cell. As expected, FIG.
2B has four peaks 130, 132, 134, 136, cach corresponding to
one state. As for the SBC case, each state 1s actually a range
and not a single number. When reading the cell’s contents, all
that must be guaranteed 1s that the range that the cell’s thresh-
old voltage falls within 1s correctly 1dentified. An example of
an MBC flash device 1s described 1in U.S. Pat. No. 5,434,825
to Harari, the disclosure of which 1s incorporated herein by
reference 1n 1ts entirety.

When encoding two bits 1n an MBC cell by the four states,
it 1s common to have the left-most state, peak 130, (typically
having a negative threshold voltage) represent the case of
both bits having a value of “1”. In the discussion below, the
following notation 1s used—the two bits of a cell are called the
“lower bit” and the “upper bit”. An explicit value of the bits 1s
written 1n the form [“upper bit” “lower bit”’], with the lower
bit value on the right. So the case of the lower bit being “0”
and the upper bit being “1” 1s written as “10”. It should be
understood that the selection of this terminology and notation
1s arbitrary, and other names and encodings are possible.
Using this notation, the left-most state represents the case of
“11”. The other three states are typically assigned by the
tollowing order from left to right—*107, “00”, “01”. An
example of MBC NAND flash device using such encoding is
described 1n U.S. Pat. No. 6,522,580 to Chen, the disclosure
of which 1s incorporated herein by reference 1n 1ts entirety.
See 1n particular FIG. 8 of the Chen patent. The four such
states may be referred to simply as E, A, B, and C. It should be
noted though that there 1s nothing limiting about this assign-
ment of the states, and that any other ordering can be used.
When reading an MBC cell’s content, the range that the cell’s
threshold voltage falls within must be identified correctly; but
in this case this cannot be achieved by comparing to one
reference voltage, and several comparisons may be necessary.

Another state assignment 1s depicted 1 FIG. 2C, which
may be referred to as LM Mode. In this mode, there are four
peaks 140, 142, 144, 146 (1n order from left to right) corre-
sponding respectively to memory states “117, 017, <007,
“10”. These four states may again be referred to simply as E,
A, B, and C. The lower page 1s typically programmed first,
and 11 a “0” 1s to be programmed, results 1n an intermediate
LM state, labeled as peak 148. When the upper page 1s to be
programmed, 1f the upper bit 1s a “0”, either the E state 140 1s
programmed to the A state 142, or the LM state 148 1s pro-
grammed to the B state 144. I the upper bit1s a “1”, then the
LM state 148 1s programmed to the C state 146.

This LM Mode provides several advantages over the Con-
ventional mode. First, there may be less programming stress
since the programming time 1n the LM mode may be less than
in the conventional mode (e.g., programming a memory cell
in the conventional mode from the E state 130 to the C state
136 requires a long time to shiit the threshold voltage of the
memory cell, and stresses neighboring cells the entire time,
whereas each of the threshold shifts in the LM mode are
smaller 1n magmtude), and therefore less program disturb,

10

15

20

25

30

35

40

45

50

55

60

65

8

and greater reliability. In addition, 1f using only the lower
page, the separation between the E state 140 and the interme-
diate LM state 148 1s larger than the separation between the E
state 130 and A state 132 in the conventional mode, thereby
resulting 1n greater signal margins 1in the memory cell. Lastly,
the width of peak 148 can be wider than the width of peak 132
in the conventional mode, which allows lower page program-
ming to occur more quickly since the resulting final threshold
value need not be controlled as exactingly as 1n the conven-
tional mode.

MBC devices provide a great advantage of cost—using a
similarly sized cell an MBC device stores two bits rather than
one. However, there may also some drawbacks to using MBC
flash—the average read and write times of MBC memories
are longer than of SBC memories, resulting in lower pertor-
mance. Also, the reliability of MBC 1s lower than SBC. This
can casily be understood—the differences between the
threshold voltage ranges in MBC are much smaller than in
SBC. Thus, a disturbance in the threshold voltage (e.g. leak-
ing of the stored charge causing a threshold voltage drift,
interference from operations on neighboring cells, etc.) that
may have gone unnoticed 1n SBC because of the large gap
between the two states, might cause an MBC cell to move
from one state to another, resulting 1n an erroneous bit. The
end result 1s a lower quality specification of MBC cells 1n
terms of data retention time or the endurance of the device to
many write/erase cycles. Thus there may be advantages to
using both MBC cells and SBC cells, depending on the appli-
cation’s requirements.

While the above explanations deal with floating-gate flash
memory cells, there are other types of flash memory technolo-
gies. For example, 1n the NROM flash memory technology
there 1s no conductive floating gate but an insulating layer
trapping the electric charge. The present invention 1s equally
applicable for all flash memory types, even though the expla-
nations are given in the context of tloating-gate technology.
Program Disturb

There are several sources of errors in flash memory
devices. One specific source of error 1s typically called “Pro-
gram Disturb” or “PD” for short. The PD effect causes cells
that are not intended to be written, to unintentionally move
from their mitial left-most state to some other state. (The
explanations herein assume the common practice, also used
in FIGS. 2A, 2B, and 2C, of drawing the threshold voltage
axis such that its left direction represents lower values. This 1s
an arbitrary practice and should not be construed to limait the
scope of the invention 1n any way). Referring to the two-bit-
per-cell example of FI1G. 2C, cells that are in the leftmost state
corresponding to bit values of “11” (or 1n other words, to the
cell’s erased state) and which are supposed to remain in such
state, are found to be in the next-to-leftmost state of “10”,
resulting in one bit out of the two bits stored 1n the cell to be
incorrect. In some cases, especially 1n cells storing more than
two bits per cell and having more than four states, PD eflfects
might turn out not only as a move from the leftmost state to its
immediately adjacent state, but also as a move from the left-
most state to more distant states, and also as a move from a
state that 1s not the leftmost state to another state to its right
(1.e. having a higher threshold voltage). However, the case
described first above of moving from the leftmost state to 1ts
immediately adjacent neighboring state 1s the most common,
and will be used herein for all examples and explanations
without limiting the generality of the methods of the present
invention.

The reason for the PD eflect 1s easy to understand when
reviewing the voltages applied to the cells of a NAND flash
device when programming a page. When programming a




US RE45,697 E

9

page of cells, a relatively high voltage 1s applied to the word
line connected to the control gates of the cells of the page.
What decides whether a certain cell threshold voltage is
increased as a result of this control gate voltage 1s the voltage
applied to the bit line connected to that cell. Cells that are not 5
to be written with data have their bit line connected to a
relatively high voltage level that minimizes the voltage dii-
terence across the cell. Cells that are to be written have their
bit line connected to low voltage, causing a large voltage
difference across the cell, and resulting 1n the cell’s threshold 10
voltage getting increased, thus moving the cell to the right on
the voltage axis of FIG. 2C and causing the cell’s state to
change.

However, even though cells that are not meant to be written
have a lower voltage difference across them than cells that are 15
meant to be written, they still have some voltage difference
them. To reduce the voltage across these non-programmed
cells even more, their channels may be “boosted” to a voltage
closer 1n magnitude to the programming voltage applied to
the selected word line, and thereby reduce the voltage differ- 20
ence across such memory cell devices. This 1s done by biasing
other non-selected word lines 1n the memory block to an
intermediate voltage closer to the “relatively high” bit line
voltage corresponding to the cells that are not meant to be
written. This biases the channel of these cells to a higher 25
voltage, which 1s boosted to an even higher voltage when the
selected word line 1s pulsed to a high programming voltage.
However, since the charge trapped in the programmed cells
along the selected word line partially negates the voltage
applied to those non-selected word lines, and the overall 30
boosting depends on the data (1.e., memory state) pro-
grammed to previous cells along the same bit line. For
example, cells programmed to the “C” state (1.e., maximum
charge stored 1n the memory cell) have the highest threshold
voltage of such memory cell devices. If other cells along the 35
bit line were previously programmed to the “C” state, this
reduces the boosted voltage that 1s achieved, thus increasing,
the voltage across the memory device that 1s not to be written,
and which causes unintentional programming.

In addition, 11 the page to be written has some cells that are 40
written to high threshold voltages (for example, to the right-
most state), then the voltage difference across non-pro-
grammed cells gets higher. This 1s because all control gates of
all cells of the page get the same voltage applied to them, and
the higher the threshold voltage to be reached, the higher 1s 45
that voltage. Therefore the need to apply higher control gate
(1.e. word line) voltage to some cells, results 1n higher voltage
difference at the non-programmed cells. Even though the
cells are designed with the goal of not being effected by such
anticipated voltage difference, 1n actual NAND flash devices 50
such voltage differences stress the cells and might result 1n
some of them changing their state even though this was nei-
ther intended nor desired.

To summarize the above explanation, PD 1s an effect in
which when programming a page of cells, some cells that are 55
intended to remain 1n their present memory state end up 1n
another state, resulting 1n bit errors when reading those cells.
Unfortunately, typical real-life user data 1s not random. Mea-
surements on real-life user files show that the various possible
states of the cells do not have equal probability to occur. As 60
the leftmost state of the cells 1s the default value of cells not
being written to, this state 1s the most frequent. This 1s easy to
understand—a section of memory not mnitialized or not used
within a file, very often corresponds to cells 1n the erased
state. 65

As a result, in real-life applications the problem of PD
errors 1s more severe than what 1s expected based on random

10

data patterns statistical calculations. Relatively many cells
will be 1n the erased state that 1s the most vulnerable state to
PD errors, and therefore more PD errors than are predicted by
random data distribution models will actually occur. The
present invention deals with reducing the number of errors
due to PD effects by manipulating the user data and random-
1zing the actual sequences of voltage levels or states pro-
grammed 1nto the flash.

NAND Flash Concepts Introduction

To better understand the remaining description, several
concepts and structures of an exemplary NAND flash
memory device and tlash file system are now introduced.

A block 1s the smallest chunk of a NAND flash memory
that can be erased as a single unit. In reference to FIG. 1, the
block includes the memory cells associated with the word
lines selectable by a pair of block select transistors (1.e., the
word lines between the corresponding block select lines), and
the bit lines whose memory cells are coupled to these same
physical word lines. A physical page 1s the smallest chunk of
a NAND tlash memory that can be written (1.e., programmed)
as a single unit. In reference to FIG. 1, a physical page may
include all memory cells along a single word line, and more
than one physical page may correspond to the memory cells
of a single word line. For example, 1n an MBC memory, a
single word line may include a lower page and an upper page,
and may further include lower and upper pages corresponding
to even bit lines, and lower and upper pages corresponding to
odd bit lines, for a total of four physical pages for each
physical word line. A meta-page 1s one or more physical
pages that are linked together to form a larger page. All
physical pages within the meta-page are read/written 1n par-
allel to achieve higher performance.

An ECC page includes one or more sectors protected by a
single cluster of ECC redundancy bytes. For example, 1n a
single-sector ECC page, each sector 1s protected by 1ts own
ECC redundancy bytes, whereas 1n an ECC page having four
512-byte sectors, each 2KB of data information 1s protected
by a single cluster of ECC redundancy bytes. Each ECC page
may include a header of several bytes (e.g., 2, 6, 14, or some
other number of bytes), 1n addition to the data.

The logical address space (e.g., of the host) 1s divided 1nto
equal sized logical groups of sectors. Each logical group
contains exactly the number of sectors that will {it 1n a meta-
block. A meta-block 1s a physical group of sectors that 1s
erasable as a unmit, and can be used to store a logical group of
data. Two sector types are both stored 1n meta-blocks: data
sectors for storing host data, and control sectors for storing
firmware data. Control sectors are typically not accessed by
the host. Ata given time, a given meta-page typically contains
only data or control sectors (e.g., except for scratch pad
blocks, which may contain both types).

A logical to physical address translation 1s performed to
relate a host’s logical address to a corresponding physical
address 1n flash memory. The lowest logical sector address
(1.e., LBA) of the logical group does not need to be the first
sector ol the meta-block to which it 1s mapped. In other
words, there may be an offset between the lowest address of
a logical group and the lowest address of the meta-block to
which 1t 1s mapped. A page tag 1s used to identily any oifset,
such as identifying the starting logical sector address of the
data stored 1n the first physical sector of the meta-block.

The memory management system allows for update of a
logical group of data by allocating a meta-block dedicated to
recording the update data of the logical group. When the host
starts to write data 1 a logical group, an update block 1s
opened. The update meta-block records update data in the
order received and has no restriction on whether the recording




US RE45,697 E

11

1s 1n the correct logical order as originally stored (sequential)
or not (non-sequential). Initially, such an update block 1is
opened as a sequential update block, but if any of the writes
are non-sequential, the block 1s converted to a non-sequential
(1.e., “chaotic”) update block. Eventually the update meta-
block 1s closed to further recording. One of several processes
will take place, but will ultimately end up with a fully filled
meta-block 1n the correct order which replaces the original
meta-block. In the chaotic case, directory data 1s maintained
in the non-volatile memory 1n a manner that 1s conducive to
frequent updates.

Data of a complete logical group of sectors 1s preferably
stored 1n logically sequential order 1n a single meta-block. In
this way, the index to the stored logical sectors 1s predefined.
When the meta-block has in store all the sectors of a given
logical group 1n a predefined order it 1s said to be “intact.” As
for an update block, when it eventually fills up with update
data in logically sequential order, then the update block will
become an updated intact meta-block that can readily replace
the original meta-block. On the other hand, 11 the update block
f1lls up with update data in a logically different order from that
of the 1ntact block, the update block 1s a non-sequential (i.e.,
“chaotic”) update block and the out-of-order segments must
be further processed so that eventually the update data of the
logical group 1s stored 1n the same order as that of the intact
block. In the preferred case, 1t 1s 1n logically sequential order
in a single meta-block. The further processing involves con-
solidating the updated sectors in the update block with
unchanged sectors 1n the original block into yet another
update meta-block. The consolidated update block will then
be 1n logically sequential order and can be used to replace the
original block. Under some predetermined condition, the
consolidation process 1s preceded by one or more compaction
processes. The compaction process simply re-records the sec-
tors of the chaotic update block into a replacing chaotic
update block while eliminating any duplicate logical sector
that has been rendered obsolete by a subsequent update of the
same logical sector.

Mappings between logical groups and physical groups
(meta-blocks) are stored 1n a set of tables and lists distributed
among the non-volatile flash memory and RAM within a flash
controller. An address table 1s maintained 1n flash memory,
containing a meta-block address for every logical group 1n the
memory system. In addition, logical to physical address
records for recently written sectors are temporarily held in
RAM. These volatile records can be reconstructed from block
lists and data sector headers 1n flash memory when the system
1s in1tialized after power-up. The hierarchy of address records
for logical groups includes the open update block list, the
closed update block list in RAM and the group address table
(GAT) maintained in flash memory.

An open update block listis a list in controller RAM of data
update blocks which are currently open for writing updated
host sector data. The entry for a block 1s moved to the closed
update block list when the block is closed. The closed update
block list 1s a list in controller RAM of data update blocks
which have been closed. A subset of the entries in the list 1s
moved to a sector 1n the Group Address Table during a control
write operation.

The Group Address Table (GAT) 1s a list of meta-block
addresses for all logical groups of host data 1n the memory
system. The GAT contains one entry for each logical group,
ordered sequentially according to logical address. The nth
entry 1n the GAT contains the meta-block address for the
logical group with address “n.” It 1s preferably a table 1n flash
memory, comprising a set of sectors (referred to as GAT
sectors) with entries defining meta-block addresses for every

10

15

20

25

30

35

40

45

50

55

60

65

12

logical group i the memory system. The GAT sectors are
located 1n one or more dedicated control blocks (referred to as
GAT blocks) 1n flash memory.

Such flash file system concepts are more fully described in
U.S. Pat. No. 7,139,864 to Bennett, et al., the disclosure of
which 1s incorporated herein by reference in 1ts entirety.
Scrambling

From a logical point of view, the data stored in the memory
cell array can be represented as a two-dimensional (2D) bat
map with the bit-lines on one axis and the word-lines on the
other. With this in mind, effective data pattern scrambling
fundamentally accomplishes two things: (1) manipulate data
bits appropriately to alter the programmed pattern of memory
cell states; and (2) mimimize the alignment of memory cells
programmed to the same states from word-line to word-line,
and also from bit-line to bit-line.

FIGS. 3A and 3B depict conceptual block diagrams for an
exemplary Data Pattern Scrambler 150 and Descrambler 170,
respectively, also referred to herein simply as a Scrambler.
Such a Scrambler 1s based on a simple encryption method
using exclusive-OR (XOR) logic and a known key. The
simple XOR logic provides for scrambling data using the key,
and then descrambling to get the original data back using the
same key. In FIG. 3A, unscrambled data from a host 1s con-
veyed on bus 152 to an XOR block 156. In addition, a scram-
bling key 1s conveyed on bus 154 to the XOR block 156,
which then performs a bit-wise XOR operation to generate
the scrambled data conveyed on bus 158. The key generator
168 recerves a clock signal 160, a seed key on bus 162, and a
starting key number SKN on bus 164 (explained below), from
which it generates the scrambling key on bus 154. In F1G. 3B,

scrambled data from memory 1s conveyed on bus 172 to an
XOR block 176. The scrambling key 1s conveyed on bus 174

to the XOR block 176, which then performs a bit-wise XOR
operation to generate the unscrambled data conveyed on bus
178. As belore, the key generator 188 receives a clock signal
180, aseed key on bus 182, and a starting key number SKN on
bus 184, from which 1t generates the descrambling key on bus
174. Even though shown as separate blocks, the XOR block
and Key generator block may be shared and used for both
scrambling and descrambling, with appropriate steering of
the various input and output busses. Bit-wise XOR operation
between Host data and Scrambler Keys enables simple
descrambling with the known Seed and Key number used to
scramble.

Consequently, the core of the Scrambler 150 and Descram-
bler 170 essentially becomes the generations of the Keys.
Instead of regarding Keys as numbers, such keys may be
viewed as strings of 1°s and 0’s. Controlling the bit ordering
and the number of 1’s and O0’s 1n the strings 1s one of the
underlying principles to generating suitable Scrambling
Keys.

A set of bit strings can be easily generated by rotating an
initial bit string, refer to as the Seed, one bit at a time until the
pattern of bits starts repeating. This can be accomplished by
employing a fixed length shift register to create a sequence of
rotating Keys with the Key values being controlled by the
initial Seed value. For example, an 8-bit shift register can
produce up to 8 unique Keys. An exemplary set of rotating
8-bitkeys (left direction) are shown 1n FIG. 4. In this example,
Key0 1s followed by Key1, which 1s followed by Key2, etc. Of
course, an initial bit string alternatively could be rotated to the
right to generate a sequence of rotating keys. In some embodi-
ments, a serial shifter may be used, while 1n other embodi-
ments other shifters, such as a barrel shifter, may be used.

Referring now to F1G. 5, an exemplary set of rotating 32-bit
keys are shown, which are rotated to the left to produce 32




US RE45,697 E

13

distinct scrambling keys. The 1nitial key, Key0, takes on the
value of the seed key, which 1s 0x695334C6. Other seed keys

are contemplated, and may be empirically determined. The
seed key preferably provides a good amount of “randomness”

of 1ts bit pattern, and also preferably balances the number of 5

1’s and O0’s 1n the key. Each successive key 1s generated by a
single-bit left rotation of the preceding key. For example,
Key1 1s generated by left-shifting Key0 by one bit position.
The 32 different key are also numbered, as shown 1n the table,
and a given key number represents the seed key rotated by a
number of bits equal to the key number. For example, Key21
represents the seed key, Key0, rotated by 21 bits to the lett.
This key may be generated by single-bit rotating the seed key
21 times (e.g., once per clock), or may be generated in a single
clock cycle using a barrel shifter, or possible by other tech-
niques.

Thus, 1n certain embodiments, the Scrambler Key may be
generated from an mitial Seed Key which may be rotated one
bit at a time to create successive Scrambler Keys. The Seed
preferably 1s a minimum of 32 bits long (although any other
length may also be used), and preferably has a predetermined
hardware default value, which firmware (FW) may change
during mnitialization (as further described below). Every 32
bits of data are XOR’ed with a Scrambler Key, aiter which the
next Key 1s automatically generated (e.g., by left-rotating the
current Key to create the next Key) to be used with the next 32
bits of data. Only the Seed, which 1s the mitial Key, needs to
be set by the FW because subsequent Keys are automatically

generated for each new cycle (e.g., by toggling the CLK
signal shown in FIGS. 3A and 3B).

The Keys are logically XOR’ed with chunks of data (e.g.,
32 bits of data), thus the number of 1’s and 0’s in the Keys
causes data bits to toggle, which directly translates to memory
cell states being scrambled across the word-lines. After 128
bytes (32 Keys™32 bits/8 bits/byte) from the beginning of the
memory page, the key number will wrap around and the
scrambling pattern will repeat 1tself. This 1s visually depicted
in FI1G. 6, which shows several memory pages 208, 216, 224,
etc. of a memory block 200. The first 32-bit word (labeled
202) of the first memory page 208 1s scrambled using Key0).
As additional words 1n the page 208 are written, the key
number 1s mncremented as shown, so that the thirty-second
word (labeled 204) 1s scrambled using Key31. The next word
written (labeled 206) 1s scrambled using Key0, as the 32-keys
are reused for each subsequent group o1 32 words 1n the page.
Since the purpose of the Scrambler 1s to avoid fixed patterns
rather than to encrypt the data, re-using the keys after 128
bytes 1s sufficient “randomness” to break up memory cell
states across a word line (1.e., from bit line to bit line). How-
ever, other randomization techniques may be employed, as
noted below, that may be even more “random.”

To break up memory cell states going down the bit-lines,
cach page starts using a different key. The first 32-bit word
(labeled 210) of the next memory page 216 1s scrambled using
Keyl. As additional words 1n the page 216 are written (or
read), the key number 1s incremented, as before, so that the
thirty-first word (labeled 212) 1s scrambled using Key31, and
the thirty-second word (labeled 214) 1s scrambled using
Key0. The subsequent word 215 scrambled using Key 1 since,
as before, the 32 different keys are reused for each subsequent
group of 32 words 1n the page.

The 1dentification of the first key to be used for each page
may be provided by a Starting Key Number (SKN), which
acts as an mdex or offset from a fixed reference point (i.e.,
Key0 or the Seed). The index 1s changed on every logical page
transition to create a staggered bit pattern produced from the
bit strings of the rotating Keys. Such a logical page address

10

15

20

25

30

35

40

45

50

55

60

65

14

transition occurs when transitioning from one word line to the
next word line, and may also occur within a single word line
(e.g., n an MLC cell having an upper page and a lower page
stored 1n the memory cells of a given word line, and also if a
word line has more memory cells than the number of bits 1n a
page). The ability to oflset the starting Key results 1n a bit-
map-like pattern of walking 0’s and 1°s that when XOR’ed
with the data, produces a striping effect across the memory
cell array. Thus, the Scrambler Keys serve the purpose of
toggling bits. The rotation of the Keys serves to shift the bit
patterns across the word lines (and across difierent pages).
The Starting Key Number serves the purpose of shifting the
bit patterns going down the bit-lines, while setting the correct
Key according to the appropriate page.

To help determine which Key should be used for a given
byte within a page (1.e., along a word line), we introduce a
D-Word Offset Number, which counts from O to 31, starting
with the first word of a page, then repeats for subsequent
groups o1 32 words. In other words, the D-Word Offset Num-
ber counts from 0to 31 over and over, and indicates which key
to use, relative to the first key 1 the page (which may be Key0,
as 1 page 208, or another initial key, as shown 1n the other
pages 216, 224, etc.) This D-Word Ofiset Number 1s derived
from the Column Offset of the first sector to be accessed
within a physical page, and may be calculated by the follow-
ing formula:

/ 3

Column_ Start
D —word offset = round down|mod| .0

Key Length ( =4)
. No. of keys ( =32)

Column_Start 1s the first data byte, including header and data
bytes (but excluding ECC bytes unless such ECC bytes are
also scrambled) in the physical page from which we start
reading or to which we start writing. It 1s calculated by the
sum of the header length (e.g., 6 bytes, 14 bytes, or other
suitable value)+data field length (e.g., 512 bytes, 2048 bytes,
or other suitable value) of all the previous sectors (or, for
some embodiments, ECC pages) in the physical page. The
Key_Length 1s the length, 1n bytes, of each Scrambling Key.
The “mod” function (1.e., “modulo™ function) returns the
remainder of the first argument divided by the second argu-
ment, while the “round_down” function returns the first argu-
ment rounded to the number of digits indicated by the second
argument. Since here the indicated number of digits 1s O, the
function rounds down to an integer. A numeric example 1s
described below 1n relation to FIG. 10.

The D-Word Ofiset 1s typically set to zero for the first
sector of each page, but 1s typically not zero for the other
sectors 1n the physical page, since the sector lengths are
frequently are not an even multiple of 128 bytes (i.e., 4-byte
keys, times 32 keys=128 bytes). All pages preferably start
with a zero column oifset regardless of the meta-page con-
figuration (1.e., the number of physical pages in the meta-
page).

As described above, the SKIN may be viewed as indicating
which of the 32 keys should be used for the first word 1n the
physical page. In some embodiments, the SKN may be cal-
culated by taking the lower 5 bits of the sum of the Page Offset
Number and the D-Word Offset Number, as shown 1n the
following equation:

SKN=mod[(SKN Page Offset+SKN D. Word Offset),
32]



US RE45,697 E

15

The Page Offset Number 1s preferably set to either the lowest
5 bits of the physical page address within the block or the
lowest 5 bits of the logical page address within the block. This
relationship may be seen in FIG. 6 by observing, for example,
that the SKN of the first sector within each page (where
D-Word Ofiset=0) 1s 1dentical to the Page Offset number. If
the s1ze of each sector within a page 1s an even multiple o 128
bytes, then each sector would start with the same SKN. How-
ever, Irequently sector sizes are chosen such that each sector
within a page has a different SKN.

For certain sector sizes that are not an even multiple of 4
bytes, the first byte of a new sector may fall within a 32-bit
word (and thus within a 32-bit Scrambling Key). We 1ntro-
duce a Byte Offset number to indicate the starting byte posi-
tion within a given 32-bit Scrambler Key. This 1s necessary to
address keys spanning across sector boundaries (or alterna-
tively, across ECC page boundaries), which 1s an important
consideration 1n determining the correct SKN when performs-
ing a memory read with a non-zero column offset (1.e. starting
read 1n the middle of a memory page). The byte offset 1s
typically set to zero for the first sector of each page. The byte
offset for other sectors depends on the sector size (or ECC
page size), excluding ECC, and sector number or ECC page
number. The Byte Offset number may be calculated by the
tollowing formula:

Byte offset=mod(Column_Start,Key_Iength(=4))

As before, the Column_Start 1s the first data byte (including
header and data bytes, excluding ECC bytes) 1n the physical
page from which we start reading or to which we start writing.
Thus, the Byte Offset counts from 0 to 3 over and over for
increasing Column_Start values. Said differently, the Byte
Offset value indicates which of the four bytes of a Scrambling
Key corresponds to a given byte within a physical page.

A Byte Offset Number example with 32-bit Keys 1s shown
in FIG. 7. The first sector, Sector 0, 1s 518 bytes long (reflect-
ing, for example, a 6-byte header and a 512-byte data por-
tion). Since this 1s not an even multiple of 4 bytes, this sector
ends 1n the middle of a Scrambling Keyl. (Recall {from FIG.
6 that byte 512 corresponds to the first byte in Key0, since this
byte 1s an even multiple of 128 bytes.) The first byte 1n Sector
1 corresponds to byte 2 within Keyl. Sector 1 thus begins
with a Byte Offset value=2, and a D-Word Ofiset value=1.
This may be seen 1n FIG. 8, which shows the SKN calculation
for a page including 16 sectors. The first two pages are indi-
cated 1n the table, corresponding to Page Offset Values of O
and 1. The first sector 1n each page includes a 6-byte header,
and additional sectors within each page each include a 2-byte
header. The first two lines of this table correspond to the
example graphically shown 1n FIG. 7. In particular, the sec-
ond line indicates a D-Word Offset value=1, and a Byte Offset
value=2. It may also be appreciated that the SKN of sectors
within a given page are not all the same, as described above.
Moreover, the SKN of the first sector of each page 1s identical
to the Page Ofiset number, as described above.

In certain other embodiments, subsequent Scrambler Keys
may be generated in other ways than a simple single-bit
rotation of a starting key, to improve the “randomness”™ of the
scrambling keys. For example, each subsequent key may be
derived from an 1nitial number or Seed which 1s rotated mul-
tiple times to create additional Scrambler Keys. After each
XOR operation, the next key number 1s calculated (e.g., cal-
culating by how many bits to left-rotate the key) and the key
1s rotated accordingly. By so doing, the Scrambling Keys are
less repetitive, and thus XOR the data with a more random-
like data pattern than 1s achuevable using a simple single-bit
rotation. An exemplary calculated key sequence of 8-bit keys

5

10

15

20

25

30

35

40

45

50

55

60

65

16

1s shown 1n FIG. 9. Each Scrambling Key 1s a left rotation of
the original seed by the Key Number, 1.e. Key6 i1s the seed
Key0 left-rotated by 6 bits, but as shown, each subsequent key
1s not merely a single bit shift of the previous key. In this
example, Key0 1s followed by Key6, which 1s followed by
Key3, etc.

As before, however, 32-bit keys (or larger) are more suit-
able than 8-bit keys. In such an example, the Starting Key

Number (SKN) may be recursively calculated according to
the following formulas:

K, =seed rotated left by SKN_

SKN,, . ;=[SKN, +C+P+(SKN_+P)]>>5

Where;

C=DWord Ofifset & Ox11

P=Page Offset Number & Ox11

SKN,=P

The Page Offset Number, the D-word offset number, and
the Byte Offset Number are calculated as before, using the
formulas shown above. The “>>" operator 1s a right non-
circular shift function, resulting here 1n a “divide by 32 with-
out remainder” function. The “&” operator 1s a bit-wise AND
operator. An example 1illustrating the calculation of the
D-Word Offset Number and the Byte Offset Number, for a
memory having 2062-byte ECC pages, 1s shown 1n FIG. 10.
Each ECC page includes a 14-byte header and four 512-byte
sectors, for a total of 2062 bytes.

A partial page may be accessed without necessarily access-
ing the entire page. Setting the SKN and calculating the
correct Key provides for correct reading or writing from any
sector 1n the Card without having to read/write any additional
sectors to set the scrambling Key. Preferably, the FW sets the
Starting Key Number and configures the Scrambler appropri-
ately for scrambling/descrambling starting at any ECC page
in the memory card. As further explained below, the SKN 1s
set at the beginning of each chunk according to either the
logical block address (LBA) address or the physical location
of the first sector to be written/read. The FW sets the SKN 1n
addition to setting the Page Offset Number, the D-Word Ofi-
set number and the Byte Offset Number registers. After set-
ting the SKN, the key generator (e.g., hardware, or firmware)
can calculate the correct scrambling Key for the particular
sector that 1s about to be read or written.

Whenever an operation starts in the middle of a page, the
Page Offset, D-Word Offset, and the Byte Offset registers
may be set by FW according to the table shown i FIG. 11.
This table reflects the example, mtroduced above, of 2062-
byte ECC pages each including four sectors preceded by a
14-byte header, and other sizes are, of course, clearly con-
templated. The D-Word Offset and the Byte Offset registers
are preferably cleared when setting the Page Offset register
(since most reads and writes start at the beginning of a page),
so they should be set after the Page Offset Register is set. After
these registers are set, FW can then set the SKN value accord-
ing to the table shown 1n FIG. 12. Such a table 1s preferably
hard-coded 1n the FW so that an SKN may be quickly deter-
mined without having to perform the recursive calculation for
cach memory access. Alternatively, the table may be created
by the FW during mitialization by recursively calculating the
corresponding SKN for each of the four ECC pages within
cach of the thirty-two physical pages (i.e., corresponding to
cach value of the Page Offset Number). By doing the lengthy
recursive calculations once, and saving the table, the FW can
quickly determine an SKN without having to perform the
recursive calculation for each memory access.




US RE45,697 E

17

Whenever a sequential operation (read/write) crosses a
page boundary and 1s about to access the next page, the SKN
has to be adjusted to that of the next page. Setting the Key
value at a physical page crossing within a meta-page (such as
at plane or die boundary) 1s preferably done by hardware
(HW), by manually clearing the D-Word Offset and the Byte
Offset Registers while keeping the Page Offset value as 1t 1s.
Setting the Key value at a meta-page crossing 1s preferably
done automatically by HW when directed by FW by writing
a ‘1’ 1n the Page increment bit of an SKN Auto Increment
Register, which will mitiate the key adjustment. The Auto
Page Increment bit 1s preferably set between meta-page trans-
actions, and preferably 1s automatically cleared after the Key
adjustment by HW.

Within a memory system or controller, the Scrambler may
be placed between the bufler management unit (BMU) and
the Flash interface (+ECC). During write transfers, the
scrambling can occur after multiplexing the fill pattern data,
which allows the fill data to be scrambled as well. ECC check
bit generation may be performed after scrambling (on the
scrambled data), and need not pass through the Scrambler.
There 1s no 1ssue here, as the ECC bits themselves are already
random, so there 1s no need to scramble them again. Also,
given the data structure design, duplicate sector data patterns
(including the header) will rarely be repeated on consecutive
pages.

During read transfers, descrambling occurs after the mis-
comparison counting (which may be employed to also detect
“erased” sectors and “bad block™ markers, as noted below).
ECC error detection may be performed prior to descrambling,
but correction 1s preferably performed after such descram-
bling. This eliminates the need to buller the entire sector in
order to correct any ECC bits before descrambling, and thus
climinates any performance impact due to such additional
buttering. This 1s possible since any FCC errors in the original
data stream should not affect the unscrambled data stream
beyond the individual bits which are 1n error, as there 1s no
teedback mechanism between the data and the generation of
the next key.

Support for On-Chip Copy Functions

The Page Tag feature enables intact blocks to begin with
any given logical page. 1.e., any LBA can be written to any
given physical page within the block, according to the Page
Tag value. On-Chip Copy functions enable copying data
between different blocks of the same die without fully passing,

the data through the Controller. Since the Scrambler resides
outside of the NAND, On-Chip Copy necessarily implies that
the data 1s copied intact (1.e., without being de-scrambled and
then re-scrambled). Consequently, the same scrambling key
will be used for the same logical page address, regardless of
the physical pages they are written to.

Support for on-chip copy (OCC) 1s achieved through set-
ting the Page Oflset Number Register based on the logical
address rather than the physical address (at least for most
block types). As noted below, the Page Offset Number Reg-
1ster for some block types (e.g., control blocks) may remain
based on the physical address.

Logical Page Calculation

Similarly to the way a meta-block 1s divided into physical
meta-pages, a Logical Group can be divided into Logical
Pages. Each Logical Page has the same size as one meta-page,
and there are as many Logical Pages in a Logical Group as
there are meta-pages 1 a meta-block. The Logical Page
Address (1.e., Logical Page value) may be determined from
the LBA value by first dividing the LBA value by the meta-

10

15

20

25

30

35

40

45

50

55

60

65

18

page size. If there are only 32 different keys (32 bits), we then
take only the lower 5 bits, as described by the following
formula:

LBA

3

All the sectors within a meta-page have the same Logical
Page value, which 1s also described herein as the Logical Page
Offset value. The specific scrambling key of each sector 1s
different, since the D-Word Offset and Byte Offset registers
have ditferent values according to the sector offset within the
page, as explained above.

Initialization

During mitialization the FW scans the blocks in the Open
Block List to determine what the last state of the card was
prior to the power cycle. The block type (1.e., control, data,
etc.) 1s determined according to the ID byte in the header (as
turther described below), and the Open Update Block List 1s
built through scanning the headers and reading the LBAs of
the sectors written in the open blocks. During nitialization
and prior to building the Open Update Block List, the stored
data 1s preferably entirely scrambled. This situation creates a
Chicken-and-Egg problem in that reading must be performed
to determine the LBAs of each sector, but 1n order to properly
read the content of each sector, the Logical Page address
(which 1s based on the LBA) 1s required to properly set the
descrambling Key to unscramble the data. The resolution to
this mitialization dilemma 1s to store scrambling key infor-
mation (1.e. the SKN Page Offset Number, or other informa-
tion from which the scrambling key may be determined) in
the scrambled sector headers and then extract it during card
initialization.

After the mmitialization 1s completed there 1s no need to
extract the SKN from the header, as the FW knows the loca-
tion, the block type and the Page Offset Register value of each
sector 1n the card. Theretfore, the FW can set the Scrambler
Registers correctly, then the HW can read and descramble the
data as 1f the Scrambler 1s transparent to the FW.

Storing the Scrambling Key Information 1n the Header

The page headers preferably include a 5-bit field (or other
appropriate length) for the Page Oilset Number (or other
scrambling key information) that 1s used to determine the
scrambling key for scrambling the data for the given page.
Many different arrangements are possible, including the
header format indicated i FIG. 13, which includes a 6-byte

L.BA/control header for the first sector 1n a page and a 2-byte
header for the rest of the sectors, and which 1s suitable for
single-sector ECC pages (1.e., each sector protected by its
own ECC redundancy bytes). The 2-byte header 1s the same
as the 6-byte header, except without the first 4 bytes, as the
LBA need only be stored 1n the first sector of the page. The
Data Structure ID field (also referred to herein as a Sector 1D
field) may be used to identily what kind of sector 1t 1s (e.g.,
control, data, etc.). The Application Byte field 1s reserved for
use by individual applications.

In certain embodiments it may be desirable to provide for
a larger page size. For example, the ECC page size may be 4
sectors long (1.e., each 2KB of user data information 1s pro-
tected by a single cluster of ECC redundancy bytes) and each
ECC page may have a single header of 14 bytes, as shown 1n
FIG. 14, including a 2-byte sector header for each of the four
sectors, and the LBA of the page. Each 2-byte Sector Header

Logical Page = mﬂd[RGundDGWn[

meta- page size




US RE45,697 E

19

includes a Page Ofiset field, which 1s used to determine which
Page Offset Number was used to scramble the data for the
given page.

Since the header 1tself 1s preferably scrambled, along with
the data 1n the rest of the sector, the actual Page Offset value
1s not directly written into the header. Instead, a Page Code 1s
written by the FW 1nto the header, which 1s then scrambled
(1.e., by HW) to generate a Mapped Page Offset Code which
1s actually written into the memory page. An exemplary page
offset mapping table 1s shown 1n FIG. 15, which corresponds
to a Seed of x69C734C6. Other mapping tables are also
possible for this same default seed, and different mapping
tables for other default Seeds, but conceptually such tables
will be stmilar to this table. The first column of this table 1s the
Page Offset value (ranging from O to 31 since there are 32
keys). The second column lists a corresponding Page Code,
which 1s the value written 1nto the memory page by the FW.
Since the scrambling key for a page 1s dependent upon the
Page Ofiset value, each page will be scrambled differently.
For this example, since the 5-bit Page Offset field for Sector
0 corresponds to bit positions 11-15 of the first word 1n Sector
0, each written Page Code 1s scrambled by bits 11-15 of the
corresponding Scrambling Key for the particular page
(shown 1n the third column), to generate the Mapped Page
Offset Code shown in the fourth column.

This lookup table provides a 1-to-1 mapping between the
Page Offset value and a Page Code that can be written by the
FW and scrambled and stored 1n the memory page. A reverse
mapping table, shown at the right side of FIG. 15, provides a
1-to-1 mapping between the scrambled 5-bit value actually
stored 1n the header and read with the scrambler disabled, and
the corresponding unscrambled Page Offset value (i.e., the
SKN value for the first sector 1n a page). Such lookup tables
are based on the particular Seed chosen, and are preferably
stored by the FW in RAM to provide fast mapping during a
write, and quick determination of the SKN after reading the
scrambled header.

During write commands, the FW knows the logical
address, the target physical location and the block type of the
write command. Therefore, the FW knows the Page Ofifset
value, whether 1t’s based on a Logical Page or a Physical Page
(e.g., such as for a control block, as described elsewhere
herein). As part of every write command, the FW can look up
the Page Oflset value in the Page Ofifset Mapping table and
write the 5-bit Page Code from the table into the Page Offset
field i the header. Those 5 bits will be scrambled (e.g., by
HW), along with the data 1n the page, and no special handling
1s needed. After scrambling, each one of the 3-bit Mapped
Page Offset Code combinations will have a distinct value,
which may be used to uniquely 1dentity the Page Offset value
during 1mitialization.

Extracting the SKN from the Header

During mitialization, the header may be read with the
Scrambler bypassed, since the Key 1s still unknown. Since the
entire header itsell 1s preferably scrambled, the Page Offset
Number cannot simply be read with the scrambler disabled.
Instead, the Mapped Page Offset Code 1s read, and the Page
Offset value 1s determined, such as by using the reverse map-
ping lookup table of FIG. 15, and the scrambling Key 1s
calculated. Since only the headers at the beginning of each
meta-page need be read during mnitialization, the Page Offset
extracted from the 5-bit header field corresponds to the final
SKN value, because the D-Word Offset and the Byte Offset
are both equal to zero. Such tables alternatively may be
replaced by a translation function. Use of such tables guar-
antees a 1:1 mapping between the Page Offset value and the
S-bits field actually written 1n the header.

10

15

20

25

30

35

40

45

50

55

60

65

20

Once the SKN 1s known, the FW can calculate the Scram-
bling key by left rotating the Scrambling Seed by SKN places
to the left. Once the key 1s known, the FW can XOR the header
data with the scrambling key and resolve the header informa-
tion. An alternative 1s to enable the scrambler, set the Scram-
bler Registers, and re-read the sector using the Scrambler
circuitry to de-scramble the data, but since the header is
usually only several bytes long (e.g., 6 bytes, 14 bytes, etc.),
merely XOR’1ing the data in FW may be much simpler and
faster. When descrambling in FW, the FW has to calculate the
rotation of the Key (or shiit the Key, as appropriate) after each
XOR operation as described above.

The tables shown in FIG. 15 refer only to the first ECC page
within the physical page, as the scrambling keys, and hence
the values written to the flash, are different for other ECC
pages within the physical page. This 1s shown, for the exem-
plary embodiment thus far described, by the table depicted in
FIG. 16. This table shows the SKN value for each of the four
ECC pages 1n a physical page, for each of the thirty-two Page
Offset values. The table also shows the Column_ Start value,
D-Word Ofiset value, and Byte Ofiset value for each byte
position 1n the entire physical page, and the corresponding
SKN. This 1s another table that 1s preferably built by FW upon
initialization to speed determination of the SKN operation,
especially for memory reads and writes that do not start at the
beginning of a page, and 1s particularly helptul 1f the SKN 1s
calculated recursively, such as described above.

Page Offset Number 1n Sequential Update Blocks/Intact
Blocks

Sequential Update Blocks, or Intact Blocks, set the Page
Tag ofiset parameter at the very first write to the block. It 1s
determined by the offset of the first logical page that 1s written
to the Update Block within 1ts corresponding logical group. A
logical page may be a set of contiguous sectors which are
written to one full meta-page, 1.¢. 1t has the s1ze of ameta-page
and 1t 1s aligned to meta-page boundaries. Once the Page Tag
parameter 1s set, all the logical pages written 1n the Update
Block are written sequentially from the first page, and each
logical page will have the same offset relative to the physical
pages 1n which 1t 1s written.

In order to make the scrambling key independent of the
Page Tag value, the Page Offset Number Register setting 1s
determined according to the Logical Page value, rather than
the Physical Page value. In the event the Page Tag 1s zero, the
two values coincide.

Page Offset Number 1n Chaotic Update Blocks

A block written 1n non-sequential sector order 1s known as
a Chaotic Update Block. Similarly to the Sequential Update
Blocks, Chaotic Update Blocks also use the Logical Page as
the Page Oflset Number, thus enabling the use of the on-chip
copy functions. The 1ssue here 1s that since the same page can
be written over and over to the same block, all the pages may
use the same scrambling key, resulting 1n a repeating pattern
throughout the block. This potential 1ssue may be averted by
using only the lower memory page for Chaotic Update Blocks
(1.e., only writing 2 of the 4 MLC states per memory cell, thus
treating the block as a binary block) to mitigate the boosting
eifect that results from the repetitive pattern, and thus avoid
the program disturb phenomenon. As can be seen 1n FIG. 2C,
the improved margins are achieved because the difference in
threshold voltage between the two states when writing only
the lower page 1s greater than if writing both the lower and
upper pages.

Page Offset Number 1n Control Blocks and Scratch Pad
Blocks

Control blocks don’t use on-chip copy, since they are

mainly accessed on a single sector basis. Therefore, the




US RE45,697 E

21

Physical Page 1s preferably used as the Page Offset Number,
so that each page 1s scrambled with a Key corresponding to
the physical page number that 1t was written to. The continu-
ally-changing page number will guarantee that a different
scrambling Key will be used as additional pages get written
down the block and thus avoid the occurrence of the worst
case patterns which cause the PD 1ssues. In addition, such
control blocks may also use only the lower memory page to
increase the signal margins of the memory cells.
Scrambling Data in File System Blocks

All control blocks are preferably scrambled, including the
Boot Block and the firmware (FW) blocks (which are
included within the file system blocks). In an exemplary Flash
File System, the Boot Block 1s scanned and read by the FW to
find the pointers to the File System Blocks, which are also
partially read by the FW. Since both the Boot Block and the
File System Blocks are scrambled when written, the FW must
be able to descramble the data. Only the functionality needed
for page read (+descrambling) has to be supported by the FW.
Specifically the FW should support setting the various regis-
ters that load the Seed, and specitying which descrambling,
Key to use.

The first page in the Boot Block, which holds information
regarding the meta-block geometry, the ECC level, and the
device ID imformation, preferably includes the Scrambler
Seed that was used to scramble the Boot Blocks and the File
System Blocks. The first page itsell, however, 1s preferably
scrambled using the default Scrambler Seed which 1s 1ncor-
porated 1n the HW. At the beginning of the imitialization
process, the first page 1s read using the default Seed. The Seed
which 1s used for the rest of the card 1s then read from the first
page and loaded into the Scrambler, and used for all subse-
quent operations. The remaining pages 1n the boot block are
scrambled with a Page Offset Register which 1s set according
to the physical page value (like other control blocks). The FW
should 1include the functionality to set the registers according
to the physical page ofiset. For proper Scrambler operation,
one should explicitly set the Seed 1n the Boot Block even 11 1t
1s the same value as the default Seed. A Seed value of 0 will
essentially cause data to not be scrambled even though the
Scrambler 1s enabled.

Bad Block Detection

Generally Bad Block detection may be done with the
Scrambler bypassed. At first download there 1s no 1ssue, as
none of the blocks holds any information. In subsequent
downloads, after the card already has some information writ-
ten, 1t 1s possible that scrambled data might be misinterpreted
as a bad block. Since the bad block marking 1s different for
different vendors, a different detection scheme may need to
be used for each vendor.

Some vendors mark factory bad blocks by writing zeros to
the entire block. Using the scrambling keys as described
above (1.e., the default key value of 0x69C734(C6) there can-
not be any header combination that after scrambling waill
result 1n a “00” value 1 all of the header bytes (e.g., in the
LBA and the data structure ID) and will be stored 1n the first
sectors 1n the page. Generally, the header should be designed
so that after scrambling there 1s no possibility that all header
bytes can be “00.” Therelfore, a detection scheme which looks
tor the “00” pattern 1n the header may be used. Such detection
may be easily accomplished with the Scrambler bypassed.

Other vendors mark factory bad blocks by writing a single
byte in the user data area (1.e. within the 512 data bytes of a
sector, as opposed to the header area or ECC) with any pattern
which 1s not ‘FF’. The specific location of the byte changes
with the memory type. Big Block (i.e., each page includes
more than one sector) MBC memories frequently mark the

10

15

20

25

30

35

40

45

50

55

60

65

22

block as bad by writing a non-FF pattern to byte 2048 of the
last page. Big Block BIN memories (i.e., single bit per cell)
mark the block as bad by writing a non-FF pattern to byte
2048 of either the first or second pages.

Since the byte which 1s used for the bad block marking can
have a non-FF value after scrambling, 1t may be accidentally
detected as a bad block, as the scrambled data structure 1D
will also be unrecognized. However, the mis-comparison
counting block of the ECC engine may be used to differenti-
ate between factory bad blocks and good blocks, since the
ECC engine will indicate an uncorrectable ECC error (i.e.,
UECC) when all bits are either all zeros or all “FF’s.

During detection the Scrambler 1s bypassed, and the ECC
engine 1s enabled. If the sector holding the bad block marking
1s read successiully, the block 1s detected as a good block,
regardless of the value of the bad block marking byte. A sector
1s read successtully 11 1t results 1n no UECC or correctable
ECC. If reading the sector which holds the bad block marking
will result in UECC, and the value of the bad block marking
byte 1s not all “FF”, the block 1s suspected as a bad block. In
this case, page 0 of the suspect block 1s then read. If all sectors
in page 0 also result in UECC, the block will be determined as
bad. If any sectors 1n page 0 are read successtully, the block
will instead be determined to be a good block. This, of course,
represents but one of many possible methods for bad block
detection.

Exemplary Implementation

The above techniques may be carried out 1n many different
specific implementations. An exemplary operating tflow dia-
gram which 1mplements the Scrambler functionality
described above 1s shown in FI1G. 17. An exemplary module 1s
shown 1n FIG. 18 and will now be described. Such a Scram-
bler module 1s suitable for an ASIC implementation, and
preferably 1s a self-contained hardware block in order to
allow easy integration (or removal) among various ASIC
projects with no dependencies to the CPU type or on any
specific ASIC Design Architectures.

The Scrambler hardware block may be placed directly 1n
the data path. As noted above, the ECC bytes may be
scrambled along with the header and user data, in which case
the Scrambler block should logically be placed at the end of
the data path going to the memory interface. However, since
it 1s not necessary to scramble the ECC bits, the Scrambler
may be placed earlier in the data path. A single clock source
1s suilicient for the Scrambler module. The clock frequency 1s
preferably no less than the bus speed at which the Scrambler
module 1s clocked.

A Data Input bus and Data Output bus of for example,
32-bits provides for streaming data through the Scrambler,
although such port sizes may be limited by an internal ASIC
bus to 16-bits. A dedicated 16-bit Control Data Input bus
provides access to the control registers. A 5-bit Input Address
bus 1s included for addressing control registers and to latch in
the Starting Key Number during HW Flow Control operation.

A set of control lines 1s preferably included for accessing
internal control registers and for HW Flow control. A Reset
line may be asserted to reset the Scrambler Module to an
initial state and set up for HW Flow operation. A Read/Write
(R/W) control signal 1s provided to control register accesses
through Control_Data_In[15:0]. In addition, a Control_SEL
line 1s provided to select between Control Register Access
and HW Flow Control modes of operation. Default selection
1s preferably set to HW Flow Control.

The Scrambler Module includes several registers, includ-
ing a Seed Register, a Configuration Register, a SKN Page
Offset Register, and a SKN Sector Offset Register. The Seed

Register 1s preferably a 32-bit R/W register for storing the




US RE45,697 E

23

Inmitial Key or Key 0, which 1s the same as the Seed. The
default key may be 0x69C734C6, or another suitable value. In
addition, a control register 1s provided to trigger loading of the
stored Seed Register value into the Shifter. The Seed Register
value does not change on reset.

In addition, a Configuration Register 1s included to control
operation of the Scrambler Module. For example, such con-
trol includes whether to enable or disable Shifter continuous
rotation. Preferably the default setting 1s to enable continuous
shifter rotation. Disabling rotation forces the use of the same
key for the entire memory page (1.e. Keys may be rotated by
pre-clocking). The configuration register can also control
whether to enable full bypass of the scrambling function,
resulting 1n data flow through the module with no manipula-
tion of the data, with minimal delays, and with minimal power
consumption. Preferably the default setting 1s to enable tull
bypass.

The SKN Page Offset Register 1s preferably a 5-bit R/'W
register for storing the Starting Key Number (e.g., assuming,
32 different keys). The default value preferably 1s O (1.e.
Key0). In Control Register Access mode, the register value
preferably goes back to the default value upon reset. In HW
Flow Control mode, the register value 1s loaded from the
Address Input port on reset. The value loaded into the SKN
Register 1s based on the memory page address corresponding
to the lower 5 bits of either the physical page address or the
logical page address.

The D-Word Offset Number (e.g., S-bit value) and the Byte
Offset Number (e.g., 2-bit value) may be stored 1n separate
registers, but may instead be conveniently combined 1in a
single 7-bit R/W register, which we can call the SKN Sector
Offset Register. This SKN Sector Offset Register may be
viewed as storing the offset from the Starting Key Number.
The default value preferably 1s 0. Regardless of operation
mode, the register value preferably reverts to the default value
on reset.

As noted above, this 7-bit register may include two fields
based on key sizes of 32 bits, as noted in the following Table

1:

TABL.

L1l

1

Exemplary Sector Offset Register Format for 32-bit Kevys

6 5 4 3 2 1 0
D_Word Offset Byte Offset
Number Number

The SKN Sector Offset Register bits [6:0] directly corre-

spond to either the memory column address [6:0] or the
relative 7-bit byte offset from the start of the logical page (also
referred to above as Column_Start value). The 5-bit D-Word
Offset Number indicates the offset key number that corre-
sponds to the first byte of the starting sector to be scrambled/
descrambled. The D-Word Offset number 1s relative to the
SKN so a value of O corresponds to Sector 0 accesses.

The 2-bit Byte Offset Number indicates the starting byte
position within one Key. This 1s necessary to address Keys
spannming across sector boundaries, which 1s an 1mportant
consideration 1n determining the correct SKN when performs-
ing a memory read with a non-zero column offset (1.e. starting
read in the middle of a memory page). The Byte Offset1s O for
Sector0) of each page. The Byte Offset for other sectors
depends on the sector size, sector number, and key size 1n
bytes. Examples of D-Word Offset Number and Byte Offset
Number based on 32-bit Keys are shown above in regards to
FIGS. 7, 8, 10, and 11.

10

15

20

25

30

35

40

45

50

55

60

65

24

Also internal to the Scrambler Module, a parallel-in/paral-
lel-out shift register or similar circuit 1s preferably designed
that can rotate bits 1n a constant left direction. The bits shifted
out one end circularly return on the other end. A fixed size
(e.g., 32 bits) allows easier system implementation to decode
the Starting Key Number for memory read with column off-
sets (see discussion of SKN Page Offset Register). The size
also determines the number of Keys available.

On reset, the shift register preferably automatically reloads
the Seed and loads the Starting Key Number. It should also
allow loading of the mitial Key from the Seed Register, and
may allow pre-clocking based on a count stored in the SKN
Registers. Such a pre-clock count may be based on both the
Page Offset Number and the Sector Offset Number stored 1n

the SKN Page Ofllset Register and the SKN Sector Offset

Register, respectively. Using a shift register has inherent
latencies, especially with the concept of pre-clocking. These
may be addressed by pre-clocking early before data arrival,
using a faster clock, and/or utilizing a faster type of shiit
register such as a barrel-shifter.

The Scrambler Module also includes an XOR circuit hav-
ing two 1mput ports and one output port, each of up to 32-bat
widths for parallel-in/parallel-out operation. One input port 1s
connected to the Data Input port, and the other input port 1s
connected to the Shifter output. The single output port is
connected to the Data Output port.

Under HW Flow Control, the full Scrambler operation may
be controlled using only the Clock, Reset, and Address[4:0],
with no register access required. This 1s a typical operating
mode once the Scrambler registers are configured. Basic
scrambling operation may be accomplished, for example, 1n
the following manner. Initially, the Scrambler configuration
registers are set up and then switched to HW Flow Control
mode. The nitial 5-bit memory page address to be accessed 1s
presented on the Address Input bus. Then, on asserting a RST
pulse, the Page Starting Key Number Register 1s loaded from
the Address Input bus, and the Seed (1.¢., the contents from the
Seed Register) 1s loaded into the Shifter. On Clock transitions,
the Scrambler pumps the unscrambled data from the Data
Input port, scrambles the data, and outputs the scrambled data

to the Data Output port, and continuously operates in this
manner until the configuration 1s changed with Reset. In some
embodiments a number of clock transitions may also be
required to pre-clock a bit-serial shifter in order to calculate
the correct scrambling keys for use by the scrambler. The
general operation 1s 1dentical for unscrambling.

Generally, the Scrambler Module 1s initialized for memory
accesses aligned to the beginning of a memory page. This 1s a
typical mode of operation and requires minimal FW control
to (1) enable HW Flow Control operating mode; and (2) send
the proper lower 5-bit memory page address to the Scrambler
Address Input port. On memory accesses not starting at the
beginning of a memory page, the Starting Key Number Reg-
ister should be loaded with the proper Key value using a
Control Register Access operation. After enabling the Control
Register Access operating mode, the SKN Page Offset Reg-
1ster 1s loaded with the memory page address, the SKIN Sector
Offset Register 1s loaded with the memory column address,
and operation of the Scrambler 1s then switched to HW Flow
Control.

The Scrambler may be controllable with parameter settings
stored as control data 1n the file system. Useful parameters
include whether the Scrambler 1s bypassed, whether the
Scrambler default Seed 1s used or another seed 1s loaded
instead, and whether the shifter 1s enabled for continuous




US RE45,697 E

25

rotation or disabled, for example, for diagnostic purposes.
Such configuration 1s preferably carried out on power-on
initialization.

The figures of the previously-mentioned *905 application
are also appropriate to describe certain memory systems and
modules 1n accordance with the present invention, by viewing,
the randomization module as described therein as generally
corresponding instead to a data scrambling module as
described herein.

Referring now to FIG. 19, a table 1s shown listing memory
cell states of unscrambled repeating OxFF data for the first 16
bytes of each word line within a memory block. FIG. 20
shows the scrambled memory cell states of the same first 16
bytes of each word line after scrambling as described above.
Additional Alternatives

In some embodiments, the system may perform a two-step
memory read operation, to first extract the SKN by reading
with the descrambler disabled and using the extracted SKN to
look up the unscrambled key, and then perform a second read
with the descrambler enabled using the unscrambled SKN.
However, this has implications to overall system performance
and possible host timeout concerns. Other embodiments may
be possible which trade off system design issues and/or
requirements. For example, the header or other control infor-
mation need not necessarily be scrambled, while still preserv-
ing many of the advantages of randomizing the data in a page.
As another example, the SKN information may be stored
unencrypted 1n the sector’s header.

In some embodiments, the SKN could be stored, rather
than the Page Ofiset value, 1n the page header. Alternatively,
the entire imtial Key used for the page could be stored. These,
as well as the Page Offset value, could also be stored 1n a fully
unscrambled manner, although this would create potentially
undesirable data patterns down the bit lines.

The techniques for generating rotating scrambling keys
described above are not the only manner of generating a
deterministic sequence of scrambling keys. Another method
utilizes a linear shift feedback register (LFSR) to generate a
pseudo-random sequence based upon an 1mitial seed. Such a
seed can be associated with each page based upon either the
logical page address or physical page address in a similar
manner as described above. An exemplary use of a LFSR 1for
randomizing data in a flash memory 1s described 1n co-pend-
ing U.S. patent application Ser. No. 11/808,905, filed Jun. 13,
2007 by Sharon, et al, and entitled “Randomizing for Sup-
pressing Errors 1n a Flash Memory,” the disclosure of which
1s incorporated herein by reference in 1ts entirety.

The descriptions above frequently make reference to reg-
isters for storing certain values, such as the Page Offset Reg-
ister for storing the Page Offset value. These refer to exem-
plary scrambler implementations, but are not to be viewed as
limiting the more general discussion.

Memory pages frequently include 8-16 sectors, but other
values may be used. Each sector typically includes 512 bytes
of data and a sector header, and may also include ECC redun-
dancy bytes. In some formats, a single cluster of ECC bytes
may protect more than one sector.

The block diagrams herein may be described using the
terminology of a single node connecting the blocks. None-
theless, 1t should be appreciated that, when required by the
context, such a “node” may actually represent a pair of nodes
for conveying a differential signal, or may represent multiple
separate wires (e.g., a bus) for carrying several related signals
or for carrying a plurality of signals forming a digital word. As
used herein, coupled means either directly or indirectly.

Terminology used herein that might be viewed as poten-

tially limiting should be viewed as merely descriptive of

10

15

20

25

30

35

40

45

50

55

60

65

26

exemplary embodiments, and not limiting of the mvention
itself. While the various embodiments have been described 1n
the exemplary context of a non-volatile NAND memory, the
invention 1s also useful for other types of memory devices,
including volatile memory devices.

As used herein, the concept of a sequence of keys 1s really
a function of the implementation (e.g., only 32 bits at a time).
For example, an 8-key sequence of 8-bit keys, 1s really no
different than a single 64-bit key. For example, if a scrambler
key 1s long enough, you might need only one for a chunk of
data of a certain bit width, whereas for shorter keys, a
sequence of keys may be required to fully scramble the chunk
of data. In some embodiments, more than one seed key may
be used, which might be determined, for example, based on
the logical address.

The foregoing detailed description has described only a
few of the many possible implementations of the present
invention. For this reason, this detailed description 1is
intended by way of illustration, and not by way of limitations.
Variations and modifications of the embodiments disclosed
herein may be made based on the description set forth herein,
without departing from the scope and spirit of the mvention.
Moreover, the inventive concepts and embodiments
described above are specifically contemplated to be used
alone as well as 1n various combinations. It 1s only the fol-
lowing claims, including all equivalents, that are intended to
define the scope of this invention. Accordingly, other embodi-
ments, variations, and improvements not described herein are
not necessarily excluded from the scope of the invention.

What 1s claimed 1s:
1. A method for storing information imn a non-volatile
memory, said method comprising:
determining a starting key based upon a seed key and a
logical page address associated with a group of data;
randomizing the group of data using a deterministic
sequence ol keys corresponding to the starting key;
storing the randomized group of data into a physical page
of the non-volatile memory; and
storing, 1nto the physical page of the non-volatile memory,
additional information from which the starting key may
be determined without knowledge of the logical page
address, wherein the additional information 1s stored as
randomized 1information using the deterministic
sequence ol keys corresponding to the starting key.
2. The method as recited in claim 1 further comprising;:
storing the additional information into more than one loca-
tion within the physical memory page, so that evenif one
location 1s corrupted, another can still be read to deter-
mine the starting key.
3. The method as recited in claim 1 wherein the determin-
1Ng COMprises:
determining an index for a sequence of scrambling keys
based upon a logical page offset value; and
using the index to identity the starting key within a repeat-
ing sequence of M-bit scrambling keys corresponding to
the seed key.
4. The method as recited 1in claim 3 wherein:
the additional information comprises the index.
5. A method for storing imformation in a non-volatile
memory said method comprising:
determining a starting key based upon a seed key and a
logical page address associated with a group of data;
randomizing the group of data using a deterministic
sequence ol keys corresponding to the starting key;
storing the randomized group of data into a physical page
of the non-volatile memory; and



US RE45,697 E

27

storing, into the physical page of the non-volatile memory,
additional information from which the starting key may
be determined without knowledge of the logical page

address, wherein the additional information comprises a

mapped page offset code having a 1:1 correspondence

with a page offset value.

6. The method as recited 1n claim 5 wherein:

the mapped page oifset code 1s 1dentical with the logical
page olifset value, and may be directly read from the
physical page of the non-volatile memory without de-
randomizing.

7. The method as recited 1n claim 3 further comprising:

determining a page code associated with the logical page
offset value; and

randomizing the page code using the deterministic
sequence ol keys corresponding to the starting key, to
generate the mapped page offset code which 1s stored 1n
the physical page of the non-volatile memory.

8. The method as recited 1n claim 7 wherein:

the page code 1s randomized using only the starting key,
and the resulting mapped page offset code 1s written into

a page header of the physical page of the non-volatile

memory.

9. The method as recited 1n claim 7 wherein:
the page code 1s determined by firmware; and
the page code 1s randomized by hardware.

10. The method as recited 1n claim $ further comprising
initializing the non-volatile memory upon power-up, said
initializing comprising;:

reading a randomized memory page header including a

mapped page oflset code;

extracting a corresponding page offset value from the

mapped page offset code; then

determining a starting key based upon the page offset value

and the seed key; and

reading and de-randomizing the memory page using a

deterministic sequence of scrambling keys correspond-
ing to the starting key.

11. The method as recited 1n claim 10 wherein said extract-
ing a corresponding page oilset value comprises using a
lookup table.

12. The method as recited 1n claim 10 wherein said extract-
ing a corresponding page oifset value comprises using a
reverse mapping calculation.

13. The method as recited 1n claim 10 wherein said de-
randomizing the memory page comprises de-randomizing at
least the memory page header using firmware.

14. The method as recited 1n claim 10 wherein said de-
randomizing the memory page 1s performed using hardware.

15. The method as recited in claim 10 further comprising:

re-constructing mapping of open blocks to identity block

types.

16. The method as recited 1n claim 5 further comprising:

determining a second starting key based upon the seed key

and a physical page address associated with a second
group of data;

randomizing the second group of data using a deterministic

sequence ol keys corresponding to the second starting
key; and

storing the randomized second group of data into a second

physical page of the non-volatile memory.

17. The method as recited 1n claim 10 wherein said nitial-
1zing 1s performed on blocks whose starting key 1s based upon
its logical page address and on blocks whose starting key 1s
based upon its physical page address.

10

15

20

25

30

35

40

45

50

55

60

65

28

18. The method as recited in claim 16 wherein:

the second group of data corresponds to a control block of
a flash file system.

19. The method as recited in claim 5 further comprising:

determiming a third starting key based upon a predeter-
mined default seed key and a physical page address
associated with a third group of data;

randomizing the third group of data using a deterministic
sequence ol keys corresponding to the third starting key;
and

storing the randomized third group of data into a third
physical page of the non-volatile memory.

20. The method as recited 1n claim 1 further comprising:

ECC encoding the randomized group of data and storing,
non-randomized ECC redundancy bytes in the non-

volatile memory.
21. The method as recited 1n claim 1 further comprising:

ECC encoding the non-randomized group of data to gen-

erate corresponding ECC bytes;

randomizing the corresponding ECC redundancy bytes;
and

storing randomized ECC redundancy bytes 1n the nonvola-
tile memory.

22. The method as recited 1n claim 1 further comprising:

randomizing all page header information written 1nto the
non-volatile memory.

23. The method as recited 1n claim 22 further comprising:

randomizing control blocks for a flash file system using a
physical page address rather than a logical page address.

24. The method as recited 1n claim 22 further comprising:

randomizing boot blocks for a flash file system using a
predetermined default seed key, and using a physical
page address.

25. The method as recited in claim 1 wherein the determin-

1stic sequence of keys comprises:

a number M of separate scrambling keys, each comprising,
M-bits, wherein each respective scrambling key N
(KeyN) corresponds to an N-bit circular rotation of a
predetermined seed key (Key0).

26. The method as recited in claim 235 wherein the random-
1zing comprises a bit-by-bit XOR operation using the deter-
ministic sequence of M-bit scrambling keys.

27. The method as recited in claim 26 wherein each suc-
cessive scrambling key in the deterministic sequence 1s a
single-bit rotation of the preceding scrambling key.

28. The method as recited in claim 26 wherein each suc-
cessive scrambling key in the deterministic sequence 1s a
bit-wise rotation of the seed key by a calculated number of
bits.

29. The method as recited in claim 28 wherein the calcu-
lated number of bits for the successive key depends on the
current key.

30. The method as recited 1n claim 29 wherein the calcu-
lated number of bits for the successive key also depends on
the page offset value and the D-word oiffset value of the
corresponding successive word.

31. The method as recited in claim 1 wherein the determin-
1stic sequence of keys comprises:

a pseudo-random sequence of keys generated by a linear
feedback shift register (LFSR) having a starting value
corresponding to the starting key.

32. An apparatus comprising:

a non-volatile memory; and

a memory controller configured to:

determine a starting key based upon a seed key and a
logical page address associated with a group of data;




US RE45,697 E

29

randomize the group of data using a deterministic sequence
of keys corresponding to the starting key;

store the randomized group of data into a physical page of
the non-volatile memory; and

store, 1nto the physical page of the non-volatile memory,
additional information from which the starting key may
be determined without knowledge of the logical page
address, wherein the additional information 1s stored as
randomized 1information using the deterministic
sequence of keys corresponding to the starting key.

33. The apparatus as recited 1n claim 32 wherein the non-
volatile memory comprises a distinct imntegrated circuit sepa-
rate from the memory controller.

34. The apparatus as recited in claam 32 wherein the
memory controller 1s further configured to:

determine an index for a sequence of scrambling keys
based upon a logical page offset value; and

use the index to 1dentify the starting key within a repeating
sequence of M-bit scrambling keys corresponding to the
seed key.

35. The apparatus as recited 1n claim 34 wherein:
the additional information comprises the index.
36. An apparatus comprising;:

a non-volatile memory; and

a memory controller configured to:

determine a starting key based upon a seed key and a
logical page address associated with a group of data;
randomize the group of data using a deterministic
sequence ol keys corresponding to the starting key;

store the randomized group of data into a physical page of
the non-volatile memory; and

store, into the physical page of the non-volatile memory,
additional information from which the starting key may
be determined without knowledge of the logical page
address, wherein the additional information comprises a
mapped page offset code having a 1:1 correspondence
with a page offset value.

37. The apparatus as recited in claam 36 wherein the
memory controller 1s further configured to:

determine a page code associated with the logical page
offset value; and

randomize the page code using the deterministic sequence
ol keys corresponding to the starting key, to generate the
mapped page ollset code which 1s stored in the physical
page of the non-volatile memory.

38. The apparatus as recited 1n claim 37 wherein:

the page code 1s randomized using only the starting key,
and the resulting mapped page offset code 1s written into
a page header of the physical page of the non-volatile
memory.

39. The apparatus as recited in claim 36 wherein the
memory controller 1s further configured for mitializing the
non-volatile memory upon power-up, said nitializing com-
prising:

reading a randomized memory page header including a
mapped page olfset code;

extracting a corresponding page oifset value from the
mapped page offset code; then

determining a starting key based upon the page offset value
and the seed key; and

reading and de-randomizing the memory page using a
deterministic sequence of scrambling keys correspond-
ing to the starting key.

10

15

20

25

30

35

40

45

50

55

60

65

30

40. The apparatus as recited in claim 36 wherein the
memory controller 1s further configured to:

determine a second starting key based upon the seed key
and a physical page address associated with a second
group of data;

randomize the second group of data using a deterministic
sequence of keys corresponding to the second starting,
key; and

store the randomized second group of data into a second
physical page of the non-volatile memory.

41. The apparatus as recited 1 claim 39 wherein said
iitializing 1s performed on blocks whose starting key 1s
based upon 1ts logical page address and on blocks whose
starting key 1s based upon its physical page address.

42. The apparatus as recited 1n claim 40 wherein:

the second group of data corresponds to a control block of
a flash file system.

43. The apparatus as recited 1n claam 36 wherein the

memory controller 1s further configured to:

determine a third starting key based upon a predetermined
default seed key and a physical page address associated
with a third group of data;

randomize the third group of data using a deterministic
sequence ol keys corresponding to the third starting key;
and

store the randomized third group of data into a third physi-
cal page of the non-volatile memory.

44. The apparatus as recited 1n claim 32 wherein:

the randomized group of data 1s ECC encoded and non-
randomized ECC redundancy bytes are stored in the
non-volatile memory.

45. The apparatus as recited 1n claim 32 wherein:

all page header information written into the non-volatile
memory 1s randomized.

46. The apparatus as recited 1n claim 45 wherein:

control blocks for a flash file system are randomized using,
a physical page address rather than a logical page
address.

4'7. The apparatus as recited 1n claim 45 wherein:

boot blocks for a flash file system are randomized using a
predetermined default seed key, and using a physical
page address corresponding to the boot block.

48. The apparatus as recited in claim 32 wherein the deter-

ministic sequence ol keys comprises:

a number M of separate scrambling keys, each comprising
M-bits, wherein each respective scrambling key N
(KeyN) corresponds to an N-bit circular rotation of a
predetermined seed key (Key0).

49. The apparatus as recited in claim 48 wherein the ran-
domizing comprises a bit-by-bit XOR operation using the
deterministic sequence of M-bit scrambling keys.

50. The apparatus as recited 1n claim 49 wherein each
successive scrambling key 1n the deterministic sequence 1s a
single-bit rotation of the preceding scrambling key.

51. The apparatus as recited 1n claim 49 wherein each
successive scrambling key 1n the deterministic sequence 1s a
bit-wise rotation of the seed key by a calculated number of
bits.

52. The apparatus as recited in claim 51 wherein the cal-
culated number of bits for the successive key depends on the
current key.

53. The apparatus as recited in claim 52 wherein the cal-
culated number of bits for the successive key also depends on
the page ofifset value and the D-word offset value of the
corresponding successive word.




US RE45,697 E

31

54. The apparatus as recited 1n claim 32 wherein the deter-

ministic sequence of keys comprises:

a pseudo-random sequence of keys generated by a linear
feedback shiit register (LFSR) having a starting value
corresponding to the starting key.

55. A method for storing information in a non-volatile

memory, said method comprising;:

determining a starting key based upon a seed key and a
logical page address associated with a group of data;

randomizing the group of data using a deterministic
sequence of keys corresponding to the starting key; and

storing the randomized group of data into a physical page
of the non-volatile memory;

wherein the deterministic sequence of keys comprises a
number M of separate scrambling keys, each comprising
M-bits, wherein each respective scrambling key N
(KeyN) corresponds to an N-bit circular rotation of a
predetermined seed key (Key0);

wherein the randomizing comprises a bit-by-bit XOR
operation using the deterministic sequence of M-bit
scrambling keys;

wherein each successive scrambling key 1n the determin-
1stic sequence 1s a bit-wise rotation of the seed key by a
calculated number of bits; and

wherein the calculated number of bits for the successive
key depends on the current key and also depends on the
page olfset value and the D-word ofifset value of the
corresponding successive word.

56. An apparatus comprising;:

a non-volatile memory; and

a memory controller configured to:

determine a starting key based upon a seed key and a
logical page address associated with a group of data;

randomize the group of data using a deterministic sequence
of keys corresponding to the starting key; and

store the randomized group of data into a physical page of
the non-volatile memory;

wherein the deterministic sequence of keys comprises a
number M of separate scrambling keys, each comprising
M-bits, wherein each respective scrambling key N
(KeyN) corresponds to an N-bit circular rotation of a
predetermined seed key (Key0);

wherein the randomizing comprises a bit-by-bit XOR
operation using the deterministic sequence of M-bit
scrambling keys;

wherein each successive scrambling key 1n the determin-
1stic sequence 1s a bit-wise rotation of the seed key by a
calculated number of bits; and

wherein the calculated number of bits for the successive
key depends on the current key and also depends on the
page oflset value and the D-word ofiset value of the
corresponding successive word.

10

15

20

25

30

35

40

45

50

32

57. A method for storing information 1 a non-volatile
memory, said method comprising:

determining a starting key based upon a seed key and a

logical page address associated with a group of data;
randomizing the group of data using a deterministic
sequence ol keys corresponding to the starting key;
storing the randomized group of data into a physical page
of the non-volatile memory; and
storing, into more than one location within the physical
page of the non-volatile memory, additional information
from which the starting key may be determined without
knowledge of the logical page address.

58. The method as recited in claim I, wherein the non-
volatile memory comprises a three-dimensional memory.

59. The method as recited in claim 58, wherein the three-
dimensional memory comprises more than one plane of
memory cells stacked on top of each other.

60. The method as recited in claim 35, wherein the non-
volatile memory comprises a three-dimensional memory.

61. The method as recited in claim 60, wherein the three-
dimensional memory comprises more than one plane of
memory cells stacked on top of each other.

62. The apparatus as recited in claim 32, wherein the
non-volatile memory comprises a three-dimensional
Memory.

63. The apparatus as recited in claim 02, wherein the
three-dimensional memory comprises move than one plane of
memory cells stacked on top of each other.

64. The apparatus as recited in claim 36, wherein the
non-volatile memory comprises a three-dimensional
Memory.

65. The apparatus as recited in claim 64, wherein the
three-dimensional memory comprises move than one plane of
memory cells stacked on top of each other.

66. The method as recited in claim 55, wherein the non-
volatile memory comprises a three-dimensional memory.

67. The method as recited in claim 66, wherein the three-
dimensional memory comprises more than one plane of
memory cells stacked on top of each other.

68. The apparatus as recited in claim 56, wherein the
non-volatile memory comprises a three-dimensional
Memory.

69. The apparatus as recited in claim 68, wherein the
three-dimensional memory comprises movre than one plane of
memory cells stacked on top of each other.

70. The method as recited in claim 57, wherein the non-
volatile memory comprises a three-dimensional memory.

71. The method as recited in claim 70, wherein the three-
dimensional memory comprises more than one plane of
memory cells stacked on top of each other.

G o e = x



	Front Page
	Drawings
	Specification
	Claims

