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PROCESSOR HAVING EXECUTION CORE
SECTIONS OPERATING AT DIFFERENT
CLOCK RATES

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough indi-
cates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

This application 1s a reissue divisional of application Ser.

No. 10/996,328, filed Nov. 24, 2004, which is a reissue appli-
cation of application Ser. No. 09/775,383, filed Feb. 2, 2001,
now U.S. Pat. No. 6,487,675 which is a continuation of
application Ser. No. 09/527,063, filed Mar. 16, 2000, entitled
“Processor Having Execution Core Sections Operating at
Difterent Clock Rates™, now U.S. Pat. No. 6,256,745; which
was a continuation of Ser. No. 09/092,353, filed Jun. 5, 1998,
entitled “Processor Having Execution Core Sections Operat-
ing at Different Clock Rates”, now U.S. Pat. No. 6,216,234
which was a continuation of Ser. No. 08/746,606, filed Nov.
13, 1996, entitled “Processor Having Execution Core Sec-
tions Operating at Different Clock Rates™, now U.S. Pat. No.
5,828,868.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the field of high
speed processors, and more specifically to a processor includ-
ing a sub-core operating at a higher frequency than the rest of
the execution core, and also to a replay architecture for facili-
tating data-speculating operation of the sub-core.

2. Background of the Prior Art

FIG. 1 1illustrates a microprocessor 100 according to the
prior art. The microprocessor includes an I/O ring which
operates at a first clock frequency, and an execution core
which operates at a second clock frequency. For example, the
Intel 186D X2 may run 1ts I/O ring at 33 MHz and 1ts execution
core at 66 MHz for a 2:1 ratio (1/2 bus), the Intel DX 4 may run
its I/O ring at 25 MHz and its execution core at 75 MHz for a
3:1 ratio (1/3 bus), and the Intel Pentium® OverDrive® pro-
cessor may operate 1ts I/O ring at 33 MHz and 1ts execution
core at 82.5 MHz for a 2.5:1 ratio (5/2 bus).

A distinction may be made between “I/O operations™ and
“execution operations”. For example, in the DX2, the I/O ring
performs 1I/O operations such as buffering, bus driving,
receiving, parity checking, and other operations associated
with communicating with the off-chip world, while the
execution core performs execution operations such as addi-
tion, multiplication, address generation, comparisons, rota-
tion and shifting, and other “processing” manipulations.

The processor 100 may optionally include a clock multi-
plier. In this mode, the processor can automatically set the
speed of 1ts execution core according to an external, slower
clock provided to its I/O ring. This may reduce the number of
pins needed. Alternatively, the processor may include a clock
divider, 1n which case the processor sets the I/0 ring speed
responsive to an external clock provided to the execution
core.

These clock multiply and clock divide functions are logi-
cally the same for the purposes of this invention, so the term
“clock mult/div” will be used herein to denote either a mul-
tiplier or divider as suitable. The skilled reader will compre-
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2

hend how external clocks may be selected and provided, and
from there multiplied or divided. Therefore, specific clock
distribution networks, and the details of clock multiplication
and division, will not be expressly illustrated. Furthermore,
the clock mult/div umits need not necessarily be limited to
integer multiple clocks, but can perform e.g. 2:5 clocking.
Finally, the clock mult/div unmits need not necessarily even be
limited to fractional bus clocking, but can, 1n some embodi-
ments, be flexible, asynchronous, and/or programmable, such
as 1n providing a P/Q clocking scheme.

The basic motivation for increasing clock frequencies in
this manner 1s to reduce mstruction latency. The execution
latency of an 1nstruction may be defined as the time from
when 1ts input operands must be ready for it to execute until its
result 1s ready to be used by another instruction. Suppose that
a part ol a program contains a sequence of N instructions, I,
L, I, ..., L, Suppose that I _, requires, as part of its inputs,
the result of 1 , for all n, from 1 to N-1. This part of the
program may also contain any other instructions. Then we
can see that this program cannot be executed 1n less time than
T=L,,+L,+L,+. . .+L, where L 1s the latency of instruction
[ , for all n from 1 to N. In fact, even if the processor was
capable of executing a very large number of 1nstructions 1n
parallel, T remains a lower bound for the time to execute this
part of this program. Hence to execute this program faster, 1t

will ultimately be essential to shorten the latencies of the
instructions.

We may look at the same thing from a slightly different
point of view. Define that an instruction I 1s “in tlight” from
the time that 1t requires 1ts input operands to be ready until the
time when 1its result 1s ready to be used by another instruction.
Instruction I 1s therefore “in flight” for a length of time
L =A_ *Cwhere A, isthe latency, as defined above, of In, but
this time expressed in cycles. C 1s the cycle time. Let a
program execute N instructions as above and take M ““cycles™
or units of time to do it. Looked at from either point of view,
it 1s critically important to reduce the execution latency as
much as possible.

The average latency can be conventionally defined as 1/N*
(Ly+Lo+Ls+ . L) =C/NH(A +AL+A+ . . +Ay). Let £ be
the number of instructions that are 1n flight during cycle 1. We
can then define the parallelism P as the average number of
instructions in tlight for the program or 1I/M*(1, +1,+15+ . . .
+1, ,).

Notice that 1, +1,+1,+ . . . +1, /A, +A,+A + ... +A,,. Both
sides of this equation are ways of counting up the number of
cycles 1n which mstructions are 1n tlight, wherein 11 X istruc-
tions are 1n flight 1n a given cycle, that cycle counts as x
cycles.

Now define the “average bandwidth™ B as the total number
of mstructions executed, N, divided by the time used, M*C, or
in other words, B=N/(M*C).

Wemay then easily see that P=L*B. In this formula, L 1s the
average latency for a program, B 1s its average bandwidth, and
P 1s 1ts average Parallelism. Note that B tells how fast we
execute the program. It 1s instructions per second. If the
program has N 1nstructions, 1t takes N/B seconds to execute 1t.
The goal of a faster processor 1s exactly the goal of getting B
higher.

We now note that increasing B requires erther increasing,
the parallelism P, or decreasing the average latency L. It 1s
well known that the parallelism, P, that can be readily
exploited for a program 1s limited. Whereas, 1t 1s true that
certain classes of programs have large exploitable parallel-
1sm, a large class of important programs has P restricted to
quite small numbers.
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One drawback which the prior art processors have 1s that
their entire execution core 1s constrained to run at the same
clock speed. This limits some components within the core 1n
a “weakest link™ or “slowest path” manner.

In the 1960s and 1970s, there existed central processing
units 1n which a multiplier or divider co-processor was
clocked at a frequency higher than other circuitry in the
central processing unit. These central processing units were
constructed of discrete components rather than as integrated
circuits or monolithic microprocessors. Due to their construc-
tion as co-processors, and/or the fact that they were not inte-
grated with the main processor, these units should not be
considered as “sub-cores”.

Another feature of some prior art processors 1s the ability to
perform “speculative execution”. This 1s also known as “con-
trol speculation”, because the processor guesses which way
control (branching) instructions will go. Some processors
perform speculative fetch, and others, such as the Intel Pen-
tium Pro processor, also perform speculative execution. Con-
trol speculating processors include mechanisms for recover-
ing from mispredicted branches, to maintain program and
data integrity as though no speculation were taking place.

FIG. 2 illustrates a conventional data hierarchy. A mass
storage device, such as a hard drive, stores the programs and
data (collectively “data™) which the computer system (not
shown) has at its disposal. A subset of that data 1s loaded 1nto
memory such as DRAM for faster access. A subset of the
DRAM contents may be held in a cache memory. The cache
memory may itself be hierarchical, and may include a level
two (LL.2) cache, and then a level one (IL1) cache which holds
a subset of the data from the L.2. Finally, the physical registers
ol the processor contain a smallest subset of the data. As 1s
well known, various algorithms may be used to determine
what data 1s stored 1n what levels of this overall hierarchy. In
general, 1tmay be said that the more recently a datum has been
used, or the more likely 1t 1s to be needed soon, the closer 1t
will be held to the processor.

The presence or absence of valid data at various points in
the hierarchical storage structure has implications on another
drawback of the prior art processors, including control specu-
lating processors. The various components within their
execution cores are designed such that they cannot perform
“data speculation”, 1n which a processor guesses what values
data will have (or, more precisely, the processor assumes that
presently-available data values are correct and 1dentical to the
values that will ultimately result, and uses those values as
inputs for one or more operations), rather than which way
branches will go. Data speculation may involve speculating,
that data presently available from a cache are 1dentical to the
true values that those data should have, or that data presently
available at the output of some execution unit are 1dentical to
the true values that will result when the execution unit com-
pletes 1ts operation, or the like.

Like control speculating processors’ recovery mecha-
nisms, data speculating processors must have some mecha-
nism for recovering from having incorrectly assumed that
data values are correct, to maintain program and data integrity
as though no data speculation were taking place. Data specu-
lation 1s made more difficult by the hierarchical storage sys-
tem, especially when 1t 1s coupled with a microarchitecture
which uses different clock frequencies for various portions of
the execution environment.

It 1s well-known that every processor 1s adapted to execute
istructions of 1ts particular “architecture”. In other words,
every processor executes a particular instruction set, which 1s
encoded 1n a particular machine language. Some processors,
such as the Pentium Pro processor, decode those “macro-
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istructions” down into “micro-instructions” or “uops”,
which may be thought of as the machine language of the
micro-architecture and which are directly executed by the
processor’s execution units. It 1s also well-known that other
processors, such as those of the RISC varnety, may directly
execute their macro-instructions without breaking them

down 1into micro-instructions. For purposes of the present
invention, the term ‘“instruction” should be considered to

cover any or all of these cases.

SUMMARY OF THE INVENTION

The mvention provides a microprocessor having two or
more levels of execution sub-core each clocked at different
frequencies. The processor may also have an I/0 ring, which
may be clocked at yet another frequency. Clock division or
multiplication may be used between the various levels, to
derive the various clocks from a common clock, such as the
I/0 clock, which may be provided from off-chip. Having the
different clock domains enables the designer to make trade-
oils in the design of various components of the chip, such as
individual execution units, instruction fetch and decode unats,
register files, caches, and the like. Thus, selected components
can be designed to operate at a very high frequency, without
requiring the entire chip to be designed to operate at this
frequency. Less latency-critical units, or those whose
required throughput can be obtained by twice as many units
running at half the clock speed, can be relegated to the slower
sections of the chip, easing their design considerably.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating a prior art processor
having an I/O ring and an execution core operating at different
clock speeds.

FIG. 2 demonstrates a hierarchical memory structure such
as 1s well known 1n the art.

FIG. 3 1s a block diagram 1llustrating the processor of the
present invention, and showing a plurality of execution core
sections each having 1ts own clock frequency.

FIG. 4 15 a block diagram 1llustrating a mode 1n which the
processor ol FIG. 3 includes yet another sub-core with 1ts own
clock frequency.

FIG. 5 1s a block diagram illustrating a different mode 1n
which the sub-core 1s not nested as shown 1n FIG. 4.

FIG. 6 1s a block diagram illustrating a partitioning of the
execution core.

FIG. 7 1s a block diagram illustrating one embodiment of

the replay architecture of the present invention, which permits
data speculation.

FIG. 8 1llustrates one embodiment of the checker unit of the
replay architecture.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 3 1llustrates the high-speed sub-core 205 of the pro-
cessor 200 of the present invention. The high-speed sub-core
includes the most latency-intolerant portions of the particular
architecture and/or microarchitecture employed by the pro-
cessor. For example, 1n an Intel Architecture processor, cer-
tain arithmetic and logic functions, as well as data cache
access, may be the most unforgiving of execution latency.

Other functions, which are not so sensitive to execution
latency, may be contained within a more latency-tolerant
execution core 210. For example, 1n an Intel Architecture
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processor, execution ol mirequently-executed instructions,
such as transcendentals, may be relegated to the slower part of
the core.

The processor 200 communicates with the rest of the sys-
tem (not shown) via the I/O ring 215. If the I/O ring operates
at a different clock frequency than the latency-tolerant execu-
tion core, the processor may include a clock mult/div unit 220
which provides clock division or multiplication according to
any suitable manner and conventional means. Because the
latency-intolerant execution sub-core 203 operates at a higher
frequency than the rest of the latency-tolerant execution core
210, there may be a mechanism 223 for providing a different

clock frequency to the latency-intolerant execution sub-core
205. In one mode, this 1s a clock mult/div unit 225.

FIG. 4 illustrates a refinement of the imnvention shown in
FIG. 3. The processor 250 of FI1G. 4 includes the I/O ring 215,
clock mult/div unit 220, and latency-tolerant execution core
210. However, 1n place of the unitary sub-core (205) and
clock mult/div unit (225) of FIG. 3, this improved processor
250 includes a latency-intolerant execution sub-core 255 and
an even more latency-critical execution sub-core 260, with
their clock mult/div units 2635 and 270, respectively.

The skilled reader will appreciate that this 1s illustrative of
a hierarchy of sub-cores, each of which includes those units
which must operate at least as fast as the respective sub-core
level. The skilled reader will further appreciate that the selec-
tion of what units go how deep into the hierarchy will be made
according to various design constraints such as die area, clock
skew sensitivity, design time remaimng before tapeout date,
and the like. In one mode, an Intel Architecture processor may
advantageously 1include only 1ts most common integer ALU
functions and data storage portion of i1ts data cache in the
imnnermost sub-core. In one mode, the innermost sub-core
may also include the register file; although, for reasons
including those stated above concerning FIG. 2, the register
file might not technically be needed to operate at the highest
clock frequency, its design may be simplified by including 1t
in a more inner sub-core that 1s strictly necessary. For
example, 1t may be more efficient to make twice as fast a
register file with half as many ports, than vice versa.

In operation, the processor performs an I/O operation at the
I/0 ring and at the I/O clock frequency, such as to bring in a
data item not presently available within the processor. Then,
the latency-tolerant execution core may perform an execution
operation on the data item to produce a first result. Then, the
latency-intolerant execution sub-core may perform an execu-
tion operation on the first result to produce a second result.
Then, the latency-critical execution sub-core may perform a
third execution operation upon the second result to produce a
third result. Those skilled 1n the art will understand that the
flow of execution need not necessarily proceed 1n the strict
order of the hierarchy of execution sub-cores. For example,
the newly read in data item could go immediately to the
innermost core, and the result could go from there to any of
the core sections or even back to the I/0O ring for writeback.

FIG. 5 shows an embodiment which 1s slightly different
than that of FIG. 4. The processor 280 includes the I/O ring
215, the execution cores 210, 255, 260, and the clock mult/div
units 220, 265, 270. However, 1n this embodiment the
latency-critical execution sub-core 260 1s not nested within
the latency-intolerant execution core 235. In thus mode, the
clock mult/div units 265 and 270 perform different ratios of
multiplication to enable their respective cores to run at dif-
ferent speeds.

In another slightly different mode (not shown), either of
these cores might be clock-interfaced directly to the 1/O ring
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or to the external world. In such a mode, clock mult/div units
may not be required, if separate clock signals are provided
from outside the processor.

It should be noted that the different speeds at which the
various layers of sub-core operate may be in-use, operational
speeds. It 1s known, for example in the Pentium processor,
that certain units may be powered down when not 1n use, by
reducing or halting their clock; 1n this case, the processor may
have the bulk of its core runming at 66 MHz while a sub-core
such as the FPU 1s at substantially 0 MHz. While the present
invention may be used in combination with such power-down
or clock throttling techniques, 1t 1s not limited to such cases.

Those skilled in the art will appreciate that non-integer
ratios may be applied at any of the boundaries, and that the
combinations of clock ratios between the various rings is
almost limitless, and that different baseline frequencies could
be used at the I/O ring. It 1s also possible that the clock
multiplication factors might not remain constant over time.
For example, 1n some modes, the clock multiplication applied
to the mnermost sub-core could be adjusted up and down, for
example between 3x and 1x or between 2x and Ox or the like,
when the higher frequency (and therefore higher power con-
sumption and heat generation) are not needed. Also, the pro-
cessor may be subjected to clock throttling or clock stop, 1n
whole or 1n part. Or, the I/O clock might not be a constant
frequency, 1n which case the other clocks may either scale
accordingly, or they may implement some form of adaptive
P/Q clocking scheme to maintain their desired performance
level.

FIG. 6 1llustrates somewhat more detail about one embodi-
ment of the contents o the latency-critical execution sub-core
260 of FIG. 4. (It may also be understood to illustrate the
contents of the sub-core 205 of FIG. 3 or the sub-core 255 of
FIG. 4.) The latency-tolerant execution core 210 includes
components which are not latency-sensitive, but which are
dependent only upon some level of throughput. In this sense,
the latency-tolerant components may be thought of as the
“plumbing” whose job 1s simply to provide a particular *“gal-
lons per minute” throughput, 1n which a “big pipe™ 1s as good
as a “fast tflow”.

For example, in some architectures the fetch and decode
units may not be terribly demanding on execution latency, and
may thus be put in the latency-tolerant core 210 rather than
the latency-intolerant sub-core 203, 255, 260. Likewise, the
microcode and register file may not need to be 1n the sub-core.
In some architectures (or microarchitectures), the most
latency-sensitive pieces are the arithmetic/logic functions and
the cache. In the mode shown 1n FIG. 6, only a subset of the
arithmetic/logic functions are deemed to be suificiently
latency-sensitive that 1t 1s warranted to put them into the
sub-core, as illustrated by critical ALU 300.

In some embodiments, the critical ALU functions include
adders, subtractors, and logic units for performing AND, OR,
and the like. In some embodiments which use index register
addressing, such as the Intel Architecture, the critical ALU
functions may also include a small, special-purpose shifter
for doing address generation by scaling the index register. In
some embodiments, the register file may reside 1in the latency -
critical execution core, for design convenience; the faster the
core section the register {ile 1s 1n, the fewer ports the register
file needs.

The functions which are generally more latency-sensitive
than the plumbing are those portions which are of a recursive
nature, or those which include a dependency chain. Execution
1s a prime example of this concept; execution tends to be
recursive or looping, and includes both false and true data
dependencies both between and within 1terations and loops.
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Current art 1n high performance computer design (e.g. the
Pentium Pro processor) already exploits most of the readily
exploitable parallelism 1n a large class of important low P
programs. It becomes extraordinarily difficult or even practi-
cally impossible to greatly increase P for these programs. In 5
this case there 1s no alternative to reducing the average latency
if 1t1s desired to build a processor to run these programs faster.

On the other hand, there are certain other functions such as
for example, 1nstruction decode, or register renaming. While
it 1s essential that these functions are performed, current art 10
has 1t arranged that the lapsed time for performing these
functions may have an effect on performance only when a
branch has been miss predicted. A branch 1s miss predicted
typically once in fifty instructions on average. Hence one
nanosecond longer to do decoding or register renaming pro- 15
vides the equivalent of V50 nanoseconds 1ncrease 1n average
istruction execution latency while one nanosecond increase
in the time to execute an instruction increases the average
istruction latency by one nanosecond. We may conclude that
the time 1t takes to decode instructions or rename registers, for 20
example, 1s significantly less critical than the time 1t takes to
execute 1structions.

There are still other functions that must be performed 1n a
processor. Many of these functions are even more highly
leveraged than decoding and register renaming. For these 25
functions 1 nsec increase 1n the time to perform them may add
even less than 50 nanoseconds to the average execution
latency. We may conclude that the time it takes to do these
functions 1s even less critical.

As shown, the other ALU functions 305 can be relegated to 30
the less speedy core 210. Further, in the mode shown 1n FIG.

6, only a subset of the cache needs to be iside the sub-core.
As 1llustrated, only the data storage portion 310 of the cache
1s 1nside the sub-core, while the hit/miss logic and tags are 1n
the slower core 210. This 1s 1n contrast to the conventional 35
wisdom, which 1s that the hit/miss signal 1s needed at the same
time as the data. A recent paper implied that the hit/miss
signal 1s the limiting factor on cache speed (Austin, Todd M,
“Streamlining Data Cache Access with Fast Address Calcu-
lation”, Dionisi10s N. Pneumatikatos, Giandinar S. Sohi, Pro- 40
ceedings of the 22nd Annual International Symposium on
Computer Architecture, Jun. 18-24, 1993, Session 8, No. 1,
page 5). Unfortunately, hit/miss determination 1s more diifi-
cult and more time-consuming than the simple matter of
reading data contents from cache locations. 45

Further, the instruction cache (not shown) may be entirely
in the core 210, such that the cache 310 stores only data. The
instruction cache (Icache) 1s accessed speculatively. It 1s the
business of branch prediction to predict where the tlow of the
program will go, and the Icache 1s accessed on the basis of that 50
prediction. Branch prediction methods commonly used today
can predict program tlow without ever seeing the instructions
in the Icache. If such a method 1s used, then the Icache 1s not
latency-sensitive, and becomes more bandwidth-constrained
than latency-constrained, and can be relegated to a lower 55
clock frequency portion of the execution core.

The branch prediction 1itself could be latency-sensitive, so
it would be a good candidate for a fast cycle time 1n one of the
inner sub-core sections.

At first glance, one might think that the innermost sub-core 60
205, 255, or 260 of FIG. 6 would therefore hold the data
which 1s stored at the top of the memory lierarchy of FIG. 2,
that 1s, the data which 1s stored in the registers. However, as 1s
illustrated 1n FIG. 6, the register file need not be contained
within the sub-core, but may, instead, be held 1in the less 65
speedy portion of the core 210. In the mode of FIGS. 3 or 4,
the register file may be stored 1n any of the core sections 203,
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210, 255, 260, as suits the particular embodiment chosen. As
shown in FI1G. 6, the reason that the register file 1s not required
to be within the innermost core 1s that the data which result
from operations performed 1n the critical ALU 300 are avail-
able on a bypass bus 313 as soon as they are calculated. By
appropriate operation of multiplexors (in any conventional
manner), these data can be made available to the critical ALU
300 1n the next clock cycle of the sub-core, far sooner than
they could be written to and then read from the register file.

Similarly, 11 data speculation i1s permitted, that 1s, 11 the
critical ALU 1s allowed to perform calculations upon oper-
ands which are not yet known to be valid, portions of the data

cache need not reside within the innermost sub-core. In this
mode, the data cache 310 holds only the actual data, while the
hit/miss logic and cache tags reside in a slower portion 210 of
the core. In this mode, data from the data cache 310 are
provided over an 1mner bus 320 and muxed into the critical
ALU, and the critical ALU performs operations assuming
those data to be valid.

Some number of clock cycles later, the hit/miss logic or the
tag logic 1n the outer core may signal that the speculated data
1s, 1n fact, invalid. In this case, there must be a means provided
to recover from the speculative operations which have been
performed. This includes not only the specific operations
which used the mcorrect, speculated data as input operands,
but also any subsequent operations which used the outputs of
those specific operations as inputs. Also, the erroneously
generated outputs may have subsequently been used to deter-
mine branching operations, such as 1f the erroneously gener-
ated output 1s used as a branch address or as a branch condi-
tion. If the processor performs control speculation, there may
have also been errors 1n that operation as well.

The present mvention provides a replay mechanism for
recovering from data speculation upon data which ultimately
prove to have been incorrect. In one mode, the replay mecha-
nism may reside outside the innermost core, because it 1s not
terribly latency-critical. While the replay architecture 1s
described 1n conjunction with a multiple-clock-speed execu-
tion engine which performs data speculation, 1t will be appre-
ciated that the replay architecture may be used with a wide
variety ol architectures and micro-architectures, including
those which perform data speculation and those which do not,
those which perform control speculation and those which do
not, those which perform 1n-order execution and those which
perform out-of-order execution, and so forth.

FIG. 7 illustrates one implementation of such a replay
architecture, generally showing the data flow of the architec-
ture. First, an instruction 1s fetched into the instruction cache.

From the instruction cache, the mstruction proceeds to a
renamer such as a register alias table. In sophisticated
microarchitectures which permait data speculation and/or con-
trol speculation, 1t 1s highly desirable to decouple the actual
machine from the specific registers indicated by the instruc-
tion. This 1s especially true 1n an architecture which 1s regis-
ter-poor, such as the Intel Architecture. Renamers are well
known, and the details of the renamer are not particularly
germane to an understanding of the present invention. Any
conventional renamer will suffice. It 1s desirable that i1t be a
single-valued and single-assignment renamer, such that each
instance of a given instruction will write to a different register,
although the instruction specifies the same register. The
renamer provides a separate storage location for each difier-
ent value that each logical register assumes, so that no such
value of any logical register 1s prematurely lost (1.e. before the
program 1s through with that value), over a well-defined
period of time.




US RE45,487 E

9

From the renamer, the instruction proceeds to an optional
scheduler such as a reservation station, where instructions are
reordered to improve execution efficiency. The scheduler 1s
able to detect when 1t 1s not allowed to 1ssue further mstruc-
tions. For example, there may not be any available execution
slots into which a next instruction could be 1ssued. Or, another
unit may for some reason temporarily disable the scheduler.
In some embodiments, the scheduler may reside in the
latency-critical execution core, i the particular scheduling
algorithm can schedule only single latency generation per
cycle, and 1s therefore tied to the latency of the critical ALU
functions.

From the renamer or the optional scheduler, the instruction
proceeds to the execution core 2035, 210, 2355, 260 (indirectly
through a multiplexor to be described below), where 1t 1s
executed. After or simultaneous with its execution, an address
associated with the instruction 1s sent to the translation looka-
side buffer (TLB) and cache tag lookup logic (TAG). This
address may be, for example, the address (physical or logical)
of a data operand which the instruction requires. From the
TLB and TAG logic, the physical address referenced and the
physical address represented in the cache location accessed
are passed to the hit/miss logic, which determines whether the
cache location accessed 1n fact contained the desired data.

In one mode, if the mstruction being executed reads
memory, the execution logic gives the highest priority to
generating perhaps only a portion of the address, but enough
that data may be looked up 1n the high speed data cache. In
this mode, this partial address 1s used with the highest priority
to retrieve data from the data cache, and only as a secondary
priority 1s a complete virtual address, or in the case of the Intel
Architecture, a complete linear address, generated and sent to
the TLB and cache TAG lookup logic.

Because the critical ALU functions and the data cache are
in the mnermost sub-core—or are at least in a portion of the
processor which runs at a higher clock rate than the TLB and
TAG logic and the hit/miss logic—some data will have
already been obtained from the data cache and the processor
will have already speculatively executed the instruction
which needed that data, the processor having assumed the
data that was obtained to have been correct, and the processor
likely having also executed additional mstructions using that
data or the results of the first speculatively executed instruc-
tion.

Therefore, the replay architecture includes a checker unit
which recerves the output of the lit/miss logic. If a miss 1s
indicated, the checker causes a “replay” of the offending
istruction and any which depended on 1t or which were
otherwise incorrect as a result of the erroneous data specula-
tion. When the instruction was handed from the reservation
station to the execution core, a copy of 1t was forwarded to a
delay unit which provides a delay latency which matches the
time the instruction will take to get through the execution
core, TLB/TAG, and hit/miss units, so that the copy arrives at
the checker at about the same time that the hit/miss logic tells
the checker that the data speculation was incorrect. In one
mode, this 1s roughly 10-12 clocks of the 1nner core. In FIG.
7, the delay unit 1s shown as being outside the checker. In
other embodiments, the delay unit may be incorporated as a
part of the checker. In some embodiments, the checker may
reside within the latency-critical execution core, if the check-
ing algorithm 1s tied to the critical ALU speed.

When the checker determines that data speculation was
incorrect, the checker sends the copy of the instruction back
around for a “replay”. The checker forwards the copy of the
instruction to a builer unit. It may happen as an unrelated

event that the TLB/TAG unit informs the butter that the TLB/
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TAG 1s 1nserting a manufactured instruction in the current
cycle. This mnformation 1s needed by the bufler so the butfer
knows not to reinsert another instruction 1n the same cycle.
Both the TLB/TAG and the buifer also inform the scheduler
when they are inserting 1nstructions, so the scheduler knows
not to dispatch an instruction in that same cycle. These control
signals are not shown but will be understood by those skilled
in the art.

The butler unit provides latching of the copied instruction,
to prevent 1t from getting lost if 1t cannot immediately be
handled. In some embodiments, there may be conditions
under which it may not be possible to reinsert replayed
instructions immediately. In these conditions, the buffer holds
them—perhaps a large number of them—until they can be
reinserted. One such condition may be that there may be some
higher priority function that could claim execution, such as
when the TLB/TAG unit needs to isert a manufactured
instruction, as mentioned above. In some other embodiments,
the butler may not be necessary.

Earlier, 1t was mentioned that the scheduler’s output was
provided to the execution core indirectly, through a multi-
plexor. The function of this multiplexor 1s to select among
several possible sources of 1nstructions being sent for execu-
tion. The first source 1s, of course, the scheduler, 1n the case
when 1t 1s an original instruction which 1s being sent for
execution. The second source 1s the bulfer unit, 1in the case
when 1t 1s a copy of an nstruction which 1s being sent for
replay execution. A third source 1s 1llustrated as being from
the TLB/TAG unait; this permits the architecture to manufac-
ture “fake instructions” and inject them into the instruction
stream. For example, the TLB logic or TAG logic many need
to get another unit to do some work for them, such as to read
some data from the data cache as might be needed to evict that
data, or for refilling the TLB, or other purposes, and they can
do this by generating instructions which did not come from
the real mstruction stream, and then nserting those nstruc-
tions back at the multiplexor iput to the execution core.

The mux control scheme may, in one mode, include a
priority scheme wherein a replay instruction has higher pri-
ority than an onginal nstruction. This 1s advantageous
because a replay instruction 1s probably older than the origi-
nal imstruction in the original macroinstruction flow, and may
be a “blocking™ instruction such as if there 1s a true data
dependency.

It 1s desirable to get replayed instructions finished as
quickly as possible. As long as there are unresolved 1nstruc-
tions sent to replay, new instructions that are dispatched have
a fairly high probability of being dependent on something
unresolved and therefore of just getting added to the list of
instructions that need to be replayed. As soon as 1t 1s neces-
sary to replay one 1nstruction, that one instruction tends to
grow a long train of instructions behind 1t that follows 1t
around. The processor can quickly get in a mode where most
instructions are getting executed two or three times, and such
a mode may persist for quite a while. Therelfore, resolving
replayed 1nstructions 1s very much preferable to introducing
new 1nstructions.

Each new 1instruction introduced while there are things to
replay 1s a gamble. There 1s a certain probability the new
instruction will be independent and some work will get done.
On the other hand, there 1s a certain probability that the new
instruction will be dependent and will also need to be
replayed. Worse, there may be a number of instructions to
tollow that will be dependent on the new instruction, and all
of those will have to be replayed, too, whereas 11 the machine
had waited until the replays were resolved, then all of these
instructions would not have to execute twice.




US RE45,487 E

11

In one mode, a manufactured instruction may have higher
priority than a replay mstruction. This 1s advantageous
because these manufactured instructions may be used for
critically important and time-sensitive operations. One such
sensitive operation 1s an eviction. After a cache miss, new data
will be coming from the L1 cache. When that data arrives, it
must be put 1n the data cache (LL0) as quickly as possible. IT
that 1s done, the replayed load will just meet the new data and
will now be successtul. If the data 1s even one cycle late
getting the data there, the replayed load will pass again too
soon and must again be replayed. Unfortunately, the data
cache location where the processor 1s going to put the data 1s
now holding the one and only copy of some data that was
written some time ago. In other words, the location 1s “dirty”™.
It 1s necessary to read the dirty data out, to save it before the
new data arrives and 1s written 1n 1ts place. This reading of the
old data 1s called “evicting” the data. In some embodiments,
there 1s just exactly enough time to complete the eviction
before starting to write the new data 1n 1ts place. The eviction
1s done with one or more manufactured instructions. I1 they
are held up for even one cycle, the eviction does not occur 1n
time to avoid the problem described above, and therefore they
must be given the highest priority.

The replay architecture may also be used to enable the
processor to 1n effect “stall” without actually slowing down
the execution core or performing clock throttling or the like.
There are some circumstances where 1t would be necessary to
stall the frontend and/or execution core, to avoid losing the
results of 1nstructions or to avoid other such problems. One
example 1s where the processor’s backend temporarily runs
out of resources such as available registers into which to write
execution results. Other examples include where the external
bus 1s blocked, an upper level of cache 1s busy being snooped
by another processor, a load or store crosses page boundary,
an exception occurs, or the like.

In such circumstances, rather than halt the frontend or
throttle the execution core, the replay architecture may very
simply be used to send back around for replay all instructions
whose results would be otherwise lost. The execution core
remains functioning at full speed, and there are no additional
signal paths required for stalling the frontend, beyond those
otherwise existing to permit the multiplexor to give priority to
replay instructions over original instructions.

Other stall-like uses can be made of the replay architecture.
For example, assume that a store address instruction misses in
the TLB. Rather than saving the linear address to process after
getting the proper entry 1n the TLB, the processor can just
drop 1t on the tloor and request the store address instruction to
be replayed. As another example, the Page Miss Handler (not
shown) may be busy. In this case the processor does not even
remember that 1t needs to do a page walk, but finds that out
over again when the store address comes back.

Most cases of running out of resources occur when there 1s
a cache miss. There could well be no fill buffer left, so the
machine can’t even request an L1 lookup. Or, the L1 may be
busy. When a cache miss happens, the machine MAY ask for
the data from a higher level cache and MAY just forget the
whole thing and not do anything at all to help the situation. In
cither case, the load (or store address) instruction 1s replayed.
Unlike a more conventional architecture, the present mven-
tion does not NEED to remember this instruction in the
memory subsystem and take care of it. The processor will do
something to help 1t if 1t has the resources to do something. It
not, 1t may do nothing at all, not even remember that such a
instruction was seen by the memory subsystem. The memory
subsystem, by 1tself, will never do anything for this imnstance
of the instruction. When the instruction executes again, then 1t
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1s considered all over again. In the case of a store address
instruction, the instruction has delivered its linear address to
the memory subsystem and 1t doesn’t want anything back. A
more conventional approach might be to say that this instruc-
tion 1s done, and any problems from here on out are memory
subsystem problems, in which case the memory subsystem
must then store information about this store address until 1t
can get resources to take care of it. The present approach 1s
that the store address replays, and the memory subsystem
does not have to remember 1t at all. Here 1t 1s a little more clear
that the processor 1s replaying the store address specifically
because of 1nability to handle 1t 1n the memory subsystem.

In one mode, when an 1nstruction gets replayed, all depen-
dent instructions also get replayed. This may include all those
which used the replayed instruction’s output as input, all
those which are down control tlow branches picked according
to the replayed 1nstruction, and so forth.

The processor does not replay 1nstructions merely because
they are control flow dependent on an instruction that
replayed. The thread of control was predicted. The processor
1s always following a predicted thread of control and never
necessarily knows during execution if it 1s going the right way
or not. IT a branch gets bad input, the branch instruction 1tself
1s replayed. This 1s because the processor cannot reliably
determine from the branch if the predicted thread of control 1s
right or not, since the input data to the branch was not valid.
No other instructions get replayed merely because the branch
got bad data. Eventually—possibly after many replays—the
branch will be correctly executed. At this time, 1t does what all
branches do—it reports 11 the predicted direction taken for
this branch was correct or not. If it was correctly predicted,
everything goes on about 1ts business. If 1t was not correctly
predicted, then there 1s simply a branch misprediction; the
fact that this branch was replayed any number of times makes
no difference. A mispredicted branch cannot readily be
repaired with a replay. A replay can only execute exactly the
same 1nstructions over again. If a branch was mispredicted,
the processor has likely done many wrong instructions and
needs to actually execute some completely different mnstruc-
tions.

To summarize: A instruction 1s replayed either: 1) because
the instruction itself was not correctly processed for any
reason, or 2) if the input data that this instruction uses 1s not
known to be correct. Data 1s known to be correct 11 1t 1s
produced by anstruction that is 1tself correctly processed and
all of 1ts 1nput data 1s known to be correct. In this definition,
branches are viewed not as having anything to do with the
control flow but as data handling instructions which simply
report interesting things to the front end of the machine but do
not produce any output data that can be used by any other
instruction. Hence, the correctness of any other instruction
cannot have anything to do with them. The correctness of the
control flow 1s handled by a higher authority and 1s not 1n the
purview ol mere execution and replay.

FIG. 8 illustrates more about the checker unit. Again, a
instruction 1s replayed 1f: 1) 1t was not processed correctly, or
2) 11 1t used mput data that 1s not known to be correct. These
two conditions give a good division for discussing the opera-
tion of the checker unit. The first condition depends on every-
thing that needs to be done for the instruction. Anything 1n the
machine that needs to do something to correctly execute the
instruction 1s allowed to goof and to signal to the checker that
it gooled. The first condition 1s therefore talking about signals
that come 1nto the checker, potentially from many places, that
say, “I goofed on this instruction.”

In some embodiments, the most common goot is the failure
ol the data cache to supply the correct result for a load. This 1s
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signaled by the hit/miss logic. Another common goof 1s fail-
ure to correctly process a store address; this would typically
result from a TLB miss on a store address, but there can be
other causes, too. In some embodiments, the L1 cache may
deliver data (which may go into the L0 cache and be used by
instructions) that contains an ECC error. This would be sig-
naled quickly, and then corrected as time permits.

In some fairly rare cases, the adder cannot correctly add
two numbers. This 1s signaled by the flag logic which keeps
tabs on the adders. In some other rare cases, the logic unit fails
to get the correct answer when doing an AND, XOR, or other
simple logic operation. These, too, are signaled by the tlag
logic. In some embodiments, the floating point unit may not
get the correct answer all of the time, 1n which case 1t will
signal when it goots a floating point operation. In of principle,
you could use this mechanism for many types of goofs. It
could be used for algorithmic goofs and 1t could even be used
for hardware errors (circuit goofs). Regardless the cause,
whenever the processor doesn’t do exactly what 1t 1s supposed
to do, and the gooft 1s detected, the processor’s various units
can request a replay by signaling to the checker.

The second condition which causes replays—whether data
1s known to be correct—is entirely the responsibility of the
checker 1tself. The checker contains the official list of what
data 1s known to be correct. It 1s what 1s sometimes called the
“scoreboard”. It 1s the checker’s responsibility to look at all of
the input data for each mstruction execution nstance and to
determine if all such 1nput data 1s known to be correct or not.
It 1s also the checker’s responsibility to add 1t all up for each
instruction execution istance, to determine 11 the result pro-
duced by that instruction execution mstance can therefore be
deemed to be “known to be correct”. If the result of a instruc-
tion 1s deemed “known to be correct”, this 1s noted on the
scoreboard so the processor now has new, known-correct data
that can be the mput for other instructions.

FIG. 8 illustrates one exemplary checker which may be
employed in practicing the architecture of the present mven-
tion. Because the details of the checker are not necessary in
order to understand the ivention, a simplified checker is
1llustrated to show the requirements for a checker suilicient to
make the replay system work correctly.

In this embodiment, one instruction 1s processed per cycle.
After an 1nstruction has been executed, 1t 1s represented to the
checker by signals OP1, OP1V, OP2, OPV2, DST, and a
latency vector which was assigned to the uop by the decoder
on the basis of the opcode. The signals OP1V and OP2V
indicate whether the mstruction includes a first operand and a
second operand, respectively. The signals OP1 and OP2 1den-
tify the physical source registers of the first and second oper-
ands, respectively, and are received at read address ports RA1
and RA2 of the scoreboard. The signal DST identifies the
physical destination register where the result of the mnstruc-
tion was written.

The latency vector has all 0’s except a 1 1n one position.
The position of the 1 denotes the latency of this 1nstruction.
An nstruction’s latency 1s how many cycles there are after the
instruction begins execution before another mstruction can
use 1ts result. The scoreboard has one bit of storage for each
physical register in the machine. The bit 1s O 1f that register 1s
not known to contain correct data and 1t 1s 1 11 that register 1s
known to contain correct data.

The register renamer, described above, allocates these reg-
isters. At the time a physical register 1s allocated to hold the
result ol some instruction, the renamer sends the register
number to the checker as multiple-bit signal CLEAR. The
scoreboard sets to 0 the scoreboard bit which 1s addressed by
CLEAR.
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The one or two register operands for the instruction cur-
rently being checked (as indicated by OP1 and OP2) are
looked up 1n the scoreboard to see if they are known to be
correct, and the results are output as scoreboard values SV1
and SV2, respectively. An AND gate 350 receives the first
scoreboard value SV1 and the first operand valid signal
OP1V. Another AND gate 355 similarly receives signals SV2
and OP2V for the second operand. The operand valid signals
OP1V and OP2V cause the scoreboard values SV1 and SV2

to be 1gnored if the mnstruction does not actually require those
respective operands.

The outputs of the AND gates are provided to NOR gate
360, along with an external replay request signal. The output
of the NOR gate will be false if either operand 1s required by
the instruction and 1s not known to be correct, or 1f the external
replay request signal 1s asserted. Otherwise the output will be
true. The output of the NOR gate 360 1s the checker output

INSTRUCTION OK. If it 1s true, the 1nstruction was com-

pleted correctly and 1s ready to be considered for retirement.
If 1t 1s false, the instruction must be replayed.
A delay line receives the destination register identifier DST

and the checker output INSTRUCTION OK information for
the instruction currently being checked. The simple delay line
shown 1s constructed of registers (single cycle delays) and
muxes. It will be understood that each register and mux 1s a
multiple-bit device, or represents multiple single-bit devices.
Those skilled 1n the art will understand that various other
types of delay lines, and therefore different formats of latency

vectors, could be used.

The DST and INSTRUCTION OK information 1s inserted
in one location of the delay line, as determined by the value of
the latency vector. This information 1s delayed for the
required number of cycles according to the latency vector,
and then 1t 1s applied to the write port WP of the scoreboard.
The scoreboard bit corresponding to the destination register
DST for the mstruction 1s then written according to the value
of INSTRUCTION OK. A value of 1 indicates that the
instruction did not have to be replayed, and a value of 0
indicates that the mstruction did have to be replayed, meaning
that 1ts result data 1s not known to be correct.

In this design, 1t 1s assumed that no instruction has physical
register zero as a real destination or as a real source. If there 1s
no valid instruction 1n some cycle, the latency vector for that
cycle will be all zeros. This will effectively enter physical
register zero with the longest possible latency into the delay
line, which 1s harmless. Similarly, an instruction that docs not
have a real destination register will specily a latency vector of
all zeros. It 1s further assumed that at startup, this unit runs for
several cycles with no valid instructions arriving, so as to fill
the delay line with zeros betfore the first real mstruction has
been allocated a destination register, and hence betfore the
corresponding bit 1n the scoreboard has been cleared. The
scoreboard needs no additional initialization.

Potentially, this checker checks one instruction per cycle
(but other embodiments are of course feasible). The cycle 1n
which an instruction 1s checked 1s a fixed number of cycles
alter that istruction began execution and captured the data
that 1t used for 1ts operands. This number of cycles later 1s
suificient to allow the EXTERNAL REPLAY REQUEST
signal for the instruction to arrive at the checker to be pro-
cessed along with the other information about the instruction.
The EXTERNAL REPLAY REQUEST signal 1s the OR of all
signals from whatever parts of the machine may produce
replay requests that indicate that the instruction was not pro-
cessed correctly. For example 1t may indicate that data
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returned from the data cache may not have been correct, for
any of many reasons, a good example being that there was a
cache miss.

It should be appreciated by the skilled reader that the par-
ticular partitionings described above are 1llustrative only. For
example, although 1t has been suggested that certain features
may be relegated to the outermost core 210, it may be desir-
able that certain of these reside in a mid-level portion of the
core, such as 1n the latency-intolerant core 255 of FIG. 4,
between the outermost core 210 and the innermost core 260.
It should also be appreciated that although the invention has
been described with reference to the Intel Architecture pro-
cessors, 1t 1s useful 1n any number of alternative architectures,
and with a wide variety of microarchitectures within each.

While the invention has been described with reference to
specific modes and embodiments, for ease of explanation and
understanding, those skilled 1n the art will appreciate that the
invention 1s not necessarily limited to the particular features
shown herein, and that the mnvention may be practiced 1n a
variety of ways which fall under the scope and spirit of this

disclosure. The invention 1s, therefore, to be afforded the
tullest allowable scope of the claims which follow.

We claim:

[1. A microprocessor comprising:

a first execution core section operating at a first clock
frequency;

a second execution core section operating at a second clock
frequency which 1s different than the first clock fre-
quency; and

an 1I/0 ring clocked to perform 1nput/output operations at
an [/O frequency.}

[2. The microprocessor of claim 1, wherein the second
execution core section operates at least 1n part concurrently
with the first execution core section.}

[3. The microprocessor of claim 1, wherein:

the second execution core section includes a data cache and
critical arithmetic logic unit (ALU) functions; and

the first execution core section includes one or more of an
instruction fetch, a decode unit, and non-critical AL U
functions.]

[4. The microprocessor of claim 3, wherein the critical

ALU functions comprise one or more of:

an adder; or

a logic unit to perform AND and OR operations.}

[S. The microprocessor of claim 4, wherein the critical
ALU functions further comprise:

an address generation index register shifter.}

[6. The microprocessor of claim 3, wherein the second
execution core section further includes a register file.}

[7. The microprocessor of claim 3, wherein the first execu-
tion core section further includes a register file.}

[8. The microprocessor of claim 7, wherein:

the I/O frequency 1s ditfferent than the first and second
clock frequencies.]

[9. The microprocessor of claim 8, further comprising:

a first clock divider/multiplier coupled to the I/0 ring and
the first execution core section to divide or multiply the
I/O clock frequency to generate the first clock fre-
quency; and

a second clock divider/multiplier coupled to the first and
second execution core sections to divide or multiply the
first clock frequency to generate the second clock fre-
quency.]

[10. The microprocessor of claim 1, wherein the micropro-

cessor comprises a single, monolithic chip.}
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[11. The microprocessor of claim 1, wherein the second
execution core section 1s disposed within the first execution
core section.}

[12. The microprocessor of claim 11, wherein the first
execution core section is disposed within the I/O ring ]

[13. The microprocessor of claim 1, wherein the first
execution core section and the second execution core section
are located on the same semiconductor die.]

[14. The microprocessor of claim 1, wherein the second
clock frequency is a multiple N of the first clock frequency.}

[15. The microprocessor of claim 1, wherein the second
clock frequency is faster than the first clock frequency.]

[16. The microprocessor of claim 1, wherein the first
execution core section 1s more tolerant of instruction latency
than the second execution core section.]

[17. The microprocessor of claim 1, further comprising:

a replay architecture, the replay architecture causing an

instruction to be re-executed.}

[18. The microprocessor of claim 17, wherein the instruc-
tion 1s re-executed 11 the mstruction was incorrectly processed
because of erroneous data speculation.}

[19. The microprocessor of claim 17, wherein an instruc-
tion depending on the instruction that was incorrectly pro-
cessed because of erroneous data speculation 1s also re-ex-
ecuted.]

[20. The microprocessor of claim 17, wherein the instruc-
tion 1s re-executed 1f:

the 1nstruction was not correctly processed for any reason;

or

input data used by the instruction i1s not known to be cor-

rect.}

[21. The microprocessor of claim 17, wherein the replay
architecture includes:

hit/miss logic to determine whether data speculation for an

instruction 1s correct;

a checker unit to recerve the output of the hit/miss logic and

to direct re-execution of the instruction; and

a delay unit, the delay unit to provide a copy of an instruc-

tion to the checker unit at substantially the same time as
the checker unit receiwves the output of the hit/miss
logic.]

[22. The microprocessor of claim 21, wherein the delay
unit is incorporated as part of the checker.]

[23. The microprocessor of claim 21, wherein the checker
is located within the second execution core section. ]

[24. A method comprising:

performing an I/O operation 1n an I/O ring of a micropro-

cessor at a first clock frequency to access a data 1tem
from outside the microprocessor;

responsive to the I/O operation, performing a first execu-

tion operation upon the data item in a first execution
sub-core of the microprocessor at a second clock fre-
quency; and

responsive to the first execution operation, performing a

second execution operation 1n a second execution sub-
core of the microprocessor at a third clock frequency, the
third clock frequency being different than the second
clock frequency.]

[25. The method of claim 24, wherein an execution opera-
tion performed at the third clock frequency is performed at
least 1n part concurrently with an execution operation per-
formed at the second clock frequency.}

[26. The method of claim 24, further comprising:

multiplying the first clock frequency to generate the second

clock frequency; and

multiplying the second clock frequency to generate the

third clock frequency.]
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[27. The method of claim 24, wherein:

execution operations performed at the second clock fre-
quency include one or more of fetch, decode, and non-
critical arithmetic logic unit (ALU) functions; and

execution operation performed at the third clock frequency
include critical ALU functions.]

[28. The method of claim 24, further comprising re-execut-
ing an nstruction 1 the mstruction was icorrectly processed
because of erroneous data speculation.}

[29. The method of claim 28, further comprising re-execut-
ing an instruction that depends on the instruction that was
incorrectly processed.]

[30. The method of claim 24, further comprising re-execut-
ing an instruction 1if:

the 1nstruction was not correctly processed for any reason;
or

input data used by the mstruction 1s not known to be cor-
rect.}

[31. A method comprising:

inputting an mstruction through operation of a first portion
ol a microprocessor at a first clock frequency;

performing one or more fetch functions or decode func-
tions associated with the instruction through operation
of a second portion of the microprocessor at a second
clock frequency; and

performing one or more critical arithmetic logic unit
(ALU) functions associated with the instruction through
operation of a third portion of the microprocessor at a
third clock frequency, the second clock frequency being
different than the third clock frequency.]

[32. The method of claim 21, wherein a function performed
through operation of the second portion of the microproces-
sor at the second clock frequency occurs at least 1n part
concurrently with a function performed through operation of
the third portion of the microprocessor at the third clock
frequency.]

[33. The method of claim 31, wherein the second portion of
the microprocessor comprises a first execution core.]

[34. The method of claim 33, wherein the third portion of
the microprocessor comprises a second execution core.]

[35. The method of claim 34, wherein the first portion of
the microprocessor comprises an I/O section of the micropro-
cessor.]

[36. A microprocessor comprising:

a plurality of execution core sections, each execution core
section operating at a different clock frequency, the plu-
rality of execution core sections operating at least 1n part
concurrently with each other;

an I/0 ring clocked to perform 1nput/output operations at
an 1/O frequency.}

[37. The microprocessor of claim 36, wherein:

a first execution core section of the plurality of execution
core sections 1mcludes one or more of nstruction fetch
units, instruction decode units, and non-critical AL U
functions; and

a second execution core section of the plurality of execu-
tion] core sections includes a data cache and one or more
critical arithmetic logic unit (ALU) functions.

[38. The microprocessor of claim 37, wherein the critical

ALU functions comprise one or more of:

an adder; or

a logic unit for performing AND and OR operations.]

[39. The microprocessor of claim 37, wherein the critical
ALU functions further comprise:]

an address generation index register shifter.

[40. The microprocessor of claim 37, wherein the second
execution core section further includes a register file.}
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[41. The microprocessor of claim 37, wherein the first
execution core section further includes a register file.}

[42. The microprocessor of claim 36, further comprising a
plurality of clock divider/multipliers, each clock divider/mul-
tiplier to divide or multiple a first clock frequency to provide
a second clock frequency to an execution core section.}

[43. The microprocessor of claim 36, wherein the micro-
processor comprises a single, monolithic chip.}

[44. The microprocessor of claim 36, wherein a first execu-
tion core section of the plurality of execution core sections 1s
disposed within the I/O ring.}

[45. The microprocessor of claim 44, wherein each remain-
ing execution core section of the plurality of execution core
sections 1s disposed to be wholly within another execution
core section.}

[46. The microprocessor of claim 44, wherein each of the
execution core sections 1s more tolerant of instruction latency
than any execution core sections disposed within it.]

[47. The microprocessor of claim 36, wherein each of the
plurality of execution core sections 1s located on the same
semiconductor die.]

[48. The microprocessor of claim 47, wherein the replay
architecture includes:

hit/miss logic to determine whether data speculation for an

instruction 1s correct;

a checker unit to recerve the output of the hit/maiss logic and

to direct re-execution of the instruction; and

a delay unit to provide a copy of an instruction to the

checker unit at substantially the same time as the checker
unit receives the output of the hit/miss logic.]

[49. The microprocessor of claim 36, further comprising:

a replay architecture causing an instruction to be re-ex-

ecuted.]

[50. The microprocessor of claim 49, wherein the instruc-
tion 1s re-executed 11 the mstruction was incorrectly processed
because of erroneous data speculation.}

[51. The microprocessor of claim 50, wherein an instruc-
tion depending on the instruction that was incorrectly pro-
cessed because of erroneous data speculation 1s also re-ex-
ecuted.]

[52. The microprocessor of claim 51, wherein the delay
unit is incorporated as part of the checker.]

[53. The microprocessor of claim 46, wherein the instruc-
tion 1s re-executed 1f:

the mstruction was not correctly processed for any reason;

or

input data used by the instruction is not known to be cor-

rect. J
54. An integrated circuit comprising:
logic to perform input/output (I/O) operations at a first

frequency;
an arithmetic logic unit (ALU) to operate at a second

frequency;

a floating-point unit (FPU) to operate at a third frequency,
the third frequency being diffevent than the second fre-
quency;

an instruction cache to cache fetched instructions;

a rvenamer unit to vename specific registers indicated by
instructions;

a scheduler unit to reorder instructions; and

a look-aside buffer to provide physical addresses of data
operands;

the instruction cache, renamer unit, scheduler unit, and
look-aside buffer to operate at a fourth frequency.

55. The integrated circuit of claim 54, whevein the third

frequency is half of the second frequency.
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56. The integrated circuit of claim 55, further comprising
an integer vegister file coupled to the ALU to operate at the
second frequency and a floating point rvegister file coupled to
the FPU to operate at the thivd frequency.

57. The integrated circuit of claim 54, wherein the fourth
frequency is the same as the second frequency.

58. The integrated circuit of claim 54, wherein the fourth
frequency is slower than the third frequency.

59. The integrated circuit of claim 54, wherein the 1/O
operations ave selected from a group consisting of buffering
data, buffering instructions, veceiving data, veceiving instruc-
tions, parity checking, and communicating with external
devices.

60. The integrated civcuit of claim 54, wherein the thivd
frequency is substantially 0 MHz when the FPU is powered
down.

61. The integrated circuit of claim 54, wherein the second
frequency is substantially 0 MHz when the ALU is powered
down.

62. An integrated civcuit comprising:

logic to perform input/output (I/O) operations at a first

clock frequency;

a first arithmetic logic unit (ALU), a first data cache, and a

fivst vegister file to operate at a second clock frequency;
and

a second ALU, a second register file, and a second data

cache to operate at a thivd clock frequency, the thirvd
clock frequency being diffevent than the second clock
frequency.

63. The integrated civcuit of claim 62, further comprising a
floating-point unit (FPU) to operate at the third clock fre-
quency.

64. The integrated circuit of claim 63, wherein the second
ALU, second data cache, second register file, and the FPU are
not nested within the first ALU, first data cache, and first
register flle.

65. The integrated circuit of claim 63, wherein the thivd
clock frequency is faster than the second clock frequency.

66. The integrated circuit of claim 62, wherein the second
clock frequency is a multiple of N of the third clock frequency.

67. The integrated circuit of claim 62, wherein the second
clock frequency is substantially 0 when the first ALU, first

20

data cache, and first register file are powered down, the thivd

clock frequency being an integer multiple of the first clock
frequency.

68. The integrated circuit of claim 62, further comprising:

d a look-aside buffer operating at a fourth circuit frequency,

the look-aside buffer having a first partition dedicated to

the first ALU, first data cache, and first register file and

a second partition dedicated to the second ALU, second
data cache, and second register file.

69. The integrated circuit of claim 62, further comprising:

a first look-aside buffer, a first renamer unit, a first sched-

uler unit, and a first hit/miss unit operating at the second
clock frequency, and

a second look-aside buffer, a second renamer unit, a second

scheduler unit, and a second hit/miss unit operating at
the third clock frequency.

/0. A microprocessor cCOmprising.

a fetch unit and a decoder to operate at a first frequency;,

a multiplier and a first shifter to operate at a second fre-

quency,; and

an adder and logic to perform AND and OR operations to

operate at a third frequency, the thivd frequency being
different from the second frequency.

71. The microprocessor of claim 70, wherein the first fre-
quency is lower than the second frequency, and wherein the
thivd frequency is an integer multiple of the second frequency.

72. The microprocessor of claim 71, wherein the third
frequency is higher than the second frequency by a factor of 2.

73. The microprocessor of claim 72, wherein the second
and thivd frequencies are not integer multiples of the first
frequency.

74. The microprocessor of claim 72, further comprising:

a register file, the register file coupled to the adder and to

the logic; and

a second shifter;

the register file and the second shifter to operate at the third

frequency.

75. The microprocessor of claim 72, further comprising an
instruction cache and a rvegister file to operate at the first

frequency.
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