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(57) ABSTRACT

A system and method for driving an AMOLED display 1s
provided. The AMOLED display includes a plurality of pixel
circuits. A voltage-programming scheme, a current-program-
ming scheme or a combination thereot 1s applied to drive the
display. Threshold shift information, and/or voltage neces-
sary to obtain hybrid driving circuit may be acquired. A data
sampling may be implemented to acquire a current/voltage
relationship. A feedback operation may be implemented to
correct the brightness of the pixel.
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VOLTAGE-PROGRAMMING SCHEME FOR
CURRENT-DRIVEN AMOLED DISPLAYS

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS REFERENCE TO RELATED
APPLICATIONS

This 1s a continuation of U.S. patent application Ser. No.
11/5°71,480, which 1s a national stage application of interna-
tional application no. PCT/CA2005/001007, filed Jun. 28,

2003, which claims the benefit of and prionty to Canadian
Patent Application No. 2,472,671, filed on Jun. 29, 2004, each

of these applications being incorporated herein by reference
1n 1ts entirety.

FIELD OF INVENTION

The present invention relates to a display technique, and
more specifically to technology for driving pixel circuits.

BACKGROUND OF THE INVENTION

Active matrix organic light emitting diode (AMOLED)
displays are well known 1n the art. The AMOLED displays

have been increasingly used as a flat panel 1n a wide variety of
tools.

The AMOLED displays are classified as either a voltage-
programmed display or a current-programmed display. The
voltage-programmed display 1s driven by a voltage-pro-
grammed scheme where data 1s applied to the display as a
voltage. The current-programmed display 1s driven by a cur-
rent-programmed scheme where data 1s applied to the display
as a current.

The advantage of the current-programming scheme 1s that
it can facilitate pixel designs where the brightness of the pixel
remains more constant over time than with voltage program-
ming. However, the current-programming requires longer
time of charging capacitors associated with the column.

Theretfore, there 1s a need to provide a new scheme for
driving a current-driven AMOLED display, which ensures
high speed and high quality.

SUMMARY OF THE INVENTION

The present invention relates to a system and method of
driving a pixel circuit in an AMOLED display.

The system and method of the present invention uses Volt-
age-Programming Scheme For Current-Driven AMOLED
Displays.

In accordance with an aspect of the present invention there
1s provided a system for driving a display which includes a
plurality of pixel circuits, each having a plurality of thin film
transistors (TFTs) and an organic light emitting diode
(OLED), which includes: a voltage driver for generating a
voltage to program the pixel circuit; a programmable current
source for generating a current to program the pixel circuit;
and a switching network for selectively connecting the data
driver or the current source to one or more pixel circuits.

In accordance with a further aspect of the present invention
there 1s provided a system for driving a pixel circuit having a
plurality of thin film transistors (ITFTs) and an organic light
emitting diode (OLED), which includes: a pre-charge con-
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2

troller for pre-charging and discharging a data node of the
pixel circuit to acquire threshold voltage information of the
TFT from the data node; and a hybrid driving circuit fo
programming the pixel circuit based on the acquired thresh-
old voltage information and video data information displayed
on the pixel circuit.

In accordance with a further aspect of the present invention
there 1s provided a system for driving a pixel circuit having a
plurality of thin film transistors (ITFTs) and an organic light
emitting diode (OLED), which includes: a sampler for sam-
pling, from a data node of the pixel circuit, a voltage required
to program the pixel circuit; and a programming circuit for
programming the pixel circuit based on the sampled voltage
and video data information displayed on the pixel circuit.

In accordance with a further aspect of the present invention
there 1s provided a method of driving a pixel circuit having a
plurality of thin film transistors (ITFTs) and an organic light
emitting diode (OLED), which includes the steps of: selecting
a pixel circuit and pre-charging a data node of the pixel
circuit; allowing the pre-charged data node to be discharged;
extracting a threshold voltage of the TF'T through the dis-
charging step; and programming the pixel circuit, including
compensating a programming data based on the extracted
threshold voltage.

This summary of the invention does not necessarily
describe all features of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will become more
apparent from the following description 1n which reference 1s
made to the appended drawings wherein:

FIG. 1 15 a block diagram showing a system for driving an
AMOLED display 1n accordance with an embodiment of the
present invention;

FIG. 2 1s a schematic diagram showing one example of a
pixel circuit of FIG. 1;

FIG. 3 1s a schematic diagram showing an example of a
hybrid driving circuit, which 1s applicable to FIG. 1;

FIG. 41s an exemplary flow chart for showing the operation
of the hybrid driving circuit of FIG. 3;

FIG. 5 1s an exemplary timing chart for showing the opera-
tion of the hybrid driving circuit of FIG. 3;

FIG. 6 1s a schematic diagram showing a further example of
a hybrid driving circuit, which 1s applicable to FIG. 1;

FIG. 71s an exemplary flow chart for showing the operation
of the hybrid driving circuit of FIG. 6;

FIG. 815 a schematic diagram showing a further example of
a hybrid driving circuit, which 1s applicable to FIG. 1;

FIG. 91s an exemplary flow chart for showing the operation
of the hybrid driving circuit of FIG. 8;

FIG. 10 1s an exemplary timing chart for showing the
operation of the hybrid dniving circuit of FIG. 8;

FIG. 11 1s a schematic diagram showing a further example
of the pixel circuit of FIG. 1;

FIG. 12 1s a block diagram showing a system for driving an
AMOLED display in accordance with a further embodiment
of the present invention;

FIG. 13 1s an exemplary tlow chart for showing the opera-
tion of the system of FIG. 12;

FIG. 14 1s an exemplary tlow chart for showing the opera-
tion of the system of FIG. 12;

FIG. 15 1s an exemplary timing chart for showing the
operation of the system of FIG. 12;

FIG. 16 1s an exemplary flow chart for a hidden refresh
operation of the system of FIG. 12;




US RE45,291 E

3

FI1G. 17 1s a diagram showing an example of a sample of the
current/voltage correction curve;

FIG. 18 1s a diagram showing the current/voltage correc-
tion curve of FIG. 17 and an example of a newly measured
data point:

FI1G. 19 1s a diagram showing an example of a new current/
voltage correction curve based on the measured point of FIG.
18;

FI1G. 20 1s a block diagram showing a further example of a
programming circuit for implementing a combined current
and voltage-programming technique;

FI1G. 21 1s a block diagram showing a system for driving an
AMOLED display 1n accordance with a further embodiment
of the invention;

FIG. 22 1s a schematic diagram showing an example of a
switch network of FIG. 21; and

FIG. 23 1s a schematic diagram showing a system for
correcting the current/voltage information of the pixel circuait.

DETAILED DESCRIPTION

Embodiments of the present invention are described using,
an AMOLED display. Drive scheme described below 1s appli-
cable to a current programmed (driven) pixel circuit and a
voltage programmed (driven) pixel circuit.

In addition, hybrid techmique described below can be
applied to any existing driving scheme, including a) any drive
schemes that use sophisticated timing of the data, select, or
power mputs to the pixels to achieve increased brightness
uniformity, b) any drive schemes that use current or voltage
teedback, ¢) any drive schemes that use optical feedback.

The light emitting material of the pixel circuit can be any
technology, specifically organic light emitting diode (OLED)
technology, and 1n particular, but not limited to, fluorescent,
phosphorescent, polymer, and dendrimer materials.

Referring to FIG. 1, there 1s illustrated a system 2 for
driving an AMOLED display 5 i accordance with an
embodiment of the present invention. The AMOLED display
5 icludes a plurality of pixel circuits. In FIG. 1, four pixel
circuits 10 are shown as an example.

The system 2 includes a hybrid driving circuit 12, a voltage
source driver 14, a hybrid programming controller 16, a gate
driver 18A and a power-supply 18B. The pixel circuit 10 1s
selected by the gate driver 18 A (Vsel), and 1s programmed by
either voltage mode using a node Vdata or current mode using
anode Idata. The hybrid driving circuit 12 selects the mode of
programming, and connects it to the pixel circuit 10 through
a hybnid signal. A pre-charge signal (Vp) 1s applied to the
pixel circuit 10 to acquire threshold Vt information (or Vit
shift information) from the pixel circuit 10. The hybrid driv-
ing circuit 12 controls the pre-charging, if pre-charging tech-
nique 1s used. The pre-charge signal (Vp) may be generated
within the hybrid driving circuit 12, which depends on the
operation condition. The power-supply 18B (Vdd) supplies
the current required to energize the display 5 and to monitor
the power consumption of the display 5.

The hybrnid controller 16 controls the individual compo-
nents that make up the entire hybrid programming circuit.
The hybrid controller 16 handles timing and controls the
order 1n which the required functions occur. The hybrid con-
troller 16 may generate data Idata and supplied to the hybrid
driving circuit 12. The system 2 may have a reference current
source, and the Idata may be supplied under the control of the
hybrid controller 16.

The hybrid driver 12 may be implemented either as a
switching matrix, or as the hybrid driving circuit(s) of FIG. 3,
6. 8 or 20 or combination thereof.
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In the description, Vdata refers to data, a data signal, a data
line or a node for supplying the data or data signal Vdata, or
a voltage on the data line or the node. Sitmilarly, Idata refers to
data, a data signal, a data line or a node for supplying the data
or data signal Idata, or a current on the data line or the node.
Vp refers to a pre-charge signal, a pre-charge pulse, a pre-
charge voltage for pre-charging/discharging, a line or a node
for supplying the pre-charge signal, pre-charge pulse or pre-
charge voltage Vp. Vsel refers to a pulse or a signal for
selecting a pixel circuit or a line or a node for supplying the
pulse or signal Vs. The terms “hybrid signal”, “hybrid signal
node”, and “hybrid signal line” may be used interchangeably.

The pixel circuit 10 includes a plurality of TFTs, and an
organic light emitting diode (OLED). The TFT may be an
n-type TF'T or a p-type TET. The TFT 1s, for example, but not
limited to, an amorphous silicon (a-S1:H) based TFT, a poly-
crystalline silicon based TFT, a crystalline silicon based TFT,
or an organic semiconductor based TF'T. The OLED may be
regular (P-I-N) stack or iverted (N-I-P) stack. The OLED
can be located in the source or the drain of one or more driving
TFTs.

FIG. 2 1llustrates an example of the pixel circuit 10 of FIG.
1. The pixel circuit of FIG. 2 includes four thin film transistors
(TF'Ts) 20-26, a capacitor Cs 28 and an organic light emaitter
diode (OLED) 30. The TFT (Tdrive) 26 1s a drive TF'T that 1s
connected to the OLED 30 and the capacitor Cs 28. The pixel
circuit of FIG. 2 1s selected by the select line Vsel, and 1s
programmed by a data line DL. The data line DL 1s controlled
by the hybrid signal output from the hybrid driving circuit 12
of FIG. 1.

In FIG. 2, four TFTs are illustrated. However, the pixel
circuit 10 of FIG. 1 may include less than four TF'T's or more
than four TFTs.

In the description, the terms “data line DL and “data node
DL” may be used interchangeably.

Referring to FIGS. 1-2, the data node DL 1s pre-charged
and discharged to acquire the threshold Vt of a drive TFT
(e.g., Tdrive 26 of FIG. 2) or the threshold Vt shift. In the
description, Vt shift, Vt shift information, Vt, and Vt infor-
mation may be used interchangeably. The pixel circuit 10 1s
then consecutively programmed by the source driver 14 using
voltage-programming. The acquired Vt shift information 1s
utilized to compensate for degradation of the pixel circuit 10,
thus maintaining uniform brightness of the display 5.

The process of acquiring Vt starts by applying Vsel to T1
20 and T2 22 to the pixel circuit i1llustrated in FIG. 2. Such
action causes the drain and gate of T3 24 to be at the same
voltage. This allows the Vt of T3 24 to be extracted by first
applying the pre-charge voltage Vp to the data line DL, which
1s than allowed to be discharged. The rate of discharge 1s a
function of Vt. Thus, by measure of the rate of discharge, Vt
can be obtained.

FIG. 3 illustrates an example of a hybrid driving circuit,
which 1s applicable to the hybrid driving circuit 12 of FIG. 1.
The hybrid driving circuit 12A of FIG. 3 implements voltage
programming technique.

The hybrid driving circuit 12A of FIG. 3 includes a charge
programming capacitor Cc 32. The charge programming
capacitor Cc 32 1s provided between the data line Vdata and
the data node DL. The pre-charge line Vp 1s also connected to
the data node DL.

The hybrid driving circuit 12A 1s provided to a pixel circuit
10A having four TFTs (such as the pixel circuit of FIG. 2).
However, the pixel circuit 10A may include more than four
TFTs or less than four TFTs.

The charge programming capacitor Cc 32 1s provided to
program the pixel circuit 10A with a voltage that 1s equal to
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the sum of threshold Vt of the TFT and Vdata, scaled by a
constant K. The constant 1s determined by the voltage divi-
s1ion network formed by the charge storage capacitor (e.g. Cs
28 of FIG. 2) and the charge programming capacitor Cc 32.

FI1G. 4 illustrates an exemplary flow chart for showing the
operation of the hybrid driving circuit 12A of FIG. 3. At step
S10, pre-charge mode 1s enabled. At step S12, a pixel circuit
1s selected and pre-charging (Vp) 1s started. At step S14, Vit
acquisition mode 1s enabled, and at step S16, discharging
(Vp) starts. The Vt information 1s acquired through Cc 32.
Then at step S18, writing mode 1s enabled.

FIG. 5 illustrates an exemplary timing chart for showing
the operation of the hybrid driving circuit 12A of FIG. 3. In
the drawings, Vdata0 represents voltage at the data node (e.g.
DL of FIG. 2) of the pixel circuit; Idatal represents current at
the data node (e.g. DL of FIG. 2) of the pixel circuit.

The programming procedure starts by selecting the pixel to
be programmed with the pulse Vsel. At the same time, the
pre-charge pulse Vp 1s applied to the pixel circuit’s data input
(e.g. DL of FIG. 2).

During the Vt acquisition phase, voltage on the data line
(DL) 1s allowed to be discharged through the pixel circuit,
which 1s 1n a current mirror connection with the Vsel line held
high. The data line (DL ) 1s discharged to a certain voltage, and
the Vt of a drive TFT 1s extracted from that voltage. The
voltage at Vdata 1s at ground.

During the programming (writing) phase, the calculated
compensated voltage 1s applied to the data mput line (DL) of
the pixel circuit. The programming routine finishes with the
lowering of the Vsel signal.

The calculated compensated voltage 1s obtained through
analog means of a charge programming capacitor Cc32.
However, any other analog means for obtaining compensated
voltage may be used. Further, any (external) digital circuit
(e.g. 50 of FIG. 7) may be used to obtain the calculated
compensated voltage.

The source driver (14 of FIG. 1) supplies Vdata to the
capacitor Cc 32. When Vdata 1s increased from ground to the
desired voltage level, the voltage at Idata 1s equal to (Vi+
Vdata)*K.

The structure of FIG. 3 1s sumple, and 1s easily imple-
mented.

FIG. 6 illustrates a further example of a hybrid driving
circuit, which 1s applicable to the hybrid driving circuit 12 of
FIG. 1. The hybrid driving circuit 12B of FIG. 6 implements
voltage programming technique.

The hybrid driving circuit 12B includes a summer 40, a
sample and hold (S/H) circuit 42 and a switching element 44.
The S/H circuit 42 samples Idata and holds 1t for a certain
period. The summer 40 receives Vdata and the output of the
S/H circuit 42. The switching element 44 connects the output
of the summer 40 to the data node DL 1n response to a
programming control signal 46.

The hybrid driving circuit 12B utilizes the summer 40,
instead of the charge coupling capacitor Cc 32, to produce
programming voltage that 1s equal to the sum of Vtand Vdata.
As the hybrid driving circuit 12B does not utilize a capacity,
programming voltage 1s not affected by the parasitic capaci-
tance, and 1thas less charge feed-through effect. As the hybrid
driving circuit 12B does not utilize a charge storage capacitor,
programming voltage 1s not affected by the charge storage
capacitance. As the hybrid driving circuit 12B does not utilize
a charge programming capacitor, it achieves faster Vt acqui-
sition time. Removal of the charge programming capacitor
climinates the charge dependency of the programming
scheme. Thus the programming voltage 1s not atiected by the
charge being shared between the charge storage capacitor and
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the parasitic capacitance of the system. This results in a higher
elfective programming voltage.

FI1G. 7 1llustrates an exemplary flow chart for showing the
operation of the hybrid driving circuit 12B of FIG. 6. During
the Vt acquisition mode, the Vt 1s sampled at step S20, and
new data 1s produced at step S22. When writing mode 1s
enabled, the new data i1s supplied to the pixel circuit 1n
response to the programming control signal (46) at S24. It 1s
noted that the operation of the system having the hybnd
driving circuit 12B 1s not limited to FIG. 7. The new data may
be produced after step S18. The control signal 46 may be
enabled before step S18.

During the Vt acquisition cycle, Vdata 1s at ground, and the
voltage at the data node DL 1s equal to Vt of the TFT by the
pre-charging/discharging operation (Vp). The voltage on the
data node DL 1s sampled and holed by the S/H circuit 42. The
V1 1s provided to the summer 40 through the S/H circuit 42,
When Vdata 1s increased from ground to the desired voltage
level, the summer 40 outputs the sum of Vt and Vdata. The
switch 44 turns on in response to the programming control
signal 46. The voltage at the data node DL goes to (Vi+
Vdata). Timing chart for showing the operation of the system
2 having the hybrid driving circuit 12B 1s similar to that of
FIG. 5.

FIG. 8 illustrates a further example of a hybrid driving
circuit, which 1s applicable to the hybrid driving circuit 12 of
FIG. 1. The hybrid driving circuit 12C of FIG. 8 implements
voltage programming technique.

The hybnid driving circuit 13C 1s a direct digital hybnd
driving circuit. The direct digital programming circuit 13C
includes a microComputer uC 50 which recerves digital data
(Vdada), a digital to analog (ID/A) converter 52, a voltage
tollower 54 for increasing current without atfecting voltage,
and an analog to digital (A/D) converter 56.

The threshold Vt of the drive TFT may increase slowly.
Thus, 1t may not be necessary to acquire the threshold Vt of
the drnive TFT every programming cycle. This effectively
hides the Vt acquisition for the majority of the programming
cycle. In the direct digital hybrid driving circuit 13C, the
threshold Vt acquired from the pixel circuit 10A 1s digitalized
at the A/D converter 56, and 1s stored in memory contained 1n
the uC 50. The digital data that defines the brightness of the
pixel 1s added to the Vt 1in the uC 50. The resulting voltage 1s
then converted back to an analog value at the D/A 52, which
1s programmed 1nto the pixel circuit 10A. This programming
method 1s designed to compensate for the slow process of the
V't acquisition.

FIG. 9 1llustrates an exemplary flow chart for showing the
operation of the hybrid driving circuit 12C of FIG. 8. Atthe Vit
acquisition mode, the Vtis sampled and recorded at step S30.
When writing mode 1s enabled, new data 1s provided based on
the recorded data. It 1s noted that the operation of the system
having the hybrid driving circuit 12C of FIG. 8 1s not limited
to FIG. 9. At the writing mode, the data which have been
recorded may be used without implementing the Vt acquisi-
tion.

FIG. 10 illustrates an exemplary timing chart for showing,
the operation of the hybnd driving circuit 12C of FIG. 8.
During the Vt acquisition, sampling by the A/D converter 56
1s implemented. In a next cycle, the hybrid driving circuit 13C
may use the Vt that has been previously acquired and has been
recorded 1n the uC 30.

The conversion of the output on the data node DL by A/D
can remove the requirements of having to acquire the Vt every
programming cycle. The Vt of the pixel circuit 10A may be
acquired once every second or less. Thus, 1t may acquire Vt
for only one row of the display per frame cycle. This efiec-
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tively increases the amount of time for the pixel programming,
cycle. Less frequent need of Vt acquisition ensures faster
programming time.

In the above description, FIG. 2 1s used to describe the pixel
circuit 10 of FIG. 1. However, the pixel circuit 10 1s not
limited to that of FIG. 2. The pixel circuit 10 may be a pixel
circuit illustrated i FIG. 11 (J. Kanichi, J.-H. Kim, J. Y.
Nahm, Y. He and R. Hattor1 “Amorphous Silicon Thin-Film
Transistor Based Active-Matrix Organic Light Emitting Dis-
play” Asia Display IDW 2001 pp. 315). The pixel circuit of
FIG. 11 includes four TFTs 64-70, a capacitor C..-72 and an
OLED 74. The TFT 78 1s adrive TF'T that 1s connected to the
OLED 74 and the capacitor C.-72. The pixel circuit of FIG.
11 1s selected by Vselectl and Vselect2, and 1s programmed
by Idata. The voltage acquired 1s a combination of the voltage
across the OLED 74 and T3 68. The technique compensates
the voltage change of both the Vt and the OLED 74. Idata of
FIG. 11 corresponds to the data node DL of FIG. 2.

FIG. 12 illustrates a system for driving an AMOLED dis-
play 1n accordance with a further embodiment of the inven-
tion. The system 82 of FIG. 12 includes a hybrid program-
ming circuit having a correction table 80, a source driver 14
for implementing a voltage-programming scheme and a ret-
erence current source 94 for implementing a current-pro-
gramming scheme. The system 82 drives a display having a
plurality of pixel circuits using the voltage-programming,
scheme and the current-programming scheme.

A hybrid controller 98 1s provided to control each compo-
nent. In FIG. 12, the hybrid controller 98 1s placed between
the A/D converter 96 and the correction table 80, as an
example. The hybrnid controller 98 1s similar to the hybrid
controller 16 of FIG. 1.

The pixel circuit driven by the system 82 may be the pixel
circuit 10 of FIG. 1, and may be a current programmed pixel
circuit or a voltage programmed pixel circuit. The pixel cir-
cuit driven by the system 82 may be implemented by FIG. 2
or FIG. 11, however, 1s not limited to those of FIGS. 2 and 11.

The hybrid programming circuit includes a correction cal-
culation module 92 for correcting data from the data source
90 based on the correction table 80 and an A/D converter 96.
The data corrected by the correction calculation module 92 1s
applied to the source driver 14. The source driver 14 generates
Vdata based on the corrected data output from the correction
calculation module 92. Vdata from the source driver 14 and
Idata from the reference current source 94 are supplied to the
hybrid driver 12.

The data source 90 1s, for example, but not limited to, a
DVD. The hybnd driver 12 may be implemented either as a
switching matrix, or as the digital programming circuit(s) of
FIG. 8, 20 or combination thereof. The A/D converter 96 may
be the A/D converter 56 ol FIG. 8. The system 82 may imple-
ment the Vt acquisition technique described above using the
A/D converter 96 (56).

The correction table 80 1s a lookup table. The correction
table 80 records the relationship between current required to
program the pixel circuit and voltage necessary to obtain that
current. The correction table 80 1s built for every pixel 1n the
entire display.

In the description, the relationship between the current
required to program the pixel circuit and the voltage neces-

sary to obtain that programming current, 1s referred to as
“current/voltage correction information”, “current/voltage
correction curve”, or “current/voltage information™, or “cur-

rent voltage curve”.
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In FIG. 12, the correction table 80 1s illustrated separately
from the correction calculation module 92. However, the
correction table 80 may be included 1n the correction calcu-
lation module 92.

The operation of the system of FIG. 12 has two modes,
namely display mode and calibration mode. In the display
mode, the data from the data source 90 1s corrected using the
data 1n the correction table 80, and 1s applied to the source
driver 14. The hybrid driver 12 1s not involved 1n the display
mode. In the calibration mode, the current from the reference
current source 94 1s applied to the pixel circuit, and the
voltage associated with the current 1s read from the pixel
circuit. The voltage 1s converted to a digital data by the A/D
converter 96. The correction table 80 1s updated with the
correct value based on the digital data.

During the display mode, a voltage-programming scheme
1s implemented. The voltage on the data line (e.g. DL of FIG.
2) of the pixel circuit determines the brightness of the pixels.
The voltage required to program the pixel circuit 1s calculated
from the pixel brightness to be displayed (from the incoming
video information) combined with the current/voltage correc-
tion information stored in the correction table 80. The 1nfor-
mation on the correction table 80 1s combined with incoming
video mformation to ensure that each pixel will maintain a
constant brightness over long-term use.

After the display has been used for a fixed period of time,
the display enters the calibration mode. The current source 94
1s connected to the data input node (DL ) of the pixel circuit via
the hybrid driver 12. Each pixel 1s programmed through a
current-programming scheme (where the level of current on
the data line determines the brightness of the pixel), and the
voltage required to achieve that current 1s read by the A/D
converter 96.

The voltage required to program the pixel current 1s
sampled at multiple current points by the A/D converter 96.
The multiple points may be a subset of the possible current
levels (e.g. 256 possible levels for 8-bit, or 64 levels for 6-bit).
This subset of voltage measurements 1s used to construct the
correction table 80 that 1s interpolated from the measurement
points.

The calibration mode may be entered either through user’s
command or may be combined with the normal display mode
so that the calibration takes place during the display retresh
period.

In one example, the entire display may be calibrated at
once. The display may stop showing incoming video infor-
mation for a short period of time while each pixel was pro-
grammed with a current and the voltage recorded.

In a turther example, a subset of the pixels may be cali-
brated, such as one pixel every fixed number of frames. This
1s virtually transparent to the user, and the correction infor-
mation may still be acquired for each pixel.

When a conventional voltage-programming scheme 1s uti-
lized, a pixel circuit 1s programmed 1n an open loop configu-
ration, where there 1s no feedback from the pixel circuit
regarding the threshold voltage shiit of the TFTs. When a
conventional current-programming scheme 1s utilized, the
brightness of the pixel may remain constant over time. How-
ever, the current programming scheme 1s slow. Thus, the table
lookup technique combines the technique of the current-pro-
gramming scheme with the technique of the voltage-pro-
gramming scheme. The pixel circuit 1s programmed with a
current through a current-programming scheme. A voltage to
maintain that current 1s read and is stored at a lookup table.
The next time that particular level of current 1s applied to the
pixel circuit, instead of programming with a current, the pixel
circuit 1s programmed based on information on the lookup
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table. Accordingly, it attains the compensation inherent in the
current programming scheme while attaining the fast pro-
gramming time that 1s only possible with voltage-program-
ming scheme.

In the above description, the correction table (lookup table)
80 1s used to correct the current/voltage correction informa-
tion. However, the system 82 of FIG. 12 may use the lookup
table to correct the Vt shift and the current/voltage correction
information at the same time 1n combination with the hybrid
driving circuit of FIG. 3, 6, 8 or 20.

For example, several voltage measurements are captured at
many different current points by the A/D converter 96 (56).
The hybrid controller 98 extracts the Vt shift information by
extending the voltage versus current curve to zero current
point. The Vt shift information 1s stored 1n an array of tables
(correction table 80) which 1s applied to mmcoming display
data.

The uC 50 of FIG. 8 or 20 may utilize the lookup table to
generate appropriate voltage and program the pixel circuit.

The hybrid circuits 12A of FIGS. 3 and 12B of FIG. 6 may
be mtegrated into the system of FIG. 12.

FIGS. 13-14 1llustrate exemplary flow charts for showing
the operation of the system of FIG. 12. Referring to FIG. 13,
at step S40, calibration mode 1s enabled. At step S42, a pixel
circuit 1s selected and current programming 1s implemented
to the selected pixel circuit. At step S44, a switch matrix
ecnable signal 1s enabled. Then the connection to the pixel
circuit 1s changed. The Vt1s sampled at step s46, and then the
correction table 1s created/corrected at step S48. Referring to
FIG. 14, at step S50, video data are corrected based on the
correction table. Then at step S52, new Vdata 1s produced
based on the corrected data.

It 1s noted that the writing mode may be implemented based
on the previously created correction table without imple-
menting the calibration mode. It 1s noted that the operation of
the system of FIG. 12 1s not limited to FIGS. 13-14.

FI1G. 15 1llustrates an exemplary timing chart for showing
a combination of the Vt shift acquisition and the current/
voltage correction. A switch matrix enable signal in FIG. 15
represents a control signal for the hybrid driver 12 of FIG. 12.

Referring to FIGS. 12 and 15, the calibration mode (1.e. the
current-programming scheme) 1s enabled when the switch
matrix enable signal 1s high. The programming mode (1.e. the
voltage-programming scheme) 1s enabled when the switch
matrix enable signal 1s low. However, the calibration mode
may be enabled when the switch matrix enable signal 1s low.
The programming mode may be enabled when the switch
matrix enable signal 1s high.

A/D sampling 1s implemented during the calibration mode.
During the calibration mode, the current from the reference
current source 94 1s applied to the pixel circuit. The voltage on
the data input node 1s converted to a digital voltage by the A/D
converter 56. Based on the digital voltage and current asso-
ciated with the digital voltage, current/voltage correction
information 1s recorded at the lookup table. The Vt shiit
information 1s generated based on the data in the correction
table 80 or the output from the A/D converter 96.

The system 82 of FIG. 12 may implement hidden refresh
technique for refreshing current/voltage correction informa-
tion 1 addition to the table lookup technique described
above.

Under the hidden refresh operation, new current/voltage
correction information 1s constructed while completely hid-
den from user’s perception. This technique utilizes the imnfor-
mation that i1s currently displayed on the screen (1.e. the
incoming video data). By obtaining the pixel characteristics
from the full calibration routine that has been performed
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during the manufacturing process of the display, the current/
voltage correction imnformation for each pixel in the display 1s
known. During the display’s usage, the current/voltage cor-
rection curve may shiit due to the change 1n Vt. By measuring
a single point along the current/voltage correction curve
(which 1s the data currently displayed, that is part of the video
image), a new current/voltage correction curve 1s extrapo-
lated from the point so that it 1s fitted to the measured point.
Based on the new current/voltage correction curve, the Vit
shift information 1s extracted which 1s used to compensate for
the shaft in V.

FIG. 16 illustrates an exemplary tflow chart for the hidden
refresh operation of the system of FIG. 12. First, a current/
voltage correction curve 1s produced during the calibration
process that 1s implemented during the manufacturing of the
display (step S62). FIG. 17 illustrates an example of a sample
of the current voltage correction curve.

Referring to FIG. 16, the next step 1s to measure a point
along the curve during the usage of the display. This point can
be any point along the curve, so any data that the user cur-
rently has on the display can be used for calibration (step
S64). FI1G. 181llustrates the current voltage correction of FIG.
17 and an example of a newly measured data point.

Referring to FIG. 16, the last step 1s to shift the current/
voltage correction curve to {it the point of voltage verses
current relationship that 1s measured (step S66). FIG. 19
illustrates an example of a new current voltage correction
curve based on the measured point of FIG. 18.

The process associated with FIGS. 17-19 1s implemented
in the hybrid controller 98 of FI1G. 12.

The system 82 of FIG. 12 may implement a combined
current and voltage-programming technique. FIG. 20 1llus-
trates one example of a hybrid driving circuit for implement-
ing the combined current and voltage-programming tech-
nique. The hybrid driving circuit of FIG. 20 may be included

in the hybrid driver 12 of FIG. 12.

In the hybrid driving circuit of FIG. 20, the digital hybnd
driving circuit 12C and a current source 100 are provided to
the data line DL of the pixel circuat.

To enhance the circuit’s ability to compensate for a change
in the current/voltage correction curve due to temperature,
threshold voltage shift, or other factors, the pixel circuit pro-
gramming 1s divided 1nto two phases.

During the writing mode, the pixel circuit 10A 1s voltage-
programmed first to set the gate voltage of the dniving TFT to
an approximate value, then followed by a current program-
ming phase. The current programming phase can then fine-
tune the output current. The system of FIG. 20 1s faster than
current programming and has the compensation capabilities
of the current programming scheme.

In FIG. 20, the digital hybrid driving circuit 12C is pro-
vided. However, the combined current and voltage-program-
ming technique may be implemented by combining the
hybrid driving circuit 12A of FI1G. 3 or 12B of FIG. 6 with the
current source 100. The current source 100 may be the refer-
ence current source 94 of FIG. 12.

The system 2 of FIG. 1 may implement the hidden retresh
technique described above. The system 2 of FIG. 1 may
implement the combined current and voltage-programming
technique. The system 2 of FIG. 1 may include the hybnd
driving circuit of FIG. 20 to implement the combined current
and voltage-programming techmque.

Extension of the direct digital programming scheme 1s now
described 1n detail. The direct digital programming scheme
(FIGS. 6, 8 and 20) can be extended to drive an OLED array
(e.g. a 4T OLED array) using voltage programmed column
drivers, such as those used for driving Active Matrix Liquixd
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Crystal Display (AMLCD), or voltage-programmed Active-
Matrix Organic Light Emitting Diode (AMOLED) displays,
or any other voltage-output display driver.

FIG. 21 1llustrates a system for driving an AMOLED array
having a plurality of pixel circuits 1n accordance with a fur-
ther embodiment of the invention. The system 105 of FI1G. 21
includes a voltage column driver 112, a programmable cur-
rent source 114, a switching network 116, an A/D converter
118 and a row driver 120.

The voltage column driver 112 1s a voltage programmed
column driver. Each of the voltage column driver 112 and the
row driver 120 may be any driver that has a voltage output,
such as those designed for the AMLCD. The voltage column
driver 112 and the programmable current source 114 are
connected to an OLED array 110 through the switching net-
work 116. The OLED array 110 forms an AMOLED display,
and contains a plurality of pixel circuits (suchas 10 of FI1G. 1).
The pixel circuit may be a current programmed pixel circuit
or a voltage programmed pixel circuit.

The A/D converter 118 1s an interface that allows an analog
signal (1.e. current driving the display 110) to be read back as
a digital signal. The digital signal associated with the current
can than be processed and/or stored. The A/D converter 118
may be the A/D converter 56 of FIGS. 8 and 20. The column
driver 112 may be the source driver 14 of FIGS. 1 and 12.

The system 105 of FIG. 21 implements the calibration
mode and the display mode as described above.

FI1G. 22 illustrates an example of the switch network 116 of
FIG. 21. The switching network 116 of FIG. 22 includes two
MOSFFET switches 122 and 124 that can switch the column of
the display (110) from connecting to the column driver (112)
to the combination of the current source (114) and the A/D
converter (118), and vice versa. A shift register 126 1s a source
of the digital control signal that controls the operation of the
MOS switches 122 and 124. An inverter 128 inverts an output
from the shiit register 126. Thus, when the switch 122 1s on
(ofl), the switch 124 1s off (on).

The switching network 116 may be located either off the
glass 1n the column driver (112) or directly on the glass using
TFT switches.

Referring to FIGS. 21-22, the system 105 uses only one
current source 114. The voltage-programming drivers (such
as, AMLCD drivers, or any other voltage-output drivers)
drive the rest of the display 110. The switching matrix
(switching network 116) allows different pixels within the
array of pixels to be connected to a single current source (114)
through a time division method. This allows a single current
source to be applied to the entire display. This lowers the cost
of the driver circuit and speeds up the programming time for
the pixel circuit.

The system 105 uses the A/D converter 118 to convert an
analog output of the data node (e.g. DL of FIG. 2) of the pixel
circuit to digital data. The conversion by the A/D converter
118 removes the requirements of having to acquire the Vt
every programming cycle. The Vt of the pixel circuit may be
acquired once every few minutes. Thus 1t may acquire one
column of the panel every refresh cycle.

Only one A/D 118 may be implemented for all the col-
umns. The circuit acquires only one pixel per frame refresh.
For example, for a 320 by 240 panel, the number of pixels 1s
76, 8000. For a frame rate of 30 Hz, the time required to
acquire Vt from all pixels for the entire frame 1s 43 minutes.
This may be acceptable for some applications, providing that
V't does not shift substantially 1n an hour.

The parasitics only affect the amount of time to discharge
the capacitor to acquire Vt. Since the circuit 1s voltage-pro-
grammed, it 1s not atfected by the parasitics. Since Vt 1s only
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acquired one column per frame time, 1t can be long. For
example, for a display with 320 columns that has a frame rate
of 30 Hz, each frame time 1s 33 mS. For voltage program-
ming, it 1s possible to program a pixel 1n 70 uS. For 320
columns, the time to update the display 1s 22 mS, which still
leave 11 mS to complete a charge/discharge cycle.

The system 105 may implement the lookup table technique
to compensate for Vt shift and/or to correct the current/volt-
age 1information as described above

The system 105 may implement the hidden refresh tech-
nique to acquire the Vt shift information and current/voltage
correction information of each pixel circuit (10) 1n the display
110. This current/voltage correction information 1s used to
populate a lookup table (e.g. a correction table 80 of FIG. 12)
that will then be used to compensate for the degradation in the
pixel circuit, which 1s caused by aging. To reduce cost, the
number of current-programmed circuits has been reduced so
there 1s only one per display instead of one per column driver.

The system 105 may implement the combined current and
voltage-programming technique as described above.

The current/voltage information of the pixel circuit can be
turther corrected by implementing a system 1llustrated 1n
FIG. 23. FIG. 23 illustrates a system for correcting the cur-
rent/voltage mformation of the pixel circuit. In FIG. 23, a
display 130 1s depicted as a 2T or 4T OLED array. However,
the display 130 may include a plurality of pixel circuits, each
having three or more than four transistors. The display 130
may include voltage-driven pixel circuits or current-driven
pixel circuits. The system of FIG. 23 1s applicable to the
systems 2, 82 and 105 of FIGS. 1, 12 and 22.

As 1llustrated 1in FIG. 23, a switch 132 1s provided to
disconnect the common electrode of the OLED. It 1s well
known that two electrodes are provided for the OLED. One 1s
connected to the pixel circuit, and the other 1s a common
clectrode connected to all OLEDs. It 1s noted that the com-
mon electrode may be Vdd or GND depending on the type of
OLED. The switch 132 connects the common electrode of the
OLED 1nto a current sensing network 134 utilizing a high side
common mode sensor (such as, INA168 by T1). The current
sensing network 134 measures the current through the com-
mon electrode.

During the calibration phase, each pixel 1s lit individually
and the current consumed 1s acquired by the sensing network
134. The acquired current 1s used to correct the lookup table
(e.g. the correction table 80 of FIG. 12) populated by the
direct digital hybrid driving circuit of FIG. 8 or 20.

A dark display current may be acquired to include the
elfect of dead pixel and leakage current of the array. During
this procedure, all pixels are turned off, and the current (1.¢.
dark display current) 1s measured.

According to the embodiments of the present invention, the
major 1ssue with current-programmed pixel circuits, which 1s
the slow programming time, 1s solved. The concept of using
teedback to compensate the pixel circuit enhances the unifor-
mity and stability of the display while retaining the fast pro-
gramming capability of the voltage programmed drive
scheme.

The present invention has been described with regard to
one or more embodiments. However, 1t will be apparent to
persons skilled 1n the art that a number of variations and
modifications can be made without departing from the scope
of the invention as defined 1n the claims.

What 1s claimed 1s:

1. A system for programming at least one pixel circuit in a
display, the system comprising:

a [voltage] driver for generating a current or a voltage to

apply to a data node of the at least one pixel circuit to
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thereby program the at least one pixel circuit according
to the generated current or voltage;
a programmable current source for providing a {irst current
and a second current to apply to the data node of the at
least one pixel circuit;
a sampler for reading a first voltage on the data node while
the first current 1s maintained through the at least one
pixel circuit via the programmable current source and
for reading a second voltage on the data node while the
second current 1s maintained through the at least one
pixel circuit via the programmable current source; and
a controller configured to:
generate a voltage versus current relationship for the at
least one pixel circuit based on the first current and the
second current and based on the sampled first and
second voltages,

extract, based on the voltage versus current relationship
for the at least one pixel circuit, a voltage correspond-
ing to a zero current level, and

program the at least one pixel circuit via the data node
with a programming current or voltage generated by
the [voltage] driver that is set according to display
data and according to the extracted voltage corre-
sponding to the zero current level.

2. The system according to claim 1, wherein the at least one
pixel circuit 1s configured to be alternately programmed by a
programming current applied to the data node or by a pro-
gramming voltage applied to the data node.

3. The system according to claim 2, wherein the at least one
pixel circuit includes a mirror transistor having a gate coupled
to a gate terminal of [the] a driving transistor, the at least one
pixel circuit configured such that the data node 1s coupled to
a gate terminal of the mirror transistor via one or more switch
transistors, the applied current being conveyed via the one or
more switch transistors through the mirror transistor while
the gate terminal of the mirror transistor adjusts to a voltage
for maintaiming the applied current through the mirror tran-
s1stor.

4. The system according to claim 3, wherein the one or
more switch transistors include a first switch transistor and a
second switch transistor,

the first switch transistor operated according to a select
signal and configured to couple the data node to the gate
terminal of the mirror transistor while the first switch
transistor 1s switched on,

the second switch transistor operated according to the
select signal and configured to couple the data node to a
drain or a source terminal of the mirror transistor while
the second switch transistor 1s switched on.

5. The system according to claim 2, wherein the at least one
pixel circuit includes one or more switch transistors config-
ured to couple the data node to a drain or a source terminal of
[the] @ driving transistor while the programming current is
applied to the at least one pixel circuit via the data node,

the one or more switch transistors further configured to
couple the data node to a gate terminal of the driving
transistor while the programming current i1s applied,
such that the gate terminal of the driving transistor
adjusts to a voltage for maintaining the applied current
through the driving transistor,

the one or more switch transistors further configured to
couple the data node to [a] tke gate terminal of the
driving transistor while the programming voltage 1is
applied to the at least one pixel circuit via the data node.
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6. The system according to claim 1, wherein the sampler
includes an analog to digital converter configured to capture
digital information indicative of the first and second voltages
on the data node.

7. The system according to claim 6, further comprising a
memory for storing the digital information indicative of the
first and second voltages, the digital information being stored
in a lookup table that associates the first and second voltages
with the first and second currents to thereby characterize the
voltage versus current relationship of the at least one pixel
circuit.

8. The system according to claim 1, wherein the controller
1s further configured to instruct the voltage driver to set the
programming voltage for the at least one pixel circuit by
adding the voltage corresponding to the zero current level to
a voltage indicated by the display data.

9. The system according to claim 1, wherein the at least one
pixel circuit 1s a plurality of pixel circuits arranged 1n an array
of rows and columns, each of the plurality of pixel circuits
having a data node coupled to a data line, and wherein the
programmable current source 1s configured to generate a plu-
rality currents to apply to each of the plurality of pixel circuits
and the sampler 1s configured to read a corresponding plural-
ity of voltages for each of the plurality of pixel circuits while
cach of the plurality of currents 1s maintained through respec-
tive ones of the plurality of pixel circuits.

10. The system according to claim 1, wherein the controller
1s configured to extract the threshold voltage of the driving
transistor ol the at least one pixel circuit by extending the
voltage versus current relationship for the at least one pixel
circuit to the zero current level and determining the voltage
corresponding to the zero current level, the voltage corre-
sponding to the zero current level providing an estimate of the
threshold voltage of the driving transistor of the at least one
pixel circuit.

11. The system according to claim 1, further comprising a
memory communicatively coupled to the controller for digi-
tally storing digital information indicative of the first and
second voltages.

12. The system according to claim 1, wherein the at least
one pixel circuit includes an organic light emitting diode for
emitting light according to the display data and one or more
thin film transistors for conveying a current through the
organic light emitting diode according to the display data.

13. A method of operating a display having at least one
pixel circuit, the at least one pixel circuit having a light
emitting device coupled 1n series with a driving transistor
coniigured to convey a driving current through the light emat-
ting device according to display information, the at least one
pixel circuit configured to be alternately programmed accord-
ing to the display information by a programming current
applied to a data node of the at least one pixel circuit or by a
programming voltage applied to the data node, the method
comprising:

applying a first current to the data node of the at least one

pixel circuit;

reading a first voltage on the data node while the first

current 1s maintained through the at least one pixel cir-
cuit:

applying a second current to the data node of the at least

one pixel circuit;

reading a second voltage on the data node while the second

current 1s maintained through the at least one pixel cir-
cuit:

storing digital information indicative of the first and second

voltages such that the first and second voltages are asso-
ciated with the first and second currents:
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generating a voltage versus current relationship for the at
least one pixel circuit based on the first and second
voltages and the first and second currents;

extracting, based on the generated voltage versus current

relationship for the at least one pixel circuit, a voltage
corresponding to a zero current level; and
programming the at least one pixel circuit by applying, to
the data node of the at least one pixel circuit, a program-
ming voltage that 1s based on the display data and the
voltage corresponding to the zero current level.

14. The method according to claim 13, wherein the at least
one pixel circuit 1s at least one of a plurality of pixel circuits
arranged 1n an array of rows and columns 1n the display, and
wherein the applying the first and second current, the reading,
the first and second voltages, the storing, the generating, and
the extracting are applied to each of the plurality of pixel
circuits such that voltages corresponding to the zero current
level are extracted for each of the plurality of pixel circuits.

15. The method according to claim 14, wherein the voltage
corresponding to the zero current level 1s an estimate of a
threshold voltage of the driving transistor 1n the at least one
pixel circuit, and wherein the programming 1s applied to each
of the plurality of pixel circuits based on the display data for
cach of the plurality of pixel circuits and based on the estimate
of the threshold voltage of the driving transistor for each of
the plurality of pixel circuits such that the display 1s operated
to compensate for the threshold voltages of the driving tran-
sistors 1n each of the plurality of pixel circuits.

16. The method according to claim 13, wherein the storing
1s carried out by digitally storing the digital information
indicative of the first and second voltages 1n a lookup table
associated with the at least one pixel circuit.

17. The method according to claim 13, wherein the apply-
ing the first current and the applying the second current are
performed during a calibration mode of the display that 1s
distinct from a normal display mode, the calibration mode
being a period during which images are not shown on the
display.

18. The method according to claim 13, wherein at least one
of the first current or the second current 1s a programming
current applied to the at least one pixel circuit during a pro-
gramming operation of a normal display mode to program the
at least one pixel circuit to emit light according to the display
information.

19. The method according to claim 13, wherein the at least
one pixel circuit 1s at least one of a plurality of pixel circuits
arranged 1n an array of rows and columns 1n the display, and
wherein at least one of the first current or the second current
1s a programming current applied to the at least one pixel
circuit during a programming operation of a normal display
mode while others of the plurality of pixel circuits are voltage
programmed with programming voltages, thereby hiding the
applying the at least one of the first current or the second
current to the at least one pixel circuit.

20. The method according to claim 13, further comprising;:

responsive to the extracting, applying a third current to the

data node of the at least one pixel circuit;

reading a third voltage on the data node while the third

current 1s maintained through the at least one pixel cir-
cuit:

storing digital information indicative of the third voltage

such that the third voltage 1s associated with the third
current;

updating the voltage versus current relationship for the at

least one pixel circuit based on at least the third voltage
and the third current;
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extracting, based on the updated voltage versus current
relationship for the at least one pixel circuit, a voltage
corresponding to a zero current level, the voltage corre-
sponding to the zero current level being an updated
estimate of a threshold voltage of the driving transistor
in the at least one pixel circuit; and

programming the at least one pixel circuit to compensate
for the threshold voltage of the drniving transistor by
applying, to the data node of the at least one pixel circuat,

a programming voltage that 1s based on the display data
and the updated estimated threshold voltage.

21. A system for programming at least one pixel circuit 1n
a display, the system comprising;:

a voltage driver for generating a voltage to apply to a data
node of the at least one pixel circuit to thereby program
the at least one pixel circuit according to the generated
voltage;

a programmable current source for providing a first current
to apply to the data node of the at least one pixel circuit;

a sampler for reading a first voltage on the data node while
the first current 1s maintained through the at least one
pixel circuit via the programmable current source; and

a controller configured to:

recerve calibration data indicative of a voltage versus cur-
rent relationship for the at least one pixel circuit;

generate an updated voltage versus current relationship for
the at least one pixel circuit based on the first current and
the first voltage and based on the received calibration
data,

extract, based on the updated voltage versus current rela-
tionship for the at least one pixel circuit, a voltage cor-
responding to a zero current level, and

program the at least one pixel circuit via the data node with
a programming voltage generated by the voltage driver
that 1s set according to display data and according to the
extracted voltage corresponding to the zero current
level.

22. The system according to claim 21, wherein the first
current 1s a programming current applied to the at least one
pixel circuit during a programming operation of a normal
display mode to program the at least one pixel circuit to emat
light according to the display information.

23. The system according to claim 21, wherein the at least
one pixel circuit 1s configured to be alternately programmed
by a programming current applied to the data node or by a
programming voltage applied to the data node.

24. The system according to claim 21, wherein the at least
one pixel circuit 1s a plurality of pixel circuits arranged in an
array of rows and columns, each of the plurality of pixel
circuits having a data node coupled to a data line, and wherein
the programmable current source 1s configured to generate a
plurality currents to apply to each of the plurality of pixel
circuits and the sampler 1s configured to read a corresponding
plurality of voltages for each of the plurality of pixel circuits
while each of the plurality of currents 1s maintained through
respective ones of the plurality of pixel circuits.

25. The system according to claim 21, wherein the sampler
includes an analog to digital converter configured to capture
digital information indicative of the first and second voltages
on the data node.

26. The system according to claim 25, further comprising a
memory for storing the digital information indicative of the
first voltage, the digital information being stored 1n a lookup
table that associates the first voltage with the first current to
thereby characterize the voltage versus current relationship of
the at least one pixel circuit.
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27. The system according to claim 21, wherein the at least
one pixel circuit includes an organic light emitting diode for
emitting light according to the display data and one or more
thin film transistors for conveying a current through the
organic light emitting diode according to the display data.

28. A method of operating a display having at least one
pixel circuit, the at least one pixel circuit having a light
emitting device coupled 1n series with a driving transistor
configured to convey a driving current through the light emat-
ting device according to display information, the at least one
pixel circuit configured to be alternately programmed accord-
ing to the display information by a programming current
applied to a data node of the at least one pixel circuit or by a
programming voltage applied to the data node, the method
comprising:

applying a first current to the data node of the at least one

pixel circuit;

reading a first voltage on the data node while the first

current 1s maintained through the at least one pixel cir-
cuit:

storing digital information indicative of the first voltage

such that the first voltage 1s associated with the first
current,

receiving calibration data indicative of a voltage versus

current relationship for the at least one pixel circuit;
generating an updated voltage versus current relationship
for the at least one pixel circuit based on the first voltage,
the first current, and the received calibration data;
extracting, based on the updated voltage versus current
relationship for the at least one pixel circuit, a voltage
corresponding to a zero current level; and
programming the at least one pixel circuit by applying, to
the data node of the at least one pixel circuit, a program-
ming voltage that 1s based on the display data and the
voltage corresponding to the zero current level.

29. The method according to claim 28, wherein the at least
one pixel circuit 1s at least one of a plurality of pixel circuits
arranged 1n an array of rows and columns 1n the display, and
wherein the applying the first current, the reading the first
voltage, the storing, the receiving, the generating, and the

extracting are applied to each of the plurality of pixel circuits
such that voltages corresponding to the zero current level are
extracted for each of the plurality of pixel circuits.

30. The method according to claim 29, wherein the voltage
corresponding to the zero current level 1s an estimate of a
threshold voltage of the driving transistor 1n the at least one
pixel circuit, and wherein the programming 1s applied to each
of the plurality of pixel circuits based on the display data for
cach of the plurality of pixel circuits and based on the estimate
of the threshold voltage of the driving transistor for each of
the plurality of pixel circuits such that the display 1s operated
to compensate for the threshold voltages of the driving tran-
sistors 1n each of the plurality of pixel circuits.

31. A method of adjusting a programming value for a pixel

circuit in an OLED display to compensate for degradation of

the display or for non-uniformity and degradation of the
display, the method comprising:
applying a charge to the pixel circuit to acquire threshold
voltage information or a shift in threshold voltage infor-
mation from the pixel circuit,

responsive to applving the charge, measuring a voltage of

the pixel circuit,

extracting from the measurved voltage a degradation of the
pixel circuit, the degradation adversely affecting a pro-
grammed brightness of an OLED in the pixel circuit;
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digitizing the extracted degradation of the pixel circuit to a
digital compensation value vepresenting the degrada-
tion of the pixel circuit; and

adjusting a video input signal to the pixel circuit based on

d the digital compensation value to compensate for the
degradation of the pixel circuit, wherein the extracting
the degradation includes extracting a threshold voltage
or a shift in the threshold voltage of a drive transistor in
the pixel circuit.

32. The method of claim 31, wherein the extracting the
degradation includes measuring a vate of discharge of a
voltage on the data node of the pixel circuit.

33. The method of claim 31, wherein the digitizing the
extracted degradation includes:

storing digital data corresponding to the digitized

extracted degradation in a memory;

adding the digital data to the programming value to pro-

duce a rvesulting voltage; and

converting the resulting voltage to a corresponding analog

value to be applied as the video input signal during a

programming phase.

34. The method of claim 31, wherein the adjusted video
signal input is applied to the pixel civcuit duving the program-
ming phase as a current or a voltage.

35. The method of claim 31, further comprising:

generating a voltage versus current velationship for the

pixel circuit based on curvent values applied to a data
node of the pixel circuit and based on voltages sampled
at the data node; and

extracting, based on the generated voltage versus current

relationship, a voltage corresponding to a zero curvent
level

wherein the digital compensation value is further adjusted

based on the extracted voltage.

36. A method of adjusting a programming value for a pixel
circuit in an OLED display to compensate for degradation or
non-uniformity of the display or for non-uniformity and deg-
radation of the display, the method comprising:

applying a current to a node of a pixel circuit;

responsive to the applying, acquiving a voltage from the

node;

creating, from the acquired voltage, a compensation value;

storing the compensation value in a memory device; and

correcting a video input signal applied to the pixel circuit
based on the stored compensation value, wherein the
compensation value is indicative of a threshold voltage
or a shift in the threshold voltage of a drive transistor in
the pixel circuit.

37. The method of claim 36, wherein the node is a data
node.

38. The method of claim 36, wherein the voltage acquired
from the data node covvesponds to the thresholdvoltage or the
shift in the threshold voltage of a drive transistor in the pixel
55 circuit.

39. The method of claim 36, wherein the creating the com-
pensation value includes:

storing digital data corresponding to the compensation

value in a memory;,

adding the digital data to the programming value to pro-

duce a rvesulting voltage; and

converting the vesulting voltage to a corvesponding analog

value to be applied as the video input signal during a
programming phase.

40. The method of claim 36, wherein the corrected video
signal input is applied to the pixel civcuit duving the program-
ming phase as a current or a voltage.
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41. A system for driving a display panel including a pixel
circuit having a plurality of transistors and an ovganic light
emitting device, the system comprising:

a driver for generating a programming voltage or current
to program the pixel circuit through a data line coupled
to the pixel circuit,

a switching network connected to the display panel;

a measurement unit connected to the switching network
and shared among multiple columns of the display
panel, the measurement unit converting an analog mea-
surement from a data node of corrvesponding pixel cir-
cuits in the multiple columns to a digitalized value; and

a memory device configured to stove the digital values
converted by the measurement unit.

42. The method of claim 41, wherein the measurement unit

includes an analog-to-digital converter.

43. A method of extracting different parameters from a
pixel circuit in a display panel, comprising:

extracting, using a first measurvement implementation, from
the pixel circuit a first parameter indicative of a degra-
dation or non-uniformity of the pixel circuit;

extracting, using a second measuvement implementation
different from the first measuvement implementation,

from the pixel circuit a second parvameter indicative of

20

converting the resulting voltage to a corresponding analog
value to be applied as the video input signal during a

programming phase.
48. The method of claim 45, wherein the adjusted video

> signal input is applied to the pixel civcuit during the program-
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the same or a diffevent degradation or non-uniformity of 25

the pixel circuit as the first extracted pavameter; and

driving the pixel cirvcuit with programming information
that is adjusted based on the extracted first parameter or
the extracted second parameter ov both, wherein the fivst
parameter is related to a threshold voltage of a drive
transistor in the pixel circuit.

44. The method of claim 43, wherein the second parameter
is a current through a common electrode of an ovganic light
emitting device in the pixel circuit, wherein the common elec-
trode is connected to all of the ovganic light emitting devices
in the display panel.

45. A method of adjusting a programming value for a pixel

circuit in an OLED display to compensate for degradation of

the display or for non-uniformity and degradation of the
display, the method comprising:
applving a charge to the pixel circuit to acquire threshold
voltage information or a shift in threshold voltage infor-
mation from the pixel circuit;

responsive to applying the charge, measuring a voltage of

the pixel circuit;

extracting from the measuved voltage a degradation of the
pixel circuit, the degradation adversely affecting a pro-
grammed brightness of an OLED in the pixel circuit,

digitizing the extracted degradation of the pixel circuit to a

digital compensation value vepresenting the degrada-
tion of the pixel circuit; and

adjusting a video input signal to the pixel circuit based on

the digital compensation value to compensate for the
degradation of the pixel circuit, wherein the extracting
the degradation includes measuring a voltage remain-
ing on a data node of the pixel civcuit during a threshold
voltage acquisition.

46. The method of claim 45, wherein the voltage vemaining
on the data node corresponds to a threshold voltage or a shift
in the threshold voltage of a drive transistor in the pixel
circuit.

47. The method of claim 45, wherein the digitizing the
extracted degradation includes:

storing digital data corresponding to the digitized

extracted degradation in a memory;

adding the digital data to the programming value to pro-

duce a rvesulting voltage; and
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ming phase as a current or a voltage.

49. A method of adjusting a programming value for a pixel
circuit in an OLED display to compensate for degradation of
the display or for non-uniformity and degradation of the
display, the method comprising:

applving a charge to the pixel civcuit to acquire threshold

voltage information or a shift in threshold voltage infor-
mation from the pixel circuit;

responsive to applying the charge, measuring a voltage of

the pixel circuit;

extracting from the measured voltage a degradation of the

pixel circuit, the degradation adversely affecting a pro-
grammed brightness of an OLED in the pixel circuit;

digitizing the extracted degradation of the pixel circuit to a

digital compensation value vepresenting the degrada-
tion of the pixel circuit; and

adjusting a video input signal to the pixel cirvcuit based on

the digital compensation value to compensate for the
degradation of the pixel circuit, wherein the extracting
the degradation includes measuring a rate of discharge
of a voltage on the data node of the pixel circuit.

50. The method of claim 49, wherein the digitizing the
extracted degradation includes:

storing digital data corresponding to the digitized

extracted degradation in a memory;,

adding the digital data to the programming value to pro-

duce a rvesulting voltage; and

converting the vesulting voltage to a corrvesponding analog

value to be applied as the video input signal during a
programming phase.

51. The method of claim 49, wherein the adjusted video
signal input is applied to the pixel civcuit durving the program-
ming phase as a current or a voltage.

52. A method of adjusting a programming value for a pixel
circuit in an OLED display to compensate for degradation of
the display or for nomn-uniformity and degradation of the
display, the method comprising:

applving a charge to the pixel civcuit to acquire threshold

voltage information or a shift in threshold voltage infor-
mation from the pixel circuit;

responsive to applying the charge, measuring a voltage of

the pixel circuit,

extracting from the measured voltage a degradation of the

pixel circuit, the degradation adversely affecting a pro-
grammed brightness of an OLED in the pixel circuit;

digitizing the extracted degradation of the pixel circuit to a

digital compensation value vepresenting the degrada-
tion of the pixel circuit; and

adjusting a video input signal to the pixel civcuit based on

the digital compensation value to compensate for the
degradation of the pixel circuit,

wherein the digitizing the extracted degradation includes:

storing digital data corresponding to the digitized
extracted degradation in a memory;
adding the digital data to the programming value to

produce a resulting voltage; and

converting the resulting voltage to a corresponding ana-
log value to be applied as the video input signal dur-
ing a programming phase.



US RE45,291 E

21

53. The method of claim 52, wherein the extracting the
degradation includes extracting a threshold voltage or a shift
in the threshold voltage of a drive transistor in the pixel
clrcuit.

54. The method of claim 52, wherein the extracting the 5
degradation includes measuring a voltage vemaining on a
data node of the pixel circuit during a threshold voltage
acquisition.

55. The method of claim 54, wherein the voltage remaining
on the data node corresponds to a threshold voltage or a shift 10
in the threshold voltage of a drive tramnsistor in the pixel
circuit.

56. The method of claim 52, wherein the extracting the
degradation includes measuring a rate of discharge of a
voltage on the data node of the pixel circuit. 15

57. A method of adjusting a programming value for a pixel
circuit in an OLED display to compensate for degradation of
the display or for non-uniformity and degradation of the
display, the method comprising:

applying a charge to the pixel circuit to acquire threshold 20

voltage information or a shift in threshold voltage infor-
mation from the pixel circuit;

responsive to applving the charge, measuring a voltage of

the pixel circuit;

extracting from the measuved voltage a degradation of the 25

pixel circuit, the degradation adversely affecting a pro-
grammed brightness of an OLED in the pixel circuit;

digitizing the extracted degradation of the pixel circuit to a

digital compensation value representing the degrada-
tion of the pixel circuit; and 30
adjusting a video input signal to the pixel circuit based on
the digital compensation value to compensate for the
degradation of the pixel circuit, wherein the adjusted
video signal input is applied to the pixel civcuit during a
programming phase as a current or a voltage. 35

58. The method of claim 57, wherein the extracting the
degradation includes extracting a threshold voltage or a shift
in the threshold voltage of a drive transistor in the pixel
circuit.

59. The method of claim 57, wherein the extracting the 40
degradation includes measuring a voltage remaining on a
data node of the pixel circuit during a threshold voltage
acquisition.

60. The method of claim 59, wherein the voltage remaining
on the data node corresponds to a threshold voltage or a shift 45
in the threshold voltage of a drive transistor in the pixel
circuit.

61. The method of claim 57, wherein the extracting the
degradation includes measuring a vate of discharge of a
voltage on the data node of the pixel circuit. 50

62. The method of claim 57, wherein the digitizing the
extracted degradation includes:

storing digital data corresponding to the digitized

extracted degradation in a memory;

adding the digital data to the programming value to pro- 55

duce a resulting voltage; and

converting the resulting voltage to a corrvesponding analog

value to be applied as the video input signal during a
programming phase.

63. The method of claim 57, further comprising: 60

generating a voltage versus current relationship for the

pixel circuit based on curvent values applied to a data
node of the pixel civcuit and based on voltages sampled
at the data node; and

extracting, based on the generated voltage versus current 65

relationship, a voltage corresponding to a zero curvent
level
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wherein the digital compensation value is further adjusted

based on the extracted voltage.

64. A method of adjusting a programming value for a pixel
circuit in an OLED display to compensate for degradation or
non-uniformity of the display or for non-uniformity and deg-
radation of the display, the method comprising:

applving a current to a node of a pixel circuit;

responsive to the applying, acquiving a voltage from the

node;

creating, from the acquired voltage, a compensation value;

storing the compensation value in a memory device; and

correcting a video input signal applied to the pixel civcuit
based on the stored compensation value, whevein the
voltage acquired from the data node corresponds to a
threshold voltage or a shift in the threshold voltage of a
drive transistor in the pixel circuit.

65. The method of claim 64, wherein the node is a data
node.

66. The method of claim 64, wherein the creating the com-

pensation value includes:

storing digital data corresponding to the compensation

value in a memory;,

adding the digital data to the programming value to pro-

duce a rvesulting voltage; and

converting the resulting voltage to a corrvesponding analog

value to be applied as the video input signal during a
programming phase.

67. The method of claim 64, wherein the corrected video
signal input is applied to the pixel circuit during a program-
ming phase as a current or a voltage.

68. A method of extracting different parameters from a

pixel circuit in a display panel, comprising:

extracting, using a first measurement implementation, from
the pixel circuit a first parameter indicative of a degra-
dation or non-uniformity of the pixel circuit,
extracting, using a second measuvement implementation
different from the first measuvement implementation,
from the pixel circuit a second parvameter indicative of
the same or a diffevent degradation or non-uniformity of
the pixel circuit as the first extracted parvameter; and

driving the pixel circuit with programming information
that is adjusted based on the extracted first parameter or
the extracted second parameter or both, wherein the
second parameter is a curvent through a common elec-
trode of an organic light emitting device in the pixel
circuit, wherein the common electrode is connected to
all of the organic light emitting devices in the display
panel.

69. The method of claim 84, whevein the first parameter is
related to a threshold voltage of a drive transistor in the pixel
circuit.

70. A method of adjusting a programming value for a pixel
circuit in an OLED display to compensate for degradation of
the display or for nomn-uniformity and degradation of the
display, the method comprising:

applving a charge to the pixel circuit to acquire threshold

voltage information or a shift in threshold voltage infor-
mation from the pixel circuit;

responsive to applying the charge, measuring a voltage of

the pixel circuit,

extracting from the measured voltage a degradation of the

pixel circuit, the degradation adversely affecting a pro-
grammed brightness of an OLED in the pixel circuit;

digitizing the extracted degradation of the pixel circuit to a

digital compensation value vepresenting the degrada-
tion of the pixel circuit;
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adjusting a video input signal to the pixel circuit based on
the digital compensation value to compensate for the
degradation of the pixel circuit;

generating a voltage versus current velationship for the
pixel circuit based on curvent values applied to a data
node of the pixel civcuit and based on voltages sampled
at the data node; and

extracting, based on the generated voltage versus current
relationship, a voltage corresponding to a zero curvent
level

whevrein the digital compensation value is further adjusted
based on the extracted voltage.
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