USOORE45278E
(19) United States
12 Relissued Patent (10) Patent Number: US RE45,278 E
Kasper 45) Date of Reissued Patent: *Dec. 2, 2014
(54) METHOD AND APPARATUS FOR CHANGING (56) References Cited
gggléggs(gﬂz 1O BEEXECUTEDIN A U.S. PATENT DOCUMENTS
5,136,696 A * 8/1992 Beckwithetal. 712/240
(75) Inventor: Christian D. Kasper, Andover, MA 5,796,974 A 8/1998 Goddard et al.
(US) 5,860,104 A 1/1999 Witt et al.
5,887,152 A 3/1999 Tran
5,983,337 A 11/1999 Mahalingaiah et al.
(73) Assignee: STMicroelectronics, Inc., Coppell, TX 6040672 A * 42000 Shiell etal. 717/168
(US) 6,101,580 A * &/2000 Agesenetal. 711/132
6,192,516 B1* 2/2001 Griesemer 717/139
(*) Notice: Thi.s patent 1s subject to a terminal dis- gﬁgg:ggg g gggg %/[;lllz T 7127213
claimer. 6,397,379 B1* 5/2002 Yatesetal. 717/140
6,502,237 B1* 12/2002 Yatesetal. 717/136
(21) Appl. No.: 12/914,978 6,629,312 B1* 9/2003 Guptacooeevvrvinnnnnnn, 717/136
’ 6,691,308 B1* 2/2004 Kasperco.ooeevvvnnnnnnn, 717/168
(22) Filed: Oct. 28,2010 (Continued)
Related U.S. Patent Documents OLIHER PUBLICATIONS
Rei1ssue of: Lin et al., A compact DSP core with static floating-point unit & its
(64) Patent No.: 7,444,630 microcode generation, Apr. 2004, 4 pages.™
Issued: Oct. 28, 2008 (Continued)
Appl. No.: 10/774,994
Filed: Feb. 9, 2004 Primary Examiner — Thuy Dao
Ce (74) Attorney, Agent, or Firm — Allen, Dyer, Doppelt,
U.5. Applications: o Milbrath & Gilchrist, P.A.
(63) Continuation of application No. 09/475,927/, filed on
Dec. 30, 1999, now Pat. No. 6,691,308. (37) ABSTRACT

A Central Processing Unit (CPU) hotpatch circuit compares

(51) Int. Cl the run-time 1nstruction stream against an internal cache. The

GO6t 9/45 (2006.01) internal cache stores embedded memory addresses with asso-

(52) U.S. CL ciated control flags, executable instruction codes, and tag
USPC 717/136; 717/139; 717/140; 717/148; information. In the event that a comparison against the current
717/159 program counter succeeds, then execution 1s altered as

required per the control flags. If no comparison match 1s

(58) Field of Classification Search made, then execution of the instruction that was accessed by

CPC GO6F 8/52; GO6F 8/41; GO6F 8/443; the program counter is executed.
GO6F 9/45508; GO6F 9/45516
See application file for complete search history. 31 Claims, 4 Drawing Sheets

10
i8 l ‘ g
N COMPERAND
GLOBAL MASK oM
EG'K- - 14 =
HOST BUS OR I —
EXTERNAL —_— CACHE
MEMORY 20"
_{ CACHE CONTROL
LOGIC {CCL)
I CACHE CONTROL
| REGISTER (CCR) ™23
o1 PO ™27
&
» MULTIPLEXER
* -6
FETCH BUFFER
24~
J OECODE PIPELINE

EXECUTE

US RE45,278 E
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

6,704,926 Bl
0,718,539 Bl
0,851,109 Bl
7,036,118 Bl
7,134,119 B2 *
7,254,806 B1*

% % % *

3/2004
4/2004
2/2005
4/2006
11/2006
8/2007

Blandy et al. 71
Cohenetal.o.o..... 71
Alexanderetal. 71
Uleryetal. 71
Nevill ..oovviiiiin, 71
Yatesetal.c..coeeen. 71

7/1
7/1
7/1
7/1
7/1
7/1

48
36
48
59
39
36

OTHER PUBLICATIONS

A. K. Tirrell, A study of the application of compiler techniques to the

generation of micro-code, Aug. 1974, 18 pages.™

IBM Technical Disclosure Bulletin, published Oct. 1, 1993.

* cited by examiner

U.S. Patent

Dec. 2, 2014 Sheet 1 of 4

HOST BUS OR
EXTERNAL
MEMORY

01 |

8N COMPERAND

o /| BLOBAL MASK

- CACHE
20

CACHE CONTROL

LOGIC (CCL)

CACHE CONTROL

REGISTER (CCR)

23

US RE45,278 E
10
red
ROM
14

22 l

24 |-

MULTIPLEXER
tkits 16
FETCH BUFFER
A—" PIPELINE

EXECUTE
FIlG. 1

U.S. Patent Dec. 2, 2014 Sheet 2 of 4 US RE45.278 E

COMPERAND
GLOBAL MASK

22

CACHE CONTROL
LOGIC (CCL)

231/ CCR
12'f_P:C_J*-

30’ —

168

STATUS BUFFER

34

v
o

U.S. Patent Dec. 2, 2014 Sheet 3 of 4 US RE45.278 E

v TR

CONTROL FLAGS | FIELD | OPERATION | OTHER | EXPLANATION
1 v L VALID '
2 A ADDRESS
——— .__..+

3 0 OPCODE
]

4 ; GLOBAL

i | | _ .
5 : INSERT
- i

6 M

7. : BLOCK ASSIGNMENT
8. X DELETE

9 : EXTERNAL ROM
10 H o | HALT

.] LOCK

12 0 | GENERATE TRAP

FIG. 3
300 308 30A

30 ADDRESS OR OPCODE CONTROL FLAGS

g gl P e e e R e]

32

US RE45,278 K

S OIA
V; 4 = ———me—————
 3INIT3did OLNI NVHL HIH1YY §34408 0L STHOLYIN 3N FHIVD JWNG 300 9Ng3a (LE)Na L
(3HOVOI= | 'FHOYOV =0) SLINSIH HOLYW VNG S0 ALIHOHd SIHSINGVLSI JOLYIIAN! ALIHOIY | (08)1d
(0=11Nv430 '+=0318YN3) JHOVIIV AJICOW OL 300 WO STT8VNT MIGON-4T3S | (62)WS
(HOLYW= | "HOLYIN ON=0) 3HOVII HO4 SMILVLS HOLVW LHOd3Y | SNLVLS HOLVA w.mowoﬁ (82)1S |
| | MO0T9 LINJYID 3HIYI NOILINYLSNI NO SNHNL J19YN3F IHOVOI (£1)301
- GNVHIJNOD ONIHOLYI INIM JHOVII 40 XIANI X3ANI INIT IHIVO (91:92)11 |
= (0=HOLVYW ON "t =0ITVA) SNLVLS HOLIVW 1H0d3Y | SNLVLS HILVIN JHOVIY (GL) VS
M ONYHIIWOD ONIHDLYI 3NIT IHOVIY 40 XIANI | X3ANI INIT IHIVIV (P2 VI
m (0=11Nv430 L =QT18VNI) %0078 IHIVD SSIHUTY 3HL NC SNHML | 378YNI IHOVOY
(0=11Nv430 "+=0378V¥N3) SINIT IHIVII OLNI JLIHM SINIAIHI M307T FJHIV! (2191
(0=11NV430 'L =a318¥N3) SINIT IHOVOY OLNI ILIM SINIATEd MI01 FHIVIY (1)10V
m (0=17NV430 *+=0378¥N3) NOILYY3dO 3HOYD TIN4 T78YN3 | 9Y14 NOLLYHICO T1aVN3 | (0)30
M., NOILYNY1dX3 | NOILINIZ3Q §1313
S
- _ T
502212 = 5 | = Sl@i2lals
0| Lic|¢e v s 9] m_,mh:_: NF_?__:,ﬂ.E E_E.E_QN_E Nm_mm,vm G2 |92 | 42|82 mN?m <
| . |
&C

U.S. Patent

US RE45,278 E

1

METHOD AND APPARATUS FOR CHANGING
MICROCODE TO BE EXECUTED IN A
PROCESSOR

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application 1s a continuation of prior application Ser.
No. 09/475,927 filed on Dec. 30, 1999 now U.S. Pat. No.

6,691,308.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to a processors and, more
specifically, to a method and apparatus which provides run-
time correction for microcode, code enhancement, and/or
interrupt vector reassignment.

2. Description of the Prior Art

For integrated circuits which are driven by microcode
which 1s embedded 1n internal memory, many times 1t 1s
necessary to either have the mstruction content of the embed-
ded memory device or the behavior of the Central Processing
Unit (CPU) pipeline 1tself corrected or debugged in the field.
This may require on-the-1ly modifications driven by customer
request or updates due to evolution of industry protocol stan-
dards. However, this creates problems since 1t 1s difficult to
correct and/or debug these types of circuits. Debugging and/
or changing the embedded microcode 1s a time consuming
cifort which generally requires messy CRC changes or
related checksum modifications.

Therefore, a need existed to provide a circuit by which
either the 1nstruction content of the internal memory and/or
the behavior of the CPU pipeline 1tself could be corrected
and/or debugged 1n the field. The debug circuit should con-
sume only a small amount of silicon real estate, be inexpen-
stve to 1mplement and allow changes at a faster rate then
current techniques. The debug circuit must also provide a
means by which the debug circuit could download data to
debug the device. Data could be downloaded by the host
system or managed via a simplistic communication scheme
as described 1n the ST52T3 data book written by STMicro-

electronics, Inc.

SUMMARY OF THE INVENTION

It 1s object of the present invention to provide a circuit by
which either the instruction content of an internal memory
and/or the behavior of the CPU pipeline itself could be cor-
rected and/or debugged 1n the field.

It 1s another object of the present mvention to provide a
debug circuit which consumes only a small amount of silicon
real estate, 1s inexpensive to implement and allow changes at
a faster rate then current techniques.

It 1s still a further object of the present invention to provide
a debug circuit which provides a means by which the debug
circuit could download data to debug the device.

BRIEF DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In accordance with one embodiment of the present imven-
tion, a hot patch system for changing of code 1n a processor 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

2

disclosed. The hot patch system has a memory, such as a Read
Only Memory (ROM), for storing a plurality of instructions.
A program counter 1s coupled to the memory for indexing of
the memory to access an instruction. A cache system 1s
coupled to the memory and to the program counter. The cache
system 1s used for comparing information associated with the
instruction from memory with information stored 1n the cache
system. If there 1s a comparison match, the cache system
alters the instruction stream as designated by information
stored 1n the cache system. If no match occurs, the cache
system sends the instruction from memory into the instruc-
tion stream.

In accordance with another embodiment of the present
invention, a method of altering the code of a pipeline proces-
sor 1s disclosed. The method requires that a plurality of
istructions be stored 1n memory. A cache 1s provided and
information 1s stored in the cache. The memory 1s indexed to
access one of the mnstructions stored 1n memory. Information
associated with the instruction from memory 1s compared
with information stored 1n the cache. If a comparison match 1s
made, the mstruction stream 1s altered as designated by the
information stored in the cache. If no comparison match 1s
made, the instruction from memory i1s inserted into the
instruction stream.

The foregoing and other objects, features, and advantages
of the mvention will be apparent from the following, more
particular, description of the preferred embodiments of the
invention, as illustrated 1n the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a simplified block diagram of one embodiment of
the hot patch circuit of the present invention.

FIG. 2 1s a simplified block diagram of a second embodi-
ment of the hot patch circuit of the present invention.

FIG. 3 shows one example of the different fields associated
with the cache used 1n the present invention.

FIG. 4 shows one example of the control codes used in the
control flag field of FIG. 3.

FIG. 5 shows one example of the bit configuration of the
cache control register used 1n the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring to FIG. 1, one embodiment of a hot patch circuit
10 (heremafter circuit 10) 1s shown. The circuit 10 provides a
means whereby the instruction content of an embedded
memory device or the behavior of the Central Processing Unit
(CPU) may be corrected, modified and/or debugged. The
circuit 10 1s preferably used 1n a pipeline CPU.

The circuit 10 has a program counter 12. The program
counter 12 1s coupled to a memory device 14 and to a register
18. The program counter 12 1s used to generate an address of
an 1nstruction to be executed. When the address 1s generated,
the program counter 12 will index the memory unit 14. The
memory unit 14 stores instructions which are to be executed
by the CPU. The memory unit 14 1s a nonvolatile memory
device like a Read Only Memory (ROM) device. Once the
program counter 12 access the instruction which is stored in
the memory unit 14, the instruction 1s sent to a multiplexer 16.

The register 18 1s coupled to the memory unit 14, the
program counter 12, and to a cache unit 20. The register 18 1s
used to store data which will be compared to data which 1s
stored 1n the cache unit 20. The register 18 may either store

US RE45,278 E

3

the address sent from the program counter 12 or the instruc-
tion which the program counter 12 access from the memory
unit 14.

As may be seen 1n FIG. 4, the cache unit 20 1s comprised of
a plurality of cache lines 30. Each cache line 30 1s comprised
of at least three different fields: a control flag field 30A, an
op-code field 30B which stores the new instruction to be
inserted into the instruction stream, and an address/op-code
field 30C which stores the data which 1s to be compared to the
data stored 1n the register 18. The size of the fields will vary
based on the implementation of the circuit 10. In accordance
with one embodiment of the present invention, the width of

the cache line 30 would be able to accommodate at least a

32-bit op-code (field 30B) along with a 10 to 32-bit address/
op-code (field 30C) and a 2 to 8-bit control tlag field (field
30A). This would vyield a cache line width between 44 to
72-bits. However, 1t should be noted that these field lengths
are only given as one example and should not be seen as
limiting the scope of the present invention. As stated above,
bit field dimensions will vary depending on the size of the
memory unit 14.

The control flag field 30 A 1s used to dictate both the seman-
tic content and the execution behavior of individual or mul-
tiple cache lines 30. The number of control flags 1s dependent
upon the allocated field size. In some cases, combination of
control tlags may be useful. Control flags may be used to
either delete or enable cache unit entries, or provide alternate
semantic information regarding the register content. Refer-
ring to FIG. 3, some examples of the control flag code 1s
shown. The valid flag “V” indicates whether the entry in the
cache unit 20 1s valid. The “A” and “O” flags indicate whether
the information to be compared 1s an address or an op-code.
The global flag “G” allows for greater than a 1:1 mapping. For
example, 1f the address flag “A” 1s set, one would only be
comparing the one particular address 1n the memory unit 14.
Thus, there 1s only a 1:1 mapping. However, if the op-code
“0” and global “G” tlags are set, one would be able to replace
every occurrence ol a particular mstruction that 1s accessed
from the memory unit 14. Thus, the global flag “G” allows
one to make better use of the space in the cache unit 20. The
isert “I”’, match “M”, block assignment “B”, and delete “X”
flags are used by the cache control logic 22 to control access
to the instruction stream. The “I” flag implies that the asso-
ciated op-code 1n the cache 1s to be mserted 1nto the mstruc-
tion stream. The “M” flag indicates that when the contents of
the register 18 matches that in the cache unit 20, the cache unit
instruction 1s to replace the instruction from the memory unit
14 in the instruction stream. The “B” flag allows for more than
one struction (1.e., a block of instructions) that 1s stored 1n
the cache unit 20 1s to be clocked into the mstruction stream.
The “X” indicates that the relevant instruction 1s to be 1ignored
or deleted (1.e., no operation (NOP)). The “E”, “H”, “L”", and
“Q” tlags are pipeline control flags. The “E” flags indicates
that if there 1s a match to jump to external memory using the
address 1n the “opcode field” and to execute the instructions 1in
external memory starting at that location. The “H” flag allows
one to stop the clock for purposes of debugging the pipeline.
The “L” flag allows one to lock the cache unit 20 and the “Q”
flag 1s a generate trap tlag. The control codes shown 1n FIG. 3
are Just examples and should not be seen to limit the scope of
the present invention. Different sets or embodiments of tlags
could be used depending on the particular implementation.

In the embodiment depicted 1n FIG. 1, the cache unit 1s a
tully associative or direct-mapped cache which would con-
tain memory unit addresses with associated control flags,
executable mstructions, and tag information. The cache unit

5

10

15

20

25

30

35

40

45

50

55

60

65

4

20 may be a content addressable memory whereby the data in
the register 18 1s compared to all the contents in the cache unit
20.

The cache 20 1s also coupled to a bus 21. The bus 21 could
be coupled to a host bus or to external memory. The bus 21
allows data to be downloaded 1nto the cache 20 or for allow-
ing instructions to be executed from the external memory.
Contents of the cache 20 could be downloaded by the host
system or managed via a simple communication scheme as
described 1n the ST5213 data book written by STMicroelec-
tronics, Inc.

Cache control logic 22 1s coupled to the cache umt 20 and
to te multiplexer 16. The cache control logic 22 controls the
operation of the cache unit 20 and when a particular instruc-
tion will be inserted into the instruction stream of the pipeline
24. [T there 1s no comparison match, the cache control logic 22
will let the mstruction from the memory unit 14 flow through
the multiplexer 16 to the pipeline 24. When there 1s a com-
parison match, the instruction from the memory unit 14 1s
replaced by a new 1nstruction from the cache unit 20 in the
pipeline 24. The cache control logic 22 will have a cache
control register 23. The cache control register 23 allows one to
control the cache unit 20 and to control insertion of an 1mstruc-
tion 1nto the pipeline 24. By setting various bits 1n the cache
control register 23, one would be able to enable/disable the
cache unmit 20, modily the contents of the cache unit 20 and
control the general operation of the cache unit 20. The cache
control register 23 will be described 1n further detail 1n rela-
tion to the dual cache system of FIG. 2.

A mask register 26 may be coupled to the cache unit 20.
The mask register 26 may be a global mask register which
would aflect the entire cache umit 20 or a local mask register
32 (FIG. 3) whereby a single cache line 30 would have an
associated local mask register 32. The mask register 26 pro-
vides flexibility to the circuit 10. The mask register 26 allows
flexibility by allowing one to control how the data from the
memory unit 14 1s matched with data in the cache unit 20. For
example, if all of the bits 1n the global mask register 26 were
set to 1, then what ever data came through the register 18
would be matched one to one against that of the cache unit 20.
One could also set the global mask register 26 to invalidating
the cache unit 20 and let the memory unit instructions be
executed as accessed by the program control 12. The mask
register 26 may also be used to modily the contents of the
cache unit 20 by using simple write 1nstructions.

Referring to FIG. 2, a second embodiment of the present
invention 1s shown wherein like numerals represent like ele-
ments with the exception of a *“"” to indicate another embodi-
ment. The circuit 10' looks and operates 1n a similar fashion as
circuit 10 depicted in FIG. 1. One difference 1n circuit 10' 1s
that the cache 20' 1s divided into two separate caches: an
address cache 20A' and an instruction cache 20B'. Thus, for
the address cache 20A’, the third field of the cache line will
contain the memory unit address location to be matched, and
for the instruction cache 20A', the third field of the cache line
will contain the memory unit instruction to be matched.

The cache control logic 22! operates 1n a similar fashion as
disclosed above. For the dual cache system, one implemen-
tation of the cache control register 23" 1s shown 1n FIG. 5. As
can be seen 1 FIG. 5, by setting different bits 1n the cache
control register 23", one 1s able to control the operation of the
cache unit 20'. The catch control register 23' depicted in FIG.
5 would be used 1n the dual cache system of FIG. 2. In this
particular embodiment, the cache control register 23" has
locking, enabling, indexing, and match status bits for both the
address cache 20A' and the index cache 20B'. Bits like the

enable operation bit and the debug mode bit could be used 1n

US RE45,278 E

S

either the single cache system of FIG. 1 or the dual cache
system of FIG. 2. The cache control register bit definition as
shown 1n FIG. 5 1s just one example and should not be seen to
limit the scope of the present invention. Different configura-
tion of bits could be used depending on the particular imple-
mentation.

The dual cache system also uses two multiplexers 16 A’ and
16B'. The first multiplexer 16 A' has a first input coupled to the
output of the address cache 20A', a second 1nput coupled to
the output of the istruction cache 20B', a third input coupled
to the cache control logic 22", and an output coupled to the
second multiplexer 16B'. The second multiplexer 16B' has a
first input coupled to the output of the first multiplexer 16 A,
a second 1mput coupled to the output of the memory device
14', a third mput coupled to the cache control logic 22', and
outputs coupled to the pipeline 24" and the status butler 34'. In
operation, the cache control logic 23' will control which cache
20A" or 20B' 1s enabled and if there 1s a dual match if both
caches 20A" and 20B' are enabled, which cache has priority. If
there 1s a comparison match, the cache control logic 22' will
cause the multiplexer 16 A' to send an output from the cache
unit 20' to the second multiplexer 16B'. The cache control
logic 22' will then cause the multiplexer 16B' to 1nsert the
output from the cache unit 20" into the instruction stream to be
executed. If there 1s no comparison match, the cache control
logic 22' will cause the multiplexer 16B' to insert the mstruc-
tion from the memory umt 14' into the pipeline 24"

In the embodiment depicted in FIG. 2, the circuit 10" has a
status builer 34'. The status buffer 34' has an input coupled to
the cache control logic 22', an mput coupled to the second
multiplexer 16B', and an mput coupled to the bus 36'. The
status buffer 1s used to store information related to the opera-
tion of the circuit 10'. For example, the status butler could be
used to gather debug information such as what line of code
was matched. Although not shown i FIG. 1, 1t should be
noted that the status buffer 34' could also be used in the
embodiment depicted in FIG. 1.

OPERATION

Referring now to Table 1 below, the operation of circuit 10
will be described. It should be noted that the operation of
circuit 10' 1s similar to 10 and will not be described 1n detail.

TABLE 1
Cache
Flags Address Op-code Program Counter Code Stream

1 MA 0111111 CP32A.C 0111111 CP32AC

2 IR 1000000 MOV A,B 1000000 100000

3 RA 1000010 SAV B 1000001 MOV A.B

4 RA 1000011 ADD B.,C 1000010 100001

5 XA 1000101 1000011 SAV B
1000101 ADD B.C
1000110 NOP
1000111 1000110

1000111

When the program counter 12 generates the address
0111111, the program counter 12 will index the memory unit
14. The instruction associated with address 0111111 from the
memory unit 14 will be stored in the multiplexer 16. The
address from the program counter 12 1s also sent to the reg-
ister 18 where 1t 1s compared to the data stored in the cache
unit 20. As can be seen above, for address 0111111 there i1s a
comparison match with cache line 1. Since the “M” flag 1s set
tor cache line 1, the op-code in cache line 1 will replace the

10

15

20

25

30

35

40

45

50

55

60

65

6

instruction from memory. Thus the cache control logic 23 will
send the CP32 A.C instruction associated with cache line 1
through the multiplexer 16 into the pipeline 24 to be execute.

The next address generated by the program counter 12 1s
1000000. The memory umt instruction associated with
address 1000000 1s sent from the memory unit 14 and stored
in the multiplexer 16. The address generated by the program
counter 12 1s sent to the register 18 where 1t1s compared to the
data stored in the cache unit 20. For the address 1000000 there
1s a comparison match with cache line 2. Since the “I” flag 1s
set for cache line 2, the op-code 1n cache line 2 (1.e., MOV
A.B) will be inserted into the instruction stream after the
instruction associated with the memory unit address location
1000000.

The next address generated by the program counter 12 1s
1000001. For this address there 1s no comparison match.
Thus, the cache control logic 23 will send the instruction
associated with memory unit address location 1000001
through the multiplexer 16 into the pipeline 24 to be execute.

For the next address, 1000010, there 1s a comparison match
with cache line 3. Since the “R” flag 1s set in cache line 3, the
op-code incache line 3 (1.e., SAV B) replaces the memory unit
instruction associated with the address 1000010 in the
instruction stream.

The next address generated by the program counter 1s
1000011. For this address, there 1s a comparison match with
cache line 4. Since the “R” flag i1s set 1n cache line 4, the
op-code ADD B,C 1n cache line 4 replaces the memory unit
instruction associated with the address 1000011 in the
instruction stream.

The next address 1n the program counter 1s 1000101. Again
there 1s a comparison match. This time the match 1s with
cache line 5. Cache line 5 has the “X” flag set so the mstruc-
tion 1s 1gnored or deleted (1.e., no operation (NOP)).

For the last two addresses 1n the program counter, 1000110
and 1000101, this 1s no comparison match. Thus, the cache
control logic 23 will send the instruction associated with
these memory unit address locations through the multiplexer
16 1nto the pipeline 24 to be execute.

While the mnvention has been particularly shown and
described with reference to preferred embodiments thereof, 1t
will be understood by those skilled 1n the art that the forego-
ing and other exchanges 1n form and details may be made
therein without departing from the spirit and scope of the
invention.

What 1s claimed 1s:

1. A hot patch system comprising:

a read only memory storing a plurality of instructions;

a cache memory storing alternate instructions for at least
one 1nstruction stored within the read only memory, each
cache line within the cache memory having associated
therewith one or more selection tlags;

a program counter coupled to the read only memory and to
the cache memory, the program counter transmitting an
address to both the read only memory and the cache
memory; and

cache control logic coupled to the cache memory, the cache
control logic comparing selected information associated
with an instruction stored at the address 1n the read only
memory with counterpart selected information associ-
ated with an instruction stored at the address in the cache
memory, wherein the selected information and counter-
part selected information are selected based upon the
one or more selection flags associated with a cache line
corresponding to the address.

2. The hot patch system according to claim 1, wherein the

one or more selection flags include a first flag indicating

US RE45,278 E

7

whether the cache control logic 1s to compare addresses and a
second tlag indicating whether the cache control logic 1s to
compare opcodes.

3. The hot patch system according to claim 2, wherein the
second flag, when set, indicates that the cache control logic 1s
to compare an opcode stored at the address within the read
only memory with an opcode stored at the address within the
cache memory.

4. The hot patch system according to claim 2, wherein the
first and second flags may be individually set, so that both
flags may be set, one flag may be set while the other flag 1s not
set, or both flags may be not set.

5. The hot patch system according to claim 2, wherein the
one or more selection flags further include a third flag indi-
cating whether an opcode comparison should be performed
for every instance of an opcode within the read only memory.

6. The hot patch system according to claim 1, wherein each
cache line within the cache memory has associated therewith
one or more mstruction flow control flags, wherein the cache
control logic causes a change in 1nstruction flow based upon
the one or more 1nstruction flow control flags associated with
the cache line corresponding to the address when there 1s a
comparison match between the selected information and the
counterpart selected information.

7. The hot patch system according to claim 6, wherein the
one or more instruction flow control tlags include an insert
flag indicating that an opcode at the address within the cache
memory 1s to be inserted prior to execution of an opcode at the
address within the read only memory.

8. The hot patch system according to claim 6, wherein the
one or more instruction flow control flags include a replace
flag indicating that an opcode at the address within the cache
memory 1s to be executed 1nstead of an opcode at the address
within the read only memory.

9. The hot patch system according to claim 6, wherein the
one or more 1mstruction tlow control flags include a block flag
indicating that more than one opcode starting at the address
within the cache memory are to be executed instead of or
betore an opcode at the address within the read only memory.

10. The hot patch system according to claim 6, wherein the
one or more mstruction flow control flags include a noop flag
indicating that an opcode at the address within the read only
memory 1s to be skipped.

11. A processor-implemented hot patch method, compris-
ng:

storing a plurality of instructions within a read only

memory;

storing alternate istructions for at least one instruction 1n

the read only memory within a cache memory, each
cache line within the cache memory having associated
therewith one or more selection flags;

transmitting an address to both the read only memory and

the cache memory; and

comparing selected information associated with an instruc-

tion stored at the address 1n the read only memory with
counterpart selected information associated with an
instruction stored at the address 1n the cache memory,
wherein the selected information and counterpart
selected information are selected based upon the one or
more selection flags associated with a cache line corre-
sponding to the address.

12. The hot patch method according to claim 11, wherein
the one or more selection flags include a first flag indicating,
whether addresses are to he compared and a second flag
indicating whether opcodes are to be compared.

13. The hot patch method according to claim 12, wherein
the second flag, when set, indicates that an opcode stored at

10

15

20

25

30

35

40

45

50

55

60

65

8

the address within the read only memory 1s to be compared
with an opcode stored at the address within the cache
memory.

14. The hot patch method according to claim 12, wherein
the first and second flags may be individually set, so that
cither both flags may be set, one tlag may be set while the
other flag 1s not set, or both flags may be not set.

15. The hot patch method according to claim 12, wherein
the one or more selection flags further include a third flag
indicating whether an opcode comparison should be per-
formed for every instance of an opcode within the read only
memory.

16. The hot patch method according to claim 11, wherein
cach cache line within the cache memory has associated
therewith one or more 1nstruction flow control flags, wherein
istruction flow 1s changed based upon the one or more
istruction tlow control flags associated with a cache line
corresponding to the address when there 1s a comparison
match between the selected information and the counterpart
selected information.

17. The hot patch method according to claim 16, wherein
the one or more 1nstruction flow control flags include an insert

flag indicating that an opcode at the address within the cache
memory 1s to be inserted prior to execution of an opcode at the
address within the read only memory.

18. The hot patch method according to claim 16, wherein
the one or more instruction flow control flags include a
replace flag indicating that an opcode at the address within the
cache memory 1s to be executed instead of an opcode at the
address within the read only memory.

19. The hot patch method according to claim 16, wherein
the one or more 1nstruction flow control flags include a block
flag indicating that more than one opcode starting at the
address within the cache memory are to be executed instead
of or before an opcode at the address within the read only
memory.

20. The hot patch method according to claim 16, wherein
the one or more instruction tlow control tlags include a noop
flag indicating that an opcode at the address within the read
only memory 1s to be skipped.

21. A hot patch system, comprising:
a read only memory storing a plurality of instructions;

a cache memory storing alternate instructions for at least
one 1struction stored within the read only memory, each
cache line within the cache memory having associated
therewith one or more selection flags and one or more
instruction flow control flags; and

cache control logic coupled to the cache memory, the cache
control logic comparing selected information associated
with an instruction stored at a specified address 1n the
read only memory with counterpart selected information
associated with an instruction stored at the specified
address 1n the cache memory,

wherein the selected information and counterpart selected
information are selected based upon the one or more
selection flags associated with a cache line correspond-
ing to the specified address, and

wherein the cache control logic causes a change 1n mstruc-
tion flow based upon the one or more nstruction flow
control flags associated with the cache line correspond-
ing to the address when there 1s a comparison match
between the selected information and the counterpart
selected information.

US RE45,278 E

9

22. The hot patch system according to claim 21, wherein

the one or more selection flags include:

a first flag indicating whether the cache control logic 1s to
compare the specified address with an address of one or
more instructions within the cache memory;

a second flag indicating whether the cache control logic 1s
to compare an opcode stored at least at the specified
address within the read only memory with an opcode
stored at the specified address within the cache memory;
and

a third tlag indicating whether the cache control logic is to
compare an opcode stored at any address within the read
only memory with an opcode stored at the specified
address within the cache memory.

23. The hot patch system according to claim 21, wherein

the one or more 1nstruction flow control tlags mclude:

a replace flag indicating that an opcode at the specified
address within the cache memory 1s to be executed
instead of an opcode at the specified address within the
read only memory;

a block tlag indicating that more than one opcodes starting,
at the specified address within the cache memory are to
be executed 1nstead of or before an opcode at the speci-
fied address within the read only memory; and

a noop flag indicating that an opcode at the specified
address within the read only memory 1s to be skipped.

24. A processor-implemented method of executing instruc-

tions, COmprising.

storing an instruction address compare value at a first
instruction address in a cache memory store configured
to hold alternate instructions for at least one instruction
stored within a read only memory, each cache line within
the cache memory store having associated therewith one
or movre selection flags;

receiving the first instruction address for an instruction
within the vead only memory from a program counter at
the read only memory and the cache memory storve;

based on one or more selection flags associated with a
cache line at the first instruction address within the
cache memory stove, selecting and comparing the first
instruction address with the instruction address com-
pare value; and

selectively executing at least one instruction from a second
instruction address, or executing a trap, if the first
instruction address matches the instruction address
compare value.

25. The method of claim 24, further comprising executing

a trap if a predetermined sub-set of the bits comprising the
program counter value match a corresponding sub-set of bits
in the instruction address compare value.

26. A processor-implemented method of executing instruc-

tions, comprising:

storing an instruction opcode compare value at a first
instruction address in a cache memory store configured
to hold alternate instructions for at least one instruction
stored within a read only program memory, each cache
line within the cache memory storve having associated
therewith one or more selection flags;

receiving the first instruction address from a program
counter;

vetrieving a first instruction opcode from the vead only
program memory at the first instruction address;

based on one or more selection flags associated with a
cache line at the first instruction address within the
cache memory storve, selecting and comparing the first
instruction opcode with the instruction opcode compare
value; and

5

10

15

20

25

30

35

40

45

50

55

60

65

10

executing at least one instruction from a second instruction
address if the first instruction opcode matches the
instruction opcode compare value.

27. A processor-implemented method of executing instruc-

tions, COmprising.

storing an instruction opcode compare value at a first
instruction address in a cache memory store configured
to hold alternate instructions for at least one instruction
stored within a read only program memory, each cache
line within the cache memory stove having associated
therewith one or move selection flags;

receiving the first instruction address from a program
colnlter;

retrieving an instruction opcode from the read only pro-
gram memory at the first instruction address;

based on one or more selection flags associated with a
cache line at the first instruction address within the
cache memory storve, selecting and comparing the
instruction opcode with the instruction opcode compare
value; and

selectively executing at least one instruction from a second
instruction address, ov executing a trap, if the instruc-
tion opcode matches the instruction opcode compare
value.

28. An apparatus, comprising.

a processor,

a program counter,

a cache memory address storve configured to store am
instruction address compare value and alternate
instructions for at least one instruction stoved within a
read only memory;

a configurable selection bit associated with each cache line
within the cache memory address stove;

an address comparator configurable to select and compare
an address from the program counter for an instruction
stored at the address in the vead only memory with an
instruction addrvess compare value contained at the
address in the cache memory address stove based on the
configurable selection bit; and

control logic operable to cause execution of an instruction
from an instruction addvess diffevent than the instruction
address compare value contained in the memory address
store if the instruction address compare value contained
in the cache memory address store matches the value of
the program counter if the selection bit is of a first value
and operable to cause execution of a trap if the selection
bit is of a second value.

29. The apparatus of claim 28, further comprising a vegis-

ter to store a value of the program counter.

30. The apparatus of claim 28, further comprising logic to
compare only a subset of bits comprising the program counter
value and the instruction addvess compare value to cause a
trap to occur upon the match of corresponding subsets of bits.

31. An apparatus, comprising:

a processor,

a program counter,

a cache memory opcode stove operable to stove an instruc-
tion opcode compare value and alternate instructions
for at least one instruction stoved within a read only
Memory;,

a comnfigurable selection bit associated with each line
within the cache memory opcode storve;

an opcode comparator configurable to select and compare
an opcode retrieved from an address specified by the
program counter for an instruction stoved at the address
in the vead only memory with the opcode compare value
contained in the memory opcode stove based on the

US RE45,278 E

11

configurable selection bit associated within an instruc-
tion opcode at the address; and

control logic operable to cause execution of an instruction
from an instruction address different than the value con-
tained in the program counter if the instruction opcode
compare value contained in the address stove matches
the value of a retrieved opcode if the selection bit is of a

firstvalue and operable to cause execution of a trap if the
selection bit is of a second value.

¥ ¥ # ¥ o

10

12

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE45,278 E Page 1 of 1
APPLICATION NO. : 12/914978

DATED : December 2, 2014

INVENTOR(S) . Kasper

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 7, Line 64, Claim 12 Delete: “he”
Insert; --be--

Signed and Sealed this
Eighth Day of September, 2015

Tecbatle 7 Lo

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

