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METHOD AND APPARATUS FOR
PREFETCHING RECURSIVE DATA
STRUCTURES

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application claims benefit of Ser. No. 60/174,745 a

provisional application filed Jan. 3, 2000 and claims benefit of
provisional application Ser. No. 60/174,292 filed Jan. 3,
2000.

FIELD OF THE INVENTION

This mvention addresses the problem of prefetching indi-
rect memory references commonly found in applications
employing pointer-based data structures such as trees and
hash tables. More specifically, the mvention relates to a
method for pipelining transactions on these data structures in
a way that makes it possible to employ data prefetching into
high speed caches closer to the CPU from slow memory. It
turther specifies a means of scheduling prefetch operations on
data so as to improve the throughput of the computer system
by overlapping the prefetching of future memory references
with the execution of previously cached data.

1. Background of the Invention

Modern microprocessors employ multiple levels of
memory of varying speeds to reduce the latency of references
to data stored 1n memory. Memories physically closer to the
microprocessor typically operate at speeds much closer to
that of the microprocessor, but are constrained in the amount
of data they can store at any given point 1n time. Memories
turther from the processor tend to consist of large dynamic
random access memory (DRAM) that can accommodate a
large amount of data and 1nstructions, but introduce an unde-
sirable latency when the instructions or data cannot be found
in the primary, secondary, or tertiary caches. Prior art has
addressed this memory latency problem by pretfetching data
and/or 1nstructions 1nto the one or more of the cache memo-
ries through explicit or mmplicit prefetch operations. The
prefetch operations do not stall the processor, but allow com-
putation on other data to overlap with the transier of the
prefetch operand from other levels of the memory hierarchy.
Prefetch operations require the compiler or the programmer
to predict with some degree of accuracy which memory loca-
tions will be referenced 1n the future. For certain mathemati-
cal constructs such as arrays and matrices, these memory
locations can be computed a priori, but the memory reference
patterns of the traversals of certain data structures such as
linked lists, trees, and hash tables are inherently unpredict-
able. In a binary tree data structure, for instance, the decision
on whether a given traversal should continue down the lett or
right sub-tree of a given node may depend on the node 1tself.
In modern transaction processing systems, database serv-
ers, operating systems, and other commercial and engineer-
ing applications, information is frequently organized in hash
tables and trees. These applications are naturally structured in
the form of distinct requests that traverse these data struc-
tures, such as the search for records matching a particular
social security number. If the index set of a database 1s main-
tained 1n a tree or other pointer-based data structure, lack of
temporal and spatial locality results 1n a high probabaility that
a miss will be incurred at each cache 1n the memory hierarchy.
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Each cache miss causes the processor to stall while the refer-
enced value 1s fetched from lower levels of the memory

hierarchy. Because this 1s likely to be the case for a significant
traction of the nodes traversed in the data structure, processor
utilization will be low.

The mability to reliably predict which node 1n a linked data
structure will be traversed next suiliciently far in advance of
such time as the node 1s used effectively renders prefetching
impotent as a means ol hiding memory latency 1n such appli-
cations. The invention allows compilers and/or programmers
to predict memory references by butlering transactions on the
data structures, and then performing multiple traversals
simultaneously. By buffering transactions, pointers can be
dereferenced in a pipelined manner, thereby making 1t pos-
sible to schedule prefetch operations 1n a consistent fashion.

2. Description of Prior Art

Multi-threading and multiple context processors have been
described 1n prior art as a means of hiding memory latency 1n
applications. The context of a thread typically consists of the
value of 1ts registers at a given point 1n time. The scheduling
of threads can occur dynamically or via cycle-by-cycle inter-
leaving. Neither approach has proven practical in modem
microprocessor designs. Their usefulness 1s bounded by the
context switch time (1.e. the amount of time required to drain
the execution pipelines) and the number of contexts that can
be supported in hardware. The higher the miss rate of an
application, the more contexts must be supported 1n hard-
ware. Similarly, the longer the memory latency, the more
work must be performed by other threads in order to hide
memory latency. The more time that expires before a stalled
thread 1s scheduled to execute again, the greater the likelithood
that one of the other threads has caused a future operand of the
stalled thread to be evacuated from the cache, thereby increas-
ing the miss rater, and so creating a vicious cycle.

Non-blocking loads are similar to software controlled
prefetch operations, 1n that the programmer or compiler
attempts to move the register load operation sufficiently far in
advance of the first utilization of said register so as to hide a
potential cache miss. Non-blocking loads bind a memory
operand to a register early in the mstruction stream. Early
binding has the drawback that 1t 1s difficult to maintain pro-
gram correctness in pointer based codes because loads cannot
be moved ahead of a store unless 1t 1s certain that they are to
different memory locations. Memory disambiguation 1s a
difficult problem for compilers to solve, especially 1n pointer-
based codes.

Prior art has addressed prefetching data structures with
regular access patterns such as arrays and matrices. Prior
attempts to prefetch linked data structures have been
restricted to transactions on those data structures 1n which the
traversal path 1s largely predictable, such as the traversal of a
linked list or the post-order traversal of a tree. The invention
described herein addresses the problem of prefetching in
systems 1n which the traversal path 1s not known a priori, such
as hash table lookup and tree search requests. Both of these
traversals are frequently found 1n database applications, oper-
ating systems, engineering codes, and transaction processing
systems.

SUMMARY OF THE INVENTION

The present invention significantly increases the cache hit
rates of many important data structure traversals, and thereby
the potential throughput of the computer system and applica-
tion 1n which it 1s employed. The 1mnvention 1s applicable to
those data structure accesses 1 which the traversal path 1s
dynamically determined. The ivention does this by aggre-
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gating traversal requests and then pipelining the traversal of
aggregated requests on the data structure. Once enough tra-
versal requests have been accumulated so that most of the
memory latency can be hidden by prefetching the accumu-
lated requests, the data structure 1s traversed by performing
software pipelining on some or all of the accumulated
requests. As requests are completed and retired from the set of
requests that are being traversed, additional accumulated
requests are added to that set. This process 1s repeated until
either an upper threshold of processed requests or a lower
threshold of residual accumulated requests has been reached.
At that point, the traversal results may be processed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a high level representation of a typical transaction
processing system. As each request 1s received, actions are
performed based on the event type.

FIG. 2 1s a high level representation of a transaction pro-
cessing system that employs the invention in order to accu-
mulate events that require traversal of the same type of data
stucture. Events are buifered until a threshold has been
reached, at which point software pipelined prefetching 1s
performed across some or all of the accumulated events.

FIG. 3 illustrates an extension to the method of FIG. 2 by
buffering the results of the event processing, in this case
database searches, for subsequent simultaneous traversal.

FIG. 4 illustrates the event builering process on a tree in
which event processing 1s deferred until at least 4 search
requests have been received. The state of the event bulfer s 1s
illustrated after each of the requests R, R, R, and R, have
been recetved.

FI1G. 5 illustrates the state of the system as the four search
requests traverse the data structure. The state of the event
butler s 1s 1llustrated after matching keys for a search request
have been found, first for R, and then R,,. Results are stored
by swapping the satisfied request with the last unsatistied
event 1n the buffer. Once a completion threshold has been
reached, 1n this case 2, the search 1s discontinued until the
accumulated results have been processed.

FIG. 6 1llustrates the state of the system after two additional
requests, R, and R, have been buitfered. The search contin-
ues as i FIG. 5, except that, this time, the number of nodes
with matching search requests 1s allowed to go above the
completion threshold. The matches may exceed the comple-
tion threshold because all requests for which a prefetch has
been 1ssued are allowed complete processing of the
prefetched node, thereby preventing memory references from
subsequent result processing, operating system activity, and
other processes from displacing the prefetched data.

FIG. 7 1illustrates the process of iserting a node into a
Red-Black tree.

FIG. 8 shows the structure of a software implementation of
the 1nvention.

FIG. 9 illustrates the process of accumulating K requests
on accumulation queue AQ for soitware pipelined traversals
of data structure S, where K 1s the startup threshold. Accu-
mulated results are returned from result queue RQ.

FIG. 10 shows a pseudo-code example of an 1nitial call to
a recursive binary tree search.

FIG. 11 provides a pseudo-code description of the recur-
stve component of a pipelined search of a binary tree. The
request 1s added to the result queue when the current node 1s
N1, indicating that a node with a matching key does not exist
in the tree, or the key of the current node matches the
requested key.
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FIG. 12 shows memory alignment of hash table slots. The
dark shaded areas of the unaligned hash slots indicate slots
that have the potential to generate two misses; the light
shaded slots miss at most once per reference. Packed slots are
smaller because the pointers to the next hash table entry are
climinated from all but the last element in a packed slot.

[FIG. 13 shows] FIGS. 13a-13b show how heterogeneous
hash table data structures [(a)] are represented as homoge-
neous structures [(b),] thereby eliminating at least one
memory reference.

[FIG. 14 shows] FIGS. 14a-14b show how some potential
cache misses in [(a)] can be eliminated by padding the data
structure so that elements always fall on hash line boundaries
[in (b)].

[FIG. 15] FIGS. 15a-15e show Hash table packing|. A]

through a homogeneous hash table structure [(a) may be}
represented as a packed structure [(b)], which can be rebal-
anced to make the table less sparse [as in (c), (d), (e), or
others].

FI1G. 16 1llustrates the architecture of a Transaction Butfer,
used to assist 1n accumulation and processing of traversal
requests on a data structure.

FIG. 17 details the architecture of a Transaction Buffer
with a single set of queues.

DETAILED DESCRIPTION

Prefetching pointer-based data structures 1s much more
difficult than prefetching data structures with regular access
patterns. In order to prefetch array based data structures,
Klaiber and Levy' proposed using software pipelining—a
method of 1ssuing a prefetch request during one loop 1teration
for amemory operand that would be used 1n a future 1teration.
For example, during loop 1teration j 1n which an array X|[j] 1s
processed, a prefetch request is 1ssued for the operand X[ j+d],
where d 1s the number of loop iterations required to hide the
memory latency of a cache miss. The problem with this loop
scheduling technique, prior to the introduction of this inven-
tion, 1s that 1t could not be applied to pointer-based data
structures. A concurrently submitted application addresses
this problem for data structures in which the traversal path 1s
predefined, such as linked list traversal and post-order tra-
versal of a tree. This invention addresses the problem for data
structure traversals in which the traversal path 1s dynamically
determined, such as 1n hash table lookup and binary tree
search traversals. The application of the ivention is then
illustrated by means of binary search trees and hash table

lookup.

I Klaiber and H. M. Levy, An Architecture for Software-Controlled Data
Prefetching, Proceedings of the 18th International Symposium on Computer

Architecture 1991, pp. 43-33.
The invention consists of the following method. Step 1 1s to
homogenize the data structure(s) to be traversed, where appli-
cable. This process 1s described for open hash tables below
and 1illustrated 1n FIG. 13, and can be applied to adjacency
lists commonly used to represent graphs, and other data struc-
tures 1n order to remove an unnecessary level of indirection.
Step 2 1s to align the data structure on cache line boundaries,
where applicable, as described below for hash tables and
illustrated 1n FI1G. 14. Alignment 1s performed for each ele-
ment 1n the data structure, 1.e. for each node of heap allocated
storage 1n a linked list or tree. In an array, this may mean
introducing pad space, such as 1s described for hash tables
below. In heap allocated nodes, it may mean employing a
special heap management interface that aligns blocks of
memory on cache line boundaries. Step 3 packs data struc-

tures 1nto cache line size components, where applicable, as
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described for hash tables below and 1n FIG. 15. The data
structure traversal 1s constructed so that traversal 1s first per-
tormed over a group of data structures that have been packed
together, and then over potentially multiple groups of packed
structures. Step 3 1s applicable primarily to nodes which
exhibit temporal locality, such as nodes 1n a linked list ({or
instance, 1 an open hash table or adjacency list representa-
tion of a graph). Step 4 1s to buller events on a given data
structure until a critical number of events has beenreached, as
described below for trees and hash tables, and as illustrated in
FIGS. 2 through 4 and FIG. 9. The exact number of events to
butiler can be determined via the compiler, experimentally, or
a combination of both. Step 4 can be implemented by return-
ing to the caller when the number of builered requests is
below a given threshold, unless immediate traversal 1s
requested by another component of the system. Step 5 1s to
traverse the data structure for which the events have been

[

builered in a pipelined manner, 1ssuing prefetch requests for
some or all of the buffered events. Step 5 1s illustrated for
select examples 1n FIGS. 5, 6, 10, and 11 and 1s described for

search tree traversals and hash tables below.

T'he traversal

results, such as when a node for which a matching key has
been found, can either be processed immediately, or be stored
in a buffer as well. The prefetch distance may be determined
experimentally by the programmer, computed using prior art,
or determined by the compiler. There are three parameters
that control the traversal: a startup threshold, a completion
threshold, and the pipeline depth. The startup threshold 1s the
number of events that are butiered before traversal of the data
structure or structures 1s allowed to commence. The comple-
tion threshold 1s the number of traversals that are completed
(for example, when a matching key has been found) before no
additional events are processed from the accumulated event
butiler. Step 6 passes the results to the next stage 1n the sur-
rounding system. The overall process 1s illustrated in FIG. 8.
The buifers can be implemented in hardware or 1n software.

The data structures and traversal algorithms addressed in
the concurrently submitted application have a common fea-
ture: only a single traversal path 1s taken through the data
structure. Data dependencies may aifect whether the path 1s
taken to completion, which does not materially atfect the
choice of prefetch targets. The property that the path through
a data structure 1s independent of the values of the nodes
within the data structure makes it possible to modily the data
structure so that the necessary parallelism to support software
pipelining can be exposed. This condition does not hold for
tree and hash table searches. In this application I discuss a
method of aggregating temporally distributed data structure
traversals 1n order to support software pipelined prefetching,
which I refer to as temporal restructuring.

TABL

(L.

1

definition of variables

Prefetch distance

Prefetch latency

Node on a traversal path.
Root or startup node
Termination node of traversal
Startup threshold

Pipeline depth
Completion threshold
Accumulation buftfer
Prefetch 1ssued bufter
Result bufter

Request <k, r, a>
Search key
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TABLE 1-continued

definition of variables

Node address
I Request 1d

Search paths through a tree are not generally predictable.
Consider a path P from the root node n,. to a termination node
n,P=n_n,...,n.Inthecaseof abinary search tree, the value
of n, depends on the value of the key field of n__;.

If both the left and right node of a tree are always
prefetched, then one prefetch target will usually have been
prefetched 1n vain. Prefetching can only be effective it the
prefetch address 1s 1dentifiable far enough 1n advance so that
it can be prefetched into near memory by the time 1t 1s first
referenced. Thus even 11 both children are prefetched, a single
pass of the inner loop of the search below does not require
enough cycles to hide any significant latency:

Node SEARCH(Tree tree, Key k)
begin
Node n;
n < tree.root;
while ( node !'= NULL) do
if ( k = n.key ) then return n; endif
if {( k <n.key ) then
n <— n.left;
else
n <— n.right;
endif
end while
return NIL;
end

Consequently, the ability to prefetch only the children of the
current node 1s unlikely to provide sufficient computation
between the time the prefetch 1s 1ssued and the time it arrives.
In general, software pipelining schedules prefetch operations
d=[l/s] loop iterations ahead 1n order to completely hide
latency, where s 1s the execution time of the shortest path
through the loop and 11s the prefetch latency. If the prefetch
distance d 1s small, and the tree has been mapped to an array,
it may be possible to employ greedy prefetching of the entire
sub-tree of depth d. I refer to this subtree at node n. as the
prefetch subtree of n,. For the root node, the entire subtree of
24! nodes would have to be prefetched, of which all but d are
prefetched 1 vain. For each of the subsequent p—d-1 nodes
on the path, 2“~! nodes are prefetched, resulting in (p—d—1)x
29-1_1 extraneous prefetches. The last d—1 nodes on P cor-
respond to the epilogue 1n traditional soitware pipelined
prefetching, requiring no additional prefetch commands.
These numbers may actually be optimistic, since they assume
that the application can avoid prefetching the entire subtree of
29! nodes at each node in the path, issuing prefetches only
for the newly discovered 27! leaf nodes of the prefetch sub-
tree. It is obviously not desirable to prefetch up to 24! nodes
when only 1 1s required at each node along the path.

While a single traversal of the tree does not provide suili-
cient opportunity to exploit software pipelining, I show how
temporally scattered, independent search requests can be
aggregated so that software pipelining can be applied across
multiple requests. The premise behind the approach is that a
single unit of work performed on a given data structure may
not provide suilicient opportunity to hide the latency via
soltware pipeliming, so work 1s allowed to accumulate until a
threshold 1s reached, or a request for immediate resumption
forces work to proceed. I refer to this process of aggregating
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and collectively processing independent data structure tra-
versals as temporal restructuring. FIG. 9 shows high-level
pseudo-code for handling a traversal request. Postponement
1s implemented by returning the special token PosTpoNE from
the search routine, which can be considered a request to
submit additional work. The software pipeline processes
accumulated work, storing results 1n the queue RQ.

In an online transaction processing environment, for
instance, multiple temporally proximate transactions can be
grouped for simultaneous traversal of the data structure. The
amount of time that any particular search can be postponed 1n
a transaction processing system may be limited by system
response time requirements. Since the number of search
requests that must be accumulated in order to ensure a soft-
ware pipeline depth adequate to effectively hide memory
latency 1s relatively small (in the tens of requests), this should
not be an 1ssue 1n a high throughput system. A system with
real-time constraints must be able to ensure completion even
when the system 1s not very busy. Since the number of search
requests can be adjusted dynamically, the startup threshold, K
in FIG. 9, can be reduced to a single request. In general,
systems can raise the threshold in order to improve through-
put and lower 1t to 1mprove system response time.

The general structure of the accumulation process 1s 1llus-
trated 1n FIG. 8. A search request consists of a transaction
descriptor <k,r,a.>, where k 1s the search key associated with
the request data structure identifier r, and a, 1s the initial
prefetch target address, such as the address of the root node of
a search tree or the 1mitial hash bucket 1n the bucket chain of a
hash table. One or more prefetch descriptors are associated
with each data structure. A prefetch descriptor stores the
invariants among accumulated requests, characterizing the
prefetch target by the pipeline depth D, the startup threshold
K, the completion threshold Z, the number of bytes to
prefetch at each request, and a small butfer for several words
of application-defined data.

Search requests are accumulated 1n AQ), the accumulation
queue. When the number of elements 1n the queue reaches the
startup threshold, K, then D search requests are dequeued
from the accumulation queue. The address portion of each
request 1s submitted to the prefetch hardware along with the
prefetch parameters from the prefetch descriptor, and the
request 1s enqueued on the prefetch issued queue. This
sequence of actions corresponds to the prologue of software-
controlled prefetching.

The accumulation process for a binary search tree 1s 1llus-
trated 1n FI1G. 4. In this example, D=2 and K=4. The accumu-
lation queue 1s shown after the requests R, . . ., R; have been
submitted. Once R, has been submitted, the completion
threshold 1s reached, and all four requests point at the root
node. The application dequeues the active request, <k,r a_>,
from the prefetch 1ssued queue and processes the data corre-
sponding to the current address a_. If the requested key
matches the key at the current address, then the active request
1s enqueued on the result queue, and a prefetch 1s 1ssued for
the next request on the accumulation queue. This request 1s
then added to the prefetch 1ssued queue. If the keys do not
match, then a prefetch 1s 1ssued for the next address a, 1n the
data structure (such as a child pointer). The new address a,
replaces a_. in the active request transaction descriptor, and the
new transaction descriptor <k,r, a > 1s added to the prefetch
1ssued queue.

When the application 1s ready to process a search result, 1t
extracts a search result descriptor <k.r, a > from the result
queue, where a, 1s the address of the node contaiming k.
Applications that perform searches typically return a value of
NI to indicate that no matching key was found. Thus, when
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no matching key 1s found, a_can be set to Ni. The application
can force the search to proceed, even when the number of
accumulated search requests falls below K, by submitting a
reserved completion descriptor for accumulation.

I1 the number of cycles that 1s required to process the result
1s small, 1t may make sense to process each result immedi-
ately, rather than adding it to the result queue for later pro-
cessing. It 1s not generally desirable to process results right
away, since result processing may increase the amount of time
spent at a single beat of the software pipeline. Increasing the
amount of processing spent at one beat increases the danger
that previously prefetched memory locations will again be
displaced from the cache. If processing the result requires any
I/O, for instance, the processor 1s likely to suspend the current

process and perform other work. It 1s quite possible that all
outstanding prefetches will be overwritten in the cache before
the process that 1ssued them 1s scheduled to run again. In the

worst case, it is scheduled to run in a different CPU>.

2 For example, Xia found that some operating system activity involves clearing
large bufiers, which invalidates a large number of cache entries.

Binary Search Trees

The method can be demonstrated by applying it to a binary
tree search. In order for the technique to be applicable, mul-
tiple independent search requests must be available for pro-
cessing. To provide a context for a set of search tree traversals,
consider a generic processor-bound client/server application
that processes account debit requests. A non-pipelined ver-
s10m 1s 1llustrated 1 high-level pseudo-code below: A request
arrives at the server formatted as a query that includes routing
information, a request type, a

GENERIC-SERVER( )
begin
loop forever
request < GetNextRequest( );

case request.type of
DEBIT: begin

Find Acct( request );
display < OtherWork( request );
Reply( display );
end
OTHER: ...
end case
end loop

end Server

search key, and a pointer to an account-record that 1s used to
hold the search result. This query data structure strongly
associates the query result with the answer, making 1t easier to
support multiple outstanding queries. A viable alternative
implementation might have the search routine return a pointer
to the caller. A prerequisite of temporal restructuring 1s the
ability to strongly associate a request with a request result, so
that downstream code can work on a different request than
that submitted to the search routine. Rather than cluttering the
examples with implementation details of the straightforward
process ol associating requests with results, the example
starts with an 1implementation in which the search result 1s
bound to the search request as a pre-existing condition. Thus,
the server searches a database for an account record corre-
sponding to the search key, and the account pointer 1s 1nitially
set to NL. The application mnvokes a search routine Find Acct
that traverses the index set organized as a tree. FindAcct
updates the account pointer to the matching account record, 11
there 1s one, and N otherwise. Based on the account infor-
mation, a response to the request 1s generated 1n other sub-
systems, indicated by the call to OtherWork. The response 1s
returned to the client application via the call to Reply.
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A version of the server that processes DEBIT requests 1n a
pipelined manner 1s 1llustrated below:

PIPELINED-SERVER ()
begin
loop forever
request «<— CheckNextRequest( );
case request.type of
DEBIT: begin
qPipeSubmit (WorkQ,request);
result < qPipeExtract (ResultQ);
if result = NIL then
display <= OtherWork (result);
Reply (display);
endif
OTHER: ...
end case
end loop
end

The search tree traversals 1n this version are performed as part
of gPipeSubmit, but only once the number of requests in the
pipeline has reached K. When fewer than K requests occupy
the pipeline, no search requests are processed, and gqPipeEx-
tract returns the reserved address NONE_ AVAIL ABLE. Oth-
erwise, qPipeExtract returns the first request for which a
search result 1s available.

In an online transaction processing (OLTP) environment,
GetNextRequest 1s a blocking call, stalling the server thread
or process until another request becomes available. CheckN-
extRequest 1s a modified version of GetNextRequest which
returns a synthetic DEBIT request containing a completion
descriptor that forces any pending accumulated requests to
complete if the result queue 1s empty. If the result queue 1s not
empty, the application extracts a completed request as belore,
albeit without enqueuing a new request. Thus the server stalls
only when all accumulation queues and result queues are
empty, which avoids delaying replies when the request arrival
rate 1s low. Although the system would not achieve maximal
eificiency unless the pipeline 1s filled, the decrease in the
arrival rate indicates that the system 1s otherwise idle, and
wasted cycles less precious. In an offline data processing,
environment, completion 1s forced after the last request has
been submitted.

It all requested keys are represented in the tree, calls to
gPipeSubmit simply return until the number of requests sub-
mitted to gPipeSubmit reaches K. Once K requests have
accumulated, pretetches are submitted for the first D requests
in the accumulation queue. Each time a prefetch 1s submitted,
the corresponding request 1s removed from the accumulation
queue and added to the pretfetch 1ssued queue. This sequence
of events constitutes the prologue. Once the prologue has
completed, the head of the prefetch 1ssued queue 1s removed
and the corresponding node 1s processed. 1T the keys of the

request and the node match, then the node address 1s saved
and the descriptor 1s added to the result queue. Otherwise, the
current descriptor 1s updated with the appropniate child
pointer. At this point, the implementor or compiler has several
choices of prefetch strategies:

1. Prefetch the child pointer and add the current request to
the end of the accumulation queue. This approach maxi-
mizes the prefetch distance, the available distance
between the time the prefetch is 1ssued and the corre-
sponding request 1s again processed. Increasing the
prefetch distance beyond the minimum needed to hide
memory latency also increases the risk of additional
cache contlicts.
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2. Issue a prefetch for the next request on the accumulation
queue and move that request to the end of the pretetch
issued queue. Then move the current request to the end
of the accumulation queue without prefetching its child
pointer. This process ensures that each of the accumu-
lated requests 1s processed 1n round-robin order. Note
that round robin scheduling does not guarantee any par-
ticular completion order among accumulated requests,
since search requests may complete at any point 1n the
traversal of a tree.

3. Prefetch the child pointer and add the current request to
the end of the prefetch 1ssued queue, ensuring that
requests are processed 1n approximately first come {first
served order. Each request remains in the prefetch issued
queue until 1t completes, guaranteeing a larger percent-
age of processing time to queries that have reached the
prefetched 1ssued queue (1/p mstead of 1/(p+a), where p
1s the number of elements in the prefetched 1ssued queue
and a 1s the number of elements 1n the accumulation
queue). Once again, this approach does not guarantee a
completion order. If the system has been appropnately
tuned, the processing delay provided by the queue of
length D should be sufficient to hide any memory
latency.

The latter two options have similar interference and
throughput characteristics. In any case, the head of the
prefetch 1ssued queue 1s removed to replace the current
request, and the process repeats 1tself until no more requests
occupy the prefetch 1ssued queue.

If an address for which a prefetch request has been 1ssued
1s referenced before 1t has arrived 1n the cache, the CPU stalls
until the prefetch for the corresponding line completes. The
cache hardware checks 11 there 1s an outstanding prefetch
request for the line, in which case 1t does not 1ssue a second
request. Consequently, a reference to an address for which a
prefetch 1s 1 progress incurs only a partial miss penalty.
Cache misses always bypass pending prefetches in the refer-
ence system, so that a cache miss never has to wait for the
prefetch 1ssue queue to empty before 1t 1s submitted to the
memory hierarchy. A prefetched address may be evicte
before 1t 1s referenced for the first time, either by another
prefetched cache line or by another data reference. In this case
the CPU stalls until the corresponding line 1s brought into the
cache through the normal cache miss mechanism, incurring
the full miss penalty.

As the number of elements 1n the result queue increases to
the point where fewer than D requests remain 1n the accumu-
lation and prefetch 1ssued queues, not enough work 1s lett to
hide the latency. Consider the point 1n the search process
where all but a single search request has been resolved. The
request 1s dequeued from the 1ssued queue, i1t’s node pointer
updated, and a prefetch i1ssued. It 1s added to the prefetch
issued queue, and almost immediately dequeued again. A
prefetch that goes all the way to memory 1s unlikely to have
completed by the time this last search request has been
dequeued again, causing the processor to stall.

To avert this problem, I employ a completion threshold 7.
As long as the combined number of requests remaiming in the
1ssued queue and the accumulation queue remains above Z, a
prefetch request 1s 1ssued for the child pointer, and 1ts descrip-
tor 1s added to the end of the prefetch 1ssued queue. Once the
completion threshold Z has been reached, the current descrip-
tor 1s added to the accumulation queue nstead, without 1ssu-
ing a prefetch request. Inserting the descriptor at the head of
the queue, mstead of the tail allows search requests that have
been waiting longest complete sooner. The remaining ele-
ments 1n the prefetch 1ssued queue are then processed, so that
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the prefetch 1ssued queue 1s empty by the time the application
exits the epilogue. When there 1s little danger that the tempo-
rarily abandoned prefetch requests will be evicted before the
corresponding search requests are resumed, then there 1s no
need for an epilogue. This information 1s not generally pre-
dictable at compile time, and since the epilogue has only a
moderate 1mpact on the instruction cache footprint of the
application, 1t 1s generally included. This process may bring
the actual number of remaining requests below Z, since some
of requests 1n the 1ssued queue may move to the result queue.
All other requests are available on the result queue, and wall
be dequeued and returned by repeated calls to the result
extraction routine, gPipeExtract, until the result queue 1s
empty. The PPELINED-SERVER above shows gPipeExtract being
used to process results from the software pipeline.

Intuitively, 1t would appear that D 1s a natural choice for the
value of the completion threshold Z, with K some small
multiple of D. Yet, 1n experiments where Z was varied from O
to D and K was kept constant, a relative performance declined
notably well before the completion threshold Z reached the
pipeline depth D. This 1s a consequence of the fact that the
amount of work performed per set of accumulated traversals
decreases as Z approaches D. The amount of work performed
cach time traversal 1s triggered 1s a function of K-Z. For a
fixed value of K, the amount of work performed at each
traversal decreases as 7 increases. If the amount of work
performed with each traversal 1s decreased, then more tra-
versals are required to accomplish the same total amount of
work. For instance, 1f there are 1000 requests and D=22,
/=22, and K=32, then only 10 requests are completed per
traversal, requiring 100 traversals. Part of the startup cost of
cach traversal 1s a function of D. Another portion of the
startup cost 1s bringing the working set that 1s not prefetched,
such as instructions that have been evicted between travers-
als, 1into cache. The startup overhead 1s incurred 100 times for
1000 requests. If Z 1s reduced to 12, then the startup cost 1s
incurred only half as often, although each traversal will have
to endure at least partial latency due to a partially empty
software pipeline. The application effectively trades off some
latency for a reduction 1n startup overhead.

Because search traversals of data structures typically per-
form very little work at each node, the optimal pipeline depth
can be quite long. A tree search achieved optimal perfor-
mance at a pipeline depth of 32, while the optimal pipeline
depth for Quicksort was only four. Quicksort performs sig-
nificantly more work per iteration. Response time constraints
and 1nterference effects may limit the practical size of the
accumulation queue. If queue management 1s supported by
hardware, hardware constraints will further curtail the total
number of outstanding requests that can be accommodated.

The startup threshold used to begin a round of searching 1s
adjusted so that most of the latency can be hidden most of the
time without violating other system requirements such as
service response time. For solftware-managed queues, an
accumulation scheme that attempts to accumulate too many
requests may also introduce selif-interference, since the
queues also increase the cache footprint of the application.

When the first round of searches 1s triggered, the node set
will contain only pointers to the root of the tree. This waill
result in multiple prefetch istructions for the same node. The
memory hierarchy keeps track of pending prefetch requests,
ensuring that only one memory request 1s outstanding to the
same cache line at any given time. Consequently, multiple
prefetch requests to the root node do not generate additional
memory traffic. After the initial cold start, a diverse set of
partially completed requests will populate the set of nodes in
the accumulation queue. Some of the search requests 1n the
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accumulation queue may be the result of a traversal that
reached the completion threshold, and thus refer to arbitrary
nodes within the tree. Maintaining this state may impose
some restrictions on 1nsertion of nodes 1nto the tree and dele-
tion of nodes from the tree, as 1s discussed below.

If program semantics allow search requests to intermingle
with insertion and deletion requests, then software pipelining
introduces some new timing 1ssues, especially 1in the presence
of completion thresholds. When node insertion and deletion
are supported, then the fact that there may be search requests
already 1n progress may impact the outcome of the searches.
Consider a search tree undergoing insertion of a node with
key k ., and that key does not exist in the tree at the time of the
insertion. There may be an outstanding search for k, , invoked
prior to the mnsertion. Had the request been processed imme-
diately, it may have returned a NiL pointer. IT insertion
requests are processed concurrently with the search requests,
then the imsertion may complete before the outstanding
search request for k  1s processed. If the node is mserted at a
leat and the tree undergoes no other changes, then the next
time the number of accumulated searches reaches the startup
threshold, k will find the freshly inserted node. In doing so,
it will return a node that did not exist at the time the search
request was first made. This clearly changes the semantics of
the program. In some cases, this may be of no particular
consequence. For instance, consider a banking system that
allows creation of accounts on a live online transaction pro-
cessing system. If the accounts are indexed by social security
number via a tree, then 1t 1s very unlikely that a search request
for an account will precede the creation of that account. Even
if this unlikely event comes to pass, a positive outcome of a
search 1s not necessarily regarded as an error. Since temporal
structuring 1s aimed at hiding memory latency, the time spans
can be measured 1n fractions of seconds—{tor applications
involving human interfaces this is practically simultaneous.

For balanced binary tree schemes, where the table 1s modi-
fied with each insertion, 1t may be prudent to force completion
of extant search requests. Consider the insertion of node A 1n
FIG. 7. The resulting rotation moves node B to the root node.
This means that all pending search requests pointing to C will
never find B, since search requests always traverse down-
wards. The problem with deletion 1s more obvious, since a
node that 1s pointed to by an accumulated search request for
which processing 1s not complete, cannot be sately deleted
without affecting the search operation. If any search request
in the accumulation queue points to the deleted node, then the
outcome 1s almost guaranteed to be a disaster 1f the memory
occupied by the deleted node 1s reused for some entirely
different purpose. Since deletions from the tree between
search requests may invalidate accumulated search requests,
either deletion can be postponed until all accumulated
searches have completed, or pending search requests can be
forced to complete prior to deletion.

Recursion

Recursion 1s often a natural way to express an algorithm.
Recursive tree searches can be performed 1n a manner similar
to the loop-based tree search described above. FIGS. 10 and
11 illustrate a recursive version of a search. The code shows
the explicit management of the request and result queues to
illustrate how a software-only approach can be employed.
Once enough requests have been accumulated, the recursive
search, TREE-DrLAYED-SEARCH of FIG. 10 15 called to execute
the prologue. All requests recurse together. That 1s, each
recursive call to TREE-RECURSE advances every pending request
one node in the tree. The recursion 1s allowed to unravel once
a sulficient number of search requests have been satisfied so
that the number of outstanding search requests no longer




US RE45,080 E

13

meets the lower bound criterion on the software pipeline
depth. The binary tree search in the example 1s tail-recursive,
so that the state of the search requests does not need to be
maintained on the stack. Consequently, allowing the recur-
s1on to unravel has no negative repercussions.

For applications that rely on maintaining the state of the
stack variables from prior procedure mvocations, allowing
the recursion to unravel could prove more of a problem. In
these cases, all searches 1n the pipeline can be allowed to
complete, without regard for the completion threshold, and at
the expense of more memory stalls.

A more general version of the tree traversal algorithm
would have to place all nodes and keys onto the stack, con-
siderably increasing the amount of stack space required to
complete the search, and thus the data cache footprint of the
application.

Hash Tables

Hash tables and other data structures with short pointer
chains pose a particular challenge to prefetching. The prob-
lem 1s two-fold: short pointer chains do not provide much to
prefetch, and the amount of work performed at each 1teration
in the process of prefetching them 1s negligible, therefore
actually requiring a significant prefetch distance 1n order to
hide memory latency. This patent includes several methods to
cope with this problem.

The hash table data structure 1s modified so that, instead of
storing a pointer to a list of hash buckets, each hash table slot
contains the first bucket of each chain in the hash table
directly. Empty entries are indicated by an invalid key. If there
are no invalid keys, an empty entry can be indicated via a
reserved address 1n the pointer to the next hash bucket. This
optimization serves two purposes. First, 1t eliminates one
unnecessary level of indirection by allowing the hash func-
tion to directly supply the address of the first bucket in the
chain. Second, it has the effect of homogenizing prefetch
targets. Homogeneous prefetch targets eliminate the need for
separate code to prefetch the initial hash table entry. This has
the effect of increasing the size of each hash table slot, which
should only prove disadvantageous 11 there are a preponder-
ance ol empty hash table slots. If the hash table 1s fully
populated, then I’ve actually reduced the memory require-
ments by the size of the hash table.

The homogenized hash table can be subjected to several
locality optimizations. An obvious means of eliminating
cache misses 1s to ensure that each hash bucket 1s aligned on
a cache boundary. Hash buckets 1in the benchmarks that I used
to evaluate the efficacy of the approach consist of a key, a
pointer to the next element on the hash table, and a pointer to
a datarecord, for a total of 12 bytes. If each L1 data cache line
supports 16 bytes, half of the hash table slots will span two L1
cache lines, and every third hash table slot will span two 32
byte L2 cache lines, as illustrated in FIG. 13. The problem can
be eliminated by padding each entry so that the subsequent
array element 1s aligned on a cache line boundary. Hash
buckets 1n the hash chain are similarly aligned. This approach
does not require any fundamental change 1n the hash lookup
code. Both prefetching and non-prefetching versions can
expect to benefit from alignment.

Cache line si1zes 1n modern microprocessors are 32 bytes or
more 1n size for primary caches, and 64 bytes or more for
secondary caches. Large line sizes are an mvitation to pack
more data into each cache line. Additional performance ben-
efits can be dertved by packing as much of a bucket chain into
cach cache line as possible. This approach appears attractive
when the hash chains contain more than a single element.
Note that long hash chains run contrary to the philosophy of
hashing. Adjacency lists employed by many graph algo-
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rithms, on the other hand, may maintain an arbitrarily long list
of references to adjacent nodes 1n the graph.

Alignment and homogenization help reduce the number of
cache misses incurred 1n a hash table lookup. When a hash
chain achieves any significant length, the hash chain can be
packed into a buffer that fits into a cache line. The bufler 1s
structured as an array of hash chain elements followed by a
pointer to the next buifer. For a bulfer containing n elements,
the pointer to the next hash element can be eliminated for the
first n—1 elements, allowing more hash chain entries to be
accommodated 1n each butler. A reserved key can be used to
indicate the end of the array, or the pad word can be used to
hold the number of valid hash chain entries 1n the array. The
last word 1n the butler 1s used to hold the address of the next
butler, allowing for the possibility that the length of the hash
chain may exceed the number of elements that can be accom-
modated 1n a single buifer. In a sense, the implicit prefetch
inherent to large cache lines 1s being employed for buckets
that share a cache line. Exphc:lt prefetching can be applied to
prefetch each packed builer, thereby increasing the likelithood
that a cache line will be available 11 the number of collisions
should exceed the capacity of a single packed hash line, with
the added benefit that each prefetch operation can actually
prefetch up to n hash chain elements.

The number of hash collisions per bucket can be expected
to remain small under ordinary hashing conditions and given
a good hash function. Aligned hash chains have the disadvan-
tage that the minimum size of a hash chain 1s relatively large.
A packed bufler for an 8 word cache line contains 3 entries of
2 words each for the example, in addition to a word of padding
and a pointer to the next hash bucket. FIGS. 15(b) through
15(e) 1llustrate the configuration of a packed hash table. As
few as one out of three hash chain entries may actually store
hash elements when the number of collisions 1s small. Con-
sequently, packing may lead to a fairr amount of wasted
memory, especially in a homogenized hash table. Based on
the assumption that hash collisions are cheap 11 they fall onto
the same cache line, I reduced the number of hash table slots
tor the packing transformation, moditying the hash function
accordingly. While the number of collisions at each slot
increases, the cost of resolving a collision decreases. It the
average number of entries per hash slot 1s originally 1, then
the only benefit atforded by the approach 1s a slight increase
in the probability that a hash bucket may be reused across
multiple instantiations. For the benchmarks, hash buckets
were packed mto an array, with each array aligned on an L2
cache line boundary.

Experimental results show that packed hashing afforded
similar benefit to alignment. Packing improved hash lookup
performance by 4% to 17%, while alignment, alone,
improved hash lookup performance by 2% to 16% when the
average hash chain contained a single element. This signifi-
cant improvement indicates that hash elements that span mul-
tiple cache lines have a significant negative impact on hash
lookup performance. When the average hash chain length
increases to 1.5, alignment affords an 8% to 10% pertor-
mance 1improvement. Temporal restructuring, when applied
to hash tables without specialized hardware support, did not
perform well, since the overhead 1s amortized over few
memory references. Performance improved from 4% to 14%,
depending on hash interference assumptions between
requests. Combining alignment and prefetching did not sig-
nificantly improve the performance, showing a 12% to 20%
performance improvement over the non-prefetching imple-
mentation. Experiments showed that hardware bullers, as
illustrated 1n FIG. 16, significantly improve the performance
of the system beyond that of the original prefetch scheme.
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Hardware Bulfer

The mechanism for builering transactions described thus
far employ butlers allocated from general memory. System
throughput can be significantly improved by providing this
butiler in hardware, along with a few operations on the butfer.

FI1G. 17 1llustrates a hardware implementation of the tem-
poral restructuring mechanism described 1n FIG. 9. The
queues are implemented in hardware. Each queue 1s accessed
via an independent device port or register. Ports are modeled
as memory mapped devices, with a separate address for each
field of a tuple. An 1nternal 64-bit control register holds the
prefetch descriptor; a separate 32-bit word describes the state
ol the prefetch queues. The control register holds the values of
the programmer- or compiler-supplied software pipeline
depth and the completion and startup thresholds. The expira-
tion field 1s reserved for a timeout value, so that an application
can specily the maximum time that 1s allowed to elapse
between the time an element 1s added to an empty queue and
a result should be processed. Control bits allow the system to
specily the handling of timer expiration events, which may
include forcing completion at the next request or generating a
hardware exception. The prefetch target descriptor 1s used by
the application to indicate the location of the pretfetch targets
relative to the prefetch address. In order to support prefetch-
ing of selected fields within a given data structure, the archi-
tecture supports selected prefetching of memory locations on
a word basis within an address range. Two interpretations of
the prefetch target descriptor are available, depending on the
value of the mode bit, M: A bit value of 1 at offset w 1n the
word mask indicates that the word at an offset of w words
from the specified prefetch address 1s a prefetch target. For a
4 word (32 byte) line size, the 32 bit word mask makes 1t
possible to efficiently select prefetch targets from among 4
adjacent cache lines with a single prefetch request. The reso-
lution of a single word makes 1t possible for the prefetch
hardware to determine when any multi-word prefetch target
talls on one or two cache lines, since prefetch addresses need
not be aligned on cache line boundaries. For instance, a
prefetch target with an address A, and a word mask of
0xA0000000. The word mask indicates that the first two
words following A, are to be prefetched. A single cache line
pretetch 1s required when A, modulo 32=0. However, an
address A, where A, mod 32=28, requires two cache lines to
be prefetched. Alternatively, each of Tour 8-bit fields specifies
a word offset and a word count of 4 bits each. This makes 1t
possible to specily prefetch targets at four separate oflsets
from the prefetch base address ol up to 16 words each, assum-
ing offsets are cumulative. Other combinations are possible.
Additional options require adding bits to the mode field. This
flexibility 1n specifying a prefetch target makes 1t possible to
address the situation where multiple data fields used by the
application to process each node fall onto different cache
lines, and the data fields do not share a cache line with the key
field used to traverse the data structure.

The application writes request tuplets to the accumulation
queue port, represented by register A of FIG. 17. Once all
components of the request tuplet have been received, the
request 1s enqueued on the accumulation queue. Completed
requests may be stored on a hardware result queue. If any
completed requests occupy the result queue, then the runtime
system dequeues one each time a new request 1s submitted,
thus ensuring that the result queue never overtlows. Stmilar to
its software counterpart, the hardware result queue indicates
that no request 1s available on the result queue by placing a
special value 1n the result extraction register, X. Each of the
hardware queues behaves similar to 1ts software analog. An
update of the next address register, N, updates the prefetch
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address field of the active request and places 1t on the prefetch
1ssued queue. Enqueuing a result causes a request to be moved
from the accumulation queue to the 1ssued queue. The
prefetch address generator dequeues the head of the 1ssued
queue. Based on the prefetch target descriptor, 1t then gener-
ates a sequence of prefetch operations. The request 1s 1mme-
diately placed on the prefetch 1ssued queue, rather than wait-
ing for prefetch address generation to complete for the
request. In this manner, the application partially hides the
latency when the number of available requests to be processed
falls beneath the mimimum software pipeline depth. I found
that this eliminated up to 16% of the read stall cycles 1n some
instances.

The application has the option of placing the result 1n the
result queue via the result register, R. The result queue 1s
present to allow the application to maintain software pipeline
semantics. The presence of the result queue does not prevent
the application from processing a result immediately, in
which case 1t may be neither necessary, nor desirable, to add
the result to the result queue. A system library provides the
necessary intertfaces to the prefetch unit. Table2 provides an
overview ol the interface macros provided to support tempo-
ral restructuring in hardware.

TABLE 2
accumulate  writes the request to the accumulation queue port.
A NULL request indicates to the prefetch unit that the
pipeline is to be forced.
iterate returns the prefetch address of the active request register.
result moves the active request to the result queue.
replace replaces the prefetch address in the active request field and
moves the active request to the prefetch 1ssued queue.
key returns the search key value of the active request.
request returns the request id of the the active request
extract returns the request at the head of the result queue.

Having described and illustrated the principles of the
invention i a preferred embodiment thereof, 1t should be
apparent that the mnvention can be modified 1n arrangement
and detail without departing from such principles. I claim all
modifications and variations coming within the spirit and
scope of the following claims.

I claim:

[1. A method of scheduling units of work for execution on
a computer system including a data cache or data cache hier-
archy, the method comprising the steps of:

buifering a plurality of transactions on a data structure;

scheduling a plurality of said transactions on said data

structures 1n a loop;

1ssuing prefetch mstructions within the body of said loop

for the data required to process said transactions.]

[2. The method of buffering the results of the transactions
processed on a computer system 1n accordance with claim 1,
wherein the results are butiered as well, thereby allowing
multiple results to be processed together at a later time.]

[3. The method of processing the results of a completed
traversal on a data structure on a computer system according
to claim 1 once a traversal of the data structure has com-
pleted.]

[4. The method of associating a request identifier with each
transaction on a data structure represented on a computer
system according to claim 1 so as to process requests at a time
when the number of buffered transactions has reached a
threshold at which software pipelined prefetching across the
accumulated set of transactions can be applied 1n sufficient
number so that the cumulative gains outweigh the inherent
overhead of the method.]
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[5. The method of associating a prefetch descriptor with
cach data structure that describes the imvariants across buil-
ered requests on a computer system according to claim 1,
where the invariants include the pipeline depth (D), the star-
tup threshold (K), and the optional completion threshold (Z),
optionally the size of the pretfetch target at each request, and
optionally a small buffer for application specific data.}

[6. The method of initiating execution of the software
pipeline loop on a computer system according to claim 1 once
the number of accumulated requests has reached a startup

threshold (K).]

[7. The method of allowing a computer system according to

claim 6 to proceed with processing any buifered transactions
before the startup threshold (K) has been reached.]

[8. The method of exiting the software pipeline on a com-
puter system according to claam 1 when the number of
unprocessed transactions buffered according to claim 1
reaches a completion threshold (7).}

[9. The method of buffering the transaction results on a
computer system according to claim 1 whereby a completed
transaction 1s swapped with a transaction that has not yet
completed, thereby eliminating the need for additional butifer
space.}

[10. The method of buffering the transaction results on a
computer system according to claam 1 whereby the com-
pleted transactions are maintained in a FIFO.]

[11. The method of selecting the next node to prefetch in
the software pipeline executing on a computer system accord-
ing to claim 1 whereby a transactions 1s selected from the set
of buffered transactions 1f a transaction on the given data
structure has been completed, and the next traversal node 1n
the data structure 1s prefetched otherwise.]

[12. The method of forcing the completion of the requests
buifered in a computer system according to claim 1, thereby
ensuring that the time required to complete any builered
transaction can be bounded, and allowing the computer sys-
tem to complete bulfered traversal requests when 1t might
otherwise be idle.]

13. A computer system [with a cache hierarchy] compris-
ng:

a) at least one main memory,

b) at least one cache coupled to the at least one main

memory,

¢) [a] means for prefetching data into any such of the at

least one cache from the at least one main memory,

d) a buffer [for accumulating] configured to accumulate

traversal requests,

e) a buffer [for storing] configured to store traversal results,

f) [a] means [of] for storing the traversal requests once

prefetch operations have been 1nitiated,

) a buffer [for holding] configured to hold an active tra-

versal request, and

h) a multiplexor configured to select between [the] accu-

mulated [traversals] traversal requests and the active
traversal request.

14. JA cache memory] The computer system according to
claim 13 wherein a prefetch control word 1s maintained which
describes [the] a prefetch target in terms of a software pipe-
line depth, a completion threshold, a startup threshold, a
real-time timeout value, a sequence of control bits that
specify [the] handling of timer events, a prefetch target
descriptor, said prefetch target descriptor providing a descrip-
tion to [the] a prefetch unit of [the] a number and [stride] a
size of words to be prefetched relative to the prefetch target
specified as part of [the] a traversal request when a plurality of
cache lines to be prefetched are associated with each prefetch
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target address, and a mode field that distinguishes between
different interpretations of [the] prefetch target descriptor
fields.

15. [A cache memory] The computer system according to
claim 13 [wherein), further comprising a buffer [is used]
configured to store a representation of traversal requests for
which an associated pretetch request has been 1ssued.

16. [A cache memory] The computer system according to
claim 15 wherein said buller configured to store a represen-
tation of traversal vequests for which an associated prefetch
request has been issued 1s implemented as a queue.

17. [A cache memory] The computer system according to
claim 13 wherein [the] a traversal request is represented by at
least one of an address [or] identifier, a request identifier, an
application supplied value [such as a key], and [the] ar
address of a node in [the] a data structure to be traversed.

18. [A cache memory] The computer system according to
claim 13 [wherein al], further comprising an active request
buffer [holds the] configured to hold a traversal request for
which a data structure traversal 1s 1n progress.

19. [A cache memory] The computer system according to
claim 18 [including] further comprising:

[a] means Jof] for reading [the] contents of subfields of said

active request butfer|.];

[a] means [of] for storing and extracting tie subfields of
said active request buller.

20. [A cache memory] The computer system according to

claim 18 [wherein] further comprising;

a [next] device register (N) [is provided whereby], wherein
writing to said device register causes [the] ar active
traversal request address field to be updated with [the] a
value written to said device register, the active traversal
request to be added to [the] a prefetch issued queue, and
a prefetch i1ssued for the device register according to
[the] specifications of [the] a prefetch control register.

21. [A cache memory] The computer system according to
claim 18 further comprising:

[wherein] a result register (R) [is provided where], wherein

upon [to] said resuit register being updated:

[the] an active traversal request address field is updated to
[the] a value written to said [device] result register:;

11 an active results buifer 1s employed, the active traversal
request is added to the [results] buffer configured to store
the traversal results:;

a traversal request from the [Jaccumulation] buffer config-
ured to accumulate the traversal requests is added to
[the] a prefetch issued queue, and

a prefetch is issued for [the] a prefetch address specified by
[the] a prefetch issued buffer.

22. [A cache memory] The computer system according to
claim 18 [wherein] further comprising a current register (C)
[is] associated with [the] a prefetch issued queue, wherein
reading said current register [triggers] causes [the] a head of
the prefetch 1ssued queue to be dequeued into the active
request butler.

23. [A cache memory] The computer system according to
claim 13 [wherein), further comprising a completion buffer
[stores] configured to store completed data structure traversal
requests.

24. [A cache memory] The computer system according to
claim 23, [Wthh provides a] further comprising means [of]

for removing a traversal request from said completion builer.

25. [A cache memory] The computer system according to
claim 13, wherein access to any of said butfers 1s provided by
means [of] for memory mapped device interfaces.

[26. The method of organizing data within the memory on
a computer system, the method comprising the steps of:
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a) determining the cache line boundaries of data structure
elements;

b) aligning the base of the data structure on a cache line
boundary;

¢) homogenizing the data structure;

d) inserting a pad field into data structure elements so that
subsequent elements are aligned on cache line bound-
aries;

¢) packing elements so as to maximize the data represented
in each cache line by removing pointers to adjacent
clements, whereby the program instructions that
traverse the data structure are constructed to traverse the
adjacent packed elements belfore traversing non-packed
elements,

whereby steps b, ¢, d, and € may be performed 1n any order
and any proper subset of steps ¢, d, and € can be
employed.]

[27. The method of creating a homogeneous hash table
according to claim 26 whereby the hash function directly
indexes an array ol nodes in the hash chain, rather than an
array ol pointers to hash chain nodes, thereby decreasing the
number of memory references required to traverse the hash
bucket chain, and therefore potential data cache misses, by
one.}

[28. The method of creating a graph represented as adja-
cency lists according to claim 26 whereby the nodes 1n the
adjacency list are aligned on cache line boundaries, padded.,
and packed.]

29. In a data processing system, a method for vestructuring
data requests, comprising:

receiving the data rvequests divected to a data structurve
having a dynamically determined traversal path
between data elements, whervein each data vequest of the

data requests is independent of any other data request of

the data requests, and wherein the data requests are
temporally scattered;

storing the data requests in an accumulation queue;

searching, in response to satisfaction of a search trigger
criterion, the data structuve for data rvequested by the
data requests stored in the accumulation queue, wherein
the search trigger critervion is satisfied at a time other
than a time of the storving the data requests and wherein
the searching includes issuing prefetch requests for at
least a portion of the data requested by the data requests
stored in the accumulation queue;

determining if a vesults queue of the data processing system
is empty, wherein the results queue is configured to store
at least a vesult of a data request of the data requests;

Jorcing a processing of the data vequest if the results queue
1s empty;

storing, in the vesult queue, vesults of the prefetch requests;
and

deferring a further processing of the stored rvesults, by a
requesting process of the data processing system, until a
threshold number of stored vesults is stored in the results
queue, wherein the rvequesting process is configured to
issue temporally scattered independent data vequests.

30. The method of claim 29, wherein the data structure

comprises at least one of a binary tree and a hash table, and
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receiving rvequests to search for data nodes in the binary tree

and receiving requests to searvch for bucket chains of the hash
table.

31. The method of claim 29, further comprising.

storing, in the result queue, found data if, as a vesult of the
searching the data structurve, the requested data ave
found in the data structure, and
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storing, in the result queue, an indication that the requested
data are other than present if, as a vesult of the searching
the data structurve, the requested data ave other than
present in the data structure.

32. The method of claim 29, further comprising:

storing, in the rvesult queue, a rvequest of the prefetch

requests; and
storing, in the result queue, a result of the request stoved in
the vesult queue, whevein the request stored in the result
queue and the vesult of the requests stored in the result
queue are uniquely associated in the rvesult queue, a
resulting process of the data processing system is con-
figured to search within the result queue for the request
storved in the vesult queue to obtain the result of the stored
vesult, and the resulting process is configured to issue
temporally scatteved independent data requests.
33. The method of claim 32, further comprising:
issuing, via the requesting process, a first data request at a
first time, wherein the first data vequest and a vesult of
the first data vequest are associated in the results queue;

issuing, via the requesting process, a second data request
at a second time, wherein the second time is later than
the first time; and

matching the second data vequest to the first data vequest

stored in the vesults queue, wherein the stored vesult of
the first data request is returned from the results gueue in
response to the second data request.

34. The method of claim 33, wherein the second data
request comprises a time-deferred processing of the first data
request.

35. The method of claim 29, further comprising:

storing, in the vesult queue, found data if, as a vesult of the

searching the data structuve, the vequested data ave
Jound in the data structure; and

determining if the stoved found data vequives a modifica-

tion.

36. The method of claim 35, further comprising:

deferring the modification of the stored found data in the

data structuve until the stoved found data are not stored
in the result queue.

37. The method of claim 29, further comprising.

storing the prefetch requests in a prefetch queue; and

tracking pending prefetch rvequests to ensure that at most

one prefetch is storved pertaining to any one unique ele-
ment of the data structure.

38. The method of claim 29, further comprising forcing a

processing of any pending data vequest in the accumulation

queue if the results queue is empty.

39. The method of claim 29, wherein the data structure
comprises a binary tree and further comprising:

determining that a node of the binary tree excludes a data

value requested by a data request;

determining that the node has a pointer to a child element;

and

queuing a vequest to search a child node, wherein the

request is queued in at least one of the accumulation
queue or a prefetch queue.

40. The method of claim 29, wherein the data structure
comprises a hash table and further comprising at least one of
the homogenizing the hash table and aligning a bucket of the
hash table on a cache boundary.

41. The method of claim 29, further comprising implement-
ing the accumulation queue in a havdware register.

42. The method of claim 29, further comprising;

implementing at least one of the accumulation queue, a

prefetch queue, and the results queue in a havdware
register.
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43. The method of claim 29, wherein the searching com-
prises searching the data structure for the data requested by
the data requests stoved in the accumulation queue when a

threshold time delay has been exceeded.
44. The method of claim 43, wherein the threshold time

delay is set based on a system vesponse time vequivement.
45. The method of claim 43, wherein the threshold time
delay is based on at least one of:

a maximum permissible delay time before a seavch is pro-

cessed: and

an average frequency at which search requests are

received.

46. The method of claim 29, wherein the receiving com-
prises receiving the data requests issued by a transaction
processing system.

47. The method of claim 29, wherein the receiving com-
prises receiving the data requests issued by an operating
system.

48. The method of claim 29, wheveon the rveceiving com-
prises receiving the data vequests issued by a database man-
agement system for searches of a database.

49. In a data processing system, a method, comprising.

receiving the data requests divected to a data structurve

configured to store, in a memory, data elements which
are spatially decoherent, wherein a traversal path to a
first data element in the data structure is contingent
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upon at least one value stored in a second data element
of the data structure, wherein each data request of the
data requests is independent of any other request of the
data requests, and wherein the data requests are spa-
tially scatteved in the memory;

storing the data vequests in an accumulation queue;
searching, vesponsive to satisfaction of a search trigger

criterion, the data structure for data rvequested by the
data requests stoved in the accumulation gueue, wherein
the search trigger critevion is satisfied at a time other
than a time of the storing the data request and wherein
the searching includes issuing prefetch rvequests for at
least a portion of the data requested by the data vequests
storved in the accumulation queue;

determining if a vesults queue of the data processing system

is empty, wherein the vesults queue is configured to storve
at least a rvesult of a data request of the data requests;

storing, in the result queue, results of the prefetch requests;
forcing a processing of the data request if the vesults queue

is empty, and

deferring a further processing of the stoved vesults, by a

requesting process of the data processing system, until a
threshold number of stoved vesults is stoved in the vesults

queue, wherein the requesting process is configured to
issue temporally scatteved independent data requests.
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