(19) United States

12 Reissued Patent
Kavipurapu

(10) Patent Number:
45) Date of Reissued Patent:

USOOREA45078E

US RE45,078 E
Aug. 12,2014

(54) HIGHLY EFFICIENT DESIGN OF STORAGE
ARRAY UTILIZING MULTIPLE POINTERS
TO INDICATE VALID AND INVALID LINES
FOR USE IN FIRST AND SECOND CACHE
SPACES AND MEMORY SUBSYSTEMS

(71) Applicant: Gautam Nag Kavipurapu, Mountain
View, CA (US)

(72) Inventor: Gautam Nag Kavipurapu, Mountain

View, CA (US)
(73) Assignee: Narada Systems, LLC

(21) Appl. No.: 13/658,122

(22) Filed: Oct. 23, 2012
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 6,584,546

Issued: Jun. 24, 2003

Appl. No.: 09/761.068

Filed: Jan. 16, 2001
(51) Int. CL.

GOoF 12/00 (2006.01)
(52) U.S. CL

USPC i, 711/120; 711/168; 711/133
(58) Field of Classification Search

CPC GO6F 12/0853; GO6F 12/0866; GO6F

12/0846; GO6F 12/0806; GO6F 12/0808;
GO6F 12/0815; GO6F 12/0877
USPC 711/120, 168, 133, 119, 122, 136, 169

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,386,547 A * 1/1995 Joupplccoooovviiiiinnnnn, 711/122

5,581,725 A * 12/1996 Nakayama 711/117

5,619,675 A 4/1997 De Martine et al.

5,638,506 A * 6/1997 Petersonetal. 714/6.13
(Continued)

FOREIGN PATENT DOCUMENTS

EP 0192578 4/1990

OTHER PUBLICATIONS

On the Inclusion Properties for Multi-Level Cache Hierarchies, jean-

Loup Baer and Wen-Hann Wang, CH2545-2/88/0000/0073, 1988
IEEE, Department of Computer Science, University of Washington,
Seattle, WA 98195.

Primary Examiner — Hong Kim

(74) Attorney, Agent, or Firm — The Law Offices of Konrad
Sherinian, LLC

(57) ABSTRACT

A method of operating a cache memory includes the step of
storing a set of data 1n a first space 1n a cache memory, a set of
data associated with a set of tags. A subset of the set of data 1s
stored 1n a second space 1n the cache memory, the subset of
the set of data associated with a tag of a subset of the set of
tags. The tag portion of an address 1s compared with the
subset of data in the second space 1n the cache memory 1n that
said subset of data 1s read when the tag portion of the address
and the tag associated with the subset of data match. The tag
portion of the address 1s compared with the set of tags asso-
ciated with the set of data 1n the first space 1n cache memory
and the set of data in the first space 1s read when the tag
portion of the address matches one of the sets of tags associ-
ated with the set of data in the first space and the tag portion
of the address and the tag associated with the subset of data 1n
the second space do not match.

5,361,391 A 11/1994 Westberg
5,386,527 A * 1/1995 Bosshartcccoovvvveneeeei.n. 711/3 48 Claims, 6 Drawing Sheets
VALID EANK/ BANK / VALID
BIT TAG SET 1D SET ID TAG BIT
N N N ¢ / A
| TAG D TAG Y
s | M _NK
b) E E | enaie
ENTRIES '~ ! ENTRIES
[v TAG D | I TG v ||
¢ BANK BANK 2 i
i 53 DIRECTORY DIRECTORY |
‘ﬂﬂﬂvmﬁ“malg:mﬁf
LOG4b BITS L0G,b BITS
»| READ REQUEST !
SEARCH TAG AND SEARCH TAG AND |
VALID BANK 1 VALID BANK 2
H|T MISS HlTé MISS
WiItE DATA BACK WRITE DATA BACK FETCH
FROM BANK 1 FRCM BANK 2 DATA

Amended

US REA45,078 E

Page 2
(56) References Cited 5,937,431 A 8/1999 Kong et al.
5,956,746 A 9/1999 Wang
U.S. PATENT DOCUMENTS 3,963,978 A 10/1999 Feiste

6,078,992 A * 6/2000 Humcoovvvvvveninnnnnn, 711/120
5,689,679 A * 11/1997 JOUPPI weoevveecrereeeeannn.. 711/122 6,253,291 B1* 6/2001 Pongetal. 711/146
5,706,464 A 1/1998 Moore et al. 6,321,297 B1* 11/2001 Shamannaetal. 710/52
5715428 A 2/1998 Wang ef al. 6,629,210 Bl 9/2003 Arimilli et al.
5,787.478 A * 7/1998 Hicksetal.cccovvnn..... 711/122 6,826,652 B1* 112004 Chauvel etal. 711/128
5,895.484 A 4/1999 Arimilli et al. 2002/0078303 Al* 6/2002 Rozanoetal. 711/133
5,916,314 A 6/1999 Berg et al.
5,926,830 A 7/1999 Feiste et al. * cited by examiner

U.S. Patent Aug. 12,2014 Sheet 1 of 6 US RE45,078 E

CPU G, 71

| CACHE DRAM DRAM SYSTEM
ORAM LACHE CONTROLLER CONTROLLER MEMORY
PERIPHERAL PERIPHERAL
CONTROLLER CONTROLLER

200 DATA CONTROL ADDRESS
BUS UNIT |/21o
ADDRESS

e ——————————————————————————————

DATA

INSTRUCTION 202
CACHE
PREFETCH 203

206 ADDRESS INSTRUCTION | ~904
GENERATION . DECODE
REGISTERS
207
UNIT 209
FIG. 2

[—D”A DATA CACHE

U.S. Patent Aug. 12,2014 Sheet 2 of 6 US RE45,078 E

FIG. 3

K=+VE
300 INTEGER
301 302
}OO
FIG. 4
301 302
DATA_OUT! 4 0 MAIN
READ
i O DATA_QUT? o | MEMORY OF
WRITE /&5 G o= | POWER LEVEL
< BANK 1 | BANK 2 2] MEMORY
CONTROL 71 &£ SIZE=N | SIZE=NK | | o
DATA_QUT 8% g‘
DATA_IN DATA_IN 2
SEARCH 105
T /MISS DIRECTORY | DIRECTORY

401¢ 401b

U.S. Patent Aug. 12,2014 Sheet 3 of 6 US RE45,078 E

FIG. 58 jt
e ————— - =
WL - —
} 1 :
l
301 1 1
BANK 1 | BANK 2
02 501 FLEMENT | I
'l IN BANK 2 |
| I
T Em—— - -
:- --------------------- -
I
' 601 ‘——n- READ._ENABLE
| |
| RAMT =1 |
i | I
| I
o ' 602 |
INPUT | 601¢c — | RAM
PORTS | 0 QUTPUT
. | (o I PORT
'RAM3 : 603
| I
. | |
' RAM4 |

| — - }]IWRITE_ENABLE

ROW1

A R S (S S S SR

Ao I S I A N N B
I I S S N N

ROW4
\
REF1 I--r REF CELL I- >

g
s ——{lrer e -.-I

L
FIG. 5C

U.S. Patent Aug. 12,2014 Sheet 4 of 6 US RE45,078 E

fF'1G. 5D 502
”]
REGULAR 7
COLUMNS &S
300 000 &S
-
o
301 o
D
F--
SENSE AMP/"
BANK 2 BANK 1

B 1
{ {
SINGLE
601~ PORTED | |
: SRAM CELL :
i |
| |
: T :
| |
I v v |
WL ———— —————e —
e e e e e e e e o e e e e A — o . . - — -
BL BL
TO SENSE AMP
BL2 B2 BIN BIN
ROW1 T

ROWN :
HeuB
-

U.S. Patent Aug. 12,2014 Sheet 5 of 6 US RE45,078 E

VALID BANK/ BANK/ VALID
BIT TAG SET ID SET ID TAG BIT
S 2
TAG 1D TAG |V
AS T T M NK
N a ; M _NA
Yy | ! : b b
o 23— — - || ENTRIES
V TAG D | ID TAG V |
BANK 1 BANK 2

i i
; I
b I
))
i ¢

e B S e

53 DIRECTORY DIRECTORY
F]G' 7 e ———— ;—EE'E__.—-—%ﬂm

LOG,b BITS LOG,b BITS

FIG. 8A

| SEARCH TAG AND |
| VALID BANK 2|

SEARCH TAG AND |
VALID BANK 1|

HIT]

| WRITE DATA BACK |
~ FROM BANK 1 |
Amended
FIG G WRITE REQUEST
{
TAG BANK 2 TAG SEARCH TAG

HT u MISS

| _ OVERWRITE TAG AT ENTRY=
PROCESSOR WRITE POINTER

|~ REPLACE DATA AT INDEX=
| WRITE POINTER

 —CHECK BANK 1 AND IF HIT
THEN SET BIT VALID TO DIRTY |

—-IF MISS IN BANK 1
| DO NOTHING

— OVERWRITE TAG IN
DIRECTORY BANK 2

—OVERWRITE DATA
IN BANK 2

| —SET VALID BIT IN
| DIRECTORY BANK 2

| —CHECK BANK 1 ALSO

U.S. Patent Aug. 12,2014 Sheet 6 of 6 US RE45,078 E

New

Read Data A

Write data A to Bank 1 at Bank 1
memory write pointer

Write data A to Bank 2 at Bank 2
memory write pointer

Update Bank 1 memory write pointer

Update Bank 2 memory write pointer

FIG. 8B

US RE45,078 E

1

HIGHLY EFFICIENT DESIGN OF STORAGE
ARRAY UTILIZING MULTIPLE POINTERS
TO INDICATE VALID AND INVALID LINES

FOR USE IN FIRST AND SECOND CACHE
SPACES AND MEMORY SUBSYSTEMS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS REFERENCE 10 RELATED
APPLICATIONS

This application is a veissue application based on U.S. Pat.

No. 6,584,546, which issued from application Ser. No.
09/761,068, filed on Jan. 16, 2001 in the name of inventor

Gautam Nag Kavipurapu. This reissue application is the par-

ent patent application of U.S. patent application Ser. No.
14/187,539, titled “HIGHLY EFFICIENT DESIGN OF

STORAGE ARRAY UTIHLIZING MULTIPLE CACHE LINES
FOR USE IN FIRSTAND SECOND CACHE SPACES AND

MEMORY SUBSYSTEMS,” filed Feb. 24, 2014.

FIELD OF INVENTION

The present invention relates 1n general to electronic stor-
age devices and systems and in particular to methods and
circuits suitable for use in the design and construction of
ellicient caches for use 1n microprocessors and microproces-
sor-based systems.

BACKGROUND OF INVENTION

In a basic microprocessor-based system, a single micro-
processor acts as the bus controller/system master. Typically,
this microprocessor includes on-chip cache for storing both
instructions and data. In embedded chip controllers, as well as
some microprocessor-base architectures, at least some of the
data cache, instruction cache, or both can reside off-chip. In
any event, the cache 1s a high-speed (shorter access time)
memory, which makes up the higher levels 1n the memory
hierarchy and 1s used to reduce the memory access time and
supplement the processor register space.

Generally, the processor first attempts to access cache to
retrieve the mstructions or data required for a given operation.
If these data or instructions have already been loaded into
cache, then a “cache hit” occurs and the access 1s performed
at the shorter cache access time. If the necessary data or

instructions are not encached, a “cache miss” occurs and
processor must redirect the access to system memory or some
other lower-speed memory resource. The cache 1s then
updated by replacing selected existing encached data with the
data retrieved from the lower levels. Various caching tech-
niques are used to reduce the miss penalty and execution
errors 1n the processor pipelines when a cache miss does
OCCUL.

Hence, cache performance improvement centers on three
basic optimizations: (1) reducing the miss rate; (2) reducing,
the miss penalty on a cache miss; and (3) reducing the time
access cache on a hit. Given the importance of caching 1n the
design and construction in high performance processing sys-
tems, circuits and methods which effectuate any or all of these
optimizations would be distinctly advantageous.

SUMMARY

The principles of the present invention are embodied in
systems and methods for of operating a memory subsystem.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to one such method, a set of data are stored 1n a first
space 1n a cache memory, a set of data associated with the set
of tags. The subset of the set of data 1s then stored 1n a second
space 1n the cache memory, the subset associated with a tag
which 1s a subset of the set of tags associated with the data in
the first space. A tag portion of an address 1s compared with
the tag associated with the subset of data 1n the second space
in cache memory and the subset of data 1n the second space 1s
read when the tagged portion of the address and the tag
associated with the subset of data match. The tagged portion
of the address 1s also compared with the set of tags associated
with the set of data 1n the first space 1n cache memory. The set
of data 1n the first space i1s read when the tag portion of the
address matches one of the set of tags associated with the set
of data 1n the first space and a tagged portion of the address
and the tag associated with the subset of data 1n the second
space do not match.

Methods and systems embodying the inventive concepts
will allow for significant improvement 1n memory system
performance. Among other things, cache memory perior-
mance 1s 1mproved through a reduction in the miss rate, a
reduction of the missed penalty on a cache miss and/or a
reduction 1n the access time on a cache hut.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a high level functional block diagram of an exem-
plary basic computer architecture based on a microprocessor
system master and a system bus;

FI1G. 2 illustrates the CPU on-chip (IL1) data and instruction
(code) cache of the exemplary generic microprocessor archi-
tecture;

FIG. 3 shows a two bank mirrored cache/memory sub-
system according to the principles of the present invention;

FIG. 4 1llustrates the case 1n which the memory subsystem
architecture contains the elements, mirrored storage array,
with two banks, Bank 1 and Bank 2, lookup tables (tag direc-
tories), controller/decode logic and additional decode cir-
cuitry, such as Multiplexer and Demultiplexer, and a write
butter:

FIG. 5a 1llustrates the instance in which the mirrored stor-
age array can be implemented with a DRAM memory ele-
ment, that are either symmetric or asymmetric;

FIG. 5b illustrates a typical 1T1C cell structure;

FIG. 5C 1llustrates a portion of the array row and column
and sense amplifier organization;

FIG. 3D 1llustrates the bank organization;

FIG. 6a illustrates the mirrored storage array which also
can be implemented with a single-ported SRAM memory
clement that 1s symmetric or asymmetric;

FIG. 6B shows a portion of an array implementation with a
symmetric 1 bit single ported SRAM element.

FIG. 7 illustrates the lookup tables having the logical struc-
ture;

FIG. [8] 84 illustrates a preferred READ protocol for a
linear prefetching scheme; [and]

FIG. 8B illustrates a protocol by which data is transferved
into cache banks using memory write points; and

FIG. 9 1llustrates the WRITE protocol used by the control-
ler.

L1
vy

ERRED

DESCRIPTION OF THE PR.
EMBODIMENT

FIG. 1 1s a high level functional block diagram of an exem-
plary basic computer architecture 100 based on a micropro-
cessor (CPU) 101 system master and a system bus 102. This

US RE45,078 E

3

system 1ncludes a block of off-chip (external, Level Two, or
[.2) SRAM cache 103 for encaching instructions or data. CPU
101 communicates with cache 103 through a conventional
cache controller 104. CPU 101, as well as anumber of periph-
eral devices 105 operating from system bus 102, operate 1n
conjunction with a DRAM system memory 106 through a
conventional DRAM controller 107. The peripherals could
include, for example, a display controller, bus bridge, disk
drive controller, or the like.

The CPU on-chip (IL1) data and instruction (code) cache
are shown respectively by blocks 201 and 202 of the exem-
plary generic microprocessor architecture 200 shown 1n FIG.
2. The mstruction pipeline includes conventional prefetch
buffers 203, instruction decoders 204 and prefetch control
circuitry 205. Data cache 201 1s associated with address gen-
erators 206. The processing path includes registers 207, ALU
208 and floating point unit 209. Data, addresses and control
signals are exchanged with CPU-external devices through
bus unit 210.

Cache memory 1s accessed 1n blocks, with each block
placed into locations 1n the cache as a function of the address-
ing/translating scheme employed 1n the design. For example,
in a fully associative cache scheme, a block of instructions or
data can be placed anywhere within the cache. An intermedi-
ate, and more common, cache organization is the set-associa-
tive cache where the block 1s first mapped to a set of locations
in cache and then further mapped to any location within that
set. In a direct mapped system, the block can be mapped only
one cache location.

The processor or cache controller 1n a set-associative or
direct-mapped cache system generates an address including a
block address composed of a tag and an 1ndex, along with a
block offset. The index selects the set. The tag 1s then com-
pared against similar tags associated with the blocks of data in
the indexed set. If a match (hit) occurs, the block offset 1s used
to access a location 1n the matching block.

On a cache miss, a block or cache line must be replaced
with the desired data. Two technmiques are commonly
employed in cache line or block replacement, namely Ran-
dom and Least Recently Used (LRU). LRU 1s more com-
monly found state of the art memory subsystems and cache
systems, although 1t 1s more complex to implement and
reaches the pomt of diminishing returns as the associativity
1ncreases.

Most of the instructions in a general program are loads
(reads) which access data from the memory subsystem. Typi-
cally, a smaller number of 1nstructions are stores (writes) to
memory, although this number may change as a function of
the given application. One advantage of this asymmetrical
memory operation 1s that reads are generally faster than
writes. Specifically, during a read, the block can be read out
concurrent with the tag comparison. If a hit occurs, the data
can be immediately sent to the processor, otherwise, on a
miss, the accessed data 1s simply discarded. However, a write
cannot take place to a given block until a hit 1s confirmed 1n
order to avoid overwriting necessary existing data. On a write
several techniques are employed, the most common of which
are, Write-Through and Write-Back, which protect against
undesirable overwrites.

Moreover, during a write operation to lower levels on
memory, the CPU must wait such that coherency i1s main-
tained 1n the data being fetched. In other words, 11 a given
instruction operates on data that was modified by the execu-
tion of a previous instruction, the CPU must wait for the
memory to be updated before accessing that data again. This
requires temporal locality of the data needed for a series of
instructions being executed and 1s most likely to occur 1n

10

15

20

25

30

35

40

45

50

55

60

65

4

programs where a list 1s being ordered, or several values of a
particular variable are being computed and constantly
updated for use 1n the next cycle.

A second scenario that 1s likely to occur 1n the course of
instruction execution 1s due to the spatial locality of the data
being requested for mstruction execution. I1 the mnstructions
being executed require data that have a constant address ofl-
set, then large blocks of data can be prefetched from the lower
level of memory to the higher levels of the memory sub-
system. This in turn reduces the probability of misses 1n the
higher level 1n the memory hierarchy.

To avoid further stalls on writes, several common tech-
niques are employed 1n the processor memory subsystem
design including Write Allocate and No-Write Allocate. To
write to various lower levels memory techniques mentioned
above and butlers such as a Store Accumulator are used.

Various techniques that used to deliver performance 1n
cach of the categories discussed above, as well as the perfor-
mance tradeotfs, are summarized below:

1. Miss Rate reduction Techniques

Larger Block Size: Increases Miss Penalty, Decreases
Miss Rate

Higher Associativity: Increases Hit Time, Decreases
Miss Rate

Victim Caches: Reduces Contlict Misses

Pseudo Associative Caches: Does not reduce total Miss
penalty but reduces probability to access main
memory

Prefetching of Data and Instructions: Takes advantage of

Spatial locality of data, harder to implement adds
complexity to systems (1LB and BTB are part of the
prefetching mechanism) can be done either by the
compiler or with hardware

Compiler optimizations: Loop {fusion, Loop inter-

change, Merging arrays, Blocking eftc.
2. Miss Penalty Reduction Techniques

(Giving priority to read misses over writes

Sub-Block Placement for reduced miss penalty
Early restart and Critical Word {first
Non Blocking Cache to reduce stalls on misses
Multilevel caches

3. Hit time Reduction

Small and Simple Caches
No Address translation 1n cache indexing,
Pipelining writes

Most of these techniques require making tradeotfs to opti-
mize system performance for the average or the most com-
mon case. Therefore, the principles of the present mnvention
present a design of a memory subsystem that can be used as a
cache or a lower level memory subsystem, and which
dynamically implements any or all of the alforementioned
techniques 1n hardware concurrently. Additionally, these
principles allow for the design of low cost high performance
memory subsystems which optimize their organmization based
on the application specific istruction set. In particular, a
cache and memory subsystem design 1s provided which 1s
applicable in a general purpose memory subsystem, includ-
ing multiprocessor-based systems, network processors and
shared memory switches.

A two bank mirrored cache/memory subsystem (300)
according to the principles of the present invention 1s shown
in FI1G. 3. In this embodiment, the memory 1s divided into two
logical banks, Bank 1 (301) and Bank 2.

The size of Bank 2 (302) 1s preferably an integer multiple
of Bank 1 (302). Thus 11 subsystem 300 1s implemented as a
256 KBytes subsystem, then Bank 1 can be designed to be of
s1ze 64 Kbytes and Bank 2 can be designed with a size 01 192

US RE45,078 E

S

Kbytes. In this case, Bank 2 1s 3 times the size of Bank 1. For
the purposes of the description of this embodiment, the
parameters to be used are: If Bank 2 1s of s1ize M then Bank 1
1s of si1ize N where, M=N*K and K 1s a positive integer.

Bank 1 1s designed to store a subset of the data elements
that are stored in Bank 2. In the preferred embodiment
described herein, Bank 2 contains the latest data that are being
tetched or written 1nto memory subsystem discussed below.
Bank 1 contains data that are always updated from Bank 2,
such that the data 1n Bank 2 1s always more recent by a time
unit compared to the data in Bank 1.

If the block size 1s b Bytes then Bank 1 will contain N/b
lines and Bank 2 will contain M/b lines. To identily the unique
line within a bank, a tag directory or lookup table entry for
Bank 1 will contain N/b entries of size Log, (b) bits each.
Similarly, a tag directory or lookup table entry to 1dentifies a
unique line within Bank 2 that contains M/b=K*N/b entries
of size Log, (b) bits each.

With respect to FI1G. 4, the memory subsystem architecture
400 contains the following elements, the mirrored storage
array (300), with two banks, Bank 1 (301) and Bank 2 (302),
lookup tables (401a and 401b) (tag directories), controller/
decode logic (402) and additional decode circuitry, such as
Multiplexer (403) and Demultiplexer (404), and a write
butter (405).

With respect to FIG. 3a, the mirrored storage array (300)
can be implemented with a DRAM memory element, that are
cither symmetric or asymmetric. The use of symmetric
memory elements facilitates the use of the mirrored storage
array design in memories, the asymmetric elements can be
used when multi-ported bit storage elements are required for
the use of such a mirrored element as part of a switching
subsystem. The storage array for embodiments using 1T1C
DRAM elements 501 shown in FIGS. 5B-5D. Specifically,
FIG. 5B illustrates a typical 1T1C cell structure, FIG. 5C a
portion of the array row and column and sense amplifier
organization and FIG. 5D the bank organization.

With respect to FIG. 6a, the mirrored storage array also can
be implemented with a single-ported SRAM memory ele-
ment 601 that 1s symmetric or asymmetric. FIG. 6B shows a
portion of an array implementation with a symmetric 1 bit
single ported SRAM element (60).

The lookup tables (401) preferably have the logical struc-
ture as shown 1n FIG. 7. The lookup tables can be constructed
of DRAM, SRAM or even tlash memory elements. The fields
are Tag and the corresponding Bank Number. In some cases
the Tag field can be further broken down 1nto mndex (BnkSet
ID) and Tag fields for use 1n a two-stage search, where the set
1s located and then the index field identifies the sub-block
within the set. The offset from the address 1s used to identify
the byte within the sub-block. The size of the Tag field 1s then
Log, (b) bits. There 1s a single bit in the lookup table entry,
this bit 1s called the valid bit. The value of the valid bit
indicates 1f the data in that particular cache line has been
updated or corrupted. If the valid bit 1s “set” then the line 1s
assumed to be “clean” or usable, otherwise the entry is
deemed “Dirty”

A read by the processor or a higher-level memory sub-
system can take place from either of the physically partitioned
banks 301 or 302. Writes however only effect the datain Bank
2, 1.¢. writes by the processor or a higher level of memory
subsystem can happen only to Bank 2.

In case of a read request from the external source the
following possibilities arise:

1. Read request—=Search Bank 1 (Check Tag and Valid

bit)—Causes a Hit— Write the data back to the request-
ing entity (processor or higher level memory subsystem)

10

15

20

25

30

35

40

45

50

55

60

65

6

2. Read request—=Search Bank 1 (Check Tag and Valid
bit)—=Causes a Miss—Search Bank 2 (Check Tag and
Valid bit)—Causes a Hit— Write back data to requesting

entity (processor or higher level memory subsystem)
3. Read request—=Search Bank 1 (Check Tag and Valid

bit)—=Causes a Miss—Search Bank 2 (Check Tag and
Valid bit)—Causes a Miss—Go system memory, hard or
floppy drive, or stmilar memory resource to lower level
storage 1n the memory hierarchy

If hardware prefetching 1s employed, as 1n the case of burst
reads from the main memory, mirrored storage array 300 1s
employed as part of the cache subsystem (lugher level or
lower level). In this embodiment, the mirrored storage array 1s
used as part of an on-chip processor cache (1) or discrete
Level Two (L2) cache. Mirrored array 300 also may be
employed 1n a main memory of a microprocessor-based sys-
tem without departing from the nature of this mvention.

A linear prefetching scheme can be employed where data
are fetched from a lower memory level at address ‘A’ on a read
miss, followed data or blocks of data from address ‘A-1"and
address ‘A+1’ as well. In this case, a data word or block from
address ‘A’ 1s written 1nto both Bank 1 and Bank 2 at the same
time. A write involves the update of the Tags for both Bank 1
and Bank 2 1n the Tag directory maintained in the lookup
tables (401a,b). The valid bits for Tag entries 1n both banks are
“Set” at this point. This indicates that there 1s valid data 1n
Bank 1 and Bank 2 from 1s Address ‘A’

A preterred READ protocol for a linear prefetching
scheme 1s shown 1n FIG. 8. Data from Address ‘A+1,” and
Address ‘A-1" are written into Bank 2 after the initial write
from address ‘A, to both Bank 1 and Bank 2. The group of
addresses A, A+1 and A-1 forms a “Set” The Tags corre-
sponding to these addresses are stored in the tag directories
401a,b. The location to which data 1s written 1s determined by
the position indicated by the memory write pointer 1n each of
the Banks 301 and 302. This 1s a function of the controlling

device. The memory write pointer in 1mtialized to entry 2 at

il

the time of the first data fetch. That means that data from
address A are written into line 2 in Bank 2, the data from
address A-1 are written into line 1 of Bank 2 and the data from
address A+1 are written into line 3 of Bank 2. Each time data
1s written 1into Bank 2 the write pointer for Bank 2 1s updated
by 3, this prevents the overwriting of the address A and A+1
from the previous memory access cycle.

When the pointer reaches the end of Bank 2, 1.e. line
M/b-1, then the write pointer wraps around to line 2 again.
This allows implementation of a pseudo-LRU where the old-
est copy of data 1s always overwritten. There 1s a write bulfer
(#) that 1s provided in the memory subsystem. This write
corresponds to write in Bank 1 at the location determined by

the formula:

Bank 1 write pointer/location=[{(Memory Write
Pointer for Bank 2-2)/K }+1]

This formula determines the associativity between Bank 1
and Bank 2, where Bank 1 1s K-way set associative. It must be
noted however that Bank 1 and Bank 2 are fully independent
direct mapped associative caches. The associativity between
Bank 1 and Bank 2 can be changed by employing a different
prefetching scheme, (which in turn changes the formula for
calculation of Bank 1 write pointer from the Bank 2 write
pointer.)

The controller also runs the protocol responsible for the
write to a cache. The WRITE protocol used by the controller

1s shown 1n FI1G. 9. In the first write scenario:
1) Processor Write—Bank 2 Search (Tag Search)—Tag

—

Hit—Overwrite the Tag that matches with the same Tag

US RE45,078 E

7

in the Tag directory for Bank 2 and “Set” the valid bat.
Overwrite the data corresponding to the Tag entry 1n
Bank 2.

To maintain coherency of data, Bank 1 1s also searched and
the valid bit1s changed to “Dirty” if there 1s aTag hit in the Tag
directory for Bank 1. The data are not overwritten such that
the entry at the line number corresponding to this Tag value 1s
free to be overwritten 1n the next write cycle from a lower
level memory prefetch, fetch, or an update from Bank 2. The
processor write pointer, which 1s separate from a memory
write pointer, 1s not updated and points to the line with first
“Dirty” valid bit 1n Bank 2, or the first line 1n Bank 2, other-
wise 11 no Dirty bit 1s set. On the first Tag hit on a processor
write, and on subsequent processor writes, the processor
write pointer gets updated by 2, so as not to overwrite data
from Address ‘A’

The processor write pointer 1s only used as a replacement

istrument 1n case of a Tag miss as shown 1n scenario 2:

2) Processor Write—Bank 2 Search (Tag Search)—Tag

Miss—=Overwrite Tag entry 1n Tag directory for Bank 2
at the 1index that will be equal to the processor write
pointer with new address Tag generated by the proces-
sor. Replace the data 1n the line that corresponds to the
index of the processor write pointer. To avoid coherency
problems check the Bank 1 Tags in the Tag directory
entries for Bank 1. (Since there might be a Tag match 1n
Bank 1 even though there 1s Tag miss in Bank 2 this step
1s necessary.) If there 1s a Tag hit 1n the Tag directory for
Bank 1 then set the valid bit to “Darty” If there 1s no
match then the directory entries for Bank 1 are left
unchanged.

The selection of two pointers for memory and processor
writes allows the application or the instruction set associated
with 1t to dynamically determine the data distribution within
this memory subsystem. This allows for dynamic utilization
of spatial and temporal locality of data.

If the processor accesses more recently written data from
memory 1t 1s more likely that these reads will generate hits in
Bank 2. Ifthe accesses are more Random, 1t 1s likely more hits
will be generated 1n Bank 1. The underlying assumption 1s
that there 1s some degree of spatial locality associated with
instruction and data for all applications.

This design of the cache 1s that 1t offers the advantage of a
direct mapped cache on the writes and the speed of associa-
tivity on the reads. The independent processor write pointer
can also be updated using a method where 1t always points to
the first “Dirty” line 1n the Bank.

In sum, the mirrored memory architecture of the present
invention can advantageously be used to maintain the spatial
and/or temporal locality of the encached data required for a
set of processing operations. Specifically, a set of data and the
corresponding tags are stored in the Bank 2 and associated
Bank 2 directory respectively. A subset of those data are
stored, along with the corresponding tags, in the Bank 1 and
associated Bank 1 directory. When a memory address 1s
received, from the CPU or memory controller, the tag 1s first
compared with those 1n the tag directories. If a hit 1s found 1n
the Bank 1 tag directory, the Bank 1 of the mirrored memory
1s preferentially accessed. Otherwise, 11 address tag misses
the Bank 1 directory but hits an entry 1n the Bank 2 directory,
the Bank 2 1s used for the access. When the address tag does
not match a tag in either of the two directories, then a lower
level of memory must be accessed and the mirrored memory
contents updated.

During update of the mirrored memory contents on a read
miss, a block or other set of data associated with a set of
addresses are copied 1into the Bank 2 of the mirrored memory

10

15

20

25

30

35

40

45

50

55

60

65

8

and the associated tags loaded into the Bank 2 directory. A
subset of this block of data, having a tag matching that of the
address causing the miss, 1s also loaded into the Bank 1 and
that tag loaded into the corresponding entry in the Bank 1
directory. On a write miss, a victim line or block at the write
pointer 1s overwritten and the corresponding entry in the Bank
2 directory updated with the tag from the address causing the
miss.

While a particular embodiment of the mnvention has been
shown and described, 1t will be obvious to those skilled in the
art that changes and modifications may be made therein with-
out departing from the mvention 1n 1t’s broader aspects, and,
therefore, the aim in the appended claims 1s to cover all such
changes and modifications as fall within the true scope of the
invention.

What 1s claimed 1s:
1. A method of operating a cache memory comprising the

steps of:

storing a set of data 1n a first space in the cache memory, the
set of data associated with a set of tags, the set of data in
the first space in the cache memory being comprised of a
first plurality of cache lines, each cache line in the first
plurality of cache lines being associated with a valid
indicator indicative as to whether data associated with
the cache line is valid:

maintaining a first pointer to a location in the first space in
the cache memory, the first pointer referencing a first
cache line in the first space in the cache memory;

maintaining a second pointer to a location in the first space
in the cache memory, the second pointer veferencing a
second cache line in the first space in the cache memory;

storing a subset of the set of data in a second space 1n the
cache memory and associated with a tag, the tag associ-
ated with the subset of data and being a subset of the set
of tags, the set of data in the second space in the cache
memory being comprised of a second plurality of cache
lines, each cache line in the second plurality of cache
lines being associated with a valid indicator indicative
as to whether data associated with the cache line is
valid;

wherein one of the second plurality of the cache lines is
associated with the tag associated with the subset of
data,

comparing a tag portion of an address with the tag associ-
ated with the subset of data 1n the second space 1n the
cache memory;

reading the subset of data 1n the second space when the tag
portion of the address and the tag associated with the
subset of data match;

comparing the tag portion of the address with the set of tags
associated with the set of data 1n the first space 1n the
cache memory; and

reading the set of data 1n the first space when the tag portion
of the address matches one of the set of tags associated
with the set of data in the first space and the tag portion
of the address and the tag associated with the subset of
data 1n the second space do not match.

2. The method of claim 1 further comprising the steps of:

when the tag portion of the address [matches] does not
match one of the set of tags associated with the set of
data 1n the first space, storing a second set of data 1n the
first space 1n cache memory and associated with a sec-
ond set of tags, the second set of data including a second
subset of data associated with a tag matching the tag
portion of the address; and

US RE45,078 E

9

storing the second subset of data 1n the second space 1n the
cache memory tagged with the tag matching the tag
portion of the address.

3. The method of claim 1 further comprising the steps of:

during a write operation, comparing the tag portion of the
write address with the set of tags associated with the set
of data 1n the first memory space; and

if the tag portion of the write address matches one of the set
of tags associated with the set of data in the first memory
space, overwriting the data in the first memory space
associated with the matching tag.

4. The method of claim 3 and further comprising the steps
of:

if the tag portion of the write address does not match one of
the set of tags associated with the set of data 1n the first
space 1n the cache memory, retrieving the data associ-
ated with the tag portion of the write address from a
second memory; and

storing the retrieved data in the first space of the cache

memory tagged with a tag corresponding to the tag por-
tion of the write address.

5. The method of claim 2 wherein said step of storing the
second set of data in the first space 1in the cache memory
comprises the step of storing the second set of data 1n a least
recently used set of locations in the first space.

6. The method of claim 2 wherein said step of storing the
second set of data in the first space in the cache memory
comprises the step of storing the second set of data 1n a
randomly selected set of locations 1n the first space.

7. The method of claim 4 wherein said step of storing the
retrieved data comprises the step of storing the retrieved data
at a least recently used set of locations 1n the first space.

8. The method of claim 4 wherein said step of storing the
retrieved data comprises the step of storing the retrieved data
at a randomly selected set of locations 1n the first space.

9. A processing system comprising:

a system memory;

a cache memory comprising first and second peer cache

memory spaces;

a first table for storing tags associated with data stored in

the first cache memory space;

a second table for storing tags associated with data stored in

the second cache memory space;

processing circuitry operable to:

access a plurality of blocks of data from said system
memory in response to a plurality of addresses;

store said blocks of data accessed from said system
memory within said first cache memory space, said
blocks of data associated with a set of tags 1n said first
table, said blocks further being associated with a set
of valid indicators, each valid indicator indicating
whether data associated with a particular block is
valid;

maintain a first pointer to a location in the first cache
memory space, the first pointer referencing a first
block in the first space in the cache memory;,

maintain a second pointer to a location in the first cache
memory space, the second pointer veferencing a sec-
ond block in the first space in the cache memory;

store a selected block of said blocks of data accessed
from said system memory within said second cache
memory space, the selected block being associated
with a valid indicator indicative of whether the data
associated with the block is valid, and said block
associated with a tag 1n said second table;

generate a read address including a tag field;

10

15

20

25

30

35

40

45

50

55

60

65

10

compare said tag field of said read address with said tag
in said second table associated with said selected
block and access said selected block from said second
cache memory space when said tag field and said tag
in said second table match; and

compare said tag field of said read address with said set
of tags 1n said first table when said tag field and said
tag 1 said second table do not match and access a
corresponding block 1n said first cache memory space
when said tag field and a tag 1n said first table match.

10. The processing system of claim 9 wherein said process-
ing circuitry 1s further operable when said tag field does not
match a tag in the first table to:

retrieve a second plurality of blocks of data from said

system memory;

store the second plurality of blocks of data 1n the first cache

memory space, the second plurality of blocks associated
with a second set of tags 1n said first table; and

store a second selected block of the second plurality of

blocks 1n said second cache memory space, said second
selected block associated with a second tag in said sec-
ond table matching said tag field of said address.

11. The processing system of claim 9 wherein said process-
ing circuitry 1s further operable to:

generate a write address including a tag field;

compare said tag field of said write address with the set of

tags 1n the first table; and
overwrite data in the first memory space associated with a
corresponding tag in the first table matching said tag
field of said write address associated with a set of tags;

storing a subset of the set of data in a second space 1n the
cache memory and associated with a tag, the tag associ-
ated with the subset of data being a subset of the set of
tags;

comparing a tag portion of an address with the tag associ-

ated with the subset of data 1n the second space 1n the
cache memory;

reading the subset of data 1n the second space when the tag

portion of the address and the tag associated with the
subset of data match;

comparing the tag portion of the address with the set of tags

associated with the set of data 1n the first space 1n the
cache memory; and

reading the set of data in the first space when the tag portion

of the address matches one of the set of tags associated
with the set of data 1n the first space and the tag portion
of the address and the tag associated with the subset of
data 1n the second space do not match.

12. The processing system of claim 9 wherein said second
cache memory space 1s smaller than said first cache memory
space.

13. The processing system of claim 9 wherein said cache
memory system comprise a discrete cache memory system.

14. The processing system of claim 9 wherein said cache
memory system comprises an on-board cache memory sys-
tem integrated with said processing circuitry.

15. The processing system of claim 9 wherein said process-
ing circuitry comprises a central processing unit.

16. The processing system of claim 9 wherein said process-
Ing circuitry comprises a cache memory controller.

17. The method of claim 3 further comprising the steps of:

comparing the tag portion of the write address with the tag

associated with the subset of the set of data; and

when the tag portion of the write address matches the tag

associated with the subset of the set of data, changing
the valid indicator of the cache line associated with the

US RE45,078 E

11

tag associated with the subset of the set of data to indi-
cate that the data associated with the cache line is
invalid.

18. The method of claim 1 further comprising the steps of:

writing data associated with a write address from a pro-

cessor coupled to the cache memory to a memory loca-
tion associated with the first cache line in the first space
in the cache memory;

comparing the tag portion of the write address with the tag

associated with the subset of the set of data stored in the
second space in the cache memory; and

setting the valid indicator of the cache line associated with

the tag to indicate that the data associated with the
cache line is invalid when the tag portion of the write
address matches the tag associated with the subset of the
set of data.

19. The method of claim 1 further comprising the steps of:

when the tag portion of the address does not match one of

the set of tags associated with the set of data in the first
space, stoving a second set of data to a memory location
associated with the second cache line in the first space in
the cache memory; and

incrementing the second pointer to veference a third cache

line in the first space in the cache memory.
20. The method of claim 19 further comprising the step of
writing data associated with a write address from a processor
coupled to the cache memory to a memory location associ-
ated with the first cache line in the first space in the cache
Memory.
21. The method of claim 20 further comprising the steps of :
maintaining a third pointer to a location in the second
space in the cache memory, the thivd pointer referencing
a first cache line in the second memory space; and

storing a subset of the second set of data to a memory
location associated with the first cache line in the second
memory space.

22. The method of claim 20 further comprising the step of
incrementing the first pointer to reference a fourth cache line
wherein the valid indicator associated with the fourth cache
line indicates that the data associated with the fourth cache
line is invalid.

23. The method of claim 20 further comprising the steps of :

comparing the tag portion of the write address with the tag

associated with the subset of the set of data stoved in the
second space in the cache memory; and

setting the valid indicator of the cache line associated with

the tag to indicate that the data associated with the
cache line is invalid when the tag portion of the write
address matches the tag associated with the subset of the
set of data.

24. The method of claim 23 wherein the associativity of the
fivst space in the cache memory and the second space of the
cache memory is dynamic.

25. The method of claim 1 wherein the cache memory is
part of a multiprocessor system.

26. The method of claim 1 wherein the cache memory is
implemented using DRAM.

27. The method of claim 1 wherein the cache memory is
implemented using SRAM.

28. The method of claim 1 wherein the cache memory is
implemented using multi-ported memory.

29. The method of claim 1 further comprising the steps of:

prefetching data into the first space in the cache memory;

and

responding to a read request from a processor coupled to

the cache memory with data from the second space in the
cache memory.

12

30. The method of claim I further comprising the steps of:

reading data associated with the cache line veferenced by
the second pointer; and

at substantially the same time writing data to the cache line

d veferenced by the first pointer.

31. The system of claim 9 further comprising:

a processor coupled to the cache memory;

the processing circuitry being further operable to write
data associated with a write address from the processor

10 to the block rveferenced by the first pointer, compare the
tag portion of the write addrvess with the tag in said
second table, and set the valid indicator associated with
the block associated with the tag in said second table

5 when the tag portion of the write address matches the tag

in said second table.

32. The system of claim 9 whevrein the processing civcuitry
is further operable when the tag portion of the read address
does not match one of the set of tags stoved in said first table,
store a second set of blocks of data to a memory location
referenced by the second pointer, and increment the second
pointer to reference a thivd blockin the first space in the cache
Memory.

33. The system of claim 32 whevrein the processing civcuitry
25 is further operable to write data associated with a write
address from the processor to the block veferenced by the first
pointer.

34. The system of claim 33 whevrein the processing circuitry
is further operable to:

maintain a third pointer to a second block within the sec-

ond cache memory space;

store a block of data that is a subset of the second set of

blocks of data within the block veferenced by the thivd
pointer.

35. The system of claim 33 whevrein the processing civcuitry
is further operable to increment the first pointer to veference
a fourth blockwherein the valid indicator associated with the

Jourth block indicates that the data associated with the fourth
block is invalid.

36. The system of claim 33 whevrein the processing circuitry
is further operable to:

compare the tag portion of the write address with the tag

stored in the second table; and

set the valid indicator associated with the block associated

with the tag stoved in the second table to indicate that the
data associated with the block is invalid when the tag
portion of the write address matches the tag associated
stored in the second table.

37. The system of claim 36 whevrein the associativity of the
50 first space in the cache memory and second space in the cache
memory is dynamic.

38. The system of claim 9 further comprising a first pro-
cessor coupled to the cache memory, and a second processor
coupled to the cache memory.

39. The system of claim 9 wherein the cache memory is
implemented using DRAM.

40. The system of claim 9 wherein the cache memory is
implemented using SRAM.

41. The system of claim 9 wherein the cache memory is
implemented using multi-ported memory.

42. The system of claim 9 further comprising:

prefetching circuitry operable to prefetch data into the first

space in the cache memory; and wherein the processing
circuitry is further operable to vespond to a read request
with data from the second space in the cache memory.

43. The system of claim 9 further comprising:

a processor coupled to the cache memory; and

20

30

35

40

45

55

60

65

US RE45,078 E

13

wherein the processing circuitry is further operable to read
data associated with the block rveferenced by the second
pointer; and

at substantially the same time write data to the block ref-
ervenced by the first pointer. d

44. A method of operating a cache memory comprising the

steps of.

storing a set of data in a first space in the cache memory,
the set of data associated with a set of tags, the set of data
in the first space in the cache memory being comprised
of a first plurality of cache lines, each cache line in the
fivst plurality of cache lines being associated with avalid
indicator indicative as to whether data associated with
the cache line is valid:

storing a subset of the set of data in a second space in the

cache memory and associated with a tag, the tag asso-
ciated with the subset of data and being a subset of the
set of tags, the set of data in the second space in the
cache memory being comprised of a second plurality of >0
cache lines, each cache line in the second plurality of
cache lines being associated with a valid indicator
indicative as to whether data associated with the cache
line is valid:

whevrein one of the second plurality of the cache lines is 25
associated with the tag associated with the subset of
data;

comparing a tag portion of an address with the tag asso-
ciated with the subset of data in the second space in the
cache memory; 30

reading the subset of data in the second space when the tag
portion of the address and the tag associated with the
subset of data match;

comparing the tag portion of the addvess with the set of tags
associated with the set of data in the first space in the 35
cache memory; and

reading the set of data in the first space when the tag
portion of the address matches one of the set of tags
associated with the set of data in the first space and the
tag portion of the addvess and the tag associated with the 40
subset of data in the second space do not match;

writing data associated with a write address from a pro-
cessor coupled to the cache memory to a memory loca-
tion of the first space in the cache memory;

comparing the tag portion of the write address with the tag 45
associated with the subset of the set of data stored in the
second space in the cache memory;

setting the valid indicator of the cache line associated with
the tag to indicate that the data associated with the
cache line is invalid when the tag portion of the write 50
address matches the tag associated with the subset of the
set of data;

maintaining a first pointer to a location in the first space in
the cache memory, the first pointer referencing a first
cache line in the first space in the cache memory; and 55

maintaining a second pointerto alocation in the first space
in the cache memory, the first pointer referencing a
second cache line in the first space in the cache memory,
wherein the valid indicator associated with the second
cache line indicates that the data associated with the 60
second cache line is invalid.

45. The method of claim 44 further comprising the steps of:

when the tag portion of the address does not match one of
the set of tags associated with the set of data in the first
space, stoving a second set of data to a memory location 65
associated with the second cache line in the first space in
the cache memory;

10

15

14

incrementing the second pointer to rveference a third cache
line in the first space in the cache memory;
maintaining a thivd pointer to a location in the second
space in the cache memory, the third pointer referencing
a first cache line in the second memory space; and
storing a subset of the second set of data to a memory
location associated with the first cache line in the second
memory space.
46. The method of claim 45 further comprising the steps of:
comparing the tag portion of the write address with the tag
associated with the subset of the set of data stored in the
second space in the cache memory; and
setting the valid indicator of the cache line associated with
the tag to indicate that the data associated with the
cache line is invalid when the tag portion of the write
address matches the tag associated with the subset of the
set of data.
47. The method of claim 44 further comprising the steps of:
reading data associated with the cache line rveferenced by
the second pointer; and
at substantially the same time writing data to the cache line
referenced by the first pointer.
48. A processing system comprising.
a system memory;
a cache memory comprising first and second peer cache
memory spaces,
a processor coupled to the cache memory;
a first table for storing tags associated with data stored in
the first cache memory space;
a second table for storing tags associated with data stored
in the second cache memory space;
processing circuitry operable to:
access a plurality of blocks of data from said system
memory in response to a plurality of addresses;
store said blocks of data accessed from said system
memory within said first cache memory space, said
blocks of data associated with a set of tags in said fivst
table, said blocks further being associated with a set
of valid indicators, each valid indicator indicating
whether data associated with a particular block is
valid;
store a selected block of said blocks of data accessed
from said system memory within said second cache
memory space, the selected block being associated
with a valid indicator indicative of whether the data
associated with the block is valid, and said block
associated with a tag in said second table;
generate a read addrvess including a tag field;
compare said tag field of said read address with said tag
in said second table associated with said selected
block and access said selected block from said second
cache memory space when said tag field and said tag
in said second table maitch;
compare said tag field of said read address with said set
of tags in said first table when said tag field and said
tag in said second table do not match and access a
corresponding block in said first cache memory space
when said tag field and a tag in said first table match;
the processing circuitry being further operable to write
data associated with a write address from the processor
to a block in the first cache memory space, compare the
tag portion of the write address with the tag in said
second table, and set the valid indicator associated with
the block associated with the tag in said second table
when the tag portion of the write address matches the tag
in said second table; and
wherein the processing civcuitry is further operable to:

US RE45,078 E
15

maintain a first pointer to a location in the first cache
memory space, the first pointer referencing a first
block in the first space in the cache memory; and
maintain a second pointer to a location in the first cache
memory space, the second pointer referencing a second 5
block in the first space in the cache memory whevein the
valid indicator associated with the second block indi-
cates that the associated with the second blockis invalid.

G x e Gx o

16

	Front Page
	Drawings
	Specification
	Claims

