USOOREA45070E

(19) United States

12 Reissued Patent
Connery et al.

US RE45,070 E
Aug. 12,2014

(10) Patent Number:
45) Date of Reissued Patent:

(54) RECEIVE PROCESSING WITH NETWORK gagggaggg gl) 2%88(1) EﬂUH;lﬂ—ﬂ ***** S 370/229
,, ,, oucher et al.
PROTOCOL BYPASS 6,246,683 Bl 6/2001 Connery et al.
6,697,868 B2 2/2004 Craft et al.
(71) Applicant: Hewlett-Packard Development 6.757.746 B2 6/2004 B;E:lclferaet al.
Company, L.P., Houston, TX (US) 6,956,853 B1 10/2005 Connery et al.
7,076,508 B2 7/2006 Philbrick et al.
(72) Inventors: Glenn William Connery, Petaluma, CA ;, ﬁll é‘i‘a%gg E% igﬁ 3882 gfﬂﬁft aLt |
1 : 461, oucher et al.
(US)f Richard Reid, Pahrump, NV 7,502,869 B2 3/2009 Boucher et al.
(US); Gary Jaszewski 7,664,883 B2 2/2010 Craft et al.
| 7.945.699 B2 5/2011 Boucher
(73) Assignee: Hewlett-Packard Development 2012/0202529 A1 8/2012 Boucher et al.
Company, L.P., Houston, TX (US) OTHER PUBI ICATIONS
(21) Appl. No.: 13/891,049 Patent Interference No. 105,775: Connery v. Boucher, US Patent
o Application Nos. 09/071,692 v. 09/692,561; Declaration date Sep.
(22) Filed: May9, 2013 14, 2010; Judgment Date Jun. 18, 2012.
Related U.S. Patent Documents (Continued)
Reissue of:
(64) Patent No.: 6,246,683 Primary Examiner — Gary Mui
Issued: Jun. 12, 2001
Appl. No.: 09/071,692 (57) ABSTRACT
Filed May 1, 1998 An adapter 1s provided with intelligence that allows it to
separate the header parts of a packet being received from the
(51) Int.CL . . .
041 128 (2006.01) ptayload. It carries, apd In mMost cases Move the payload
(52) U.S.Cl ' directly into a destination buffer at the application layer or file
tem layer. Copies by the int diate 1 f th to-
USPC oo 370/392; 370/400; 370/412; 370/429; 2o 0 @Y LOPIES By THE BICHARHAT @yess 07 THe Pro’s
700/750) col stack are bypassed, reducing the number of times that the
_ _ _ payload of a communication must be copied by the host
(58) Field of Classification Search system. At the network interface, a plurality of packets is
USPC e, 3707229, 253, 392, 338, 39, 349, 399, received, and the payload of each 1s bypassed directly into the
370/412, 352, 389, 239, 401, 395, 400, 404, target destination buffer. The network interface device i1den-
3707428, 429, 351, 254, 258, 465, 469; tifies the packets which are 1n the sequence of packets carry-
o _ 709/250 ing payload to be stored in the target bufler by the flow
See application file for complete search history. specification carried with such packets. Also, the packets
(56) References Cited carrying data payload for the file include a sequence number

or other identifier by which the network interface 1s able to
determine the offset within the target bufler to which the
packet 1s to be stored.

U.S. PATENT DOCUMENTS

(FIG.2)

5,867.495 A * 2/1999 Elliottetal. 370/352
5917820 A * 6/1999 Rekhterc.coovvvvnnnnn 370/392 16 Claims, 4 Drawing Sheets
DATA APPLICATION
/" (eg. SMB) 59
P 48
l,]
,f I 49 READ(LENGTH)
ff
63 / FILE SYSTEM
_| / (SMBICIFS) 80
f 50
! I SEND READ
f 51 RAW REQ,
I BYPASS CMD
{
{ TCPAP STACK 61
{ 52 KN SENDFLOW
{PAYLOAD I Shon
\ REQ. PACKET,
\ BYPASS CMD,
\ TARGET BUFFER
H MAC DRIVER a2
\ HEADER 54
\ , SEND REQ.
84 —\ PACKET,
v 55 8YPASS CMD,
‘*,\ kx TARGET BUFFER
“a SMART NIC

US RE45,070 E
Page 2

(56) References Cited

OTHER PUBLICATTONS

Alacritech Engineering, “Intelligent Network Interface Card (INIC)

Overview,” 1997, 10 Pages.

Alacritech “Alacritech Protocol Interface Card Software Develop-
ment Plan” date unknown, 7 Pages.

Braden, R., RFC: 1644, T/TCP—CTCP Extensions for Transactions
Functional Specification, Network Working Group, Jul. 1994, 39
Pages.

Comer, D., et al., “Internetworking with TCP/IP vol. II Design,
Implementation, and Internals,” 1991, pp. 32-34, 166-171, Prentice-
Hall, Inc.

Craft, P, et al., “Alacritech TCP (ATCP) Design Specification,”
Alacritech, Jan. 11, 2011, 1997, 23 Pages.

Craft, P, et al., “Alacritech TCP (ATCP) Design Specification,”
Alacritech, Feb. 22, 2011, Jul. 28, 1997, 21 Pages.

Craft, P, et al., “Alacritech TCP (ATCP) Design Specification,”
Alacritech, Feb. 22, 2011, Jul. 28, 1997, 29 Pages, Modified.

Craft, P., “Alacritech Simulation System Test Plan,” Alacritech, 1997,
10 Pages.

Craft, P, “Alacritech SMBTest Program Design Specification,”
Alacritech, 1997, 12 Pages.

Ercolano, A., “Lance.C.txt” Microsoit Cororation, 1990, 80 Pages.
Gholz, C., “Interference Practice Strategies,” Copyright 2003 by
Charles L. Gholz; Oblon, Spivak, McClelland, Maier, & Neustadt,
P.C.; Alexandria, Virginia, 24 Pages.

Gholz, C., “When Should a Patentability Motion be Deferred to the
Second Phase?” Intellectual Property Today, Nov. 2010, pp. 7-9.
Heizer, 1., et al., CIFS 1.0, draft-heizer-cifs-vl-spec-00.txt,
Microsoft, Jun. 13, 1996, 241 Pages.

Lam, S., et al., “Burst Scheduling Networks: Flow Specification and

Performance Guarantees.” 5 International Workshop, NOSSDAV”’

95 Network and Operating Systems Support Digital Audio and
Video, Apr. 19-21, 1995, 10 Pages.

Metcalfe, R., “Computer/Network Interface Design: Lessons from
Arpanet and Ethernet,” IEEE Journal on Selected Areas in Commu-
nications, Feb. 1993, pp. 173-180, vol. IL, No. 2.

Partridge, C., RFC: 1363, A Proposed Flow Specification, Network
Working Group, Sep. 1992, 20 Pges.

Tanenbaum, A., “Computer Networks,” Third Edition, 1996, pp.
28-38, Prentice Hall PTR, New Jersey.

Wood, A., et al., “NTDDNDIS.H,” Microsofit Corporation, 1990, 26
Pages.

Woodside, C.M., et al., “The Protocol Bypass Concept for High
Speed OSI Data Transfer,” Protocols for High-Speed Networks, II,
1991, pp. 107-122, Elsevier Science Publishers B.V.

Zhang, L., et al., “RSVP: A New Resource ReSerVation Protocol,”
IEEE Network, Sep. 1993, pp. 8-18.

“CS410 Homepage,” Computer Networks and Internets, 1998, 2
pages, can be retrieved at <URL:http://pheattarchive.emporia.edu/
courses/1998/cs410198/cs410.htm>.

Host Interface Strategy for the Alacritech INIC, date unknown, 6
Pages.

“HP Completes Acquisition of 3Com Corporation, Accelerates Con-
verged Infrastructure Strategy,” Business Wire, Apr. 12, 2010, 2
pages.

International Standard, “Information technology—Open Systems
Interconnection—Basic Reference Model: The Basic Model,” ISO/
IEC 7498-1, Second Edition, Nov. 15, 1994, 68 Pages.

Network Communication Protocols Map, 2004, 1 page, can be
retrieved at <URL:http://www.javvin.com/pics/map2004-medium.
g1f>.

Network Associates Guide to Communication Protocols, 1998, 1
page.

RFC:793, “Transmission Control Protocol,” DARPA Internet Pro-
gram, Protocol Specification, Prepared for Defense Advanced
Research Projects Agency, Sep. 1981, 93 Pages.

Que Corporation, NDIS Windows 95 Microsoft Certified Profes-

sional Guide, Examining Network Architecture, Chapter 15 Win-
dows 95 Networking Introduction, 1995, pp. 247-248.
Windows DDK NDIS Object Identifiers, Nov. 19, 1999, 2 pages.

* cited by examiner

U.S. Patent Aug. 12,2014 Sheet 1 of 4 US RE45,070 E

10
12
HOST HOST I/0,
HOST CPU MEMORY ETC
11 13
~ HOST BUS 18
— 17
PROGRAM
MEMORY: NIC <
TCP/P W/ o=
RECV BYPASS (RECEIVE =
MAC DRIVER W/ BYPASS W o
BYPASS SUPPORT) s~
SUPPORT 15 -

ETC. 14
___ :
| — 32 :
| - l
i |
| ownenone 5 I :
|
: E," CPU :

|l 'l < G, t
=2 e r 33 — l
ajl | 5 o 30 :
0 = i RAM *
O 1| < ™ |
- | '4)) = i
) S o CONTROL 21 l
L@ 25 DATA {
‘ |
- Lag w |
.
! DATAPATHAND | 3 {
o TCP/IP BUFFERIN627 Z :
| CHECKSUM % !
1 Loalic = :
| 34 |
| 28 :
: MAC :
: 22 i
I }
l 15 |
Y N i
TO NETWORK

MEDIUM

U.S. Patent Aug. 12,2014 Sheet 2 of 4 US RE45,070 E

DATA APPLICATION
p (eg. SMB) — 98
, 48
/
/ READ(LENGTH)
/
/
63 — FILE SYSTEM
| / (SMB/CIFS) 60
/ 50
{ SEND READ
/ RAW REQ,
, BYPASS CMD
|
: TCP/P STACK 61
l 52 SEND FLOW
PAYLOAD
\ SPEC,
\ 53 REQ. PACKET.
\ BYPASS CMD.
\ TARGET BUFFER
\\ MAC DRIVER 82
\ HEADER, 54
\ , SEND REQ.
64 —N——1 PACKET,
O 55 BYPASS CMD,
TARGET BUFFER

SMART NIC
(FIG.2)

56

FIG. 3

US RE45,070 E

Sheet 3 of 4

Aug. 12,2014

U.S. Patent

| AHOW3IW GIOVNYIN J AHOWIN

H3IAVT H3IHOIH

7 Ol

_
_

LLL " (ZE~)
| | ¥344N8 1394VL

INJWNOVHd QVO 1AV S0t

G0

J4OVNYW d3AIbA

0Lt

LOL

4344048
J3AV3IH TOHLNOD

INIWOVYS "d0Vv3H

}

}

140} £0

0iS° 1~) QvO1AVYd dOlL H Hi3

0ct 1INJNOVYHL AVO1AVd

5

(%S 1~) QYO1AVd dOl

U.S. Patent Aug. 12,2014 Sheet 4 of 4 US RE45,070 E

BYPASS SETUP
(SEQ. RANGE, SOCKET, 200
SOURCE, DEST., TARGET
BUFFER)
RECIEVE READ
RAW RESPONSE 201
PACKET
202
YES NG
NORMAL -
STORE HEADER PROCESS
IN WORKING 205
BUFFER (SEQ.
NO., LENGTH)
MOVE FAYLOAD
TO TARGET 206
BUFFER
UPDATE BYPASS
SET UP DATA 207

(SEQ. RANGE,
ETC.)

FIG. 5 (oo)

US RE45,070 E

1

RECEIVE PROCESSING WITH NETWORK
PROTOCOL BYPASS

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE 10O RELATED
APPLICATION

This application is a reissue of U.S. patent application Ser.
No 09/071,692 filed May 1, 1998, entitled “Receive Process-
ing with Network Protocol Bypass™ and issued as U.S. Pat.

No. 6,246,653.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to processing of data in com-
munication networks, and more particularly to the process of
receiving a plurality of packets of data which relate to a
common block of data, and efficiently providing such data to
an application.

2. Description of Related Art

Network communications are often described with respect
to layers of network protocols. According to a standard
description, the layers include the physical layer, the datalink
layer, the network layer (also called routing layer), the trans-
port layer, and the application layer. Thus modem communi-
cation standards, such as the Transport Control Protocol TCP,
the Internet Protocol IP, and IFFE 802 standards, can be
understood as organizing the tasks necessary for data com-
munications 1nto layers. There are a variety of types of pro-
tocols that are executed at each layer according to this model.
The particular protocols utilized at each layer are mixed and
matched i order to provide so called protocol stacks or
protocol suites for operation of a given communication chan-
nel.

The protocol stacks typically operate in a host system
which includes a network adapter comprised of hardware that
provides a physical connection to a network medium, and
software instructions referred to as medium access control
MAC drivers for managing the communication between the
adapter hardware and the protocol stack in the host system.
The adapter generally includes circuitry and connectors for
communication over a communication medium, and trans-
lates the data to and from the digital form used by the protocol
stack and the MAC driver, and a form that may be transmitted
over the communication medium.

Generally according to this model, processes at the appli-
cation layer, including applications and file systems, rely on
the lower layers of the communication protocol stack for
transferring the data between stations in the network. The
application layer requests services from the protocol stack
which includes transport layer, network layer and datalink
layer processes distributed between the MAC driver and other
components ol the stack. In a similar way, data which 1s
received across the network 1s passed up the protocol stack to
the application layer at which actual work on the data
involved 1s accomplished.

In current implementations, received packets are generally
moved sequentially into host buifers allocated by the MAC
driver for the adapter, as they arrive. These bullers are then
provided to the host protocol stack, which generally copies
them once or twice to internal buffers of 1ts own before the

10

15

20

25

30

35

40

45

50

55

60

65

2

payload data finally gets copied to the application or the file
system bufler. This sequential passing of the data up the

protocol stack 1s required so that the processes in the particu-
lar protocol suite are able to individually handle the tasks
necessary according to the protocol at each layer. However,
these multiple copies of the data hurt performance of the
system. In particular, the CPU of the computer 1s used for
cach copy of the packet, and a significant load 1s placed on the
memory subsystem 1n the computer. With technologies like
gigabit Ethernet, and other technology 1n which the data rates
of the physical layer of the network 1s increasing, these copy
operations may become an important limiting factor in
improving performance of personal computer architectures to
levels approaching the capability of the networks to which
they are connected.

Accordingly, 1t 1s desirable to provide techniques which
avold one or more of these copies of the packets as they pass
up the protocol stacks. By eliminating multiple copies of the
packet, the raw performance of the receiving end station can
be increased, and the scalability of the receive process can be
improved.

SUMMARY OF THE INVENTION

According to the present invention, an adapter 1s provided
with intelligence that allows 1t to separate the header parts of
a packet being received from the payload it carries, and 1n
most cases move the payload directly into a destination butier
at a higher layer, such as the application layer. Thus reducing
the number of times that the payload of a commumnication
must be copied by the host system.

Accordingly, the invention can be characterized as a
method for transferring data on a network from the data
source to an application executing i an end station. The
application operates according to a multi-layer network pro-
tocol which includes a process for generating packet control
data (e.g. headers) for packets according to the multi-layer
network protocol. Packets are received at the network inter-
face 1n a sequence Carrying respective data payloads from the
data source. Upon receving a packet, the control data of the
packet 1s read i1n the network interface, and 1f the packet
belongs to a flow specification subject of the bypass, the data
payload of the packet 1s transferred to a buller assigned by a
layer higher 1n the stack, preferably by the application or file
system, bypassing one or more intermediate buflfers of the
protocol stack.

Typically, to mitiate the process of recerving a plurality of
packets which make up a block of data for a particular appli-
cation, the process involves establishing a connection
between the end station and the source of data, such as a file
server on a network, for example according to the TCP/IP
protocol suite. A request 1s transmitted from the application
through the network interface which asks for transter of the
data from the data source. The request and the protocol suite
provide a tlow specification to 1dentify the block of data and
an 1dentifier of the target buller. At the network interface, the
plurality of packets is received, and their control fields, such
as TCP/IP headers, are read. It they fall within the set up flow
specification, the payloads are bypassed directly into the tar-
get buller. The network interface device identifies the packets
which are 1n the sequence of packets carrying payload to be
stored 1n the target buflfer by the control data in headers
carried with such packets. Also, according to a preferred
aspect of the invention, the packets carrying data payload for
the block of data include a sequence number or other 1denti-
fier by which the network interface i1s able to determine the
offset within the target buifer to which the payload of the

US RE45,070 E

3

packet 1s to be stored. In this case, the flow specification
includes a range of sequence numbers for the block of data,
such as by a starting number and a length number.

According to yet another aspect of the invention, the net-
work protocol executed by the protocol stack includes TCP/
IP, and the process for requesting the transier of a file from a
data source mvolves 1ssuing a read request according to
higher layer protocol, such as the READ RAW SMB (server
message block) command specified according to the Com-
mon Internet File System protocol (See, paragraph 3.9.35 of
CIFS/1.0 draft dated Jun. 13, 1996) executed in Windows
platforms. The target buflfer 1s assigned by the host applica-
tion using an interface like WINSOCK, or a file system, 1n a
preferred system. In alternatives, the target builer 1s assigned
by a transport layer process like TCP, to provide for bypassing,
of a copy 1n a network layer process like IP.

Accordingly, the present invention provides a technique by
which the performance and scalability of a network 1nstalla-
tion, like a TCP/IP 1nstallation, can be improved, especially
for high physical layer speeds of 100 megabits per second or
higher. Also, the mvention 1s extendable to other protocol
stacks 1n which a read bypass operation could be executed
safely.

Other aspects and advantages of the present invention can

be seen upon review of the figures, the detailed description
and the claims which follow.

BRIEF DESCRIPTION OF THE FIGURES

FI1G. 1 1s a ssmplified diagram of an end station in a network
including receive bypass support according to the present
invention.

FI1G. 2 1s a simplified diagram of a network interface card
supporting the recerve bypass processes of the present inven-
tion.

FIG. 3 1s a heuristic diagram of a protocol stack including
the read bypass process of the present invention.

FIG. 4 1s a diagram 1llustrating the packet structure and
processing according to the read bypass operation of the
present invention.

FI1G. 5 1s a flow diagram of the process executed for setting
up and receiving packets in response to a READ RAW
request.

DETAILED DESCRIPTION

A detailed description of the present invention 1s provided
with respect to FIGS. 1-5, in which FIGS. 1 and 2 illustrate a
hardware system environment.

FIG. 1 shows a data processing system 10 which includes
a host central processing unit 11, host memory 12, host input/
output 13, such as keyboards, displays, printers, a pointing
device and the like. The system also includes program
memory 14 (usually part of the host memory block) and a
network interface card 15. All of these elements are 1intercon-
nected by a host system bus 16. The network interface card 15
provides for connection to a network medium as indicated at
line 17.

FIG. 1 1s a simplified diagram of a computer such as a
personal computer or workstation. The actual architecture of
such system 1s quite varied. This system for one example
corresponds to a personal computer based on the Intel micro-
processor running a Microsolt Windows operating system.
Other combinations of processor and operating system are
also suitable.

According to the present invention, the program memory
includes a TCP/IP protocol stack with a receive bypass mode

10

15

20

25

30

35

40

45

50

55

60

65

4

according to the present invention. A MAC driver 1s also
included 1n the program memory which supports the recerve
bypass mode. Other programs are also stored in program
memory to suit the needs of a particular system. The network
interface card 15 includes resources to manage TCP/IP pro-
cessing and bypass according to the present invention.

FIG. 2 provides a simplified block diagram of a network
interface card 15 capable of supporting the present invention.
The network interface card 15 includes a bus interface 20
coupled to the host bus 16. A memory composed of random
access memory RAM 21 is included on the card 15. Also, a
medium access control unit 22 1s coupled to the card which 1s
coupled to the network medium 17. In the path from the host
bus interface 20 to the RAM 21 includes appropriate butler-
ing 25 and a direct memory access (DMA) engine 26 1n order
to offload processing from the host system for transferring
data packets into the RAM 21. Also the data path from the
RAM 21 to the medium access control unit 22 includes appro-
priate data path and butlering logic 27 to support efficient
transmission and reception of packets. A DMA engine 28 1s
also included on this path to provide for efficient transferring
of data between the network medium 17 and the RAM 21.
Also included on the card 15 1s a central processing unit 30
having a program memory 31. The CPU 30 1s coupled to the
host bus 16 and to the RAM 21 on line 32. Also the CPU 30
generates control signals represented by the arrow 33 for
controlling other elements in the network interface card 15.
According to this embodiment, TCP/IP checksum logic 34 1s
coupled to the data path and the buffering logic 27 1n the path
from the RAM 21 to the network medium 17. The program
memory for the CPU 30 includes transmit, receive, TCP/IP
receive bypass control and other processes which manage the
operation of the smart network 1nterface card.

The block diagram illustrated 1n FIG. 2 provides a simpli-
fied overview of the functional units 1n a network interface
according to the present mvention. A variety of other archi-
tectures could be implemented to achieve similar functions.
For example, DMA engines 26, 28 are not strictly required
here. State machines hand-shaking with each other, or other
data processing resources could move data from one block to
the next.

In one embodiment, all of these elements are implemented
on a single ntegrated circuit. In another embodiment, all
clements of the network interface card except for the RAM 21
are implemented on a single integrated circuit. Other embodi-
ments include discreet components for all of the major func-
tional blocks of the network interface card.

FIG. 3 1s a simplified diagram of the network protocol
layers implemented according to the present invention. The
protocol layers 1n this example include a data application 48
such as an application layer program, coupled by path 49 to a
file system 30 running CIFS 1n an end station. The file system
50 1s coupled by a path 51 to the TCP/IP stack 52. The TCP/IP
stack 52 1s coupled by path 53 to the MAC driver 54. The
MAC dnver 1s coupled by path 55 to the smart network
interface card 56. The smart network interface card 56 1s
coupled by path 57 to the network medium.

In alternative systems, application layer processes (like
process 48) 1ssue read requests through an application pro-
gram interface (API) like WINSOCK for Windows platiorms,
rather than a file system (like CIFS).

According to the example 1n FIG. 3, the application layer
process 48 (such as Lotus Notes or others), 1ssues a request 39
to read a file of data across the network from a data source
such as by the equivalent of fget (buifer length), 1n the “C”
programming language. The file system 30 sets up a bypass,
then formats the READ RAW SMB request 60 and passes 1t

US RE45,070 E

S

down. Such a request 25 corresponds for example to the
READ RAW SMB command found in the CIFS protocol. Of
course, analogous commands and other application layer pro-
cesses could be utilized. The READ RAW request 1s passed
down the protocol stack to the driver and transierred across
the network to the file server or other data source which 1s the
source of the file to be retrieved. The file server then sends a
sequence of packets according to the SMB READ RAW
response protocol.

The TCP/IP stack according to the present invention makes
a call 61 to the MAC driver, passing to 1t the 1identification of
a target buller assigned by the application layer process, or by
another process above the network layer. This identification
may be an array of physical or virtual addresses, such as an
address and a length, which can be utilized by the MAC driver
to copy the data directly from the memory on the smart
network interface card into the target buffer. Also, the call
made by the TCP/IP stack sends down to the MAC driver the
flow specification established for this read beforehand,
including the source and destination IP addresses, and the
source and destination port numbers (1.e. sockets). Also the
flow specification includes a SEQorigin and a SMBfirst flag
in this example. In turn, the MAC driver provides the request
and associated control information by a transter 62 to the
smart adapter 56. The target buller specifies where the pay-
load should be stored when possible by the network interface
card. The tlow specification specifies how to identily packets
that are part of this session. The SEQorigin specifies the
sequence number of the first byte of the payload (excludmg
any SMB header) that should be stored 1n the target builer.
The SMBirst tlag tells the driver whether the first packet with
that sequence SEQorigin will have a SMB header following
its TCP header. This information 1s used so that the control
data can be cut from the first packet in the plurality of packets
which are received 1n response to the read request.

Using this information, when the adapter receives packets
in the session, 1t puts the payload data directly (line 63) into
the target butler. There 1s no guarantee that the adapter waill
always do this; however 1t will be done most of the time when
a target buller has been supplied. Such received packets are
passed up to the protocol one at a time as always, using the
same interfacing data structures as always. The only differ-
ence 1s that the packet will be split across two fragments. The
header (Ethernet, IP, TCP and possible SMB headers) will be
the first fragment on line 64, and will occupy a driver allo-
cated butler as always for use 1n 1dentifying the packet, and
for protocol maintenance functions. However, the payload
will occupy a second fragment on line 63 which has been
copied to the offset within the target buifer determined by the
S_JQ parameter 1n the header. The driver figures out the offset
in the target builer from the SEQ number in the header of the
incoming packet. The offset into the target buifer 1s simply
determined by the SEQ 1n the packet less the SEQorigin
parameter which 1s provided with the READ RAW request.
According to one implementation, if the packets which are
responsive to the read request come to the adapter out of
order, they will not be redirected to the target butfer until the
first packet with the SMB header carried 1n 1s recerved. At that
point, the size of the SMB header 1s easily calculated, and the
amount to adjust the calculation for directly loading 1nto the
target butler can be readily determined.

This approach allows both data that 1s targeted at the file
system cache buifers to skip one or more copies or application
layer reads. However, 1t need not be used to 1ts full potential
to be worthwhile. Even 11 one copy operation can be skipped
the ivention might be useful. Thus, according to an alterna-
tive embodiment the target buflfers are assigned at the TCP

5

10

15

20

25

30

35

40

45

50

55

60

65

6

layer rather than at the application layer. The TCP buffer
target address 1s passed down to the MAC driver, allowing the
packet to skip the copy at the IP layer.

Other protocols can be handled as well, such as the IPX and
the NetBEUI/Data Link Control (DLC) protocols. Although
these protocols do not use SEQ) numbers which act as byte
counters, but rather use packet numbers as part of the flow
specification provided to the adapter. Thus, the problem of
calculating the offset into the target buller 1s complicated.
However, 11 all packets 1n the read request are constrained to
the same size, except for the last packet, the target builer
offset can be easily determined. Alternatively, the bypass
might only be performed on packets recerved 1n order. Addi-
tional calculations on the smart network adapter card can also
provide the memory offsets. Similarly file system protocols
other than CIFS are possible, such as FTP or NFS.

According to some embodiments of the present invention,
the network adapter has resources which enable 1t to deter-
mine that a recerved packet has good data, such as checksum
checking logic and the like, before transierring it up to the
target buffer. The smart network adapter has the capability to
maintain a record of the parts of the target buifer which have
been filled 1n with good packets and not overwrite them. This
addresses a feature of the TCP/IP protocol by which there 1s
no guarantee that payload bytes will arrive 1n order, or that 1
they are retransmitted that they will be retransmitted in the
same size chunks. Thus, the file server might send part of a
previous packet along with some new data. The adapter 1n this
embodiment 1s capable of properly handling this condition
because of its record of the good data already stored in the
target buifer.

FI1G. 4 1llustrates the packet structure and the process of the
present invention as the packets are received for a response to
a READ RAW SMB request according to the CIFS protocol.
As can be seen 1n FIG. 4, there 1s a first packet 1n the sequence
generally 100 which carries a header fragment 101 and a
payload fragment 102. The header fragment includes 1n this
example an Ethernet header 103, an Internet Protocol header
104, a TCP header 105, and a SMB header 106. The data
payload 107 makes up the payload fragment 102. For a stan-
dard Ethernet style packet, the payload will have about 1.5
kilobytes of data. According to the present invention, the
smart network adapter recerves the packet 100 and ensures
that 1t 1s a good packet by performing the IP and TCP check-
sum processes. Also, the header fragment 101 1s cut oif of the
packet 100 and transferred to a control header buffer 110
which 1s stored in driver managed memory. The payload
fragment 102 1s transferred to the target buffer 111 1n the
application managed memory according to the target buifer
addresses stored 1n the network interface card.

According to the READ RAW SMB process, subsequent
packets in the sequence, including packet 120 and packet 130
do not carry SMB headers like the header 106 1n the first
packet 100. The subsequent packets are received by the smart
network interface card and the TCP/IP flow specification 1s
used to 1identify them as part of the READ RAW response.
Once they are identified by the network interface card as part
ol the response, they are uploaded mto the target butfer 111 at
an oilset determined by the SEQ parameter in the TCP header.
The header fragments of the packets 120 and 130 can be
passed up the protocol stack to ensure that the protocol stack
1s properly apprised of the sequence of packets being
received.

Normally a received packet 1s placed 1n a buffer allocated
by the driver and then passed up to the protocol stack 1n a data
structure that consists of one or more fragments identified by
respective pointers and lengths. The total sum of the frag-

US RE45,070 E

7

ments 1n order makes up the entire packet. Often, the packet
1s passed up 1n one piece, and there 1s not a second fragment.
But 1n some cases, such as 1n a transmit loop back, the packet
1s divided 1nto several fragments which are passed back up to
the protocol stack. Thus the protocol stack 1s normally con-
figured to handle packets which are passed up 1n several
fragments. According to the present invention, the packet 1s
divided 1nto two fragments, including the header which 1s
placed 1n the butfer allocated by the driver identified by a
pointer to the buffer location, and the payload which 1s placed
in the target buller and 1dentified by a pointer to the target
butler. The 1dentifiers of the two fragments are passed up the
protocol stack by making a call to the recetve tunction in the
next layer, and passing the fragment identifiers up with the
call. This allows the packet to be processed normally through
the protocol stack. At the application layer, or at the layer of
the target buffer, the protocol or the application would be
modified according to one implementation of the invention to
compare the address of the fragment with the address of the
butifer into which this layer of the stack intends to copy the
fragment. I1 these two addresses match, then the copy 1s not
executed. The copy would not be necessary because the
adapter had already copied the payload into the target builer.
Thus, very little modification of the protocol stack 1s neces-
sary 1n order to execute the present invention.

FIG. 5 illustrates the process executed by the network
interface card and MAC driver according to the present inven-
tion. In the network adapter the bypass 1s set up by storing a
flow specification for the block of data that will be subject of
the receive bypass. The flow specification includes for
example a sequence number range, socket numbers, and
source and destination addresses, of packets which will be
part of the flow, and a target buifer to which the payload is to
be written (block 200). This data 1s provided to the network
adapter from a higher layer in the protocol stack. Once the
bypass 1s set up, the adapter 1s able to receive packets which
are part ol that tlow specification. For example, 1n one
example the packets are expected to be responses from a
READ RAW request for a block of data (block 201). The
network adapter upon receiving the packet, and before pass-
ing the packet up the stack determines whether the packet
falls within the set up that defines the tflow specification for
this read bypass session (block 202). If not, then the packet 1s
processed normally (block 203) and the algorithm ends
(block 204). I1 the packet falls within the set up parameters at
block 202, then the header of the packet 1s stored 1n a working
butiler accessible by the driver, including the sequence num-
ber and length parameters from the header (block 205). Using,
this data, the protocol stack i1s capable of performing protocol
maintenance functions necessary for maintaining the session.
Also the payload 1s moved directly to the target butiler (block
206). The payload move process may occur before, after or in
parallel with storing the header 1n the working butlfer. Next, if
necessary for a given implementation, the set up data for the
receive bypass 1s updated based on the mnformation in the
header (block 207). Finally the process ends (block 204).

The foregoing description of a preferred embodiment of
the invention has been presented for purposes of 1llustration
and description. It 1s not intended to be exhaustive or to limait
the invention to the precise forms disclosed. Obviously, many
modifications and variations will be apparent to practitioners
skilled 1n this art. It 1s intended that the scope of the invention
be defined by the following claims and their equivalents.

What is claimed 1s:
1. A method for transferring data on a network from a data
source to an end station executing a multi-layer network

10

15

20

25

8

protocol, including a network layer and at least one higher
layer, through a network interface on the end station, com-
prising:
receiving in the network interface of the end station, from
the at least one higher laver, a flow specification com-
prising an identifier of a protocol suite and an identifier
of a block of data to be requested from the data source;
prior to receiving a first packet of a plurality of packets,
whevrein the plurality of packets includes the block of
data, responsive to a request for the block of data, allo-
cating a target buffer assigned by a process at a layer
higher than the network laver for stoving the block of
data and notifying the network interface of the allocated
target buffer;
receiving in the network interface [a] t4e first packet which
carries a data payload from [a] #2e block of data in the
data source, and a control field identifying the first
packet; and
determiming ir the network interface whether the first
packet carries a payvload with at least a portion of the
block of data based on matching the control field [in the
network interface whether the packet matches a] with the
identifier of the block of data in the flow specification,
and [if so] transferring the data payload in the first packet
directly to [a] t/e target buffer [assigned by a process at
a layer higher than the network layer] based exclusively
on the matching.
2. The method of claim 1, wherein the control field in the

S first packet includes a packet header.

35

40

45

50

55

60

65

3. The method of claim 1, wherein the multi-layer network
protocol comprises TCP/IP, and the control field comprises a
TCP/IP header.

[4. The method of claim 1, including prior to receiving the
packet, allocating the target butler for the plurality of packets,
and notifying the network interface of the allocated target
buffer.}

5. The method of claim 1, the network interface 1s coupled
to a network medium supporting a maximum packet size, and
including transmitting [a] #/ze request from an application for
transfer of [a] t2e block of data from the data source, the block

of data having a length [potentially] greater than the maxi-
mum packet size for the medium.
6. The method of claim 5, [including notifying] wherein the

flow specification is provided to the network interface in

response to the request [of a flow specification] for transfer of
the block of data according to the multi-layer network proto-
col[, and wherein the step of receiving the packet includes
identifying packet using the flow specification].

7. The method of claim 6, wherein the network protocol
comprises TCP/IP, and the identifier in the flow specification
includes a sequence number of a first byte from the plurality
of packets to be stored in the target builer.

8. The method of claim 1, wherein the identifier in the tlow
specification includes a sequence number rarnge for the block
of data.

9. The method of claim [8] /, wherein the flow specifica-
tion includes IP source and destination addresses and TCP
port numbers.

[10. A method for transferring data on a network from a
data source to an end station executing a multi-layer network
protocol through a network interface on the end station,
including medium access control layer processes, compris-
Ing:

establishing a connection with a destination for a session

according to a network protocol;

US RE45,070 E

9

transmitting a request for transfer of a block of data from
the data source, and providing a flow specification and
an 1dentifier of a target butifer to the network interface;
receiving in the network interface a plurality of packets
which carry respective data payloads, packets in the
plurality of packets including control fields identifying

whether the packet falls within the flow specification of
the block of data,

upon recerving a packet, determining in the network inter-
face whether the packet falls within the tlow specifica-
tion, and 11 so transierring the data payload to the target
buffer.}
[11. The method of claim 10, wherein the control field in
the first packet includes a packet header.}
[12. The method of claim 10, wherein the network protocol

comprises TCP/IP, and the packet control data comprises a
TCP/IP header.]

[13. The method of claim 10, wherein the network protocol
comprises TCP/IP, and the flow specification includes a
sequence number of a first byte from the plurality of packets
to be stored in the target buffer.]

[14. The method of claim 10, wherein the flow specifica-
tion includes a sequence number for the block of data.]

[15. The method of claim 14, wherein the flow specifica-
tion includes IP source and destination addresses and TCP
port numbers.}

[16. A method for transferring data on a network from a
data source to an end station executing a TCP/IP network
protocol through a network interface on the end station
including medium access control layer processes below TCP/
IP, comprising:

establishing a connection with a destination for a session

according to the TCP/IP network protocol;

transmitting a request from a application, for transier of a

block of data from the data source, and providing a flow
specification for the block of data and an 1dentifier of a
target buller to the network 1nterface;

receiving 1n the network interface a plurality of packets

which carry respective data payloads from the block of
data 1n the data source, and each packet in the plurality of
packets including a TCP/IP header,

upon recerving each packet, determining 1n the network

interface whether the packet falls within the tlow speci-
fication, and if so transferring a data payload to the target
buffer.]

[17. The method of claim 16, wherein the flow specifica-
tion includes a sequence number for bytes of data 1n the block
of data.]

[18. The method of claim 17, wherein the flow specifica-
tion 1ncludes IP source and destination addresses and TCP
port numbers.}

[19. The method of claim 16, wherein the target buffer
comprises a buffer assigned at the TCP layer or higher.}

10

15

20

25

30

35

40

45

50

10

[20. The method of claim 16, wherein the target buffer
comprises a buller assigned at a layer higher than the TCP
layer.}

21. The method of claim 2, further comprising transferring
at least a portion of the packet header to a buffer in the end
station outside the network interface for processing using the
multi-layer network protocol.

22. The method of claim I, wherein the identifier in the flow

specification includes packet numbers.

23. A method for transferring data on a network from a
data source to an end station executing a multi-layer network
protocol, including a network laver and at least one higher
laver, through a network interface on the end station, com-
prising:

receiving in the network interface of the end station, from

the at least one higher layer, a flow specification com-
prising an identifier of a protocol suite and an identifier
of a block of data to be requested from the data source;

prior to veceiving a first packet of a plurality of packets,
wherein each packet of the plurality of packets carries a

data payload from the block of data in the data source
and a control field identifyving that packet, vesponsive to
a request for the block of data, allocating a target bujfer
assigned by a process at a layer higher than the network
laver for storing the block of data and notifving the
network interface of the allocated target buffer; and for
each packet of the plurality of packets:

receiving in the network interface that packet; and

determining in the network interface whether that packet

carries a payvload with at least a portion of the block of
data based on matching the control field of that packet
with the identifier of the block of data in the flow speci-
fication, and if that packet matches the identifier of the
block of data in the flow specification, transferving the
data payioad in that packet divectly to the target buffer.

24. The method of claim 23, wherein the control field in
each packet of the plurality of packets includes a packet
header.

25. The method of claim 24, further comprising transfer-
ring at least a portion of the packet header to a buffer in the
end station outside the network interface for processing using
the multi-layer network protocol.

26. The method of claim 23, wherein the multi-layer net-
work protocol comprises TCP/IP,

27. The method of claim 23, wherein the network interface
is coupled to a network medium supporting a maximum
packet size, and including transmitting the request from an
application for transfer of the block of data from the data
source, the block of data having a length greater than the
maximum packet size for the medium.

28. The method of claim 27, wherein the flow specification
is provided to the network interface in response to the request
for transfer of the block of data according to the multi-layer
network protocol.

	Front Page
	Drawings
	Specification
	Claims

