(19) United States

12 Reissued Patent
Kunisetty et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE45021E

US RE45,021 E
Jul. 15, 2014

(54) METHOD AND SOFTWARE FOR
PROCESSING SERVER PAGES

(75) Inventors: Sunil Kunisetty, Fremont, CA (US);
Julie Basu, San Mateo, CA (US); Kwok
Lun Alex Yiu, Sunnyvale, CA (US)

(73)

Assignee: Oracle International Corporation,

Redwood Shores, CA (US)

(21)
(22)

Appl. No.: 13/599,716

Filed: Aug. 30,2012

Related U.S. Patent Documents

Reissue of:
(64) Patent No.:
Issued:

Appl. No.:
Filed:

U.S. Applications:
(60) Provisional application No. 60/294,560, filed on Jun.

7,788,649
Aug. 31, 2010
10/031,274
Jan. 22, 2002

1, 2001.
(51) Int.CL

GO6I 9/44 (2006.01)

GO6F 9/45 (2006.01)
(52) U.S. CL

USPC .., 717/137,717/115;°719/311
(58) Field of Classification Search

USPC e e, 717/137

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,148,302 A * 11/2000 Beylinetal. 1/1
6,173,276 B1* 1/2001 Kantetal. 706/50
6,463,578 B1* 10/2002 Johnsoncc..o...... 717/124
6,591,272 B1* 7/2003 Willlams 707/102
6,636,863 B1* 10/2003 Friesencocevvvvennn, 707/102
6,647,544 B1* 11/2003 Rymanetal. 717/124
6,675,354 B1* 1/2004 Claussenetal. 715/205
6,964,014 B1* 11/2005 Parisho..ooooe 715/205
2002/0004813 Al1* 1/2002 Agrawal etal. 709/201
2003/0074400 Al1* 4/2003 Brooksetal. 709/203

* cited by examiner

Primary Examiner — James D Rutten
(74) Attorney, Agent, or Firm — Hickman Palermo Truong

Becker Bingham Wong LLP

(57) ABSTRACT

A method and software for processing a server page 1s dis-
closed, in which a resource file 1s generated for each server
page. The resource contains the markup text of the server
page. When the server page 1s translated 1into a servlet, a static
class iitializer 1s included to read the resource file and 1ni1-
tialize static class variables with the markup text. The initial-

1zed class 1s then loaded into a shored memory that i1s acces-
sible to different processes.

14 Claims, 5 Drawing Sheets

201: DEPLOY SERVER PAGE
ON WEB SERVER

203: TRANSLATE SERVER
PAGE TO SERVLETWITH
STATIC CLASS INITIALIZER

205: CREATE RESOURCE
FILE OF MARKUP FROM
SERVER PAGE

207: EXECUTE STATIC
CLASS INITIALIZER BASED
ON MARKUP READ FROM
RESOURCE FILE

209: HOTLOAD CLASS WITH
INITIALIZED MARKUP INTO

SHARED READ-ONLY
MEMORY

211: EXECUTE SERVLET,
WHICH ACCESSES MARKUP

FROM SHARED MEMORY

U.S. Patent Jul. 15, 2014 Sheet 1 of 5 US RE45,021 E

) DATABASE 100
SESSION VM 111
CLIENT 101 INSTANCE 121
SESSION VM 113
HOTLOADED |
CLIENT 103 INSTANCE 123 CLASS 141
SESSION VN 113 ’
CLIENT 105 INSTANCE 125 Psfé‘;’ E;
i‘&‘a
- \‘
~ \
,,,.ff-'""f ; _~—CONTENTS 133 \\
<HTML>

<HEAD><TITLE>The WelcomeUserJSP</TITLE></HEAD>
<BODY BGCOLOR=white>

<% String user = request.getParameter("user"); %>
<H3>Welcome <%= (user == null) ? "™ : user %>!</H3>
<P>Today is <%=new.java.util.Date() %>. Have a nice day! :-)
</pP> |
Enter name.

<FORM METHOD=get>

<INPUT TYPE="text" NAME="user" SIZE=13>
<INPUT TYPE="submit" VALUE="Submit name”>
</[FORM> |
</BODY>

</HTML> \I
/

U.S. Patent

Jul. 15, 2014 Sheet 2 of 5

2071: DEPLOY SERVER PAGE
ON WEB SERVER

203: TRANSLATE SERVER
PAGE TO SERVLETWITH
STATIC CLASS INITIALIZER

205: CREATE RESOURCE
FILE OF MARKUP FROM
SERVER PAGE

207: EXECUTE STATIC
CLASS INITIALIZER BASED
ON MARKUP READ FROM
RESOURCE FILE

209: HOTLOAD CLASS WITh
INITIALIZED MARKUP INTO

oHARED READ-ONLY
MEMORY

211: EXECUTE SERVLET,
WHICH ACCESSES MARKUP
FROM SHARED MEMORY

FI1G. 2

US RE45,021 E

U.S. Patent Jul. 15, 2014 Sheet 3 of 5 US RE45,021 E

Database System 300
Database Memory 301\

DATABASE INSTANCE MEMORY
/340

[]

SESSION SESSION SESSION SESSION
MEMORY MEMORY MEMORY MEMORY
311 313 317

: CALL MEMORY
5 321

SERVER
PRQCESS

303

SERVER
PROCESS

309

Client Client Client Client
F lG 3 Process Process Process Process
| 351 353 355 356

U.S. Patent Jul. 15, 2014 Sheet 4 of 5 US RE45,021 E

401:LOAD CLASS FILE OF A CLASS
HAVING A STATIC INITIALIZER

403: INVOKE STATIC CLASS INITIALIZER

TO INITIALIZE STATIC CLASS
VARIABLES

405: SAVE THE CLASS AND THE
INITIALIZED STATIC CLASS VARIABLES

IN A SECOND CLASS FILE.

407: IF CLASS IS NOT ALREADY
LOADED, LOAD THE SECOND CLASS

FILE INTO SHARED, READ-ONLY
MEMORY

F1G. 4

US RE45,021 E

Sheet 5 of 5

Jul. 15, 2014

U.S. Patent

€¢G LSOH

S —

G Old

l

00G

BTS MNIT
MYOMIIN

| B0%

JAX

ENITE(C
J9V401S

NOILYOINANANGO

JOVIHALNI

S8

108

NO4

€04
d0553004d

509
AdOWdW
NIVIA

-—'—'-—"—-J

Gl
1041INQOD
d0S4dnd

€1¢

0IA30 LN dN

119

AV 1aS|0

US RE45,021 E

1

METHOD AND SOFTWARE FOR
PROCESSING SERVER PAGES

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

The present application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 60/294,560 filed on Jun. 1,

2001, the contents of which are hereby incorporated by ret-
erence.

FIELD OF THE INVENTION

The present invention relates to computer systems and
more particularly to a method and software for processing,
server pages.

BACKGROUND OF THE INVENTION

The introduction of the World Wide Web 1s revolutionizing
the way information and applications are distributed and
used. Imitially, the World Wide Web employed a static
approach for disseminating information, 1n which web pages
containing the information are annotated 1n a markup lan-
guage such as HTML (Hypertext Markup Language) and
stored on a web server. In response to HI'TP (Hypertext
Transier Protocol) requests from a user, the web server trans-
mits the web page containing the marked up information to
the user’s rendering agent such as browser. When the browser
receives the web page containing the information to be dis-
played along with the markup, the browser renders the infor-
mation on the screen 1 accordance with the markup annota-
tions embodied 1n the web page.

In the static web page approach, the content of the web
page 1s determined by the author ahead of time, before the
user requests the web page, and does not change in response
to the user’s actions. Accordingly, web sites employing static
web pages were limited 1n their interactively and usefulness.
An early attempt to provide interactivity in web pages 1s
known as CGI (Common Gateway Interface), in which a web
page 1s generated dynamically 1n response to a user’s HI'TP
request. In CGI, the web server executes, in response to the
HTTP request, a locally resident program (typically a Perl
script) that recerves parameters from the HT'TP request and
outputs on the fly the markup for a web page. The generated
web page 1s then transmitted over the Internet to the user’s
browser and rendered.

CGlI technology suflers many disadvantages, particularly
in terms of efficiency and convenience. For example, every
time an HT'TP request 1s made that requires CGI, a program 1s
loaded and executed. Initiating programs requires much over-
head 1n terms of starting a new process, 1nitializing memory,
and establishing a connection to a database. This overhead
reduces the performance and responsiveness of the web
server. In addition, CGI programs are difficult to program
because they are coded 1n a low-level computer language like
C or 1n an arcane scripting language like Perl.

A more efficient approach employs “servlets,” which are
short programs that are resident and executed on the web
server. Java Servlets are servlets coded 1n the Java program-
ming language and are usually compiled into bytecoded
instructions that interpreted by an instance of a Java virtual

10

15

20

25

30

35

40

45

50

55

60

65

2

machine. Like a CGI script, the servlet generates and outputs
a web page based on data submitted by the user. Unlike CGI

scripts, however, Java Servlets are processed by an instance of
an already running Java virtual machine and require much
less overhead in being loaded and executed. As a result,
servlet technology 1s rapidly eclipsing CGI technology on the
World Wide Web.

Although the Java programming language 1s easier to use
and less arcane than typical CGI scripting language such as
Perl, 1t 1s still inconvenient for many web designers to create
servlets to generate their dynamic web pages. For example,
many dynamic web pages include large areas of static content
with the dynamic content being limited to a few locations. For
this reason, server pages technology has been developed,
which enables a web designer to embed short code fragments
into an otherwise static HTML web page. If the code frag-
ments are 1 Java, the technology 1s commonly referred as
Java Server Pages (ISP). A Java Server Page is translated by
the web server into a corresponding Java Servlet that includes
the static HITML code.

Java Servlets that are generated from Java Server Pages
include large amounts of static text. In order to support a large
number of users simultaneously (scalability), i1t 1s vital for the
static HTML text of a Java Server Page to be shared by
different users. A significant constraint for user scalability 1s
the size of the memory “footprint” that each session con-
sumes. For example, a server system may have 100 Mb of
memory for supporting all the user sessions. If the session
memory footprint 1s 1 Mb, then only 100 user sessions can be
supported at one time, but if 500 Kb of the 1 Mb session
memory footprint can be shared between the different ses-
sions, then 500 Kb of the total 100 Mb can be reserved as a
global shared read-only memory, and the remaining the 99.5
Mb would available for the individual session memories.
Since the session memory requirements has dropped to 500
Kb, a total of 199 user sessions can now be supported. Con-
sequently, session memory reduction by sharing 1s a promis-
ing approach for improving scalability of the multi-user run-
time environment.

The efficiency and scalability of programs executed by a
web server are crucial to the performance and, ultimately, the
profitability of a company’s website. Due to the increasing
popularity of the World Wide Web and Java Server Pages
technology, there 1s a constant need for any improvements in
the efficiency and scalability of web servers 1n general and
Java Server Pages 1n particular.

SUMMARY OF THE INVENTION

The present mvention stems from the realization that the
standard Java mechamism for handling and sharing literal
strings of text 1s a major performance bottleneck 1n the spe-
cific case of Java Servlets generated from Java Server Pages.
This bottleneck results from the Java specification’s require-
ment that string literals be “interned,” so as to share unique
instances of strings 1n a Javaprogram (§3.10.5). Interned Java
literal strings are stored in an internal data structure known as
an intern table. In order to share strings among different users
and ensure the integrity of the intern table, it 1s necessary to
synchronize access to the mtern table among the different
users, which 1s slow and ineflicient. JSP-generated Java Serv-
lets, however, include large amounts of static text that need to
be shared for scalability reasons but, 1f interned, are slow to
access.

This performance bottleneck for JSP-generated Java Serv-
lets 1s addressed by the present invention, in which the literal
strings for the markup text 1s stored, not 1n Java literal strings,

US RE45,021 E

3

but 1n a resource file generated for each Java Servlet. In one
implementation, the JSP-generated Java Servlet 1s configured
to contain an 1nner class that includes 1nitialization code that
reads the markup text from the resource file and copies the
markup text into static Java char arrays. The inner class 1s then
“hotloaded,” 1n which the class instructions and pre-initial-
ized static variables are loaded into a shared, read-only
memory that 1s globally available to different user sessions on
the web server without synchronization. After a class 1s hot-
loaded, the class’s istructions and pre-initialized static vari-
ables are available, without synchronization, to Java applica-
tions. By avoiding the use of Java literal strings, which require
interning and synchronization, access to the static markup
text of JSP-generated Java Servlets 1s much faster, which
improves the performance of Java Servlets generated from
Java Server Pages.

Accordingly, one aspect of the present invention relates to
a method and software for compiling a page containing
markup text into an application that outputs markup in
response to a request from a user. The method 1nvolves pre-
initializing a static variable of a class to contain the markup
text and loading the class containing the pre-initialized static
variable into a shared, read-only memory. The markup text
may be stored 1n a resource file associated with the applica-
tion, and pre-initializing the static variable may include read-
ing the markup text from the resource file and 1nitializing the
static variable of the class based on the read markup text.

Another aspect of the invention relates to method and soft-
ware for compiling a page containing markup text into an
application that outputs markup 1n response to a request from
a user. The application includes mstructions, 1n which, first
time the application 1s executed, a class contaiming a static
variable that was pre-initialized to contain the markup text 1s
loaded into a shared, read-only memory. A subsequent time
the application 1s executed, the markup text 1s accessed 1n the
shared, read-only memory.

Still other aspects, features, and advantages of the present
invention are readily apparent from the following detailed
description, simply by illustrating a number of particular
embodiments and implementations, including the best mode
contemplated for carrying out the present invention. The
present invention 1s also capable of other and different
embodiments, and its several details can be modified i1n vari-
ous obvious respects, all without departing from the spiritand
scope of the present invention. Accordingly, the drawing and

description are to be regarded as 1llustrative 1n nature, and not
as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, in the figures of the accompanying,
drawings and 1n which like reference numerals refer to similar
clements and 1n which:

FIG. 1 1s a schematic diagram of a web server 1n accor-
dance with an embodiment of the present invention.

FIG. 2 1s a flowchart illustrating the operation of one
embodiment of the present invention.

FIG. 3 depicts a memory model for a database system in
accordance with an embodiment of the present invention.

FI1G. 4 1s a flowchart 1llustrating the operating of hotload-
ing a class 1 accordance with an embodiment of the present
invention.

FIG. 5§ depicts a computer system that can be used to
implement an embodiment of the present invention.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

DESCRIPTION OF THE PR.
EMBODIMENT

L]
Y

ERRED

A system, method, and software for processing server
pages are described. In the following description, for the
purposes ol explanation, numerous specific details are set
forth 1n order to provide a thorough understanding of the
present invention. It 1s apparent, however, to one skilled 1n the
art that the present invention may be practiced without these
specific details or with an equivalent arrangement. In other
instances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid unnecessarily obscuring
the present invention.

Deployment Environment

FIG. 1 1s a schematic diagram of a deployment environ-
ment that includes a web server 100 1n communication with
several clients 101, 103, and 105 via Hypertext Transfer Pro-
tocol (HTTP) over a network. In one implementation, the
network may the global packing-switching network com-
monly known as the Internet, and the clients 101, 103, and
105 may be browsers executing on computer systems con-
nected to the Internet. Although three clients 101, 103, and
105 are illustrated, the present invention 1s not so limited and
may work with any number of clients.

Each client 101, 103, and 105 has 1nitiated a session with a
corresponding instance of Java virtual machine 111, 113, and
115, which are capable of executing Java programs on the
web server 100. The web server 100 also stores various web
and server pages, including server page 131, which contains
both static markup text and coded fragments embedded
among the static markup text. By way of example, FIG. 1
shows what can be the contents 133 of a server page 313. In
this example, the server page contents 133 includes both
static HI ML text and, 1n bold, embedded Java code between
the delimiters <% and %>. The web server also stores the
preloaded markup text 141 of the server page 131 1n a shared
memory accessible to different users, sessions, and processes.

Theclients 101, 103, and 105 have access to the server page
131, for example, by a Uniform Resource Locator (URL) that
identifies a location or path of the server page 131. When one
of the clients 101, 103, and 105 requests the server page 131,
for example by URL, the web server 100 imitiates a corre-
sponding servlet instance 121, 123, and 125, which executes
the code obtained by translating the server page 131. When
executed, the servlet mnstance 121, 123, and 1235 produces
markup text by combining the pre-loaded static markup text
141 stored 1n a pre-imitialized class variable with results of
executing the code snippets embedded 1n the server page 131.

The produced markup text 1s transmitted to the corresponding
client 101, 103, and 105 and rendered.

Hotloading Static Texts from Server Pages

FIG. 2 1s a flowchart 1llustrating how the static markup text
came to be pre-loaded 1n a shared memory of the web server
100. At step 201, a server page 131 1s deployed on the web
server 100. As part of the deployment, the server page 131 1s
translated into a servlet (step 203) and a corresponding
resource file 1s generated to hold all the static markup text of
the server 131 (step 205). The translated servlet include code
to combine the static markup text with the results of the code
embedded 1n the server page 131. The translated servlet also
includes a class that has a two-dimensional static final char-
acter array and a static class 1nitializer to set up the array. One
dimension of the static character array corresponds to the

US RE45,021 E

S

lines of the server page 131, and the other dimension to the
columns of the server page 131.

When the servlet class 1s first used by any of the servlet
istances 121, 123, and 125, the static class 1initializer code 1s
executed (step 207). The static class initializer, when
executed, reads each of line of the resource file and initializes
the corresponding static character array with the read line. At
step 209, the class with 1ts static character arrays being 1ni-
tialized from the resource file 1s then “hotloaded” into shared
memory for use by any session. Implementation details of
hotloading are described 1n the following section.

When a servlet instance 121, 123, and 125 1s executed, the
static markup text in the shared memory 1s accessed and used
to produce the markup code generated by the servlet. Because
the static markup text 1s not stored as Java literal strings 1n the
translated servlet, the overhead associated with interning the
strings and maintaining the integrity of the intern table for
different users 1s eliminated, thereby significantly improving
the performance of the server pages. Furthermore, scalability
1s maintained, because the static markup text 1s shared among
different sessions. As the hotloaded class 1s referenced, even
in other sessions, the static class initializer 1s not rerun and the
session has instant access to the static final variables that
represent the static class.

Hotloading Memory Model

One embodiment of the present invention employs a rela-
tional database system that 1s enabled to respond to HT'TP
requests. F1G. 3 schematically illustrates such a web-enabled
database system 400 with which a run-time environment for
a language such as Java is used. In the illustrated configura-
tion, client processes 351, 353, 355, and 357 establish ses-
s1ons with the database system 300. This client processes 351,
353, 355, and 357 may be located on any computer system
accessible to the database system 300, for example, over the
Internet.

A database session refers to the establishment of a connec-
tion between a client and the database system through which
a series a calls may be made. As long as the client remains
connected 1n the database session, the client and the associ-
ated database session are considered “active.” Active clients
can submit calls to the database system 300 to request the
database system 300 to perform tasks. One example of a call
1s a query 1n accordance with the Structured Query Language
(SQL), and another example 1s a method invocation of a Java
object or class, defined for performing a database task for
database system 300. In addition, the client processes 351,
353, 355, and 357 may submit HI'TP requests to the database
system 300.

Database system 300 comprises, among other compo-
nents, a database memory 301 for storing information usetul
for processing calls and a number of server processes 303 and
305 for handling individual calls. These server processes 303
and 305 may involve 1nitiating an instance of a Java Virtual
Machine to perform actions programmed 1n Java. The data-
base memory 301 includes various memory areas used to
store data used by server processes 303 and 305. These
memory areas include a database imnstance memory 310, ses-
sion memories 311, 313,315, and 317. and call memories 321
and 323. It 1s to be understood that the number of the session
memories and call memories in FIG. 3 1s merely illustrative
and, 1n fact, the number of such memories will vary over time
as various clients make various calls to the database system
300.

The database instance memory 310 1s a shared memory
area for storing data that 1s shared concurrently by more than

10

15

20

25

30

35

40

45

50

55

60

65

6

one process. For example, shared memory area may be used
store the read-only data and instructions (e.g. bytecodes of
Java classes) that are executed by the server processes 303
and 305. For example, the database instance memory 310
holds the read-only data and mstructions for the inner class of
a servlet and 1ts static class variables. When the static markup
text of a server page 1s stored 1in the database instance memory
310 that static markup text 1s accessible to the server pro-
cesses 303 and 305. The database instance memory 310 1s
typically allocated and initialized at boot time of the database
system 300, before clients connect to the database system
300. Throughout the operation of the database system 300,
pre-initialized classes with read-only data and instructions
may be loaded 1nto the database instance memory 310.

When a database session 1s created, an area of the database
memory 301 called “Session memory” 1s allocated to store
information for the database session. As 1llustrated in FI1G. 2,
session memories 311, 313, 315, and 317 have been allocated
for clients 351, 353, 355, and 357, respectively, for each of
which a separate database session has been created. Session
memories 311, 313, 315, and 317 are a shared memory used
to store static data, 1.e., data associated with a user that 1s
preserved for the duration of a series of calls, especially
between calls 1ssued by a client during a single database
session. Java class variables are one example of such static
data.

A call memory, such as call memory 321, 1s used to store
data that 1s bounded by the lifetime ot a call. When client 351
submits a call to the database system 300, one of server
processes 303 or 305 1s assigned to process the call. For the
duration of the call, the server process 1s allocated a call
memory for storing data and other information for use in
processing the call. For example, server process 303 uses call
memory 321 and session memory 311 for processing a call
submitted by client process 351.

At any given time, a server process 1s assigned to process a
call submitted by a single client. After the server process
completes 1ts processing of a call from one client, the server
process 1s iree to be assigned to respond to the call of another
client. Thus, over a period of time, a server process may be
assigned to process calls from multiple clients, and a client
may use multiple server processes to handle 1ts various calls.
At any given time, the number of calls requiring execution by
a server process 1s typically much fewer than the current
number of active clients. Thus, database system 300 1s typi-
cally configured to execute fewer server processes than the
maximum number of active clients.

Some static class vaniables that are good candidates for
sharing because they are not modified after construction still
require execution of a static class 1nitializer to be properly
constructed. One example includes mitializing the static class
variables of a servlet to include the static markup text that was
saved 1n a resource file. FIG. 4 1s a flowchart for a method of
managing a run-time environment, carried out during con-
struction of objects for later loading to a shared read-only
memory 1n a server of the computer system.

At step 401, a class file, which 1n one embodiment 1s the
compiled form of a Java class, 1s loaded into the shared
read-only object memory, for a specified class. The specified
class includes a static class variable and a static initializer,
which 1s used to mnitialize the static class vanable. Although
loading a single class file 1s discussed for purposes of expla-
nation, the present mnvention 1s not so limited. In fact, more
than one class file may be loaded, and the techniques
described herein may be applied to other initialized variables.

In step 403, the static initializer 1s invoked to construct the
static class variable 1n a writable memory, such as call or

US RE45,021 E

7

session memory. In the cases of a servlet generated from a
server page, initializing the static class variables includes

reading the markup text from a resource file.

The class along with the initialized static class variable, in
step 403, are then saved 1n a second class file that shadows the
class file, with a name related to that of the class file but with
a different extension, path, or other filename component. The
second class file with the saved, constructed class object 1s
loaded 1nto a globally shared memory 1n step 407, such as a
shared read-only memory. Thus, the values of constructed
static class objects can be placed into the globally shared
memory via the second class {ile.

Alternatively a specific class can be designated, for
example, by a system administrator specification, for migra-
tion to shared read-only memory. The designated class, 11 not
already in shared memory, 1s then migrated into shared
memory and 1s stored in the database. Later, the class 1s
loaded from the database 1nto the shared memory by looking
up the name of the class in the database. The designation and
migration may be performed in one process by the system
administrator, and the loading may be performed 1n one or
more subsequent processes by other users, thereby saving the
overhead 1nvolved 1n constructing the object.

Further details of the implementation and use of this
mechanism may be found in the commonly assigned, co-
pending patent application Ser. No. 09/512,618, entitled
“Method and apparatus for managing shared memory 1n a
run-time environment,” filed on Feb. 25, 2000 by Harlan
Sexton et al., now U.S. Pat. No. 6,829,761 the contents of
which are hereby incorporated by reference 1n their entirety.

Hardware Overview

FIG. 5 illustrates a computer system 500 upon which an
embodiment according to the present invention can be imple-
mented. The computer system 500 includes a bus 501 or other
communication mechanism for communicating information
and a processor 503 coupled to the bus 501 for processing
information. The computer system 500 also includes main
memory 3505, such as a random access memory (RAM) or
other dynamic storage device, coupled to the bus 501 for
storing information and instructions to be executed by the
processor 503. Main memory 505 can also be used for storing
temporary variables or other intermediate information during
execution of structions by the processor 503. The computer
system 300 may further include a read only memory (ROM)
507 or other static storage device coupled to the bus 501 for
storing static information and instructions for the processor
503. A storage device 509, such as a magnetic disk or optical
disk, 1s coupled to the bus 501 for persistently storing infor-
mation and instructions.

The computer system 500 may be coupled via the bus 501
to a display 511, such as a cathode ray tube (CRT), liquid
crystal display, active matrix display, or plasma display, for
displaying information to a computer user. An input device
513, such as a keyboard including alphanumeric and other
keys, 1s coupled to the bus 501 for communicating informa-
tion and command selections to the processor 503. Another
type of user mput device 1s a cursor control 515, such as a
mouse, a trackball, or cursor direction keys, for communicat-
ing direction information and command selections to the
processor 503 and for controlling cursor movement on the
display 311.

According to one embodiment of the invention, processing
server pages 1s provided by the computer system 500 1n
response to the processor 503 executing an arrangement of
instructions contained 1 main memory 505. Such nstruc-

10

15

20

25

30

35

40

45

50

55

60

65

8

tions can be read mnto main memory 505 from another com-
puter-readable medium, such as the storage device 509.
Execution of the arrangement of instructions contained 1n
main memory 505 causes the processor 503 to perform the
process steps described herein. One or more processors in a
multi-processing arrangement may also be employed to
execute the 1nstructions contained 1in main memory 305. In
alternative embodiments, hard-wired circuitry may be used 1n
place of or in combination with software instructions to
implement the embodiment of the present invention. Thus,
embodiments of the present invention are not limited to any
specific combination of hardware circuitry and software.

The computer system 500 also includes a communication
interface 517 coupled to bus 501. The communication inter-
tace 517 provides a two-way data communication coupling to
a network link 3519 connected to a local network 521. For
example, the communication interface 517 may be a digital
subscriber line (DSL) card or modem, an integrated services
digital network (ISDN) card, a cable modem, a telephone
modem, or any other communication interface to provide a
data communication connection to a corresponding type of
communication line. As another example, communication
interface 517 may be a local area network (LAN) card (e.g.
for Ethernet™ or an Asynchronous Transter Model (ATM)
network) to provide a data communication connection to a
compatible LAN. Wireless links can also be implemented. In
any such implementation, communication interface 517
sends and receives electrical, electromagnetic, or optical sig-
nals that carry digital data streams representing various types
of information. Further, the communication intertace 517 can
include peripheral interface devices, such as a Universal
Serial Bus (USB) iterface, a PCMCIA (Personal Computer
Memory Card International Association) interface, etc.
Although a single commumnication interface 517 1s depicted in
FIG. §, multiple communication interfaces can also be
employed.

The network link 519 typically provides data communica-
tion through one or more networks to other data devices. For
example, the network link 519 may provide a connection
through local network 3521 to a host computer 523, which has
connectivity to a network 525 (e.g. a wide area network
(WAN) or the global packet data communication network
now commonly referred to as the “Internet™) or to data equip-
ment operated by a service provider. The local network 521
and network 525 both use electrical, electromagnetic, or opti-
cal signals to convey information and instructions. The sig-
nals through the various networks and the signals on network
link 519 and through communication interface 517, which
communicate digital data with computer system 500, are
exemplary forms of carrier waves bearing the information and
instructions.

The computer system 500 can send messages and receive
data, including program code, through the network(s), net-
work link 519, and communication interface 517. In the Inter-
net example, a server (not shown) might transmit requested
code belonging an application program for implementing an
embodiment of the present mvention through the network
525, local network 521 and communication interface 517.
The processor 503 may execute the transmitted code while
being recerved and/or store the code 1n storage device 539, or
other non-volatile storage for later execution. In this manner,
computer system 500 may obtain application code in the form
ol a carrier wave.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to the processor 305 for execution. Such a medium may
take many forms, including but not limited to non-volatile

US RE45,021 E

9

media, volatile media, and transmission media. Non-volatile
media include, for example, optical or magnetic disks, such as
storage device 509. Volatile media include dynamic memory,
such as main memory 505. Transmission media include
coaxial cables, copper wire and fiber optics, including the
wires that comprise bus 501. Transmission media can also
take the form of acoustic, optical, or electromagnetic waves,
such as those generated during radio frequency (RF) and
infrared (IR) data commumnications. Common forms of com-
puter-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, any other magnetic
medium, a CD-ROM, CDRW, DVD, any other optical
medium, punch cards, paper tape, optical mark sheets, any
other physical medium with patterns of holes or other opti-
cally recognizable indicia, a RAM, a PROM, and EPROM, a
FLASH-EPROM, any other memory chip or cartridge, a car-
rier wave, or any other medium from which a computer can
read.

Various forms of computer-readable media may be
involved 1n providing instructions to a processor for execu-
tion. For example, the instructions for carrying out at least
part of the present mvention may imtially be borne on a
magnetic disk of a remote computer. In such a scenario, the
remote computer loads the instructions 1into main memory
and sends the instructions over a telephone line using a
modem. A modem of a local computer system receives the
data on the telephone line and uses an 1nfrared transmitter to
convert the data to an infrared signal and transmat the infrared
signal to a portable computing device, such as a personal
digital assistant (PDA) or a laptop. An infrared detector on the
portable computing device receives the information and
instructions borne by the inirared signal and places the data
on a bus. The bus conveys the data to main memory, from
which a processor retrieves and executes the instructions. The
instructions received by main memory can optionally be
stored on storage device either before or alter execution by
Processor.

While the present invention has been described in connec-
tion with a number of embodiments and implementations, the
present mnvention 1s not so limited but covers various obvious
modifications and equivalent arrangements, which fall within
the purview of the appended claims.

What 1s claimed 1s:

1. A computer-implemented method of dynamically gen-
crating web pages, said method comprising;:

analyzing a page that includes static markup text and a set

of code 1nstructions executable on a server;

extracting the static markup text from the page and storing

the static markup text in a resource file;

generating a servlet class for the page based on the set of

code instructions, wherein the servlet class comprises ar
inner class that includes a static class 1mtializer for
initializing a static [class] array of characters for the
servlet class, and wherein the servlet class does not
include the static markup text;

in response to a first use of the servlet class by any instance

of the servlet class:

invoking the static class initializer of the [servlet] inner
class, wherein the mvoking of the static class initial-
izer of the [servlet] imner class causes the static
markup text to be read from the resource file, and the
static [class] array of characters to be initialized with
the static markup text;

hotloading [a copy of the servlet class] an instance of the
inner class comprising the static [class] array of char-
acters 1nitialized with the static markup text into
shared memory;

10

15

20

25

30

35

40

45

50

55

60

65

10

in response to each request, of a plurality of requests

received from a plurality of clients, for the page [from a

plurality of clients], performing the steps of:

instantiating a distinct instance of the servlet class on the
server, wherein mstantiating each distinct instance of
the servlet class does not create another copy of the
static markup text;

executing said distinct instance of the servlet class,
wherein execution of each distinct istance of the
[server] serviet class generates a compiled page by
combining the static markup text that resides in the
shared memory with results produced by executing
the set of code instructions; and

sending the compiled page to a client, from the plurality
of clients, that requested the page;

wherein the method 1s performed by one or more comput-

ing devices.
2. A computer-implemented method according to claim 1,
wherein:
the static markup text includes information to be displayed
to a user and an annotation nstructing a user agent how
to render the information to be displayed to the user; and

the static markup text output by the executing servlet class
includes the annotation.

[3. A computer-implemented method according to claim 1,
wherein the servlet class includes an inner class.]

4. A computer-implemented method according to claim [3]
1, wherein the step of [loading a copy of the static markup text
includes hot-loading] %otloading an instance of the inner
class comprises storing the static array of characters in a
database instance memory.

[5. A computer-implemented method according to claim 4,
wherein the inner class comprises an array of characters.]

6. A method of initiating a first instance of an application
that shares a set of static markup text with other instances of
the application, [wherein the first instance of the application
1s generated by compiling code from a page that contains both
the code and the set of static markup text in response to a
request from one or more users,]| wherein the first instance of
the application is generated by compiling code from a page
that contains both the code and the set of static markup text in
response to a request from one or movre users, said method
comprising:

executing istructions to instantiate the first instance of the

application, wherein said instructions are stored on a
non-transitory computer-readable storage medium, said
instructions that, when executed, cause one or more
processors to perform the steps of:
analyzing [the] a page, which contains both the code and
the set of static markup text, to extract the set of static
markup text;
[and] storing the set of static markup text in a resource
file:
generating a servlet class for the page based on the code
from the page, wherein the servlet class comprises ar
inner class that includes a static class mitializer for
initializing a [set of] static [class] array of characters
for the servlet class, and wherein the servlet class does
not include the set of static markup text;
in response to a first use of the servlet class by any
instance of the servlet class:
invoking the static class initializer of the [servlet]
inner class, wherein the invoking of the static class
initializer of the [servlet] inrer class causes the set
of static markup text to be read from the resource
file, and the static [class] array of characters to be
initialized with the set of static markup text;

US RE45,021 E

11

hotloading [a copy] an instance of the [servlet] inner
class comprising the static [class] array of charac-
ters 1nmtialized with the set of static markup text into
shared, read-only memory;
in response to each request, of a plurality of requests
received from one or more users, for the page [from
the one or more users], performing the steps of:
instantiating a distinct mstance of the servlet class,
wherein instantiating each distinct instance of the
servlet class does not create another copy of the set
of static markup text;
executing said distinct instance of the servlet class,
wherein execution of each distinct instance of the
[server] serviet class generates a compiled page
[based on the copy of] by combining the set of static
markup text that resides in the shared, read-only
memory with results produced by executing the
[set of] code [instructions]:
sending the compiled page to a client that requested
the page; and
accessing the set of static markup text in the shared,
read-only memory when the code from the first
instance of the application 1s executed;
wherein the method 1s performed by one or more com-
puting devices.

7. A method according to claim 6, wherein the servlet class
1s not loaded into the shared, read-only memory when the
other instances of the application are executed.

8. A method according to claim 6, wherein:

the set of static markup text includes imnformation to be

displayed to a user and an annotation 1nstructing a user
agent how to render the information to be displayed to
the user; and

the set of static markup text output by the application

includes the annotation.

[9. A method according to claim 6, wherein the servlet class
includes an inner class.]

10. A method according to [claim 9] c/aim 6 wherein the
step of [loading a copy of the set of the static markup text
includes hot-loading] %ot/oading an instance of the inner
class comprises storing the static arrvay of characters in a
database instance memory.

[11. A method according to claim 10, wherein the inner
class comprises an array of characters.]

12. A non-transitory computer-readable storage medium
storing instructions that, when executed, cause one or more
processors to perform a method for sharing static markup text
from a page among a plurality of users in response to requests
from said plurality of users, said method comprising;:

analyzing a page that includes static markup text and a set

of code 1nstructions executable on a server:

extracting the static markup text from the page and storing,

the static markup text in a resource file;

generating a servlet class for the page based on the set of

code instructions, wherein the servlet class comprises arn
inner class that includes a static class 1mtializer for
initializing a static [class] array of characters for the
servlet class, and wherein the servlet class does not
include the static markup text;

in response to a first use of the servlet class by any instance

of the servlet class:

invoking the static class initializer of the [servlet] inner
class, wherein the invoking of the static class initial-
izer of the [servlet] inner class causes the static
markup text to be read from the resource file, and the
static [class] array of characters to be initialized with
the static markup text;

10

15

20

25

30

35

40

45

50

55

60

65

12

hotloading [a copy of the servlet class] an instance of the
inner class comprising the static [class] array of char-
acters 1mmtialized with the static markup text into

shared memory;
in response to each request, of a plurality of requests

received from a plurality of clients, for the page [from a
plurality of clients], performing the steps of:
instantiating a distinct instance of the servlet class on the
server, wherein mstantiating each distinct instance of
the servlet class does not create another copy of the
static markup text;
executing said distinct instance of the servlet class,
wherein execution of each distinct istance of the
[server] serviet class generates a compiled page by
combining the static markup text that resides in the
shared memory with results produced by executing
the set of code instructions; and
sending the compiled page to a client, from the plurality
of clients, that requested the page.
13. The non-transitory computer-readable storage medium
of claim 12, wherein:
the static markup text includes information to be displayed
to a user and an annotation nstructing a user agent how
to render the information to be displayed to the user; and

the static markup text output by the executing servlet class
includes the annotation.

[14. A non-transitory computer-readable storage medium
according to claim 12, wherein the servlet class includes an
inner class.]

15. A non-transitory computer-readable storage medium
according to claim [14] /2, wherein the step of [loading a
copy of the static markup text includes hotloading] zotload-
ing an 1nstance ol the 1nner class comprises storving the static
array of characters in a database instance memory.

[16. A non-transitory computer-readable storage medium
according to claim 15, wherein the mner class comprises an
array of characters.]

17. A non-transitory computer-readable storage medium
storing instructions that, when executed, cause one or more
processors to perform a method of initiating a first instance of
an application that shares a set of static markup text with other
instances of the application, [wherein the first instance of the
application i1s generated by compiling code from a page that
contains both the code and the set of static markup text 1n
response to a request from one or more users,]| wherein the

first instance of the application is genervated by compiling

code from a page that contains both the code and the set of
static marvkup text in vesponse to a vequest from one ov more
users, said method comprising;:
executing instructions to instantiate the first instance of the
application;
wherein the instructions to instantiate the first instance of
the application include:
analyzing [the] a page, which contains both the code and
the set of static markup text, to extract the set of static
markup text;
[and] storing the set of static markup text in a resource
file;
generating a servlet class for the page based on the code
from the page, wherein the servlet class comprises an
inner class that includes a static class iitializer for
initializing [a] static [class] array of characters for the
servlet class, and wherein the servlet class does not
include the static markup text;
in response to a first use of the servlet class by any instance
of the servlet class:

US RE45,021 E

13

invoking the static class initializer of the [servlet] inner
class, wherein the mvoking of the static class 1nitial-
izer of the [servlet] inner class causes the set of static
markup text to be read from the resource file, and the
static [class] array of characters to be initialized with
the set of static markup text;

hotloading [a copy] an instance of the [servlet] inner
class comprising the static [class] array of characters
imtialized with the set of static markup text into
shared, read-only memory;

in response to each request of a plurality of requests,
received from one or more users, for the page [from the
one or more users], performing the steps of:

instantiating a distinct instance of the servlet class,
wherein instantiating each distant instance of the

servlet class does not create another copy of the static

[class] array of characters initialized with the set of

static markup text;

executing said distinct instance of the servlet class,
wherein execution of each distant instance of the
[server] serviet class generates a compiled page by
combining the set of static markup text that resides in
the shared, read-only memory with results produced
by executing the [set of] code [instructions];

sending the compiled page to the user that requested the
page; and

10

15

20

25

14

accessing the static [class] array of characters initialized
with the set of static markup text in the shared, read-only
memory when the code from the first istance of the
application 1s executed.

18. The non-transitory computer-readable storage medium
of claim 17, wherein the servlet class 1s not loaded into the
shared, read-only memory when the other instances of the
application are executed.

19. The non-transitory computer-readable storage medium
of claim 17, wherein:

the set of static markup text includes information to be

displayed to a user and an annotation instructing a user
agent how to render the information to be displayed to
the user; and

the set of static markup text output by the application

includes the annotation.

[20. A non-transitory computer-readable storage medium
according to claim 17, wherein the servlet class includes an
inner class.]

21. A non-transitory computer-readable storage medium
according to claim [20] /7, wherein the step of [loading a
copy of the set of the static markup text includes hot-loading}
hotloading an instance of the 1nner class comprising storing
the static array of charvacters in a database instance memory.

[22. A non-transitory computer-readable storage medium
according to claim 21, wherein the mner class comprises an
array of characters.}

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE45,021 E Page 1 of 1
APPLICATION NO. : 13/599716

DATED : July 15, 2014

INVENTOR(S) : Kunisetty et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification
In column 5, line 60, delete “317.” and 1nsert -- 317, --, therefor.

In column 8, line 24, delete “Model” and insert -- Mode --, therefor.

In the Claims

In column 9, line 64, in Claim 1, delete “hotloading™ and insert -- Zotloading --, therefor.
In column 10, line 49, 1n Claim 6, delete “and™ and insert -- and [a] --, therefor.

In column 12, line 55, in Claim 17, delete “and” and insert -- and [a] --, therefor.

In column 12, line 63, in Claim 17, delete “[a]” and 1nsert -- [a set of] --, therefor.

Signed and Sealed this
Twenty-fourth Day of February, 2015

Decbatle X Lo

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

