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(57) ABSTRACT

A method and system for real-time tracking of objects [is] are
disclosed. A region 1s repeatedly scanned providing a plural-
ity of 1images or data sets having points corresponding to
[ojbects] objects in the region to be tracked. Given a previ-
ously determined track for each object in the region, an M-di-
mensional combinatorial optimization assignment problem 1s
tformulated using the points from M-1 of the images or data
sets, wherein each point 1s preferably used in extending at
most one track. The M-dimensional problem 1s subsequently
solved for an optimal or near-optimal assignment of the
points to the tracks, extending the tracking of the objects so
that a response to each object can be initiated by the system in
real-time. Speed and accuracy i1s provided by an iterative
Lagrangian Relaxation technique wherein a plurality of con-
straint dimensions are relaxed simultaneously to yield a
reduced dimensional optimization problem whose solution 1s
used to formulate an assignment problem of dimensionality
less than M. The 1iterative reducing of dimensions terminates
when exact solutions are determined for two-dimensional
cases. A recovery procedure 1s used for determining a higher
dimensional assignment problem solution from a problem
having one less dimension. The procedure 1s useful when the
reduced dimensional optimizational problem has two con-
straint dimensions.
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METHOD AND SYSTEM FOR TRACKING
MULTIPLE REGIONAL OBJECTS BY
MULTI-DIMENSIONAL RELAXATION

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED [APPLICATIONS] U.S. APPLICATION
DATA

This application 1s a reissue of U.S. Pat. No. 5,959,574
which is a continuation-in-part of U.S. patent application Ser.
No. 08/404,024, filed Mar. 14, 1995 and 1ssued Jul. 16, 1996
as U.S. Pat. No. 5,537,119, which 1s a continuation-in-part of
U.S. patent application Ser. No. 08/171,327 filed Dec. 21,
1993, now U.S. Pat. No. 5,406,289,

STATEMENT REGARDING FEDERAL RIGHTS

This invention was made with government support under

Grant Nos. F49620-00-1-0108, F49620-93-1-0133, F49620-
95-1-0136, and F49620-97-1-0273 awarded by the U.S. Air
Force Office of Scientific Research to Colorado State Univer-
sity Research Foundation. The government has certain rights
in the invention.

[FIELD OF THE INVENTION]

[The invention relates generally to computerized tech-
niques for processing data obtained from radiation reflections
used to track multiple discrete object.}

BACKGROUND OF THE INVENTION

a. Field of the Invention

The invention relates generally to computerized techniques
for processing data obtained from radar to track multiple
discrete objects.

b. Description of the Background

There are many situations where the courses of multiple
objects 1n a region must be tracked. Typically, radar 1s used to
scan the region and generate discrete images or “snapshots”
based on sets of returns or observations. In some types of
tracking systems, all the returns from any one object are
represented 1n an 1mage as a single point unrelated to the
shape or size of the objects. “Tracking” 1s the process of
identifying a sequence of points from a respective sequence
of the 1mages that represents the motion of an object. The
tracking problem 1s difficult when there are multiple closely
spaced objects because the objects can change [their] speed
and direction rapidly and move into and out of the line of sight
for other objects. The problem 1s exacerbated because each
set of returns may result from noise as well as echoes from the
actual objects. The returns resulting from the noise are also
called false positives. Likewise, the radar will not detect all
echoes from the actual objects and this phenomena 1s called a
false negative or “missed detect” error. For tracking airborne
objects, a large distance between the radar and the objects
diminishes the signal to noise ratio so the number of false
positives and false negatives can be high. For robotic appli-
cations, the power of the radar 1s low and as a result, the signal
to noise ratio can also be low and the number of false positives
and false negatives high.
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2

In view of the proximity of the objects to one another,
varied motion of the objects and false positives and false
negatives, multiple sequential 1images should be analyzed
collectively to obtain enough information to properly assign
the points to the proper tracks. Naturally, the larger the num-
ber of 1mages that are analyzed, the greater the amount of
information that must be processed.

While identifying the track of an object, a kinematic model
may be generated describing the Jobject’s] location, velocity
and acceleration [may be generated] of the object. Such a
model provides the means by which the Jobject’s] future
motion of the object can be predicted. Based upon such a
prediction, appropriate action may be mitiated. For example,
in a military application there 1s a need to track multiple
enemy aircraft or missiles 1n a region to predict their objec-
tive, plan responses and intercept them. Alternatively, 1 a
commercial air traffic control application there 1s a need to
track multiple commercial aircrait around an airport to pre-
dict their future courses and avoid collision. Further, [in]
these and other applications, such as robotic applications,
may use radar, sonar, inirared or other object detecting radia-
tion bandwidths for tracking objects. In particular, 1n robotic
applications retlected radiation can be used to track a single
object which moves relative to the robot (or vice versa) so the
robot can work on the object.

Consider the very simple example of two objects being
tracked and no false positives or false negatives. The radar,
after scanning at time t,, reports objects at two locations 1n a
first observation set. That 1s, 1t returns a set of two observa-
tions {0,,, 0,,}. At time t, it returns a similar set of two
observations {0,,, 0,,} from a second observation set. Sup-
pose from prior processing that track data for two tracks T,
and T, includes the locations at t, of two objects. Track T,
may be extended through the points in the two sets of obser-
vations 1n any of four ways, as may track T,. The possible
extensions of T, can be described as: {T,,0,,,05,}, {1, 0.
0551, 4T ,,045,0,, tand {T,, 0,5, 0,5}. Tracks can likewise be
extended from T, in four possible ways, including[,] {T>. 0,-.
0,, . FIG. 1 illustrates these five (out of eight) possible tracks
(to simplily the problem for purposes of explanation) . The
five track extensions are labeled h,,, h,,, h;5, h,,, and h,,
whereinh, , is derived from {T,, 0,,,0,, },h,, isderived from
{T,, 0,4, 0,55}, h;5 is derived from {T,, 0,5, 05, }, h , is
derived from {T, 0,,, 0,5}, and h,, is derived from {T,, 0,
0,, }. The problem of determining which such track exten-
s10ons are the most likely or optimal 1s hereinafter known as the
assignment problem.

It 1s known from prior art to determine a figure of merit or
cost for assigning each of the points 1n the images to a track.
The figure of merit or cost 1s based on the likelihood that the
point 1s actually part of the track. For example, the figure of
merit or cost may be based on the distance from the point to an
extrapolation of the track. FIG. 1 illustrates costs o,, 0,, 21
modeled target characteristics. The tunction to calculate the
cost will normally incorporate detailed characteristics of the
sensor, such as probability of measurement error, and track
characteristics, such as likelihood of track maneuver.

FIG. 2 illustrates a two by two by two matrx, c, that
contains the costs for each point 1n relation to each possible
track. The cost matrix 1s indexed along one axis by the track
number, along another axis by the image number and along
the third axis by a point number. Thus, each position in the
cost matrix lists the cost for a unique combination of points
and a track, one point from each image. F1G. 2 also illustrates
a {0, 1} assignment matrix, z, which is defined with the same
dimensions as the cost matrix. Setting a position in the assign-
ment matrix to “one” means that the equivalent position in the
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cost matrix 1s selected into the solution. The 1llustrated solu-
tion matrix selects the {h,,, h,, } solution previously
described. Note that for the above example of two tracks and
two snapshots, the resulting cost and assignment matrices are
[three dimensional] three-dimensional. As used in this patent
application, the term “dimension” means the number of axes
in the cost or assignment matrix while size refers to the
number of elements along a typical axis. The costs and assign-
ments have been grouped 1n matrices to facilitate computa-
tion.

A solution to the assignment problem satisfies two con-
straints—{irst, the sum of the associated costs for assigning
points to a track extension 1s minimized and, second, 1f no
false positives or false negatives exist, then each point is
assigned to one and only one track.

When false positives exist, however, additional hypotheti-
cal track extensions incorporating the false positives will be
generated. Further note that the random locations of false
positives will, 1n general, not it well with true data and such
additional hypothetical track extensions will result 1n higher
costs. Also note that when false negative errors exist, then the
s1ze of the cost matrix must grow to include hypothetical track
extensions formulated with “gaps” (1.e., data omissions
where there should be legitimate observation data) for the
talse negatives. Thus, the second criteria must be weakened to
reflect false positives not being as signed and also to permit
the gap filler to be multiply assigned. With hypothetical cost
calculated in this manner then the foregoing criteria for mini-
mization will tend to maternalize the false negatives and avoid
the false positives.

For a [3-dimensional] three-dimensional problem, as is
illustrated 1n FIG. 1, but with N, (initial) tracks, N, observa-
tions 1n scan 1, N, observations 1n scan 2, false positives and
negatives assumed, the assignment problem can be formu-
lated as:

Np N3
. b ! .
(b) Subject to: >.d >J Zijiniz = 1,1y, =1, ... Ny,
in=1 iz=I

(0.1) [11.0]]

N1 N3

Z Z Ziiniy < Lip = 1, ... Ny,

i1=1 i3=1

(c)

N1 Np

1 ! .
>J >JZ§15253‘£1,13:1,...N3,
i1=1 ir=1

(d)

where “c” 1s the cost and “z” 1s a point or observation assign-
ment, as in FIG. 2.

The minimization equation or equivalently objective func-
tion [[1.0] (a)] (0.1 (a)) specifies the sum of the element by
clement product of the ¢ and z matrices. The summation
includes hypothesis representations Z, , . with observation
number zero being the gap filler observation. Equation [[1.01]
(b)] (0.1 (b)) requires that each of the tracks T, . . ., 1 be
extended by one and only one hypothesis. Equation [[1.0](¢c)]
(0.1 (¢)) relates to each point or observation 1n the first obser-
vation set and requires that each such observation, except the
gap liller, can only associate with one track but, because of the
“less than™ condition, 1t might not associate with any track.
Equation [[1.01] (d)] (0.1 (d)) 1s like [[1.0] (¢)] (0.1 (¢))
except that 1t 1s applicable to the second observation set.
Equation [[1.0] (e)] (0.1 (e)) requires that elements of the
solution matrix z be limited to the zero and one values.

The only known method to solve Problem Formulation

[[1.0]] (1.0) exactly is a method called “Branch and Bound.”
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4

This method provides a systematic ordering of the potential
solutions so that solutions with a same partial solution are
accessible via a branch of a tree describing all possible solu-
tions whereby the cost of unexamined solutions on a branch
are incrementally developed as the cost for other solutions on
the branch are determined. When the developing cost grows
to exceed the previously known mimimal cost (1.€., the bound)
then enumeration of the tree branch terminates. Evaluation
continues with a new branch. I evaluation of the cost of a
particular branch completes, then that branch has lower cost
than the previous bound so the new cost replaces the old
bound. When all possible branches are evaluated or elimi-
nated then the branch that had resulted 1n the last used bound
1s the solution. If we assume that N,=N,=N,=n and that
branches typically evaluate to half there full length, then
workload associated with “branch and bound” 1s proportional
to (n!ln/2)!)*. This workload is unsuited to real time evalua-
tion.

The Branch and Bound algorithm has been used in past
research on the Traveling Salesman Problem. Messrs. Held
and Karp showed that 11 the set of constraints was relaxed by
a method of Lagrangian Multipliers (described in more detail
below) then tight lower bounds could be developed in
advance of enumerating any branch of the potential solution.
By initiating the branch and bound algorithm with such a tight
lower bound, significant performance improvements result in
that branches will typically evaluate to less than half their full
length.

Messrs. Frieze and Yadagar in dealing with a problem
related to scheduling combinations of resources, as 1n job,
worker and work site, showed that Problem Formulation
[[1.0]] (1.0) applied. They further described a solution
method based upon an extension of the Lagrangian Relax-
ation previously mentioned. The two critical extensions pro-
vided by Messrs. Frieze and Yadagar were: (1) an iterative
procedure that permitted the lower bound on the solution to be
improved (by “hill climbing” described below) and (2) the
recognition that when the lower bound of the relaxed problem
was maximized, then there existed a method to recover the
solution of the non-relaxed problem in most cases using
parameters determined at the maximum. The procedures
attributed to Messrs. Frieze and Yadagar are only applicable
to the [3-dimensional] three-dimensional problem posed by
Problem Formulation [[1.0]] (/.0) and where the cost matrix
1s fully populated. However, tracking multiple airborne
objects usually requires solution of a much higher dimen-
sional problem.

FIGS. 1 and 2 1illustrate an example where “look ahead”
data from the second image improved the assignment accu-
racy for the first image. Without the look ahead, and based
only upon a simple nearest neighbor approach, the assign-
ments 1n the first set would have been reversed. Problem
Formulation [[1.0]] (1. 0) and the prior art only permit looking
ahead one 1mage. In the prior art 1t was known that the accu-
racy of assignments will improve 11 the process looks further
ahead, however no practical method to optimally incorporate
look ahead data existed. Many real radar tracking problems
involve hundreds of tracks, thousands of observations per
observation set and matrices with dimensions in the range of
3 to 25 mcluding many images of look ahead.

Itwas also known that the data assignment problem may be
simplified (without reducing the dimension of the assignment
problem) by eliminating from consideration for each track
those points which, after considering estimated limits of
speed and turning ability of the objects, could not physically
be part of the track. One such technique, denoted hereinafter
the “cone method,” defines a cone as a continuation of each
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previously determined track with the apex of the cone at the
end of the previously defined track. The length of the cone 1s

based on the estimated maximum speed of the object and the
s1ze o the arc of the cone 1s based on the estimated maximum
turning ability of the object. Thus, the cone defines a region
outside of which no point could physically be part of the
respective track. For any such points outside of the cones, an
infinite number could be put 1n the cost matrix and a zero
could be preassigned 1n the assignment matrix. It was known
for the tracking problem that these elements will be very
common 1n the cost and selection matrices (so these matrices
are “sparse’).

It was also known 1n the prior art that one or more tracks
which are substantially separated geographically from the
other tracks can be separated also 1n the assignment problem.
This 1s done by examining the distances from each point to the
various possible tracks. I the distances from one set of points
are reasonably short only 1n relation to one track, then they are
assigned to that track and not further considered with the
remainder of the points. Similarly, 11 a larger group of points
can only be assigned to a few tracks, then the group 1s con-
sidered a different assignment problem. Because the com-
plexity of assignment problems increases dramatically with
the number of possible tracks and the total number of points
in each matrix, this partitioning of the group of points into a
separate assignment problem and removal of these points
from the matrices for the remaining points, substantially
reduces the complexity of the overall assignment problem.

A previously known Multiple Hypothesis Testing (MHT)
algorithm (see Chapter 10 of S.S. Blackman][.]. Multiple-
Target Tracking with Radar Applications|, Chapter 10.].
Artech House, Norwood, MA, 1986.) related to formulation
and scoring. The MHT procedure describes how to formulate
the sparse set of all reasonable extension hypothesis (for FIG.
1 the set {h,, ... h,,}) and how to calculate a cost of the
hypothesis {T,, 0,,, 05, based upon the previously calculated
cost for hypothesis {T,, o ,}. The experience with the MHT
algorithm, known 1n the prior art, 1s the basis for the assertion
that look ahead through k sets of observations results in
improved assignment of observations from the first set to the
track.

In theory, the MHT procedure uses the extendable costing
procedure to defer assignment decision until the accumulated
evidence supporting the assignment becomes overwhelming.
When 1t makes the assignment decision, 1t then eliminates all
potential assignments invalidated by the decision 1n a process
called “pruning the tree.” In practice, the MHT hypothesis
tree 1s limited to a fixed number of generations and the over-
whelming evidence rule 1s replaced by a most likely and
teasible rule. This rule considers each track independently of
others and 1s therefore a local decision rule.

A general object of the present invention 1s to provide an
eificient and accurate process for assigning each point object
in a region from multiple 1mages to a proper track and then
taking an action based upon the assignments.

A more specific object of the present invention 1s to provide
a technique of the foregoing type which determines the solu-
tion of a k-dimensional assignment problem where “k™ 1s
greater than or equal to three.

SUMMARY OF THE INVENTION

The present invention relates to a method and apparatus for
tracking objects. In particular, the present invention tracks
movement or trajectories ol objects by analyzing radiation
reflected from the objects, the mvention being especially
usetul for real-time tracking 1n noisy environments.
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In providing such a tracking capability, a region containing,
the objects 1s repeatedly scanned to generate a multiplicity of
sequential images or data observation sets of the region. One
or more points (or equivalently observations), in each of the
images or observation sets are detected wherein each such
observation either corresponds to an actual location of an
object or 1s an erroneous data point due to noise. Subse-
quently, for each observation detected, figures of merit or
costs are determined for assigning the observation to each of
a plurality of previously determined tracks. * Afterwards, a
first optimization problem 1s specified which includes:

(a) a first objective function for relating the above men-
tioned costs to potential track extensions through the
detected observations (or simply observations); and

(b) a first collection of constraint sets wherein each con-
straint set includes constraints to be satisfied by the
observations 1n a particular scan to which the constraint
set 1s related. In general, there 1s a constraint for each
observation of the scan, wherein the constraint indicates
the number of track extensions to which the observation
may belong.

In particular, the first optimization problem is formulated,
generated or defined as an M-dimensional assignment prob-
lem wherein there are M constraint sets 1n the first collection
of constraint sets (1.e., there are M scans being examined) and
the first objective function mimimizes a total cost for assign-
ing observations to various track extensions wherein terms
are included 1n the cost, such that the terms have the figures of
merit or costs for hypothesized combinations of assignments
of the observations to the tracks. Subsequently, the formu-
lated M-dimensional assignment problem 1s solved by reduc-
ing the complexity of the problem by generating one or more
optimization problems each having a lower dimension and
then solving each lower dimension optimization problem.
That 1s, the M-dimensional assignment problem 1s solved by
solving a plurality of optimization problems each having a
lower number of constraint sets.

The reduction of the M-dimensional assignment problem
to alower dimensioned problems 1s accomplished by relaxing
the constraints on the points of one or more scans thereby
permitting these points to be assigned to more than one track
extension. In relaxing the constraints, terms having penalty
factors are added 1nto the objective function thereby increas-
ing the total cost of an assignment when one or more points
are assigned to more than one track. Thus, the reduction 1n
complexity by this relaxation process 1s 1teratively repeated
until a sufficiently low dimension 1s attained such that the
lower dimensional problem may be solved directly by known
techniques.

In one embodiment of the invention, each k-dimensional
assignment problem [2<k=M,] (2<k=M) is iteratively
reduced to a [k—1 dimensional] (k-1)-dimensional problem
until a [2-dimensional] two-dimensional problem is specified
or formulated. Subsequently, the [2-dimensional] two-dimen-
sional problem formulated 1s solved directly and a “recovery™
technique 1s used to iteratively recover an optimal or near-
optimal solution to each k-dimensional problem from a
derived [(k-1) dimensional] (k=1 )-dimensional problem k=2,
3,4,... M.

In performing each recovery step (ol obtaining a solution to
a k-dimensional problem using a solution to a (k-1)-dimen-
sional problem), an auxiliary function[.] is utilized. In par-
ticular, to recover an optimal or near-optimal solution to a
k-dimensional problem, an auxiliary function, ¥,_,[.] k=4,
S, ..., M), 1s specified and a region or domain 1s determined
wherein this function 1s maximized, whereby values of the
region determine the penalty factors of the (k—1)-dimensional
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problem such that another [2-dimensional] two-dimensional
problem can be formulated which determines a solution to the
k-dimensional problem using the penalty factors ofthe (k—1)-
dimensional problem.

Each Auxihary functionW,, £=3, ..., M-1, is a function of 5

of both lower dimensional [problem] problems, penalty fac-
tors, and a solution at the dimension k at which the penalized
cost function is solved directly (typically a [2-dimensional]
two-dimensional problem). Further, 1n determining, for aux-
iliary function W, a peak region, a gradient of the auxiliary
function 1s determined, and utilized to identify the peak
region. Thus, gradients are used for each of the approximation
tfunctions W, W,,. . . , W¥,, , determining penalty factors
[penalty factors] until [tm-1] A7-1 is used in determining the
penalty factors for the [M-1 dimensional] (M-1)-dimen-
sional problem. Subsequently, once the M-dimensional prob-
lem is solved (using a [2-dimensional] two-dimensional prob-
lem to go from an [(M-1) dimensional] (M-1)-dimensional
solution to an M-dimensional solution), one or more of the
tollowing actions are taken based on the track assignments:
sending a warning to aircraft or a ground or sea facility,
controlling air traific, controlling anti-aircrait or anti-missile
equipment, taking evasive action, working on one of the
objects.

According to one feature of this first embodiment of the
present invention, the following steps are also performed
before the step of defining the auxiliary function. A prelimi-
nary auxiliary function is defined for each of the lower dimen-
sional problems having a dimension equal or one greater than
the dimension at which the penalized cost function 1s solved
directly. The preliminary auxiliary function 1s a function of
lower order penalty values and a solution at the dimension at
which the penalized cost function was solved directly. In
determining a gradient of the preliminary auxiliary function,
step 1n the direction of the gradient to 1dentily a peak region
of the preliminary auxiliary function and determine penalty
factors at the peak region. Iteratively repeat the defining,
gradient determining, stepping and peak determining steps to
define auxiliary functions at successively higher dimensions
until the auxiliary function [at 6-18 (k—1)] dimension (k-1) is
determined. In an alternative second embodiment of the
present invention, instead of reducing the dimentiality of the
M-dimensional assignment problem by a single dimension at
a time, a plurality of dimensions are relaxed simultaneously.
This new strategy has the advantage that when the M-dimen-
sional problem is relaxed directly to a [2-dimensional] swo-
dimensional assignment problem, then all computations may
be performed precisely without utilizing an auxiliary function
such as W, as 1n the first embodiment. More particularly, the
second embodiment solves the first optimization problem
(1.e., the M-dimensional assignment problem) by speciiying
(1.e., creating, generating, formulating and/or defining) a sec-
ond optimization problem. The second optimization problem
includes a second objective function and a second collection
ol constraint sets wherein:

a) the second objective function 1s a combination of the first
objective function and penalty factors or terms deter-
mined for incorporating [M-m constraint] (M-m)-con-
straint sets of the first optimization problem into the
second objective function;

b) the constraint sets of the second collection include only
m of the constraint sets of the first collection of con-
straints,

wherein 2=m=M-1. Note that, once the second optimization
problem has been specified or formulated, an optimal or
near-optimal solution 1s determined and that solution 1s used
in specilying (1.e., creating, generating, formulating and/or
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defining) a third optimization problem of [M-m] (M-m)
dimensions (or equivalently constraint sets). The third opti-
mization problem is subsequently solved by decomposing 1t
using the same procedure of this second embodiment as was
used to decompose the first optimization problem above.
Thus, a plurality of instantiations of the third optimization
problem are specified, each successive instantiation having a
lower number of dimensions, until an instance of the third
optimization problem is a [two dimensional] two-dimen-
sional assignment problem which can be solved directly.
Subsequently, whenever an instance of the third optimization
problem 1s solved, the solution 1s used to recover a solution to
the mstance of the first optimization problem from which this
instance of the third optimization was derived. Thus, an opti-
mal or near-optimal solution to the original first optimization
problem may be recovered through iteration of the above
steps.

As mentioned above, the second embodiment of the
present invention 1s especially advantageous when m=2,
since 1n this case all computations may be performed pre-
cisely and without utilizing auxiliary functions.

Other features and benefits of the present invention waill
become apparent from the detailed description with the
accompanying drawings contained hereinaiter.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 1s a graph of images or data sets generated by a scan
ol a region and possible tracks within the 1images or data sets
according to the prior art.

FIG. 2 1llustrates cost and assignment matrices for the data
sets of FIG. 1 according to the prior art.

FIG. 3 1s a block diagram of the present invention.

FIG. 4 1s a flow chart of a process according to the prior art
for solving a [3-dimensional] three-dimensional assignment
problem.

FIG. 5 [Is] is a flow chart of a process according to the
present invention for solving a k-dimensional assignment
problem where “k” 1s greater than or equal to 3.

FIG. 6 1s a graph of various functions used to explain the
present invention.

FI1G. 7 1s another block diagram of the present invention for
solving the k-dimensional assignment problem where “k™ 1s
greater than or equal to [3] three (3).

FIG. 8 1s a flowchart describing the procedure for solving
[a] a» n-dimensional assignment problem according to the
second embodiment of the invention.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

PR.

(L]
=T

ERRED

Referring now to the other figures 1n detail wherein like
reference numerals indicate like elements throughout the sev-
eral views, FIG. 3 illustrates a system generally designated
100 for implementing the present invention. System 100 com-
prises, for example, a radar station 102 (note sonar, micro-
wave, 1nfrared and other radiation bandwidths are also con-
templated) for scanning a region which may be, for example,
an aerial region (1n aerial surveillance applications) or a work
region (1n robotic applications) and generating signals 1ndi-
cating locations of objects within the region. The signals are
input to a converter 104 which converts the signals to data
points or observations in which each object (or false positive)
1s represented by a single point. The output of the converter 1s
input to and readable by a computer 106. As described 1n
more detail below, the computer 106 assigns the points to
respective tracks, and then displays the tracks and extrapola-
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tions of the tracks on a monitor 110. Also, the computer 106
determines an appropriate action to take based on the tracks
and track extensions. For example, in a commercial applica-
tion at an airport, the computer can determine 1f two aircraft
being tracked are on a collision course and 1f so, signal a
transmitter 112 to warn each aircratt, or 1f a scheduled take-
off will pose the risk of collision, delay the take-off. For a
military application on a ship or base, the computer can
determine subsequent coordinates of enemy aircraft and send
the coordinates to an antiaircraft gun or missile 120 via a
communication channel 122. In a robotic application, the
computer controls the robot to work on the proper object or
portion of the object.

The invention generates k-dimensional matrices where k 1s
the number of 1images or sets of observation data in the look
ahead window plus one. Then, the mvention formulates a
k-dimensional assignment problem as in [[1.0]] (0.1) above.

The k-dimensional assignment problem 1s subsequently
relaxed to a (k-1)-dimensional problem by incorporating one
set of constraints into the objective function using a
Lagrangian relaxation of this set. Given a solution of the
(k—1)-dimensional problem, a feasible solution of the k-di-
mensional problem 1s then reconstructed. The (k—1)-dimen-
sional problem 1s solved 1n a similar manner, and the process
1s repeated until it reaches the two-dimensional problem that
can be solved exactly. The 1deas behind the Lagrangian relax-
ation scheme are outlined next.

Consider the integer programming problem

Minimize v(z) = ¢’ z [[1.0.1]] (0.2)

Subject to: Az < b,
Bz < d,

z; 1s an integer for 1€ |,

where the partitioning of the constraints 1s natural in some
sense. Given a multiplier vector u=0, the Lagrangian relax-
ation of [[1.0.1]] (0.2) relative to the constraints Bz=d is
defined to be

[DDTT]

D(u) = Minimize {7+ u' (Bz — d)} [[1.0.2]] (0.3)

Subject to: | Az<b] Az =< b,

z; 1s an 1integer for 1€ L

[f the constraint set Bz=d is replaced by Bz=d, the [nonnega-
tivity] non-negativity constraint on u is removed. [L=C’z+u”
(Bz—-d)] L=c’z+u"(Bz-d) is the Lagrangian relative to the
constraints Bz=d, and hence the name Lagrangian relaxation.
The following fact gives the relationship between the objec-

tive Tunctions of the original and relaxed problems.
FACT A.1. Ifz is an optimal solution to [[1.0.1]] (0.2), then

[D<v(z)] ®(u)=v(z) for all u=0. If an optimal solution z of
[[1.0.2]] (0.3) is feasible for [[1.0.2]] (0.3), then Z is an opti-
mal solution for [[1.0.1]] (0.2) and [® Algor ithm] ® () =v(2).

[k, "=0]

This leads to the following algorithm:

Algorithm. Construct a sequence of multipliers {u,}™,_,
converging to the solution u of Maximize [{®=z0}]
{®(u):u=0} and a corresponding sequence of feasible solu-

tions {Z, },=00f [[1.0.1]] (0.2) as follows:

10

1. Generate [in] ar initial approximation u.

2. Given u,, choose a search direction s, and a search
distance o, [V, o, . W,] so that ®(u,+0,5,)>D(u,).
Update the multiplier estimate u, by [u, ,—u,+ao, ]}

5 Uy —Up 0 S .

3. Given u,_, and a feasible solution [Z, ., (u,. )] Z..,
(1, ;) of [[1.0.2]] (0.3), recover a feasible solution z, , ,
(u,.,) of the integer programming problem [[1.0.1]]
(0.2).

4. Check the termination criteria. If the algorithm 1s not
finished, set k=k+1 and return to Step 2. Otherwise,
terminate the algorithm.

If 7 is an optimal solution of [[1.0.1]] (0.2), then

[W,<W<V 7)<(7,)]

.5 Since the optimal solution Zz=z(u) of [[1.0.2]] (0.3) is usually
not a feasible solution of [[1.0.1]] (0.2) for any choice of the
multipliers,

10

20

25

D(w) is usually strictly less than V(z). The difference v(z)-
D(v) is called the “duality gap,” which can be estimated by
comparing the best relaxed and recovered solutions com-
30 puted in the course of maximizing O (u).
[<p=k]
Thus, to eliminate the “<” in the constraint formulations
(e.g., (0.1)(a)-(0.1)(d)) that resulted from false positives, the
constraint sets have been modified, as indicated above, to
35 incorporate a gap filler in each observation set to account for
Jfalse positives. Thus, a zero for an index, i, Isp<kn Zkz'l. i
in problem [[1.1]] (0.4) below indicates that the track exten-
sion represented by z’fi.l .., 1ncludes a false positive in the p™”
observation set. Note that this implies that a hypothesis be
formed incorporating an observation with k-1 gap fillers,
.8, 2% . 0i,...0 1,#0. Thus, the resulting generalization of
Problem Formulation [[1.0]] (0.1) without the “less than”
complication within the constraints 1s the following k-Di-
mensional Assignment Problems in which k=3:

45

40

Ny N, [[1.1]] (0.4
Minimize E Z Ciy... iy Ziy... i
=0 k=Y
50
Ny N,
Subject to: E .. Z Zi... i, = 1,1y = .. Ny,
=0 k=Y
55 . .
N Nicl Nyl
2R i e R fori;=1,... N,
.. Z;, 5 =1
i1=0 .EJ'_IZDIJ'_H:D
ML N
60 E .. Ziy ... iy =1, =1, ... N;
=0 k=179
Zillk E{Oa 1}5v1ﬂn=15 ﬁkﬂ

65 where ¢ and z are similarly dimensioned matrices represent-
ing costs and hypothetical assignments. Note, 1n general, for
tracking problems these matrices are sparse.
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After formulating the k-dimensional assignment problem
as in [[1.1]] (0.4), the present invention solves the resulting
problem so as to generate the outputs required by devices 110,
112, 122 and 130. For each observation set o, recetved from
converter 104 at time t, where 1=1 . . . , N,, the computer
processes O, 1 a batch together with the other observation
sets O, _;,1,-- -, O,and the track T,_;, 1.e., T  1s the set of all
tracks that have been defined up to but not including O,.
(Note, bold type designations refer to the vector of elements
for the indicated time, 1.e., the set of all observations in the
scan or tracks existing at the time, etc.) The result of this
processing 1s the new set of tracks T, . , and a set of cost
weilghted possible solutions indicating how the tracks might
extend to the current time t,. At time t,_, the batch process 1s
repeated using the newest observation set and deleting the
oldest. Thus, there 1s a moving window of observation sets
which 1s shifted forward to always incorporate the most
recent observation set. The effect 1s that input observation sets
are reused for [k-1] (k~1) cycles and then on the observation
set’s [k-th] #” reuse each observation within the observation
set 1s integrated into a track.

FIG. 7 illustrates various processes implemented upon
receipt of each observation set. Except for the addition of the
k-dimensional assignment solving process 300 and the modi-
fication to scoring process 154 to build data structures suit-
able for process 300, all processes in FIG. 7 are based upon
prior art. The following processes 150 and 152 extend previ-
ously defined tracks h,_,[.] based on new observations. Gate
formulation and output process 156 determines, for each of
the previously defined tracks, a zone wherein the track may
potentially extend based on limits of velocity, maneuverabil-
ity and radar precision. One such technique to accomplish this
1s the cone method described previously. The definition of the
zone 1s passed to gating process 150. When a new observation
set O, 15 received, the gating process 150 will match each
member observation with the zone for each member of the
hypothetical set h,_,. After all input observations from O, are
processed, the new hypothesis seth, 1s generated by extending,
cach track of the prior set of hypothetical tracks h,_,; either
with missed detect gap fillers or with all new observation
elements satisfying the track’s zone. This is a [many to many]
many-to-many matching in that each hypothesis member can
be extended to many new observations and each new obser-
vation can be used to extend many hypotheses. It, however, 1s
not a full matching in that any hypothesis will neither be
matched to all observations nor vice versa. It 1s this matching
characteristic that leads to the sparse matrices involved in the
tracking process. Subsequently, gating 150 forwards the new
hypothesis set h, to filtering process 152. Filtering process
152 determines a smooth curve for each member of h.. Such
a smooth curve 1s more likely than a sharp turn from each
point straight to the next point. Further, the filtering process
152 removes small errors that may occur in generating obser-
vations. Note that in performing these tasks, the filtering
process 152 preferably utilizes a minimization of a least
squares test of the points 1n a track hypothesis or a Kalman
[Filtering] filtering approach.

As noted above, the foregoing track extension process
requires knowledge of a previous track. For the initial obser-
vations, the following gating process 158 and filtering process
160 determine the “previous track™ based on 1nitial observa-
tions. In determining the initial tracks, the points from the first
observation set form the beginning points of all possible
tracks. After observation data from the next observation set 1s
received, sets of simple [two point] two-point straight line
tracks are defined. Then, promotion, gate formulation, and
output step 162 determines a zone 1n which future extensions
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are possible. Note that filtering step 160 uses curve fitting
techniques to smooth the track extensions depending upon
the number of prior observations that have accumulated in
cach hypothesis. Further note that promotion, gate formula-
tion and output process 162 also determines when sufficient
observations have accumulated to form a basis for promoting
the track to processes 150 and 152 as described above.

The output of each of the filtering processes 152 and 160 1s
a set of hypothetical track extensions. Each such extension
contains the hypothetical initial conditions (from the previous
track), the list of observations incorporated in the extension,
and distance between each observation and the filtered track
curve. Scoring process 154 determines the figure of merit or
cost of an observation being an extension of a track. In one
embodiment, the cost 1s based on the above-mentioned dis-
tance although the particular formula for determining the cost
1s not critical to the present invention. A preferred formula for
determining the cost utilizes a negative log likelithood func-
tion 1n which the cost 1s the negative of the sum of: (a) the logs
of the distances normalized by sensor standard deviation
parameters, and (b) the log likelithoods for events related to:
track 1nitiation, track termination, track maneuver, false nega-
tives and false positives. Note that track maneuvers are
detected by comparing the previous track curve with the
current extension. Further note that some of the other events
related to, for example, false negatives and false positives are
detected by analyzing the relative relationship of gap fillers 1n
the hypothesis. Thus, after determining that one of these
events occurred, a cost for i1t can be determined based upon
suitable statistics tables and system input parameters. The
negative log likelihood function 1s desirable because 1t per-
mits effective integration of the useful components. Copies of
the set of hypothetical track extensions which are scored are
subsequently passed directly to one of the gate formulation
and output steps 156 and 162. Note that the scoring process
154 also arranges the actual scores 1n a sparse matrix based
upon observation identifiers, and passes them to k-dimen-
sional assignment problem solving process 300.

The assignment solving process 300 1s described below. Its
output 1s simply the list of assignments which constitute the
most likely solution of the problem described by Equation
[[1.1]] (0.4). Note that both gate formulation and output pro-
cesses 156 and 162 use (at different times) the list of assign-
ments to generate the updated track history T, to eliminate or
prune alternative previous hypotheses that are prohibited by
the actual assignments 1n the list, and, subsequently, to output
any required data. Also note that when one of the gate formu-
lation and output processes 156 and 162 accomplish these
tasks, the process will subsequently generate and forward the
new set of gates for each remaining hypothesis and the pro-
cesses will then be prepared to receive the next set of obser-
vations. In one embodiment, the loop described here will
generate zones for a delayed set of observations rather than
the subsequent set. This permits processes 156 and 162 to
operate on even observation sets while the scoring step 154
and k-dimensional solving process operate on odd sets of
observations, or vice versa.

The assignment solving process 300 permits the present
invention to operate with a window size of dimension k-1 for
some k=3. The upper limit on k depends only upon the com-
putational power of the computer 106 and the response time
constraints of system 100. The k—1 observation sets within
the processing window plus the prior track history result in a
k-dimensional Assignment Problem as described by Problem
Formulation [[1.1]] (0.4). The present invention solves this
generalized problem including the processes required to con-
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sider false positives and negatives, and also the processes
required to consider sparse matrix problem formulations.

I. A FIRST EMBODIMENT OF THE k-DIMENSIONAL
ASSIGNMENT SOLVER 300

In describing a first embodiment of the k-dimensional
assignment solver 300, it 1s worthwhile to also discuss the
process of FIG. 4 which 1s used by the solver 300. FIG. 4
illustrates use of the Frieze and Yadagar process as shown 1n
prior art for transforming a [3-dimensional] three-dimen-
sional assignment problem into a [2-dimensional] rwo-di-
mensional assignment problem and then use a hill climbing
algorithm to solve the [3-dimensional] three-dimensional
assignment problem. The solver 300 uses a Lagrangian
Relaxation technique (well known 1n the art) to reduce the
dimension of an original k-dimensional assignment problem
(k>3) down to a [3-dimensional] three-dimensional problem
and then use the process of FIG. 4 to solve the [3-dimen-
sional] three-dimensional problem. Further note that the
Lagrangian Relaxation technique 1s also utilized by the pro-
cess of FI1G. 4 and that in using this technique the requirement
that each point 1s assigned to one and only one track 1s
relaxed. Instead, an additional cost, which 1s equal to arespec-
tive Lagrangian Coellicient [*“u”’] «, 1s added to the cost or
objective function [[1.0]] (0.1) (a) whenever a point is
assigned to more than one track. This additional cost can be
picked to weight the significance of each constraint violation
differently, so this additional cost 1s represented as a vector of
coellicients u which are correlated with respective observa-
tion points. Hill climbing will then develop a sequence of
Lagrangian Coetlicients sets designated (ug, . . . , u,
u,,-..,u,). Thatcorrespond to an optimum solution of the
[2-dimensional] two-dimensional assignment problem. The
assignments at this optimum solution are then used to
“recover” the assignment solution of the [3-dimensional]

three-dimensional assignment problem.

In step 200 of FIG. 4, mitial values are selected for the u,
coellicients. Because the Lagrangian Relaxation process 1s
iterative, the mnitial values are not critical and are all initially

selected as zero. In step 202, these additional costs are applied
to the objective function [[1.0]] (0.1 (a). With the addition of
the costs [“u”’] u, the goal is still to assign the points which
minimize the total cost. This transforms Equation [[1.0]] (0.1
(a), written for k=3 and altered to exclude mechanisms related
to false positives and negatives, into objective function [[2.1]]
(1.1) (a). Inthe first iteration 1t 1s not necessary to consider the
[“0”’] « matrix because all [“u”] « values are set to zero. To
relax the requirement that each point be assigned to one and
only one track, the constraint Equation [[1.0]] (0.1 (d) is
deleted, thereby permitting points from the last image to be
assigned to more than one track. Note that while any axis can
be chosen for relaxation, observation constraints are prefer-
ably relaxed. The etfect of this relaxation 1s to create a new
problem which must have the same solution 1n the first two

axes but which can have a [differing] different solution in the
third axis. The result is constraints [[2.1]] (Z.1) (b-d).

N1 Np

@ Minimiz 1 ) > {{ciiis —u [1, 70,

i1 =0 ir=0

[[2.1]](1.1)

Ny N3

Z Z Ziiini, =1, i =1, ... Ny,

ir=1 i3=1

(b) Subject to:
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-continued
N M3

1 1 .
L L Ziiniz = 1, 12 =1,... , Ny,

ip=1 iz=1

()

(d) e {0, 1) v

Ziyigig Zijipis -

Step 204 then generates from the [3-dimensional] three-di-
mensional problem described by Problem Formulation

[[1.0]] (0.1) anew [2-dimensional] two-dimensional problem
formulation which will have the same solution for the first
two indices. As Problem Formulation [[2.1]] (/./) has no
constraints on the 3, , axis, any value within a particular 3,
ax1is can be used 1n a solution, but using anything other than
the minimum value from any [3-rd] 37 axis has the effect of
increasing solution cost. Conceptually, the etffect of step 204
is to change the [3-dimensional] three-dimensional arrays in
Problem Formulation [[2.1]] ({.]) into [2-dimensional] swo-
dimensional arrays as shown in Problem Formulation [[2.2]]
(1.2) and to generate the new [2-dimensional] two-dimen-
sional matrix m, ; defined as shown in Equation [[2.3]] (1.3).

No [12.2]] (1.2)

N1
o \ v | Min:

(@) Minimize [:] 2 2 " (Ciyinis —u ] 13) Zitin
i1=0 ir=0 )
Ny N

b) Subjecttor > >z =1, ii=1 .. N
in=1 iz=1
N N3

(c) >1 >1Zflf3£1, 1 =1,... , Ny
i1=1 i3=1

d) Zi i, €10, 1} Y Ziis

my i, = Min: arg minimize {05152 —uy, l1=1, ... , N} [[2.3]] ({.3)

The cost or objective function for the reduced problem as
defined by [[2.2]] ({.2) (a), if evaluated at all possible values
of u is a surface over the domain of [U’] «. This surface is
referred to as [®u] ®(u) ard is non-smooth but provably
convex (i.e., it has a single peak and several other critical
characteristics which form terraces). Due to the convex char-
acteristics of ©(u), the rvesults from solving Problem Formu-

Zatfo; (1.2) at any particular u; can be used to generate a new
set o

llj']

coefficients u,,,, whose corresponding [Problem Formula-
tion [2.2] problem solution is a] cost value is closer to the peak
of [® u U,dimensional]l ®(u). The particular set of
Lagrangian Coefficients that will generate the two-dimen-
sional problem resulting in the maximum cost is designated
u,. 1o recover the solution to the three-dimensional assign-
ment problem requires solving the Equation [2.2] (/.2) prob-
lem corresponding to u,,.

In step 206, the [two dimensional] (rwo-dimensional)
problem 1s solved directly using a technique known to those
skilled 1n the art such as Reverse Auction for the correspond-
ing cost and solution values. This 1s the evaluation of one
point on the surface or for the first iteration [®U,] ®(u,).

Thus, after this first iteration, the points have been assigned

based on all “u” values being arbitrarily set to zero. Because
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the “u” values have been arbitrarily asmgnod it 1s unlikely
that thoso assignments are correct and it 1s likely that further
iterations are required to properly assign the points. Step 208
determines whether the points have been properly assigned
aiter the first iteration by determining i1 for this set of assign-
ments whether a different set of “u” values could result in a
higher total cost. Thus, step 208 1s implemented by determin-
ing the gradient of objective function [[2.2]] (/.2 (a) with
respect to u,. If the gradient 1s substantially non-zero (greater
than a predetermined limait) then the assignments are not at or
near enough to the peak of the [®u]

[[Jj+l]
surface ©(u) (decision 210), and the new set of Lagrangian
Coefficients u,, , is determined.

Hill climbing Step 212 determines the u,,, values based
upon the v, values, the direction resulting from protootmg the
Previous gradlont into the U® domain, and a step size. The
solution value of the [2-dimensional] two-dimensional prob-
lem 1s the set of coefficients that minimize the [2-dimen-
sional] two-dimensional problem and the actual cost at the
mimmum. Those coellicients augmented by the coetlicients
stored inm, permr[ the evaluation (but not the minimization)
of the cost term in Problem Formulation [12.1]] ({.1). These
two cost terms are lower and upper bounds on the actual
minimized cost of the [3-dimensional] three-dimensional
problem, and the difference between them in combination
with the gradient 1s used to compute the step size.

With this new set of [“u”] « values, steps 202-210 are
repeated as a second iteration. Steps 212 and 202-210 are
repeated until the gradient as a function of u determined in
step 208 1s less than the predetermined limit. This indicates
that the [up] «, values which locate the peak area of the [® u]
®(u) surface are determined and that the corresponding Prob-
lem Formulation [[2.2]] ({.2) has been solved. Step 214 will
attempt to use the assignments that resulted from this particu-
lar [2-dimensional] two-dimensional assignment problem to
recover the solution of the [3-dimensional] tiree-dimensional
assignment problem as described below. If the limit was
chosen properly so that the [“u”] « values are close enough to
the peak, this recovery will yield the proper set of assignments
that rigidly satisfies the constraint that each point be assigned
to one and only one track. However, if the [“u’’] « values are
not close enough to the peak, then the limit value for decision
210 1s reduced and the repetition of steps 212 and 202-210 1s
continued.

Step 214 recovers the [3-dimensional] three-dimensional
assignment solution by using the assignment values deter-
mined on the last iteration through step 208. Consider the
[2-dimensional] two-dimensional z assignment matrix to
have 1’s in the locations specified by the list L,=(a,, b,)",_,. If
the [3-dimensional] three-dimensional z matrix is Speoiﬁed
by placing 1’s at the location indicated by the list [L.,=(a,, b

m,, , v L>=(a, b, m, b) ._, then the result 1s a solution of
Problem Formulatlon [[2.1]] (1.1). Let [L =(m, pIn=1) L3=
(M4 ) ._ ; be the list formed by the third index. If each mem-
ber of L, 1s unique then the L, solution satisfies the third
Constraint s0 1t 1s a solution to Problom Formulation [[1.0]}
(0.1). When this 1s not the case, recovery determines the
mimmal substitutions required within list L, so that itplus L,
will be a feasible solution, 1.e., a solution which satisfies the
constraints ol a problem formulation, but which may not
optimize the objective function of the problem formulation.
This stage of the recovery process is formulated as a [2-di-
mensional] two-dimensional assignment problom[] as fol-
[ows. Form a new cost matrx [c, J]N ,—1 Where ¢, =c,,  for
1=1...N., and the N, term 1s the total number of cost elements
in the selected row of the [3-dimensional] three-dimensional
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cost matrix. Attempt to solve this [2-dimensional] two-dimen-
sional problem for the minimum using two constraints sets. I
a feasible solution 1s found then the result will have the same
form as list L,. Replace the first set of [indexes] indices by the
indicated (a,, b)) pairs taken from list L, and the result will be
a feasible solution of Problem Formulation [[1.1]] (0.4). If no
feasible solution to the new [2-dimensional] two-dimensional
problem exists then further effort to locate the peak of [® u]

D(u) is required.

1. 1. Generalization to a Multi-Dimensional Assignment Solv-
ing Process

Let M be a fixed integer and assume that M is the dimension
of the initial assignment problem to be solved. Thus, initially,
the result of the scorving step 154 is a M-dimensional Cost
Matrix which is structured as a sparse matrix (i.e., only a
small percentage of the entries in the cost and assignment
matrices arve filled ov non-zero). Individual cost elements
represent the likelihood that a track T, as extended by the set
of observations {oj}IiZL ..., M-1}, is not valid. Because the
matrix 1s sparse the list of cost elements 1s stored as a packed
l1st, and then for each dimension of the matrix, a vector of a
variable length list of pointers to the cost elements 1s gener-
ated and stored. This organization means that for a particular
observation [o;] O,, for the i” list in the 1" vector will be a list
ol pointers to all hypotheses in which [o;] O, participates.
This structure 1s further explained in the following section
dealing with problem partitioning.

The objective of the assignment solving process 1s to select
from the set of all possible combinations of track extensions
a subset that satisfies two criteria. First, each point 1n the
subset of combinations should be assigned to one and only
one track and therefore, included i one and only one com-
bination of the subset, and second, the total of the scoring
sums for the combinations of the subset should be minimized.
This yields the following M-dimensional equations where

[k=M]k=M:

N, [[3.1]] ({.4)
(a) Minimize v, (z°) = E .. o‘f‘l i z‘f‘l i
i=0 %=
N N,
(b) Subject to: E y z‘:‘l P = 1
=0 47V
1] = | . Nl,
Ny Nic1 Nipl N,
k —
(c) E E E | Zi i 1
i1=0 i 1=0ij; =0 4V
fori; =1, ... N;
and 1=2, ... k-1
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-continued
M N
k

(d) E Zi i =1

i1=0 k-1

1l = l, .- Nk,

() zf.fl___j-k e {0, 1} for all iy... 1,
and where ¢* is the cost matrix [¢”, . .. , ] which 1s a function

of the distance between the observed point z° and the
smoothed track determined by the filtering step, and v, 1s the
cost function. This set of equations 1s similar to the set pre-
sented in Problem Formulation [[1.1]] (0.4) except that it
includes the subscript and superscript k notation. Thus, 1n
solving the M-dimensional Assignment Problem the inven-
tion reduces this problem to an [M-1 dimensional] (AM-1)-
dimensional Assignment Problem and then to an [N-2
dimensional] (N-2)-dimensional Assignment Problem, etc.
Further, the symbol ke{3, . .. .M} customizes Problem For-
mulation [[3.1]] (0.4) to a particular relaxation level. That is,
the notation 1s used to reference data from levels relatively
removed as in c*' are the cost coefficients which existed prior
to this level of relaxed coefficients c*. Note that actual obser-

vations are numbered from 1 to N, where N, 1s the number of
observations 1n observation set 1. Further note that the added
[0] O observation in each set of observations is the uncon-
strained “gap {filler.”” This element serves as a filler in substi-
tuting for missed detects, and a sequence of these elements
including only one true observation represents the possibility
that the observation 1s a false positive. Also note that by being,
unconstrained a gap filler may be used 1n as many hypotheses
as required.

While direct solution to [[3.1]] (0.4) would give the precise
assignment, the solution of k-dimensional equations directly
for large k 1s too complex and time consuming for practice.
Thus, the present invention solves this problem indirectly.

The following 1s a short description of many aspects of the
present invention and includes some steps according to the
prior art. The first step 1n solving the problem indirectly 1s to
reduce the complexity of the problem by the previously
known and discussed Lagrangian Relaxation technique.
According to the Lagrangian Relaxation technique, the abso-
lute requirement that each point 1s assigned to one and only
one track 1s relaxed such that for some one 1mage, points can
be assigned to more than one track. However, a penalty based
on a respective Lagrangian Coelll

icient u” is added to the cost
function when a point in the 1mage 1s assigned to more than
one track. The Lagrangian Relaxation technique reduces the
complexity or “dimension” of the formulation of the assign-
ment problem because constraints on one observation set are
relaxed. Thus, the Lagrangian Relaxation 1s performed itera-
tively to repeatedly reduce the dimension until a [2-dimen-
sional] two-dimensional penalized cost function problem
results as in Problem Formulation [[2.1]] (Z.1). This [2-di-
mensional] two-dimensional problem is solved then directly
by a previously known technique such as Reverse Auction.
The penalized cost function for the [2-dimensional] swo-
dimensional problem defines a valley or convex shaped sur-
face which is a function of various sets of {u* k=3, ... M}
penalty values and one set of assignments for the points 1n two
dimensions. That is, for each particular u’ there is a corre-
sponding [2-dimensional] swo-dimensional penalized cost
tfunction problem and its solution. Note that the solution of the
[2-dimensional] two-dimensional penalized cost function
problem identifies the set of assignments for the particular u”

18

values that minimize the penalized cost function. However,
these assignments are not likely to be optimum for any higher
dimensional problem because they were based on an 1nitial
arbitrary set of u, values. Therefore, the next step 1s to deter-

> mine the optimum assignments for the related [3-dimen-
sional] three-dimensional penalized cost function problem.
There exists a [2-dimensional] two-dimensional hill shaped
function

10
[ @

u’ uw |k > 3]

15
DO which is a graph of the minimums of all penalized cost

functions at various sets of assignments in two dimensions.
For the three-dimensional problem, the function ®© can be
defined based on the solution to the foregoing two-dimen-

20 sional penalized cost function. By using the currvent u” values
and the {u"|k>3} values originally assigned[. Then], the gra-
dient of the hill-shaped [D]

[v]
Junction © is determined, which points toward the peak of the
25 hill. By usin the gradient and u” values previously selected for
the one point on the hill (corresponding to the minimum of the
penalized cost [D]
[U°]
function @) as a starting point, the u” values can be found for

Y which the corresponding problem will result in the peak of the

|D

35 0% o]

function ®. The solution of the corresponding two-dimen-
sional problem is the proper values for two of the three sets of
indices in the three-dimensional problem. These solution
indices can select a subsection of the cost arvay which maps
to a two-dimensional array. The set of indices which minimize
the two-dimensional assignment problems based on that
array corvresponds to the proper assignment of points in the
third dimension. The foregoing “recovery’ process was
known in the prior art, but it is modified heve to adjust for the
sparse matrvix characteristic. The next task 1s to recover the
solution of the proper u* values for the [4-dimensional] four-
dimensional problem. The foregoing hill climbing process
will not work again because the foregoing hill climbing pro-
cess when required to locate the [4-dimensional] four-dimen-
sional u™ values for the peak of @ exact definition of the [®>
case of ®°] D° requires the exact definition of the function ®°
(as was available in the case of ®°) or an always less than
approximation of ®°, whereas the iteration can result in a
greater than approximation of [®°]

40
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| function ¢ o o
60 o
Uk
oradient of the

63 u’ u']
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®°. According to the present invention, another three-dimen-
sional function W is defined which is a “less than approxima-
tion” the three-dimensional function ® and which can be
defined based on the solution to the two-dimensional penal-
ized cost function and the previously assigned and deter-
mined u* values. Next, the gradient of the function V is found
and hill climbing technique used to determine the u”’ values at
the peak. Each selected u” set results in a new [3-dimensional]
three-dimensional problem and requires the [2-dimensional]
two-dimensional hill climbing based upon new [2-dimen-
sional] two-dimensional problems. At the peak of the [3-di-
mensional W) three-dimensional function W, the solution val-
ues are a subset of the values required for the four-
dimensional solution. Recovery processing extends the subset

to a complete solution. This process 1s repeated iteratively

until the u* values that result in a corresponding solution at the
peak of the highest order [W @]

[Dfinctions W and ® are found. The final recovery pro-
cess then rvesults in the solution of k-dimensional problem.
FIG. 5 illustrates process 300 in more detail.

1.2. Problem Formulation

In problem formulation step 310, all data structures for the
subsequent steps arve allocated and linked by pointers as
required for execution efficiency. The incoming problem is
partitioned as described in the subsequent section. This par-
titioning has the effect of dividing the incoming problem into
a set of independent problems and thus veducing the total
workload. The partitioning process depends only on the
actual cost matrix so the partitioning can and is performed
for all levels of the relaxation process.

1.2.1. Relaxation and Recovery

Step 320 begins the Lagrangian Relaxation process for
reducing the M-dimensional problem by selecting all

Lagrangian Coeflicient u™ penalty values initially equal to
zero. The Lagrangian Coefficients associated with the M”
constraint set are [a N, ., , element] an (N, +1)-element vec-

tor. The reduction of this M-dimensional problem 1n step 322

to a [M-1 dimensional] (M-1)-dimensional problem uses the
two step process described above. First, a penalty based on
the value of the respective u™’ coefficient is added to the cost
function when a point 1s assigned to more than one track and
then the resultant cost function 1s minimized. However, dur-
ing the first iteration, the penalty is zero because all u*™ values
are mitially set to zero. Second, the requirement that no point
from any 1mage can be assigned to more than one track is
relaxed for one of the images. In the extreme this would allow

a point from the relaxed 1image to be associate with every
track. However, the effect of the previous penalty would
probably mean that such an association would not minimize
the cost. The effect of the two steps 1n combination 1s to
remove a hard constraint while adding the penalty to the cost

function so that it operates like a soft constraint. For step 322
this [two step] »wo-step process results in the following penal-

1zed cost function problem with k=M:
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(a) @y (u*) = Minimize ¢, (u*, z*) [[3.2]] (1.5)

N

1 N,

k k
- E L S e e T

h=0 &Y

N N

k 1 Ny _y
E k § k

u;, = Zi i -1

iy, =0 i1=0 -1

Moo Ny

(b) Subject to: E Z o =li=1LN

IR_D

in=0
-1 Nyl
DY I LR
ij-1=0i;4=0 %
fori; =1, ... N;
and 1=2, ... k-1,

(d) z

i...i, €10, 1} for all ij... L.

Because the constraint on single assignment of elements from
the last image has been eliminated, [a M-1 dimensional] ar
(M-1)-dimensional problem can be developed by eliminating,

some of the possible assignments. As shown in Equations
[13.3]] (1.6), this is done by selecting the smallest cost ele-
ment from each of the M” axis vectors of the cost matrix.
Reduction in this manner yields a new, [lower order] lower-
Equations [[3.3]]
(/.6) which has the same minimum cost as does the objective
function defined by [[3.2]] (1.5) (a) above.

The cost vectors are selected as follows. Define [an index

order penalized cost function defined by

array m*, ... .1 and] a new cost array =t 4 DY
L _ . e & & .
|72, = Min: arg mmmuz.a{«:1-1___I-]{C -, ‘1;{ =0, 1, ...Nk}] [[3.3]]
¢l = ¢ | m?* for (1, L 1) = (0, ... ,O) (1.6)

Ni
-1 _ - k k
€0,... .0 = me {0, €0...0 —Ufk}

i, =0

The resulting [M-1 dimensional] (M-1)-dimensional prob-
lem 1s (where k=M):

D, (u¥) = [[3.4]] (1.7)

Minimize v 751y = AT
k 1( ) 'Ik—l Il... Ik_l

. Iklﬂ
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-continued
Ny v,
Subject to: E Z L=l =1 .. Ny,
=0 k7Y
Ny Nicl Njvl N,
E § E k-1
"ZZ‘I jk—l
=0 i 1=0i;1-0 ‘7
fori; =1, ... N;
and 1=2,... k-1
M N
§ k-1 -
Z Zil P =1 1;{_1=1 --Nk—l
=0 ‘4279

z¢ . e{0, 1} for all i...

S L1

Assignment Problem [[3.1]] ({.4) and Problem Formulation
[13.4]] (1.7) differ only in the dimension M vs. M-1, respec-

tively. An optimal solution to [[3.4]] (/.7) is also an optimal

solution to equation [[3.2]] (Z.5). This relationship is the basis
for an 1terative sequence of reductions indicated by steps
320-332 through 330-332 and 200-204 in which the penal-
ized cost function problem is reduced to a [two dimensional]

two-dimensional problem. As these formula will be used to

describe the processing at all levels, the lowercase k 1s used
except where specific reference to the top level 1s needed. In
step 206, the [2-dimensional] two-dimensional penalized cost

function 1s solved directly by the prior art Reverse Auction

technique. Each execution of 206 produces two results, the set

of z* values that minimize the problem and the cost that

results v when these z values are substituted into the objec-
tive function [[3.4]] (1.7) (a).

In step 208, according to the prior art, solution z” values are
substituted into the [2-dimensional] rwo-dimensional deriva-
tive of the surface @.,. The result indicates how the value of u”
should be adjusted so as to perform the hill climbing function.
As was previously described the objective 1s to produce a
sequence of u”, values which ends when the [U” ] u’ , valueis
in the domain of the peak of the surface ®. The section

“Determining Effective Gradient” describes how new values
are computed and how it is determined that the curvent uf
points

u]

to the peak ol @,
flow moves to step 214 which will attempt to recover the
[3-dimensional] three-dimensional solution as previously

. When no further adjustment is required the

described. When further adjustment 1s required then the flow
progresses to step 212 and the new values of U* are computed.
At the [2-dimensional] three-dimensional level the method of
the prior art could be used for the hill climbing procedure.
However, it 1s not practical to use this prior art hill climbing

technique to determine the updated Lagrangian Coellicients
u® or the Max on the next (or any) higher order surface
Dbecause the next (or any) higher dimensional function ©

cannot be defined based on known information.
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&

u]

Instead, the present invention defines a new function based
on known information which is useful for hill climbing from
the third to the fourth and above dimensions, i.e., * values
which result in z values that are closer to the proper z values
for the highest k-dimension. This hill climbing process
(which 1s different than that used in the prior art of FIG. 4 for
recovering only the [three dimensional] three-dimensional
solution) 1s used 1teratively at all lower dimensions k of the
M-dimensional problem (including the [3-dimensionall
three-dimensional level where 1t replaces prior art) even when
k 1s much larger than three. FIG. 6 helps to explain this new
hill climbing technique and illustrates the original k-dimen-
sional cost function v, of Problem Formulation [[3.1]] (.4).
However, the actual k-dimensional cost surface v, defined by
[[3.1]] (/.4) (a) comprises scalar values at each point
described by k-dimensional vectors and as such can not be
drawn. Nevertheless, for illustration purposes only, FIG. 6
1gnores the reality of ordering vectors and illustrates a con-
cave function v(Z") to represent Equation [3.1.] (/.4). The
[v.] surface v, is illustrated as being smooth to simplify the
explanation although actually 1t can be 1magined to be ter-
raced. The goal of the assignment problem is to find the values
of 7*; these values minimize the k-dimensional cost function
V..

For purposes of explanation, assume that in FIG. 6, k=4
(the procedure 1s used for all k<3). This problem is reduced by
two iterations of Lagrangian Relaxation to a [2-dimensional]
two-dimensional penalized cost function (I,(k Di This cost
function, and all other cost functions described below, are
also non-smooth and continuous but are illustrated 1n FIG. 6
as smooth for explanatlen purposes. Solving the @, #=Liprob-
lem results in ene set of z* assignments and the Value of @ -1
at the point u>, - A series of funetlens D, =i , O, i
cach generated from a different u” are ShOWIl The partleular
series 1llustrates the process of locating the peak of @, .
The [2-dimensional] two-dimensional penalized cost func-
tions @ "1, ..., @, “ can be solved directly. Each such
solution provides the mformation required to calculate the
next u” value. Each iteration of the hill climbing improves the
selection of u” values, i.e., yields @~ solution is closer to those
at the solution of the @ The result of solving @, “~ " is values
that are on both ®,_,, and ®, [®,]. FIG. 6 illustrates the
surface O, which comprises the minimums of all k-dimen-
sional penalized cost function surfaces ®,, i.e., if the Problem

Formulations (1.5) and [[3.4]] (I.7) were solved at all pos-
sible values of u* the function @, [k ®,] (w,) would result. The
surface ®, is always less than the [v, ] surface v, except at the
peak as described in Equation [3.5] (/.8) and its maximum
occurs where the [v, ] surface v, is minimum. Because the [®k
the ®, ®, v, surface. The] ®, represents the minimum of the
surface ©,, any point on the surface @, can mapped to the
surface v,. The function ®©, provides a lower bound on the

minimization problem described by [[3.1]] (1.4) (a). Let z* be

the unknown solution to Problem Formulation [[3.1]] (1.4)
and note that:

(Dk(uk)ﬂvk(afk)ﬂvk—l (Zk) [[3.5]] (1.8)
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Consequently, the [z*] values Z* at the peak of @, (i.e., the
greatest lower bound on the cost of the relaxed problem), can
be substituted into the k-dimensional penalized cost function
to determine the proper assignments. Consequently, the
present invention attempts to find the maximum on the [®,]
surtace @,. However, it 1s not possible to use the prior art hill
climbing to hill climb to the peak of ®, definition of [®,]
functions ®@. As the solution of ®*, in that higher order [u]
values of u are not yet optimized, 1ts value can be larger than
the true peak of ¥k lower bound on v, and 1t can not be used
to recover the required solution.

Instead, the present invention defines all auxiliary [func-
tion] functions W, dimensional penalized cost function prob-
lem, lower order z° values and u”* values determined previ-

ously by the reduction process. The W, ®, and 1ts gradient 1s
used for hill climbing to 1ts peak. The [zk] values z* at the peak

of the [W,] into Problem Formulation [[3.2]]}({.5) to deter-

mine the proper assignments. To define the [W,] explicitly
makes the function ®, U* order sets of Lagrangian Coeffi-
cients with the expanded notation: [®, U* U U* W] ® (v~

Taan Juk). Then, a new set of functions W, 1s defined

recursively, using the [®,.] @, s domain:

[[3.6](a)] (1.9)

where v, is the solution value for the most recent [2-dimen-
sional] two-dimensional penalized cost function problem.

For k>3

Ya(u?, ... vt ut) = [[3.6](b)] (.10}
(@ (U ut Tt u®) if known,
4 N
3 k=2, k-1 k :
¥, _((u’, ... , 0" ;0" )+ Z;:._, u; otherwise.
IRZ

From the [definition] definitions of [D, .| D, and v, (Problem
Formulation (1.7) compared with Problem Formulation

[13.21] (1.5)):

Ni
M k-1 i
, U ) = vy (2Z )+Z u;,

i, =0

k.. k+1
O, (u";u ", ...

1t tollows that:

‘1’3(11)_1?2+Zu = O3 (u’; u? uM)Evg(f)

13{]

and with that Equation [3.5] (1.8) is extended to:

T huR)=® e L L uMs

Vk(uk)ﬂvk(uk)

This relationship means that either ®, or W, may be used in
hill climbing to update the Lagrangian Coetficients u. @, is
the preferred choice, however 1t 1s only available when the
solution to Problem Formulation [[3.2]] (1.5) is a feasible
solution to Problem Formulation [[3.1]] (/.4) (as in hill
climbing from the second to third dimension which 1s why

;c(u
[[3.7]) (1.11)
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prior art worked). For simplicity in implementation, the func-
tion W, is defined so that it equals @, when either function
could be used. It is theretore always used, even for hill climb-
ing from the second dimension. The use of the function W
which is based on previously assigned or determined u values
and not higher ovder u values which are not yet determined, is
an important feature of the present invention.

| u

1.2.2. Determining Effective Gradient

After the function W, is defined, the next steps of hill climb-
ing/peak detection are to determine the gradient of the [W, ]}

function W, determine an increasing portion of the gradient

and then move up the [W, ] surface W, in the direction of this
increasing portion of the gradient. As shown in FIG. 6, any
upward step on the [V, the @, U* a. o] surface W,, for
example, to the minimum of the (I) will yield a new set of
values " (to the “left ) that is closer to the 1deal set of values
u* [values] which correspond to the minimum of the [v,]}
function v,. While it is possible to iteratively step up this [¥,}
surface W, with steps of fixed size and then determine 1f the
peak has been reached, the present mnvention optimizes this
process by determining the single step size from the starting
point at the minimum of [®, ] @~ that will j jump to the peak
and then [calculating] calculate the values u* [values] at the
peak. Once the [f. “0”’s] values u at the peak [at] of W, are
determined, then the values u* [values] can be substituted into
Problem Formulation [[3.2]] ({.5) to determine the proper
assignment. (However, 1n a more realistic example, where k 1s
much greater than three, then the values u* [values] at the peak
of the function W along with the [lower order] lower-order
values u* [values] and those assigned and yielded by the
reduction steps are used to define the next higher level func-
tion V. This definition of a higher ovder function W and hill

climbing process are repeated iteratively until WV, the peak of
W, and the values u"* at the peak of W, are identified.) The

Jollowing is a description of how to determine the gradient of

each surface W and how to determine the single step size to

Jump to the peak from the starting point on each surface V.
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[determine the gradient of each W}

Y]

As noted above, each surface W is non-smooth. Therefore,
if a gradient was taken at a single point, the gradient may not
point toward the peak. Therefore, several gradients (a
“bundle”) are determined at several points on the surface W,
in the region of the starting point (1.e., minimum of @, ) and
then averaged. Statistically, the averaged result should point
toward the peak of the surface W,. Wolfe’s Conjugate Sub-
gradient Algorithm ([Wolte75, Wolte79] P. Wolfe. A method
of conjugate subgradients for minimizing non-differentialbe
functions. Mathematical Programming Study, 3:145-173,
1975; P. Wolfe. Finding the nearest point in a polytope. Math-
ematical Programming Study, 11:125-149, 1976) for mini-
mization was previously known in another environment to
determine a gradient of a non-smooth surface using multiple
subgradients and can be used with modification 1n the present
invention. [Wolfe’s algorithm is further described in “A
Method of Conjugate Subgradients for Minimizing Nondii-
ferentiable Functions™ page 147-173 published by Math-
ematical Programming Study 3 1 1975 and “Finding the
Nearest Point 1n a Polytope” page 128-149 published by

Mathematical Programming Study 11 in 1976.] The modifi-
cation to Wolle’s algorithm uses the information generated
for ¥, U™ U2 U*! for calculating the subgradients. The
definition of a subgradient v of W, U™ U** subdifferential set
defined as:

SW, (1)=YveRA +1I(W (UM, . .. U1
WLUR, L LU eI (U-UF) VU'eRY +1)

[(where v’ is the transpose of V)] where v’ is the transpose of

V.

Next, a subgradient vector 1s determined from this func-
tion. Ifz” is the solution of Problem Formulation [[3.2]] (1. 5),
then differentiating ¥, U? U U* U*,,_ evaluating the result
with respect to the current selection matrix z* yields a sub-
gradient vector:

i1 =0 i —1=0 13

( N
1 N,
E k -
. 1— Z Zil?"'ik Ik—l,...
\

The 1terative nature of the solution process at each dimension
yields a set of such subgradients. Except for a situation
described below where the resultant averaged gradient does
not point toward the peak, the most recent set of such subgra-
dients are saved and used as the “bundle” for the peak finding
process for this dimension. For example, at the [k] level %
there 1s a bundle of subgradients of the surface W, near the
minimum of the [®,] surface @, determined as a result of
solving Problem Formulation [[3.1]] (Z.4) at all lower levels.
This bundle can be averaged to approximate the gradient.
Alternately, the previous bundle can be discarded so as to use
the new value to mitiate a new bundle. This choice provides a
way to adjust the process to differing classes of problems, 1.¢.,
when data 1s being dertved from two sensors and the relax-
ation proceeds from data dertved from one sensor to the other
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then the prior relaxation data for the first sensor could be
detrimental to performance on the second sensors data.

1.2.3. Step Size and Termination Criterion

After the average gradient of the surface W, is determined,
the next step 1s to determine a single step that will jump to the
peak of the surface W,. The basic strategy is [to] first o
specily an arbitrary step size, and then calculate the value of
W, at this step size in the divection of the gradient. If the W,
value of W, is larger than the previous one, this probably
means that the step has not yet reached the peak. Conse-
quently, the step size is doubled and a new [W, ] value of W, is
determined and compared to the previous one. This process 1s
repeated until the new value of W, is less than the previous
one. At that time, the step has gone too far and crossed over
the peak. Consequently, the last doubling 1s rolled-back and
that step size 1s used for the 1teration. If the mitial estimated
W, is less than previous value then the step size 1s decreased
by 50%. If this still results 1n a smaller value of W, then the
last step 1s rolled back and the previous step size 1s decreased
by 25%. The following 1s a more detailed description of this
Process.

With a suitable bundle of subgradients determined as just
described],]. Wolte’s algorithm can be used to determine the
effective subgradient [(d)] 4 and the [Upgraded] upgraded

value U‘I‘}+ ,. From the previous iteration, or from an 1nitial

condition, there exists a step length value [(t)] . The value,

_ Kk
u,=u"+td

1s calculated as an estimate of u;‘}+ .. To determine 1f the
current step size is valid the we evaluate ¥, u® u*~*u, If the
result represents an improvement then we double the step
s1ze. Otherwise we halve the step size. In either case anew u_
1s calculated. The doubling or halving continues until the step
becomes too large to improve the result, or until 1t becomes
small enough to not degrade the result. The resulting suitable
step size 1s saved with d as part of the subgradient bundle. The
last acceptable u, 1s assigned to u;‘_}+ -

Three distinct [criterion] criteria are used to determine
when u‘z‘} is close enough to u”:

1. The Wolle’s algorithm criterion of d=0 given that the test
has been repeated with the bundle containing only the
most recent subgradient.

2. The difference between the lower bound @, u* upper
bound v, (z*, u"k) being less than a preset relative thresh-
old. (S1x percent was found to be an effective threshold
for radar tracking problems.)

3. An 1teration count being exceeded.

The use of limits on the 1teration are particularly effective
for iterations at the level 3 through (n-1 [levels,]) as these
iterations will be repeated so as to resolve higher order coet-
ficient sets. With limited iterations the process 1s 1n general
robust enough to improve the estimate of upper order
Lagrangian Coetlicients. By limiting the iteration counts then
the total processing time for the algorithm becomes determin-
istic. That characteristic means the process can be effective
for real time problems such as radar, where the results of the
last scan of the environment must be processed prior to the
next scan being received.

1.2.4. Solution Recovery

The following process determines if the u* values at what is
believed to be the peak of the function W, adequately approxi-
mate the u* values at the peak of the corresponding [®,]
function @, . This 1s done by determining 1f the corresponding
penalized cost function is minimized. Thus, the u* values at
the peak of the function W, are first substituted into Problem
Formulation [[3.2]] (/.5) to determine a set of z assignments
for k—1 points. During the foregoing reduction process, Prob-
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lem Formulation [[3.4]] (/.7) yielded a tentative list of k
selected z points that can be described by their indices as:
(7...7 k_l)}NO where N, is the number of cost elements
selected 1nto the solution. One possible solution of Problem
Formulation [[3.1]] ({.4) is the solution of Problem Formu-
lation [[3.2]] ({.5) which is described as {(,.. .7, ,m",. ..
i)} = [[3.3]] (.6). If this solution satisfies the [k-thj e
constraint set, then it 1s the optimal solution.

However, if the solution for Problem Formulation [[3.2]]
(1.5) 1s not feasible (decision 355), then the following adjust-
ment process determines i a solution exists which satisfies
the [k-th] #” constraint while retaining the assignments made
in solving Problem Formulation [[3.4]] ({.7). To do this, a
[2-dimensional] #two-dimensional cost matrix is defined
based upon all observations from the [k-th] #” set which
could be used to extend the relaxed solution].].

. for 1 =10, ...
hﬂ = le’___ a1l and J — 0’

, Ny
, No.

[[3.8]] (1.12)

If the resulting [2-dimensional] swo-dimesional assignment
problem,

ND Nl [[39]] (1!3)
Minimize [:] Zzhﬂwﬂ
=0 {=0
Ny
Subject to: Zwﬂzl i=1,...,No,
=0

Ni
1) wa=1j=1..,Ng
{=0

wiye{0,1} j=0,... ,No,1=0, ..., N,

has a feasible solution, then the indices of that solution map to
the solution of Problem Formulation [[3.1]] (/.4) for the
k-dimensional problem. The first index 1n each resultant solu-
tion entry is the pointer back to an element of the {(¥,, . . .
V,_m", ... ik_l)}Nﬂ -1 list. That element supplies the first k-1
indices of the solution. The second index of the solution to the
recovery problem is the k”” index of the solution. Together
these indexes specify the values of Z* that solve Problem
Formulation [[3.1]] (.4) at the k™ level.

If Problem Formulation [[3.9]] ({.13) does not have a fea-
sible solution, then the value of uki which was thought to
represent ukp 1s not representative of the actual peak and
further iteration at the k™ level is required. This decision
represent the branch path from step 214 and equivalent steps.

I.3. Partitioning

A partitioning process 1s used to divide the cost matrix that
results from the Scoring step 154 mto as many independent
problems as possible prior to beginning the relaxation solu-
tion. The partitioning process 1s included with the Problem
Formulation Step 310. The result of partitioning 1s a set of
problems to be solved, 1.e., there will be p, problems that
consist of a single hypothesis, p, problems that consist of two
hypothesis, etc. Each such problem 1s a group in that one or
more observations or tracks are shared between members of
the group.

In partitioning to groups no consideration 1s given to the
actual cost values. The analysis depends strictly on the basis
ol two or more cost elements sharing the same specific axis of
the cost matrix. In a [2-dimensional] two-dimensional case
two cost elements must be in the same group if they share a
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row or a column. If the two elements are in the same row, then
each other cost element that 1s also 1n the same row, as well as
any cost elements that are 1n columns occupied by members
of the row must be included 1n the group. The process con-
tinues recursively. In literature 1t 1s referred to as “Construct-
ing a Spanning Forest.” The k-dimensional case 1s analogous
to the [2-dimensional] two-dimensional case. The specific
method we have incorporated 1s a depth first search, presented

by Aho, Hopecraft, and Ullman (4. ¥, Aho, [in “Design] J. E.
Hopcroft, and J. D. Ullman. Design and Analysis of Com-
puter Algorithms|.” section 5.2, published by Addison-West-

ley] Addison-Wesley, Mass., 1974).

The result of partitioning at level M 1s the set of problems
described as {szli:L 5D, and j=1, ... N}, where N is the
total number of hypothesis. The problems labeled [{P,;,—
1,...,p;andj=1,...,N}]J{P,,|=1,..., p,arethecases where
[their] /ere 1s only one choice for the next observation at each
scan and that observation could be used for no other track, 1.e.,
it 1s a single 1solated track. The hypothesis must be 1n included
in the solution set and no further processing 1s required.

As [hypothesis] 2ypotheses are constructed the first ele-
ment is used to refer to the track [id] /D. Any problem in the
partitioned set which does not have shared costs 1n the first
scan represent a case where a track could be extended 1n
several ways but none of the ways share an observation with
any other track. The required solution hypothesis for this case
1s the particular hypothesis with the maximum likelihood. For
this case all likelihoods are determined as was described 1n
Scoring and the maximum 1s selected.

In addition to partitioning at the [M] level M, partitioning is

applied to each subsequent level M-1, . . ., 2. For each
problem that was not eliminated by [either by] the prior
selection, partitioning 1s repeated, 1ignoring observations that
are shared in the last set of observations. Partitioning recog-
nizes that relaxation will eliminate the last constraint set and
thus partitioning 1s feasible for the lower level problems that
will result from relaxation. This process 1s repeated for all
levels down to k=3. The full set of partitionings can be per-
formed 1n the Problem Formulation Step 310, prior to 1niti-
ating the actual relaxation steps. The actual [2-dimensional]
two-dimensional solver used 1n step 206 includes an equiva-
lent process so no advantage would be gained by partitioning
at the k=2 level.
There are two possible solution methods for the remaining
problems. “Branch and Bound” as was previously described,
or the relaxation method that this invention describes. If any
of the partitions have 3-10 possible tracks and less than 50 to
20 hypotheses, then the prior art “Branch and Bound” algo-
rithm generally executes faster than does the relaxation due to
its reduced level of startup overhead. The “Branch and
Bound” algorithm 1s executed against all remaining M level
problems that satisiy the size constraint. For the remainder
the Relaxation algorithm 1s used. The scheduling done in
Problem Formulation allows each Problem Formulation
[13.2]] (1.5) cost matrix resulting from the first step of relax-
ation to be partitioned. The resulting partitions can be solved
by any of the four methods],]. isolated track direct inclusion,
isolated track tree evaluation, small group “Branch and
Bound” or an additional stage of relaxation as has been fully
described.

The partitioning after each Level of Lagrangian Relaxation
1s effective because when a problem 1s relaxed, the constraint
that requires each point to be assigned to only one track 1s
climinated (for one 1image at a time) . Therefore, two tracks
previously linked by contending for one pomnt will be
unlinked by the relaxation which permits the point to be
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assigned to both tracks. The fruitfulness of partitioning
increases for lower and lower levels of relaxation.

The following 1s a more detailed description of the parti-
tioning method. Its application at all but the [M] level M
depends upon the relaxation process described 1n this mven-
tion. The recursive partitioning 1s therefore a distinct part of
this invention. The advantage of this method i1s greatly
enhanced by the sparse cost matrix resulting from tracking
problems. However the sparse nature of the problem requires
special storage and search techniques.

A hypothesis 1s the combination of the cost element ¢, the
selection variable z, and all observations that made up the
potential track extension. It can be written as, [h, ={c,, 7.

lo,=okilk=1, , . .., Mieql, . . . , Nkj}}] &,={c, z,
lo, =0, lk=1, ... Mgyl ..., Nt} e, cost, selection
variable and observations in the hypothesis. [ne{l, ..., N}]

Herenell,... K N}, whereN is the total number of hypotheses
in the problem. While the cost and assignment matrices were
previously referenced. these matrices are not elfective storage
mechanisms for tracking applications. Instead the list of all
hypothesis and sets of lists for each dimension that reference
the hypothesis set are stored. The hypothetical set 1n list form
1S:

n+N

n=1

ih,,

For each dimension k=1M there exists a set of lists, with
cach list element being a pointer to a particular hypothesis:

ka:{li’kju‘&':l: e :Nki}i:Nk’k:MFuFl

where N, is a number of hypothesis containing the [i-th] i””
observation from scan k. This structure is a multiply linked
list 1n that any observation 1s associated with a set of pointer
to all hypothesis i1t participates in, and any hypothesis has a set
of pointers to all observations that formed 1t. (These pointers
can be implemented as true pointers or indices depending
upon the particular programming language utilized.)

Given this description of the matrix storage technique then
the partitioning technique 1s as follows: Mark the first list L,
and follow out all pointers 1n that list to the indicated hypoth-l
esis h,, fori=1, ..., [N,] N, . Mark all located hypothesis,
and for each follow pointers back the particular [L_,] L, for
k=1, ..., M. Those L’s 1f not previously marked get marked
and also followed out to hypothesis elements and back to L’s.
When all such L’s or h’s being located are marked, then an
1solated sub-problem has been i1dentified. All marked ele-
ments can be removed from the lists and stored as a unique
problem to be solved. The partitioning problem then contin-
ues by again starting at the first residual [L] set L. When none
remain, the original problem 1s completely partitioned.

Isolated problems can result from one source track having
multiple possible extensions or from a set of source tracks
contending for some observations. Because one of the indices
of k (in our implementation it is k=1) [indicate] indicates the
source track then 1t 1s possible to categorize the two problem
types by observing 11 the 1solated problem includes more than
one L-list from the index level associated with tracks.

I1.4. Subsequent Track Prediction

As noted above, after the points are assigned to the respec-
tive tracks, some action 1s taken such as controlling take-oils
and landings to avoid collision, advising airborne aircrait to
change course, warning airborne aircraft of an adjacent air-
craft 1n a commercial environment, or aiming and firing an
anti-aircraft (or anti-missile) missile, rocket or projectile, or
taking evasive action in a military environment. Also, the
tracking can be used to position a robot to work on an object.
For some or all of these applications, usually the tracks which
have just been 1dentified are extended or extrapolated to pre-
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dict a subsequent position of the aircrait or other object. The
extrapolation can be done 1n a variety of prior art ways: for
example, straight line extensions of the most likely track
extension hypothesis, parametric quadratic extension of the x
versus time, y versus time, etc. functions that are the result of
the filtering process described earlier, least square path fitting
or Kalman filtering of just the selected hypothesis.

The process of gating, filtering, and gate generation as they
were previously described require that a curve be fit through

observations such that {it of observations to the likely path can
be scored and further so that the hypothetical target future
location can be calculated for the next stage of gating. In the
implementation existing, quadratic functions have been {it
through the measurements that occur within the window. A
set of quadratics 1s used, one per sensor measurement. To
calculate intercept locations these quadratics can be con-
verted directly into path functions. Intercept times are then
calculated by prior methods based upon simultaneous solu-
tion of path equations.

The use of the fitted quadratics 1s not as precise as more
conventional filters like the Kalman Filter. They are however
much faster and sufliciently accurate for the relative scores
required for the Assignment problem. When better location
prediction 1s required then the assignment problem 1s
executed to select the solution hypothesis and based upon the
observations 1n those hypothesis the more extensive Kalman
filter 1s executed. The result 1s tremendous computation sav-
ings when compared with the Kalman Filter being run on all
hypothetical tracks.

Based on the foregoing, apparatus and methods have been
disclosed for tracking objects. However, numerous modifica-
tions and substitutions can be made without deviating from
the scope of the present invention. For example, the foregoing
functions W can also be defined as rvecursive approximation
problem in which several values of higher order u* values are
used to eliminate the higher than approximation characteris-

tic of the [®,]

O, |

unction ©,. The hill climbining of the function W can be
i g

implemented by a high ovder hill climbing using the enhanced

function ®©. Although the result would not be as efficient it
seems likely that the method would converge. Therefore, the
invention has been disclosed by way of example and not
limitation, and reference should be made to the following
claims to determine the scope of the present invention.

II. AN ALTERNATIVE EMBODIMENT OF THE
MULTI-DIMENSIONAL ASSIGNMEN'T
SOLVING PROCESS

The following description provides an alternative second
embodiment of the multi-dimensional assignment solving
process of section I.1. However, 1n order to clearly describe
the present alternative embodiment, further discussion 1s first
presented regarding the data assignment problem of partition-
ing measurements nto tracks and false alarms and, 1n par-
ticular, the representation of multi-dimensional assignment
problems.

I1.1. Formulation of the Assignment Problem

The goal of this section 1s to explain the formulation of the
data association problems, and more particularly multi-di-
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mensional assignment problems, that govern large classes of
problems 1n centralized or hybrid centralized-sensor level
multisensor/multitarget tracking. The presentation 1s brief;
technical details are presented for both track initiation and
maintenance in (A. B. Poore[, Multi-dimensional]. Multidi-
mensional assignment formulation of data association prob-
lems arising from multitarget tracking and multisensor data
fusion[,]. Computational Optimization and Applications, 3
[(1994), pp.])- 27-57, for [nonmaneuvering] ron-maneuver-
ing targets and in [Ingmar J. Cox, Pierre Hansen, and Beta
Julesz, eds., Partitioning Data Sets,] (4. B. Poore. Multidi-
mensional assignments and multitarget tracking: Partition-
ing data sets. In P. Hansen, 1. J. Cox, and B. Julesz, editors,
DIMACS Series 1 Discrete Mathematics and Theoretical
Computer Science, volume 19, pages 169-198, Providence,
R.1., 1995. American Mathematical Society[, Providence,
R.I.,v.19, Feb. 1995, pp. 169-198]) for maneuvering targets.
Note that the present formulation can also be modified to
include target features (e.g., size and type) mto the scoring
process 1354.

The data assignment problems for multisensor and multi-
target tracking considered here are generally posed as that of
maximizing the posterior probability of the surveillance
region (grven the data) according to

P =vy|Z") 11 2.1)

Maximize{ B =0 70

} [[5.
v el™¢,

where Z represents M data sets, v is a partition of indices of
the data (and thus induces a partition of the data), I'* is the
finite collection of all such partitions, 1’

[*v°]
I is a discrete random element defined on I'* v’ is a reference
partition, and P(I'=y1Z") is the posterior probability of a
partition y true given the data Z*. The term partition is defined
below.

Consider M observation sets Z(k) (k=1, ..., N)eachof N,

observations {z", }"*%, -1, and let Z* denote the cumulative data
set defined by

z(k)={z", V%, -1 and ZV={Z(1), ..., Z(M)}, [5.2]

respectively. In multisensor data fusion and multitarget track-
ing the data sets Z(k) may represent different classes of
objects, and each data set can arise from different sensors. For
track initiation the objects are measurements that must be
partitioned into tracks and false alarms. In the formulation of
track extensions a moving window over time of observations
sets 15 used. The observation sets will be measurements which
are: (a) assigned to existing tracks, (b) designated as false
measurements, or (¢) used for ini1tiating tracks. However, note
that alternative data objects 1nstead of observation sets may
also be fused such as in sensor level tracking wherein each
sensor forms tracks from its own measurements and then the
tracks from the sensors are fused 1n a central location. Note
that, as one skilled 1n the art will appreciate, both embodi-
ments of the present invention may be used for this type of
data fusion.

The data assignment problem considered presently 1s rep-
resented as a case of set partitioning defined in the following
way. First, for notational convenience 1n representing tracks,
a zero index 1s added to each of the index sets in [[5.2]] (2.2),
a gap filler Z*_ is added to each of the data sets Z(k) in [[5.2]]
(2 2),and a “track of data” is defined as (z' - ZN ), Where

i, [and z*; ] can now assume the values of 0 [and 7", respec-
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tively]. A partition of the data will refer to a collection of

tracks of data or track extensions wherein each observation
occurs exactly once 1 one of the tracks of data and such that
all data 1s used up. Note that the occurrence of the gap filler 1s
unrestricted. The gap filler z° serves several purposes in the
representation of missing, data, false observations, initiating
tracks, and terminating tracks. Note that a “reference parti-

tion” may be defined which 1s a partition 1n which all obser-

vations are declared to be false.

Next under appropriate independence assumptions it can
be shown that:

Pr=y|zZ" _ [[5.3]] (2.3)
where Lkl.l_ i, 18 alikelihood ratio containing probabilities for

detection, maneuvers, and termination as well as probability
density functions for measurement errors, track initiation and

Y e E k
termination. Then if ¢ ; ~—Inl*, s

P =v|ZM) [[5.4]] (2.4)

—In =

P =12ZY)

Z Cij...iy-

((]2een Hipg )EY

[Using [5.3] and the zero-one variable z‘i"‘}1 =11 (1, ...,
iro)]
[ € ¥ [5.5
® Y
O
Ny Nig
Y ¢ é Cil IMZEI... I
TE
No N g
y % Z Zfl. IM_I:- 1 (I)l
=0 ‘M7
—1 N+l
(c) E E g Z i =5
=0 i =Oigg =0 MO
fory, =1,... ,Npandk=2,... 'M-1,
ZNI Nig-1
(d) Z Zil ' _lalM_la BNMB
-0 ‘N-170
(e) Zii... iy €10, 1} forall 1y, ..., 1y ]
. : k_71 -
Using (2.3) and the zero-one variable z, — ,"=I if

G

(2.1) as the following M-dimensional assignment problem (as

1,,)€Y and 0 otherwise, one can then write the problem

also presented in section Problem Formulaion (1.4) with

k=M):
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(@) Minimize E Z Ciy o+ ipg Zi Y
i1 =0 =0
Ny Nys
(b) Subject to: E Z Tip-or iy = {, iy =1 , N,
=0 g =0
Ny Ne—1 Nt N
(C) E E E . Z Zfl. i — 1,
i1=0 o1 =0i, =0 ‘M7
for iy =1,... Nyand k=2,... ,M—-1
M N1
(d) E o > Ty gy = Loy =1 Ny,
=0 tig—1=0
(e) Zig e iy e {0, 1} for all iy, ... | iy

wherec_ _isarbitrarily definedto be zero. Here, each group
of sums in the constraints [[5.5] (b)-[5.5] ()] (2.5) (b)-(2.5)

(e) represents the fact that each non-gap filler observation
occurs exactly once in a “track of data.” One can modify this
Jormulation to include multiassignments of one, some, or all
the actual observations. The assignment problem [[5.5]] (2.5)
is changed accordingly. For example, y‘ Zk is to be assigned
no more than, exactly, or no less than n”, nmes then the “=1"
in the appropriate one of the Comrmmrs [3.5(b)-/5.5] (d) is
changed to “=, =, = n‘i " respectively.

Expressions for the likelihood ratios Lk . [suchas[5.5]]
appearing inthe costsc; , =—In(L; ) are [well known]
well-known. In particular, discussions of these ratios may be
found in[:] (A.B. Poore|, Multi-dimensional). Multi-dimen-
sinal assignment formulation of data association problems
arising from multitarget tracking and multisensor data fusion,
Computational Optimization and Applications|, 3 (1994), pp.
2'7-57; and Ingemar J. Cox, Pierre Hansen, and Beta Julesz,
eds., Partitioning Data Sets,], 3:27-57, 1994, A. B. Poore.
Multidimensional assignments and multitarget tracking: Par-
titioning data sets. In P. Hansen, 1. J. Cox, B. Julesz, editors,
DIMACS Series 1 Discrete Mathematics and Theoretical
Computer Science, volume 19, pages 169-198, Providence,
R.1., 1995. American Mathematical Society[, Providence,
R.I.v. 19, 1995. pp. 169-198.]) Furthermore, the likelihood
ratios are easily modified to include target features and to
account for different sensor types. Also note that in track
initiation, the M observation sets provide observations from
M sensors, possibly all the same. Additionally note that for
track maintenance, a sliding window of M observation sets
and one data set containing established tracks may be used. In
this latter case, the formulation 1s the same as above except
that the dimension of the assignment problem 1s now M+1.

I1.2. Overview of the New Lagrangian Relaxation Algo-
rithms

Having formulated an M-dimensional assignment problem
[15.5]] (2.5), we now turn to a description of the Lagrangian

relaxation algorithm. Subsection 11.2.1 below presents many

of the relaxation properties associated with the relaxation of

an n-dimensional assignment problem to an m-dimensional
one via a Lagrangian relaxation of n-m sets of constraints
wherein [m<n<M] m<r=M and preferably in the present
invention embodiment n—m>1. Although any n-m constraint
sets can be relaxed, the description here 1s based on relaxing
the last n-m sets of constraints and keeping the first m sets.
(iven either an optimal or suboptimal solution of the relaxed
problem, a technique for recovering a feasible solution of the
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n-dimensional problem 1s presented in subsection 11.2.2
below and an overview of the Lagrangian relaxation algo-
rithm 1s given 1n subsection 11.2.3.

The following notation will be used throughout the remain-
der of the work. Let M be an integer such that M=3 and let
ne{3, ... ,M}. The n-dimensional assignment problem is

[[6.1]] (2.6)

Ny N,
(a) Minimize Vn(2) = E Ly
. i, =0
1120
(b) Subject to [:] E Z 2 o=Li=1 .. N
1, =0
12 =0
—1 Mg+l
© > Z D, XA
Il =0} Ik 1= D‘Ek-l—l ={) IH_D
fory, =1,... Ny and k=2,... ,n—-1,
(d) E =1,11 =1, ... ,N,,
i1=0 fn— l =0
(e) z‘fl___ ;€ {0, 1} for all 14, ... , 1,

To ensure that a feasible solution of [[6.1]] (2.6) always
exists, all variables with exactly one nonzero index (i.e.,
variables of the formz”, ~ , , = ,tor1=0)areassumed free
to be assigned and the corresponding cost coelficients are
well-defined.

II 2.1. The Lagrangian Relaxed Assignment Problem

The n-dimensional assignment problem [[6.1]] (2.6) has n
sets of constraints. A (N;+1)-dimensional multiplier vector
associated with the [k-th] #” constraint set will be denoted by
u =", v*,, ..., uv"M,)" with u*,=0 and k=1, . . ., n. The
n-dimensional assignment problem [[6.1]] (2.6) is relaxed to
an m-dimensional assignment problem by incorporating n-m
of the n sets of constraints into the objective function [[6.1]]
(2.6) (a). Although any constraint set can be relaxed, the
description of the relaxation procedure for [[6.1]] (2.6) will
be based on the relaxation of the last n-m sets of constraints.
The relaxed problem 1s

D, (WL U™ = Minimize @ (27 0™, L UuY) = [[6.2]] (2.7)
N N,
H H
E . Ciy o inZiy. iy F
i=0 n70
n_ N Ni+1
k _
f=m+1 I.kZD .El =0 Ik 1 D‘Eﬁ(+l =0 IH_D
N
1 Nn - Ny,

n k
IEDY D I D ST
0 oot k=m+1 k=m+1 i, =0

Subject to: E Z iy =1,1, =1, ... , Ny,

in=0 in=0
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-continued
—1 N+l
E E E Zfl -—lfDI‘lk—l :
0 i1 =0iggr =0 70

N, and k=2,... ,m,z’

jl... i’-”

e {0, 1} tor all 1y, ...

, ].H ]

wherein we have added the multiplier u*,,=0 for notational
convenience. Thus, the multiplier R with u*,=0 is fixed.

An optimal (or suboptimal) solution of [[6.2]] (2.7) can be
constructed from that of an m-dimensional assignment prob-
lem. To show this, def 1ne f or each (1,, . . ., 1, ) an 1ndex

(jfﬂ+lf‘ "‘5.];!1) (]m+l(ll .. ) "'5jﬂ(i1:"':im)) alldanew
cost function ¢” I by

in

. . | [[6.3]] (2.8)
[(.)’m—l—la--- a,]n):argnuﬂdc?_”j + Z 1 :0,
k=m+1
N, and k=m+1, ... ,n}
C?;. i =C:11 il e dn T Z fﬂf (1, ... 1) #
k=m+1
©, ... ,0)
N+l
co o= E E Minimum
1 =Y =0
{0 CO... iy ig T Z }
k=m+1
ItrGg,..,s-..,1,10)1s not unique, choose the smallest such

1.1, amongst those (n-m)-tuples with the same j, , , choose
the smallest 7, .., etc., so that (3__,, . . ., 1,,) 1s uniquely
defined.) Using the cost coellicients defined 1n this way, the
following m-dimensional assignment problem is [obtalned]
obtained:

m”(um+l 5 uﬂ) — Minimize éﬁmn(zm; um—l—l’ o uﬂ) — [[64]] (29)
Vm(z )_ E Z 11 .. im 11...Em
="
Subject to: E 2 Zj, . l.iy =1, ... ,
=0
12 )
Neel
E E E Z Zi i = s
=T A e O
fory =1,... Ny and k=2, ... ,m—-1,
M Nin—1
E Z 77 =1,... N,
i1=0 im—1=0
Z) i €10, 1) for all 1y, ..., 1y,
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As an aside, observe that any feasible solution z” of [[6.1]]
(2.6) yields a feasible solution z” of [[6.4]] (2.9) via the
construction

1 1tz . =1 for some (1,01, -+ » 1)

. IH_IIH

otherwise.

Thus, the mn-dimensional assignment problem [6.4]] (2.9)
has at least as many feasible solutions of the constraints as the
original problem [[6.1]] (2.6).

The following Fact A.2 has been shown to be true. It states
that an optimal solution of Problem Formulation [[6.2]] (2.7)
can be computed from that of Problem Formulation [[6.4]]
(2.9). Furthermore, the converse to this fact 1s provided 1n
Fact A.3. Moreover, 1f the solution of either of these two
problems [[6.2]] (2.9) or [[6.4]] (2.0) is e-optimal (i.e., the
objective Tunction associated with the suboptimal solution 1s
within “€”, of the objective function associated with the opti-
mal solutlon), then so 1s the other.

Fact A.2. Let w” be a feasible solution to problem [[6.4]]
(2.9) and define w” by

Wiy =Wy 3 et oo 530 = Uy - 5 J,) and [[6.53]] (2.10)
(ila--- ﬁ]'m)¢(0!‘ !'0)
Wi i, =0 if (pprys evr 1) F(iys -+ J,) and
Gy, ... L1, # O, ... ,0)
0... Oippy =1 T Z uf <0
k=m+1
W0, 00, q... iy =0 1 T Z uj > 0.
f=m+1

Then w” 1s a feasible solution of the Lagrangian relaxed
problem [[6.2]] (2.7) and

(I)mnYH m+ln (I) Wm um+l

i

n Mic _ k
2 a1 OU

If, in addition, w™ is optimal for [[6.4]] (2.9), then W” is an
optimal solution of [[6.2]] (2.7) and

m+l 1 5 il 1 1 ALk fig
(I)mnY (I)mn(u yenes U )_2 }’-'c=m+12 I"IC_DU iL

R

With the exception of one equality being converted to an
inequality, the following Fact 1s a converse of Fact A.2 and has
also been shown to be true.

Fact A.3. Let w” be a feasible solution to problem [[6.2]]
(2.7) and define W™ by

WP = [[6.61] (2.11)

Nt 1 Ny

E Z w‘?l___jn for (1, ,1,,) £ (0, ..., 0),

i1 =Y =0
wo o =01f (11, ... ,1,)=(0,... ,0) and
W00, (i T Z 11}1 >0 tor all (pyrs .o 5 1)

k=m+1

wo o=11f (11, ... ,1,)=(0,... ,0) and

¥l & . .
€O 0ippypy..in T Z u; < U for some (i1, .. 5 1n).

k=m+1
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Then w™ is a feasible solution of the problem [[6.4]] (2.9) and

G (W™ w2 d, (W

u)_ZHZZ*r

f=m+1 Ik—ﬂ

If, in addition, w” is optimal for [[6.2]] (2.7), then w™ is an
optimal solution of [[6.4]] (2.9), @, v """

- 7, m+l 7] 7] AE k
mn(w » U )_2 f-c=m+12 I';C_Du i} and
H+]. n
D,,..Y
T m+l e r A} k
mn(u .» U )_E Fc=m+lz r'k_Du ip"

I1.2.2. The Recovery Procedure

The next objective 1s to explain a recovery procedure or
method for recovering a solution to the n-dimensional prob-
lem of [[6.1]] (2.6) from a relaxed problem having potentially
substantially fewer dimensions than [[6.1]] (2.6). Note that
this aspect ol the alternative embodiment of the present inven-
tion 1s substantially different from the method disclosed in the
first embodiment of the multi-dimensional assignment solv-
ing process of section 1.1 of this specification. Further, this
alternative embodiment provides substantial benefits 1n terms
of computational efficiency and accuracy over the first
embodiment, as will be discussed. Thus, given a feasible
(optimal or suboptimal) solution w” of [[6.4]] (2.9) (or w" if
Problem Formulation [[6.2]] (2.7) is constructed via Fact
A.2), an explanation 1s provided here regarding how to gen-
erate a feasible solution z” of [[6.1]] (2.6) which is close to w"™
in a sense to be specified. We first assume that no variables 1n
[[6.1]] (2.6) are preassigned to zero (this assumption will be
removed shortly). The difficulty with the solution w” 1s that 1t
need not satisfy the last n-m sets of constraints in [[6.1]] (2.6).
Note, however, that if w™” is an optimal solution for [[6.4]]
(2.9) and w” (constructed as 1n Fact A.2) satisfies the relaxed

constraints, then w” is optimal for [[6.1]] (2.6). The recovery
procedure described here i1s designed to preserve the 0-1
character of the solution w” of [[6.4]] (2.9) as far as possible.
Thatis,1tw™, .. .1_=1 and 11w=0 for at leastone 1=1, ..., m,
then the cerrespendlng feasible solution z* of [[6. 1]] (2 @ 1S
constructed so that z”, . . . 1,=1 for some (1,,,,, . . . ,1,,). Note
that by this reasoning, varlables ofthetormz”, ,, ~ , can
be assigned to a value of 1 in the recovery preblern enly 11
W 1. However, variables z°, o, ~ , will be treated
dlfferently in the recovery procedure in that they can be
asmgned O or 1 independent of the value w”, . This
increases the feasible set of the recovery problem, leadlng to
a potentially better solution.

Let {(,,....,7,)}"_, beanenumeration of indices of w"™
(or the first m 1nd1ees ef w1 constructed as 1n Fact A. 2) such
thatw LY and (7, ..., 7, )=(0,...,0).Set(i’,, ...

° )= (O ., 0) fer 1=0 and deﬁne

eﬁ_mjl o= [fori, =0, ... , [16.7]] (2.12)
- n Floimigma] -in

Ne;k=m+1,... ,n;3=0,... , Ng.]

for iy =0 ... ,Nyyk=m+1,... , n

i=0 ..., N,
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LetY denote the solution of the (n—m+1)-dimensional assign-
ment problem:

N1 [[6.8]] (2.13)
n—m—l—l
Minimize E E Chi o yin Vi1
=0 =0 jn_ﬂ
Nt 1 Nom
Subject to E Z Vi, 1oy = l,1=1, ... , Ny,
by, =0
bt ] =0 4
N+ 1 Np—1 Nyl
:|:| :l:l Zyﬂm+llﬂ="'
1y, =0
J=0 i =0 i =iy =0
fory =1,... Ny and k=m+1,... ,n—1,
N+ 1
lel Zyﬂm+l 111:"'
J=0 By =0 'm—1=
1, =1, ... , N,,,
Vi o foin © {0, 1} for all 1, 1,40, ... . 1.

The recovered feasible solution z” of [[6.1]] (2.6) correspond-
ing to the multiplier set {u™, . .., u”} is then defined by

[16.9]] (2.14)

, 1) for some

o1, =1,

i) = (i, ...
» No and Yy |

(1, if @, ...
Z: = 1=0, ...

Il...ln

|0, otherwise.

This recovery procedure 1s valid as long as all cost coetli-
cients ¢” are defined and all zero-one variables 1n z” are free to
be assigned. Note that modifications are necessary for sparse
preblenls If the cost coefficient [¢™,. . .¥ ]

m1m+l
[Z : m m+l

; ;I - ; 1s well defined and the zero-oné Vanabfe
1 i, ; /n1s free to be assngned
{0 7ero or one, then define ¢
i asin [[6.7] ] 11 (2.12) with zZ*=™*

71 wﬂ _
.. =Cn,
i belng free to be
ek
asmgned Otherwise, Z°~"*"

T, IJm mi+1-

i 18 preasmgnedte zero. To
iH
ensure that a fe351b1e selu‘[len ex1sts we now only need

ensure that the variables z/~""** Jo..0are free tor1=0,1,...,N,.

assigned) and all coelficients of the form ¢, ; , are well
defined fork=1, ... ,n. )This 1S aeeemplished as follows. If the
cost eeefﬁelen‘[ c” Jz] : Jo..o 18 well detined and 77, 3,5
i 1o o 18 free, then define ¢ m”ﬁ 0" 15 Y _0...0with
A 0.0 being free. Otherwise, since all Varlables of the
form 7", , ... 0 are known teasible and have well-defined

costs, put

I1.3. The Multi-Dimensional Lagrangian Relaxation Algo-
rithm for the n-Dimensional Assignment Problem

Starting with the M-dimensional assignment problem
[[6.1]] (2.6), 1.e., n=M, the algorithm described below is
recursive 1n that the M-dimensional assignment problem 1s
relaxed to an m-dimensional problem by incorporating (n-m)
sets of constrains 1nto the objective function using
Lagrangian relaxation of this set. This problem 1s maximized
with respect to the Lagrange multipliers, and a good subop-
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timal solution to the original problem 1s recovered using an
(n—m+1) -dimensional assignment problem. Each of these
two (the m-dimensional and the (n-m+1) -dimensional
assignment problems) can be solved 1n a similar manner.
More precisely, reference 1s made to FIG. 8 which presents
a flowchart of a procedure embodying the multi-dimensional
relaxation algorithm, referred to immediately above. This

procedure, denoted MULTI, ; DIM_RELAX i FIG. 8, has
three formal parameters, n, PROB_FORMULATION and
ASSIGNMT_ _SOLUTION, which are used to transfer infor-
mation between recursive instantiations of the procedure. In
particular, the parameter, n, 1s an mput parameter supplying
the dimension for the multi-dimensional assignment problem
(as in [[6.1]] (2.6)) which is to be solved (i.e., to obtain an
optimal or near-optimal solution). The parameter.
PROB_FORMULATION, 1s also an input parameter supply-
ing the data structure(s) used to represent the n-dimensional
assignment problem to be solved. Note that PROB_FORMU-
LATION at least provides access to the cost matrix, [cnu”],
and the observation sets whose observations are to be
assigned. Additionally, the parameter, ASSIGNMT_SOLU-
TION, 15 used as an output parameter for returning a solution
of a lower dimensioned assignment problem to an instantia-
tion of MULTI_DIM_RELAX which 1s processing a higher
dimensioned assignment problem.

A description of FIG. 8 follows. Assuming MULTI_
Dim_RELAX 1s initially invoked with M as the value for the
parameter n and the PROB_FORMULATION having a data
structure(s ) representing an M-dimensional assignment prob-
lem as in [[5.51]] (2.5), in step 500 an integer m, 2=m<n is
chosen such that the constraint sets [or] corresponding to
dimensions m+1, ..., n are to be relaxed so that an m-dimen-
sional problem formulation as in [[6.21]] (2.7) results. In step
504 an initial approximation is provided for {u™*',, . . .,
u”,56 . Subsequently, 1n step 508 the above 1nitial values for

fum™*,, ... u",} are used in an iterative process in determin-
ing (W', ... u”) which maximizes {® _v"*' " *eR™* and
k=m+1, . . . ,n} for a feasible solution w” subject to the

constraints of Problem Formulation [[6.2]](2.7). Note that by
maximizing®__v"*'” constraints that were relaxed are being
forced to be satisfied and 1n so doing information 1s built into
a solution of this function for solving the input assignment
problem 1n “PROB_FORMULATION.” Further note that a
non-smooth optimization technique 1s used here and that a
preferred method of determining a maximum in step 508 1s
the bundle-trust method of Schramm and Zowe [as described
in] (H. Schramm and J. Zowe[,]. A version of the bundle idea
for minimizing a non-smooth function: Conceptual 1dea, con-
vergence analysis, numerical results[,]. SIAM Journal on
Optimization, 2 [(1992)], [pp. 121-152] No. 1:121-152, Feb-
ruary, 1992). This method, along with various other methods
for determining the maximum 1n step 508, are discussed
below.

Also note that for m>2, a solution to the optimization
problem of step 508 1s NP-hard and therefore cannot be
solved optimally. That 1s, there 1s no known computationally
tractable method for guarantying an optimal solution. Thus,
there are two possibilities: either (a) allow m to be greater than
2 and use auxiliary functions similar to those disclosed in the
first embodiment of the k-dimensional assignment solver 300
in section I to compute a near-optimal solution, or (b) make

m=2 wherein algorithms such as the forward/reverse auction
algorithm of D. P. Bertsekas and D. A. Castafion [in their

paper] (D. P. Bertsekas and D. A. Castaiion. A forward/
reverse auction algorithm for asymmetric assignment prob-
lems[,]. Computational Optimization and Applications, 1

[(1992), pp.])- 277-298, 1992) provides an optimal solution.
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If option (a) immediately above 1s chosen, then the auxil-
1ary functions are used as approximation functions for obtain-
ing at least a near-optimal solution to the optimization prob-
lem of step 508. Note that the auxiliary functions used depend
on the value of m. Thus, auxiliary functions used when m=3
will likely be different from those for m=4. But in any case,
the optimization procedure 1s guided by using the merit func-
tion, @, (u’, . . ., u”), which can be computed exactly via a
[2-dimensional] two-dimensional assignment problem for
guiding the maximization process.

Alternatively, 11 option (b) above 1s chosen, then two
important advantages result]:], ramely, the optimization
problem of step 508 can be always solved optimally and
without using auxiliary approximation functions. Thus, better
solutions to the original M-dimensional assignment problem
are likely since there 1s no guarantee that when the non-
smooth optimization techniques are applied to the auxiliary
functions the techniques will yield an optimal solution to step
508. Furthermore, 1t 1s important to note that without auxil-
1ary functions, the processing in step 508 1s both conceptually
casier to follow and more efficient.

Subsequently, in step 512 of FIG. 8, the solution
(u™**, ..., u)’ [and w”] is used in determining an optimal
solution[,] w” to Problem Formulation [[6.4]] (2.9) as gener-
ated according to [[6.3]] (2.8) and Fact A.3.

In step 516, the solution w” 1s used 1n defining the cost
matrix C"~"*" as in [[6.7]] (2.12). Subsequently, if n-m+1=2,
then the assignment problem [[6.8]] (2.1/3) may be solved
straightforwardly using known techniques, such as forward/
reverse auction algorithms. Following this, in step 528, the
solution to the [2-dimensional] two-dimensional assignment
problem 1s assigned to the variable ASSIGNMT_SOLU-
TION and 1n step 532 ASSIGNMT_SOLUTION 1s returned
to a dimension three level recursion of MULTI DIM RE-
LAX forsolving a [3-dimensional] tiree-dimensioan! assign-
ment problem.

Alternatively, 11 1n step 520, n—-m+1>2, then in step 336 the
data structure(s) representing a problem formulation as 1n

[16.8]] (2.13) is generated and assigned to the parameter,
PROB_FORMULATION. Subsequently, 1n step 540 a recur-

stve copy of MULTI_DIM_RELAX 1s mnvoked to solve the
lower dimensional assignment problem represented by
PROB_FORMULATION. Upon the completion of step 540,
the parameter, ASSIGNMT_SOLUTION, contains the solu-
tion to the [n-m+1 dimensional] (rz-m+1)-dimensional
assignment problem. Thus, in step 544, the [n-m+1] (z—m+
1" solution is used to solve the n-dimensional assignment
problem as discussed regarding equations [[6.9]] (2.14).
Finally, 1n steps 5348 and 552 the solution to the n-dimensional
assignment problem 1s returned to the calling program so that,
for example, 1t may be used 1n taking one or more actions such
as (a) sending a warning to aircrait or sea facility; (b) con-
trolling air traffic; (¢) controlling anti-aircrait or anti-missile
equipment; (d) taking evasive action; or (€) surveilling an
object.

I1.3.1. Comments on the Various Procedures Provided by
FIG. 8

There are many procedures described by FIG. 8. One such
procedure 1s the first embodiment of the multi-dimensional
assignment solving process of section I.1. That 1s, by speci-
tying m=n-1 1n step 500, a single set of constraints 1s relaxed
in step 508. Thus, one set of constraints is incorporated [is]
into the objective function via the Lagrangian problem for-
mulation, resulting in an [m=n-1 dimensional] (m=n-1)-
dimensional problem. The relaxed problem is subsequently
maximized in step 512 with respect to the corresponding
Lagrange multipliers and then a feasible solution is recon-
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structed for the n-dimensional problem using a two-dimen-
sional assignment problem. The second procedure provided
by FIG. 8 1s a novel approach which 1s not suggested by the
first embodiment of section I.1. In fact, the second procedure
1s somewhat of a mirror image of the first embodiment 1n that
n-2 sets of constraints are simultaneously relaxed, yielding
immediately an [m=2 dimensional] (m=2)-dimensional
problem 1n step 512. Thus, a feasible solution to the n-dimen-
sional problem 1s then recovered using a recursively obtained
solution to an [n—1 dimensional] (z—1)-dimensional problem
via step 540. In this case, the function values and subgradients
of @, v’ ” optimally via a [two dimensional] two-dimensional
assignment problem. The signmificant advantage here 1s, that
there 1s no need for the merit or auxiliary functions, W,
embodiment of the multi-dimensional assignment solving
process of section 1.1 above and also there 1s no need for the
more general merit or auxiliary functions W__ subsection
11.4.2 below. Further, note that all function values and sub-
gradients used in the [non-smooth] ronsmooth maximization
process are computed exactly (1.e., optimally) 1n this second
procedure. Moreover, problem decomposition 1s now carried
out for the n-dimensional problem; however, decomposition
of the [n-1 dimensional] (r-1)-dimensional recovery prob-
lem (and all lower recovery problems) 1s performed only after
the problem 1s formulated.

Between these two procedures are a host of different relax-
ation schemes based on relaxing n-m sets of constraints to an
m-dimensional problem (2<m<n), but these all have the same
difficulties as the procedure for the first embodiment of sec-
tion I.1 in that the relaxed problem 1s an NP-hard problem. To
resolve this difficulty, we use an auxiliary or merit function
¥, ynotation W, W, _, m<n-1, the recovery procedure 1s
still based on an NP-hard [n-m+1 dimensional] n-m+1)-di-
mensional assignment problem. Note that the partitioning
techniques similar to those discussed in Section 1.3 may be
used to identify the assignment problem with a layered graph
and then to find the disjoint components of this graph. In
general, all relaxed problems can be decomposed prior to any
[non-smooth] nonsmooth computations because their struc-
ture stays fixed throughout the-algorithm of FIG. 8. However,
all recovery problems cannot be decomposed until they are
formulated, as their structure changes as the solutions to the

relaxed problems change.

11.4. Details, and Refinements Relating to the Flowchart of
FIG. 8

Further explanation 1s provided here on how various steps
of FI1G. 8 are solved. Note that the refinements presented here
can significantly increase the speed of the relaxation proce-
dure of step 508.

11.4.1 Maximization of the Non-smooth Function

One of the key steps 1n the Lagrangian relaxation algorithm
in section 11.3 1s the solution of the problem

Maximize {®, y**! " *RM+]; k=m+1,...,n} [7.1]

where u =0 for all k=m+1, . . . ,n. The evaluation of
Oy 7 corresponding minimization problem [[6.2]Zn
varies for each instance of (™*", ...,u")](2.7). The following
discussion provides some properties of these functions.

Fact A.4. Letu™", ... ,u” be multiplier vectors associated
with the (m+1)* through the n” set of constraints [[6.1]] (2.6),
let ®__ vn" objective function value of the n-dimensional
assignment problem in equation [[6.1]] (2.6), let Z” be any

feasible solution of [[6.1]] (2.6), and let Z* be an optimal
solution of [[6.1]] (2.6). Then, ®, y™*' 7 {u™*', ..., u"}and

D,V "=V, (Z)=2V (") [[7.2a]] (2.16)
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Furthermore,
T G [[7.2a]] 2.17)
for all W*R™*! with u =0 and k=m, . . . n.

Most of the procedures for non-smooth optimization are
based on generalized gradients called subgradients, given by
the following definition.

Definition. Atu=(u™*", . . . ,u”) the set 8®_ v subdifferential
of ®,__ and defined by

0@, veRMm1x, . xRMm1|®, v, v=q'(wlu)

VweRM1+1x. . . xRM1} [7.3]

[A vector qeo®,  v] 4 vector qedD, (u) is called a subgra-
dient.

If z” is an optimal solution of [[6.2]] (2.7) computed during
evaluation of [®__v®, "0, (u), differentiating ©,  with
respect to ", yields the following [i -th] i/ ” component of a
subgradient g of for [® ] P, (u)

gla - [[7.4]] (2.19)
N N1 Nggr N

a SIS R
i1=0 i, =0ip =0 ‘»7Y

fory =1,... N, and k=m+1, ... ,n

If 7" is the unique optimal solution of [[6.2]] (2.7), [6®, Y
® 130 (u)={gland ®_ unique, then there are finitely
many such solutions, say z°(1), . . . ,Z"(K). Given the corre-
sponding subgradients, g', . . ., g*, the subdifferential [6Dy]
3D (u) is the convex hull of {g', ..., g~}

I11.4.2 Mathematical Description of a Merit or Auxiliary
Function

For real-time needs, one must address the fact that the
non-smooth optimization problem of step 508 (FIG. 8)
requires the solution of an NP-hard problem for m>2. One
approach to this problem 1s to use the following merit or
auxiliary function to decide whether a function value has
increased or decreased sufliciently 1n the line search or trust
region methods:

¥ (@, ... "y u') =
(D, ", W) ifm=2
3 or [(6.2)] (2.7) 1s solved optimally
k Oy, (7, ... @™ L W) otherwise.

where the multipliers u°, . . . ,u” that appear in lower order
relaxations used to construct (suboptimal) solutions of the
m-dimensional relaxed problem [(6.2)] (2.7) have been
explicitly included. Note that [¥ _v] W _ is well-defined
since (2.7) can always be solved optimally 11 m=2. For suffi-
ciently small problems [(6.2)] (2.7) or [(6.4)] (2.9), one can
more elliciently solve the NP-hard problem by branch and
bound. This 1s the reason for the inclusion of the first case;
otherwise, the relaxed tunction @, is used to guide the non-
smooth optimization phase. That the merit function provides
a lower bound for the optimal solution follows directly from
Fact A.4 and the following fact.

Fact A.5. Given the definition of [¥__v] W,

above,
By

Yy

in (2.20)

Fi

3 mm+l n m+1l 23 ——m e+l 7!
=D, .Y

u’, ..., u™, ... u [[7.6]] (2.21)

The actual function value used 1n the optimization phase 1s
W Y1, . however, the subgradients are computed as in
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(2.19), but with the solution z, ™ . . . 1, being a suboptimal
solution constructed from a relaxation procedure applied to
the m-dimensional problem. Again, the use of these lower
order relaxed problems 1s the reason for the inclusion of the
multipliers u’ ,u™”.

[ To explain how the merit function 1s used, suppose there 1s
a current multiplier set (u_, "', ..., u_, ") and it is desirable
to update to a new multlpher set (u, "' ..
AW, Vord o1d otd " o1d Mord od"A Obtained  during the
relaxation process used to compute a high quality solution to

the relaxed m-dimensional assignment problem (6.2) at

™, L u)=,, ", L u, "), The decision to accept

(uw, ew. . . ,u" ) is then based on Wy “old” .
m+1 4] m+1 F : :

uc:afd > f:::Zd ) IPFHHYHEW Hew mnew ew A StOpplﬂg Crl-

3
HEW j L] L ] L ] j

u ") represents the multiplier set used 1n the lower level
relaxation procedure to construct a high quality feasible solu-
tion to the m-dimensional relaxed problem (6.2) at
™t o, 0=, " L, 7). The point is that each
time one changes ", . ”) and uses the merit function
' A generally change the lower level multipliers

H’IHY mom+1 #m

(ux’, ,u™).] 1o explain how the merit function is used,

i+ 7

suppose there is a current multiplier set (u_, "™, ... ,u_,;
and it is desivable to update to a new multiplier set

teria Commonly used 1n line searches. Again u

m+7 ¥ m+ir Py
(HHEW 7 4 * HEW ) jvxa (HF’IEW HHEW
it it Fi
(uaM e org )+(Au AU, Tken‘ljmﬂ (_Gzﬁf}...
Frl—- Fri
u, U, U, )i compw‘ed where (U_,”>, ... 0,

is obtained durfng the relaxation process used to compute a
high guality solution to the velaxed m-dimensional assign-
ment problem (2.7) at (W™, ... W)=, ... u_ ). The

decision to accept (u u,. ' )is then based onW
ik i+ m_
(_c::fd:"‘ Uorg » Upta yorooce c:rfd) IPH’IH(_HEWJ"' sUpew
u, L ou, ) or some Orker Stoppmg criteria commonly
used inline Searches Again, (v, ° ... .0 ") represents the

multiplier set used in the lower level velaxation procedure to
construct a high quality feasible solution to the m-dimen-

47
HEW J [ ] [ ] [ ]

sional relaxed problem (2.7) at (W™, )=
(uﬂewm”} oo, ). The point is that each time one chang&s
(", .. ij“7) and uses the merit function ¥, (0>, ... u";
u™ ") for comparison purposes, one miist genemlly

change rke lower level multipliers (0°, . . ., u™).
An 1llustration of this merit function for m=n-1 1s given in

[“PARTITIONING MULTIPLE DATA SETS. MULTIDI-
MENSIONAL ASSIGNMENTS AND LAGRANGIAN
RELAXATION”, by Aubrey B. Poore and Nenad Rijavec,
and in “QUADRATIC ASSIGNMENT AND RELATED
PROBLEMS, DIMACS SERIES IN DISCRETE MATH-
EMATICS AND THEORETICAL COMPUTER SCI-
ENCE”, in American Mathematical Society, Providence,
R.I.,Vol. 16,1994, pp. 25-37 edited by Panos M. Pardalos and
Henry Wolkowicz] (4. B. Poore and N. Rijavec. Partitioning
Multiple Data Sets, Multidimensional Assignments and
Lagrangian Relaxation. In P. M. Pardalos and H. Wolkowicz,
editors, Quadratic Assignment and Related Problems:
DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, volume 16, pages 25-37, 1994).

I1.4.3 Non-smooth Optimization Methods

By Fact A.4 the function [®, vA] @, (u) is a continuous,
piecewise affine, and concave, so that the negative of [@,  vA]
® (u) is convex. Thus the problem of maximizing [®, vA]
DO _(u) is one of nonsmooth optimization. Since there 1s a
large literature on such problems, only a brief discussion of
the primary classes of methods for solving such problems 1s
provided. A first class of methods, known as subgradient
methods, are reviewed and analyzed in [the book by] (N. Z.
Shor[,] . Minimization Methods for Non-Differentiable

Functions|,] Springer-Verlag, New York, 1985). Despite their
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relative simplicity, subgradient methods have some draw-
backs that make them nappropriate for the tracking problem.
They do not guarantee a descent direction at each iteration,
they lack a clear stopping criterion, and exhibit poor conver-
gence (less than linear).

A more recent and sophisticated class of methods are the

bundle methods; excellent developments are presented in [the
books of Hiriart-Urruty and Lemarechal:] (J.-B. Hiriart-Ur-

ruty and C. Lemarechal[,] Convex Analysis and Minimiza-
tion Algorithms I and II[,]. Springer-Verlag, Berlin, 1993

[and the book of] K. C. Kiwiel[:]. Methods of Descent for
Non-Differentiable Optimization. In A. Dold and B. Eckman,
editors, Lecture Notes in Mathematics, [Vol.] volumen 1133,
Berlin, 1985. Springer-Verlag|, Berlin, 1985]). Bundle meth-

ods retain a set (or bundle) of previously computed subgra-
dients to determine the best possible descent direction at the
current iteration. Because of the [non-smoothness] rons-
moothness of ®©, . the resulting divection may not provide a
“sullicient” decrease in ®,, . In this case, bundle algorithms
take a “null” step, wherein the bundle 1s enriched by a sub-
gradient close to u,. As a result, bundle methods are non-
ascent methods which satisty the relaxed descent condition
O v. AD__v. A, . =u,. These methods have been shown to
have good convergence properties. In particular, bundle
method variants have been proven to converge in a finite
number of steps for piecewise aifline convex functionals in
(K.. Kiwiel[,] An [Aggregate Subgradient Method for Non-
smooth Convex Minimization,] aggregate subgradient
method for non-smooth convex minimization. Mathematical
Programming, 27[, (1983) pp.] - 320-341, [and] /983, H.
Schramm and J. Zowe[,]. A version of the bundle idea for
minimizing a non-smooth function: Conceptual 1dea, conver-
gence analysis, numerical results[,]. SIAM Journal on Opti-
mization, 2 [(1992)], [pp.] No. 1:121-152, February, 1992).

All of the above non-smooth optimization methods require
the computation [O__vAedD vA)of ®,  (u) and a g edD,
(u). These in turn require the computation of the relaxed cost
coefficients [[6.3]] (2.8). In both the first and second proce-
dures discussed in section I11.3.1, maximization of [®, vA]
D, (1) must be vepeatedly evaluated. In the most efficient
implementations presently known of these two procedures, 1t
was found that at least 95% of the computational effort of the
entire procedure 1s spent 1n the evaluation of the relaxed cost
coefficients [[6.3]] (2.8) as part of computing [, YA] D, (u).
Thus, generally a method should be chosern that makes as
efficient use of the subgradients and function values as [is}
possible, even at the cost sophisticated manipulation of the
subgradients. In evaluating three difl

erent bundle procedures:
(a) the conjugate subgradient method of Wolfe used 1n section
I.1 of the first embodiment of the present invention; (b) the
aggregate subgradient method of Kiwiel (Jdescribed in] K. C.
Kiwiel[,] An [Aggregate Subgradient Method for Non-
smooth Convex Minimization,] aggregate subgradient
method for non-smooth convex minimization. Mathematical
Programming, 27[, (1983) pp.]- 320-341, /083); and (c) the
bundle trust method of Schramm and Zowe ([described in] H.
Schramm and J. Zowe[,]. A version of the bundle idea for
minimizing a non-smooth function: Conceptual idea, conver-
gence analysis, numerical results[,]. SIAM Journal on Opti-
mization, 2 [(1992)], [pp.] No. 1:121-152, February, 1992), it
was determined that for a fixed number of non-smooth itera-
tions, say, ten, the bundle-trust method provides good quality
solutions with the fewest number of function and subgradient
evaluations of all the methods, and is therefore the preferred
method.

I11.4.4 The Two Dimensional Assignment Problem

The forward/reverse auction algorithm of Bertsekas and
Castaiion ([as described in] D. P. Bertsekas and D. A.
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Castafion|,]. A forward/reverse auction algorithm for asym-
metric assignment problems[,] Computational Optimization
and Applications, 1 [(1992), pp.): 277-298, 1992) is used to
solve the many relaxed [two dimensional] two-dimensional
problems that occur 1n the course of execution.

11.4.5. Imtial Multipliers and Hot Starts

The effective use of “hot starts” 1s fundamental for real-
time applications. A good 1nitial set of multipliers can signifi-
cantly reduce the number of non-smooth iterations (and
hence the number of [O, Al ®, . evaluations) required for a
high quality recovered solution. Further, there are several
ways that multipliers can be reused. First, if [a] an n-dimen-
sional problem is relaxed to [a] a» m-dimensional problem,
relaxation provides the multiplier set {u”**, u™**, ... u"}.
These can be used as the initial multipliers for the [n-m+1
dimensional] (r-m+1)-dimensional recovery problem for
n-m+1>2. This approach has also worked well to reduce the
number of non-smooth 1terations during recovery.

Further, for track maintenance, initial feasible solutions are
generated as follows. When a new scan of information (a new
observation set) arrtves from a sensor, one can obtain an
initial primal feasible solution by matching new reports to
existing tracks via a [two dimensional] two-dimensional
assignment problem. This 1s known as the track-while-scan
(TWS) approach. Thus, an initial primal solution exists and
then we use the above relaxation procedure 1s to make
improvements to this TWS solution. Also for track mainte-
nance, multipliers are available from a previously solved and
closely related [multi-dimensional] multidimensional assign-
ment problems for all but the new observation set.

11.4.6. Local Search Methods

Given a feasible solution of the [multi-dimensional] mu/-
tidimensional assignment problem, one can consider local
search procedures to improve this result, as described 1n (C.
H. Papadimitriou and K. Steiglitz|,]. Combinatorial Optimi-
zation: Algorithms and Complexity[,]. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1982], and]; J. Pearl[.]. Heuristics:
[intelligent search strategies for computer problem solving,]
Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, Reading, Mass., 1984). One method 1s the
idea of [k-interchanges] & interchanges. Since for sparse
problems only those active arcs that participate in the solution
are stored, 1t 1s difficult to etficiently identify eligible variable
exchange sets with some data structures for solving the
assignment problem. However, a local search that may be
more promising is to use the [two dimensional] two-dimen-
sional assignment solver 1n the following way. Given a fea-
sible solution to the [multi-dimensional] multidimensional
assignment problem, the indices that correspond to active
arcs 1n the solution are enumerated. Subsequently, one coor-
dinate is freed to formulate a [two dimensional] swo-dimen-
sional assignment problem with one 1ndex corresponding to
the enumeration and the other to the freed coordinate, and
then solve a [two dimensional] two-dimensional assignment
problem to improve the freed index position.

11.4.7. Problem Decomposition

The procedures described thus far are all based on relax-
ation. Due to the sparsity of assignment problems, however,
frequently a decomposition of the problem into a collection of
disjoint components can be done wherein each of the com-
ponents can be solved independently. Due to the setup costs of
Lagrangian relaxation, a branch and bound procedure 1s gen-
crally more efficient for small components, say ten to twenty
feasible 0-1 vanables (1.e.,z; ). Otherwise, the relaxation
procedures described above are used. Perhaps the easiest way
to view the decomposition method 1s to view the reports or
measurements as a layered graph. A vertex is associated with
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cach observation point, and an edge 1s allowed to connect two
vertices only 1f the two observations belong to at least one
feasible track of observations. Given this graph, the decom-
position problem can then be posed as that of identifying the
connected subcomponents of a graph which can be accom-
plished by constructing a spanning forest via a depth first
search algorithm, as described 1n (A. V. Aho, J. E. Hopcrott,
and J. D. Ullman|,}. 2e Design and Analysis of Computer
Algorithms|,]. Addison-Wesley [Publishing Company, Read-
ing], Mass., 1974). Additionally, decomposition of a different
type might be based on the identification of bi- and tri-con-
nected components of a graph and enumerating on the con-
nections. Here 1s a technical explanation. Let

Z={z.

iy ... 1,1Z112 ... 1nis not preassigned to zZero |

denote the set of assignable variables. Define an undirected
graph G(N,A) where the set of nodes 1s

N={z, "in=1,... .n;in=1,...,Nm}
and arcs,

[AZ{(ZJH”,Zjll)m#l: =0, j;#0 and there exists
zili2 ... ineZ such that j,=i, and j,;-i,}.]

AZ{(zjﬂ”,zjf)[lnﬁljln#], 7,20, j,=0 and there exists
Ziiy .. i €L

Note that the nodes corresponding to zero index have not
been Included 1n the above defined graph, since two variables
that have only the zero index in common can be assigned
independently. Connected components of the graph are then
casily found by constructing a spanning forest via a depth first
search. (A detailed algorithm can be found in the book by
Aho, Hopcroit and Ullman cited above). Furthermore, this
procedure 1s used at each level in the relaxation. 1.e., 1s applied
to each assignment problem [[3.1]] (1.4) for n=3, ... ,M.

The orniginal relaxation problem 1s decomposed first. All
relaxed assignment problems can be decomposed a priori and
all recovery problems can be decomposed only after they are
formulated. Hence, in the n-to-(n-1) case, we have n-2
relaxed problems that can all be decomposed initially, and the
recovery problems that are not decomposed (since they are all
[two dimensional] two-dimensional). In the n-to-2 case, we
have only one relaxed problem that can be decomposed 1ni-
tially. This case yields n-3 recovery problems, which can be
decomposed only after they are formulated.

III. New Approaches to Track Initiation and Maintenance
Using Multidimensional Assignment Problems

The ever-increasing demand for sensor surveillance sys-
tems 1s to accurately track and identily objects 1n real-time,
even for dense target scenarios and 1n regions of high track
contention. The use of multiple sensors, through more varied
information, has the potential to greatly improve target state
estimation and identification. However, to take full advantage
of the available data, a multiple frame data association
approach 1s needed. The most popular such approach 1s an
enumerative technique called multiple hypothesis tracking
(MHT). As an enumerative technique, MHT can be too com-
putationally intensive for real-time needs because this prob-
lem 1s NP-hard. A promising approach i1s to utilize the
recently developed Lagrangian relaxation algorithms (XK.
P.Pattipati, S. Deb, and Y. Bar-Shalom. A multisensor-multi-
target data association algorithm for heterogeneous sensors.
IEEE Transactions on Aevospace and Electvonic Systems, 29,
No. 2:560-568, April 1993; A. B. Poore and N.Rijavec. Par-
titioning multiple data sets: multidimensional assignments
and lagrangian rvelaxation, in quadratic assignment and

related problems, P. M. Parvdalos and H . Wolkowicz, editors,
DIMACS series in Discrete Mathematics and Theoretical
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Computer Science, 16:25-37, 1994; A. J. Robertson Ill. A

class of lagrangian velaxation algorithms for the multidimen-
sional problem. Ph.D. Thesis, Colorado State University, It.
Collins, Colo., 1995) for the multidimensional assignment
problem; however, there are many other potentially good
approaches to these assignment problems such as LP relax-
ation combined with an interior point method, GRASP, and
parallelization.

These data association problems are fundamentally impor-
tant 1 tracking. Thus, our first objective 1s to present an
overview ol the tracking problem and the context within
which these data association problems fit. Following a brief
review ol the probabilistic framework for data association,
the second objective 1s to formulate two models for track
initiation and maintenance as multidimensional assignment
problems. This formulation 1s based on a window moving
over the frames of data. The first and simpler model uses the
same window length for track initiation and maintenance,
while the second model uses ditferent lengths. As the window
moves over the frames of data, one creates a sequence of these
multidimensional assignment problems and there 1s an over-
lap region of frames common to adjacent windows. Thus,
given the solution of one problem, one can develop a warm
start for the solution to the next problem 1n the sequence, as
shown hereinatfter. Such information 1s critically important to
the design of real-time algorithms.

I11.2. Overview of the Tracking Problem

Tracking and data fusion are complex subjects of special-
1zation that can only be briefly summarized as they are related
to the subject of this paper. The processing of track multiple
targets using data from one or more sensors 1s typically par-
titioned 1nto two stages or major functional blocks, namely,
signal processing and data [process] processing (Y.Bar-Sha-
lom, Multitarget-Multisensor Tracking: Advanced Applica-
tions. Artech House, Dedham, Mass., 1990 Y. Bar-Shalom
and 1. K. Fortmann, Tracking and Data Association, Aca-
demic Press, Boston, Mass., 19588, S. S. Blackman. Multiple
larget Tracking with Radar Applications. Artech House,
Dedham, Mass., 19586). The first stage 1s the signal processing
that takes raw sensor data and outputs reports. Reports are
hreshold exceedances, plots,

sometimes called observations, t
hits, or returns, depending on the type of sensor. The true
source of each report 1s usually unknown and can be due to a
target ol interest, a false signal, or persistent background
objects that can be moving 1n the field of view of the sensor.

Two principal functions of data processing are tracking and
discrimination or target identification. The discrimination or
target 1dentification function distinguishes between tracks
that are for targets of interest and other tracks such as those
due to background. Also, 1f there 1s enough information, each
track 1s classified as to the type of target 1t appears to repre-
sent. Target 1dentification and discrimination will not be dis-
cussed further 1n this paper except to comment here on the use
ol attributes (including 1dentification information) 1n the data
association.

There are two types of attributes or features, namely, dis-
crete valued variables and continuous valued variables. Avail-
able attributes of either or both types should be used in com-
puting the log likelithoods or scores for data association. In
discussing tracking in this paper, the attributes will not be
mentioned explicitly but 1t should be understood that some
reports and some tracks may include attributes information
that should be and can be used in the track processing (both
data association and filtering) 11 1t 1s useful.

[11.2.1 Tracking Functions

The tracking function accepts reports for each frame of
data and constructs or maintains a target state estimate, the
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variance-covariance matrix of the state estimation error, and
refined estimates (or probabilities) of the target attributes. The
state estimate typically includes estimates of target position
and velocity 1n three dimensions and possibly also accelera-
tion and other variables of interest.

The tracking function 1s typically viewed 1n two stages,
namely, data association and filtering. Also, the process of
constructing new tracks, called track initiation, 1s different
from the process of updating existing tracks, called track

maintenance.

In track maintenance, the data association function decides
how to relate the reports from the current frame of data to the
previously computed tracks. In one approach, at most one
report 1s assigned to each track, and in other approachesm,
weights are assigned to the pairings of reports to a track. After
the data association, the filter function updates each target
state estimate using the one or more (with weights) reports
that were determined by the data association function. A filter
commonly used for multiple target tracking and data fusion 1s
the well know Kalman filter (or the extended Kalman filter in
the case of nonlinear problems) or a stmplified version of 1t
(Y.Bar-Shalom, Multitarget-Multisensor Tracking: Advanced
Applications. Artech House, Mass., 1990; Y. Bar-Shalom and
1. E. Fortmann, Tracking and Data Association, Academic
Press, Boston, Mass., 1988, S. S. Blackman. Multiple Target
Tracking with Radar Applications. Artech House, Dedham,
Mass., 1956).

In track mnitiation, typically a sequence of reports 1s
selected (one from each of a few frames of data) to construct
a new track. In track initiation, the filtering function con-
structs a target state estimate and related information based on
the selected sequence of reports. The new track 1s later
updated by the track maintenance processing of the subse-
quent frames of reports.

In some trackers, there 1s also a tentative tracking function
for processing recently established tracks until there is
enough confidence to include them in track maintenance.
While for simplicity of presentation, tentative tracking will
not be included in the processing discussed in this paper, the
techniques discussed could readily include one or more ten-
tative tracking functions.

There have been numerous approaches developed to per-
form the data association function. Since optimal data asso-
ciation 1s far too complex to implement, good but practical
sub-optimal approaches are pursued. Data association
approaches can be classified in a number of ways. [On] Ore
way to classily data association approaches i1s based on the
number of data frames used 1n the association process (O. L.
Drummond. Multiple sensor tracking with multiple frame,
probabilistic data association. In Signal and Data Processing
of Small 1argets, SPIL Proceedings, volume 2561, pages
322-336, 1995). In single frame data association for track
maintenance, “hard decisions” are made [each frame as to
how the] on the assignment of reports [are to be related] to the
tracks. Some single frame approaches include: individual
nearest neighbor, FDA, JPDA, and global nearest neighbor
(sequential most probable hypothesis tracking), which uses a
[two dimensional] rwo-dimensional assignment algorithm (Y.
Bar-Shalom. Multitarget-Multisensor Tracking: Advanced
Applications. Avtech House, Mass., 1990, Y. Bar-Shalom and
1. E. Fortmann. Tracking and Data Association. Academic
Press, Boston, Mass., 1958; S. S. Blackman. Multiple 1arget
Tracking with Radar Applications. Arvtech House, Dedham,
Mass., 1956). In most single frame data association
approaches, only one track per object 1s carried forward to be
used 1n processing the next frame of reports.
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Multiple frame data association 1s more complex and fre-
quently involves purposely [carry] carrying forward more
than one track per target to be used 1n processing the next
frame of reports. By retaining more than one track per target,
the tracking performance 1s improved at the cost of increased
processing load. The best known multiple frame data asso-
ciation approach i1s an enumerative technique called multiple
hypothesis tracking (MHT) which enumerates all the global
hypothesis with various pruning rules.

As shown heremafter, the log likelihood of the probability
of a global hypothesis can be decomposed into the sum of
scores of each track that 1s contained 1n the hypothesis. As a
consequence, the most probable hypothesis can be 1dentified
with the aid of a non-enumerative algorithm for the assign-
ment so formulated.

Interface Between Track Initiation And Track Maintenance

There are a number of ways that track 1nitiation and track
maintenance functions can interact. Two ways that are espe-
cially pertinent to the methods of this paper will be discussed
in this section.

One approach 1s to treat these two functions sequentially,
by first assigning reports to tracks and then using the infor-
mation that remains to form new tracks. A better approach 1s
to mtegrate both processes where 1nitiating tracks compete
tor the new frame of reports on an equal basis, 1.e., at the same
time.

In the integrated approach, the data association for track
initiation and track maintenance processing are combined
and conducted simultaneously. One assignment array 1s cre-
ated that includes the track scores for potential tracks for both
track 1nitiation and track maintenance. The first dimension of
the assignment problem includes only all the tracks either
created or updated 1n the processing of the prior frames of
reports. Each of the remaining dimensions accommodates
one frame of reports.

After the assignment algorithm finds a solution, each of the
previously established tracks are updated with the report
assigned to 1t from the second dimension of the assignment
array. The remaining reports 1n the second dimension that
were 1n the assignment solution are firmly established as track
initiators. The unassigned reports in the second dimension of
the assignment array are discarded as false signals. The pro-
cessing ol the next frame of reports repeats this process using
these updated tracks and the newly identified initiators in the
first dimension of the cost array for processing the new frame
of reports. Details of this approach are discussed hereinatter.

The integrated approach just discussed, uses the same
number of frames of reports for both track initiation and track
maintenance. The goal in using the multi-dimensional assign-
ment algorithm 1s to provide improved performance while
mimmizing the amount of processing required. Typically,
track 1nitiation will benefit from more frames of reports than
will track maintenance. Thus, a second approach that inte-
grates track mmitiation and track maintenance 1s discussed
hereinafter, wherein the number of frames of reports 1s not the
same for these two functions. This 1s a novel approach that 1s
introduced 1n this paper.

Multiple Sensor Processing

There are many advantages and many ways [to] of com-
bining data from multiple sensors. There are also many ways
of categorizing the different algorithmic architectures for pro-
cessing data from multiple sensors. One approach outlines
four generic algorithmic architectures (O. E. Drummond.
Multiple sensor tracking with multiple frame, probabilistic
data association. In Signal and Data Processing of Small

largets, SPIL Proceedings, volume 2561, pages 322-336,

50

1995). Two of these generic architectures are especially per-
tinent to this paper and are summarized brietly.

In the Centralized Fusion algorithmic architecture, reports
are combined from the various sensors to form global tracks.

5 This algorithmic architecture i1s also called Central Level
Tracking, Centralized Algorithmic Architecture, or simply
the Type IV algorithmic architecture. In track maintenance,
for example, 1f a single frame data association 1s used, then for
data association a frame of reports from one sensor 15 pro-

10 cessed with the latest global tracks; then the global tracks are
updated by the filter function. After the processing of this
frame of reports 1s completed, a frame of the reports from
another (or the same) sensor 1s processed with these updated
global tracks. This process 1s continued as new frames of data

15 become available to the system as a whole.

In Centralized Fusion, using the multi-dimensional assign-
ment algorithm for the data association with multiple sensors
1s similar to the processing of data from a single sensor.
Instead of using multiple frames of reports from a single

20 sensor, the multiple frames of reports come from multiple
sensors. The frames ol reports from all the sensors are ordered
based on the nominal time each frame of reports 1s obtained
and independent of which sensor provided the reports. In this
way the approaches discussed 1n this paper can be extended to

25 process reports from multiple sensors using the Centralized
Fusion algorithmic architecture.

The second pertinent algorithmic architecture i1s Track
Fusion. This approach 1s also called the Hierarchical or Fed-
erated algorithmic architecture, sensor level tracking or sim-

30 ply the Type II algorithmic architecture. In track mainte-
nance, for example, a processor for each sensor computes
single sensor tracks; these tracks are then forwarded to the
global tracker to compute global tracks based on data from all
SENsors.

35  Afterthe first time a sensor processor forwards tracks to the
global tracker, then subsequent tracks for the same targets are
cross-correlated with the existing global tracks. This track-
to-track cross-correlation 1s due to the common history of the
current sensor tracks and the tracks from the same sensor that

40 were forwarded earlier to the global tracker. The processing
must take this cross-correlation into account and there are a
number of ways of compensating for this-cross-correlations.
One method for dealing with this cross-correlation 1s to deco-
rrelate the sensor tracks that are sent to the global tracker.

45 There are a variety of ways to achieve this decorrelation and
some are summarized in [Drummond, 1996, Signal Data
Proc.Jrecent paper (O. E. Drummond, Feedback in track

fusion without process noise. In Signal and Data Processing

of Small Targets [1995], SPIE Proceedings, [-2561:369-383]
50 volume 2561, pages 369-383, 1995.

Once the sensor tracks are decorrelated they can be pro-
cessed by the global tracker 1n almost the same way as reports
are processed. In the case of track fusion the association
process 1s referred to as track (or track-to-track) association

55 rather than data (or report-to-track) association. If the sensor
tracks are decorrelated, the global tracker can process the
tracks from the various sensor processors 1n much the same
way that the global tracker of Centralized Fusion processes
reports. Accordingly the methods described 1n this paper can

60 be readily extended to processing data from multiple sensors
using either the Centralized Fusion or Track Fusion or even a
hybrid combination of both algorithmic architectures.

[11.3 Formulation of the Data Association Problem

The goal of this section 1s to briefly outline the probabailistic

65 Iramework for the data association problems presented 1n this
work. The technical details are presented elsewhere (4. B.
Poore. Multidimensional assignment formulation of data
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association problems arising from multitarget tracking and
multisensor data fusion. Computational Optimization and
Applications, 3:27-57, 1994). The data association problems
for multisensor and multitarget tracking considered in this
work are generally posed (4. B. Poore. Multidimensional
assignment formulation of data association problems arising
from multitarget tracking and multisensor data fusion. Com-
putational Optimization and Applications, 3:27-57, 1994) as
that of maximizing the posterior probability of the surveil-
lance region (given the data) according to

Maximize {P(T'=y|Z"*")lyel™*} [(3.1)]

where ZV+1

the data (and thus induces a partition of the data) 7™ is the
finite collection of all such Partitions, F is a discrete random
element defines on F*, [partition,Jand P(I'yIZ™*") is the pos-
terior probability of a partition y [N+1 is defined
below; Jbeing true given the data Z"*'. The term partition is
defined below; however, this framework 1s currently suili-
ciently general to cover set packings and coverings.

Consider N+1 data sets Z(k)(k=1, . .., N+1), each consist-

ing of M, actual reports and a dummy report z *, and let
denote the cumulative data set defined by
Z(k)={z;}; =0 and Z""'={Z(1), ..., Z(N+1)}, (3.2)

respectively. (The dummy report z_* serves several purposes
in the representation of missing data, false reports, imitiating
tracks, and terminating tracks (4. B. Poore. Multidimensional
assignment formulation of data association problems arising
from multitarget tracking and multisensor data fusion. Com-
putational Optimization and Applications, 3:27-57, 1994).)
In multisensor data fusion and multitarget tracking the data
sets Z(k) may represent different classes of objects, and each
data set can arise from different sensors. For track initiation

the objects are reports that must be partitioned into tracks and
false alarms. In our formulation of track maintenance, which
uses a moving window, one data set will be tracks and remain-
ing data sets will be reports which are assigned to existing
tracks, as false reports, or to initiating tracks.

We specialize the problem to the case of set partitioning (A.
B. Poore. Multidimensional assignment formulation of data

association problems arising from multitarget tracking and
multisensor data fusion. Computational Optimization and

Applications, 3:27-57, 1994) defined 1n the following way.
Define a “track of data” as {z, *, .. ., z, """} where each i,
and z, * can assume [the] zero or nonzero values [of 0 and z
respectively]. A partition of the data will refer to a collection
of tracks of data wherein each report occurs exactly once 1n
one of the tracks of data and such that all data 1s used up; the
occurrence of dummy report 1s unrestricted. The reference

partition v° 1s that 1n which all reports are declared to be false.

Next, under appropriate mdependence assumptions one
can show

P(I' =y | Z"*h n (3.3)
Ly

L
P =0 | ZV+1) G ...

IN11) €Y

L; . vl 1s a likelihood ratio containing probabilities for
detection, maneuvers, and termination as well as probabaility
density functions for report errors, track initiation and termi-
nation. Define

represents N+1 data sets, v is a partition indices of
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Cil"'iN—l—l — _1HL1'1...1'N_|_1 , [[34]] (17)
1 if (Ziy..ip, ) AL assigned to as a track,
Ziy...i =
N+ {D otherwise.

Then, recognizing that

P([[y]T=y|ZV")
P([y°1T =0 | ZN*) |

DY)

(iy...in 1€y [€]

—lﬂ Cfl"'jN-l—l"

the problem (3.1) can be expressed as the [N+1-dimensional]
(N+1)-dimensional assignment problem

M My (3-5)
Minimize E Z Ciyoinat Zigomint

i1=0 iy =0

Y2 My
Subject To E o ) iy, =Lir=1 . My,

in=0 N4 1=0

M My 1 My My

E E Z Zil"'£N+l =1

i1=0  ip_y=0i, (=0 N41=0

fory =1,... .M, and k=2, ... , N,

k k

M| My

% Z Zil"'iN+l — 131N+l — 1') aMN-I—la

i[=0 iN+1-1=0

Zil"'£N+l S {05 ]-} for all ila SO iN+la

where ¢, 1s arbitrarily defined to be zero. Here, each
group of stuns in the constraints represents the fact that each
non-dummy report occurs exactly once 1n a “track of data.”
One can modify this formulation to include [multiassign-
ments] multi-assignments of one, some, or all the actual
reports. The assignment problem (3.5) 1s changed accord-
ingly. For example, it ZI-;: 1s to be assigned no more than,

exactly, or no less than nff times, then the “=1" 1n the con-
straint (3.5) 1s changed to “'<, = zn, ,” respectively. In making
these changes, one must pay careful attention to the indepen-
dence assumptions, which need not be valid 1n many appli-
cations. Expressions for the likelihood ratios can be found 1n
the work of [Poore, 1994, Computational Optimization &

Appl., 3:27-57.) (4. B. Poore. Multidimensional assignments
and multitarget tracking, partitioning data sets, 1. J. Cox, P.
Hansen, and B. Julesz, editors. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, American
Mathematical Society, Providence, R.1., 19:169-198, 1995)
and the references therein.

[I1.4. Track Initiation and Maintenance

In this section we explain two multiframe assignment for-
mulations to the track iitiation and maintenance problem.
The continued use of all prior information 1s computationally
intensive for tracking, so that a window sliding over the
frames of reports 1s used as the framework for track mainte-
nance and track initiation within the window. The objectives
are to describe an improved version of a simple method and
then to put this into a more general framework 1n which track
initiation and maintenance have different length moving win-
dows.
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[11.4.1 The First Approach to Track Maintenance and Ini-
tiation

The first method as explained 1n this section 1s an improved
version ol our first track maintenance scheme (4. B. Poore.

54

Next, define the cost and the corresponding zero-one variable

Multidimensional assignment formulation of data associa- 5 * *
tion problems arising from multitarget tracking and multisen- o =
sor data fusion. Computational Optimization and Applica- s
tions, 3:27-57, 1994) and uses the same window length for 1, if {23, ... L 22 ) is assigned to Track Ta(la),
track 1nitiation and maintenance aiter the imitialization step. { . '
. . . 0, otherwise,
The process 1s to start with a window of length N+1 anchored 10
at frame one. In the first step [one] there is only ore track
initiation 1n that we assume no prior existing tracks. In the . . o
p . S respectively. Then the track maintenance problem Maximize
second and all subsequent frames, there 1s a window of length [ vIvel™ ags; t
N anchored at frame k plus a collection of tracks up to frame 1Lylyel™ assignmen
k. This window is denoted by {k[:] k+1. , k+N}. The 15
tollowing explanation of the steps 1s much like mathematical
induction 1n that we explain the first step and then step k to 2 M My, (3.9)
step k+1. Minimize L ZJ Z Clyis...inyn Zlyig. ip o
Track Maintenance and Initiation: Step 1. Let L0 iz=0 ‘N+270
. . . . 20
{i )i o) - .oy 1N(12)=1N+1(12)}32L2:1 [(4.1)] (3.6) M,
: : : My 12
be an enumeration of all those zero-one variables 1n the solu- Subject to: Z j Ziis iy, =L =1L, o, Ly,
iy
tion of the assignment problem (3.5) (e, 7, ,; —)exclud- =l in2=0
ing all the false reports 1n the solution (1.e., all those Zero-one
variables with exactly one nonzero index) and ZEro-one vari- s My
ables 1n the solution for which (1,,1,)=(0,0). (The latter can LZ‘ Z z, o o =1,is=1,... .M
. s . . 213"'1N+2 ” » : "
correspond to tracks that initiate on frames three and higher.) —d e iyg=0
These denote our 1nitial tracks.
Consider only the first two index sets in this enumeration Mpy Mpiy
. . +
[(4.1)] (3.6) and add the zero index 1,=0 with the correspond- 5 L L Z Z Sty ines =
ing values of 1, and 1, being zero. Thus, the enumeration 1s ~ ) iNaa=0 e
_L ~ .E p Ip_|_
now 1{i,(1,),i,(1,)},”>=0. The notation T,(1,)=(7; ; 7, 1)
will be used for this pairing. Suppose now that the next data fori,=1,... .M, and p=4, ... ,N+2—1,
set, i.e., the (N+2)” set, is added to the problem.
To explain the costs for the new problem, one starts with the ;5 I, M My
. ., . . . ., . to—
hypothesis that a partition yel * being true 1s now conditioned Z: Z L Z 2 =1
.. : JRER AN R 213---iN42 T
on the truth of the pairings on the first two frames being e i ] =0
correct. Correspond}ng to the sequence IT,, (12),2;,, - .. ,zl.mz},
the likelithood function is then given by iviz =1, ... . Mo,
40
25253___5}%,_'_2 = {0, 1} for all 1213, cen s iN-I—Z-
L, = T Liis. iy.,» Where [[4.2a]] (3.7)
{TZ ({5 ),553 ..... EEN—I—Z}ET
Liyisinsa = LrytpLas, oy o L1y = Track [Maintence] Maintenance and Initiation: Step k. At
45 the beginning of the k” step, we solve the following (N+1)-
dimensional assignment problem.
Miel  m,, [(4.4)] (3.10)
Minimize [:] Z Z Z Cliigel - N e ke n
'{k =0 ‘E:{{-I-l =0 Ik"'N:D
My 41 My
Subject to: Z Z Ziiey o iy = L ko= 1 Ly,
=0 kN
b M2 oy
- Z Zhip oo gy = b et =1, o0 Mggy,
B0 igap=0 N
My Mp1 Mpig My,
DI I I EIIN
=0 ig1=0  ip_1=0ip =0 k+NTV
fori,=1,... ,My,andp=k+2,... ,N+k-1,
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M
kAL Mpian—2
E | § | Z Zhigar o ey = Lo Mern = 1,
=0 i, =0 |‘k+l+N-27Y
Z.{kfk_l_l...fk_'_N S {03 1} fDr EIH lr'r{!'if(-l-la ﬂir'r{+N!|

where for the first stepl. and L, are replaced by 1, and M,,

respectively. The first index 1, 1n the subscripts corresponds to
the sequence of tracks {Tk(lk)}sz—O where T.(1,)=

{z,'1(1), ...,z (1)} isatrack of data from the solution of the

problem prior to the formulation of [(4.4)0rif] (3.10). If k=1,

then 1t 1s just the first data set 1n frame one.

Basic Assumption. Suppose problem [(4.4)] (3.10) has
been solved and let the solution, 1.e., those zero-one variables
equal to one, be enumerated by

Lk+l:1

{(lk(lk+l):ik+l(lk+l): -t :ik+N(lk+l))}fk+1

[(4.5)) (3.11)

with the following excpetions.

a. All [zero one] zero-one variables for which (1.1, ,)=(0,
0) are excluded. Thus, tracks that initiate on frames after the
(k+1)” are not included in the list.

b. All zero-one variables whose subscripts have the form
1,=0 and exactly one nonzero index 1n the remaining indices
{i,,1, ... .1, areexcluded These correspond to false reports
on frames p=k+1, ... k+N.

) . for which

c. All variables [(z,,

(05 -« .5 1,,2)=(0,0, . O) ‘and 1 k(l k) =0 fm (4.5)] are
excluded from (1.11). In other words, the reports on the last
N+1 frames in the {T,(1,),, “*'} are all dummy. Any solution
with this feature corresponds to a terminated track.

Given the enumeration [(4.5)] (3.11), one now fixes the
assignments on the first two index sets inthe list [(4.5)] (3.11).
The zero index 1, =0 1s added to the enumeration to specily
(1.(0).1,_,(0))=(0,0) that 1s used to represent false reports and
tracks that initiate on frame k+2 or later, so that the enumera-

tion [(4.5)] (3.11) is now

{(lk(lk+l)?ik+l(lk+l))}fk+ lLkJrl:O [(46)]

Then, forl,,=1,...,L,, ,the l, ” such track is denoted
by {Tpus(Gee )= {Tully )7+, (1)} and the (N+1)-
tuple {T,,,(1,,,).z, *** ...z, "%} will denote a track
T,.,(1,..,) plus a set of reports szJ’zj . ’ZIk+1+Nk+l+N :
actual or dummy, that are feasible with the track T,_,(1,.,).
The (N+1)-tuple {T,,,(0), zlk+2k+2,, . ,JZ%HN‘““N b will
denote a track that mnitiates 1n the sliding window, 1.e., on
subsequent frames. A false report in the sliding window 1s one

with all but one non-zero index 1, for some p=k+2, ..., k+1+N
in the (N+1)-tuple {T,,,(0).z, **2, ... 7, **

14N

The corresponding hypothosrs about a partition YEF* being
true 1s now conditioned on the truth of the L, tracks existing
at the beginning of the N-frame window. (Thus the assign-
ments prior to this sliding window are fixed.) The likelithood
function 1s given by

= erﬂukﬂ)LZmz LN (14.7a] 3.12)

e 14N . ,
427 1+ N

Liivigaa-

Ly =1,

Next, define the cost and the zero-one variable by

[said at least one inert gas has an amount, on a molar basis,
that 1s greater than the amount of said oxygen 1n said pres-
surized medium;]

56

o Myyw
1o Clyfipan oo — [(4.7b)] (3.13)
+1 4k +2 k+1+N
—Inby s iy = _lnLTmr“mr)Esz--- i N
“htige 2 r e N T
15 f‘;fz , z‘f;:lf;{ } is assigned to Ty, (lp4q),
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{1, if {z72, ...
0, otherwise,

respectively, so that the track extension problem, which was
originally formulated as Maximize {LylyeI'*}, can be
expressed as exactly the same multi-dimensional assignment
in (3.4) [but] with k replaced by k+1. Thus, we do not repeat
it here.

[11.4.2. The Second Approach to Track Maintenance and
Initiation

In the first approach the window lengths were the same for
both track maintenance and 1nitiation. This can be 1netficient
in that one can usually use a shorter window for track main-
tenance than for track initiation. This section addresses such
a formulation.

The General Step k. To formulate a problem for track
initiation and maintenance we consider a moving window
centered as frame k of length I+J+1 denoted by [[k-1, . . .,
k, ..., k+J]. Inthis representation, the window length for track
maintenance 1s J and that for iitiation, I+J+1. The objective
will be to explain the situation at this center and then the move
to the same length window at center k+1 denoted by [[k+1-I]
k+1-1, ... k+1, ... Jk+1+]]], i.e., by moving the [frame]
window to the right one frame at time [to the right]. The
explanation from the first step follows hereinafter.

The notation for a track of data 1s

Tl ={z:, (W), - - 2 2, -+ 7 (1)} [(4.8)] (3.14)

where the index 1, 1s used for an enumeration of those reports
paired together. We also use the notation T, ,(1,) to denote the
sequence of reports belonging to track T,(1,) but restricted to
frames prior to and including p. Thus,

T (l)=T 2 13)
Trll)={z; (1), . . . 2Py

T nllp)=T
p=k- 1

k(lk)u{z "o :ka_lk_l(fk)?zf;:(fk)} fﬂr

[(4.9)] (3.15)

Given this notation for the tracks and partition of the data 1n
the frames {k-I, k, ... k+]}. L7y, Will denote the

accumulated hkehhood ratlo up to and including frame
p(p=k) for a track that 1s declared as existing on frame k as a
solution of the assignment problem. In this notation, the like-
lihood for T, ;(1;) and that of the association of {zz k”, e
k““N} Wlth track T,(l,) 1s given by

Lfk(fk):LTp,k(fr)LI;mr(f;c) i (ip) for any p=k-1,

L =L

T i 1 e N L,

b 10D DN for any p=k-1, [(4.10)] (3.16)

1, pﬁ:(f k)

respectively.
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The cost for the assignment of {kzk”k“, . ,,zzk+Nk+N ! to _continued
track T,(1,) and the corresponding [zero one] zero-one vari- Zin Lo et iy
able are given b if 17, . .
g y rl 1f {ZIR_IF?"' 5Z.Ek1k_|_la"' ’Z'Ek—hf}
3 ‘o are assigned as a track,
. A1V (3 17 | 0, otherwise.

iy ey ==Lz Lip, o, 1= [(4.11D] (3.17)

~Inf Ly o Lipa ) o i - gy | 20 For the window of frames in the range [[k-I, . . . K]}
20 g = 10 k-1, ... k}, the easiest explanation of the partition of the

reports 1s based on the definitions

: k+1 k+N 1 ; :
{ 1, if {kaﬂ Ve ZEHN} 1s assigned to track T, (1),

0, otherwise,

1, ‘ z;-vp belongs to one of the tracks | [(4.13)] (3.19)
= Tox =4 listed on frame k, ie., t ]
respectively. Likewise, for costs associated with the false P e O e B e, T O
_ _ | ofthe T, (l;) forsome I, =1, ... , 1, |
reports on the frames k-1 to k and as associated with
fz, =1 .. .,z, ®/! and the corresponding zero-one [vari- Fpa = QL s MpV ) UHOM
ot ] ford
able] variables are given by: -
so that all of those reports not used 1n the tracks T,(1,) on
frame p are put into the set of available reports F_ , for the
F o =Ly o] [(4.12)] (3.18) . . . i
PENRN TSR =1 el formation of tracks over the entire window. Thus, we formu-
late the assignment problem as
k k+J M, (3.20)

Minimize Z Z y ycfc w - ZF - S
J J Ik—.’"'jkik-l-l"'jk-l-uf Ik—f"'jkik-l-l"'jk-l-.f

p=k—lipeF,; r=k+1 i;=0

Ly k+J M,

C; - : 7z :
Gtk tewd Ttk )

=0 r=k+1 i,=0

& +S M,

subject To Z Z Z Z Zi g iy ey = b

(p=k—1,p#q}ipEF ) r=k+1 iy=0
fori;, e Fppy M0} and g =k-1, ... .k,

k k+d M,

fk_l;... 'E:'r{'ik-i-l""i:'r{-l-uf

pzk—.’ipEFp’k {r=k+1,r+g)} quﬂ
fori, =1,... .My and gq=k+1,... ,k+],

ka_ljr... Ik1k+l jk-l-.f = {03 1} fﬂr all Le—fs oo s Ledpgys ooe 5 g g

k+J My

T

Z . =1, =1,... ,L
Z Z g gy = KT T o O
)=k +1 =0
Ly k+J M

Z Z Zz‘ifkﬂ---fmj =11, =1,... .\ M,

[, =1 {r=k+1,r#q} ip=0
forgq=k+1, ... ,k+1,

Z‘{RER—I-I"' ER-I—J S {Oa 1} fDr aH lk = lai}r{-l—la meron i:'r{-l—.f'



US RE44,307 E

59

Basic Assumptions. Suppose problem [(4-14)] (1.20) has
been solved and let the solution, i.e.[.] those zero-one vari-

ables equal to one,

T
{ “l ) Vg 1 B o i G D

F
{ka—f“ml)--- '

be

5

et ([(4.15] 3.21)
1= 1’

Lyl

e G D 1) iy @ } 7
e D e 1 1) g e Dy =1, 4

10

with the following exceptions.

a. All [zero one]
Liliy )0,

which (1,_,, . .

zero-one variables in the second list for
, 0,0) are, excluded. Thus,

tracks that initiate on frames after the (k+1)” are not included

in the list.

15

b. All false reports [axe] are excluded, i.e., all zero-one
variables 1n the second list whose subscripts have exactly one

nonzero index.
c. All vaniable

(0,0, ...,0)and
1s user specified.

ot D for p=k-K, .

Thus the track T, (1,) 1s terminated if it is not

“ for which (i,,, . . . Jig.n)=

.,k where K=0
20

observed over K+J+1 frames.

Given the enumeration [(4.15)] (3.20), one now fixes
assignments on the all index sets up to and including the

(k+1)” index sets.

{

Ty (lgsy) =+

'

k—1
(ka—f“ml)’

for 1,4y :Lk+l +1,...

the

25

(T (i (r D), Z’;-T:l (Lis1)) [(4.16)] (5.22)

for lk—l—l = 1, ’Lkl+l"'

k k+1 ) 30

, Z Y4
b Upp) T Ugyg)
, Lyt1.

Thus one can now formulate the assignment problem for
the next problem exactly as in [(4-14)] (3.20) but with k 35

replaced by k+1. T
Here 1s one explanation for the mnaitial step.

The Imitial Step.
First, assume that

hus, we do not repeat 1t here.

N=I+J. In this case, we start the track

initiation with a solution of (3.5). Let

11 (12),1(2) - .

be an enumeration of the solution set of (3.5), 1.e., those
zero-one variables z, ;.
i1 (0H) -

: iN(IE):iN+l(12)}32L2:0

60

If I+J>N, then one possibility 1s to start the process with
N+1 frames, and assuming J<N, proceed as before replacing
I by N-I for the moment, and continue to add frames without
lopping off the first frame 1n the window until reaches a
window of length I+J+1. Then we proceed as 1n the previous
paragraph.

If I+J<N, then one can solve the track nitiation problem
(3.5), formulate the problem with the center of the window at
k+1=N+1-1J, enumerate the solutions as above, and lop off the
first N-J-1 frames. Then, we proceed just as in the case
[+J=N.

A primary objective 1n this work has been to demonstrate
how multidimensional assignment problems arise in the
tracking environment. The problem of track initiation and
maintenance has been formulated within the framework of a
moving window over the frames of data. The solution of these
NP-hard, noisy, large scale, and sparse problems to the noise
level 1n the problem 1s fTundamental to superior track estima-
tion and identification. Thus, one must utilize the special
structure 1n the problems as well take advantage of special
information that 1s available. Since these moving windows
are overlapping, there are some algorithm efliciencies that
can be 1dentified and that take advantages of the overlap in the
windows from one frame of reports to the next. Here 1s an

example of the use of a primal solution of one problem to
warm start the solution of the next problem in the sequence.

1.5, CONCLUDING COMMENTS

Suppose we have solved problem [(4.4)] (3.10) and have

enumerated all those zero-one variables in the solution of
[(4.4)])(3.10)asin[(4.5)) (3.11). Add the zero index 1, =0, so
that the enumeration 1s

{(lk(lk+l):ik+l(lk+l): - :ik+N(lk+l))} [(51)] (323)
With this enumeration one can define the cost by
Cla i 14N G DS 1T Ds -+ - » INe 1674 Dy 14y [(5.2)] 3.24)

and the [two dimensional] rwo-dimensional assignment prob-
lem

Lyt Mpiin [(5.3)] (5.25)
O, = Minimize Z Z =V,(z°
2 fk+1*k+1+w -fk+1*k+1+w 2(2°)
y1=0 g1 4n=0
My 1+n
: 2
Subject to Z Z} ity T I, Ly =1, ..., Lisy,
1N =0
Lyl
2 .
7 - =1.1 =1.... .M
Z '{k-l—ljk-l—l-l—N s +1+N 3 " E+1+N -
by =0
2 .
7 : 0. 1} forall | 1 .
'{J'r{+111'r{+l—|-N E{ " } k41 b +14+0
55

ey Lo ncluding 7,5 =1

corresponding to 1,=0, but excluding all those zero-one vari-
ables that are assigned to one and correspond to false reports
(1.e.. there 1s exactly one nonzero index in the subscript of
Z. . . ),allthose zero-one variables that are assigned to one

1) - - - IN]

and correspond to tracks that initiate on frames higher than
I+2. Then we fix the data association decisions corresponding
to the reports 1n our list of tracks prior to and including frame

k+1=I+2. This defines the k for problem (4.4) and one can

then continue the

63
development by adding a frame to the

window as in the general case.

Let w be an optimal or feasible solution of two two-dimen-
sional assignment problem and define

— [(5.4)] (3.26)

Ligel o N i 1N
(1, b (s oo s Lan) = Qe e )y o0 s ey (1))
{ and Wiy = ]l forsome I,y =1, ... , Ly
or it (L, 1414n) = (0, 0)
0, otherwise.
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This need not satisty the constraints in that there are usually
many objects left unassigned. Thus. one can complete the
assignment by using the zero-one variables in [(4.4)] (3.10)
with k replaced by k+1 with exactly one nonzero 1index cor-
responding to any unassigned object or data report.

For the dual solutions, the multipliers arising from the
solution of the [two dimensional] two-dimensional assign-
ment problem [(5.3)] (3.25) corresponding to the second vari-

able, i.e., {u, 'V~ Mwv—() These are good initial
’ > L N lpelely

values [for] 7o use in a relaxation scheme [[11.12]] (4. B.
Poore and N. Rijavec. Partitioning multiple data sets: multi-
dimensional assignments and Lagrangian velaxation, in qua-
dratic assignment and related problems; P. M. Pardalos and

H. Wolkowicz, editors, DIMACS series in Discrete Mathemat-
ics and Theoretical Computer Science, 16:25-37, 1994, A. J.

Robertson Il A class of lagrangian velaxation algorithms for
the multidimensional assignment problem. Ph.D. Thesis,
Colorado State University, Ft. Collins, Colo., 1995). Finally,

note that one can also develop a warm start for problem
[(4.14)] (3.20) in a similar fashion.

V. REVIEW OF NEW RELAXATION SCHEMES

IV 1. Introduction

Multidimensional assignment problems govern the central
problem of data association in multisensor and multitarget
tracking. 1.e., the problem of partitioning observations from
multiple scans of the surveillance region and from either
single or multiple sensors into tracks and false alarms. This
fundamental problem can be stated as (4. B. Poore, Multidi-
mensional assignments and multitarget tracking, partitioning

datasets, 1. J Cox, P Hansen, and B. Julesz, editors, DIMACS

Series in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, Providence, R.1.,

19:169-198, 1995, A. B. Poore. Multidimensional assignment

Jormulation of data association problems arising from mul-
titarget tracking and multisensor data fusion. Computational

Optimization and Applications, 3:27-57, 1994)

M [(1.1)] (4.0)

M 5 My
Subject to: E L Ty =Lii= 1 My,

=0 ‘NZU

DI I IS

for 1, = M, and p =2, N-1
T My

E Zil INZI 1y = MN
j=0 ‘n-170
Ziy... iy € {0, 1} tor all 13, ... , 1y,

[fory =1,... , M, and k=2,... ,N,
Zil... lN—I—l E{O, 1} for all il:---- aiN—l—l]

wherec_ _1sarbitrarily defined to be zero and 1s included
for notational convenience. One can modily this formulation
to include [multiassignments] multi-assignments of one,
some, or all of the actual reports. The zero 1index 1s used 1n
representing missing data, false alarms, 1mtiating and termi-
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nating tracks as described in (A. B. Poore, Multidimensional
assignments and multitarget tracking, partitioning data sets,
1. J. Cox, P Hansen, and B. Julesz, editors, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
5 American Mathematical Society, Providence, R.1., 19:169-
198, 1995; A. B. Poore. Multidimensional assignment formu-
lation of data association problems arising from multitarget
tracking and multisensor data fusion. Computational Opti-
mization and Applications, 3:27-57, 1994). In these prob-
10 lems, we assume that all zero-one variables z;, 1, with
precisely one nonzero index are free to be assigned and that
the corresponding cost coetlicients are well-defined. (This 1s
a valid assumption 1n the tracking environment (4. B. Poore,
Multidimensional assignments and multitarget tracking, par-
15 titioning data sets, I. J. Cox, P. Hansen, and B. Julesz, editors,
DIMACS Series in Discrete Mathematics and Theovretical
Computer Science, American Mathematical Society, Provi-
dence, R.I., 19:169-198 1995: A. B. Poore. Multidimensional
assignment formulation of data association problems arising
20 from multitarget tracking and multisensor data fusion. Com-
putational Optimization and Applications, 3:27-57, 1994).)
Although not required, these cost coeltlicients with exactly
one nonzero index can be translated to zero by cost shifting
(4. B. Poore and N. Rijavec. A lagrangian relaxation algo-
25 rithm for multidimensional assignment problems arising
from multitarget tracking. SIAM Journal of Optimization, 3,
No. 3:544-563, 1993) without changing the optimal assign-
ment. Finally, this formulation 1s of sufficient generality to
include the symmetric problem and the asymmetric inequal-
30 1ty problem (4. J. Robertson I1l. A class of lagrangian algo-
vithms for the multidimensional assignment problem. Ph.D.
Thesis, Colorado State University, Ft. Collins, Colo. 199)5).
The data association problems in tracking that are formu-
lated as [(1.1)] Equation (4.1) have several characteristics.
35 They are normally sparse, the cost coelficients are noisy and
the problem 1s NP-hard (M. R. Galey and D. S. Johnson.
Computers and Intractability. W. H. Freeman and Company,
San Francisco, Calif., 1979), but 1t must be solved in real-
time. The only known methods for solving this NP-hard prob-
40 lem optimally are enumerative 1in nature, with branch-and-
bound being the most efficient; however, such methods are
much too slow for real-time applications. Thus one must
resort to suboptimal approaches. Ideally, any such algorithm
should solve the problem to within the noise level, assuming,
45 of course, that one can measure this noise level 1n the physical
problem and t2at the mathematical method provides a way to
decide 1f the criterion has been met.
There are many algorithms that can be used to construct
suboptimal solutions to NP-hard combinatorial optimization
50 problems. These include greedy (and its many variants),
relaxation, simulated annealing, tabu search, genetic algo-
rithms, and neural [netork] algorithms (C. H. Papadimitriou
and K. Steiglitz. Combinatorial Optimization: Algorithm and
Complexity. Prentice-Hall, Inc., Englewood Cliffs, N.J.,
55 1982, J. Pearl Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, Reading,
Mass., 19584; C. R. Reeves ed. Modern Heuristic lechniques
for Combinatorial Problems. Halstead Press, Wiley, N.Y.,
1993). For the [three dimensional] three-dimensional assign-
60 ment problem. Pierskalla (W. Pierskalla. The tri-substitution
for three-dimensional assignment problem. Journal du
CORS, 5:71-81, 1967) developed the tri-substitution method.
which 1s a variant of the simplex method. Frieze and Yadegar
(4. M. Frieze and J. Yadegar, An algorithm for solving 3-di-
65 mensional assignment problems with application to schedul-
ing a teaching practice. Journal of the Operational Research

Society, 39:989-955, 1981 ) introduced a method based on
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Lagrangian relaxation 1n which a feasible solution 1s recov-
ered using information provided by the relaxed solution. Our
choice of approaches 1s strongly influenced by the need to
balance real-time performance and solution quality.
Lagrangian relaxation based methods have been used suc-
cessiully 1n prior tracking applications (K. R. Pattipati, S.
Deb, and Y. Bar-Shalom. A s-dimensional assignment algo-
vithm for track initiation. In Proceedings of the IEEE Systems
Conference, Kobe, Japan, pages 127-130, 1992; Y. Bar-Sha-
lom, S. Deb, K. R. Pattipati, and H. Tsanakis. A new algorithm
for the generalized multidimensional assignment problem. In
Proceedings of the IEEE International Conference on Sys-
tems, Math, and Cvbernetics, Chicago, pages 132-136, 1992;
A. B. Poore and N. Rijavec. A numerical study of some data
association problems arising in multitarget tracking. Large

Scale Optimization: State of the Avt, W. W. Hager, D. W. Hearn
and P M. Pardalos, editors. Kluwer Academic Publishers
B.V., Boston, pages 339-361, 1994; A. B. Poore and N.Ri-

Javec. Partitioning multiple data sets: multidimensional
assignments and lagrangian velaxation. In P. M. Pardalos
and H. Wolkowicz, editors, Quadratic assignment and velated
problems: DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, volume 16, pages 25-37,
1994; A. B. Poore and N. Rijavec. A lagrangian relaxation
algorithm for multidimensional assignment problems from
multitarget tracking. SIAM Journal of Optimization,3, No.
3:544-563, 1993). An advantage of these methods 1s that they
provide both an upper and lower bound on the optimal solu-
tion, which can then be used to measure the solution quality.
These works extend the method of Frieze and Yadegar (A4. M.
Frieze and J. Yadegar. An algovithm for solving 3-dimen-
sional assignment problems with application to scheduling a
teaching practice. Journal of the Operational Research Soci-
ety, 32:9589-995, 1951) to the multidimensional case.

IV.2. Probabilistic Framework for Data Association.
[(ABP)]

The goal of this section 1s to explain the formulation of the
data association problems that governs large classes of data
association problems in centralized or hybrid centralized-
sensor level multisensor/multitarget tracking. The presenta-
tion 1s brief; technical details are presented for both track
initiation and maintenance in the work of [Poore] (4. B.
Poore. Multidimensional assignments and multitarget track-
ing, partitioning data sets, 1. J. Cox, P. Hansen, and B. Julesz,
editors, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, American Mathematical Society,
Providence, R.1., 19:169-198, 1995: A. B. Poore. Multidimen-
sional assignment formulation of data association problems
arising from multitarget tracking and multisensor data
fusion. Computational Optimization and Applications, 3:27-
57, 1994). The formulation 1s of sullicient generality to cover
the MHT work of Reid, Blackman and Stein (S. S. Blackman.
Multiple 1arget Tracking with Radar Applications. Artech.
House, Norwood, Mass., 1956) and modifications by Kurien
(1. Kurien. Issues in the designing of practical multitarget
tracking algorithms. In Multitarget-Multisensor Tracking:
Advanced Applications by Y. Bar-Shalom. Artech House,

Mass., 1990) to include maneuvering targets. As suggested by
Blackman (S. S. Blackman, Multiple 1arget Tracking with

Radar Applications, Arvtech House, Norwood, Mass., 1986),
this formulation can also be modified to 1include target fea-
tures (€.g., size and type) into the scoring function. The recent
work [of Poore and Drummond] (4. B. Poore and O. E.
Drummond. Track initiation and maintenance using multidi-

mensional assignment problems. In D. W. Hearn, W. W.
Hager, and P. M. Pardalos, editors, Network Optimization,
volume 450, pages 407-422, Boston, 1996. Kluwer Academic

10

15

20

25

30

35

40

45

50

55

60

65

64

Publishers B. V) significantly extends the work of this section
to new approaches for multiple sensor centralized tracking.
Future work will involve extensions to track-to-track corre-
lation.

The data association problems for multisensor and multi-
target tracking considered 1n this work are generally posed as
that of maximizing the posterior probability of the surveil-
lance region (given the data) according to

Maximize AP(I'=y|ZY)IvI*} [2.1)] (4.2)

where 7" represents N data sets. vy is a partition of indices of
the data (and thus induces a partition of the data). [I'9]

| [

['S Y ]

[P(I" vIZ)] I'* is the finite collection of all such partitions, T’
is a discrete random element defined on T'*, and P(U=y|Z") is
the posterior probability of a partition v being true given the
data Z". The term partition is defined below; however, this
framework 1s currently sufficiently general to cover set pack-
ings and coverings (4. B. Poore. Multidimensional assign-
ment formulation of data association problems arising from
multitarget tracking and multisensor data fusion. Computa-
tional Optimization and Applications, 3:27-57, 1994; A. B.
Poore. Multidimensional assignments and multitarget track-
ing, partitioning data sets, I. J. cox, P. Hansen, and B. Julesz,
editors, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, American Mathematical Society,
Providence, R1., 19:169-198, 1995).

Consider N data sets Z(k) (k=I, . . . ,N) each of M, reports
{z.” I.kMFl ,and let Z" denote the cumulative data set defined

[(2.2)] (4.3)

respectively. In multisensor data fusion and multitarget track-
ing the data sets Z(k) may represent different classes of
objects, and each data set can arise from different sensors. For
track initiation the objects are measurements that must be
partitioned 1nto tracks and false alarms. In our formulation of
track maintenance (4. B. Poore. Multidimensional assign-
ment formulation of data association problems arising from
multitarget tracking and multisensor data fusion. Computa-
tional Optimization and Applications, 3:27-57, 1994; A. B.
Poore. Multidimensional assignments and multitarget track-
ing, partitioning data sets, 1. J. cox, P. Hansen, and B. Julesz,
editors, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, American Mathematical Society,
Providence, R.1., 19:169-198, 1995), which uses a moving,
window over time, one data set will be tracks and remaining
data sets will be measurements which are assigned to existing
tracks, as false measurements, or to initiating tracks. In sensor
level tracking, the objects to be fused are tracks (5. S. Black-
man. Multiple Target Tracking with Radar Applications.

Artech House, Norwood, Mass., 1956). In centralized fusion
(S. S. Blackman. Multiple Target Tracking with Radar Appli-
cations. Artec House, Norwood, Mass., 1956), the objects
may all be measurements that represent targets or false
reports, and the problem 1s to determine which measurements
emanate from a common source.

We specialize the problem to the case of set partitioning (A.
B. Poore. Multidimensional assignment formulation of data
association problems arising from multitarget tracking and
multisensor data fusion. Computational Optimization and

Applications, 3:27-57, 1994; A. B. Poore. Multidimensional

Z(k)={z; "}, ""=1 and Z"={Z(1), ... Z(N)}
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assignments and multitarget tracking, partitioning data sets,
1. J Cox, P Hansen, and B. Julesz, editors, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, Providence, R.1., 19:169-
198, 1995) defined 1n the following way. First, for notational
convenience 1n representing tracks, we add a zero index to
each of the index sets in [(2.2)] Equatiorn (4.3), a dummy
report z_* to each of the data sets Z(k) in [(2.2)] Equarfon
(4.3), and define a “track of data™ as (z ) wherei, and z,”
can now assume the [values] value of O and Z6 [respectwely]
A partition of the data will refer to a collection of tracks of
data wherein each report occurs exactly once 1n one of the
tracks of data and such that all data 1s used up; the occurrence
of dummy report is unrestricted. The dummy report z_* serves
several purposes 1n the representation of missing data, false
reports, initiating tracks, and terminating tracks (4. B. Poore.
Multidimensional assignment formulation of data associa-
tion problems arising from multitarget tracking and multisen-
sor data fusion. Computational Optimization and Applica-
tions, 3:27-57, 1994 A. B. Poore. Multidimensional
assignments and multitarget tracking, partitioning data sets,
1. J. cox, P Hansen, and B. Julesz, editors, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, Providence, R.1., 19:169-
198, 1995). The reference partition 1s that in which all reports
are declared to be false.

Next under appropriate independence assumptions one can
show (4. B. Poore. Multidimensional assignment formulation
of data association problems arising from multitarget track-
ing and multisensor data fusion. Computational Optimiza-
tion and Applications, 3:27-57, 1994; A. B. Poore. Multidi-
mensional assignments and multitarget tracking, partitioning
data sets, . J. cox, P Hansen, and B. Julesz, editors, DIMACS

Series in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, Providence, R.1.,

19:169-198, 199)5).

P =Y |ZY) ([2.3] 4.4)

I,
PC=Y0|ZMy ~ '

]_[ Li,

(... IN)EY

where v’ is a reference partition, L, ... 1s alikelihood ratio
containing probabilities for detection, maneuvers, and termi-
nation as well as probability density functions for measure-
ment errors, track imitiation and termunation. Then 1if

C, .. _I.N:—lnLI.1 iy
| P =Y |ZY) Z (12.4] 4.5)
APC=Y0ZY |~ 4a e

(... i)Y

Using [(2.3)] Equation (4.4) and the zero-one variable
zZ, o101, ... 1 )ey and O otherwise, one can then write

the problem [(2. 1)] (4.4) as the following N-dimensional
assignment problem:

Minimize Z Ciy .. i Zig... iy [(2.5)] 4.6)

1] ... 1

Subject To Z Zii ... iy
inig... iy

:1 (11 — 1-,. ﬂMl)ﬁ

10

15

20

25

30

35

40

45

50

55

60

65

06

-continued
Z Zfl IN — 1 (iz — 1!‘ e 3 MZ)!‘
11i3... iN
Z Ziy. iy =1
ERRIS PP | P PR 1Y
(i,=1,... .Myandp=2,... ,N-1),
Z Zfl Nzl(iNzlﬁ--- -,-MN):-

i e {0, 1} for all 15, ... , 1n,

where ¢,  _ 1s arbitrarily defined to be zero. Here, each
group of sums in the constraints represents the fact that each-
non-dummy report occurs exactly once 1n a “track of data.”
One can modify this formulation to include [multiassign-
ments] multi-assignments of one, some, or all the actual
reports. The assignment problem [(2. 5)] Fquation (4.6) is
changed accordingly. For example, 1f Z, * is to be assigned no
more than, exactly, or no less thann, tlmes then the “=1"1n
the constraint [(2.5)] (4.6) is changed to <, =, 2n, > respec-
tively. Modifications for group tracking, and multiresolution
teatures of the surveillance region will be addressed 1n future
work. In making these changes, one must pay careful atten-
tion to the independence assumptions that need not be valid in

many applications.

Expressions for the likelihood ratios L, ; , canbe found
in the work of Poore (A. B. Poore. Multidimensional assign-
ment formulation of data association problems arising from
multitarget tracking and multisensor data fusion. Computa-
tional Optimization and Applications, 3:27-57, 1994; A. B.
Poore. Multidimensional assignments and multitarget track-
ing, partitioning data sets, 1. J. cox, P. Hansen, and B. Julesz,
editors, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, American Mathematical Society,
Providence, R.1., 19:169-195 1995). These expressions
include the developments of Reid, Kurien (1. Kurien, Issues
in the designing of practical multitarget tracking algorithms.

In Multitarget-Multisensor Tracking: Advanced Applications

by Y. Bar-Shalom. Arvtech House, Mass., 1990), and Stein and
Blackman (S. S. Blackman. Multiple Target Tracking with
Radar Applications. Artech House, Norwood, Mass., 1986).
What’s more, they are easily modified to include target fea-
tures and to account for different sensor types. In track 1ni-
tiation, the N data sets all represent reports from N sensors,
possibly all the same. For track maintenance, we use a sliding
window of N data sets and one data set containing established
tracks. (4. B. Poore. Multidimensional assignment formula-
tion of data association problems arising from multitarget
tracking and multisensor data fusion. Computational Opti-
mization and Applications, 3:27-57, 1994; A. B. Poore. Mul-
tidimensional assignments and multitarget tracking, parti-
tioning data sets, 1. J. cox, P. Hansen, and B. Julesz, editors,
DIMACS Series in Discrete Mathematics and Theovretical

Computer Science, American Mathematical Society, Provi-

dence, R1., 19:169-198, 1995). The formulation 1s the same
as above except that the dimension of the assignment problem

is now N+1. [@@@]

[To explain the costs for the new problem, one starts with
the hypothesis that a partition yel ™* conditioned on the truth of
the pairings on the first two frames being correct. Corre-
sponding to the sequence 1T1.(1), 7, ...7; },thelikelihood
function is then given by]
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[ [y = ]_[ Liyis... iy, Where

{Tz (In ),353 e 5 Zipg s }E’,‘F
Liis.. iy =bnws Zigs - 5 Ziyy =bnaple, > - Ziy
Ly, =1. |

2

[Next, define the coset and the corresponding zero-one
variable}

L — L 4.2b
[ sziz N4 - 1HL5213 IAf 4D ( )
( : 3 N+2
1 1t {21-3, ZI'N+2} 1S
Zinia... ipgpns = assigned to Track T5(l,),
|0 otherwise ]

[respectively. Then the track maintenance problem Maximize
{Lylyel™ assignment]

Mp 2
[MllllII]JZE‘: ; ; Z C.'fzi?) IN+ZZ.{213 'E.N-I-Z

=0 iz=0 ‘N+27Y

M

3. My

Subject to: E o D Znig iy, =Lh=1h.. L,

i3=0 iy 2=0

L —

21 . Mp 2=0

i i Z Z£3£3---£N—|—2:1"13:1"" ,Mg,
=0 ig=0 ‘N+270

Mp1 Mpr1  Mp,o

LL 20 24 2L =This iy
12 ) 13 =() F" 1= ﬂiP"'l =0 1N+2 =0
fory =1,... ,M, and k=2, ... N,

M

1 M py

E Z Zil"'iN—I-l :15 1x +1 :13 BMN‘l‘l
=0 ‘N+1-170
Zii... Iyy1 €40, 1} forall 1y, ... , 1y41 |

[Track Maintence and Initiation: Step k. At the beginning
of the k™ step. we solve the following (N+1)-dimensional
assignment problem.}

Ml my (4.4)
MIHIHHZE:Z Z Z Clig, (- eV Pl N
[=0 iz=0 kAN
Gl My
Subject to: . Z Ziin iy = L ko= Lo Ly,
irg1=0 kN
M2 My
Z Z Z Zhipr 1o iy = 1
B=0 ijap=0 kAN
e =1, o0 Mgy,
My Mp1 Mpid My N
Z Z Z Z Z Zhigar - ey = 15
B=0 ijp1=0  ip =0 iy =0 KN
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-continued

for 1, =1,... ,Myandp=k+2,... ,N, +k+1,
M

k+] Mk+l+N 2

E | § | Zhigyy o igen = 1
i =0
'{k —0 Ik-l—l —0 k—l—l—I—N 2
oy =1, o0 Mgy,

Z'{k‘!f{-l-l IR+N E {Oa 1} fDr aH 1&5 1k+la R R 1R+N ]

[where for the first step 1, and L, are replaced by i, and M,
respectively. The first index 1, 1n the subscripts corresponds to
the sequence of tracks {T,(1,)},"=0 where T,(1,)=
{z, (.. ...z,"(1,)} is a track of data from the solution of the
problem prlor to the formulation of (4.4) or if k=1 then 1t 1s
just the first data set in frame one.]

[Suppose problem (4.4) has been solved and let the solu-
tion, 1.¢., those zero-one variables equal to one, be enumer-

ated by]

[l Dtz By s - - - sl D), =1

[with the following exceptions.]

[a. All zero one variables for which (1.1, ,)=(0,0) are
excluded. Thus, tracks that initiate on frames after the (k+1)”
are not included in the list.}

[b. All zero-one variables whose subscripts have the form
1,=3 and exactly one nonzero index 1n the remaining indices
{i,.1, . . . .t are excluded. These correspond to false

reports on frames p=k+1, ... k+N.]
[c. All variables Z, 41 . aslN) for which (1k+1,

1k+N)=(0,0, . . . ,0) and 1,(I,)=0 1n (4.5). In other words, the
reports on the last N+1 frames in the {T,(1,), z, **'} are all
dummy. Any solution with this feature corresponds to a ter-
minated track.}

[Given the enumeration (4.5), one now fixes the assignments
on the first two index sets in the list (4.5). The zero index
1, . =0 1s added to the enumeration to specity (1,(0),1,, ,(0))=
(0,0) that 1s used to represent false reports and tracks that
initiate on frame k+2 or later, so that the enumeration (4.5) 1s
now]j

(4.5)]

[{(lk(lk+l):ik+l(lk+l))}f;c+lLk+l:0 (46)]

[Then forl,_.=1,...,L,.,,thel_ " such track is denoted
,i'-:+l(1,f-:+l {Tk(lk(1k+l)) Z; +l} and the (N+l)-tuple
{T;H (L 12, 7 +j+l+N } will denote a track T, ,
(I..,)plus a set of reports {1 PR N actual or
dummy. that are feasible with the track T ;.:+1(1 re1)- The (N+1)-
tuple {Tk+l(0) z, 2, ...z, ] will denote a track

I 14N

that initiates in “the sliding window, 1.e., on subsequent
frames. A false report in the sliding window 1s one with all but
one non-zero index 1, for some p=k+2, . .., k+1+N 1n the

(N+1)-tuple {T,_,(0), Zy. k+2: Y4 zh“NmHN} ]

[The correspondmg hypothesm about a partition vel™
being true 1s now conditioned on the truth of the L, , tracks
existing at the beginning of the N-frame window. (Thus the
assignments prior to this sliding window are fixed.) The like-

lihood function is given by]

_ _ (4.7a)
[ Ly = ]_[ Liyyingryn > Where
Ty U )) iy Higp1oNEY
Lyvtivan ierrew = M sz+2 T Y
h+2 H+1+N
Ly o =1 I
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[Next, define the cost and the zero-one variable by]

+2 +1+N 4 7h
[Z.{ 1_ — Lt {ka 27 Z:(R—I—I—I—N ( )
k+1k+1+N 0 otherwise, ]

[respectively, so that the track extension problem, which was
originally formulated as Maximize {L.|yel'd as exactly the
same multi-dimensional assignment 1 (3.4) but with k
replaced by k+1. Thus, we do not repeat it here.]

[The Second Approach to Track Maintenance and Initia-
tion}

[In the first approach the window lengths were the same for
both track maintenance and initiation. This can be inefficient
in that one can usually use a shorter window for track main-
tenance than for track initiation. This section addresses such

a formulation.}

[The General Step k. To formulate a problem for track
initiation and maintenance we consider a moving window
centered as frame k of length I+J+1 denoted by [k-1, . . .,
k, ... ,k+J]. Inthisrepresentation, the window length for track
maintenance 1s J and that for imtiation, I+J+1. The objective
will be to explain the situation at this center and then the move
to the same length window at center k+1 denoted by
[k+1-1,....k+1,.... k+1+]J], 1.e., by moving the frame one
frame at time to the right. The explanation from the first step
follows hereinafter.]

[ The notation for a track of data is]

[Tul)={z: ' (L) - - - :fo(lk): e Ly (%) (4.8)]

[where the index 1, is used for an enumeration of those reports
paired together. We also use the notation 1, ,(1,) to denote the
sequence of reports belonging to track T, (1, ) but restricted to
frames prior to and including p. Thus,]

[Tk(lk) :Tk,k(lk)]

[Tk(lf):{z{fl(lk): ‘e :prp(lk)}]

[T )=T, 1)Uz 1,...,21}_1@?‘%—

1 5
s Lin (1) h
for psk—1.(4.9)]

[Given this notation for the tracks and partition of the data in
the frames {k-I, ... k, ..., k+J}. “T, .(I,) will denote the
accumulated likelithood ratio up to and including frame
p(p=k) for a track that 1s declared as existing on frame k as a
solution of the assignment problem. In this notation, the like-
lihood for T ) and that of the association of

{z, ™, ... %’N ! with with track T,(1,) is given by]

. = . . 4.11
[C'{ﬁi!k—l-l“' g T an_lTk('{k)LIk—l-l"'Ik-l—J] aﬂd ( )
= _IH[LTp,k(fk)L* 10 e g gy e ]
+1 +
2T o { {ka 1’ ka 1}
{ caa
Kkl ke 0 otherwise, ]
[respectively.]
. +1 k+N
[The cost for the assignment of {z. Z, 1 to
k+1 N .

track T,(1,) and the corresponding zero one variable are given
by]
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T
L ey iy = ~Ilbnobip iy ] and (4.11)
— _1H[LTp?k ('{k )L1p+l('{k:’1k “ﬁ( )1k+l I'k_”]
k+1 k+N
7 o 1 {zj-k_l,... "ka—l}
Kkl et 0 otherwise, ]

[is assigned to track T, (1,), respectively. Likewise, for costs
associated with the false reports on the frames k-1 to k and as
associated with {z - k”, .. .,Z; /1 and the corresponding
17

zero-one variable are given by:

F .
[ka—.f"' lkfk—l—l' . I;H_Jr = —llll_ij pretipipa ...,_'k_l_JJ (412)
1 {af Zig goeor 0 Zig gy e Zyys}
zi_f... Ly q-ee gy = are assigned as a track,
0 otherwise. ]
[For the window of frames in the range [k-I, . . . k], the

casiest explanation of the partition of the reports 1s based on
the definitions]

(4.13)

. belongs to one of the tracks listed on frame k, }
Z
L)

'p 1.e., to one of the T,(l,) forsome l, =1, ...

Fp,k — ({15 U MP} \\Tp.f{) U {O}a

[so that all of those reports not used in the tracks T,(I,) on
frame p are put into the set of available reports F ; for the
formation of tracks over the entire window. Thus, we formu-
late the assignment problem as}

k k+J M,
- F F
M.cmm.tez Z ZZC . .7 . : +
[ Z jk—f”' j:'r{’jk-l—l"' Ijr{_|_Jr jk—f”' Iklk-l-l"' j:'!.i-l—.f
k+J M.
E | E | E | fﬂk*kﬂ S -ﬁmﬂ S
=1 r=k+1 ip=
k k+J M,
Subject to: Z Z Z Z zF . : =1
J ‘Ef{—."" Ikik_l_l... jf{-l—.f
p=k—1,p#q} ip€F, ; r=k+1 ip=0
fori1, e F 0} and g =k -1, ... k,
k k+J M,
Y% Y Y il
p=k—1 ipEF, 1 {r=k+Llrq} ip=0
and g=k+1, ... k+1,
Zig yooipipgre. iy €10, 1} forall g, oo S L, Teds oo 5 Ly
k+J M,
T .
Zi ; : =1 =1.... . M
p=k+1 =0
forq=k+1, ... k+1,
Ziyiy, g iy, €10, 1 torall I = 1, 34y, o005 iy ]

[Suppose problem (4.14) has been solved and let the solu-
tion, 1.¢., those zero-one variables equal to one, be enumer-

ated by]
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Tt (4.15)

Lit1=1

[{A]

b U 1 Vg1 g ) ”mﬂ}

}LKH

g1y

\z,
1 g1 )---
k+l=£K+l+l ]

U 1 e g ) -

[with the following exceptions.]

[a. All zero one variables in the second list for which
(1,_, &1 =0, . ..,0,0) are excluded. Thus, tracks that
initiate on frames after the (k+1)” are not 1ncluded in the list.}

[b. All false reports are excluded, i.e., all zero-one variables
in the second list whose subscripts have exactly one nonzero
index.}

[c All variables z, 1, .. .1 _for which (1., . . . 1, 4=(0,

~,0) and Z(p)NT,(1,)={0V for p=k—K. . . . .k where K=0
1s user specified. Thus the track T, (I,) 1s terminated 111t 1s not
observed over K+J+1 frames.}

[Given the enumeration (4.15), one now fixes the assign-
ments on the all index sets up to and including the (k+1)”
index sets.]

[ (Tele (e ), 75, (yr)) for (4.16)

b1 =1, .00, e

SN

1 Ug1)” "

Tor1 g+1) =3

for 1,y = I’k—l—l +1, ...

[Thus one can now formulate the assignment problem for
the next problem exactly as 1n (4.14) but with k replaced by
k+1. Thus, we do not repeat it here.}

[The Initial Step. Here is one explanation for the initial
step. First, assume that N=I+]. In this case, we start the track
initiation with a solution of (3.5). Let]

[{i2(0),ix(15) . . . :iN(IE):iN+1(12)}32L2:0 ]

[be an enumeration of the solution set of (3.5), i.e., those
zero-one variables z, 5, o ;o - l,ncluding z,, - =1
corresponding to 1,=0, but excluding all those zero-one vari-
ables that are assigned to one and correspond to false reports
(1.e., there 1s exactly one nonzero index in the subscript of
Z; 1, - - - 1zy1 ), all those zero-one variables that are assigned to
one and correspond to tracks that mitiate on frames higher
than I+2. Then we {Ix the data association decisions corre-
sponding to the reports in our list of tracks prior to and
including frame k+1=I+2. This defines the k for problem (4.4)
and one can then continue the development by adding a frame
to the window as in the general case.]

[If I+J>N, then one possibility is to start the process with
N+1 frames, and assuming J<N, proceed as before replacing
I by N-1J for the moment, and continue to add frames without
lopping off the first frame 1n the window until reaches a
window of length I+J+1. Then we proceed as 1n the previous
paragraph.}

[If I+J<N, then one can solve the track initiation problem
(3.5), formulate the problem with the center of the window at
k+1=N+1-1J, enumerate the solutions as above, and lop off the
first N-J-I frames. Then, we proceed just as in the case
[+]=N ]

[A primary objective in this work has been to demonstrate
how multidimensional assignment problems arise in the
tracking environment. The problem of track initiation and

maintenance has been formulated within the framework of a
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moving window over the frames of data. The solution of these
NP-hard, noisy, large scale, and sparse problems to the noise
level 1n the problem 1s fundamental to superior track estima-
tion and 1dentification. Thus, one must utilize the special
structure 1n the problems as well take advantage of special
information that 1s available. Since these moving windows
are overlapping, there are some algorithm efliciencies that
can been 1dentified and that take advantages of the overlap 1n
the windows from one frame of reports to the next. Here 1s an
example of the use of a primal solution of one problem to
warm start the solution of the next problem in the sequence.]

[Suppose we have solved problem (4.4) and have enumer-
ated all those zero-one variables 1n the solution of (4.4) as 1n
(4.5). Add the zero index 1, _,=0, so that the enumeration is}

Uiy iy 1 i) - - - :ik+N(lk+l))}z';c+1Lk+l:0 (5.1)]

[With this enumeration one can define the cost by]

(5.2)]

[ka+lfk+1+N_ka(fk+l)k+l(fk+1)=~ o s ENE 1R B 14N

[and the two dimensional assignment problem]

Lt Migien (5.3)

| 5 = Minimize Z Z

=170 14 n =0

= V,(z*
fk+1fk+1+w fk+1fk+1+N 2(2)

My 14N

D, i
11+ N

14+ =0

Subject to: =1, =1, ...

s Lk—l—l ’

Ly g

D) Gy
b1 14y

b +1=0

— 1-; lk-l—l-l—N — 15 LI Mk—i—l-l—Na

2

Zy 0, 1} for all 1 1 .
iy €O 1) by > KALEN

[Let w be an optimal or feasible solution to this two-dimen-
sional assignment problem and define]

[ Zig o envigeron = (5.4)
(1 oaf @, e sy = W ety o5 g ()
and Wi ey = for some 1,y =1, 1, ... , Ly
..1
or lf (1k+15 Ik 1+ N) — (Oa D)a
| 0 otherwise. ]

[This need not satisfy the constraints in that there are usu-
ally many objects left unassigned. Thus, one can complete the
assignment by using the zero-one variables i (4.4) with k
replaced by k+1 with exactly one nonzero index correspond-
ing to any unassigned object or data report.}

[For the dual solutions, the multipliers arising from the
solution of the two dimensional assignment problem (5.3)
corresponding to  the second  vanable. 1.€.,
{uzmw‘““ . =0, These are good initial values for
use 1n a relaxation scheme [11.12]. Finally, note that one can

also develop a warm start for problem (4.14) 1n a similar

fashion.]

[Multidimensional assignment problems govern the cen-
tral problem of data association in multisensor and multitar-
get tracking, 1.e., the problem of partitioning observations
from multiple scans of the surveillance region and from either
single or multiple sensors into tracks and false alarms. This
fundamental problem can be stated as]
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My My (11)
[MI]JIT]JZE! E Z Cil... Y Zfl... A
=0 N7V
M My
Subject to: E Z Zi. iy = 1,1y, =1, 1, , My,
=0 N7V
M Mp_ 1 Mpy1=0 My
E E E . Z - Zil. iny=1
i1=0 iy =0i,-0 N7V
tor1, =1, , M, and p =2, N -1,
! My_1
% . Z Zil. IN_lalN: . 3MN5
=0  ‘n-170
Ziy... iy €10, 1} forall 1y, ..., iy,
fory, =1,... .M, and k=2,... ,N,
Zfl... 1N-|—l E{O,.l} for all il,... , LAl ]

[wherec, ,isarbitrarily defined to be zero and is included
for notational convenience. One can modily this formulation
to include multiassignments of one, some, or all of the actual
reports. The zero index 1s used 1n representing missing data,
false alarms, mmitiating and terminating tracks. In these prob-
lems, we assume that all zero-one variables z,; 1, with
precisely one nonzero index are free to be assigned and that
the corresponding cost coetlicients are well-defined. (This 1s
a valid assumption in the tracking environment.) Although
not required, these cost coellicients with exactly one nonzero
index can be translated to zero by cost shifting without chang-
ing the optimal assignment. Finally, this formulation 1s of
suificient generality to include the symmetric problem and
the asymmetric inequality problem.}

[The data association problems in tracking that are formu-
lated as (1.1) have several characteristics. They are normally
sparse, the cost coellicients are noisy and the problem 1s
NP-hard, but 1t must be solved in real-time. The only known
methods for solving this NP-hard problem optimally are enu-
merative i nature, with branch-and-bound being the most
efficient; however, such methods are much too slow for real-
time applications. Thus one must resort to suboptimal
approaches. Ideally, any such algorithm should solve the
problem to within the noise level, assuming, of course, that
one can measure this noise level in the physical problem and
the mathematical method provides a way to decide if the
criterion has been met.}

[There are many algorithms that can be used to construct
suboptimal solutions to NP-hard combinatorial optimization
problems. These include greedy (and 1ts many variants),
relaxation, simulated annealing. tabu search, genetic algo-
rithms, and neural netork algorithms. For the three dimen-
sional assignment problem. Pierskalla developed the tri-sub-
stitution method, which 1s a variant of the simplex method.
Frieze and Yadegar introduced a method based on Lagrangian
relaxation 1 which a feasible solution 1s recovered using
information provided by the relaxed solution. Our choice of
approaches 1s strongly influenced by the need to balance
real-time performance and solution quality. Lagrangian
relaxation based methods have been used successiully in
prior tracking applications. An advantage of these methods 1s
that they provide both an upper and lower bound on the
optimal solution, which can then be used to measure the

10

15

20

25

30

35

40

45

50

55

60

65

74

solution quality. These works extend the method of Frieze and
Yadegar to the multidimensional case.}

[Probabilistic Framework for Data Association. (ABP)]

[The goal of this section is to explain the formulation of the
data association problems that governs large classes of data
association problems in centralized or hybrid centralized-
sensor level multisensor/multitarget tracking. The presenta-
tion 1s brief; technical details are presented for both track
initiation and maintenance in the work of Poore. The formu-
lation 1s of sullicient generality to cover the MHT work of
Reid, Blackman and Stein and modifications by Kurien to
include maneuvering targets. As suggested by Blackman, this
formulation can also be modified to include target features
(e.g., size and type) into the scoring function. The recent work
of Poore and Drummond significantly extends the work of
this section to new approaches for multiple sensor centralized
tracking. Future work will mvolve extensions to track-to-

track correlation.}

[The data association problems for multisensor and multi-
target tracking considered 1n this work are generally posed as
that of maximizing the posterior probability of the surveil-
lance region (given the data) according to]

[Maximize {P(T'=y|Z")lyel™*} (2.1)]

[where 7" represents N data sets, y of the data (and thus
induces a partition of the data), I'y}]

s ]

[P(T" vIZ"Y) is the posterior probability of a partition v true
given the data Z". The term partition is defined below; how-
ever, this framework 1s currently sufliciently general to cover
set packings and coverings.}
[Consider N data sets Z(k) (k=I, . . . ,N) each of M, reports
R Mi=1_ andlet Z" denote the cumulative data set defined

Z g
by]

[Z(0)~{z,*}, M1 and Z¥={(Z(1), ... .Z(N)}

(2.2)]

[respectively. In multisensor data fusion and multitarget
tracking the data sets Z(k) may represent different classes of
objects, and each data set can arise from different sensors. For
track initiation the objects are measurements that must be
partitioned 1nto tracks and false alarms. In our formulation of
track maintenance, which uses a moving window over time,
one data set will be tracks and remaining data sets will be
measurements which are assigned to existing tracks, as false
measurements, or to mitiating tracks. In sensor level tracking,
the objects to be fused are tracks. In centralized fusion, the
objects may all be measurements that represent targets or
talse reports, and the problem 1s to determine which measure-
ments emanate from a common source.]

[ We specialize the problem to the case of set partitioning
defined 1n the following way. First, for notational conve-
nience 1n representing tracks, we add a zero imndex to each of
the index sets in (2.2), a dummy report z* to each of the data
sets Z(k) 1 (2.2), and define a “track of data™ as (zl.lizl.NN )
where (@/(@1, and ZI.;': can now assume the values of 0 and z ",
respectively. A partition of the data will refer to a collection of
tracks of data wherein each report occurs exactly once 1n one
of the tracks of data and such that all data 1s used up; the
occurrence of dummy report 1s unrestricted. The dummy
report z,,” serves several purposes in the representation of
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missing data, false reports, mnitiating tracks, and terminating,
tracks. The reference partition 1s that in which all reports are
declared to be false.}

[Next under appropriate independence assumptions one
can show]

[ P(C=y|Z") (2.3)

P =y2ZY)

[L; .. .1y 1s a likelihood ratio containing probabilities for
detection, maneuvers, and termination as well as probability
density functions for measurement errors, track initiation and
termination. Thenifc;, ...1,— InL, ...1,,]

P(y | Z" (2.4)
[ —In P((};llzw)) — Z Cfl... PN
VY I ey |
[Using (2.3) and the zero-one variable z,  ==11, = ,J]
(€7 it Ya A [2.5]
¢
Minimize Z Cfl... iNZfl... Y
ALY
Subjectto )z iy =1 =1, ..., M)
iniz... ip
Z Zil IN_I (12: o= aMl)
iig... iy

G,=1,... .M, andp=2,... N—1)
Z 254 IN_l (iNzla--- :MN)

.. N

Ziy ... iy €10, 1} torall 1y, ..., iy.]

[where ¢, is arbitrarily defined to be zero. Here, each
group of sums 1n the constraints represents the fact that each-
non-dummy report occurs exactly once 1n a “track of data.”
One can modily this formulation to include multiassignments
of one, some, or all the actual reports. The assignment prob-
lem (2.5) 1s changed accordingly. For example, 1f sz 15 to be
assigned no more than, exactly, or no less than nij' times, then
the “=1"" 1n the constraint (2.5) 1s changed to =, =, :_bnij,,”
respectively. Modifications for group tracking and multireso-
lution features of the surveillance region will be addressed 1n
tuture work. In making these changes, one must pay careful
attention to the independence assumptions that need not be
valid in many applications.]

[Expressions for the likelihood ratios L; ,iy, can be found
in the work of Poore. These expressions include the develop-
ments of Reid, Kurien, and Stein and Blackman. What’s
more, they are easily modified to include target features and to
account for different sensor types. In track 1mitiation, the N
data sets all represent reports from N sensors, possibly all the
same. For track maintenance, we use a sliding window of N
data sets and one data set containing established tracks. The
tformulation 1s the same as above except that the dimension of

the assignment problem is now N+1.]

10

15

20

25

30

35

40

45

50

55

60

65

76

Overview of the Lagrangian Relaxation Algorithm.
[(ABP)]

Having discussed the N-dimensional assignment problem
[(1.1)] (3.1), we now turn to a description of the Lagrangian
relaxation algorithm. The algorithm will proceed iteratively

foraloop k=1, ...,N-2. Atthe completion, there remains one
two-dimensional assignment problem that provides the last
step which yields an optimal (sometimes) or near-optimal
solution to the original N-dimensional assignment problem.
In step k of this loop (summarized in Section [4] /V.3) one
starts with the following (N-k+1)-dimensional assignment
problem with one change 1n notation. If k=1, then the index
notation 1, and L, are to be replaced by 1, and M,, respec-
tively.

Minimize Z Nkl Nkl [(3.1)] (4.7)
. . '{kik-l-l"' IN .'fkik+l... .EN
'!R‘ER-I—I"' IN
- N—fk+1 . .
Subject To >z 7571 1 =Ll=1,... .1,
Ek—l—l"' I'N
N—k+l1
| Z o T2 N T
'{kik-I-Z"' IN
+1 =1, oo, Mgy,
N—k+1 1
N ) o Ty iy T
lkik-l-l"' lp_11p+l... IN
fori, =1,... ,M, and p=k+2, N =1,
N—fk+1 -
Z '{k‘ik-l—l' Y — 15 1N - 15 " MN&
beth 1 Nkt
Z'[{k'ik-l—l"' I.N S {05 1} fﬂr all lka i}r{-l-la LI 1N

To ensure that a feasible solution of [(3.1)] Fquation (4.7)
always exists for 1s a sparse problem, all variables with
exactly one nonzero index (i.e., variables of the form

Zio o Nt for [, ... LY. =1 ... L, and
Z, 10 .. 5 for 1,=1, ..., M, and p=k+12, . .. ,N)

assumed Iree to be assigned with the corresponding cost
coellicients being well-defined. This assumption 1s valid 1n
the tracking environment (4. B. Poore. Multidimensional
assignments and multitarget tracking, partitioning data sets,
L. J cox, P Hansen, and B. Julesz, editors, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, Providence, R.1., 19:169-
198, 1995; A. B. Poore. Multidimensional assignment formu-
lation of data association problems arising from multitarget
tracking and multisensor data fusion. Computational Opti-
mization and Applications, 3:27-57, 1994)..

[Subsection 3.1] Section IV.3.1 presents some of the prop-
erties associated with the Lagrangian relaxation of [(3.1)]
(4.7) based on relaxing the last (N-k)-sets of constraints to a
two-dimensional one. [A] Section 1V.3.2 describes a new
approach to the problem of recovering a high quality feasible
solution of the original (N-k+1 )-dimensional problem given
a feasible solution (optimal or suboptimal) of the relaxed
two-dimensional problem 1s described hereinafter. A sum-
mary of the relaxation algorithm is given [hereinafter] ir
Section 1V.3.3, [following which] and in Section IV.3.4, we
establish the maximization of the Lagrangian dual (an impor-
tant aspect of the relaxation 3procedure) to be an uncon-
strained nonsmooth optimization problem and then present a
method for computing the subgradients.

IV.3.1 The Lagrangian Relaxed Assignment Problem].]

The (N-k+1)-dimensional problem [(3.1)] (4.7) has (N-k+
1) sets of constraints. A (M_+1)-dimensional multiplier vec-
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tor (i.e., v/ € R*™1) associated with the [p-th] p” constraint
set will be denoted by W= ,u”, . .. u,,?)" with u =0
being fixed for each p=k+2, ..., Nand included for notational
convenience only. Now, the [(N-k+1)dimensional] (N-k+1)-
dimensional assignment problem [(3.1)] (4.7) is relaxed to a
two-dimensional assignment problem by 1incorporating
(N-k-1) sets of constraints into the objective function via the
Lagrangian. Although any (N-k-1) constraint sets can be
relaxed, we choose the last (IN-k-1) sets of constraints for
convenience. The relaxed problem 1s

Ny = [(3.2)] (4.8)

N—f+1, k+2

Minimize ¢y—g+1(Z U, L.

2,

N—k+1 N—k+1

Minimize Cliipg- inZlip g iy

N pr
p | Z N—k+1 1 _
E E U; Z; =1 =
Ip . . . '{J'r{'ik-l—l"' IN
p:k+2 .fp:D _"’r:'r{'ik-l-l"' '{p—l'ip-l-l"' S
i} N My i
. a . _ 1 1
Minimize AT > > u?
Ekjk-l-l"' IN J . J .Ep
binelo. iy | p=k+Z1p=0 |
N Mp
N—k+1 p
'!kik-l-l"' IN Z Z .Ep
p=k—2 ip=0
, N—k+1 _ —
Subject To Z i iy = L= Lo L
et 1 H+2 N
N—k+1
| Z Tl N T
‘fk"k+2 IN
41 = 13 'JMR-I—I'

One of the major steps 1n the algorithm 1s the maximization of

2
Dy (U,

(W™=, ... u™). It turns out that ®,,_, ., is a concave, continu-
ous, and piecewise alline function of the multipliers
(uﬁ'-:+2:j .

problem of nonsmooth optimization. Since many of these

u) with respect to the multipliers

N * . . *
. ,u"), so that the maximization of ®,, , , 15 a

algorithms [[???]] require a function value and a subgradient
of @,_,.., at any required multiplier value (u**=, . . . u"), we
address this problem 1n the next subsection. We note, how-
ever, that there are other ways to maximize ®,, , , and the

next subsection just addresses one such method.

IV.3.2 Properties of the Lagrangian Relaxed Assignment
Problem

For a function evaluation of [®,,_ ., ;1P -1, ;» We show that
an optimal (or suboptimal) solution of this relaxed problem
[(3.2)] (4.8) can be constructed from that of a two-dimen-

sional assignment problem. Then, the nonsmooth character-

istics of ®,, . , are addressed, followed by a method for

computing the function value and a subgradient.

Evaluation of ®,, , ,. Define for each (1,.1,,,) an index

(jk+2: SRR jN):(jk+2(lk:ik+l): « o :jN(lk:ik+l)) Ellld a new cost
function c, k‘f}c+12 by
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[(3.3)] (4.9)

gy gr )y oov 5 Iy Uiy 41 ) = argmin

{ N 3
N—k+1 p |-
ch T .+ u’ (1, =0.1.... .M
) b1t N Z ip | P » L S|
p=k+2 »
k and p=k+2,... ,N )
y) N—k+1
bty 41 bt o1 Fep2Ugatp g ) I Ugsiggg)
N
p : -
Z W, (I eqr) for (e, ipr) # (0, 0),
p=k+2

{

N 3
Coo = Minimum 4 0, coo; L+ u? 3
OO — ] GDIR-I—Z"' g ip [°

3 p:k_|_2 /

Given an mdex pair (I..1,, 1),(J..5, - - - » 1) D€€d not be unique,
resulting 1n the potential generation of several subgradients

[(3.11)] (4.17).

Then,
k42 N . .
Dy g (2, L uY) = 134 4.10)
Minimize &N_kﬂ(zz; ut2 L u)y =
L My N Mp
2 2 B p
Z Z “liiger “lig Z Z Hip
[, =0 iy =0 p=k+2 ip=0
My 11
. 2 _ _
Subject To Z zi,  =Lli=1, 0 I,
Y1 =Y
Ly,
2 R
Z Z'{J'r{jf{-l-l — 15 I +1 = 1:- LI Mk-l—la
{, =0
2 .
Zi i, € {0, 1} tor all 1, 1, 4.

As an aside, two observations are 1n order. The first 1s that the
search procedure needed for the computation of the relaxed
cost coefficients in [(3.3)] (4.9) is the most computationally

intensive part of the entire relaxation algorithm. The second 1s

that a feasible solution z"~**' of a sparse problem [(3.1)] (4.7)

yields a feasible solution z° of [(3.4)] (4.10) via the construc-
tion

=1 for some (1442, ... ,in),

2 Gtkr1t42-- N

15 if ZN—R—I—I
Zy . =
b th 41

0, otherwise.

thus, there are generally solutions other than the one nonzero
index solution.

The following Theorem [3.1] 4./ gives a method for evalu-

ating ®,,_, , and states that an optimal solution of [(3.2)]
(4.10) can be computed from that of [(3.4)] (4.10). Further-
more, 11 the solution of either of these two problems 1s €-op-

timal, then so 1s the other. The converse 1s contained 1n Theo-
rem [3.2] (4.2).
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[Theorem 3.1. Let »” dimensional assignment problem
(3.4) and define o™ "'}

| i£k+2. N Loy Af Gkezs oo i) = Gpans oo 5 ) (3.3)
Eﬂld (1!'{5 ik—l—l) # (Da (
and (lp, i4+1) # (0, (
N
k+1 _ : N—k+1 P :
Oin.. iy = 1 1t Cooiy .. iy F Z w, =<0
p=k+2
G =00 ettt s Z uf > 0.]
p=k+2
[Then ™**! v problem and @, kj_\}ymN Sy vy
D, . yo, vV VYA addition, w,w” ! C[)N VR VYA
(I) VA%_Z NAJ
Nek+11
D,

[Proof Let ™" Y@ TNV AD L 2R
v¥) objective function Values of (3.2) and (3.4), respectwely
Direct verification shows that o”**! in (3.2) and ®,_,, v
YT 2y, Nq)N e YOV v remainder of the proof,

assume that o~

[Let " VA]

g2
Y60 =1 if (L, 1) = (0, 0) and
ﬂwgiﬁzl + Z < 0 for some (ig42, ... ,Iin);
p=k+2
Xo0 =0 if (i, igs1) = (0, 0) and
Cocrt i+ Z u? >0 forall Gz, ... ,in).]
p=k+2
[Note that§ VAD . vV ASD, L (VPR VY A
Ic+2 N—k+l E-':+2N —I-:+l
2@ }Ig+} ADy YO A o ANU)
optlmal solution of 3 2 Next D, .. YV A

(D% +1, (i;z VYA Dy YO Vi NA Dy (07 V =
VA o7y
[With the exception of one equality being converted to an

inequality, the following theorem 1s a converse of Theorem
3.1]
[Theorem 3.2. Let o™ **'vA and define w’]

.N k+1

(3.7)
ikl ike2

v for (e, 141) # (0, 0);

2

i _nee iy

2 _
[ m.fk ‘i:'!.i—l -

w3y = 1 if (I, iger) = (0, 0) and

N—f+1

00y o r... iy T Z u < 0 for some (1442, ... , 1x);

p=k+2

wgo =0 if (g, ix11) = (0, 0) and

N—k+1
Co0i 4.

o+ Z u? >0 for all (ig,p, ... ,iy). ]

p=k+2

N-FKk+1 NA:"'(I)N - ((l] Vk+2 VNA

[Then w* vy A (I)N—k+l “{(1)
N—k+l v A (1) (3 4) N_kj\lr N—k+l vk:z fvfk/& (I)N k+l(m2
el VY . NA]

Ic+2 N
Aand D, ., (Vv
[Proof. Let ol g2 @N_kﬂ(mﬁy“l “+2 yvMA and ®,, .,

(w* V2 VYA objectwe function values of (3.2) and (3.4),
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respectively. Direct verification shows that ®” (3.4) and

D YOV T NVENVAD (0P remamder of the
proof, assume that " ~**' vA and construct ®* m o' by
replacing WV oy A YR Dy vON=k+ IV
VN.& (I)N ,I-:+1(UJ2 '\,e’k+2 'VN.&_(I) _k+lYmN—k+l +2 VNA (I)N +1
inequality is in face an equality. This provides the theorem.]

Theorvem 4.1. Let w° be a feasible solution to the two-

dimensional assignment problem (4.10) and define w"~"*! by

N—k+1 |
Gtkr1ik42-- N

2

(4.11)

Wi W G2y oo s ) = Upaps - 5 Ty and i, ) # (0, 0)
Wi oy =00 (g2, ) #
(jk+2= R JN) and (I, 1.41) # (0, 0)
N
ﬁo:fjj... iy =11t Cgﬂzf:;... iy T Z Uf; < 0,
p=k+2
N
gﬂzfizl.. iy =01t Cgﬂ?ﬁé... iv T Z i, >0
p=k+2

Then w""+1 is a feasible solution of the Lagrangian
relaxed problem and

If, in addition, w” is optimal for the two-dimensional problem,
then W is an optimal solution of the relaxed problem and

Dy g (U, ™) = e (U u),
Proof. Let w™~ o and w° be as in the hypotheses, and let

(I)N_k+j(WN_k+f;Hk+{ o ,HN)
and

. 5

(I)n—kﬂ’(z 3

denote the objective function values of (4.8) and (4.10),
respectively. Direct verification shows that w" "' satisfies
the constraints in (4.8) and

Onpr W2 M=, WL u™.

For the remainder of the proof, assume that w” is optimal for
(4.10). Let X~ satisfy the constraints in (4.8) and define

Xfﬂml - Z gfkk:fmz for (I, 1+1) # (U, 1), (12)
'EJE{-I-Z"']N
N
xg0 = Lif (i) = (0, 0) and it 22+ 0wl <
p=k+2
0 for some (igi2, ... ,in), Xgo = 0 if (e, dgs1) =
(0, 0) and c’gmf:zl + Z u >0 for all (.9, ... , iy).
p=k+2
Note that x° satisfies the constraints in (4.10) and
@N—k-kl (KN—R-I-I; uk+2, . uN) > ¢_k+l (K2, uk+25 ’ uN)
= Py WU )
= by (WL G0



US RE44,307 E

81

for any feasible solution x™**! of the constraints (4.8). This
implies w”~**! is an optimal solution of (4.8). Next,
)

k+_2

D jers (U )= D W L

follows xmmedxatelyﬁom

(I’N—k+f (WN—E:+E ; Hk+21 -
(W2ead+2,

for an optimal solution w” of (4.10). With the exception of one
equality being converted to an inequality, the following theo-

rem is a converse of Theorem 4.1.
Theorem 4.2. Let W~ be a feasible solution to problem

(4.8) and define w” by

) =D

Wﬁ{fﬁgﬂ ~ Z g*kk:*mz for (e, e+1) # (U, 0), (4.13)
2 AN

W%D =11t (lka ik-l—l) — (03 0) and

gﬂjfizl + Z u < 0 for some (iz42, ... . in),

p=k+2

wo =0 if (I, iger) = (0, 0) and CogPh 4 2 u >0

00 ks h+1 , 00y, 5...

p=k+2
for all (ik+2, . .fN).
Then w° a feasible solution of the problem (4.10) and
O (W WL :“N)Ed)N—mf

(W2etd2 ),

If in addition, whu N-k+1 is optimal for (4.8), thenw” is an
optimal solution of (4.10),

P s (WN_k+f:'”k+2: R :“N) :d)N—k+f (W{'““‘E ----- “N)

and

Dy g W7, )= Dy W, L),

Proof: Let w“="™ and w’ be as in_the hypotheses, and let
O (W2 ™Y and G (WU L)
denote the objective function values of (4.8) and (4.10),

respectively. Direct verification shows that w*° satisfies the
constraints in (4.10) and

Do s W T UL ).

For the remainder of the proof, assume that w" "+ is opti-
mal for (4.8) and construct w* as above. Using Theorem 4.1,
construct W' by veplacing w”"* in (4.11) with WN_;{”.
Then, from that theorem and

: :“N)Ed)N—mf(WZ;HME: .

k+17 -

k+2

!
_N—k+1.  k+2 N 2.
- e U Y =y (WU L

PN —k+1 (W . U

N—k+1.  k+2 N
£¢N—k+l(w " ,U,—I_ s ves o U )

Optimality of W= then implies the last inequality is in fact
an equality. This proves the theorem.

The Nonsmooth Optimization Problem. Next, we address
the nonsmooth properties of the function [®,,_,,,yv* vVA]
D .. (W, ... u) as explained in the following theorem.

Theorem [3.4] 4.3. (G. L. Nemhauser and L. A. Wolsey.
Interger and Combinatorial Optimization, Section 1I.3.6.
Wiley, New York, N.Y., 1988). Let [@,, .., YAD,_ ... v )]
D, .., be as defined in (4.7), let Vy_,.,(Z""") be the
[object] objective function value of the (N-k+1)-dimensional
assignment problem in [equation (3.1)] (4.7) corresponding
to a feasible solution Z*¥~**! of the constraints in [(3.1)] (4. 7),
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and let Z¥~**! be an optimal solution of [(3 1)] (4.7). Then,
[D. .. vWvYA] Dy L@ u™) 1s piecewise affine,
concave and continuous in [{f\»,f‘é"‘““2 vV 1{4 ... " }and

Do (W2, 0=V VTNV T,
(4.14)

Most of the algorithms for nonsmooth optimization are based
on generalized gradients, called subgradients, given by the
following definition for a concave function.

Definition [3.5.]4.1. Atu=(u**>, ... ,u") the set 8®,,_, ,(u)is
called a subdifferential of @, .., and 1s defined for the con-
cave tunction @,, , ,(u) by

Iy g1 (W)= {gERM kgt X. XRMN 1|‘I’N—k+1
(m) D, ErlGd=g (w- u) for all QeRM o]
- XRY N+ 1y

where g_=m_“=0 are all permanently fixed. (Recall that these
were used for notational conveience only.) A vector
geed®,, ., 1s called a subgradient.

There 1s a large literature on such problems, e.g., (J.-B5.
Hiviarvt-Urruty and C. Lemarechal. Concex Analysis and
Minimization Algorithms I& II. Springer-Verlag, Berlin,
1993, K.C. Kiwiel. Methods of descent for nondifferentiable
optimization. In Lectuve Notes in Mathematics 1133, A. Dold
and B. Eckmann, eds. Springer-Verlag, Berlin, 1955; C.
Lemarechal and R. Mifflin. Nonsmooth Optimization. Perga-
mon Press, Oxford, UK, 1978; B. 1. Polvak Subgradient
method: A survey of Soviet vresearch. In C. Lemarechal and R.
Mifflin, editors, Nonsmooth Optimization, pages 5-29, N.Y.,
1978. Pergamon Press.; H. Schramm and J. Zowe. A version
of the bundle idea for minimizing a nonsmooth function:
Conceptual idea, convergence analysis, numerical results.

SIAM Journal on Optimization, 2, No.1:121-152, February,
1992; N. Z. Shor. Minimization Methods for Non-Differen-
tiable Functions. Springer-Verlag, New York, 1985; P. Wolfe.

A method of conjugate subgradients for minimizing nondif-
ferentiable functions. Mathematical Programming Study,
3:145-173, 1975), and we have tried a variety of methods
including subgradient methods (V. Z. Shor Minimization
Methods for Non-Differentiable Functions. Springer-Verlag,
New York, 1955) and bundle methods (J.-B. Hiriart-Urruty
and C. Lemarechal. Convex Analysis and Minimization Algo-
vithms 1& II. Springer-Verlag, Berlin, 1993; K. C. Kiwiel.
Methods of descent for nondifferentiable optimization. In
Lecture Notes in Mathematics 1133, A. Dold and B. Eckmann,
eds, Springer-Verlag, Berlin, 1985). Of these, we have deter-
mined that for a fixed number of nonsmooth 1terations (e.g.,
twenty), the bundle trust method of Schramm and Zowe (H.
Schramm and J. Zowe. A version of the bundle idea for mini-
mizing a nonsmooth function: Conceptual idea, convergence
analysis, numerical vesults. SIAM Journal on Optimization,
2, No. 1:121-152, February, 1992) provides excellent quality
solutions with the fewest number of function and subgradient
evaluations, and 1s therefore our currently recommended
method.

An Algorithm for Computing ®@,, , , and a Subgradient.
Most current software for maximizing the concave function
D, ., requires the value of the function and a subgradient at
apoint (W, . .. u™). Based on the previous two sections, this
can be summarized as follows.

1. Starting with problem [(3.1)] (4.7), form the relaxed
problem [(3.2)] (4.8);

2. To solve [(3.2)] (4.8) optimally, defined the [two dimen-
sional] two-dimensional assignment problem [(3.4)] (4.10)
via the transformation [(3.3)] (4.0):

3. Solve the two-dimensional problem [(3.4)] (4.10) opti-
mally;

4. Reconstruct the optimal solution, say w7 of [(3.2)]
(4.8) via equation [(3.5)] (4.9) as in Theorem [3.1] 4.1



US RE44,307 E

83

5. Compute the function

r+2 Ny _ A N—k+1_ _ f42 NY _ . .
Op g yi(u ) =Py (W w2 L) s [(3.10)] (4.16)
5
Z Nkt ﬁ?N_—rﬂ 4
Shgiggt N iy i
'{kik-l—l""'EN
N Mp ] )
P aN—f+1
§ E u; . Z BT
p_'!k‘tk+l""{p—llp+l"'1N kk"'l N ] 10
p=k+2 ip=0

6. A subgradient 1s given by

15
p o OOy (U2 L) [(3.11)] (4.17)
Sip = 511’-5 "
‘P
Z GN-hl
Uikl bp—liptl- IN Ytk N 0
1

for 1, =1, ...
M, andp=k+2,... .N. 25

Several remarks are 1in order. First, the optimal solution of the
[minimiation] minimization problem [(3.2)] (4.8) is required
before one can remove the minimum sign, replace z"**! by

the minimizer W **! and differentiate with respect to u Pp to

obtain a subgradient as in [(3.11)] (4.17). If w~**! is an
approximate solution of [(3.2)] (4.8), then the subgradient
and function values are only approximate with [accruacy]
accuracy depending on that of W1 Although one can

evaluate the sums in [(3.10)] (4.16) and [(3.11)] (4.17)in a

[straightforward] straight forward manner, another method is
based on the following observation. Given the multiplier vec-

tOr Ugys, - - - 5Up), let {(Le(lgy ), 1zc+1(1k+1)}zk+lLk”_O be an enu- 4
meration ef indices {lkjlkﬂ} of w” (or the first 2 indices of

w1 constructed in equation [3.5] 4.9)) such that))

Wi D, zkﬂ(zk”)z 1 tor (Lp(Ley 1)1, 1y 1))=(0.0) and (lk(lk+l)
1, ... ,))=(0,0) for 1, ,=0 regardless of whether w__“"=1 or

not. (The latter can only improve the recovered feasible solu- 45
tion.) The evaluation of the bracketed quantity in [(3.11)]
(4.17) for a specific 1,>=1 and p=k+2, . . . ,N 1s one minus the
number of times the index value 1, appears in the (p—k+1)”
pesrtlen of the (N-k+1)tuple 1n the list 4L )i, (L, ).
.]k+2: tr :.]N)}Z;HIL;HI_O 50
Finally, we have presented a method for computing one
subgradient. If Ww"~**! is the unique optimal solution of
[(3.2)] (4.8), then ®,,_, ,,(u) is differentiable atu, g is just the
gradient at u, and the subdifferential d®,, , ,(u)={g} is a
singleton. If, corresponding to u,w"~**! is not unique, then 55
there are finitely many such solutions, say {w" "
(D, . . . W' (m)} with respective subgradients
{a(1),...,g(m)}, the subdifferential d®(u)is the convex hull
of {g(1) g(m)} (J. L. Goffin. On convergence rates of subgra-
dient optimization methods, mathematical programming. 60
Mathematical Programming, 13:329-347, 1977). These
nonunique solutions arise in two ways. First, 1f the optimal
solution of the [two dimensional] two-dimensional assign-
ment problem is not unique, then one can [general] generate
all optimal solutions of the [two dimensional] two-dimen- 65
sional assignment problem [(3.4)] (4.10). Corresponding to
cach of these solutions and to each imndex pair (1,.,1,, , )Jin each

30

35

34

solution, compute the indices (j, ., . . . ,ja) N [(3.3)] (4.9). If
these 1’s are not unique, then we can enumerate all the pos-
sible optimal solutions W " of [(3.2)] (4.8). Given these
solutions, one can then compute the corresponding subgradi-
ents from [(3.11)] (4.17).

In most nonsmooth optimization algorithms, one uses an
[epsilon-subdifferential] e-subdifferential.
Definition [3.x] 4.2. At u=(u**>, . . . ,u") the set 8@, ,(u)
is called an [epsilon subdifferential] e-subdifferential of
®., .., and 1s defined for the concave funtion ®,, ,_,(u) by

IDp_y 1 (W)= {EERM »+1X - XRMN 1y (@)=

D, kﬂ(u)ggf(m —u)+€ fer all mRMkﬂ} (3.9)

where g =m_f=u £=0 are all permanently fixed. (Recall that
these were used for notational convenicence only.) A vector
gedd,, . .(u)is called [a subgradients] an e-subgradient.

HOW DO YOU COMPUTE geo®,,_,, .(u)

IV 3.3 The Recovery Procedure.

The next objective 1s to explain a recovery procedure, 1.€.,
given a leasible (optimal or suboptimal) solution
[0*y Ay yAlw” of (4.10) (or W= of (4.8) constructed
via Theorem [3.1] 4.1), generate a feasible solution z"~**! of
equation (3.1) which is close to [w”] w* in a sense to be
specified. We first assume that no variables in [(3.1)] (4.7) are
[presassigned] preassigned to zero; this assumption will be
removed shortly. The difficulty with the solution [w™** w]
w1 it need not satisfy the last (N-k-1) sets of constraints
in [(3.1)] (4.7). (Note, however, that if [w* (3.4)] w* is an
optimal solution (4.10) and [ I W™  as constructed
in Theorem 4.1, satisfies the to relaxed constraints,
then [w™ ! vyAAw] W™+ is optimal for (4.7.) The recovery
proceudre described here i1s designed to preserve the 0-1
character of the solution [w*yA] w* of (4 10) as far as pos-
sible: If [w, ;. *=1 and 1,»0 or i, ,=0), w*,, -1 and [,=0 or
it 70 the eerrespendmg feasible selutlen Z& “1of [(3.1)]
(4.7) 1s construed so that z, . . . 1,0 . . . o™ *1=1 for some
(1,5, . . . 1,). By this reaseningj variables of the form
Zo0x, , . INN ~**+1 canbe assigned a value of one in the recovery
preblem only if m__°=1. However, variables Z oot s . . INN A
will be treated dlfferently in the recovery procedure in that
they can be assigned either zero or one independent of the
value [of w__*] w,,”. This increases the feasible set of the
recovery problem, leading to a potentially better solution.

Let {(1.(1,.. ), 1;{“(1;{+ )}1 “#1_() be an enumeration of indi-
ces {1, i,,,} of [w*yw® +l] w’ (or the first 2 indices of

w1 constructed in equation [(5)] (4.11)) such that
[mik(zﬁﬁl):fﬁﬁl(zhl)z:l] szr(fmr)sfmr(f;ﬁr):f for (lk(lk+l)ﬂik+l(lk+l))#
(0,0) and (1.d,.,), 1., ,))=(0,0) for 1, ,=0 regardless of
whether [w__*=1] w”__=1I or not. To define the [N-k dimen-
sional] (N-k)-dimensional assignment problem that [resores]
restores Teasibility, let

N-1 N

Nk | Nkl

“hitivin-in = Sl Dige Gy g iy
N

= Ci D0 D303 ) g ) i1 G D g2 N

for k=2 and [, =0, ... , L,,

where

L . 171010 - oli(ley =1L
(oo Qe 1)) - - - DIGA13)] (4.19)
for m=2,k+1 and where [o] “o” denotes function composi-

tion. For example 1,,=1,(1;) and 1,3.-,0 1;(1, =1, (15(14)).
Then the (N-k)-dimensional assignment problem that

restores feasibility 1s
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[(3.14)] (4.20)

Minimize Z A 7k
| “hrtigr2- N P rige2 0N
bev L2+ IN
Subject To 7~ =1, Ly =1 L
J '.f.llr{+].1.llr{+2 N - k) .Ilr{‘l‘]. - 5 o= e .Ilr{"‘]_!l
i iN
Nk s
Z Ziy i iy = Lo lke2 = 1 My,
Yt 143 IN
Y b
| | “lig 1 i IN
.fkik+l... '{p—ljp-l-l"' N
for 1, =1,... ,M,andp=k+3,... ,N-1,
SNk s
| Z | “htiggne in T Liv=1.... My
by 142 IN-1
z) " 0, 1} for all Ly, ] i
‘{k+l‘k+2 N E{ " } or a k+1a1k+2,. ,IN.

LetY be an optimal or feasible solution to this [N-k dimen-
sional] (N-k)-dimensional assignment problem. The recov-
ered feasible solution z" is defined by

ZV.o = [(3.14)] (4.21)
111213... IN

(1, 1ty =11(l  g41), 12 =12l 41)s

13 =13(la  juy)s oor o1 = L gDy

vl = a1 () and Yy 5 5y =1,

0, otherwise.

',

Said in a different way, the recovered [reasible] feasible solu-

tion z" corresponding to the multiplier set {u**2, . .. ,u™} is
then defined by

o . .
U gy 2l gy 113034y )

Uk 1 Ve | g | Ry 2o IN

{ L3l Yy pigane iy

0, otherwise.

=1,

where 1~ .., is defined in [(3.13)] (4.1/9) and [o] “0”

denotes function composition.

The next objective is to remove the [asumption] assump-
tion that all cost coellicients are defined and all zero-one
variables are free to be assigned. We first note that the above
construction of a reduced dimension assignment problem
[(3.14)] (4.20) is valid as long as all cost coefficients ¢™¥~* are
defined and all zero-one variables in z* are free to be
assigned. Modifications are necessary for sparse problems. If
the cost coelficient ¢ . N=k+1 s well-defined

1) B U1 Vi - - - Iy Nl -
and the zero-one variable 7, . . t1sireetobe
Gl D1 Uy D2 v
assigned to Zero or one, then define
N—k— - N- e+ 1 :
Dt - - - In fﬁfg,k%)fkn(fkn)w a5 11 [(3 12)] (4.18)
with ka+11k+gw being iree to be assigned. Otherwise,
o VK is preasmgned to zero or the corresponding arc
rlticd2 - N
is not allowed in the feasible set of arcs. To ensure that a
feasible solution exists, we now only need ensure that the
variables z, Nk are free to be assigned for 1_,=

Ik-l-lﬂ . © - - .
0.1, ...,L, , with the corresponding cost coellicients being

well-defined. (Recall that all wvariables of the form

Zi 0. AN+land z, 00 .. AN=k+1 are free (to be assigned) and
all coefficients of the form ¢ Lo AN+lande, SV are
well-defined for 1,=0, L and 1,=0, j/[p for p=

k+1, ... ,N.) This 1S accomphshed as follows: If the cost
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N—k+l

coetlicient ¢, ; 1s well-defined and z, o0

w)lmi(fﬁm)ﬂ .-
P oo . 1S free then define ¢, . =
P N-k+1 h Nkb e f Oth _
zk(zkﬂ)lkﬂ(zkﬂ)ﬂ - - - 0 wit 010 - - - EEIIlg Tee. ot
N-k+1

o and

are free to be assigned with the corresponding

olp,10...0
N-k_ N-k
costs being well-defined, setc, , — J"7=C, ;7 oo ot

Coty. (oo . . AN=F+ where the ﬁrst term is omitted if 1 I, )0
and the second, 11, _,(I,.,)=0. Forl (1, ,)=0and1,_ (1, ,)=0,

definec, Y =c Nkl

. @ o . ¢

IV.3.4. The last step k—N 2.

The description of the algorithm ends with k=N+2. The
resulting recovery problem defined in [(3.14)] (4.20) with
k=N-2 1s

wise, since all variables of the form Zro .
N=I+1

Ly_y My (4.22)
O, = Minimize Z Z C-%N—HN sz_l iy = V,(z*%)
{pr_1=0 ip=0
Mp
Subject To » zi ;o =1 1y =1, ... .Ly_,
ip=0
Ly—1
Z Z'{ZN—I'EN =]~a 1N=15 5MN5
{ny_1=0
zi, iy €10, 1) for all Iy_y, in.

Let Y be an optimal or feasible solution to this [2-dimen-

sional] two-dimensional assignment problem. The recovered
feasible solution Z" is defined by

[(3.18)] (4.23)

2115253... Y

(1, 11 =1
13 =13(l3
¢ Iy =1y gllyy)and Yy i, =1
or if (1y_1, 1y) = (0, 0),

0, otherwise.

CN=1),12 =12(l2. n-1),

Ne1)s -+ » Iy—2 =1y_a(ly_2n_1),

'

Said in a different way, the recoered feasible solution z" is
then defnied by

(4.24) [(3.19)]

Ziy(ly  n—1dipla  n—1V3Up 1) iyl i1 Un_1)iy =
{ 1, 1if YﬁN—l’"N =1,
0, otherwise
where I ., is defined in [(3.13)] (4.19) and [o] “0”

denotes function composition. To complete the description,
let {(1,_, ),y (13)}; =0 be an enumeration of indices
{1_,,in} of Y such thatY vy~ 1 Tor (s (), in(Iy)=
(0,0) and (1,_,(,), 1N(1N) (0,0) for 1,0 regardless of
whether Y__=1 or not. Then the recovered feasible solution
can be written as
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AN

_ 425
2515253... N ( )

I, it 13 =1(la. )12 =12(l2 w) 13 =13(13. n), ...
iy_1 =1y-1(Iy=1n3), iy = vy );

0, otherwise.

1V.3.5. The Upper and Lower [Bound] Bourds. The upper
bound on the feasible solution 1s given by

Va@y= Yol el ([3.21] 4.26)

TN,

and the lower by @,y . . . ,u") for any multiplier value
(v, ...,u™). In particular, we have

D12, ... uM)=® 07, . .. )=V Z )=V al(Z) [(3.22)] (4.27)

where (u’, . . . ,u”") is any multiplier value, (> . .. YA
maximizer of @,y ..., u"), ™ multidimensional assignment
problem [(3.1)] (4.7) and Z" is the recovered feasible solution
defined by [(3.20)] (4.25). Finally, we conclude with the
observation that V,(z)=V,(Y) whereY is the optimal solution
of [(3.17)] (4.23) used in the construction of z in equations
[(3.18)] (4.24)-[(3.20)] (4.26).
IV.3.6. Reuse of Multipliers|.]

Since the most computationally expensive part of the algo-
rithm occurs 1n the maximization of

(I:'N —k+1

starts or multipliers close to the optimal are fundamentally
important for real-time speed. The purpose of this sectionis to
demonstrate that the multiplier set obtained at stage k=1
provide good starting values for those obtained at step k+1.
Theorem [3.xx] 4.4. Let (u”, . . . ,u") denote a multiplier set
obtained in the [maximum] maximization of ®,yy” ... u™).
Then this multiplier set satisfies the string of inequalities

D1, ... uM)=D, (uY,. .. W)= ... =

D, (1" )=D,=V,(2), (4.28)

where after the first step i the maximization of ®,, multipli-
ers are not changed 1n the remaining steps. Furthermore, to
improve this inequiality, let (" ~**! MAN=F+Dy denote

N |
? ?
L k2
a maximizer of @, . ,(u

,...,u"). Then we have

D1 (72, oY) = Dy (IR (4.29) [(3.xx)]
uN,N—k-I—l)
< Qg (uPTRN L gL
< @y (TN MV

<... =®;u"7) <D, < Vy(2).

[Inequalities depend on solution of 2d assignment prob-

lem.}
Proof: Suppose we have a value of the multipliers
(W=, ... u”) obtains in the maximization of
Op_prr (W2, L uY) = Minimize dy_gag 2V 02, 0 0y (4.30)
Subject To ~ »  zp kL =LL=1,.. L,

Yl 2o IN
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-continued
N—k+1 .
_ Z | Ll iy ipan- iy I,y =1, ... , M.y,
g2 N
where
(DN—k+1 (ZN—R+1; ufi—l—za cee uN) — [(31{}{)] (431)
N—k+1 N—k+1
Cr A —
_ Z _ '!J'r{'rk-l-l tA '{RIR_FI ! A
SRR
N Mp
N—k+1 7
Zi C—1| =
p=k+2 ip=0 _'{k"kJrl'-- ip—1ip+] - 1N
N
N—k+1 P N-k+]
Ci i .+ Z ut |z L
'{J'r{‘ik-l-l"'jN Ip £k1k+l...1N
£y i ' p=k+2
AN RN Vi
N Mp
2 2%
p

These need not be the maximizer; however, we do assume that

we have solved the above minimization problem optimally to

evaluate @, . (02, ... u™). Just as in the definition of the
[earlier] recovery problem disussed earlier, let {(1,(1,, ).,
{1 )} =0 be an enumeration of indices {1;.i,,,) of the
optimal solution w” of problem [(3.4)] (4.10) (or the first 2
indices of the solution [w"**!'] w"~**! of the relaxed prob-
lem [(3.2)] (4.8) constructed in equation [(3.5)] (4.11)) such

that Wzk(zk”)im(zm)zzl for  (Li(ley 1)1z 1(Ifr1))=(0,0) - and
(1.1, )1, .. ,))=(0,0) for 1, ,=0 regardless of whether

w__>=1 or not.

o

Then, the final value of the objective function can be
expressed as

k+2 _
Opy_pp (U5, .0 L uN) = (4.32)
Coa N—k+1. k+2 N
Minimize ¢pn_g+1(Z U, L., LU )
: N—k+1 _ _
SubJECt to Z Z!{k('{k+l)1k+l('{k+l)lk+2IN —_ 1, lk_|_l —_ 1,. RTINS Lk-l—l!'
where
®, (LY uYy = (4.53) [ (3.xxx)]
i N i
N—k+1 p
E I U 1 1 U g M2 N ‘p
/ : : p=k+2
k41442 TN -
N Mp
Nk+l | o Z Zup
U 1 M1 oy P2 i 'p
p=k+2 ip=0
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If now another constrain set, say the (k+2)” set, is added to

this problem, one has

3 k+2 Ny o At N—k+1,  k+2 Ny _ _
Oy, ..o 07 ) = Minimize ¢, (2 U, L. L0 ) = (4.34)
N 3
SR N—k+1 p
Minimize E Cly Gy i a1 )i T Z u;,
i . . p=k+2 )
k+10+2- N
N Mp
N—k+1 p
Z*fk(fk+1)fk+l('{k+1)'-"N Z Z ‘P
p=k+2 ip=0
Subject To Z AP - =1
] | T M g Vg2 N T
‘ER-I-Z"' IN
k+1 =1, ... Leqa,
Z ZN_R_i_l i ; ! p— ]_
| o Tl e Uy P2 iy T
brlies3 - N
2 =1, .00, Mgyo.
Since the constraint 2

Tre 12143 : : : N

N—=I+1__ * _
Ol i1 Uy DEE+2 . L iy I for T P

imposed, the feasible region 1s smaller, so that one has

M, , 18 now

k+2 Ny _ & k42 N
(DN—J{(-I—I(U—I_ soanr oy U )E(DN—R-I—I(U—'_ s v s U )
_ k+3 N

= Qg (U, o, u)

k+3 N

= Oy g 7, u),

where the fact that ®@,,_, ., does not depend on the multiplier

+

set " due the added constraint set. Also, the last equiva-
lence follows from the fact that ®,._, v ... u") is the
relaxed problem [(3.xx)] (with k replaced by k+1) for the

recovery problem [(3.xx)] in step k of the above algorithm.

Continuing this way, one can compute (u>, . .. ,u") at the first
step (k=1), fix them thereatter, and perform no optimization at

the subsequent steps to obtain

D1, ... =D, .. M= . .=
O,(M)=D,=V(2)

where @, yA 1s defined 1n (4.22).

To explam how to improve this 1nequality, let
(e u™ YY) denote a maximizer of @, .,
(W2, ... u™). Then by the same reasoning one has [(3.xx)]

the result as stated in the theorem. [Q.E.D.]
V. Summary of the Lagrangian Relaxation Problem. (APB)

(Given the multidimensional assignment problem

Minimize Z Ciy.o iy Zig... iy [&-DI5.1)

TN,
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-continued
Subject To Z zi iy = LG =1, ... M)),
ili3... EN
Z Zjl ‘N_l (12:1 ..Mz),
ifis... iy
Z Z.El PAS — 15
i) iy Lipie iy
(i,=1,...M,andp=2,... ,N-1),

Z Zfl...

fin... iy

v =Ly =1, ... My),

Ziy ... iy € {0, 1} tor all 14, ... , 1y,

wherec_, " is arbitrarily defined to be zero and is included
for notational convemence and where the superscript N on
both ¢ and z 1s not an exponent, but denotes the dimension of
the subscripts and the assignment problem as stated in [(2.5)]
(3.5). In relaxed and recovery problems ¢, ¥ need not be
zero! In this problem, we assume that all zero-one variables
Z;, I.NN with precisely one nonzero index are free to be
assigned and that the corresponding cost coeltlicients are well-
defined. (This 1s a valid assumption 1n the tracking environ-
ment (4. B. Poore. Multidimensional assignments and multi-
target tracking, partitioning data sets, 1. J. Cox, P. Hansen,
and B. Julesz, editors, DIMACS Series in Discrete Mathemat-

ics and Theoretical Computer Science, Amervican Mathemati-
cal Society, Providence, R.1., 19:169-195, 1995; A. B. Poore.
Multidimensional assignment formulation of data associa-
tion problems arising from multitarget tracking and multisen-
sor data fusion. Computational Optimization and Applica-
tions, 3:27-57, 1994).) Although not required, these cost
coellicients with exactly one nonzero index can be translated
to zero by cost shifting (4. B. Poore and N. Rijavec. A
lagrangian velaxation algorithm for multidimensional
assignment problems arising from multitarget tracking. SIAM
Journal of Optimization, 3, No. 3:544-563, 1993) without
changing the optimal assignment.

Having explained many of the relaxation features, 1t 1s now
appropriate to present the Lagrangian relaxation algorithm,
which iteratively constructs a feasible solution to the N-di-
mensional assignment problem [(4.1)] (5.1).

Algorithm [4.1] 5.1 (Lagrangian Relaxation Algorithm)].}
To construct a high quality feasible solution, [enoted] deroted
by 7V, of the assignment problem [(4.1)] (5.1), proceed as

follows:
0. Initialize the multipliers (u**2, . .. u™), e.g., (U3, .. .,
W)=, ... 0).

Fork-1,... ,N-=-2,do

1. For the Lagrangian relaxed problem [(3.2)] (4.8) from
the problem [(3.1)] 4.7) by relaxing the last (N-k-1) sets of
constraints.

2. Use a nonsmooth optimization technique to solve

Maximize {®,;_, . lu' eR*7+! for p=k+2, ... N with

uF=0 being fixed } [(4.2)] (5.2)
+2

where @,,_,_ (0", . .. ,u") is defined by equation [(3.2)]
(4.8). The algorithm [following problem (3.9)] irn Section
IV.3.2 provides one method for computing a function value
and a subgradient out of the subdifferential at (u**>, . . . .u™),
as required 1n most nonsmooth optimization techniques.

3. Given an approximate or optimal maximizer of [(4.2)]
(5.2), say (0=, . .. ,0™), let w* assignment problem [(3.4)]
(4.10) corresponding to this maximizer of D, .,
W=, ... oM.

4. Formulate the recovery (N-k)-dimensional problem
[(3.13)] (4.19), modified as discussed at the end of subsection
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[(3.3)] (IV.3.2) for sparse problems. At this stage, z" as
defined in [(3.15)] (4.21), contains the alignment of the indi-
ces

Formulate the final two-dimensional problem [(3.17)] (4.22)
and complete the final recovered solution z" as in [(3.20)]
(4.25)

To explain the lower and upper bounds, let ®@,, defined 1n
[(3.2)] (4.8) with k=1, let V,{(z") be the objective function
value of the N-dimensional assignment problem in equation
[(2.5)] (3.5) corresponding to a feasible solution z" of the
constraints in [(2.5)] (3.5), and let Z"~**' [(2.5)] (3.5). Then,

D1, . .. uHNEVAZ VA [(4.3)] (5.3)

1s the desired 1mnequality.

COMMENTS

1. Step 2 1s the computational part of the algorithm. Evalu-
ating @, , ., search procedure requires 99% of the computing
time in the algorithm. This part uses [two dimensional] rwo-
dimensional assignment algorithms, a search over a large
number of indices, and a nonsmooth optimization algorithm.
It 1s the second part (the search) that consumes 99% of the
computational time and this 1s almost entirely parallelizable.

2. In track maintenance, the warm starts for the initial
multipliers for the first step are available. For the relaxation
procedure, initial multipliers are available 1n step 2 from the
prior step in the algorithm.

3. There are many variations on the above algorithm. For
example, one can compute a good solution on the first pass
(k=1) and not perform the optimization in (2) thereatfter. This
yields a great solution. Thus one can continue the optimiza-
tion at the first pass, and immediately compute quality fea-
sible solutions to the problem.

Vi. Lagrangian Relaxation Algorithm for the 3-Dimen-
sional Algorithm. [(ABP)]

In this section, we 1llustrate the relaxation algorithm for the
[three dimensional] three-dimensional assignment problem.
Having discussed the general relaxation scheme,

M| My Mj ( [5.1] 6.1
Minimize Z Z Z Ciyiniz Ziy iniz
11=0i2=01i3=0
My Mg
Subject To Z Z Ziigin = L, ip = 1y e, M,
in=013=0
My M3
Z Z 2515253 — 1-,- 12 — 1:- -,-MZ-,-
11=013=0
My My
S: S: 2515253 — ]-a 13 = ]-a SRR Mg,
i1=0i5=0
251521‘3 = {D, l} for all iligig.

To ensure that a feasible solution of [(5.1)] (6. 1) always exXists
for a sparse problem, all varniables with exactly one nonzero
index (1.e., variables of the formz, .7, and z,,, tor1,=
1,..., M, and p=1,2,3 are assumed free to be assigned with
the corresponding cost coellicients being well-defined. This
assumption 1s valid 1n the tracking environment
[[**refPoa, **refPob]] (4. B. Poore. Multidimensional
assignments and multitarget tracking, partitioning data sets,
1. J Cox, P Hansen, and B. Julesz, editors, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, Providence, R.1., 19:169-
198, 1995; A. B. Poore. Multidimensional assignment formu-
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lation of data association problems arising from multitarget
tracking and multisensor data fusion. Computational Opti-

mization and Applications, 3:27-57, 1994).

VI.1. The Lagrangian Relaxed Assignment Problem] ]

The [three dimensional] three-dimensional assignment
problem [(5.1)] (6.1) has three sets of constraints and one can
describe the relaxation by relaxing any of the three sets of
constraints, the description here 1s based on relaxing the last
set of constraints. A (M;+1)-dimensional multiplier vector
(i.e., u® eR**1) associated with the 3 constraint set will be
denoted by u”=(u,>, u,”....u Mf Y withu =0 being fixed for
notational convenience. (The zero multiplier u,, ° is used for
notational convenience.) Now, the [three dimensional] tiree-
dimensional assignment problem [(5.1)] (6.1) is relaxed to a
two-dimensional assignment problem by incorporating last
set of constraints into the objective function wvia the
Lagrangian. Although any constraint set can be relaxed, we
choose the last set of constraints for convenience. The relaxed
problem 1s

M| My M ([5.2] 6.2)
®-(u’) = Minimize 72U Eyy .7+
3( ) @3( " ) y ) ; ilini3 Tipipig
i1=0ir=0i3=0
M _ _
3 My My
3 3
E |u53 Z Z Zilinig -1
1.3:0 _11201220 ]
My My Ms M
R TRENE 3 3 7.3 3
i1 =0i=0i3=0 i3=0
My Mj
. 3 _ . _
Subject to ;: S:zilizfg =1,13=1,... , My,
in=01i3=0
My Ms
3 .
51=ﬂi3=(}

One of the major steps 1n the algorithm 1s the maximization
of [D,v°A v’] @ ,(u”) with respect to the multiplier vector u’.
[t turns out that @, is a concave, continuous, and piecewise
affine function of the multiplier vector u”, so that the maxi-
mization of @, is a problem of nonsmooth optimization. Since
many of these algorithms require a function value and a
subgradient of [®, y°A] @, at any required multiplier value
(1), we address this problem in the next subsection. We note,
however, that there are other ways to maximize ®; and the
next subsection addresses but one such method.

V1.2. Properties Lagrangian Relaxed Assignment Problem

For a function evaluation of [®, v] @, we show that an
optimal (or suboptimal) solution of this relaxed problem
[(5.2)] (6.2) can be constructed from that of a two-dimen-
sional assignment problem. Then, the nonsmooth character-
1stics of ®, are addressed, followed by a method for comput-
ing a subgradient.

Evaluation of ®. Define for each (1,, 1,) 13=15(1;,1,) and a
new cost function ciﬂf by:

J3 = J3(1;, 1p) = arg nﬂn{c?lfzig +U_§’3 ‘13 =0,1,... ., M3}, ( [5.3] 6.3)
Cizlfz = C?lizjgffliz) + 113:3 for (ila 12) ¥ (05 0),

M3
Chy = Z Minimum {D, cgmg +u; }

‘3
i3=0
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(iven an 1ndex pair (1,,1,), 15 need not be unique, resulting 1n
the potential generation of several subgradients [(5.11)]

(6.11). (We further discuss this 1ssue at the end of tze Sub-
section [5.2.3.])

Now, define
h A 1 Mp M3 (6.4) [(5.4)]
s (u*) = Minimize gy (%) = > Y el 2, - ) ud
i1=0iy=0 i3=0
My
Subject To Zzw —1,i;=1,... .M.
{r =0
M
2
Z-Zjljz 1 12_1 :'MZa
{{=0

12112 e {0, 1} for all 1y, 15.

As an aside, two observations are 1n order. The first 1s that the
search procedure needed for the computation of the relaxed
cost coetlicients 1n [(5.3)] (6.3) 1s the most computationally
intensive part of the entlre relaxation algorithm. The second 1s
that a feasible solution z° of a sparse problem [(5.1)] (6.1)
yields a feasible solution z of [(5.4)] (6.4) via the construc-

tion
‘142 0,

Thus the two-dimensional assignment problem [(5.4)] (6.4)
has feasible solutions other than those with exactly one non-
zero index if the original problem [(5.1)] (6.1) does.

The following Theorem [5.1] 6./ states that an optimal
solution of [(5.2)] (6.2) can be computed from that of [(5.4)]
(6.4). Furthermore, 11 the solution of either of these two
problems 1s € € then so 1s the other. The converse 1s contained
in Theorem [5.2] 6.2.

Theorem [5.1] 6.1. Let [w”] w2 dimensional assignment
problem [(5.4)] (6.4) and define w” by

Wflf2f33:wflm2 1f13:.|3 H.Ild (11512)¢(0:0);

if Z =] for some (1y, 15, 13),

H12:13

otherwise.

Wz’11’21’33:0 ifi.?:#jﬂ- Ei.IlCl (11512)¢(0:0):

3=1 if ¢

0913 OO}

3,0 3.0
+,,"=0;

3=01 if ¢

9{313 5{313

3,0 3
+u,,”>0.

[(5.5)] (6.5)

Then w” is a feasible solution of the La%ranglan relaxed
problem (6.2)and [® v 3AD Y 3Ae €29 (W)= (W’ ).
If, in addition, w” is optimal for the [two dlmensmnal] wo-
dimensional problem, then w> is an optimal solution of the
relaxed problem and @, (u”)=D,(u>).

With the exception of one equality being converted to an
inequality, the following theorem 1s a converse of Theorem

S5.116.1.

[ T:llleorem [5.2]6.2. Let w~ be a feasible solution to problem
[(5.2)] (6.2)and define w* by

( [5.7] 6.6)

3
2 _ : : 3 . .
i3,=0

w_ =0 if (i;,i,)=(00) and c 3+111.333>*'3' for all 14

am’?,

w_ %=1 if (i,,i,)=(00) and ¢ 3+111-3350 for some 15.
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Then w” is a feasible solution of the problem [(5.4)] (6.4) and
O, (w;u)=D,(w?;u). If, in addition, w” is optimal for [(5.2)]
(6.2), then w” is an optimal solution of [(5.4)] (6.4), D, (w";
u”)=0,(w;u’) and @5 (u”)=h,(u”).

The Nonsmooth Optimization Problem

An Algorithm for Computing @, and a Subgradient

Given u” the problem of computing [®.y°A] @ ,(v”) and a

subgradient of [@.yv A] @ ,(«”)

1. Starting with problem [(5.1)] (6.1), form the relaxed
problem [(5.2)] (6.2).

2. To solve [(5.2)] (6.2) optimally, define the [two dimen-
sional] two-dimensional assignment problem [(5.4)] (6.4) via
the transformation [(5.3)] (6.3).

3. Solve the two-dimensional problem [(5.4)] (6.3) opti-
mally.

4. Reconstruct the optimal solution, say W eyA equation
[(5.6)] (6.6) as in Theorem [5.1] 6.1.

5. Then

O (%) = g3 (% 1) = [(5.10)] (6.7)

My M3 s
> 2,2, © Epﬁ > >
J Il"-2‘3 Il"-2‘3 ‘3 J I112"-3
Il 012 013 ={) 13:[} Il {}12 )

6. A subgradient is given by substituting w> objective func-
tion [(5.2)] (6.2), erasing the minimum sign, and taking the
partial with respect to 111.33. The result 1s

[(5.11)] (6.8)

P (u3)
3 3 _ 5‘ 5‘ S
3 Il 012 =()

V1.3. The Recovery Procedure] ]
The next objective 1s to explain a recovery procedure, 1.€.,

given a feasible (optimal or suboptimal) solution w* of [(5.4)]
(6.4) (or w> of [(5.2)] (6.2) constructed in Theorem [5.1] 6. 1),
generate a feasible solution z” of equation [(5.1)] (6.1) which
is close to w* in a sense to be specified. We first assume that no
variablesin [(5. 1)] (6. 1) are preassigned to zero; this assump-
tion will be removed shortly. The difficulty with the solution
w” in Theorem [5.1] 6.1 is that it need not satisfy the third set
of constraints in [(5.1)] (6.1). (Note, however, that if w” is an
optimal solution for [(5.4)] (6.4) and w>, as constructed in
Theorem [5.1] 6.1, satisfies the relaxed constraints, then w” is
optimal for [(5.1)] (6.1).) The recovery procedure described
here 1s designed to preserve the 0-1 character of the solution
w” of [(5.4)] (6.4) as far as possible: If w, , *=1 and i,=0 or
1,=0, the corresponding feasible solution zé of [(5.1)] (6 I)1s
constructed so that z, ; ;. =1 for some (i,,i,,15) . By this rea-
soning, variables of the form L oo, °[] can be assigned a value
of one 1n the recovery problem only 1f WOOZ 1. However,
variables 20013 will be treated differently in the recovery
procedure in that they can be assigned either zero or one
independent of the value w,,,~. This increases the feasible set
of the recovery problem, leading to a potentially better solu-
tion.

Let 1G,(1,),i,(,)}, *~0bean enumeratlon ofindices {i,.i,}
of w” (or the first 2 indices of w? constructed in equatlon[(S)]
(6.5)) such that w, . . *=1 or (i,(1,)i,)=(0, O) and (i,(1,).i,
(1,))=(0,0) for 1,=0 regarcfless of whether w,,,”=1 or not. (The
latter can only improve the quality of the feasible solution.)
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Next to define the two-dimensional assignment problem
that restores feasibility, let

2

03233 _0: . ?Ll

_ 3
=Ciyyiptyyiy 10T b=

[(5.12)] (6.9)

Then the two-dimensional assignment problem that restores
feasibility 1s

[(5.14)] (6.10)

Minimize y y Chyi 25213

213':'

M3
. 2 _
Subject to E Ziiy =

25213 e {0, 1} for all 1,, 15.

The next objective 1s to remove the assumption that all cost
coellicients are defined and all zero-one variables are free to
be assigned. We first note that the above construction of a
reduced [dimension] swo-dimensional assignment problem
[(5.13)] (6.11) is valid as long as all cost coefficients c* are
defined and all zero-one variables in z~ are free to be assigned.
Modifications are necessary for sparse problems. I the cost
coetficient ¢, ; )iz(zz)if 1s well-defined and the zero-one vari-
able z; ;v 2y, 18 free to be assigned to zero or one, then
define ¢, , *=¢;, ;.\ .. asin [(5.12)] (6. ]0) with z, ;00 7 5is°
being free to be assigned. Otherwise, 7, ;. * is preasmgned to
zero or the corresponding arc 1s not allowed in the feasible set
of arcs. To ensure that a feasible solution exists, we now only
need ensure that the variables 7, . are free to be assigned for
1,=0,1, . ..,L, with the corresponding cost coelll

icients being
well- deﬁned [(] Recall that all variables of the form z, ;"
Z.01,0 > and ZQOI are iree (to be asmgned) and all coefficients
of the eerrespendmg forme, 50 > .C 01,0 > and ¢+ need to be
defined. )] This is accemphshed as follows: [If] xf the cost
coeflicient ¢, ;, S )O 1s well-defined and z, ; ,, ;. )O 1s Iree,
thendetinec; ,"=¢, 7y:,2)0 > with?, o, 2bemg free Otherwise,
since all variables of the form Z; 0 and Zon, - are free to be
assigned with the corresponding costs belng well-defined, set
c, o =i oo FConuyo Where the first term is omitted if
1,(1,)= -0 and the second i 1,(1,)=0. For 1,(1,)=0 and 1,(1, )=0,

define c_

o 000 -
V1.4. The final recovery problem].}

The recovery problem for the case N=3 1s

[(5.14)] (6.11)

Minimize y y szf?; 25213

2130

M3

- 2
Subject to Z Ziis
i3=0

=1.L=1,..

Ly

y)
Z L1y is

{»=0

=1,13=1, ...

zj,i, €10, 1} for all 1, .
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LetY be an optimal or feasible solution to this [2-dimen-
sional] two-dimensional assignment problem. The recovered
feasible solution 7~ is defined by

[(5.15)] (6.12)

1, if 13 =1y(l2), 12 =12(12) and Yy,;, = 1,

3
Z‘il 1213 { 0
)

Said in another way, let { (1,(15 )13(13)}3 =0 be an enumeration
of indices {l,,i,} of Y such that Yz a1 Tor (1,(15),
1,(1,))=(0,0) and (1,(15),1,(15))=(0,0) fer 1 —O regardless of
whether Y ,,=1 or not. Then the reeevered feasible solution
can be written as

otherwise.

[(5.16)] (6.13)

1, it 13 =11(112), 12 = 12(112), 1;; = 13(13),

A3
14243 { 0
2

The upper bound on the feasible solution 1s given by

otherwise,

My Ms [(5.1)] (6.14)

Vi) = Z Z Z Cilizis I1*2*3

i1=0 i12=0i3=0

and the lower by [D.y Ay A] @ ,(«”)
In particular, we have

D (UB)E‘I’3(EB)5V3 (53)5\/3 (ES)

where u” is any multiplier value, [UA° D,y °Aez’] (0°) is a
maximizer of ® (1), Z° is an optimal solution of the multidi-
mensional assignment problem and z° is the recovered fea-
sible solution defined by [(5.16)] (6.13).

Vil. Other Relaxations for the Multidimensional Assign-
ment Problem. [(ABP)]

In this section, we briefly describe other possible relax-
ations and their implications. These include linear program-
ming relaxations and the corresponding duals.

Recall from Section II that one starts with the definition of
the zero-one variablez, ~, =1 and cost coetlicients to form
the problem

Minimize Z Cil... ENZEI... N (7])
e BN
Subject To Z zi iy = LG =1, M),

inig... in

Z Zi..iy =1L, @ =1,... , M),
111'3... 'EN

Z Zfl... i =1
i ip—lfp-l—l"' N
(i,=1,... .M, andp=2,... ,N-1)

>z =1ly=1.... .My
9. En
Ziy... iy € {0, 1} for all 15, ... , 1y,

where ¢, 1s arbitrarily defined to be zero. Here, each
group of sums in the constraints represents the fact that each
non-dummy report occurs exactly once 1 a “track of data™.
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One can modify this formulation to include multiassignments
of one, some, or all the actual reports. The assignment prob-
lem [(2.5)] (3.5) is changed accordingly. For example, if zz.; s
to be assigned no more than, exactly, or no less than nij" times,
then the “=1" in the constraint [(2.5)] (3.5) is changed to 5
respectively. Modifications for group tracking and multireso-
lution features of the surveillance region will be addressed 1n
tuture work. In making these changes, one must pay careful
attention to the independence assumptions that need not be
valid 1n many applications. 10

Again, the recent work of Poore and Drummond (4. B.
Poore and O. E. Drummond. Track initiation and mainte-
nance using multidimensional assignment problems. In D. W.
Hearn, W. W. Hager, and P. M. Pardalos, editors, Network
Optimization, volume 450, pages 407-422, Boston, 1996. 15
Kluwer Academic Publishers B.V.) significantly extends the
formulation of the track maintenance and initiation to new
approaches. The discussions of this section apply equally to
those formulations.

VII 1. The Linear Programming Relaxation]|.] 20

In the linear programming relaxation, one replaces the
zero-one variables constraints

Z; . €10, ) forallip, ... iy [(6.2)] (7.2)
with the constraint 25
Osz;  ;<liorallij,...iy [(6.2)] (7.3)

Then, the problem [(6.1)] (7.1) can be formulated as a linear
programming problem with the contraint [(6.2)] (7.2) in
[(6.1)] (7.1) replaced by [(6.3)] (7.3) with a special block 30
structure to which the Dantzing-Wolle decomposition 1s
applicable. Of course, after solving this problem, one must
now recover the zero-one character of the variables in [(6.1)]
(7.1) and there are many ways to do this, such as using the
[two dimensional] two-dimensional assignment problems. 35
Commercial software 1s also available.

Vil.2. The Linear Programming Dual and Partial
Lagrangian Relaxations|.]

Given the linear programming relaxation, one can formu-
late the dual problem or the partial Lagrangian relaxation 40
duals with respect to any number of constraints. In particular.
this 1s precisely what 1s done 1n Section 3 on the Lagrangian
relaxation algorithm presented. The much broader class of
algorithms provided in the U.S. Pat. No.Il.2 5,537,119
(Aubrey B. Poore. Ir., Method and System for Tracking Mul- 45
tiple Regional Objects by MultiDimensional Relaxation, U.S.
Pat. No. 5,537,119, filed Mar. 14, 1995, 1ssue date of Jul. 16,
1996) can be modified to remove the zero-one character when
one relaxes M sets of constraints to an [N-M dimensional]
(N-M)-dimensional problem and recovers with an [N-M+1 30

dimensional] (N-M+1)-dimensional problem. This avoids the
problems associated with the NP-hard [N-M] (N-M)- and

IN-M+1 dimensional] (N-M+1)-dimensional problems.
However, to restore the zero-one character, one can do it
sequentially with an assignment problem or with one of the 55
many zero-one rounding techniques. These formulations are
casy to work out and thus the details are omaitted.

The complete dual problem 1s another way of solving the
LP problem and may indeed be more efficient in certain
applications. In addition, the solution of this dual problem 60
may provide excellent initial approximations to the multipli-

ers for Lagrangian relaxations.
VIII. Hot Starts for Track Maintenance and Initiation:

Bundle Modifications [(ABP)]

Thus reuse of multipliers and the first proof that this reuse 65
1s actually valid was presented 1n this section. The reuse 1n
track maintenance 1s demonstrated and discussed 1n the work

98
of Poore and Drummond [[xx]] (4. B. Poore and O. E. Drum-

mond. Track initiation and maintenance using multidimen-
sional assignment problems. In D. W. Hearn, W. W. Hager,
and P. M. Pardalos, editors, Network Optimization, volume
450, pages 407-422, Boston, 1996. Kluwer Academic Pub-
lishers B. V). The only item left 1s the modification of the
bundle of subgradients for the use with the multiplier values
as one goes through the recovery problem as in Section [3.6]
IV.3.6 or as one moves the window 1n track maintenance. It 1s
this aspect of the nonsmooth optimization that adds an order
of magnitude to the speed of the algorithms. This work 1s
based on both a mathematical proof as in Section [3.6]/V.3.6
as well as computational experience and heuristics.

[Adaptive Window Size Selection (ABP)]) IX. ADAPTIVE
AND VARIABLE WINDOW SIZE SELECTION

These data association algorithms, based on the multidi-
mensional assignment problem, range from sequential pro-
cessing to many frames of data processed all atonce! The data
association problem for [multisensor multitarget] multisen-
sor-multitarget tracking 1s formulated using a window sliding
over the frames of data from the sensors. This discussion
focuses on the work of Poore and Drummond and not on the
formulations 1n Section 2 /1. Firm data association decisions
for existing track are made at, say frame k, with the most
recent frame being k+M. Decisions after frame k are soft
decisions. Reports not i the confirmed tracks are used to
initiate tracks over frames numbered k—I to k+M.

The length of these windows varies from sequential pro-
cessing, which corresponds precisely to I=0 and M=1, to user
defined large values of I and M. [(In the case of sequential
processing. we also have a temporary track file of dynami-
cally feasible tracks, but incorrect data association.)] There is
a marked change 1n performance over this range. As the two
windows become exceedingly long, there 1s little statistically
significant information gained and indeed performance can
degenerate slightly. Thus, one must manually find the correct
window lengths for performance 1n a given scenario and the
algorithms do not change for a changing environment. Thus
we propose an adaptive method for adjusting the window
lengths. (The method has been highly successtul for selecting
the correct window length for multistep methods 1n ordinary
differential equations.)

1. Compute the solution for different window lengths that
overlap and differ by one or two frames.

2. Compare the solution quality, 1.e., the value of the objec-
tive Tunction, for two adjacent window lengths.

3. If there 15 a predefined improvement 1n either direction,
we then, for stability, repeat the exercise for a shorter or
longer on the first try. If there 1s consistent information, we
adjust the window size 1n the indicated direction. This can be
given a well defined mathematical formula 1n terms of the
assignment problems of different dimensions.

Algorithm Enhancements due to Data Structures (ABP)

Construction and enumeration of the Best K-Solutions.

New Nonsmooth Optimization Techniques.

Sensitivity Analysis

X. SENSITIVITY ANALYSIS

For sequential processing in which the [two dimensional]
two-dimensional assignment algorithm 1s used, one can use
the LP sensitivity analysis theory and easily obtain the corre-
sponding answers. For the multiframe processing, the opti-
mal solution 1s not available; however, there are still two
approaches one can use. First, the basic algorithm can per-
form the same sensitivity analysis at each stage (loop) of the
algorithm as is done in the [two dimensional] swo-dimen-
sional assignment problem since the evaluation of function
®,, .., 1s equivalent to a [two dimensional] two-dimensional

[l
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assignment: problem. Alternately, one could use an LP relax-
ation of the assignment problem and base the sensitivity on
the resulting LP problem. We currently see this as an impor-
tant step 1n {inding even better solutions to the assignment
problem 11 so desired.

[New Auction Algorithms (ABP & PS)] XI. NEW AUC-

TTON ALGORITHMS.
In this section we present a new auction algorithm for the

[two dimensional] two-dimensional assignment problem.
An 1mportant step 1n solving N-dimensional assignment
problems for N=3|.] is finding the optimal solution of the
[2-dimensional] #wo-dimensional assignment problem. In
particular, we wish to solve the [2-dimensional] two-dimen-
sional problem which includes the zero-index. [13.pically]
Tvpically this problem can be thought of as trying to find
either a minimum cost or maximum utility 1 assigning per-
son to objects, tenants to apartments, or teachers to class-
rooms. We will follow the work of Bertsekas and call the first
index set persons and the second index set objects. The state-
ment of this problem is given below [(1)] (//.1) when the
number of persons 1s m and the number of objects 1s n.

o [(1)] (/1.1)
Minimize ;: | CijXij
i=0 j=0
Subject to X;j=1torall 1=1,... ,m,
=0
D xj=lforall j=1,.. .n

1
—

There are a couple of assumptions which we will make
about [(1)] (11.1). First of all, we assume that ¢,, and ¢, are
well-defined and the corresponding variables y,, %o, ree to
be assigned. Second 1f a cost ¢, happens to be undefined, then
the corresponding variable y;; % to 0. In effect if ¢,; 1s unde-
fined, we simply remove this cost and variable from 1nclusion
in the problem.

Notice that there are no constraints on the number of times
person 0 and object O can be assigned. But notice that the first
constraint requires that each non-zero person 1 must be
assigned exactly once. Similarly, the second constraint forces
cach non-zero object ] to be assigned exactly one time.
Finally, the last constraint gives an integer solution, although
we will see shortly that this constraint can be relaxed to admait
any solution 7,;z0. One reason for requiring that all of the
costs of the form c,, and ¢, be defined 1s so that we are
guaranteed a feasible solution exists for the given problem.

Xl1.1. Relaxation of One Constraint

Relaxing the last constraint, we obtain the following prob-
lem:

Subject to Xjj=1tor all 1=1,... ,m
=0

Xij € {0, l}.
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This lower bound 1s achieved and the second constraint in
the original problem 1s satisfied if the following conditions
are met:;

1 if co;+us=<0
For1 =0, X{]j:{ T }

0 otherwise
1 if j =argmin{cy +u; k=0, 1, ... ,11}}

0 otherwise

For i1+ 0, ){;_j:{

All of j's are assigned only one time

The relaxation of the first constraint 1s analogous and
would lead to similar results with 1 and j exchanged and the
introduction of the multiplier u'.

Xl.2. Relaxation of Both Constraints

This time we will relax both constraints and [using] use
duality theory 7o obtain a relationship between the multipliers
u' and u”.

Definition: An assignment S and a multiplier set (u',u®) are
said to satisly e-complementary slackness (e-CS) 1f

cz-j+uz-1+uj2=0 for all (1,))€eS,

c; U, +u, =—€ for all (i,j)eA.

Forward Auction Algorithm
(1) Select any unassigned person 1
(2) Determine the following quantities:

j/=arg min {cik+uk2lkEA(i)}

__ 2

w,—min {c;+u,”lkeA(), k=j;}

In the selection ofj, [.] above, if a tie occurs between 0 and
any non-zero index k, then select 1, as k. Otherwise, 11 there 1s
a tie between two or more non-zero indices, the choice of 5, 1s
arbitrary. Also 11 A(1) consists of only one element, then set
W, =00,

(3) Update the multipliers and the assignment:

It 1,=0, then

(a) Add (1,0) to the assignment.

(b) Update u,*:+—c,,,.

If 1,20, then

(a) Add (1,1,) to the assignment.

(b) Remove (1'},) from the assignment 1t j, was previously
assigned.

(c) Update u,,”: =u,*+(W,—V,)+€=W,—C , +€.

(d) Update u,,": =—(c &.i+uj]_2):—wz.—e.

Reverse Auction Algorithm

(1) Select any unassigned object 3, such that ¢ Gj+uj2>0.

(2) Determine the following quantities:

i;/=arg min {c:j;{+ukl keB(j)}

_ 1
3, Cyj U,

Y,~min {c;cj+ukl keB(j), k=1;}

In the selection ot 1, above, 1t a tie occurs between 0 and
any non-zero index k, then select 1, as k. Otherwise, 11 there 1s
a tie between two or more non-zero indices, the choice of j, 1s
arbitrary. Also 11 B(j) consists ot only one element, then set v,
Q0

(3) Update the multipliers and the assignment:
[11=0, then

(a) Add (0, 1) to the assignment.

(b) Update uf: =—Co;-
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If 1,20, then

(a) Add (1)) to the assignment.

(b) Remove (1,)') from the assignment 1t (1,,]) was previ-
ously assigned

(¢) Update u,': =u, +(yj [3 ) )+E=Y,—C, +E.

(d) Update w2 ——(c +U, )——y —€.

Combined Forward/ Reverse Auctlon Algorithm

1. Assume that u” is given as an arbitrary multiplier.

2. Adjust the value of u” for each object j as follows:

2<0, then set uf'

3. Run 1terations of the Forward Auction Algorithm until
all persons become assigned.

4. Run iterations of the Reverse Auction Algorithm until all
ol the objects become assigned.

Note at the completion of the Forward auction step we have
the following conditions satisfied:

o U 20 for all objects j.
+11 +u =0 for all (1,))eS.
+u < "'”I”{c +u,” ) for all (i,j)eS.

Thus we can prove the following proposition
Proposition: If we assume that ¢, +u, *20 at the start of the
Forward Auction Algorithm and all of the persons are
assigned via a forward step, then we have:

cfj+uf1+uj22—e for all (1,])eA.

cfj+uf1+uj2=0 tor all (1,))eS.

G AU, =" oty e Tor all (i))eS.

Optimality of the Algorithm

Theorem: e€-CS preserved during every forward and
reverse 1teration.

Theorem: If a feasible solution exists, then the resulting
solution 1s with me of being optimal for the Combined For-
ward Reverse Algorithm.

[Implementation Specifics}

[Parallelization]

[Here are but a few comments.}

XIl. Some Concluding Comments

Although the algorithm appears to be serial 1n nature, its
primary computational requirements are almost entirely par-
allelizable. Thus parallelization 1s planned.

Step 2 1s the computational part of the algorithm. Evaluat-
ing ., ... bood and computing a subgradient use in the
search procedure requires 99% of the computing time 1n the
algorithm. This part uses [two dimensional] two-dimensional
assignment algorithms, a search over a large number of 1ndi-
ces, and a nonsmooth optimization algorithm. It 1s the second
part (the search) that consumes 99% of the computational
time and this 1s almost entirely parallelizable. Indeed, there
are [two dimensional] two-dimensional assignment solvers
that are highly parallelizable. Thus, we need but parallelize
the nonsmooth optimization solver to have a reasonably com-
plete parallelization.

If a sensitivity analysis 1s desired or 11 one 1s interested 1n
computing several near-optimal solutions, a parallel proces-
sor with a few powertul processors and good communication
such as on the Intel Paragon would be most beneficial.

The foregoing discussion of the invention has been pre-
sented for purposes of illustration and description. Further,
the description 1s not intended to limit the invention to the
torm disclosed herein. Consequently, variation and modifica-
tion commensurate with the above teachings, within the skill
and knowledge of the relevant art, are within the scope of the
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present invention. The embodiment described hereinabove 1s
turther intended to explain the best mode presently known of
practicing the mvention and to enable others skilled 1n the art
to utilize the invention as such, or 1n other embodiments, and
with the various modifications required by their particular
application or use of the mmvention. It 1s mtended that the
appended claims be construed to include alternative embodi-
ments of the invention to the extent permitted by the prior art.

What 1s claimed 1s:
[1. A method for tracking a plurality of objects, compris-
ng:

repeatedly scanning a region containing a set consisting of
one or more moving objects and generating N sequential
images or data sets of said region, a plurality of obser-
vations 1n said 1images or data sets providing positional
information for objects 1n said set;

determiming a plurality of tracks, at least one track for each
object 1n said set;

determining a plurality of costs, wherein each cost 1s for
assigning one of said observations to one of said tracks;

defining a linear programming problem:

Minimize E o CipinZip iy

TN,
Subject To >’z iy =L G =1, ... .\ M)
inia... in
Z Zip..iy =1L, 2 =1,... , M)
P83 1

(p=1, ... ~ 1)

flfz... .E'N_l

,Mpand p=2,... ,N

=1 (y=1,... .My

0=z 4, =1 forallip,... iy,

Il...

whereineachc, , 1sincluded in said plurality of costs, each
M, 1=1,...,N, bemg one of: (a) a number of observations in
an 1" image or data set of said N sequential images or data
sets; (b) a sum of a number of tracks 1n said plurality of tracks,
and a number of said observations in the i”” image or data set
not assigned to one of said tracks; and
(c) a number of tracks in said plurality of tracks;
solving said linear programming problem for values of
Z,. i foreachil ... 1N;
determining a value z, ~, in {0,1} for eachil . ..iN
corresponding to each z;; 15, wherein said values
711 . . . 1N provide an optimal or near optimal solution to
said linear programming problem;
taking one or more of the following actions based on said
optimal or near-optimal assignment of said plurality of
points to said plurality of tracks;
sending a warning to aircraft or a ground or sea facility,
controlling air traffic,
controlling anti-aircraft or anti-missile equipment, tak-
Ing evasive action,
working on one of said one or more objects, surveilling
one of said one or more objects.]
2. A method for tracking a plurality of objects, comprising:
using vemote scanning apparatus to rvepeatedly scan a
region containing a set consisting of one ov move moving

objects and generating N sequential images ov data sets




US RE44,307 E

103

of said region, a plurality of observations in said images
or data sets providing positional information for objects
in said set;

using a computer system to determine a plurality of tracks,
at least one track for each object in said set;

using a computer system to determine a plurality of costs,
wherein each cost is for assigning one of said observa-
tions to one of said tracks;

defining a linear programming problem:

Minimize Z Ciyevr inZip-re iy
.. Apy

Subject 10 Z Ty iy =1 G = 1, e, M)
inig..iy

| Z Zfl... i = / (35.2:!,... ,Mg)

Z Z;l... ‘-Nzl

i ... ip—l£p+l"'iN

(i,=1,... Myand p=2,... ,N-1)

Z Z,j'l... i =/ (fN: j, ,MN)
Ilile_l

0£Z51... i < | fﬂf" all Iy eun o Lp,
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wherein each c;; . is included in said plurality of costs,

each M, i=1, ... N, being one of: (a) a number of observa-

tions in an i’ image or data set of said N sequential images or
data sets; (b) a sum of a number of tracks in said plurality of
tracks, and a number of said observations in the i”" image or
data set not assigned to one of said tracks; and (c) a number
of tracks in said plurality of tracks;

using a computer system for solving said linear program-

ming problem for values of z,, . Joreachi,... iy,
using a computer system for determining a value z,, . . .

in {0,1} foreach i, ... i corresponding to each z,, . . .
~» Wherein said values z,, . . . ., provide an optimal or
near optimal solution to said linear programming prob-
lem: and
using a computer system to determine which one or more of
the following actions will be taken based on said optimal
or near-optimal assignment of said plurality of points to
said plurality of tracks;
sending a warning to airvcraft or a ground or sea facility,
controlling air traffic,
controlling anti-airvcraft or anti-missile equipment,
taking evasive action,
working on one of said one or more objects, and
surveilling one of said one or more objects.
3. The method of claim 2, wherein the remote scanning
apparatus for repeatedly scanning a vegion containing a set
consisting of one or move moving objects comprises vadar

apparatus.
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