

US00RE44735E

(19) United States

(12) Reissued Patent

Barrett et al.

(10) Patent Number:

US RE44,735 E

(45) Date of Reissued Patent:

Jan. 28, 2014

(54) MULTI-CHANNEL NON-INVASIVE TISSUE OXIMETER

(75) Inventors: **Bruce J. Barrett**, Birmingham, MI

(US); Oleg Gonopolsky, West Bloomfield, MI (US); Richard S. Scheuing, Largo, FL (US)

(73) Assignee: Covidien LP, Mansfield, MA (US)

(21) Appl. No.: 11/219,298

(22) Filed: Sep. 2, 2005

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: **6,615,065**Issued: **Sep. 2, 2003**

Appl. No.:09/807,676PCT Filed:Oct. 13, 1999PCT No.:PCT/US99/22940

§ 371 (c)(1), (2), (4) Date: **Jul**

(2), (4) Date: Jul. 12, 2001 PCT Pub. No.: WO00/21435 PCT Pub. Date: Apr. 20, 2000

U.S. Applications:

(60) Provisional application No. 60/103,985, filed on Oct. 13, 1998.

(51) **Int. Cl.**

A61B 5/00 (2006.01) *G01J 3/42* (2006.01)

(52) **U.S. Cl.**

USPC **600/322**; 600/323; 600/336; 600/340; 356/319

(58) Field of Classification Search

USPC 600/310, 322, 323, 340 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,570,638 A 2/1986 Stoddart et al. 4,725,147 A 2/1988 Stoddart (Continued)

FOREIGN PATENT DOCUMENTS

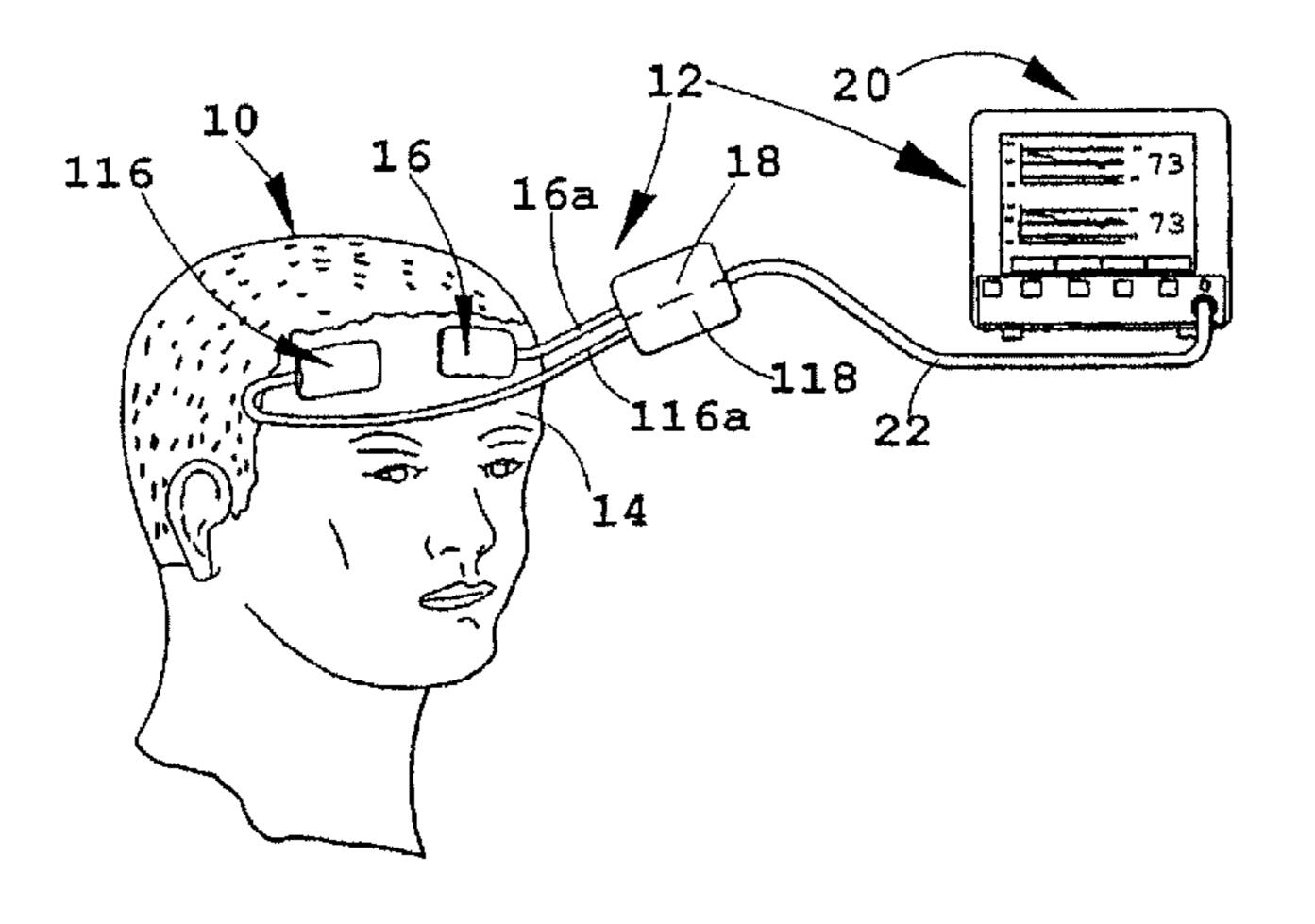
EP 0 942 260 A1 9/1999 JP 08-322821 12/1996 (Continued)

OTHER PUBLICATIONS

Deeb, G Michael et al.' "Retrograde Cerebral Perfusion During Hypothermic Circulatory Arrest Reduces Neurological Morbidity", The Journal of Thoracic and Cardiovascular Surgery, Feb. 1995.*

(Continued)

Primary Examiner — Long V. Le Assistant Examiner — Angela M Hoffa


(74) Attorney, Agent, or Firm — Hogan Lovells US LLP

(57) ABSTRACT

A method and apparatus for spectrophotometric in vivo monitoring of blood metabolites such as hemoglobin oxygen concentration at a plurality of different areas or regions on the same organ or test site on an ongoing basis, by applying a plurality of spectrophotometric sensors to a test subject at each of a corresponding plurality of testing sites and coupling each such sensor to a control and processing station, operating each of said sensors to spectrophotometrically irradiate a particular region within the test subject; detecting and receiving the light energy resulting from said spectrophotometric irradiation for each such region and conveying corresponding signals to said control and processing station, analyzing said conveyed signals to determine preselected blood metabolite data, and visually displaying the data so determined for each of a plurality of said areas or regions in a comparative manner.

REEXAMINATION RESULTS

The questions raised in reexamination proceeding No.

US RE44,735 E

Page 2

90/010,128, filed Mar. 31, 2008, have been considered, and the results thereof are reflected in this reissue patent which constitutes the reexamination certificate required by 35 U.S.C. 307 as provided in 37 CFR 1.570(e) for *ex parte* reexaminations, or the reexamination certificate required by

35 U.S.C. 316 as provided in 37 CFR 1.997(e) for *inter partes* reexaminations.

125 Claims, 5 Drawing Sheets

(56) References Cited

U.S. PATENT DOCUMENTS

4,768,516 A 9/	1988	Stoddart et al.	
		Stoddart et al.	
, ,		Cho et al.	
,		Giannini et al.	
, ,			
, ,		Lewis et al.	
, - , - , - , - , - , - , - , - , - , -		Lewis et al.	
, ,		Takeuchi et al.	COO/2.42
, ,		Lewis et al	600/342
		Scheuing	
, ,		Farkas et al.	/
,		Lewis et al	
5,539,201 A * 7/	1996	Liva et al	0/227.21
5,542,421 A 8/	1996	Erdman	
5,584,296 A * 12/	1996	Cui et al	600/479
5,661,302 A 8/	1997	Evans et al.	
5,697,367 A 12/	1997	Lewis et al.	
5,779,631 A * 7/	1998	Chance	600/328
5,787,887 A 8/	1998	Klingenbeck-Regn	
5,803,909 A 9/	1998	Maki et al.	
5,853,370 A 12/	1998	Chance et al.	
,	1999	Chance et al	600/310
, ,		Lewis et al	
		Chance et al	
, ,		Kaffka et al.	
, ,		Chance	600/473
, ,		Kinast	000, 175
, ,		Yamashita et al	600/407
		Al-Ali et al	
/ /		Chance	
0,397,039 D 1 3/.	2002	Chance	000/4/3

FOREIGN PATENT DOCUMENTS

WO	92/20273	11/1992
WO	WO 92/20273	* 11/1992
WO	92/21283	12/1992
WO	97/18755	5/1997
WO	99/62399	12/1999

OTHER PUBLICATIONS

"NIRO 300—Near Infrared Oxygenation Monitor—Niro Monitor" Product Brochure, published by Hamamatsu Photonics K.K., Hamamatsu City, Japan, Jan. 1998.*

Reexamination Request for U.S. Patent No. 6,615,065, dated on Mar. 25, 2008, including Request for Ex Parte Reexamination Transmittal Form, Submission of Prior Art and Request for Reexamination Under 35 U.S.C. 302-307 and 37 C.F.R. 1.501 and 1.510, Patents and Non-Patent References Relied Upon, Exhibits, Entire patent for which reexamination is requested, and Certificate of Service.

S. Samra et al., "Cerebral Oximetry in Patients Undergoing Carotid Endarterectomy Under Regional Anesthesia," Stroke, 1996; 27:49-55.

Somanetics Press Release, "Somanetics Announces International Introduction of the Next Generation Cerebral Oximeter Patient Monitoring System" (Oct. 7, 1997).

Somanetics Press Release, "Somanetics Announces Distribution Agreement with China Equities Ltd. and Order for 50 Cerebral Oximeters" (Oct. 9, 1997).

Standard International Distribution Agreement No. 97002 between Somanetics Corporation and China Equities, Ltd. with Addendum dated Sep. 22, 1997.

Group One, Ltd. v. Hallmark Cards, Inc., 254 F.3d 1041, 1048 (Fed. Cir. 2001).

In The United States District Court For The Eastern District Of Michigan Southern Division, *Somanetics Corporation*, Plaintiff, v. *CAS Medical Systems, Inc.*, Defendant. Case No. 09-cv-13110, "CAS Medical System, Inc.'s Invalidity Contentions", pp. 1-166.

David J. Weaver, "Report on the Filing or Determination of an Action regarding a Patent or Trademark," Aug. 7, 2009, Case 2:09-cv-13110-SFC-VMM; Filed Aug. 7, 2009, pp. 1-2.

In Ihe United States District Court for the Eastern District of Michigan Southern Division; *Somanetics Corporation*, Plaintiff, v. *CAS Medical Systems, Inc.*, Defendant. "Complaint"; Case:2:09-cv-13110, Filed Aug. 7, 2009, pp. 1-12, Exhibits A-C.

United States District Court in the Eastern District of Michigan Southern Division; *Somanetics Corporation*, Plaintiff, v. *CAS Medical Systems, Inc.*, Defendant. "Answer, Affirmative Defenses, and Counterclaims"; Case No. 2:09-cv-13110-SFC-VMM, Filed Oct. 19, 2009, pp. 1-25.

In The United States District Court for the Eastern District of Michigan Southern Division; *Somanetics Corporation*, Plaintiff, v. *CAS Medical Systems, Inc.*, Defendant. "Plaintiff's Answer and Affirmative Defenses to Defendant's Declaratory Judgment Counterclaims", Case 2:09-cv-13110-SFC-VMM; Filed Nov. 19, 2009, pp. 1-5.

In The United States District Court for the Eastern District of Michigan Southern Division; *Somanetics Corporation*, Plaintiff, v. *CAS Medical Systems, Inc.*, Defendant. "Plaintiff's Motion to Strike Defendant's Affirmative Defenses of Unenforceability, Patent Misuse and Unclean Hands, and to Dismiss Defendant's Antitrust Counterclaims"; Case 2:09-cv-13110-SFC-VMM, Filed Date: Nov. 19, 2009.

In The United States District Court for the Eastern District of Michigan Southern Division; *Somanetics Corporation*, Plaintiff, v. *CAS Medical Systems*, *Inc.*, Defendant. "CAS Medical Systems, Inc.'s ("CAS") Brief in Opposition to Plaintiff's Motion to Strike and Motion to Dismiss"; Case 2:09-cv-13110-SFC-VMM, Filed Dec. 31, 2009, pp. 1-26.

In The United States District Court for the Eastern District of Michigan Southern Division; *Somanetics Corporation*, Plaintiff v. *CAS Medical Systems, Inc.*, Defendant. "Reply in Support of Plaintiff's Motion to Strike and to Dismiss". Case 2:09-cv-13110-SFC-VMM; Filed Jan. 14, 2010, pp. 1-6.

In United States District Court Eastern District of Michigan Southern Division; *Somanetics Corps.*, Plaintiff, v. *CAS Medical Systems, Inc.*, Defendant. "Opinion & Order Denying Defendant's Motion to Strike or Dismiss [Doc. No. 22]"; Case 2:09-cv-13110-SFC-VMM, Filed Feb. 25, 2010, pp. 1-17.

"Transcranial Optical Spectroscopy—A comparison of the TOS 96 and INVOS 3100 cerebral oximeters" Biomedizinische Technik May 1998, Transcranial optical spectroscopy, pp. 133-136.

Emiko Nakagawa, et al., "A New System for Noninvasive Measurement of Cerebral Regional Oxygen Supply", 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam 1996 1.4.1: Lasers and Optics I, pp. 194-195. Medanco Master-File TOS-96, Transcranial Optical Spectroscopy TOS-96 User's Manual, Ausdruck vom: Sep. 24, 2009, CAS-00001137-00001227.

19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago IL. USA Oct. 30 to Nov. 2, 1997, "Magnificent Milestones and Emerging Opportunities in Medical Engineering." CAS-00003251-00003253.

Emiko Nakagawa et al., "Noninvasive Measurement of Oxygen Saturation and Hemoglobin Index by Reflectance Near-infrared Oximeter;" Faculty of Science and Technology, Keio University, CAS-00003235, Date: 1996.

Hye-won Lee, M.D. et al., "The Carbon Dioxide Responsiveness of Cerebral Oxygen Saturation: Comparison with its Responsiveness of Jugular Venous Saturation and the Middle Cerebral Blood Flow Velocity." Department of Anesthesia, Department of Neurosurgery, College of Medicine, Korea University. CAS-0003220-CAS 0003234, Publication Date: Dec. 31, 2000.

Journal of Japanese Congress of Neurological Emergencies, vol. 12. CAS-00003258-CAS-00003262, Date: 1999.

Somenetics Corporation v. CAS Medical Systems, Inc., Videotaped Deposition of Haruo Yamamura transcript, pp. 1-198 (Redacted), Exhibits 1-19 (Redacted).

* cited by examiner

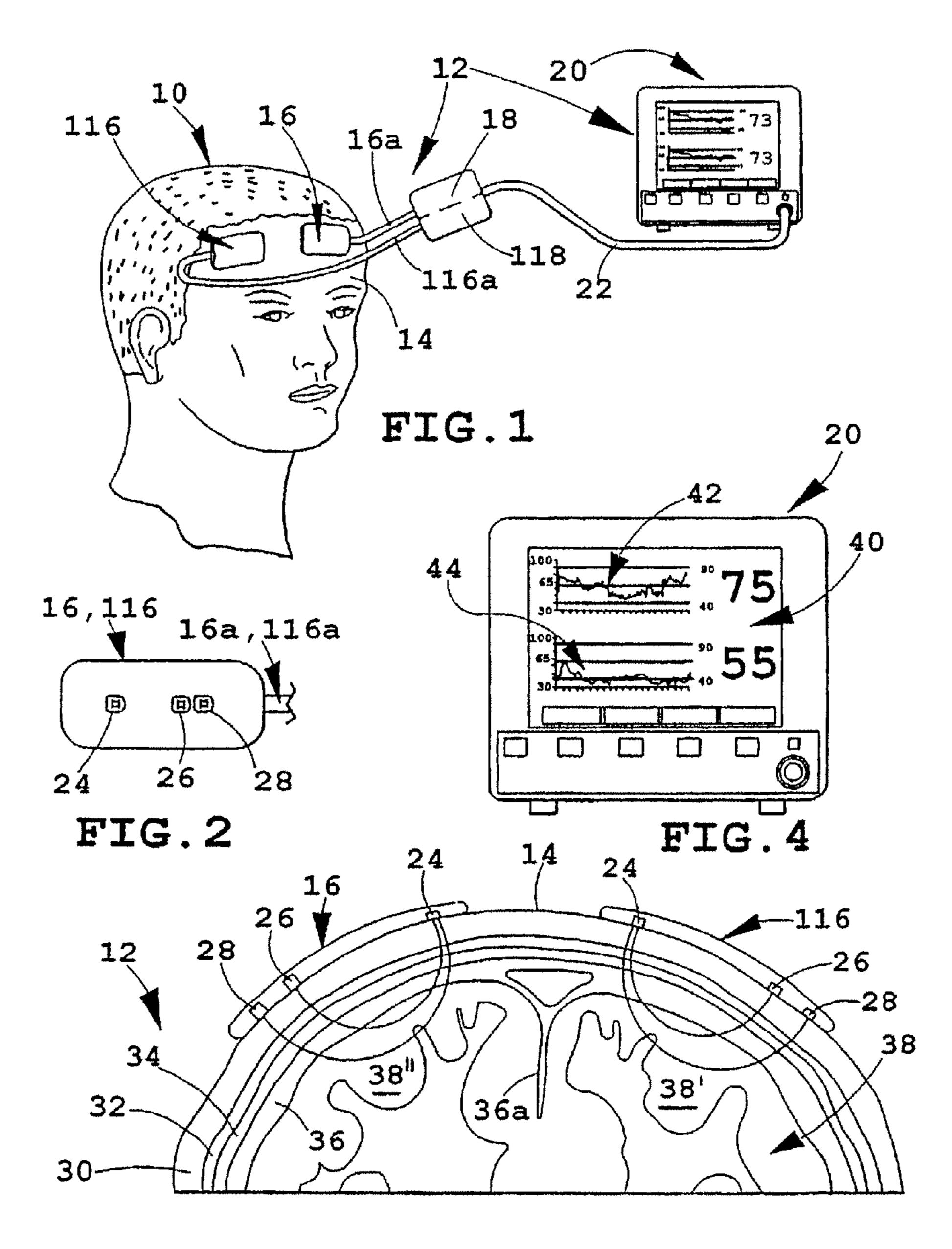
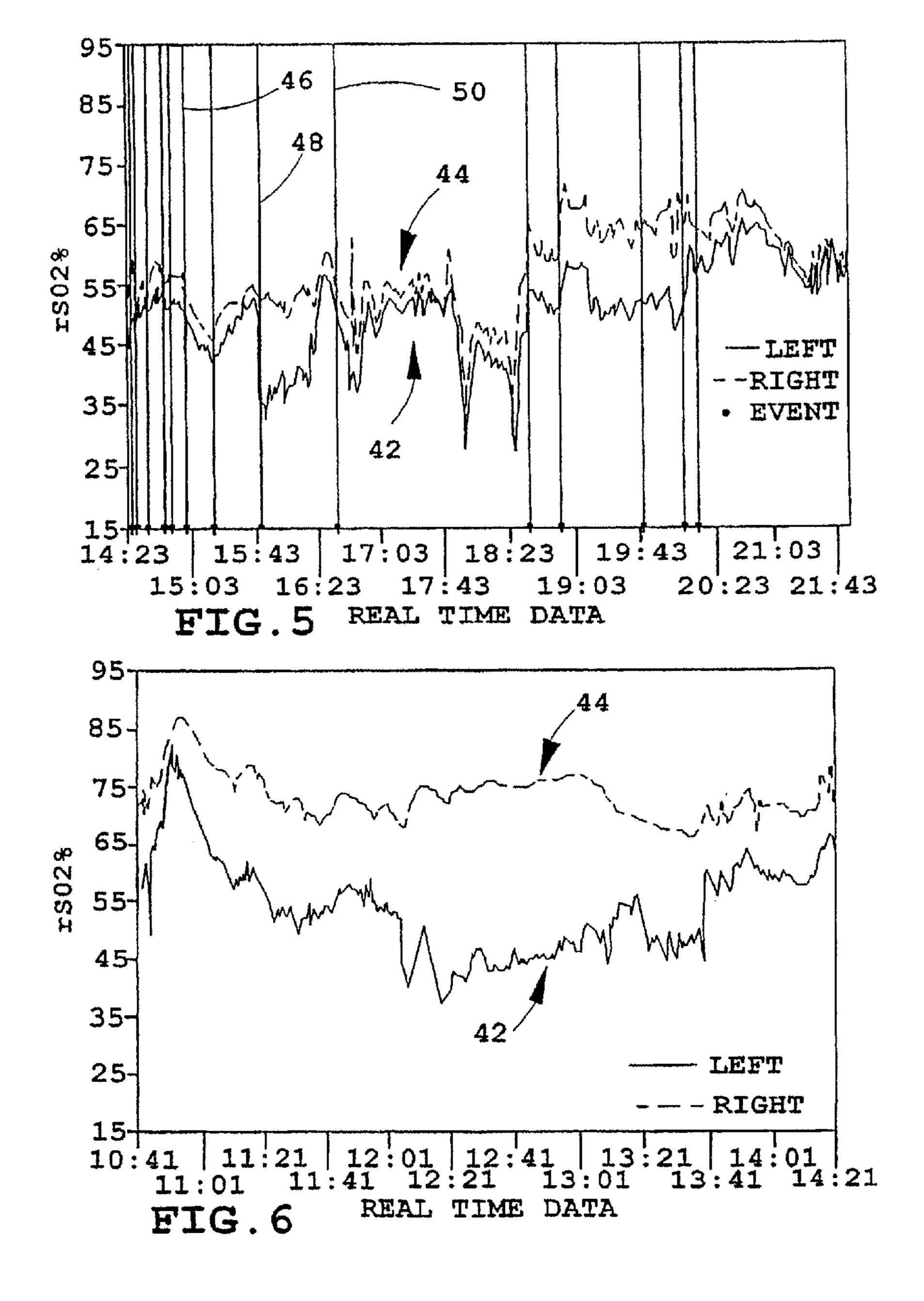
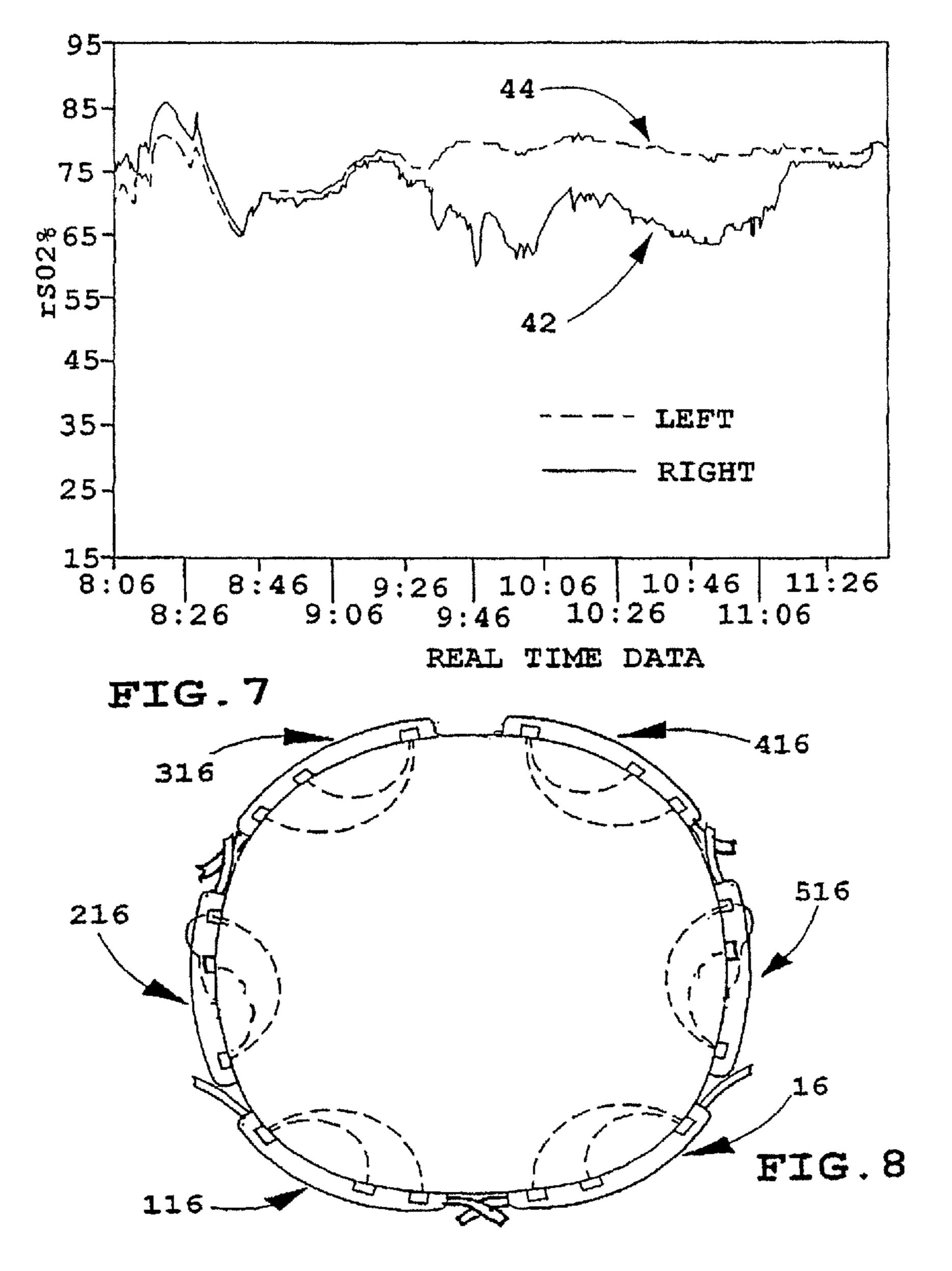
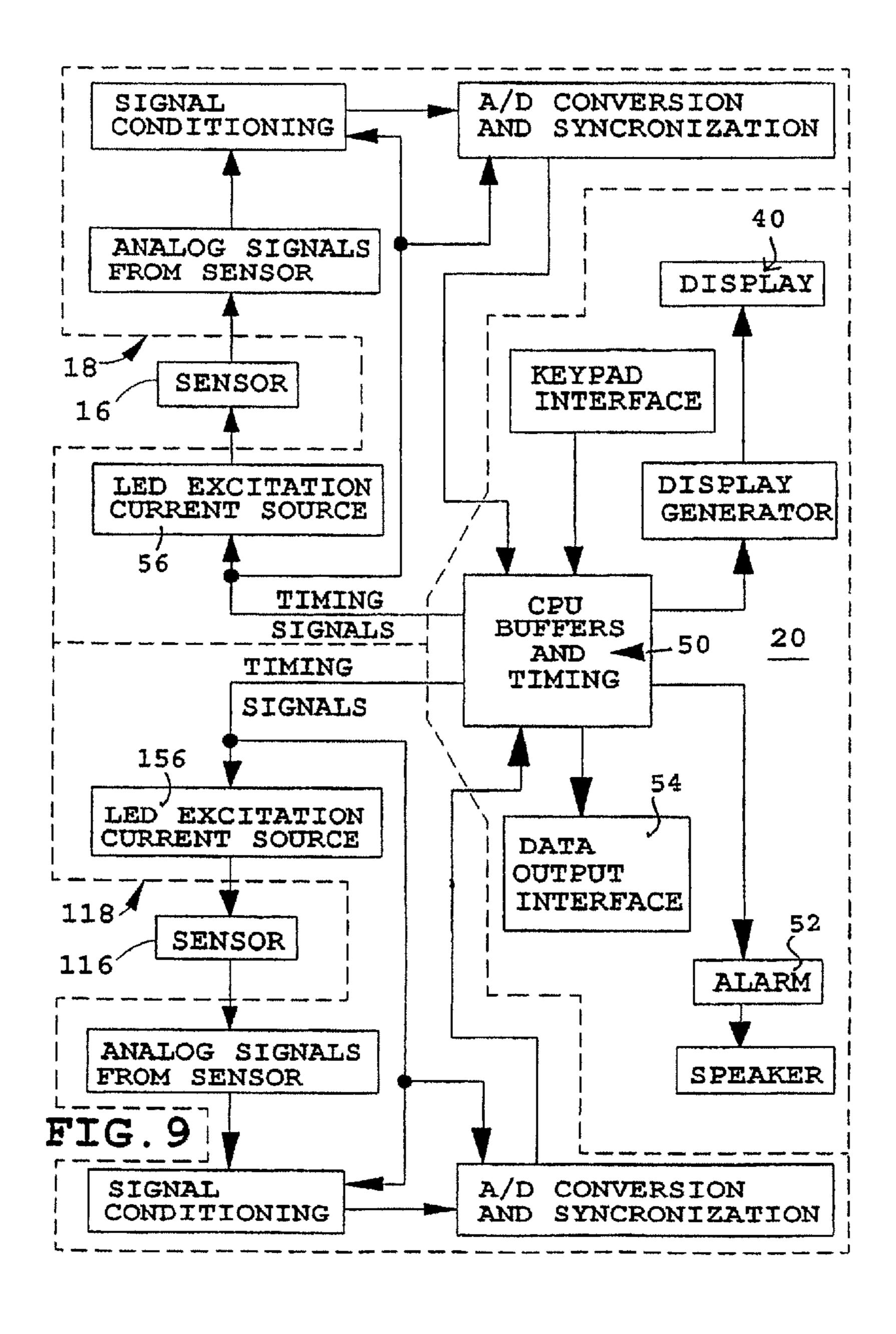





FIG.3

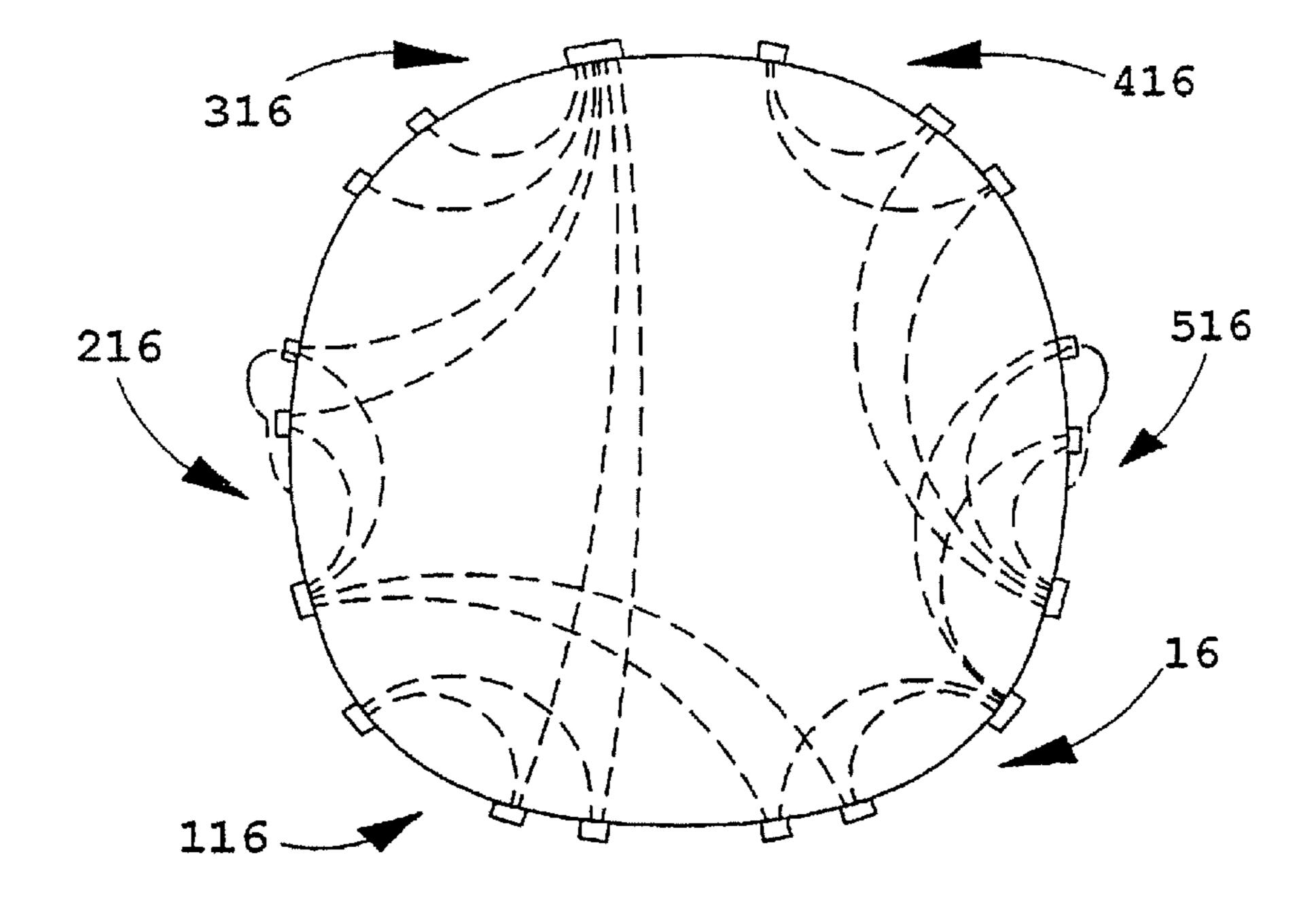


FIG.10

MULTI-CHANNEL NON-INVASIVE TISSUE OXIMETER

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

This application is a national stage of International Application No. PCT/US99/22940, filed Oct. 13, 1999, which claims the benefit of U.S. Provisional Application Ser. No. 60/103,985, filed Oct. 13, 1998.

This invention relates generally to in vivo spectrophotometric examination and monitoring of selected blood metabolites or constituents in human and/or other living subjects, e.g., medical patients, and more particularly to spectrophotometric oximetry, by transmitting selected wavelengths (spectra) of light into a given area of the test subject, receiving the resulting light as it leaves the subject at predetermined locations, and analyzing the received light to determine the desired constituent data based on the spectral absorption which has occurred, from which metabolic information such as blood oxygen saturation may be computed for the particular volume of tissue through which the light spectra have passed.

A considerable amount of scientific data and writings, as well as prior patents, now exist which is/are based on research and clinical studies done in the above-noted area of investigation, validating the underlying technology and describing or commenting on various attributes and proposed or actual applications of such technology. One such application and field of use is the widespread clinical usage of pulse oximeters as of the present point in time, which typically utilize sensors 35 applied to body extremities such as fingers, toes, earlobes, etc., where arterial vasculature is in close proximity, from which arterial hemoglobin oxygenation may be determined non-invasively. A further and important extension of such technology is disclosed and discussed in U.S. Pat. No. 5,902, 40 235, which is related to and commonly owned with the present application and directed to a non-invasive spectrophotometric cerebral oximeter, by which blood oxygen saturation in the brain may be non-invasively determined through the use of an optical sensor having light emitters and detectors 45 that is applied to the forehead of the patient. Earlier patents commonly owned with the '235 patent and the present one pertaining to various attributes of and applications for the underlying technology include U.S. Pat. Nos. 5,139,025; 5,217,013; 5,465,714; 5,482,034; and 5,584,296.

The cerebral oximeter of the aforementioned '235 patent has proved to be an effective and highly desirable clinical instrument, since it provides uniquely important medical information with respect to brain condition (hemoglobin oxygen saturation within the brain, which is directly indicative of 55 the single most basic and important life parameter, i.e. brain vitality). This information was not previously available, despite its great importance, since there really is no detectable arterial pulse within brain tissue itself with respect to which pulse oximetry could be utilized even if it could be effectively 60 utilized in such an interior location (which is very doubtful), and this determination therefore requires a substantially different kind of apparatus and determination analysis. In addition, there are a number of uniquely complicating factors, including the fact that there is both arterial and venous vas- 65 culature present in the skin and underlying tissue through which the examining light spectra must pass during both entry

2

to and exit from the brain, and this would distort and/or obscure the brain examination data if excluded in some way. Furthermore, the overall blood supply within the skull and the brain itself consists of a composite of arterial, venous, and capillary blood, as well as some pooled blood, and each of these are differently oxygenated. In addition, the absorption and scatter effects on the examination light spectra are much greater in the brain and its environment than in ordinary tissue, and this tends to result in extremely low-level electrical signal outputs from the detectors for analysis, producing difficult signal-to-noise problems.

Notwithstanding these and other such problems, the cerebral oximeter embodying the technology of the aforementioned issued patents (now available commercially from Somanetics Corporation, of Troy, Mich.) has provided a new type of clinical instrument by which new information has been gained relative to the operation and functioning of the human brain, particularly during surgical procedures and/or injury or trauma, and this has yielded greater insight into the functioning and state of the brain during such conditions. This insight and knowledge has greatly assisted surgeons performing such relatively extreme procedures as carotid endarterectomy, brain surgery, and other complex procedures, including open-heart surgery, etc. and has led to a greater understanding and awareness of conditions and effects attributable to the hemispheric structure of the human brain, including the functional inter-relationship of the two cerebral hemispheres, which are subtly interconnected from the standpoint of blood perfusion as well as that of electrical impulses and impulse transfer.

BRIEF SUMMARY OF INVENTION

The present invention results from the new insights into and increased understanding of the human brain referred to in the preceding paragraph, and provides a methodology and apparatus for separately (and preferably simultaneously) sensing and quantitatively determining brain oxygenation at a plurality of specifically different locations or regions of the brain, particularly during surgical or other such traumatic conditions, and visually displaying such determinations in a directly comparative manner. In a larger sense, the invention may also be used to monitor oxygenation (or other such metabolite concentrations or parameters) in other organs or at other body locations, where mere arterial pulse oximetry is a far too general and imprecise examination technique.

Further, and of considerable moment, the invention provides a method and apparatus for making and displaying determinations of internal metabolic substance, as referred to in the preceding paragraph, at a plurality of particular and differing sites, and doing so on a substantially simultaneous and continuing basis, as well as displaying the determinations for each such site in a directly comparative manner, for immediate assessment by the surgeon or other attending clinician, on a real-time basis, for direct support and guidance during surgery or other such course of treatment.

In a more particular sense, the invention provides a method and apparatus for spectrophotometric in vivo monitoring of blood metabolites such as hemoglobin oxygen concentration in any of a preselected plurality of different regions of the same test subject and on a continuing and substantially instantaneous basis, by applying a plurality of spectrophotometric sensors. In a more particular sense, the invention provides a method and apparatus for spectrophotometric in vivo monitoring of blood metabolites such as hemoglobin oxygen concentration in any of a preselected plurality of different regions of the same test subject and on a continuing and

substantially instantaneous basis, by applying a plurality of spectrophotometric sensors to the test subject at each of a corresponding plurality of testing sites, coupling each such sensor to a control and processing station, operating each such sensor to spectrophotometrically irradiate a particular region within the test subject associated with that sensor, detecting and receiving the light energy resulting from such spectrophotometric irradiation for each such region, conveying signals corresponding to the light energy so received to the control and processing station, analyzing the conveyed signals to determine preselected blood metabolite data, and displaying the data so obtained from each of a plurality of such regions, in a region-comparative manner.

The foregoing principal aspects and features of the invention will become better understood upon review of the ensuing specification and the attached drawings, describing and illustrating preferred embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a pictorial representation of a patient on whom apparatus in accordance with the invention is being used;

FIG. 2 is a fragmentary plan view of a typical sensor used 25 in accordance with the invention;

FIG. 3 is an enlarged, fragmentary, pictorial cross-sectional view of a human cranium, showing the sensors of FIG. 2 applied and in place, generally illustrating both structural and functional aspects of the invention;

FIG. 4 is a front view of a typical control and processing unit for use in the invention, illustrating a preferred display of data determined in accordance with the invention;

FIGS, **5**, **6**, and **7** are graphs representing data displays obtained in accordance with the invention which represent ³⁵ actual surgical procedure results from actual patients;

FIG. 8 is a pictorialized cross-sectional view representing a test subject on which a multiplicity of sensors are placed in sequence, further illustrating the multi-channel capability of the present invention;

FIG. 9 is a schematic block diagram generally illustrating the componentry and system organization representative of a typical implementation of the invention; and

FIG. **10** is a pictorialized cross-sectional view similar to FIG. **8**, but still further illustrating the multi-channel capabil- 45 ity of the present invention.

DESCRIPTION OF PREFERRED EMBODIMENT

FIG. 1 depicts an illustrative patient 10 on whom an instru- 50 ment 12 in accordance with the present invention is being employed. As illustrated, the forehead 14 of patient 10 has a pair of sensors 16, 116 secured to it in a bilateral configuration, i.e., one such sensor on each side of the forehead, where each may monitor a different brain hermisphere. Each of the 55 sensors 16, 116 is connected to a processor and display unit 20 which provides a central control and processing station (sometimes hereinafter, referred to as the "oximeter") by a corresponding electrical cable 16A, 116A, which join one another at a dual-channel coupler/pre-amp 18, 118 and then 60 (preferably) proceed to the control and processor 20 as an integrated, multiple-conductor cable 22. As will be understood, the electrical cables just noted include individual conductors for energizing light emitters and operating the related light detectors contained in sensors 16, 116, all as referred to 65 further hereinafter and explained in detail in the various prior patents.

4

The general nature of a typical structure and arrangement for the sensors 16,116 (which are identical in nature and which may if desired be incorporated into a single physical unit) is illustrated in FIG. 2, and comprises the subject matter of certain of the earlier patents, in particular U.S. Pat. Nos. 5,465,714; 5,482,034; 5,584,296; and 5,795,292, wherein the structure and componentry of preferred sensors are set forth in detail. For present purposes, it is sufficient to note that the sensors 16, 116 include an electrically actuated light source 10 24 for emitting the selected examination spectra (e.g., two or more narrow-bandwidth LEDs, whose center output wavelengths correspond to the selected examination spectra), together with a pair of light detectors 26, 28 (e.g., photodiodes) which are preferably located at selected and mutually 15 different distances from the source **24**. These electro-optical (i.e., "optode") components are precisely positioned upon and secured to, or within, a sensor body having a foam or other such soft and conformable outer layer which is adhesively secured to the forehead (or other desired anatomical portion) of the patient 10, as generally illustrated in FIG. 1, and individual electrical conductors in cables 16A, 116A provide operating power to the sources 24 while others carry output signals from the detectors 26, 28, which are representative of detected light intensities received at the respective detector locations and must be conveyed to the processor unit 20, where processing takes place.

FIG. 3 generally illustrates, by way of a pictorialized cross-sectional view, the sensors 16, 116 in place upon the forehead 14 of the patient 12. As illustrated in this figure, the cranial structure of patient 12 generally comprises an outer layer of skin 30, an inner layer of tissue 32, and the frontal shell 34 of the skull, which is of course bone.

Inside the skull 34 is the Periosteal Dura Mater, designated by the numeral 36, and inside that is the brain tissue 38 itself, which is comprised of two distinct hemispheres 38', 38" that are separated at the center of the forehead inwardly of the superior sagital sinus by a thin, inwardly-projecting portion 36a of the Dura 36. Thus, in the arrangement illustrated in FIG. 3, sensor 16 accesses and examines brain hemisphere 38", while sensor 116 does the same to brain hemisphere 38'.

As explained at length in various of the above-identified prior patents, the preferred configuration of sensors 16, 116 includes both a "near" detector 26, which principally receives light from source 24 whose mean path length is primarily confined to the layers of skin, tissue, skull, etc., outside brain 38, and a "far" detector 28, which receives light spectra that have followed a longer mean path length and traversed a substantial amount of brain tissue in addition to the bone and tissue traversed by the "near" detector 26. Accordingly, by appropriately differentiating the information from the "near" (or "shallow") detector 26 (which may be considered a first data set) from information obtained from the "far" (or "deep") detector 28 (providing a second such data set), a resultant may be obtained which principally characterizes conditions within the brain tissue itself, without effects attributable to the overlying adjacent tissue, etc. This enables the apparatus to obtain metabolic information on a selective basis, for particular regions within the test subject, and by spectral analysis of this resultant information, employing appropriate extinction coefficients, etc. (as set forth in certain of the above-identified patents), a numerical value, or relative quantified value, may be obtained which characterizes metabolites or other metabolic data (e.g., the hemoglobin oxygen saturation) within only the particular region or volume of tissue actually examined, i.e., the region or zone generally defined by the curved mean path extending from source 24 to the "far" or "deep" detector 28, and between this path and the outer periphery of

the test subject but excluding the analogous region or zone defined by the mean path extending from source 24 to "near" detector 26. As will be understood, particularly in view of Applicants' above-identified prior patents as well as is explained further hereinafter, this data analysis carried out by the "control and processing unit" 20 is accomplished by use if an appropriately programmed digital computer, as is now known by those skilled in the art (exemplified in particular by the Somanetics® model 4100 cerebral oximeter).

The present invention takes advantage of the primarily 10 regional oxygen saturation value produced by each of the two (or more) sensors 16, 116, together with the natural hemispheric structure of brain 38, by use of a comparative dual or other multi-channel examination paradigm that in the preferred embodiment or principal example set forth herein pro- 15 vides a separate but preferably comparatively displayed oxygen saturation value for each of the two brain hemispheres 38', 38". Of course, it will be understood that each such regional index or value of oxygen saturation is actually representative of the particular region within a hemisphere actu- 20 ally subjected to the examining light spectra, and while each such regional value may reasonably be assumed to be generally representative of the entire brain hemisphere in which it is located, and therefor useful in showing and contrasting the differing conditions between the two such hemispheres of the 25 brain 38, the specific nature and understanding of these hemispheric interrelationships and of interrelationships between other and different possible sensor locations relative to each different hemisphere 38', 38" are not believed to be fully known and appreciated as of yet. Consequently, it may be 30 useful or advantageous in at least some cases, and perhaps in many, to employ a more extensive distribution and array of sensors and corresponding inputs to the oximeter 20, such as is illustrated for example in FIG. 8.

Thus, as seen in FIG. 8, a more extensive array of sensors 35 thus are also highly useful. 16, 116, 216, etc., may be deployed around the entire circumference of the head or other such patient extremity, for example, each such sensor sampling a different regional area of each brain hemisphere or other such organ or test site and outputting corresponding data which may be contrasted in 40 various ways with the analogous data obtained from the other such sensors for other test site regions. In this regard, it will be appreciated that the extent of each such regional area subjected to examination is a function of a number of different factors, particularly including the distance between the emit- 45 ter or source 24 and detectors 26, 28 of each such set and the amount of light intensity which is utilized, the greater the emitter/sensor distance and corresponding light intensity, the greater the area effectively traversed by the examining light spectra and the larger the size of the "region" whose oximetric 50 or other metabolic value is being determined.

It may also be possible to use only a single source position and employ a series of mutually spaced detector sets, or individual detectors, disposed at various selected distances from the single source around all or a portion of the perimeter 55 of the subject. Each such single source would actually illuminate the entire brain since the photons so introduced would scatter throughout the interior of the skull (even though being subject to increased absorption as a function of distance traversed), and each such emitter/detector pair (including long- 60 range pairs) could produce information characterizing deeper interior regions than is true of the arrays illustrated in FIGS. 3 and 8, for example. Of course, the smaller-region arrays shown in these figures are desirable in many instances, for a number of reasons. For example, the comparative analysis of 65 information corresponding to a number of differing such regions, as represented by the array of FIG. 8, lends itself

6

readily to very meaningful comparative displays, including for example computer-produced mapping displays which (preferably by use of differing colors and a color monitor screen) could be used to present an ongoing real-time model which would illustrate blood or even tissue oxygenation state around the inside perimeter of and for an appreciable distance within a given anatomical area or part. The multiple detector outputs from such a single-source arrangement, on the other hand, would contain information relative to regions or areas deep within the brain, and might enable the determination of rSO₂ values (or other parameters) for deep internal regions as well as the production of whole-brain mapping, by differentially or additively combining the outputs from various selected detectors located at particular points.

The dual or bilateral examination arrangement depicted in FIGS. 1 and 3 will provide the highly useful comparative display formats illustrated in FIGS. 4, 5, 6, and 7 (as well as on the face of the oximeter 20 shown at the right in FIG. 1), for example. In the arrangement shown in FIGS. 1 and 4, each sensor output is separately processed to provide a particular regional oxygen saturation value, and these regional values are separately displayed on a video screen 40 as both a numeric or other such quantified value, constituting a basically instantaneous real-time value, and as a point in a graphical plot 42, 44, representing a succession of such values taken over time. As illustrated, the plots or graphs 42, 44 may advantageously be disposed one above the other in direct alignment, for convenient examination and comparison. While the instantaneous numeric displays will almost always be found useful and desirable, particularly when arranged in the directly adjacent and immediately comparable manner illustrated, the graphical trace displays 42, 44 directly show the ongoing trend, and do so in a contrasting, comparative manner, as well as showing the actual or relative values, and

Graphic displays 42, 44 may also advantageously be arranged in the form shown in FIGS. 5, 6, and 7, in which the two such individual traces are directly superimposed upon one another, for more immediate and readily apparent comparison and contrast. Each of the examples shown in FIGS. 5, 6, and 7 does in fact represent the record from an actual surgical procedure in which the present invention was utilized, and in each of these the vertical axis (labeled rSO₂) is indicative of regional oxygen saturation values which have been determined, while the horizontal axis is, as labeled, "real time," i.e., ongoing clock time during the surgical procedure involved. The trace from the "left" sensor (number 16 as shown in FIGS. 1 and 3), designated by the numeral 42 for convenience, is shown in solid lines in these graphs, whereas the trace 44 from the right-band sensor 116 is shown in dashed lines. The sensors may be placed on any region of their respective test areas (e.g., brain hemispheres) provided that any underlying hair is first removed, since hair is basically opaque to the applied light spectra and thus greatly reduces the amount of light energy actually introduced to the underlying tissue, etc.

With further reference to FIGS. 5, 6, and 7, and also inferentially to FIG. 4, it will be seen that at certain times, (e.g., the beginning and end of each procedure, when the patient's condition is at least relatively normal) there is a certain amount of direct correspondence between the two different hemispheric traces 42, 44, and that in at least these time increments the shape of the two traces is reasonably symmetrical and convergent. An idealized such normal result is shown in FIG. 1, wherein both the numeric values and the curves are basically the same. In each of the procedures shown in FIGS. 5, 6, and 7, however, there are times when the

detected regional cerebral oxygen saturation differs markedly from one brain hemisphere to the other. This is particularly noticeable in FIG. **6**, in which it may be observed that the left band trace **42** is at times only about one half the height (i.e., value) of the right hand trace **44**, reaching a minimal value in the neighborhood of about 35% slightly before real time point 12:21 as compared to the initial level, at time 10:50-11:00, of more than 75%, which is approximately the level of saturation in the right hemisphere at the 12:21 time just noted, when the oxygenation of the left hemisphere bad decreased to approximately 35%.

As will be understood, the various differences in cerebral blood oxygenation shown by the superimposed traces of FIGS. 5, 6, and 7 occur as a result of measures taken during the corresponding surgical procedures, which in these cases 1 are carotid endarterectomies and/or coronary artery bypass graft (CABG), which are sometimes undertaken as a continuing sequence. In the illustrated examples, FIG. 5 represents a sequential carotid endarterectomy and hypothermic CABG, in which the vertical lines along the time axis characterize 20 certain events during surgery, i.e., index line 46 represents the time of the carotid arterial incision, line 48 represent the time the arterial clamp was applied and the shunt opened (resulting in reduced arterial blood flow to the left brain hemisphere), index line 50 represents a time shortly after the shunt was 25 removed and the clamp taken off, and the area from about real time 17:43 to the end of the graph was when the hypothermic brain surgery actually took place, the lowest point (just prior to time 18:23) occurring when the heart-lung machine pump was turned on, and the indices at time 19:43 and 20:23 generally show the time for blood rewarming and pump off, respectively. While illustrative and perhaps enlightening, it is not considered necessary to give the specifics of the surgical procedures portrayed by the graphical presentations of FIGS. 6 and 7, although it may be noted that the procedure of FIG. 6 was a carotid endarterectomy of the left side and that of FIG. 7 was a similar endarterectomy on the right side of a different patient. Sufficient to say that these graphs represent other such surgical procedures and show comparable states of differing hemispheric oxygenation.

The importance and value of the information provided in accordance with the present invention is believed self-apparent from the foregoing, particularly the graphical presentations of and comments provided with respect to FIGS. **5**, **6**, and **7**. Prior to the advent of the present invention, no such comparative or hemispheric-specific information was available to the surgeon, who did not in fact have any quantified or accurately representative data to illustrate the prevailing hemispheric brain oxygenation conditions during a surgery. Thus, even the use of a single such sensor (**16**, **116**) on the side of the brain on which a procedure is to be done is highly useful and, as of the present time, rapidly being recognized as essential. Of course, it is considerably more useful to have at least the bilateral array illustrated in FIG. **1**, to provide comparative data such as that seen in FIGS. **4-7** inclusive.

FIG. 9 is a schematic block diagram generally illustrating the componentry and system organization making up a typical implementation of the invention, as shown pictorially in FIG. 1 (to which reference is also made). As shown in FIG. 9, the oximeter 20 comprises a digital computer 50 which provides a central processing unit, with a processor, data buffers, and timing signal generation for the system, together with a keypad interface (shown along the bottom of the unit 20 in FIG. 1), display generator and display 40 (preferably implemented by use of a flat electro-luminescent unit, at least in applications where a sharp monochromatic display is sufficient), as well as an audible alarm 52 including a speaker, and

8

a data output interface **54** by which the computer may be interconnected to a remote personal computer, disk drive, printer, or the like for downloading data, etc.

As also shown in FIG. 9, each of the sensors 16, 116 (and/or others, in the multi-site configuration illustrated in FIG. 8) receives timing signals from the CPU 50 and is coupled to an LED excitation current source (56,156) which drives the emitters 24 of each sensor. The analog output signals from the detectors (photodiodes) 26, 28 of each sensor are conveyed to the coupler/pre-amp 18, 118 for signal conditioning (filtering and amplification), under the control of additional timing signals from the CPU. Following that, these signals undergo A-to-D conversion and synchronization (for synchronized demodulation, as noted hereinafter), also under the control of timing signals from CPU 50, and they are then coupled to the CPU for computation of regional oxygen saturation rSO₂ data, storage of the computed data, and display thereof, preferably in the format discussed above in conjunction with FIGS. 4, 5, 6, and 7. As will be apparent, each sensor (16, 116, etc.) preferably has its own signal-processing circuitry (preamp, etc.) upstream of CPU 50, and each such sensor circuit is preferably the same.

While implementation of a system such as that shown in FIG. 9 is as a general matter well within the general skill of the art once the nature and purpose of the system and the basic requirements of its components, together with the overall operation (as set forth above and hereinafter) have become known, at least certain aspects of the preferred such system implementation are as follows. First, it is preferable that the light emitters 24 (i.e., LEDs) of each of the different sensors 16, 116 etc., be driven out-of-phase, sequentially and alternatingly with one another (i.e., only a single such LED or other emitter being driven during the same time interval, and the emitters on the respective different sensors are alternatingly actuated, so as to ensure that the detectors 26, 28 of the particular sensor 16, 116 then being actuated receive only resultant light spectra emanating from a particular emitter located on that particular sensor, and no cross-talk between sensors takes place (even though significant levels of cross-40 talk are unlikely in any event due to the substantial attenuation of light intensity as it passes through tissue, which is on the order of about ten times for each centimeter of optical path length through tissue). Further, it is desirable to carefully window the "on" time of the detectors 26, 28 so that each is only active during a selected minor portion (for example, 10%) or less) of the time that the related emitter is activated (and, preferably, during the center part of each emitter actuation period). Of course, under computer control such accurate and intricate timing is readily accomplished, and in addition, the overall process may be carried on at a very fast rate.

In a multi-site (multiple sensor) system, such as that shown in FIG. 8, the preferred implementation and system operation would also be in accordance with that shown in FIG. 9, and the foregoing comments regarding system performance, data 55 sampling, etc., would also apply, although there would of course be a greater number of sensors and sensor circuit branches interfacing with computer 50. The same would also be basically true of a single-source multi-site detector configuration or grouping such as that referred to above, taking into consideration the fact that the detectors would not necessarily be grouped in specific or dedicated "near-far" pairs and bearing in mind that one or more detectors located nearer a source than another detector, or detectors, located further from the source could be paired with or otherwise deemed a "near" detector relative to any such farther detector. In any such multiple-site configuration, it may be advantageous to implement a prioritized sequential emitter actuation and data

detection timing format, in which more than one emitter may be operated at the same time, or some particular operational sequence is followed, with appropriate signal timing and buffering, particularly if signal cross-talk is not a matter of serious consideration due to the particular circumstances 5 involved (detector location, size and nature of test subject, physiology, signal strength, etc.). As illustrated in FIG. 10, a multi-sensor or multiple sector-emitter array may be so operated, by using a number of different emitter-detector pair groupings, with some detectors used in conjunction with a 10 series of different emitters to monitor a number of differing internal sectors or regions.

A system as described above may readily be implemented to obtain on the order of about fifteen data samples per second even with the minimal detector "on" time noted, and a further 15 point to note is that the preferred processing involves windowing of the detector "on" time so that data samples are taken alternatingly during times when the emitters are actuated and the ensuing time when they are not actuated (i.e., "dark time"), so that the applicable background signal level 20 regions. may be computed and utilized in analyzing the data taken during the emitter "on" time. Other features of the preferred processing include the taking of a fairly large number (e.g., **50**) of data samples during emitter "on" time within a period of not more than about five seconds, and processing that 25 group of signals to obtain an average from which each updated rSO₂ value is computed, whereby the numeric value displayed on the video screen 40 is updated each five seconds (or less). This progression of computed values is preferably stored in computer memory over the entire length of the 30 surgical procedure involved, and used to generate the graphical traces 42,44 on a time-related basis as discussed above. Preferably, non-volatile memory is utilized so that this data will not be readily lost, and may in fact be downloaded at a convenient time through the data output interface **54** of CPU **50** noted above in connection with FIG. **9**.

As will be understood, the foregoing disclosure and attached drawings are directed to a single preferred embodiment of the invention for purposes of illustration; however, it should be understood that variations and modifications of this 40 particular embodiment may well occur to those skilled in the art after considering this disclosure, and that all such variations etc., should be considered an integral part of the underlying invention, especially in regard to particular shapes, configurations, component choices and variations in struc- 45 tural and system features. Accordingly, it is to be understood that the particular components and structures, etc. shown in the drawings and described above are merely for illustrative purposes and should not be used to limit the scope of the invention, which is defined by the following claims as inter- 50 prises cerebral blood hemoglobin oxygenation.] preted according to the principles of patent law, including the doctrine of equivalents.

The invention claimed is:

- 1. A method for comparative spectrophotometric in vivo monitoring and display of selected blood metabolites present 55 in a plurality of different internal regions of the same test subject on a continuing and substantially concurrent basis, comprising the steps of:
 - applying separate spectrophotometric sensors to a test subject at each of a plurality of separate testing sites and 60 coupling each of said sensors to a control and processing station;
 - operating a selected number of said sensors on a substantially concurrent basis to spectrophotometrically irradiate at least two separate internal regions of the test sub- 65 ject during a common time interval, each of said regions being associated with a different of said testing sites;

- separately detecting and receiving light energy resulting from said spectrophotometric irradiation for each of said at least two separate internal regions, and conveying separate sets of signals to said control and processing station which correspond to the separately detected light energy from said at least two separate internal regions;
- separately and concurrently analyzing said conveyed separate sets of signals to separately determine quantified data representative of a blood metabolite in each of said at least two separate internal regions; and
- concurrently visually displaying said separately determined quantified data for each of said at least two separate internal regions for direct concurrent mutual comparison, wherein said sensors are applied to a head of the test subject and are used to monitor two mutually separate regions within a brain of the test subject.
- [2. The method of claim 1, wherein said step of analyzing comprises quantitative determination of blood oxygenation levels within each of said at least two separate internal
- [3. The method of claim 2, wherein said analyzing step includes producing separate quantitative value determinations for hemoglobin oxygen saturation for each of said at least two separate internal regions.
- **[4**. The method of claim **3**, wherein said analyzing step includes production of ongoing graphical traces representing a plurality of said quantitative value determinations made at successive points in time.
- [5. The method of claim 4 including the step of visually displaying a plurality of said graphical traces at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
- [6. The method of claim 5, including the step of visually displaying a plurality of said quantitative value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
- [7. The method of claim 3, including the step of visually displaying a plurality of said quantitative value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
- **[8**. The method of claim **1**, wherein said metabolite comprises hemoglobin oxygen.
- **9**. The method of claim 1, wherein said sensors are positioned in locations proximate to different brain hemispheres and said two mutually separate regions are located in a different brain hemisphere.
- [10. The method of claim 9, wherein said metabolite com-
- [11. An apparatus for concurrent comparative spectrophotometric in vivo monitoring of selected blood metabolites present in each of a plurality of different internal regions on a continuing basis, comprising:
 - a plurality of spectrophotometric sensors, each attachable to a test subject at different test locations and adapted to separately but concurrently spectrophotometrically irradiate at least two different internal regions within the test subject associated with each of said test locations;
 - a controller and circuitry coupling each of said sensors to said controller for separately and individually but concurrently operating certain of said sensors to spectrophotometrically irradiate each of said different internal regions within the test subject associated with each of said test locations;
 - said sensors each further adapted to receive light energy resulting from the separate spectrophotometric irradia-

tion of said sensors' associated one of said at least two different internal regions on a substantially concurrent basis with other said sensors, and to produce separate signals corresponding to the light energy received, said circuitry acting to convey said separate signals to said 5 controller for separate analytic processing;

- said controller adapted to analytically process said conveyed signals separately and determine separate quantified blood metabolite data therefrom for each of said sensors and said sensors' associated one of said at least two different internal regions; and
- a visual display coupled to said controller and adapted to separately but concurrently display the quantified blood metabolite data determined for each of said sensors in a mutually-comparative manner, wherein said sensors are adapted to be applied to a head of the test subject and to monitor a brain of the test subject.]
- [12. The apparatus of claim 11, wherein said controller is adapted to analyze said data to quantitatively determine blood 20 oxygenation within said at least two different internal regions.]
- [13. The apparatus of claim 12, wherein said controller is adapted to produce separate numeric value designations for hemoglobin oxygen saturation for said at least two different 25 internal regions.]
- [14. The apparatus of claim 13, wherein said controller and said display are adapted to produce ongoing graphical traces representing a plurality of said numeric value designations for the same region taken over a period of time.]
- [15. The apparatus of claim 14, wherein said controller and said display are adapted to visually display at least two of said graphical traces on a substantially concurrent basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.]
- [16. The apparatus of claim 15, wherein said controller and said display are adapted to visually display at least two of said numeric value designations as well as at least two of said graphical traces on a substantially concurrent basis and in 40 proximity to one another to facilitate rapid and accurate visual comparison.]
- [17. The apparatus of claim 13, wherein said controller and said display are adapted to visually display at least two of said numeric value designations on a substantially concurrent 45 basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.]
- [18. The apparatus of claim 11, wherein said sensors are adapted to provide signals to said controller which comprise at least two separate data sets that cooperatively define at least portions of a particular area within a given one of said at least two different internal regions.]
- [19. The apparatus of claim 18, wherein said data sets provided by said sensors include a first set characterizing a first part of said particular area and a second set characterizing 55 a second part of said particular area.]
- [20. The apparatus of claim 19, wherein said second part of said particular area characterized by said second set includes at least part of said first part of said area.]
- [21. The apparatus of claim 11, wherein said controller is 60 periods.] adapted to determine blood oxygenation saturation in said brain.] [32. The apparatus of claim 11, wherein said controller is 60 periods.]
- [22. The apparatus of claim 11, wherein at least two of said sensors are adapted to be positioned in locations associated with mutually different hemispheres of the brain and each of said sensors is operable to separately monitor at least portions of each of said different hemispheres.] to obtain value to obtain value to obtain of each of said different hemispheres of the brain and each of said compared to obtain value value to obtain value value to obtain value value to obtain value value value to obtain value v

- [23. The apparatus of claim 22, wherein said controller is adapted to determine cerebral blood oxygenation saturation within each of said different hemispheres.]
- [24. The apparatus of claim 22, wherein said sensors are adapted to provide signals to said controller which comprise at least two data sets that cooperatively define at least portions of a particular area within the same hemisphere of said brain.]
- [25. The apparatus of claim 11, wherein said sensors are adapted to be applied to the outside periphery of the test subject and to operate non-invasively.]
- [26. A method for concurrent comparative in vivo monitoring of blood metabolites in each of a plurality of different internal regions in a selected test subject, comprising the steps of:
 - spectrophotometrically irradiating each of a plurality of different testing sites on said test subject;
 - detecting light energy resulting from said spectrophotometric irradiation of said testing sites, and providing separate sets of signals to a control and processing station which are representative of the light energy received by each of said testing sites and which cooperatively define blood metabolite data for an individual one of at least two different internal regions;
 - analyzing said separate signals to determine quantified blood metabolite data representative of at least one defined region within said at least one test subject associated with each of at least two different of said testing sites, each said defined region being different from the other; and
 - concurrently displaying data sets for each of said at least two different internal regions at substantially the same time for direct mutual comparison, wherein said at least two different internal regions are located within different brain hemispheres of said test subject.]
- [27. The method of claim 26, wherein said data sets include a first set which characterizes a first zone within one of said at least two different internal regions and a second set which characterizes a second zone that is at least partially within the same one of said at least two different internal regions.]
- [28. The method of claim 26, wherein said spectrophotometric irradiation comprises application of at least two different wavelengths applied in an alternating sequence of timed pulses, and wherein detection of light energy corresponding to each of said at least two different wavelengths is done on a timed periodic basis using detection periods whose occurrence generally corresponds to that of said applied spectrophotometric irradiation.]
- [29. The method of claim 28, wherein the duration of each of said detection periods is limited to a length which is less than that of each pulse of applied spectrophotometric irradiation.]
- [30. The method of claim 29, wherein the duration of each of said detection periods is less than half that of a pulse of said applied spectrophotometric irradiation.]
- [31. The method of claim 30, wherein a plurality of said detection periods are used during pulses of said applied spectrophotometric irradiation, and a corresponding energy detection occurs during each of a plurality of said detection periods.]
- [32. The method of claim 31, further including the steps of averaging a selected number of energy detection event values to obtain a resultant value therefor, and using said resultant value to compute a metabolite value which is representative thereof.]
- [33. The method of claim 32, wherein said display includes said computed representative metabolite value.]

13

- [34. The method of claim 33, wherein said display is refreshed periodically by using a sequence of computed representative metabolite values which are based upon and represent the averaged detection event values produced during the different time intervals corresponding to the intervals of said periodic display refreshment.]
- [35. Apparatus for spectrophotometric in vivo monitoring of a selected metabolic condition in each of a plurality of different test subject regions on a substantially concurrent basis, comprising:
 - a plurality of spectrophotometric emitters, each adapted to separately spectrophotometrically irradiate a designated region within a test subject from a test location on said test subject;
 - a controller and circuitry coupling each of said emitters to said controller for individually operating selected ones of said emitters to spectrophotometrically irradiate at least two particular regions within the test subject;
 - a plurality of detectors, each adapted to separately receive light energy resulting from the spectrophotometric irradiation of said at least two particular regions, and to produce at least one separate set of signals for each one of said at least two particular regions; and circuitry acting to convey said at least one separate set of signals to said controller for analytic processing;
 - said controller adapted to analytically process said at least one separate set of signals to determine separate sets of quantified data representative of a metabolic condition in said at least two particular regions; and
 - a visual display coupled to said controller and adapted to display separate representations of said separate sets of quantified data for each of said at least two particular regions in a mutually-comparative manner and on a substantially concurrent basis, wherein at least two of said at least two particular regions are located in mutually separate regions of a brain of said test subject.]
- [36. The apparatus of claim 35, wherein said controller includes a computer programmed to analyze said signals to separately determine a blood oxygenation state within each of said at least two particular regions.]
- [37. The apparatus of claim 36, wherein said computer comprises a processor, data buffers, and a timing signal generator, said data buffers adapted to store data representative of said blood oxygenation state and said timing signal generator adapted to control actuation of said emitters and detectors.]
- [38. The apparatus of claim 36, wherein said controller comprises a unitary device which includes said computer and said display.]
- [39. The apparatus of claim 38, wherein said unitary device further includes a keyboard interface to said computer.]
- [40. The apparatus of claim 38, wherein said unitary device further includes a data output interface.]
- [41. The apparatus of claim 40, wherein said unitary device further includes an integral keyboard interface to said computer.]
- [42. The apparatus of claim 38, wherein said display comprises a flat electroluminescent visual display screen.]
- [43. The apparatus of claim 42, wherein said unitary device further includes an integral keyboard interface to said computer.]
- [44. The apparatus of claim 35, wherein at least certain of said detectors and certain of said emitters comprise operational pairs, and said controller is arranged to operate the emitters and detectors of at least certain of said operational pairs in predetermined timed relationship while maintaining 65 the emitters and detectors of other of said operational pairs in a non-operating condition.]

- [45. The apparatus of claim 44, wherein said controller is adapted to sequence the operation of said at least certain of said operational pairs.]
- [46. The apparatus of claim 45, wherein at least one of said operational pairs include a plurality of said detectors arranged at mutually spaced locations which are spaced at differing distances from the emitter of said at least one of said operational pairs.]
- [47. The apparatus of claim 46, wherein said controller is adapted to operate the emitter and a selected number less than all of the detectors of at least one of said operational pairs substantially in unison while holding the other detectors of said at least one of said operational pairs in a non-operating condition, and said controller is further arranged to operate said other detectors substantially in unison with said emitter at another time during which said selected number of said detectors are maintained in a non-operating condition.]
- [48. The apparatus of claim 44, wherein at least one of said operational pairs includes a first detector and a second detector, and wherein the first detector is located nearer the emitter than the second detector to thereby provide near and far detector groupings for said at least one of said operational pairs.]
- [49. The apparatus of claim 48, wherein said controller is adapted to sequence the operation of said at least one of said operational pairs.]
- 50. A method for comparative spectrophotometric in vivo monitoring and display of selected blood metabolites present in a plurality of different internal regions of the same test subject on a continuing and substantially simultaneous basis, comprising the steps of:
 - applying separate spectrophotometric sensors to a test subject at each of a plurality of separate testing sites on a head of said test subject and coupling each of said sensors to a control and processing station;
 - electronically controlling a selected number of said sensors in sequence on a substantially simultaneous basis to spectrophotometrically irradiate at least two separate internal regions within a brain of the test subject during a common time interval in a manner that reduces crosstalk between said sensors, each of said regions being associated with different ones of said testing sites;
 - separately detecting and receiving light energy resulting from said spectrophotometric irradiation for each of said at least two separate internal regions, and conveying separate sets of signals to said control and processing station which correspond to the separately detected light energy from said at least two separate internal regions;
 - separately and simultaneously analyzing said conveyed separate sets of signals to separately determine data representative of a blood metabolite level in each of said at least two separate internal regions; and
 - substantially simultaneously visually displaying said separately determined data for each of said at least two separate internal regions for direct simultaneous mutual comparison.
- 51. The method of claim 50, wherein said step of analyzing comprises quantitative determination of blood oxygenation levels within each of said at least two separate internal regions.
- 52. The method of claim 51, wherein said analyzing step includes producing separate quantitative value determinations for hemoglobin oxygen saturation for each of said at least two separate internal regions.

- 53. The method of claim 52, wherein said analyzing step includes production of ongoing graphical traces representing a plurality of said quantitative value determinations made at successive points in time.
- 54. The method of claim 53 including the step of visually displaying a plurality of said graphical traces at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
- 55. The method of claim 54, including the step of visually displaying a plurality of said quantitative value determina- 10 tions at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
- 56. The method of claim 52, including the step of visually displaying a plurality of said quantitative value determina- 15 tions at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
- 57. The method of claim 50, wherein said metabolite comprises hemoglobin oxygen.
- 58. The method of claim 50, wherein said sensors are positioned in locations proximate to different brain hemispheres and said two mutually separate regions are located in a different brain hemisphere.
- 59. The method of claim 58, wherein said metabolite com- 25 prises cerebral blood hemoglobin oxygenation.
- 60. The method of claim 50, wherein said data representative of a blood metabolite level includes regional blood oxygen saturation.
- 61. The method of claim 50, wherein said light energy is 30 detected after traveling each of at least two different distances through tissue of the test subject.
- 62. The method of claim 50, wherein said electronically controlling in sequence comprises actuating said sensors in an alternating manner.
- 63. The method of claim 50, wherein said data is determined so as to principally characterize blood metabolite within each of the separate internal regions without effects attributable to adjacent tissue overlying said separate internal regions.
- 64. The method of claim 63, wherein said effects attributable to said adjacent tissue are minimized by comparing spectrophotometric irradiation that penetrates different depths into said test subject.
- 65. An apparatus for substantially simultaneous compara- 45 tive spectrophotometric in vivo monitoring of selected blood metabolites present in each of a plurality of different internal regions on a continuing basis, comprising:
 - a plurality of spectrophotometric sensors, each attachable to a test subject at different test locations on a head of 50 said subject and configured to separately but substantially simultaneously spectrophotometrically irradiate at least two different internal regions within a brain of the test subject associated with each of said test locations;
 - a controller and circuitry coupling each of said sensors to said controller configured for separately and individually but substantially simultaneously operating certain of said sensors in sequence to spectrophotometrically irradiate each of said different internal regions within 60 the test subject associated with each of said test locations in a manner that reduces cross-talk between said sensors;
 - said sensors each further configured to receive light energy resulting from the separate spectrophotometric irradia- 65 tion of said sensors' associated one of said at least two different internal regions on a substantially simulta-

- neous basis with other said sensors, and to produce separate signals corresponding to the light energy received, said circuitry acting to convey said separate signals to said controller for separate analytic processing;
- said controller configured to analytically process said conveyed signals separately and determine separate blood metabolite levels therefrom for each of said sensors and said sensors' associated one of said at least two different internal regions; and
- a visual display coupled to said controller and configured to separately but substantially simultaneously display the blood metabolite levels determined for each of said sensors in a mutually-comparative manner.
- 66. The apparatus of claim 65, wherein said controller is adapted to analyze said data to quantitatively determine blood oxygenation within said at least two different internal regions.
- 67. The apparatus of claim 66, wherein said controller is adapted to produce separate numeric value designations for hemoglobin oxygen saturation for said at least two different internal regions.
 - 68. The apparatus of claim 67, wherein said controller and said display are adapted to produce ongoing graphical traces representing a plurality of said numeric value designations for the same region taken over a period of time.
 - 69. The apparatus of claim 68, wherein said controller and said display are adapted to visually display at least two of said graphical traces on a substantially simultaneous basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
- 70. The apparatus of claim 69, wherein said controller and said display are adapted to visually display at least two of said numeric value designations as well as at least two of said graphical traces on a substantially simultaneous basis and in proximity to one another to facilitate rapid and accurate visual comparison.
- 71. The apparatus of claim 67, wherein said controller and said display are adapted to visually display at least two of said numeric value designations on a substantially simultaneous basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.
 - 72. The apparatus of claim 65, wherein said sensors are adapted to provide signals to said controller which comprise at least two separate data sets that cooperatively define at least portions of a particular area within a given one of said at least two different internal regions.
 - 73. The apparatus of claim 72, wherein said data sets provided by said sensors include a first set characterizing a first part of said particular area and a second set characterizing a second part of said particular area.
 - 74. The apparatus of claim 73, wherein said second part of said particular area characterized by said second set includes at least part of said first part of said area.
 - 75. The apparatus of claim 65, wherein said controller is adapted to determine blood oxygenation saturation in said brain.
 - 76. The apparatus of claim 65, wherein at least two of said different test locations are associated with mutually different hemispheres of the brain and at least two of said plurality of sensors are operable to separately monitor at least portions of each of said different hemispheres.
 - 77. The apparatus of claim 76, wherein said controller is adapted to determine cerebral blood oxygenation saturation within each of said different hemispheres.
 - 78. The apparatus of claim 77, wherein said sensors are adapted to provide signals to said controller which comprise

at least two data sets that cooperatively define at least portions of a particular area within the same hemisphere of said brain.

- 79. The apparatus of claim 78, wherein said sensors are adapted to be applied to the outside periphery of the test 5 subject and to operate non-invasively.
- 80. The apparatus of claim 65, wherein said blood metabolite levels represent regional blood oxygen saturation.
- 81. The apparatus of claim 65, wherein said sensors are value to adapted to receive light energy that has traveled each of at 10 thereof. least two different distances through tissue of the test subject. 92. The said sensors are value to adapted to receive light energy that has traveled each of at 10 thereof.
- 82. The apparatus of claim 65, wherein said controller is adapted to operate said sensors to spectrophotometrically irradiate out of phase with one another.
- 83. The apparatus of claim 65, wherein said blood metabo- 15 lite levels are determined by said controller so as to principally characterize blood metabolite within each of the different internal regions without effects attributable to adjacent tissue overlying said different internal regions.
- 84. The apparatus of claim 83, wherein said effects attributable to said adjacent tissue are minimized by said controller comparing signals for spectrophotometric irradiation that penetrates different depths into said test subject.
- 85. A method for substantially simultaneous comparative in vivo monitoring of blood metabolites in each of a plurality 25 of different internal regions in a selected test subject, comprising the steps of:
 - spectrophotometrically irradiating, in sequence on a substantially simultaneous basis, each of a plurality of different testing sites on said test subject via electronic 30 control in a manner that reduces cross-talk between said spectrophotometric irradiation of said testing sites;
 - detecting light energy resulting from said spectrophotometric irradiation of said testing sites, and providing separate sets of signals to a control and processing 35 station which are representative of the light energy received by each of said testing sites and which cooperatively define blood metabolite data for an individual one of at least two different internal regions located within different brain hemispheres of said test subject; 40
 - analyzing said separate signals to determine a blood metabolite level representative of at least one defined region within said at least one test subject for each of at least two different of said testing sites, each said defined region being different from the other; and
 - substantially simultaneously displaying data sets for each of said at least two different internal regions at substantially the same time for direct mutual comparison.
- 86. The method of claim 85, wherein said data sets include a first set which characterizes a first zone within one of said at 50 least two different internal regions and a second set which characterizes a second zone that is at least partially within the same one of said at least two different internal regions.
- 87. The method of claim 85, wherein said spectrophotometric irradiation comprises application of at least two dif-55 ferent wavelengths applied in an alternating sequence of timed pulses, and wherein detection of light energy corresponding to each of said at least two different wavelengths is done on a timed periodic basis using detection periods whose occurrence generally corresponds to that of said applied 60 spectrophotometric irradiation.
- 88. The method of claim 87, wherein the duration of each of said detection periods is limited to a length which is less than that of each pulse of applied spectrophotometric irradiation.
- 89. The method of claim 88, wherein the duration of each of 65 said detection periods is less than half that of a pulse of said applied spectrophotometric irradiation.

- 90. The method of claim 89, wherein a plurality of said detection periods are used during pulses of said applied spectrophotometric irradiation, and a corresponding energy detection occurs during each of a plurality of said detection periods.
- 91. The method of claim 90, further including the steps of averaging a selected number of energy detection event values to obtain a resultant value therefor, and using said resultant value to compute a metabolite value which is representative thereof.
- 92. The method of claim 91, wherein said display includes said computed representative metabolite value.
- 93. The method of claim 92, wherein said display is refreshed periodically by using a sequence of computed representative metabolite values which are based upon and represent the averaged detection event values produced during the different time intervals corresponding to the intervals of said periodic display refreshment.
- 94. The method of claim 85, wherein said determining of blood metabolite levels includes determining regional blood oxygen saturation.
- 95. The method of claim 85, wherein said light energy is detected after traveling each of at least two different distances through tissue of the test subject.
- 96. The method of claim 85, wherein said spectrophotometrically irradiating comprises emitting light at said testing sites where said emitting at one of said testing sights is out of phase with said emitting at another of said testing sites.
- 97. The method of claim 85, wherein said blood metabolite levels are determined so as to principally characterize blood metabolite within each of the different internal regions without effects attributable to adjacent tissue overlying said different internal regions.
- 98. The method of claim 97, wherein said effects attributable to said adjacent tissue are minimized by comparing spectrophotometric irradiation that penetrates different depths into said test subject.
- 99. Apparatus for spectrophotometric in vivo monitoring of a selected metabolic condition in each of a plurality of different test subject regions on a substantially simultaneous basis, comprising:
 - a plurality of spectrophotometric emitters, each configured to separately spectrophotometrically irradiate a designated region within a test subject from a test location on said test subject;
 - a controller and circuitry coupling each of said emitters to said controller configured for individually operating selected ones of said emitters in sequence on a substantially simultaneous basis to separately spectrophotometrically irradiate at least two particular regions within the test subject in a manner that reduces crosstalk between said spectrophotometric irradiation of said at least two particular regions;
 - a plurality of detectors, each configured to separately receive light energy resulting from the spectrophotometric irradiation of an associated one of said at least two particular regions, and to produce at least one separate set of signals for said associated one of said at least two particular regions; and circuitry acting to convey said at least one separate set of signals to said controller for analytic processing;
 - said controller configured to analytically process said at least one separate set of signals to determine separate sets of data representative of a blood metabolite level in said at least two particular regions; and
 - a visual display coupled to said controller and configured to display separate representations of said separate sets

of data for each of said at least two particular regions in a mutually-comparative manner and on a substantially simultaneous basis, wherein at least two of said at least two particular regions are located in mutually separate regions of a brain of said test subject.

100. The apparatus of claim 99, wherein said controller includes a computer programmed to analyze said signals to separately determine a blood oxygenation state within each of said at least two particular regions.

101. The apparatus of claim 100, wherein said computer comprises a processor, data buffers, and a timing signal generator, said data buffers adapted to store data representative of said blood oxygenation state and said timing signal generator adapted to control actuation of said emitters and detectors.

102. The apparatus of claim 101, wherein said controller comprises a unitary device which includes said computer and said display.

103. The apparatus of claim 102, wherein said unitary 20 device further includes a keyboard interface to said computer.

104. The apparatus of claim 102, wherein said unitary device further includes a data output interface.

105. The apparatus of claim 104, wherein said unitary device further includes an integral keyboard interface to said 25 computer.

106. The apparatus of claim 102, wherein said display comprises a flat electroluminescent visual display screen.

107. The apparatus of claim 106, wherein said unitary device further includes an integral keyboard interface to said 30 computer.

108. The apparatus of claim 99, wherein at least certain of said detectors and certain of said emitters comprise operational pairs, and said controller is arranged to operate the emitters and detectors of at least certain of said operational 35 pairs in predetermined timed relationship while maintaining the emitters and detectors of other of said operational pairs in a non-operating condition.

109. The apparatus of claim 108, wherein said controller is adapted to sequence the operation of said at least certain of 40 said operational pairs.

110. The apparatus of claim 109, wherein at least one of said operational pairs include a plurality of said detectors arranged at mutually spaced locations which are spaced at differing distances from the emitter of said at least one of said 45 operational pairs.

111. The apparatus of claim 110, wherein said controller is adapted to operate the emitter and a selected number less than all of the detectors of at least one of said operational pairs substantially in unison while holding the other detectors of said at least one of said operational pairs in a nonoperating condition, and said controller is further arranged to operate said other detectors substantially in unison with said emitter at another time during which said selected number of said detectors are maintained in a non-operating consistency.

112. The apparatus of claim 108, wherein at least one of said operational pairs includes a first detector and a second detector, and wherein the first detector is located nearer the emitter than the second detector to thereby provide near and 60 far detector groupings for said at least one of said operational pairs.

113. The apparatus of claim 112, wherein said controller is adapted to sequence the operation of said at least one of said operational pairs.

114. The apparatus of claim 99, wherein said blood metabolite levels represent regional blood oxygen saturation.

20

115. The apparatus of claim 99, wherein said detectors are adapted to receive light energy that has traveled at least two different distances through tissue of the test subject.

116. The apparatus of claim 99, wherein said data is determined by said controller so as to principally characterize blood metabolite within each of the different internal regions without effects attributable to adjacent tissue overlying said different internal regions.

117. The apparatus of claim 116, wherein said effects attributable to said adjacent tissue are minimized by said controller comparing signals for spectrophotometric irradiation that penetrates different depths into said test subject.

118. A method for comparative spectrophotometric in vivo monitoring and display of selected blood metabolites present in a plurality of different internal regions of the same test subject on a continuing and substantially simultaneous basis, comprising the steps of:

applying separate spectrophotometric sensors to a test subject at each of a plurality of separate testing sites on the body at which blood metabolite measurements may be made and coupling each of said sensors to a control and processing station;

electronically controlling a selected number of said sensors in sequence on a substantially simultaneous basis to spectrophotometrically irradiate at least two separate internal regions of the test subject during a common time interval in a manner that reduces cross-talk between said sensors, each of said regions being associated with different ones of said testing sites;

separately detecting and receiving light energy resulting from said spectrophotometric irradiation for each of said at least two separate internal regions, and conveying separate sets of signals to said control and processing station which correspond to the separately detected light energy from said at least two separate internal regions;

separately and simultaneously analyzing said conveyed separate sets of signals to separately determine data representative of a blood metabolite level in each of said at least two separate internal regions; and

substantially simultaneously visually displaying said separately determined data for each of said at least two separate internal regions for direct simultaneous mutual comparison and observation of relative changes.

119. The method of claim 118, including the step of visually displaying a plurality of graphical traces at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.

120. The method of claim 118, including the step of visually displaying a plurality of quantified value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.

121. The method of claim 118, wherein said analyzing step includes producing separate quantitative value determinations for regional hemoglobin oxygen saturation for each of said at least two separate internal regions.

122. The method of claim 121, including the step of visually displaying a plurality of said quantitative value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.

123. The method of claim 118, wherein said data representative of a blood metabolite level includes regional blood oxygen saturation.

124. The method of claim 118, wherein said two separate regions are hemispheres within said brain of the test subject.

125. The method of claim 118, wherein said light energy is detected after traveling each of at least two different distances through tissue of the test subject.

126. The method of claim 118, wherein said electronically controlling in sequence comprises actuating said sensors in an alternating manner.

127. An apparatus for substantially simultaneous comparative spectrophotometric in vivo monitoring of selected 10 blood metabolites present in each of a plurality of different internal regions on a continuing basis, comprising:

a plurality of spectrophotometric sensors, each attachable to a test subject at different test locations on the body at which blood metabolite measurements may be made and 15 configured to separately but substantially simultaneously spectrophotometrically irradiate at least two different internal regions within the test subject associated with each of said test locations;

a controller and circuitry coupling each of said sensors to said controller configured for separately and individually but substantially simultaneously operating certain of said sensors in sequence to spectrophotometrically irradiate each of said different internal regions within the test subject associated with each of said test locations in a manner that reduces cross-talk between said sensors;

said sensors each further configured to receive light energy resulting from the separate spectrophotometric irradiation of said sensors' associated one of said at least two 30 different internal regions on a substantially simultaneous basis with other said sensors, and to produce separate signals corresponding to the light energy received, said circuitry acting to convey said separate signals to said controller for separate analytic process- 35 ing;

said controller configured to analytically process said conveyed signals separately and determine separate blood metabolite levels therefrom for each of said sensors and said sensors' associated one of said at least two different 40 internal regions; and

a visual display coupled to said controller and configured to separately but substantially simultaneously display the blood metabolite levels determined for each of said sensors in a mutually-comparative manner through 45 direct simultaneous mutual comparison and observation of relative changes.

128. The apparatus of claim 127, wherein said controller and said display are adapted to visually display at least two graphical traces representative of said levels on a substan- 50 tially simultaneous basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.

129. The apparatus of claim 128, wherein said controller and said display are adapted to visually display at least two 55 numeric value designations representative of said levels as well as said at least two graphical traces on a substantially simultaneous basis and in proximity to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.

130. The apparatus of claim 127, wherein said controller is adapted to produce separate numeric value designations for regional hemoglobin oxygen saturation for said at least two different internal regions.

131. The apparatus of claim 130, wherein said controller 65 and said display are adapted to visually display at least two of said numeric value designations on a substantially simulta-

22

neous basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison and the observation of relative changes.

132. The apparatus of claim 127, wherein said blood metabolite levels represent regional blood oxygen saturation.

133. The apparatus of claim 127, wherein said sensors are adapted to receive light energy that has traveled each of at least two different distances through tissue of the test subject.

134. The apparatus of claim 127, wherein said controller is adapted to operate said sensors to spectrophotometrically irradiate out of phase with one another.

135. A method for substantially simultaneous comparative in vivo monitoring of blood metabolites in each of a plurality of different internal regions in a selected test subject, comprising the steps of:

spectrophotometrically irradiating each of a plurality of different testing sites on said test subject via electronic control, in sequence on a substantially simultaneous basis, in a manner that reduces cross-talk between said spectrophotometric irradiation of said testing sites, said sites being locations on the body at which blood metabolite measurements are made;

detecting light energy resulting from said spectrophotometric irradiation of said testing sites, and providing separate sets of signals to a control and processing station which are representative of the light energy received by each of said testing sites and which cooperatively define blood metabolite data for an individual one of at least two different internal regions;

analyzing said separate signals to determine a blood metabolite level representative of at least one defined region within said at least one test subject for each of at least two different of said testing sites, each said defined region being different from the other; and

substantially simultaneously displaying data sets for each of said at least two different internal regions at substantially the same time for direct mutual comparison and observation of relative changes.

136. The method of claim 135, wherein said determining of quantified blood metabolite levels includes determining regional blood oxygen saturation.

137. The method of claim 135, wherein said light energy is detected after traveling each of at least two different distances through tissue of the test subject.

138. The method of claim 135, wherein said spectrophotometrically irradiating comprises emitting light at said testing sites where said emitting at one of said testing sights is out of phase with said emitting at another of said testing sites.

139. Apparatus for spectrophotometric in vivo monitoring of a selected metabolic condition in each of a plurality of different test subject regions on a substantially simultaneous basis, comprising:

a plurality of spectrophotometric emitters, each configured to separately spectrophotometrically irradiate a designated region within a test subject from a test location on said test subject, said test location being a site on the body at which a blood metabolite measurement may be made;

a controller and circuitry coupling each of said emitters to said controller configured for individually operating, in sequence on a substantially simultaneous basis, selected ones of said emitters to separately spectrophotometrically irradiate at least two particular regions within the test subject in a manner that reduces cross-talk between said spectrophotometric irradiation of said at least two particular regions;

23

a plurality of detectors, each configured to separately receive light energy resulting from the spectrophotometric irradiation of an associated one of said at least two particular regions, and to produce at least one separate set of signals for said associated one of said at least two particular regions; and circuitry acting to convey said at least one separate set of signals to said controller for analytic processing;

said controller configured to analytically process said at least one separate set of signals to determine separate sets of data representative of a blood metabolite level in said at least two particular regions; and

a visual display coupled to said controller and configured to display separate representations of said separate sets of data for each of said at least two particular regions in a mutually-comparative manner and on substantially simultaneous basis through direct simultaneous mutual comparison and observation of relative changes.

140. The apparatus of claim 139, wherein said blood 20 metabolite levels represent regional blood oxygen saturation.

141. The apparatus of claim 139, wherein said detectors are adapted to receive light energy that has traveled at least two different distances through tissue of the test subject.

142. A method for comparative spectrophotometric in vivo 25 monitoring and display of selected blood metabolites present in a plurality of different internal regions of the same test subject on a continuing and substantially simultaneous basis, comprising the steps of:

applying separate spectrophotometric sensors to a test 30 subject at each of a plurality of separate testing sites and coupling each of said sensors to a control and processing station;

electronically controlling a selected number of said sensors in sequence on a substantially simultaneous basis 35 to spectrophotometrically irradiate at least two separate internal regions of the test subject during a common time interval in a manner that reduces cross-talk between said sensors, each of said regions being associated with different ones of said testing sites; 40

separately detecting and receiving light energy resulting from said spectrophotometric irradiation for each of said at least two separate internal regions, and conveying separate sets of signals to said control and processing station which correspond to the separately detected 45 light energy from said at least two separate internal regions;

separately and simultaneously analyzing said conveyed separate sets of signals to separately determine data representative of a blood metabolite level in each of said 50 at least two separate internal regions; and

substantially simultaneously visually displaying information reflecting said separately determined data for each of said at least two separate internal regions for direct simultaneous mutual comparison.

143. The method of claim 142, wherein said data representative of a blood metabolite level includes regional blood oxygen saturation.

144. The method of claim 142, wherein said two separate regions are hemispheres within said brain of the test subject. 60

145. The method of claim 142, further comprising visually displaying a plurality of graphical traces representing a plurality of quantitative value determinations made at successive points in time, said displaying of said plurality of graphical traces occurring at substantially the same time and in 65 predetermined relationship to one another to facilitate rapid and accurate visual comparison.

24

146. The method of claim 142, further comprising visually displaying a plurality of quantitative value determinations at substantially the same time and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.

147. The method of claim 142, wherein said sensors are positioned in locations proximate to different brain hemispheres and said two mutually separate regions are located in a different brain hemisphere.

148. The method of claim 142, wherein said light energy is detected after traveling each of at least two different distances through tissue of the test subject.

149. The method of claim 142, wherein said electronically controlling in sequence comprises actuating said sensors in an alternating manner.

150. The method of claim 142, wherein said step of applying separate spectrophotometric sensors to the test subject further comprises individually applying said separate spectrophotometric sensors.

151. An apparatus for substantially simultaneous comparative spectrophotometric in vivo monitoring of selected blood metabolites present in each of a plurality of different internal regions on a continuing basis, comprising:

a plurality of spectrophotometric sensors, each attachable to a test subject at different test locations in the body and configured to separately but substantially simultaneously spectrophotometrically irradiate at least two different internal regions within the test subject associated with each of said test locations;

a controller and circuitry coupling each of said sensors to said controller configured for separately and individually but substantially simultaneously operating certain of said sensors in sequence to spectrophotometrically irradiate each of said different internal regions within the test subject associated with each of said test locations in a manner that reduces cross-talk between said sensors;

said sensors each further configured to receive light energy resulting from the separate spectrophotometric irradiation of said sensors' associated one of said at least two different internal regions on a substantially simultaneous basis with other said sensors, and to produce separate signals corresponding to the light energy received, said circuitry acting to convey said separate signals to said controller for separate analytic processing;

said controller configured to analytically process said conveyed signals separately and determine separate blood metabolite levels therefrom for each of said sensors and said sensors' associated one of said at least two different internal regions; and

a visual display coupled to said controller and configured to separately but substantially simultaneously display information reflecting the blood metabolite levels determined for each of said sensors in a mutually-comparative manner.

152. The apparatus of claim 151, wherein said blood metabolite levels represent regional blood oxygen saturation.

153. The apparatus of claim 151, wherein said controller is adapted to produce separate numeric value designations for hemoglobin oxygen saturation for said at least two different internal regions.

154. The apparatus of claim 151, wherein said controller and said display are adapted to produce ongoing graphical traces representing a plurality of said numeric value designations for the same region taken over a period of time, and wherein said controller and said display are adapted to visu-

ally display at least two of said graphical traces on a substantially simultaneous basis and in predetermined relationship to one another to facilitate rapid and accurate visual comparison.

155. The apparatus of claim 151, wherein at least two of said sensors are adapted to be positioned in locations associated with mutually different hemispheres of the brain and each of said sensors is operable to separately monitor at least portions of each of said different hemispheres.

156. The apparatus of claim 151, wherein said sensors are adapted to receive light energy that has traveled each of at least two different distances through tissue of the test subject.

157. The apparatus of claim 151, wherein said controller is adapted to operate said sensors to spectrophotometrically irradiate out of phase with one another.

158. The apparatus of claim 151, wherein said spectrophotometric sensors attachable to the test subject at different test locations in the body are each configured to be attached individually to said test subject.

159. A method for substantially simultaneous comparative in vivo monitoring of blood metabolites in each of a plurality of different internal regions in a selected test subject, comprising the steps of:

spectrophotometrically irradiating each of a plurality of 25 different testing sites on said test subject via electronic control, in sequence on a substantially simultaneous basis, in a manner that reduces cross-talk between said spectrophotometric irradiation of said testing sites;

detecting light energy resulting from said spectrophoto- 30 metric irradiation of said testing sites, and providing separate sets of signals to a control and processing station which are representative of the light energy received by each of said testing sites and which cooperatively define blood metabolite data for an individual 35 one of at least two different internal regions;

analyzing said separate signals to determine a blood metabolite level representative of at least one defined region within said at least one test subject for each of at least two different of said testing sites, each said defined 40 region being different from the other; and

substantially simultaneously displaying information determined from data sets for each of said at least two different internal regions at substantially the same time for direct mutual comparison.

160. The method of claim 159, wherein said determining of blood metabolite levels includes determining regional blood oxygen saturation.

161. The method of claim 159, wherein said testing sites are selected as being proximate to different brain hemispheres 50 and said defined regions are two mutually separate regions located in different brain hemispheres of the test subject.

162. The method of claim 159, further comprising averaging a selected number of energy detection event values to obtain a resultant value therefor, and using said resultant 55 value to compute a metabolite value which is representative thereof, and wherein said display includes said computed representative metabolite value.

163. The method of claim 162, wherein said display is refreshed periodically by using a sequence of computed rep-60 resentative metabolite values which are based upon and represent the averaged detection event values produced during the different time intervals corresponding to the intervals of said periodic display refreshment.

164. The method of claim 159, wherein said light energy is 65 detected after traveling each of at least two different distances through tissue of the test subject.

26

165. The method of claim 159, wherein said irradiating and said detecting is performed by a plurality of spectrophotometric sensors, and wherein said spectrophotometric sensors are each applied individually to said test subject.

166. Apparatus for spectrophotometric in vivo monitoring of a selected metabolic condition in each of a plurality of different test subject regions on a substantially simultaneous basis, comprising:

a plurality of spectrophotometric emitters, each configured to separately spectrophotometrically irradiate a designated region within a test subject from a test location on said test subject;

a controller and circuitry coupling each of said emitters to said controller configured for individually operating selected ones of said emitters in sequence on a substantially simultaneous basis to separately spectrophotometrically irradiate at least two particular regions within the test subject in a manner that reduces crosstalk between said spectrophotometric irradiation of said at least two particular regions;

a plurality of detectors, each configured to separately receive light energy resulting from the spectrophotometric irradiation of an associated one of said at least two particular regions, and to produce at least one separate set of signals for said associated one of said at least two particular regions; and circuitry acting to convey said at least one separate set of signals to said controller for analytic processing;

said controller configured to analytically process said at least one separate set of signals to determine separate sets of data representative of a blood metabolite level in said at least two particular regions; and

a visual display coupled to said controller and configured to display separate representations of said separate sets of data for each of said at least two particular regions in a mutually-comparative manner and on a substantially simultaneous basis.

167. The apparatus of claim 166, wherein said blood metabolite levels represent regional blood oxygen saturation.

168. The apparatus of claim 166, wherein at least certain of said detectors and certain of said emitters comprise operational pairs, and said controller is arranged to operate the emitters and detectors of at least certain of said operational pairs in predetermined timed relationship while maintaining the emitters and detectors of other of said operational pairs in a non-operating condition.

169. The apparatus of claim 166, wherein said controller is adapted to sequence the operation of said at least certain of said operational pairs.

170. The apparatus of claim 169, wherein said controller is adapted to operate the emitter and a selected number less than all of the detectors of at least one of said operational pairs substantially in unison while holding the other detectors of said at least one of said operational pairs in a non-operating condition, and said controller is further arranged to operate said other detectors substantially in unison with said emitter at another time during which said selected number of said detectors are maintained in a non-operating condition.

171. The apparatus of claim 166, wherein at least two of said emitters are adapted to be positioned in locations associated with mutually different hemispheres of the brain such that said apparatus is operable to separately monitor at least portions of each of said different hemispheres.

172. The apparatus of claim 166, wherein said detectors are adapted to receive light energy that has traveled at least two different distances through tissue of the test subject.

27

173. The apparatus of claim 166, wherein said separate representations comprise actual or relative values corresponding to said quantified data.

174. The apparatus of claim 166, wherein a plurality of spectrophotometric sensors are formed by said emitters and 5 said detectors, and wherein said spectrophotometric sensors are each configured to be attached individually to said test subject.

* * * * *