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(57) ABSTRACT

[A mechanism is provided for reordering] Reordering bus
transactions [to increase] increases bus utilization [in a com-
puter system in which] where a split-transaction bus 1s
bridged to a single-envelope bus. In one embodiment, both
masters and slaves are ordered]|, simplifying implementation.
In]; in another embodiment, [the system is more loosely
coupled with] only masters [being] are ordered. Greater bus
utilization 1s thereby achieved. To avoid deadlock, transac-
tions begun on the split-transaction bus are monitored. When
a combination of transactions would|.,] result in deadlock if a
predetermined further transaction were to begin, [result in
deadlock,] this condition is detected. In the more tightl

coupled system, the predetermined further transaction]|, if it

is refused if requested, [is refused, thereby] avoiding dead-
lock. In the more loosely-coupled system, the flexibility
atfforded by unordered slaves is taken advantage of to[, in the
typical case,] reorder the transactions and avoid deadlock
without killing any transaction. Where a data dependency
exists that would prevent such reordering, the further [trans-
actions] transaction is killed as in the more tightly-coupled
embodiment. Data dependencies are detected 1n accordance
with address-coincidence signals generated by slave devices
on a cache-line basis. [In accordance with a further optimi-
zation, at least one slave device (e.g., DRAM) generates
page-coincidence bits. When two transactions to the slave
device are to the same address page, the transactions are
reordered i1f necessary to ensure that they are executed one
alter another without any intervening transaction. Latency of

the slave is thereby reduced.]

7 Claims, 21 Drawing Sheets
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1

BUS TRANSACTION REORDERING IN A
COMPUTER SYSTEM HAVING UNORDERED
SLAVES

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

Notice: More than one reissue application has been filed

for the veissue of U.S. Pat. No. 5,996,036. The reissue appli-

cations arve U.S. patent application Ser. No. 10/006,939 (now
U.S. Pat. No. Re. 38,428) and U.S. patent application Ser. No.
10/669,119(the present application). The present application
is a continuation of U.S. patent application Ser. No. 10/006,
9391filed Nov. 30, 2001 (now U.S. Pat. No. Re. 35,428), which

is a continuation-in-part of U.S. patent application Ser. No.

058/432,622, filed May 2, 1995, now abandoned.

FIELD OF THE INVENTION

The present 1nvention relates to computer architecture, in
particular to computer architecture for small computer sys-
tems such as personal computers.

STATE OF THE ART

The PowerPC computer architecture, co-developed by
Apple Computer, represents a departure from prior-genera-
tion small computer architectures. PowerPC machines cur-
rently sold by Apple are based largely on the Motorola
MPC601 RISC microprocessor. Other related processors,
including the MPC 604, MPC 603, MPC 603¢, and MPC 602
are currently available and addltlonal related processor
including the MPC 620 will be readily available 1n the future.
The MPC60x permits separate address bus tenures and data
bus tenures, where tenure 1s defined as the period of bus
mastership. In other words, rather than considering the sys-
tem bus as an indivisible resource and arbitrating for access to
the entire bus, the address and data buses are considered as
separate resources, and arbitration for access to these two
buses may be performed independently. A transaction, or
complete exchange between two bus devices, 1s minimally
comprised of an address tenure; one or more data tenures may
also be mvolved 1n an exchange. There are two kinds of
transactions: address/data and address-only.

A tenure consists of three phases: arbitration, transier, and
termination. During termination, a signal occurs that marks
the end of the tenure. The same signal 1s used to acknowledge
the transier of an address or data beat. A beat corresponds
generally to a particular state of the address bus or the data
bus. Transters include both single-beat transfers, in which a
single piece of data 1s transierred, and burst data transfers, 1n
which a burst of four data beats 1s transferred.

Referring more particularly to FIG. 1, note that the address
and data tenures are distinct from one another and that both
consist of three phases—arbitration, transfer, and termina-
tion. FIG. 1 shows a data transfer that consists of a single-beat
transier (up to 64 bits). In a four-beat burst transier, by con-
trast, data termination signals are required for each beat of
data, but re-arbitration 1s not required. Having independent
address and data tenures allows address pipelining (indicated
in FIG. 1 by the fact that the data tenure begins before the
address tenure ends) and split-bus transactions to be imple-
mented at the system level. Address pipeliming allows new
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2

address bus transactions to begin before the current data bus
transaction has finished by overlapping the data bus tenure
associated with a previous address bus tenure with one or
more successive address tenures. Split-bus transaction capa-
bility allows the address bus and data bus to have different
masters at the same time.

For clarity, the basic functions of address and data tenures
will be discussed 1n somewhat greater detail.

In the case of address tenure, during address arbitration,
address bus arbitration signals are used to gain mastership of
the address bus. Assuming the CPU to be the bus master, 1t
then transiers the address on the address bus during the
address transier phase. The address signals, together with
certain transier attribute signals discussed 1n greater detail
hereinafter, control the address transfer. After the address
transier phase, the system uses the address termination phase
to signal that the address tenure 1s complete or that 1t must be
repeated.

In the case of data tenure, during address arbitration, the
CPU arbitrates for mastership of the data bus. After the CPU
1s the bus master, during the data transfer phase, it samples the
data bus for read operations or drives the data bus for write
operations. Data termination signals occur in the data termi-
nation phase. Data termination signals are required after each
data beat 1n a data transfer. In a single-beat-transaction, the
data termination signals also indicates the end of the tenure,
while 1 burst accesses, the data termination signals apply to
individual beats and indicate the end of the tenure only after
the final data beat.

Address-only transfers use only the address bus, with no
data transier involved. This feature 1s particularly useful 1n
multi-master and multiprocessor environments, where exter-
nal control of on-chip primary caches and TLB (translation
look-aside buller) entries 1s desirable. Additionally, the
MPC60x prowdes a retry capability that supports an efficient
“snooping’”’ protocol for systems with multiple memory sys-
tems (including caches) that must remain coherent.

Pipelining and split-bus transactions, while they do not
inherently reduce memory latency, can greatly improve effec-
tive bus-memory throughput. The MPC60x bus protocol does
not constrain the maximum number of levels of pipelining
that can occur on the bus between multiple masters. In a
system 1n which multiple devices must compete for the sys-
tem bus, external arbitration 1s required. The external arbiter
must control the pipeline depth and synchronization between
masters and slaves.

In a traditional pipelined implementation, data bus tenures
are kept 1n strict order with respect to address tenures. How-
ever, external hardware can further decouple the address and
data buses, allowing the data tenures to occur out of order
with respect to the address tenures. Second-generation Pow-
erPC computers include computers whose architecture was
especially designed for high performance and that incorpo-
rated such hardware. This architecture supports true split-bus
operation with ordered slaves and ordered masters.
“Ordered” means each master and each slave has 1ts own
independent FIFO structure supporting “ordered” service to
transactions posted to 1t. I a slave receives three transactions
A, B, and C, then 1t will respond to A first, B second, and C
third. If a master performs transactions D, E, and F, then 1t
expects servicing of those transactions 1n the order of D first,
E second, and F third. There can be up to a selected number of
outstanding master/slave pair transactions in the architecture
at one time. In one preferred embodiment, this selected num-
ber 1s three outstanding pair transactions. As a result, 1n the
foregoing architecture, an expansion bridge may concur-
rently have one outstanding slave transaction to 1t and one
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outstanding master transaction from 1t. Although ordered
masters and slaves, as opposed to unordered masters and

slaves, provide an overall simplification to system architec-
ture, they can lead to deadlocks when there are contlicting,
completion dependencies.

Deadlock occurs 1n a computer system when one resource
cannot complete an access to another resource, and the access
blocks other resources from performing transactions on the
bus. Livelock occurs in a computer system when one resource
cannot complete an access to another resource, does not block
resources from performing transactions on the bus, but no
forward progress can be made due to the resource’s ability
to complete 1ts access.

Due to the plethora of design methodologies and 1mple-
mentations utilized by expansion card vendors, systems are
most prone to deadlocks and livelocks when there 1s an expan-
s1on bridge 1n the system. Some potential deadlocks may be
detected and prevented at the bridge level; however, other
pieces of the overall solution may need to be implemented at
a higher level 1n system arbitration.

The main reason that a deadlock or livelock occurs 1s that
cach of two different resources that communicate with each
other assumes that 1t has top priority in the system. Unfortu-
nately, when they communicate with each other this causes a
contlict, and 1f one does not back off its access, the end result
1s deadlock or livelock.

In the architecture of certain Power PC computers of the
assignee, the top priority bus 1s known as the ARBus; 1t 1s the
one bus assumed to never have to back off an access. How-
ever, there may be a need for the ARBus to communicate with
an ISA bus behind an expansion bridge. As history recalls, the
ISA bus design assumed that any imitiated access would com-
plete; therefore, an ISA master would not have to back off its
access. Therein lies the problem. The Power PC architecture,
in one instance, chose the ARBus to be the bus to not back off,
and the PC-world chose the ISA bus to be the bus to not back
off. This conflict of interest could result 1n deadlock.

In another 1nstance, the Power PC architecture may incor-
porate a PCI bus-to-PCI bus (“PCI2PCI”) bridge having an
interlocking behavior that disallows access to 1ts slave port on
one side of the PC12PCI bridge while its master on the same
side of the PCI2PCI bridge has a transaction to perform. This
behavior also means that the PCI2ZPCI bridge assumes that it
does not have to be backed off, and any communication
between the ARBus and a target behind the PCI2PCI bridge
could result in deadlock.

Although decoupling the address and data buses 1n a com-
puter system enables bus utilization to be greatly increased, it
would be desirable to further increase bus utilization beyond
what can reasonably be achieved in a system having both
ordered masters and ordered slaves. Especially desirable
would be a computer architecture 1n which bus utilization 1s
increased and 1n which deadlocks are more readily avoided.

SUMMARY OF THE INVENTION

A mechanism 1s provided for reordering bus transactions to
increase bus utilization 1n a computer system 1 which a
split-transaction bus 1s bridged to a single-envelope bus. In
one embodiment, both masters and slaves are ordered, sim-
plifying implementation. In another embodiment, the system
1s more loosely coupled with only masters being ordered.
Greater bus utilization 1s thereby achieved. In accordance
with one embodiment of the invention, a queuing structure
includes multiple master queues and multiple slave queues.
The queuing structure receives bus grant signals and respec-
tive slave acknowledge signals from respective slave devices.
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Each time an address bus grant 1s 1ssued a record 1s entered 1n
the queuing structure, the record comprising a first entry in a

master queue 1dentified by the address bus grant signals, and
a second entry 1 a slave queue identified by the slave
acknowledge signals. The first entry 1dentifies a target slave
device 1n accordance with the slave acknowledge signals, and
the second entry identifies an originating master device in
accordance with the address bus grant signals. A matching
circuit 1s responsive to queue entries from the queuing struc-
ture for producing match bits identifying selected records the
first entry of which 1s at the head of a master queue. A data
arbitration circuit 1s responsive to the match bits and to queue
entries from the queuing structure for generating data bus
grant signals for the master devices and for generating for
cach slave device a multibit signal which when active 1denti-
fles a transaction within the transaction queue of the slave
device.

DESCRIPTION OF THE DRAWINGS

The present mnvention may be further understood from the
following description 1n conjunction with the appended
drawing. In the drawing:

FIG. 1 1s a diagram 1illustrating overlapping tenures for a
single-beat transier on a conventional MPC601 bus;

FIG. 2 1s a system-level block diagram of a computer
system 1n which the present invention may be used;

FIG. 3 1s a block diagram of the memory controller 300 of
FIG. 2;

FIG. 4 1s a ttiming diagram showing conventional usage of
the MPC601 bus;:

FIG. 5 1s a timing diagram showing usage of the ARBus (a
superset of the MPC601 bus) in the high-performance com-
puter architecture of FIG. 2;

FIG. 6 Is a block diagram of the arbiter 600 of FIG. 3;

FIG. 7 1s a block diagram of the expansion bridge 700 of
FIG. 2;

FIG. 8 1llustrates a deadlock 1n which an ARBus master
read of an expansion bridge 1s followed by an ARBus master
read of memory;

FIG. 9 1illustrates a deadlock 1n which an ARBus master
read of an expansion bridge 1s followed by an ARBus master
[.2 hit or allocate operation;

FIG. 10 1llustrates a deadlock 1n which a processor read of
an expansion bridge 1s followed by a processor write to that
expansion bridge;

FIG. 11 1llustrates a deadlock 1n which a Bus Grant signal
and an Address Retry signal occur concurrently;

FIG. 12 illustrates a deadlock in which a Bus Request
signal and an Address Retry signal occur concurrently;

FIG. 13 illustrates a deadlock 1n which expansion bridges
read each other concurrently;

FIG. 14 illustrates a deadlock in which one master attempts
to read both expansion bridges;

FIG. 15 1llustrates a deadlock 1n which an ISA bus master
reads a target behind an opposite expansion bridge;

FIG. 16 illustrates a deadlock 1n which a PCI bus master
read gets stuck behind a posted PCI bus master write;

FIG. 17 1llustrates a deadlock 1n which the ARBus trans-
action limait 1s hit, and accesses cannot complete;

FIG. 18 1llustrates a deadlock in which one expansion
bridge, with an outstanding ARBus read, accepts a read from
another expansion bridge;

FIG. 19 15 a block diagram of another embodiment of the
arbiter 600 of FIG. 3;

FIG. 20 1s a block diagram showing the mput and output
signals of the ArbMux 603' of FIG. 19;
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FIG. 21 1s a block diagram showing the input and output
signals of the ArbMux 603' of FIG. 19 1n greater detail;

FIG. 22 1s a block diagram showing the mput and output
signals of the ArbDatSM 604' of FI1G. 19;

FIG. 23 1s a block diagram of a bit filter portion of the
ArbDatSM 604' of FI1G. 19;

FIG. 24 1s a block diagram showing the input and output
signals of the ArbDatSM 604' of FIG. 19 1n greater detail;

FIG. 25 1s a block diagram showing the input and output
signals of the ARtryGen block 613' of FIG. 19; and

FIG. 26 1s a block diagram showing the input and output
signals of the ARtryGen bock 613' of FI1G. 19 1n greater detail;

DETAILED DESCRIPTION OF THE INVENTION

In the following description, the system architecture of a
computer system in which the present invention may be used
will first be described, including a description of the MPC601
bus, the ARBus, which 1s a superset of the MPC601 bus, a
system arbiter and an expansion bridge. Deadlock avoidance
will then be described, beginning with a description of the
types of deadlocks and livelocks that may occur in the system,
tollowed by a description of specific deadlock and livelock
situations for both a system having a single expansion bridge
and a system having two or more expansion bridges. Rules
will be 1dentified for avoiding deadlock. These rules will then
be summarized, both for the case of a single expansion bridge
and for the case of two or more expansion bridges. Finally, the
manner 1n which the rules are implemented 1n the system will
be described.

Referring now to FIG. 2, the present invention may be used
in a computer system of the type shown. A CPU 203 (for
example a Power PC 601 microprocessor) 1s connected to a
system bus 204, including a data bus 203, an address bus 206,
and a control bus (not shown). A memory subsystem 208
includes, 1n the illustrated embodiment, a main memory 209,
a read-only memory 211, and a level-two cache memory 212.
The CPU 203, through the system bus 204, 1s connected
directly to the level-two cache memory 212. The CPU 203 1s
connected indirectly to the main memory 209 and the read-
only memory 211, through a datapath circuit 221 and a
memory controller 300. In general, the datapath circuit 221
provides for 64- or 128-bit reads from and writes to memory,
in erther big-endian or little-endian mode. The memory con-
troller 300 controls the various memory devices within the
memory subsystem 208 1n response to signals on the system
bus 204 and, 1n particular, provides address and control sig-
nals (i.e., RAS and CAS) to the main memory 209. The
datapath circuit 221 and the memory controller 300 are con-
nected by a register data bus 217.

Also shown 1s an optional secondary processor 218 which,
like the CPU 203, may be a Power PC 601 microprocessor for
example.

The system bus 204 1s also connected to an expansion bus
bridge 219 (possibly more than one) and, optionally, a video
bus bridge 220. In a preferred embodiment, the system bus
204 1s a superset of the conventional Power PC 601 micro-
processor interface referred to herein as the Apple RISC Bus,
or ARBus. An expansion bus connected to the expansion bus
bridge 219 may be a standard PCI bus. Likewise, a video bus
connected to the video bus bridge 220 may be a PCI-like bus.

Referring to FIG. 3, the memory subsystem 208 including
the memory controller 300 of FIG. 2 are shown in greater
detail, with particular emphasis on the various signals input to
and output from the memory controller 300. The memory
controller 300 includes a main memory controller 302, a

cache/ROM controller 305, and an arbiter 600. The main
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memory controller 302 produces address and control signals
for the main memory 209 and includes a DRAM sequencer
303 and certain memory address logic. The cache/ROM con-
troller 305 produces control signals for the level-two cache
memory 212 and the read-only memory 211 and includes a
cache/ROM sequencer 306 and certain cache logic. Both the
main memory controller 302 and the cache/ROM controller
305 exchange control signals with the arbiter 600, which
executes overall control of the memory controller 300 and
which 1s more particularly the subject of the following
description.

The arbiter 600 1includes a register file (not shown) that may
be written and read by the CPU 203 across the register data
bus 217. The register file includes, 1 addition to numerous
base address registers, various 1D, configuration and timing
registers. The particulars of these registers are not essential to
an understanding of the present invention and will not be
turther described. The arbiter 600 1nputs various control sig-
nals from and outputs various control signals to a control bus
309. Some of the control signals carried by the control bus
309 are part of the conventional PowerPC 601 microproces-
sor interface. The majority of the signals carried by the con-
trol bus 309, however, are side-band information signals used
in accordance with the present invention to independently
control the address bus 206 and the data bus 205.

Prior to describing in detail the manner in which these
side-band 1nformation signals are used to decouple the
address bus 206 and the data bus 205, 1t will be useful to
consider what 1s termed herein conventional usage of the
PowerPC 601 microprocessor interiace.

As shown 1n FIG. 1, address tenure and data tenure both
have arbitration, transfer and termination phases. Each of
these phases involves the exchange ol respective handshaking
signals. Referring to FIG. 4, the handshaking signals that
characterize the address arbitration phase are a bus request
signal BR and a bus grant signal BG. The bus request signal
BR is an output signal of the CPU 203. The bus grant signal 1s
an mput signal of the CPU 203 and is output by the arbiter
600. Both the bus request signal BR and the bus grant signal
BG relate to the address bus 206. When the CPU 203 has
received the bus grant signal BG, it 1s free to enter the address
transier phase.

During the address transier phase, a transfer start signal T'S
1s asserted by the CPU 203 when the CPU 203 begins to drive
the address bus 206. The address 1s decoded by a slave device
as belonging to that address, 1.¢., falling within the device’s
assigned address space. During the address termination

phase, the slave device asserts the address acknowledge sig-
nal AACK after it has sampled the address on the address bus

206.

During the address transier phase, certain transfer attribute
signals are used indicate the nature of transaction, including
whether the ftransaction 1s an address-only transaction.
Assuming that the transaction 1s not, then the transfer start
signal TS 1s treated by the arbiter 600 as an implicit data bus
request, starting the data arbitration phase. Following asser-
tion of the acknowledge signal AACK, a data bus grant signal
DBG 1s asserted by the arbiter 600 once the data bus 205 1s
available for use by the CPU 203. The CPU 203 may then
begin the data transier phase on the next cycle by driving the
data bus 205. During a subsequent data termination phase, the
slave device asserts a transier acknowledge signal TA after it
has sampled the data on the data bus 205.

The foregoing sequence of operations 1s repeated for a
second subsequent transaction. In FIG. 4, the transaction to
which address and data information pertain i1s indicated in
parentheses, 1.e., transaction (1) and transaction (2).
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Note that in FIG. 4, address tenures and data tenures,
although they may be pipelined, are tightly ordered. That 1s,
data bus tenure on the system 1s granted 1n the same order as
address tenure 1s granted even i1f the address tenures are
granted to different masters. In precise terms, 11 TS(n) 1s for
Master A and TS(n+1) 1s for Master B, then DBG(n) will be
for Master A and DBG(n+1) will be for Master B.

This tight ordering of the conventional MPC601 bus may
result in considerable system performance degradation, espe-
cially as bus speed increases. A read transaction to an expan-
sion-bus device, for example, will typically be high-latency
as compared to a main-memory read transaction. Tight order-
ing of address and data tenures results 1n such latency impact-
ing the data bus. That 1s, even though another transaction
might be ready to use the data bus first, during the latency
period, 1t cannot because of the tight ordering of address and
data tenures. If a system 1s to handle information streams
having real-time constraints, such as video streams, 1t 1s
important to ensure that the data bus 1s not unavailable for use
during substantial periods of time; otherwise real-time dead-
lines may be missed, resulting in objectional artifacts during
presentation.

The architecture of the computer system of FIG. 2
decouples address and data tenures such that data bus utiliza-
tion 1s increased. This increase 1n data bus utilization allows
for higher real-time performance to be achieved. In particular,
the present invention allows for a true split-bus architecture
with ordered slaves and ordered masters. “Ordered,” 1n one
usage, means each master and each slave has its own 1nde-
pendent FIFO structure supporting “ordered” service to trans-
actions posted to 1t. If a slave recerves three transactions A, B,
and C, the 1t will respond to A first, B second, and C thard. If
a master performs transactions D, E, and F, then 1t expects
servicing of those transactions in the order of D first, E sec-
ond, and F third. In one embodiment, there can be up to three
outstanding master/slave pair transactions at one time.

Referring briefly again to FIG. 3, the side-band informa-
tion signals carried by the control bus 309 are side-band
information signals used to decouple the address bus 206 and
the data bus 205. These side-band information signals
include, 1n addition to the bus request signal BR, the bus grant
signal BG and the data bus grant signal DBG of FIG. 4,
corresponding signal for each master besides the CPU 203.

In one embodiment, the system includes, besides the CPU
203, four additional masters for up to a total of five masters:
the CPU 203, the secondary processor 218 (if present), the
expansion bus bridge 219, one additional expansion bus
bridge (11 present), and the video bus bridge 220 (if present).
The control bus 309 therefore carries five bus request signals

BR][0:4], five bus grant signals BG[0:4], and five data bus
grant signals DBG[0:4].

In the same embodiment, the system includes six slaves:
the expansion bus bridge 219 (also a master), the additional
expansion bus bridge (also a master, 1f present), the video bus
bridge 220 (also a master, if present), the main memory 209,
the read-only memory 211, and memory controller registers
accessible via the register data bus 217. For each slave, the
control bus 309 carries three signals: a slave acknowledge
signal SACK, a read data available signal RDDA, and a
source- or sink-data signal SSD. The control bus 309 there-
fore carries six slave acknowledge signals SACK[O0:5], six
read data acknowledge signals RDDA[0:5], and six source- or
sink-data signals SSDJ[0:5].

The manner 1n which the foregoing signals are used to
decouple address tenures and data tenure may be appreciated
with reference to FIG. 5. For simplicity, the address arbitra-
tion phase has not been illustrated. The address transter phase
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1s essentially the same as 1n the conventional case. The
address termination phase, however, differs. The addressed
slave asserts the AACK signal 1n the conventional manner, the
AACK signal being used by the master. In parallel with
AACK, the addressed slave generates a SACK signal for use
by the arbiter 600. The arbiter uses this information about
which slave has acknowledged 1n order to reorder transac-
tions on the system bus 204.

In the data arbitration phase, the data bus i1s granted to
masters based on a priority ordering ol masters, and 1s granted
to slaves based 1n part on the priority of the master of the
transaction and in part on the availability of data from the

slave. What may be considered in effect two sets of grant
signals are therefore defined, DBG[0:#Masters—1] for mas-

ters and SSD[0:#Slaves—1] for slaves.
Assume, for example, that in FIG. 5 the first transaction 1s
aread by the CPU 203 from the expansion bus bridge 219 and

that the second and third transactions are writes to memory
from the video bus bridge 220. In general, video transactions
will be assigned a higher priority than transactions by the
CPU 203 because of the real-time requirements of video
transactions. Data bus grant signals are therefore 1ssued to
video bus bridge 220 for the first video transaction (2), which
proceeds through the data transier phase, and the second
video transaction (n), which also proceeds through the data
transier phase. The CPU 203 will not be 1ssued a data bus
grant signal for its read from the expansion bus bridge 219
until a read data acknowledge signal has been returned to the
arbiter 600 from the expansion bus bridge 219. Then, the CPU
203 will be 1ssued a data bus grant signal for its read and the
expansion bus bridge 219 will simultaneously be issued a
corresponding slave source-data signal causing it to present
its data on the data bus 203 to be sampled by the CPU 203.

As may be appreciated from the foregoing description, the
data arbitration phase 1n accordance with the present mnven-
tion 1s very different than in the conventional case. This
different manner of operation allows address and data tenures
to be decoupled, increasing utilization of the data bus. The
data transfer and data termination phases, however, are essen-
tially the same as in the conventional case.

Transaction reordering 1s controlled by the arbiter 600. The
general characteristics of the arbiter 600 will first be
described, after which the arbiter 600 will be described 1n
greater detail.

The basic behavior that the arbiter 600 guarantees 1s as
follows:

Any given ARBus master has its own address and data

tenures strictly ordered. That 1s, DBG(n) always corre-

sponds to TS(n) and for a set of TS(n) and TS(n+1),
DBG(n) will always occur before DBG(n+1).
Any given ARBus slave has its own data tenures strictly

ordered. That 1s, SSD(n) always corresponds to TS(n)
and for a set of TS(n) and TS(n+1), SSD(n) will always

occur before SSD(n+1).

Data bus tenure 1s not necessarily granted on the ARBus 1n
the same order as address tenure 1s granted 1 the address
tenures are granted to different masters. That 1s, 11 TS(n)
1s for Master A and TS(n+1) 1s for Master B, DBG(n)
may be for Master B and therefore DBG(n+1) for Master
A.

In the 1llustrated embodiment, the arbiter 600 supports five
logical masters. The five masters arbitrate for use of the bus 1n
accordance with a fixed priority as follows: the video bus
bridge 220, the expansion bus bridge 219, an additional
expansion bus bridge (if present), the CPU 203, and the
secondary processor 218. By giving highest priority to the
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video bus bridge 220, the arbiter 600 allows the video bus
bridge 220 to “hog” the ARBus.

The arbiter 600 may optionally “park™ the CPU 203 or the
video bus bridge 220 on the ARBus by asserting the appro-

priate BG wire during idle bus cycles. The default mode of >

operation 1s to park the most recent master.

Address bus arbitration occurs in every cycle that an
address tenure 1s not active. Masters assert their individual
bus request signals (BR) to the arbiter 600 to signal a request
tor service. The arbiter 600 signals the master which has won
the arbitration by asserting bus grant (BG). Masters that have
BG asserted ina given cycle are free to assert TS and therefore
start a transaction 1n the next cycle.

The arbiter 600 controls the use of the data signals as a
function of the address and the availability of read data. If a

given ARBus address recerves an AACK, the arbiter 600, by

sampling the SACK signals, knows which slave will accept
write data or will return read data. A slave that asserts AACK
for a write transaction gives implicit permission to the arbiter
600 to grant the data bus to the master and allow 1t to assert the
associated write data. Slaves must assert RDDA when
requested return read data 1s available.

The arbiter 600 grants the data bus to a selected master via
the assertion of DBG (Data Bus Grant) and indicates to the
slave that data 1s to be asserted or accepted via the assertion of
SSD (Source or Sink Data).

Transactions which do not mnvolve a data transfer (Ad-
dress-Only transactions) are typically generated by the CPU
203 or the secondary processor 218 and are simply acknowl-
edged (AACK asserted) by the arbiter 600.

Referring now to FIG. 6, the arbiter 600 will be described
in greater detail. The arbiter 600 includes master queues 601,
one for each master 1n the system, and slave queues 602, one
for each slave 1n the system. Each of the master queues 601
are connected at their respective data inputs to a SACK vector
composed of the slave acknowledge signals SACK of each of
the slaves, in addition to a Rd/Wr signal. Heremafter, the term
“SACK vector” will be understood to mean signals including
the slave acknowledge signals SACK of each of the slaves and
the Rd/Wr signal. Each of the slave queues 602 are connected
at their respective data inputs to a BG vector composed of the
bus grant signals BG of each of the masters. (In more precise
terms, the BG vector 1s the physical bus grant signals sampled
in the cycle that the TS signal 1s asserted.) The bus grant
signals BG are produced by an address bus arbiter state
machine 605 1n response to the bus request signals BR of each
of the masters.

Each time the address acknowledge signal AACK 1s pre-
sented on the system bus 204, the master queues 601 and the
slave queues 602 are updated by pushing the SACK vector
onto one (and only one) of the master queues 601 and pushing
the BG vector onto one (and only one) of the slave queues
602. In particular, the SACK vector 1s pushed onto one of the
master queues 601 1dentified by the BG vector, and the BG
vector 1s pushed onto one of the slave queues 602 1identified by
the SACK vector.

The SACK vectors at the heads of the master queues 601
and the BG vectors at the heads of the slave queues 602 are
input to an arbiter multiplexer 603. The arbiter multiplexer
603 looks at the SACK vectors at the head of the master
queues 601 and determines which of the slave queues 602
designated by the SACK vectors have at their heads a BG
vector that designates the reciprocal one of the master queues
601. On the next data tenure of the masters for which this
condition 1s satisfied, data will be sourced from the corre-
sponding slave. The arbiter multiplexer 603 also receives a
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read-ready vector RDDA composed of the read data acknowl-
edge signals RDDA of each of the slaves.

Based on the foregoing input signals, the arbiter multi-
plexer 603 produces a slave match vector SlvMatch and a
slave read ready vector SlvRdReady. The slave match vector
SlvMatch designates those masters finding matching slaves,
1.€., slaves expecting to next respond to transactions from
those respective masters. The slave read ready vector SIVR-
dReady identifies, of those masters, which have slaves that are
actually ready to source data. The slave match vector Slv-
Match and the slave read ready vector SlvRdReady are input
to an data bus arbiter state machine 604.

The SACK vectors at the head of the master queues 601 are
also mput to the data bus arbiter state machine 604. The data
bus arbiter state machine 604 determines which transaction 1s
ready to go by examining the bits of the SlvMatch vector in
priority order and, 1t a bit indicates a matching master/slave
pair, determining further whether either the transaction 1s a
write transaction (by examining the Rd/Wr bits at the front
master queue entries) or the corresponding bit in the SIVR-
dReady vector 1s set, indicating that the slave 1s ready to
source data. In Verilog notation, the data bus arbiter state
machine 604 computes a vector TransReady as follows:

TransReady[0:4]=SlvMatch|[0:4] &
({5{ Write} }IISIvRdReady[0:4]) Based on the computed
TransReady vector, the data bus arbiter state machine 604
asserts a corresponding one of the data bus grant signal DBG.
The data bus arbiter state machine 604 also asserts a corre-
sponding one of the source-or-sink-data signals SSD, 1n
accordance with the SACK vector at the front of the winning
master queue.

Operation of the arbiter 600 may be further understood
from the following illustrative examples.

To take a relatively simple example, assume that Master 1
(the expansion bus bridge 219) 1ssues a read transaction to
Slave 3 (the video bus bridge 220). Slave 3, when it 1s ready
to service the transaction, asserts the AACK signal on the
ARBus and, at the same time, generates a SACK signal to the
arbiter 600 1dentifying Slave 3. When the arbiter 600 receives
the AACK signal, the SACK vector 1s pushed onto one of the
master queues 601 based on the BG vector. At the same time,
the SACK vector 1s pushed onto one of the master queues 601
based on the BG vector. Assuming that no other transactions
are presently queued, a SACK vector value representing
Slave 3 (for example b111011) will appear at the head of the
one of the master queues 601 for Master 1, and a BG vector
value representing Master 1 (for example b10111) will appear
at the head of the one of the slave queues 602 for Slave 3. The
arbiter multiplexer 603 will therefore cause the SlvMatch
vector to have a value indicating a match for Master 1 (for
example b01000). When Slave 3 1s ready with read data, 1t
will assert 1ts RDDA signal, in response to which the arbiter
multiplexer 603 will cause the SlvRdReady vector to have a
value indicating the readiness of Slave 3 (for example
b00100). If no other transactions having higher priority have
in the meantime become ready to go, the data bus arbiter state
machine 604 will then 1ssue a data bus grant signal DBG to
Master 1 and a sink/source data signal SSD to Slave 3, and the
data transier phase of the transaction will proceed.

To take another, more complex example, assume that after
Master 1 has 1ssued the foregoing transaction request (shown
below as Transaction 1) but before Slave 3 has responded with
an RDDA signal, a series of further transactions 1s 1ssued, 1n
accordance with the following chronological sequence:

1. Master 1 Rd Slave 3
2. Master 3 Wr Slave 3
3. Master 3 Wr Slave (
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4. Master 4 Rd Slave 1
5. Master 2 Wr Slave 4

Note that transactions 1 and 2 both involve Slave 3, and
transactions 2 and 3 both involve Master 3. Because masters
and slaves are ordered, data dependencies are created. That 1s,
transaction 2 cannot complete until transaction 1 has com-
pleted. Similarly, transaction 3 cannot complete until trans-
action 2 has completed. Transactions 4 and 5, on the other
hand, have no data dependencies. Transaction 4 1s a read from
Master 4 (CPU 1) to Slave 1 (ROM). In the case of ROM and
RAM, because read latency i1s minmimal and 1s know 1n
advance, the RDDA signals for ROM and RAM are tied

asserted.

Transaction 2, Master 3’s write of Slave 3, 1s queued up
behind Master 1’s read of Slave 3. Transaction 3, Master 3’s
write of Slave 0, 1s queued up behind Master 3’s write of Slave
3. When transaction 4 1s queued, there are matching queue
entries at the head of the master and slave queues for trans-
actions 1 and 4. Transaction 1, however, 1s a read transaction
and 1s not allowed to proceed until an RDDA 1s recerved from

Slave 3.

Therefore, the arbiter 600 first grants the data bus to Master
4 and Slave 1 for transaction 4. When transaction 5 1s queued,
there are matching queue entries at the head of the master and
slave queues for transactions 1 and 5. Assume, however, that
an RDDA has still not been received from Slave 3. The arbiter
600 will then grant the data bus to Master 2 and Slave 4 for
transaction 5.

Assume now that an RDDA 1s received from Slave 3.
Transactions 1, 2 and 3 will then, in that order, be granted the
bus and will complete. In the foregoing example, whereas the
address order of the transactions 1s 1, 2, 3, 4, 5, the data order
1s4,5,1, 2, 3.

When the system 1s totally 1dle, 1.e., the data bus 1s not busy
and all queues are empty, a CPU memory read transaction 1s
executed immediately without queuing the transaction.

The expansion bridge responds to transactions on the
ARBus and PCI Bus and forwards them to the “other” bus
approprately. The primary function of the expansion bridge
1s to map transactions from one bus to the other. The job of the
expansion bridge to transier data between the ARBus and the
PCI Bus 1s complicated by the fact that the ARBus and the
PCI Bus are very different in a number of respects as shown
in the following table:

TABL.

L]
[

BUS

BUS CHARACTERISTIC ARBUS PCI BUS

ADDRESS/DATA TENURES Full split transaction Single envelope

(pended) (non-pended)
ENDIANESS Big endian Little endian
CYCLE TYPES One cycle type Many cycle types
TRANSACTION LENGTHS  Fixed (3.2-byte) Arbitrary length
burst length transactions with
byte-enabled writes.
BUS SPEED Up to 50 MHz 33 MHz

The PowerPC architecture and the ARBus do not “natu-
rally” generate many types of cycles that are required by the
PCI specification. These unique PCI Bus cycles are included
in the PCI specification to provide backwards compatibility
tor x86/ISA/IBM PC-AT cards and software. The expansion
bridge provides facilities for generating PCI Bus configura-
tion cycles, 1/0 cycles and PCI “Special Cycles”/“Interrupt
Acknowledge” via special address spaces.
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Reterring now to FIG. 7, the expansion bridge 700 will be
described 1n greater detail. The expansion bridge 1s con-
structed with two main state machines for the ARBus and PCI
Bus. The two main state machines actually consist of a num-
ber of smaller sub-state machines. These state machines oper-
ate 1n different clock domains and require that handshake
signals be synchronized. Transactions passed between the
ARBus and the PCI Bus are staged 1n a large packet-butier
structure. Data endian conversion 1s performed on the ARBus
side of the packet builer with data being stored 1n the packet
bufler 1n PCI Bus Little Endian format. Address endian swiz-
zling 1s performed on the master side of a transaction. For a
master cycle to the PCI Bus from the ARBus, the address
swizzling occurs on the ARBus side. For a master cycle to the
ARBus from the PCI Bus, the address swizzling occurs on the
PCI Bus side.

As explained previously, systems are most prone to dead-
locks and livelocks when there 1s an expansion bridge 1n the
system. In the description that follows, a deadlock will be
introduced, together with its LockUp type (A, B, or C as
described below), a solution for the deadlock, and where 1n
the system the deadlock prevention logic preferably resides.
Deadlock prevention rules assume a starting point behavior in
which the expansion bridge allows concurrent reads through
the bridge, and the ARBus arbiter performs the DBWO*
protocol as necessary. The DBWO™* protocol allows the Pro-
cessor to re-order a write data phase around a read data phase
for snoop pushes.

An entire class of deadlocks and livelocks 1s related to the
PCI Bus being stalled during reads. During a read, the PCI
Bus can potentially remain stalled for micro-seconds at a time
when the target of the read 1s on the other side of a bridge. For
instance, a Master on PCI Bus 1 wants to read from a target
behind a PCI2PCI bridge on PCI Bus 2. In this case the master
incurs the latency of three bridges (a first expansion bus
bridge, a second expansion bus bridge, and a PCI2ZPCI bridge)
betore actually reaching the target, and no other transactions
can occur on PCI Bus 1 as long as the read 1s stalling the bus.
IT other transactions from the ARBus were able to get access
to the PCI Bus and complete, then the class of deadlocks
related to conflicting completion orders would disappear.
This type of lockup 1s referred to herein as Type-A LockUp.

Another class of deadlocks and livelocks 1s related to the
ISA bus and PCI2PCI bridge behavior. When an ARBus read

occurs to an ISA bus or a target behind a PCI2ZPCI bridge, 1t
has no way of knowing whether it will complete or be
blocked. A “block™ can occur for the ISA bus if there1s an ISA
bus master already on the ISA bus with a pending transaction;
this transaction may or may not require ARBus access. A
“block™ can also occur for the PCI2ZPCI bridge if the bridge
has writes posted to it that 1t must perform on the host side of
the PCI2ZPCI bridge before completing the read. In either of
these two cases, there 1s an ARBus master that will wait
forever for its read to either the ISA bus or PCI2PCI bridge to
complete. If anything “blocks” the ISA bus or PCI2ZPCI
bridge from completing its non-back-oifable access, dead-
lock will occur. This type of lockup 1s referred to herem as
Type-B LockUp.

A third class of deadlocks and livelocks 1s related to the
ARBus arbiter being fixed priority, and to cross-communica-
tion problems between devices on the bus who are both mas-
ters and slaves. Lower priority masters can be starved from
gaining ownership of the ARBus when following the generic
ARBus rules set forth for behavior following an ARBus
ARTRY*. If in addition, the lower priority master 1s unable to
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accept transactions as a slave, deadlocks or livelocks can
occur. This type of lockup 1s referred to herein as Type-C
LockUp.

Deadlock avoidance 1s complicated by the fact that 1n some
systems there may be more than one expansion bridge.
Hence, deadlocks 1n a true split bus architecture having only
a single expansion bridge connected to the ARBus will be
considered first, followed by a consideration of deadlocks 1n
a true split bus architecture having two expansion bridges.
Systems having more than two expansion bridges will not be
considered, although similar deadlock avoidance principles
may be applied to such systems.

Various deadlocks can occur with a single expansion
bridge 1n a system implemented with a split bus (ARBus),
ordered masters, ordered slaves, and utilizing a fixed priority
arbitration scheme for the masters on the ARBus. These dead-
locks can also occur 1n a dual expansion bridge system with
the same characteristics, but only one expansion bridge need
be mvolved to cause the deadlock.

Referring to FIG. 8, deadlock may occur when an ARBus
master read of an expansion bridge 1s followed by an ARBus
master read to memory. A typical sequence of transactions 1s
as follows:

1. PCI Bus 1 Master 1mitiates read of main memory, and

stalls PCI Bus 1.

2. Processor 1 reads target behind Expansion Bridge 1
(Expansion Bridge 1 AAck*s without ARTRY *).

3. Processor 1 reads main memory (Memory Controller

AAck*s without ARTRY™).
4. Expansion Bridge 1 forwards read of main memory
(Memory Controller AAck™*s without ARTRY*)

Master Processor 1 has ordered 1tself: a) Expansion Bridge
1, b) Read main memory. Slave main memory has ordered
itsell: a) Read by Processor 1, b) Read by Expansion Bridge
1. PCI Bus 1 has an mmplied ordering of a) Read main
memory, b) Read by Expansion Bridge. PCI Bus 1 1s stalled
by the read of main memory and will not get off the bus until
the read has completed. In this case, the completion order of
Master Processor 1 directly conflicts with completion order
of PCI Bus 1. This 1s a Type-A LockUp. There are two
potential solutions: 1) Retry the Expansion Bridge 1 read of
main memory, OR 2) Retry the Processor 1 read of main
memory. For reasons described heremafter, Solution 2 1s pre-
terred for ease of implementation. This deadlock 1s therefore
avoilded by having the ARBus arbiter prevent the Processor
from reading main memory (via ARTRY™) following the
Processor’s read of an expansion bridge.

Referring to FIG. 9, deadlock may occur when an ARBus
master read of an expansion bridge 1s followed by an ARBus
master L2 hit or allocate operation. A typical sequence of
transactions 1s as follows:

1. PCI Bus 1 Master 1mitiates read of main memory, and

stalls PCI Bus 1.

2. Master A reads target behind Expansion Bridge 1 (Ex-

pansion Bridge 1 AAck™s without ARTRY*).

3. Master A 1ssues memory read causing the L2 (second

level Cache) to allocate the cache line.

4. Expansion Bridge 1 must complete its read of main

memory, but it cannot complete.

Because the TAG SRAMs utilize a latch to capture the
address from the main Address Bus during a TS_, no future
TS__ can occur until the completion of the TAG update. The
system arbiter prevents future TS__ events by deasserting all
Bus Grants to Masters until the completion of the TAG
update. Unfortunately, in the scenario described above, the
TAG update will not complete until the PCI Bus Master A
read of main memory has occurred. Master A has ordered
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itself: a) Read of Expansion Bridge 1, b) Read of main
memory. Expansion Bridge 1 has ordered 1itself: a) Read of
main memory, b) Read by Master A. This 1s a Type-A
LockUp. Since the TAG update must complete without future
occurrences of TS , the deadlock fix 1s to have the ARBus
arbiter prevent an access by Master A that would cause a
second level cache hit or allocate (via ARTRY *) following
Master A’s read of an expansion bridge.

Referring to FIG. 10, deadlock may occur when a proces-
sor read ol an expansion bridge i1s followed by a processor
write to that expansion bridge. A typical sequence of trans-

actions 1s as follows:

1. Processor 1 reads target behind PCI2PCI bridge behind

Expansion Bridge 1. PCI2PCI bnidge blocks read
completion in order to flush posted write data to target
upstream of PCI2ZPCI bridge.

2. Processor 1 writes target behind Expansion Bridge 1.

3. Expansion Bridge 1 write attempt to main memory

causes Processor 1 to attempt Snoop Push.

The PCI2ZPCI bridge has become interlocked, and must
flush a posted write upstream of 1tself; in this case the write 1s
headed toward the ARBus, and Expansion Bridge 1’s builers
are full and cannot currently accept the write. The first two
outstanding transactions in this scenario are 1) Master Pro-
cessor 1 has an outstanding read of Expansion Bridge 1,
followed by 2) Master Processor 1 has an outstanding write to
Expansion Bridge 1. The third attempted transaction 1s a write
cycle from Expansion Bridge 1 to main memory. However,
this write cycle 1s to copyback-cacheable space and causes a
snoop hit i Processor 1°s cache. Processor 1 retries Expan-
sion Bridge 1’°s write cycle, but now needs to push the dirty
cache line to main memory. However, at this point 1t 1s unable
to push the dirty cache line due to its outstanding write to
Expansion Bridge 1. With the use of DBWO*, Processor 1
could have re-ordered the snoop push write transaction
around its outstanding read of Expansion Bridge 1 (transac-
tion number 1). However, the MPC60x microprocessor 1s not
capable of re-ordering the snoop push write transaction
around 1ts own outstanding write. This 1s a Type-B LockUp,
caused by Processor 1’°s 1nability to complete 1ts read due to
the PCI2ZPCI bridge’s interlocking behavior. This deadlock 1s
avoided by having the ARBus arbiter prevent the Processor
from writing to an expansion bridge if it has an outstanding
read of the expansion bridge. This will allow the Processor to
perform the Snoop Push write transaction if required.

There 1s a set of deadlocks that only occur with more than
one an expansion bridge 1n a system implemented with a split
bus (ARBus), ordered masters, ordered slaves, and utilizing a
fixed priority arbitration scheme for the masters on the
ARBus. In one particular system architecture, high to low
priority 1s: 1) Video, 2) Expansion Bridge 1, 3) Expansion
Bridge 2, 4) Processor 1, 5) Processor 2. Deadlock rules
described previously also apply to a multiple expansion
bridge environment. The following new rules are 1n addition
to the previous rules.

Referring to FIG. 11, deadlock may occur in the case of
concurrent Bus Grant and Address Retry signals. A typical
sequence of transactions 1s as follows:

1. Expansion Bridge 1 attempts a write to

Expansion
Bridge 2 but Expansion Bridge 2 buil

ers are full.

2. Expansion Bridge 2 has a write to Expansion Bridge 1
and recerved Bus Grant during Expansion Bridge 1
cycle.

3. Expansion Bridge 2 ARTRY *s Expansion. Bridge 1 due
to full buifers. As per ARBus specification, Expansion
Bridge 2 ignores 1ts Bus Grant and does not take the

ARBus.
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4. As per ARBus specification, followmg ARTRY* both

Expansion Bridge 1 and Expansion Bridge 2 deassert
theirr Bus Requests for one clock. Both re-assert Bus
Requests. Expansion Bridge 1 wins. The foregoing
sequence ol transactions 1s repeated indefinitely.

Following ARBus protocol after an ARtry*, a master who
has a Bus Grant 1ignores 1t. All masters must deassert their Bus
Requests the clock following an ARtry*, and then re-assert
them. In a fixed priority arbitration scheme, the higher prior-
ity master will win every time, and if it cannot complete 1ts
access, an ARBus livelock results. This 1s a Type-C LockUp,
and 1s avoided by having the expansion bridge disregard the
ARBus protocol, and take the address tenure 11 a Bus Grant
occurs during an ARtry*. An expansion bridge can do this
without adverse side-eflects because 1t 1s not a snooping bus
master.

Referring to FIG. 12, deadlock may occur in the case of
concurrent Bus Request and Address Retry signals. A typical
sequence of transactions 1s as follows:

1. Video attempts a write to Expansion Bridge 1 but

sion Bridge 1 builers are full;

2. Expansion Bridge 1 has its Bus Request asserted because
it has a read of memory to perform, but Video, with
multiple cycles to perform, keeps 1ts Bus Request
asserted.

3. Expansion Bridge 1 ARTRY *s Video due to full butters.
As per ARBus specification, Expansion Bridge 1 and
Video deassert their bus requests the clock following
ARTRY™.

4. Video and Expansion Bridge 1 reassert the bus requests.
Since Video has a fixed higher priority than Expansion
Bridge 1, it constantly gets Bus Grant. The foregoing
sequence of transactions 1s repeated indefinitely.

Following ARBus protocol after an ARTRY *, all masters
on the bus deassert their Bus Requests to give the Processor a
guaranteed window being the only bus requestor. This guar-
antees that the Processor, who normally has lowest ARBus
priority, acquires the bus next in order to complete a high
priority transaction such as a Snoop Push. In this case, the
ARBus protocol causes the lower priority expansion bridge to
never receive a Bus Grant due to the higher priority Video
requesting the ARBus to complete i1ts access. Since the
completion of the Video access 1s dependent on the expansion
bridge freeing up some butler space, and since the expansion
bridge must get the ARBus to complete 1ts access or receive
an ARTRY ™ 1n order to free up PCI Bus 1 to free up buifer
space for the Video write to come 1n, the expansion bridge
clfectively needs higher priority than Video this time. This 1s
a Type-C LockUp, and 1s avoided by having an expansion
bridge keep 1ts Bus Request asserted the clock following an
ARTRY™* 11 1t 1s the source of the ARTRY ™. This 1s precisely
the protocol the MP60X processor performs to effectively
achieve a higher priority when necessary.

Referring to FIG. 13, deadlock may occur 1n the case of
expansion bridges reading each other concurrently. A typical
sequence of transactions 1s as follows:

1. A Master Behind Expansion Bridge 1 reads a target

behind Expansion Bridge 2 (Expansion Bridge 2

AAck*s) stalling PCI Bus 1. The read remains outstand-

ing within Expansion Bridge 2.

2. A Master Behind Expansion Bridge 2 reads a target

behind Expansion Bridge 1 (Expansion Bridge 1
AAck*s) stalling PCI Bus 2. The read remains outstand-
ing within Expansion Bridge 1.

This 1s the most basic deadlock case. Each expansion

bridge has a stalled bus, and yet each expansion bridge

accepts the read from the opposite expansion bridge. Neither

Expan-
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ol the accepted reads can complete because the buses they are

attempting to get onto are stalled. At least one of the buses

must free itself for this basic deadlock to be avoided; one

expansion bridge must not accept the read, but must ARTRY *

the read attempt to 1t. This 1s a Type-A LockUp, and 1s avoided

by having an expansion bridge disallow a read of 1ts slave
while it has an outstanding master read tenure (AAck™ with-
out ARTRY*). Once the data bus grant 1s recerved corre-
sponding to the address tenure, then the transaction 1s guar-
anteed to complete and slave reads can be accepted.

Referring to FIG. 14, deadlock may occur in the case of one
master attempting to read both expansion bridges. A typical
sequence of transactions 1s as follows:

1. PCI Bus 1 Master mitiates read of target behind Expan-

sion Bridge 2, and stalls PCI Bus 1.

2. Processor 1 reads target behind Expansion Bridge 1

(Expansion Bridge 1 AAck*s without ARTRY ™).

3. Processor 1 reads target behind Expansion Bridge 2

(Expansion Bridge 2 AAck*s without ARTRY ™).

4. PCI Bus 1 Master’s read of target behind Expansion
Bridge 2 occurs on ARBus (Expansion Bridge 2 A Ack*s
without ARTRY ™).

Master Processor 1 has ordered 1tself: a) Read

Expansion
Bridge 1, b) Read Expansion Bridge 2. Slave Expansion

Bridge 2 has ordered 1tself: a) Read by Processor 1, b) Read
by Expansion Bridge 1. Expansion Bridge 1 has implied
ordering due to stalled PCI Bus of: a) Read of Expansion
Bridge 2, b) Read by Processor 1. In this scenario, all three
devices i1nvolved have conflicting completion orders.
Although Processor 1’s read of the target behind Expansion
Bridge 2 can complete on PCI Bus 2, it cannot complete on
the ARBus until Processor 1’s read of Expansion Bridge 1 has
completed. Expansion Bridge 1’s read of Expansion Bridge 2
must complete before Processor 1’s read of Expansion Bridge
1 can complete. Since Expansion Bridge 2 1s ordered to
deliver the response to Processor 1’s read before delivering
the response to Expansion Bridge 1°s read, the deadlock
results. This 1s a Type-A LockUp, and 1s avoided by prevent-
ing one master from reading both an expansion bridges. This
prevents the response ordering dependencies for the master.

Reterring to FIG. 15, deadlock may occur 1n the case of an
ISA bus master reading a target behind an opposite expansion

bridge. A typical sequence of transactions 1s as follows:

1. PCI Bus 2 Master reads ISA target behind Expansion
Bridge 1, stalling PCI Bus 2 (Expansion Bridge 1
AAck*s)

2. ISA Master on ISA initiates read ol target behind Expan-
sion Bridge 2. ISA Master cannot be backed off.

3. Expansmn Bridge 1 forwards ISA Master’s read to

_pransmn Bridge 2. Expansion Bridge 2 retries Expan-
sion Bridge 1 because PCI Bus 2 Master read 1s out-
standing. This occurs indefinitely.

The fact that the master behind Expansion Bridge 2 got 1ts

read AAck*ed by Expansion Bridge 1 on the ARBus prior to

the ISA bus master behind Expansion Bridge 1, implies that
Expansion Bridge 2’s completion order 1s: 1) Complete read
to ISA bus behind Expansion Bridge 1, 2) Accept incoming
read from Expansion Bridge 1 (or whomever). However, the
ISA bus has mitiated an access and will retry all accesses to 1t
until 1ts read of the target behind Expansion Bridge 2 has
completed. The ISA bus completion order 1s: 1) Complete
read to target behind Expansion Bridge 2, 2) Accept incoming
read from Expansion Bridge 2 (or whomever). These two
masters have conflicting completion orders. Note that 1f PCI
Bus 2 had not been stalled by 1ts read and Expansion Bridge
2 could have accepted the read from Expansion Bridge 1, then

all transactions would be able to complete. This 1s a Type-A
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(PCI Bus 2 stall) and Type-B LockUp (ISA bus block). The fix
1s to allow ISA bus master cards to communicate only with
main memory or targets behind the same expansion bridge.
For example, system soltware may remap accesses across the
bridges to memory and complete transiers virtually.

Referring to FI1G. 16, deadlock may occur when a PCI bus
master read gets stuck behind a posted PCI bus master write.
A typical sequence of transactions 1s as follows:

1. Three transactions: a) Processor 1 Reads Expansion
Bridge 1, b) Processor 1 Reads Expansion Bridge 1, ¢)
Processor 2 Reads Expansion Bridge 2.

2. Meanwhile: a) Expansion Bridge 1 has a write transac-
tion destined for Expansion Bridge 2, and a PCI Bus
Master on PCI Bus 1 issues a read of memory, stalling
PCIBus 1, b) Expansion Bridge 2 has a write transaction
destined for Expansion Bridge 1, and a PCI Bus Master
on PCI Bus 2 1ssues a read of memory, stalling PCI Bus
2.

The normal means to get a PCI Bus Master read to free up
the PCI Bus 1s to retry a transaction from the PCI bus when 1t
cannot be serviced. Normally, the PCI Bus Master read would
propagate to the ARBus, attempt its cycle on the ARBus, and
either complete or get an ARTRY ™. In etther event, it frees up
the bus. For a high-performance architecture, concurrent
reads are desired at all times. The scenario on both PCI buses
1s that they are stalled with reads heading to memory, but there
are write transactions to the opposite expansion bridge in each
expansion bridge which cannot complete (because the trans-
action limit has been reached). Since neither expansion
bridge’s ARBus master write transactions can complete their
address tenure, their respective PCI Bus Master read tenures
cannot gain access to the ARBus to complete or receive an
ARTRY™. In this instance the PCI buses will remain stalled
indefinitely. This 1s a Type-A LockUp, and 1s avoided by
having an expansion bridge immediately retry PCI Bus mas-
ter reads 11 1t has a PCI Bus master write transaction queued
up in front of 1t that has not completed. This will ensure that
the PCI Bus master read has access to the ARBus to complete
the access or receive an ARTRY ™.

Referring to FIG. 17, deadlock may occur when the ARBus
transaction limait 1s hit, and accesses cannot complete. A typi-
cal sequence of transactions 1s as follows:

1. Three transactions: a) Processor 1 Reads ISA target
behind Expansion Bridge 1, b) Processor 2 Reads target
behind Expansion Bridge 2, ¢) Expansion Bridge 2
Reads target behind Expansion Bridge 1, stalling PCI

Bus 2.

2. Meanwhile: a) Expansion Bridge 1 has a write transac-
tion destined for Expansion Bridge 2, and b) an ISA Bus
Master has initiated a read access ol main memory on the
ISA Bus. The ISA bus master cannot be backed off. This
ISA bus master access blocks the Processor 1 Read from
completing.

The fundamental problem with this scenario 1s that the
transaction queue depths are limited to three transactions. I
the depth were four, then the Expansion Bridge 1 write trans-
action destined for Expansion Bridge 2 could complete,
allowing the ISA bus master read of main memory to com-
plete, etc. Given that the transaction queue depths are limited
to three transactions, the other two problems to note are that
the PC1 Bus Master on PCI Bus 2 has stalled its bus with the
read of the target behind Expansion Bridge 1 and that the ISA
bus master has stalled 1ts ISA bus with the read of main
memory. IT either bus were not stalled, then either the Proces-
sor 2 read of the target behind Expansion Bridge 2 would
complete, or the Processor 1 read of the ISA target would

complete. This 1s a Type-A (PCI Bus 2 stall) and Type-B
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LockUp (ISA bus block). Since neither the PCI Bus 2 stall or
the ISA bus block can be prevented, the deadlock 1s avoided
by the ARBus arbiter to prevent Expansion Bridge 2 from
reading Expansion Bridge 1 1f Expansion Bridge 2 has an
outstanding read. In general terms, 1 an expansion bridge-A
has an outstanding ARBus Master’s Slave Read, then the
ARBus arbiter should prevent (ARTRY*) an expansion
bridge-A from reading an expansion bridge-B until the out-
standing read has completed.

Referring to FIG. 18, deadlock may occur when one expan-
s1on bridge, with an outstanding ARBus read, accepts a read
from another expansion bridge. A typical sequence of trans-
actions 1s as follows:

1. Expansion Bridge 1 accepts two ARBus to PCI Bus 1
writes. Meanwhile, a PCI Bus Master on PCI Bus 1 has
initiated a read access from a target behind Expansion

Bridge 2.

2. Expansion Bridge 2 accepts a read from Processor 2 to
the PCI2ZPCI bridge, followed by a read from Expansion
Bridge 1. Meanwhile, Expansion Bridge 2 also accepts
two PCI Bus to Expansion Bridge 1 write cycles.

3. The Processor 2 read of the PCI2PCI bridge causes the
bridge to attempt to flush posted write data to main
memory. Since all buflers are filled 1n the direction of
PCI Bus 2 to PCI Bus 1, and PCI Bus 1 1s stalled, the
PCI2PCI bridge cannot tlush 1ts data.

The problem with this scenario 1s that the two PCI buses

have contlicting completion orders. Since Expansion Bridge
2 AAck™ed Expansion Bridge 1’s read, PCI Bus 1 has com-

mitted to completing the read before allowing any other
accesses to occur, thereby stalling the PCI Bus. The Processor

2 read of the PCI2ZPCI bridge has kicked off the interlocking
behavior of the bridge. The PCI2ZPCI bridge will not service
the read until 1t has completed i1ts writes. Unfortunately, to
complete 1ts write, an access must occur on PCI Bus 1 to free
up some butler space. PCI Bus 2 won’t service the read until
it executes the write, and PCI Bus 1 won’t service the write
until 1t completes the read. This 1s a Type-A (PCI Bus 1 stall)
and Type-B Lockup (PCI2ZPCI bridge block). Since neither
the PCI Bus 1 stall or the PCI2PCI bridge block can be

prevented, the fix 1s for the ARBus arbiter to prevent Expan-
sion Bridge 1 from reading Expansion Bridge 2 1f Expansion
Bridge 2 has an outstanding read. In general terms, if an
expansion bridge has an outstanding ARBus master’s Slave
Read, then the ARBus arbiter should prevent (ARTRY *)
another expansion bridge from reading that expansion bridge
until the outstanding read has completed.

The following summary 1s a compilation of the foregoing
rules. Items below 1n italic text are deadlock avoidance rules
for which an expansion bridge 1s responsible, and items below
in plain text are deadlock avoidance rules for which the
ARBus arbiter or processor bus arbiter 1s responsible.

Al. The ARBus arbiter must prevent an ARBus master
from reading main memory (via ARTRY *) i1 that master has
an outstanding read of an expansion bridge.

A2. The ARBus arbiter must prevent an access by an
ARBus master that would cause a second level cache hit or
allocate (via ARTRY *) 11 that master has an outstanding read
of an expansion bridge.

A3. The ARBus arbiter must prevent a snooping ARBus
master from writing to an expansion bridge 11 the master has
an outstanding read of an expansion bridge to allow for
required Snoop Push write transactions. DeadlLock Avoid-
ance Rules for Multiple Expansion Bridges, Split Bus, Fixed
Priority, Ordered Masters and Slaves:
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B1l. An expansion bridge must disregard ARBus protocol
and take the address tenure 11 a Bus Grant occurs concurrent
with an ARtry*.

B2. An expansion bridge must disregard ARBus protocol
and keep 1ts Bus Request asserted the clock following an
ARTRY™ 11 1t 1s the source of the ARTRY *.

B3. An expansion bridge must disallow a read of 1ts slave
while 1t has an outstanding master read transaction and its
corresponding data tenure has not begun.

B4. The ARBus arbiter must prevent one master ifrom
reading both expansion bridges.

B5. ISA bus master cards must not read targets behind the
opposite bridge. Software must restrict target accesses from
ISA to the same bridge or main memory.

B6. An expansion bridge must retry PCI Bus master reads
if 1t has a PCI Bus master write transaction queued up in front
of 1t that has not completed.

B7. If an expansion bridge has an outstanding ARBus
master’s Slave Read, the ARBus arbiter must prevent
(ARTRY ™) that expansion bridge from reading another
expansion bridge until the read completes.

B8. If an expansion bridge has an outstanding ARBus
master’s Slave Read, the ARBus arbiter must prevent
(ARTRY™) another expansion bridge from reading that
expansion bridge until the read completes.

As noted above, some of the deadlock avoidance rules are
implemented 1n the expansion bridge itself. Others of the
deadlock avoidance rules are implemented 1n the system arbi-
ter. In either case, the general technique employed 1s to detect
a deadlock hazard, a condition which, if a single further
“deadlocking” transaction were accepted, would result 1n
deadlock and, 1f that transaction 1s requested, refusing to
accept i1t by 1ssuing a retry signal.

Referring again to FIG. 6, a block 613 monitors the state of
the master queues 601 to detect a deadlock hazard, and moni-
tors the BG and SACK vectors to detect a deadlocking trans-
action. When such a transaction 1s requested, an ARTRY
signal 1s generated, causing the transaction to be backed off
instead of being accepted and queued.

Each master queue locally generates two signals, a
ValidBrl1Rd signal, indicating that the master has a read to
Expansion Bridge 1 pending, and a ValidBr2Rd signal, indi-
cating that the master has a read to Expansion Bridge 2
pending. These signals are bussed to the block 613 instead of
actual queue entries.

From the foregoing signals, the block 613 detects deadlock
hazards. Also input to the block 613 are the BG vector and the
SACK vector, which together indicate the master/slave pair
for a requested transaction. From the latter signals, the block
613 detects deadlocking transactions and 1n response gener-
ates a ARTRY signal.

Referring again to FIG. 7, 1n the case of the expansion
bridge 700, deadlock avoidance 1s implemented 1n an ARBus
control block 710 and in a PCIBus control block 720. In
particular, an Address Master state machine [AMst601]
causes the expansion bridge 700 to disregard the ARBus
protocol and take address tenure 1f a Bus GRant occurs con-
current with an ARTRY signal. Likewise, the Address Master
state machine [AMst601] causes the expansion bridge 700 to
disregard the ARBus protocol and keep its Bus Request
asserted the clock following an ARTRY 1if it 1s the source of
the ARTRY.

An Address Slave state machine and a PCI Master state
machine each implement a further deadlock avoidance rule in
similar manner as described previously 1n relation to the
system arbiter. That 1s, a deadlock hazard 1s detected, during
which 11 a deadlocking transaction 1s detected, that transac-
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tion 1s refused. In particular, the Address Slave state machine
disallows a read of 1ts slave while i1t has an outstanding master
read transaction and 1ts corresponding data tenure has not
begun. The PCI Master state machine retries PCI Bus master
reads 11 1t has a PCI Bus master write transaction queued up in
front of it that has not completed.

Use of the described deadlock avoidance techniques
enables a high-performance split-transaction system bus to be
interfaced to a single-envelope expansion bus without com-
promising system reliability. Rather than the characteristics
of the expansion bus limiting the performance of the system
bus, performance of the system bus may be separately opti-
mized. As a result, overall system performance 1s greatly
improved.

Increased Efficiency by Allowing Transaction Independence
Within Slave Devices

The description thus far has assumed a system 1n which
both masters and slaves are ordered. In particular, the 60X
microprocessor assumes that 1ts transactions are ordered. As
a consequence, master ordering 1s to some extent ingrained
within the underlying system architecture. Slave ordering, on
the other hand, although 1t may be convenient from an imple-
mentation perspective, 1s not required. Increased efficiency
may be achieved by relaxing the constraint of slave ordering,
thereby allowing transaction independence within slaves. To
achieve unordered slaves, additional information must be
exchanged between the slaves and the arbiter. As before, this
information may be exchanged in the form of additional
side-band signals not provided for by the MPC60X bus speci-
fication.

Referring to FIG. 19, a block diagram 1s shown of a modi-
fied arbiter that allows for unordered slaves. The arbiter of
FIG. 19 differs from the arbiter of FIG. 6 principally 1n the
signals input to and output from the blocks ArbMux 603,
ArbDatSM 604 and ARtryGen 613, as well as 1n the logical
function of these blocks. In other respects, the arbiter of FIG.
19 and the arbiter of FIG. 6 remain substantially the same.
Like designations have therefore been used 1n FIG. 19 as 1n
FIG. 6, with the ArbMux, ArbDatSM and ARtryGen blocks
being differentiated by prime designations 603', 604' and
613', respectively.

Considering first the block ArbMux 603', 1n order to allow
for transaction independence within slaves, the ArbMux 603’
receives as mputs all of the queue entries of all of the slave
queues (1instead of just all of the front entries as 1n FIG. 6).
Theretfore, 11 the masters are numbered O through M, the
slaves are numbered O through S and the queues locations
within each slave queue are numbered 0 through Q, then the
ArbMux 603' recerves (S+1)(M+1+1)(Q+1) bits of informa-
tion from the slave queues. One of the bits 1n the expression
(M+1+1) 1s a valid bit that allows for a tflop-based queue
implementation instead of one requiring random-access
memory. In an exemplary embodiment with S=5, M=4, and
(Q=2, the number of bits recerved from the slave queues is
6x6x3=108 bits. Since masters remained ordered, the Arb-
Mux 603' continues to receive only the front entries from the
master queues, the same as mn FIG. 6. In the illustrated
embodiment, the ArbMux 603' receives from the master
queues (M+1)(S+1+1+1)=3x8=40 bits. As 1n the case of the
slave queue entries, one of the bits 1n the expression (S+1+
1+1) 1s a valid bit. The extra bit 1n the expression (S+1+1+1)
1s a read/write bit as described previously.

Furthermore, the ArbMux 603', instead of receiving only a
single RDDA signal from each slave, now receives an RDDA

signal for each slave queue entry. In the illustrated embodi-
ment, the ArbMux 603' therefore recerves (S+1)(Q+1)=6x

3=18 biuts.
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In the arbiter of FIG. 6, the ArbMux 603 outputs two bits
(SlvMatch and SlvRdReady) for each master in the system.
The ArbMux 603' of FIG. 19, on the other hand, outputs two
bits for each master for each queue location. Hence, the
ArbMux 603' outputs 2(M+1)(Q+1) bits which are mput to
the ArbDatSM 604'. In the illustrated embodiment, the Arb-
Mux 603' outputs 2x35x3=30 bits for input to the ArbDatSM
604'. The front queue entries from each of the master queues
are 1nput to the ArbDatSM 604" as before.

The ArbDatSM 604 of FIG. 6 produces two sets of output
signals, DBG and SSD. The DBG output signals remain
unchanged in the case of the ArbDatSM 604'. One DBG
signal 1s output for each master for a total of M+1 DBG
signals. Instead of outputting out a single SSD signal for each
slave device, however, the ArbDatSM 604' outputs an SSID
signal for each queue location within each slave device, for a
total of (S+1)(Q+1) bits (6x3=18 bits 1n the illustrated
embodiment).

The ArbDatSM 604' receives multiple address coincidence
(AC) signals from each of the slave devices. In the illustrated
embodiment the ArbDatSM 604' recerves from each slave
device a separate signal for every possible pair of queue
entries within the slave device, indicating whether the same
cache line 1s the target of both transactions queued within the
pair of queue entries. In general there are Q(Q+1)/2 possible
pairs ol queue entries within a slave device. The ArbDatSM
604’ therelore recetves (S+1)[Q(Q+1)/2] total address coin-
cidence bits or, 1n the 1llustrated embodiment, 6x2x3/2=18
bits. The ARtryGen block 613', 1n addition to the BG and
SACK vector mputs previously described 1n relation to the
ARtryGen block 613 of FI1G. 6, also receives the same address
coincidence signals.

In the case of some slave devices, the average latency of the
slave device may be reduced by reordering transactions
involving the slave device. In the case of DRAM, for example,
page mode reads take less time than non-paged reads. Hence,
in the embodiment of FIG. 19, the ArbDatSM 604' further
receives page coincidence (PC) signals from at least one slave
device, 1.e., DRAM. The ArbDatSM block 604' receives from
the slave device a separate signal for every possible pair of
queue entries within the slave device, indicating whether the
targets of both transactions queued within the pair of queue
entries are within the same page. The ArbDatSM block 604
therefore receives Q((Q+1)/2 total page coincidence bits or, 1in
the 1llustrated embodiment, 2x3/2=3 bits.

Referring now to FIG. 20, the mputs and outputs of the
ArbMux block 603! are 1llustrated 1n greater detail. For each
master M, through M,/ |, the ArbMux 603" receives the
frontmost queue entry, represented as Q. The imnputs from the
master queues to the ArbMux 603" are therefore represented
as MQo, M, Qo5 - - - s Maz1yQo.

In the case of the slave queues, every slave queue entry 1s
input into the ArbMux 603'. Hence, for the slave queue S,
inputs to the ArbMux 603" include 5,Q, SpQ, - -+, SpQ o, 1;
and likewise for each slave queue in sequence up to and
including the last slave queue S, ,, whose mputs include
SiseyQos SesunQs + -+ 5 Sisu1yQco41y- The ArbMux 603
receives from the slave devices themselves individual Read
Ready signals for each queue location. From Slave 0, there-
fore, the ArbMux 603' recetves RDDA,,, RDDA,,, . . ..
RDDA o, 1y, and likewise for each slave up to and including
the last slave device, Slave S+1, whose inputs include
RDDA s, 1y0s RDDA ¢, 1y15 - RDDA (6, 1y0u1y-

In FIG. 6, a transaction 1s allowed to proceed only 1t i1t 1s the
frontmost transaction of both the master and the slave. The
matching queue location within the slave 1s by definition
always the frontmost valid queue location within the slave. In
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the case of ArbMux 603 of FIG. 6, therefore, 1ts function 1s to
identily masters whose next transaction in order 1s also the
next transaction in order of the target slave device. In the case
of the ArbMux 603' of FIG. 19, slave ordering 1s no longer
required. Hence, the function of the ArbMux 603’ 1s to 1den-
tify for each master the queue location within the target slave
that matches the frontmost transaction of the master. The
ArbMux 603' also indicates whether transaction data for that
queue location 1s ready. Hence, for each master, two bits, a
SlvMatch bit and a SIvRdReady bit, are output for each queue
location. In the case of master M,,, the bit pairs output by the
ArbMux 603" are designated MyQy, MoQy, . . ., MgQ .1y

and likewise for each succeeding master up to and including
the last master M, ,,, the outputs for which are M, ,, ,,Q,
Mz 1yQus - - - s Mg 1yQc041 - If @ master has a valid trans-
action 1n 1ts queue, then for the frontmost valid transaction,
the SlvMatch signal for that master that corresponds to the
matching target slave queue location will be asserted. If the
master has no valid transaction 1n 1ts queue, then no signal 1s
asserted for that master.

The mputs and outputs of ArbMux 603" are 1llustrated 1n
greater detail in FIG. 21 for the case M=4, S=5 and Q=2.

Referring to FIG. 22, the inputs and outputs of the Arb-
DatSM 604' are 1llustrated 1n greater detail. The outputs of the
ArbMux 603' described previously are shown as being input
to the ArbDatSM 604" at a top edge thereol. These inputs are
used by the ArbDatSM 604' to determine which master 1s to
be granted the bus by asserting one of the Data Bus Grant
signals DBG,, through DBG, . , output by the ArbDatSM
604'. The same mputs are also used by the ArbDatSM 604' to
determine which SSD signal of the target slave 1s to be
asserted according to the queue location that the transaction
occupies within the slave queue. Which slave 1s 1n fact the
target slave 1s identified by the frontmost master queue
entries, shown as being input to the ArbDatSM 604" at a left
edge thereof in like manner as 1n FIG. 6.

The ArbDatSM 604' outputs an SSD signal corresponding,
to each slave queue location. Hence, for Slave 0, the outputs
ofthe ArbDatSM 604" include SSD,, SSD, 1, ..., SSDy 5, 15
and so forth for each slave up to and including Slave S+1, the
outputs for which imclude SSD ¢ 1,5, SSDg 1y, - - -

SSD(S+1)(Q+1)'
The 1nputs to the bottom edge of the ArbDatSM 604" are

used by the ArbDatSM 604' to ensure that data dependencies
are observed and to realize a further optimization as described
more fully heremafter.

In 1ts basic operation, the ArbDatSM 604' performs the
following functions:

1. Determines the highest priority master having a transac-

tion “ready to go” based on:

a) the SlvMatch bits for all of the masters;

b) the read/write bits from the frontmost queue locations
of all of the master queues; and

¢) the SlvRdReady bits for all of the masters.

2. Asserts the corresponding DBG signal for the winning,

master; and

3. Asserts the correct SSD si1gnal for the target slave based

on:

a) the SlvMatch bits for the winming master; and

b) the SACK vector 1n the frontmost queue location of
the winning master.

As may be appreciated from the foregoing description, the
system of FIG. 19 1s much more loosely coupled than the
system of FIG. 6. The loosely-coupled nature of the system of
FIG. 19 may be taken advantage of to improve the way 1n
which deadlocks are avoided.
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As previously described 1n relation to FIG. 6, slave order-
ing 1s amajor cause of deadlock. When what would otherwise
be a deadlocking transaction is detected, 1t 1s “killed” by
1ssuing an ARftry signal. Without slave ordering, a large pro-
portion of what would otherwise be deadlocking transactions,
instead of being killed, can now be accepted and reordered 1n
relation to other transactions so as to avoid deadlock. Such
reordering 1s not possible, however, when a data dependency
exists. For example, a read of one data location by one device
followed by a write of the same data location by another
device does not yield the same result as 11 the execution order
1s reversed. If a deadlock situation cannot be avoided by
transaction reordering because of a data dependency, the need
remains to kill the deadlocking transaction.

Of course, data dependencies may also exist absent any
potential deadlock situation. Observing such data dependen-
cies will not cause any transaction to be killed as 1n a deadlock
situation, although 1t may reduce somewhat the utilization of
the bus.

Information regarding data dependencies 1s mput to the
ArbDatSM 604" in the form of address coincidence (AC)
signals from each of the slaves. Using this information, the
ArbDatSM 604' schedules transactions so as to observe all
data dependencies. For each of slave devices 0 to S+1, the
ArbDatSM 604' recerves Q(Q+1)/2 address coimncidence bits.
In the case of Q=2, for example, the ArbDatSM 604' receives
three address coincidence bits from each slave: AC,,, AC,,,
and AC,,, each indicating that the two subscripted queue
locations have target addresses within the same cache line.

In operation, the ArbDatSM 604' uses the address coinci-
dence signals as follows:

1. The ArbDatSM selects for each master a set of address
comncidence bits from a particular slave 1n accordance
with the SACK vectors at the head of the respective
master queues.

2. Each selected set of address coincidence bits 1s used to
determine for that particular slave device which queue
location or locations cannot have the transaction queued
therein go next without violating a data dependency.

3. For each master, the SlvMatch bits mput to the Arb-
DatSM are modified in accordance with the results of
Step 2 to turn off selected SlvMatch bits, 11 necessary, in
order to ensure that data dependencies are observed.

To take a concrete example, assume that the frontmost
queue entry for Master 0 designates Slave 0. Assume further
that the SlvMatch bits for Master 0 are 010, indicating that the
match 1s for queue entry 1 of Slave 0. Without taking into
account the address coincidence bits of Slave 0, the transac-
tion 1 queue entry 1 will be executed 1 Master 0 1s the
winning master. Now assume that the address coincidence
bits of Slave 0 are 100, indicating that the transactions within
queue locations 0 and 1 are directed to the same cache line. A
data dependency therefore exists between the transactions
such that they must be executed in order. To prevent the
transaction 1n queue entry 1 from being executed before the
transaction in queue entry 0, the SlvMatch bits of Master 0 are
modified, e.g., changed from 010 to 000. The same modifi-
cation 1s performed for each arbitration cycle until the trans-
action in queue entry 0 has executed. The address coincidence
bits for Slave 0 will then be 000. The SlvMatch bits of Master
0 then, mstead of being modified, remain 010 such that the
transaction in queue entry 1 may be executed next 11 Master ()
1s the winning master.

The ArbDatSM 604' uses the page coincidence (PC) bits in
a similar manner, not to enforce data dependencies but to
reduce slave latency and boost system performance. In the
illustrated embodiment, PC bits are received from DRAM
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only. In other embodiments, PC bits may be received from
other or additional slave devices. The slave device 1s respon-
sible, once a PC bit has been asserted, to keep that PC bait
asserted until both of the page-coincident transactions have
been executed (or, more precisely, scheduled for execution).

In operation, the ArbDatSM 604' determines to which mas-
ters the PC bits will be applied, e.g., which masters have a
DRAM transaction at the front of their queues, 1n accordance
with the SACK vectors at the head of the master queues. The
PC bits are then used to determine which queue locations
cannot have the transactions queued therein go next without
forfeiting the speed advantage to be gained from paged
access. In practice, 1f a PC bit 1s asserted, the transactions to
which the PC bit relates will be scheduled for execution prior
to any other transactions involving the DRAM. In other
words, 1f the DRAM has three transactions queued, two of
which are to the same page, the execution order will be
COINCIDENT, COINCIDENT, NON-COINCIDENT,
instead of NON-COINCIDENT, COINCIDENT, COINCI-
DENT, although both sequences yield the same speed advan-
tage. In other embodiments, any execution order that results
in the page-coincident transactions being executed one after
another without any intervening transaction may be accept-
able for purposes of the PC bits.

The AC and PC bits may be regarded as control inputs to a
bit filter that operates upon the SlvMatch bits, as shown 1n
FIG. 23.

The mputs and outputs of ArbDatSM 604’ are 1llustrated 1n
greater detail in FIG. 24 for the case M=4, S=5 and Q=2.

Referring to FI1G. 25, the inputs and outputs of the ARtry-
Gen block 613" are 1llustrated 1n greater detail. The inputs
along the top and left edges of the ARtryGen block 613
remain unchanged compared to the ARtryGen block 613 of
FIG. 6. Unlike the ARtryGen block 613 of FIG. 6, however,
the ARtryGen block 613', instead of generating ARtry based
on the assumption of ordered slaves, uses certain deadlock
address-coincidence (DLAC) inputs recetved at the bottom
edge of the block to generate a “qualified” ARtry signal only
when a data dependency prevents transactions from being
reordered so as to avoid the deadlock. The slave devices each
monitor each system bus address tenure and compare the
address placed on the bus to addresses queued within the
respective slave devices. It the address on the bus 1s the same
as an address already queued within the slave device, the slave
device raises 1ts DL AC signal to the ARtryGen block 613'. All
slave devices or only selected slave devices (most importantly
DR AM) may monitor the bus and signal the ARtryGen block
613' 1n this manner. In the illustrated embodiment, all slave
devices are assumed to provide a DLAC signal. The ARtry-

Gen block 613" therefore receives signals DLAC, through
DLAC . 1)-

In operation, when the ARtryGen block 613" detects a
potential deadlocking transaction to a particular slave device,
it checks to see if the DLAC bit for that slave device 1s
asserted. If the DLAC bit for that slave 1s not asserted, then no
ARftry signal 1s generated. If the DLAC bit for that slave
device 1s asserted, then an ARtry signal 1s generated.

The mputs and outputs of ARtryGen block 613" are 1llus-
trated 1n greater detail in FIG. 26 for the case M=4, S=5 and
Q=2.

It will be apparent to those of ordinary skill 1n the art that
the present invention may be embodied 1 other specific
forms without departing from the spirit or essential character
thereolf. The presently disclosed embodiments are therefore
considered 1n all respects to be 1llustrative and not restrictive.
The scope of the mvention 1s indicated by the appended
claims rather than the foregoing description, and all changes
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which come within the meaming and range of equivalents
thereot are intended to be embraced therein.

I claim:

[1. In a computer system having a system bus and having
arbitration circuitry, multiple master devices including a sys-
tem microprocessor, and multiple slave devices, all coupled
to the system bus, a method of reordering system bus trans-
actions, comprising the steps of:

receiving and queuing within a particular slave device a

plurality of transactions;

within said arbitration circuitry, arbitrating between pend-
ing transactions based on arbitration policies including
an arbitration policy that responses are received by
respective master devices in the same order as requests
were 1ssued by the respective master devices; and

at least some of the time, said arbitration circuitry, without

signalling said microprocessor, signalling said particu-
lar slave device such that the system bus 1s granted for a
later queued transaction within said particular slave
device prior to being granted for an earlier queued trans-
action. }

[2. The method of claim 1, comprising the further step of
maintaining for each master device a master queue 1n which
respective queue entries 1dentily respective target slave
devices, and maintaining for each slave device a slave queue
in which respective queue entries 1dentily respective originat-
ing master devices.]

[3. The method of claim 2, wherein the step of arbitrating
turther comprises 1dentifying a winning master device based
at least 1n part on a priority ordering of said master devices,
and determining for at least said winning master device a
matching queue entry within a slave queue 1dentified by a
frontmost queue entry within the master queue of the winning
master device, the matching queue entry 1dentifying the win-
ning master device.]

[4. The method of claim 3, wherein the step of signalling
said particular slave device comprises signalling to the par-
ticular slave device the matching queue entry 1dentitying the
winning master device.]

[5. The method of claim 4, comprising the further step of
the slave devices 1dentifying to the arbitration circuitry pairs
of transactions involving the same address block.]

[6. The method of claim 5, wherein the arbitration circuitry,
in 1dentifying the winning master device, ensures that for
cach pair of transactions i1dentified by the slave devices, a
corresponding earlier queued transaction 1s executed prior to
a corresponding later queued transaction. ]

[7. A computer system comprising:

a system bus;

multiple master devices, including a system microproces-

sor, each coupled to the system bus;

multiple slave devices each coupled to the system bus and

cach comprising a transaction queue for queuing mul-
tiple transactions; and

arbitration circuitry coupled to the system bus and sepa-

rately coupled to the multiple slave devices for, without
signalling said microprocessor, signalling a particular
slave device such that within said particular slave device
a later queued transaction 1s executed prior to an earlier
queued transaction. ]

[8. The apparatus of claim 7, wherein said arbitration cir-
cuitry comprises:

multiple master queues, each corresponding to one of said

master devices, in which respective queue entries 1den-
tify respective target slave devices;
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multiple slave queues, each corresponding to one of said
slave devices, 1n which respective queue entries 1dentify
respective originating master devices;

means for determining a winning master device based at
least in part on a priority ordering of said master devices;
and

means for determining for at least the winning master
device a matching queue entry within a slave device
identified by a frontmost queue entry within the master
queue of the winning master device, the matching queue
entry identifying the winning master device.}

[9. An arbiter comprising:

an address arbitration circuit for recerving bus request sig-
nals from multiple master devices and in response
thereto generating address bus grant signals for the mas-
ter devices;

a queuing structure including multiple master queues, each
corresponding to one of the master devices, and multiple
slave queues, each one corresponding to one of multiple
slave devices each having a transaction queue, the queu-
ing structure recerving the bus grant signals and receiv-
ing respective slave acknowledge signals from respec-
tive slave devices, wherein each time an address bus
grant 1s 1ssued a record 1s entered in the queuing struc-
ture, the record comprising a first entry 1n a master queue
identified by the address bus grant signals, the first entry
identifying a target slave device 1n accordance with the
slave acknowledge signals, and a second entry 1n a slave
queue 1dentified by the slave acknowledge signals, the
second entry identifying an originating master device in
accordance with the address bus grant signals;

a matching circuit responsive to queue entries from the
queuing structure for producing match bits identifying
selected records the first entry of which 1s at the head of
a master queue; and

a data arbitration circuit responsive to the match bits and to
queue entries from the queuing structure for generating
data bus grant signals for the master devices and for
generating for each slave device a multibit signal which
when active 1dentifies a transaction within the transac-
tion queue of the slave device.}

[10. The apparatus of claim 9, wherein said selected
records include all records within the queuing structure the
first entry of which is at the head of a master queue.}

[11. The apparatus of claim 10, wherein the match bits
partially identify said selected records, entries at the head of
the master queues being used 1n combination with the match
bits to uniquely identify the selected records.]

[12. The apparatus of claim 11, wherein the matching
circuit 1s responsive to read-ready signals from the slave
devices for producing read-ready bits 1n one-to-one corre-
spondence with the match bits.}

[13. The apparatus of claim 12, wherein the matching
circuit produces a match bit and a read-ready bit for each
queue location of the slave device transaction queues. ]

[14. The apparatus of claim 12, wherein the data arbitration
circuit produces a signal bit for each queue location of the
slave device transaction queues.}

[15. The apparatus of claim 12, wherein the data arbitration
circuit comprises a bit filter and 1s responsive to address
comncidence signals from the slave devices for filtering the
match bits prior to selecting a winning master device.}

[16. The apparatus of claim 15, wherein the address coin-
cidence signals 1dentily pairs of transactions mmvolving the
same block of addresses.}

[17. The apparatus of claim 16, wherein the data arbitration
circuit ensures that for each pair of transactions identified by
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the slave devices, a corresponding earlier queued transaction
is executed prior to a corresponding later queued transaction.}

18. An arbitration circuit for a computer system, the arbi-
tration circuit adapted to couple with a plurality of slave
devices having transactions queued for execution, the arbi-
tration circuit further adapted to signal any of the plurality of
slave devices to reorder their transactions without signaling
a microprocessor of the computer system.

19. The arbitration circuit of claim 18, wherein the arbi-
tration circuit is further adapted to receive, from a slave
device, an identification of a pair of transactions that involve
a same address block.

20. The arbitration circuit of claim 19, wherein the arbi-
tration circuit is further adapted to ensure that for the iden-
tified pair of transactions, an earlier-queued transaction is
executed prior to a later-queued transaction.

21. A computer-implemented method for reordering trans-
actions, the method comprising:

receiving and queuing within a slave device a plurality of

transactions for execution; and

signaling the slave device to reorder its transactions with-

out signaling a micrvoprocessor of the computer system
that the transactions ave being reovdered.

22. The computer-implemented method of claim 21, further
comprising rveceiving, from the slave device, an identification
of a pair of transactions that involve a same address block.

23. The computer-implemented method of claim 22, further
comprising ensuring that for the identified pair of transac-
tions, an earlier-queued transaction is executed priov to a
later-queued transaction.

24. An arbiter apparatus comprising:

an address arbitration circuit for receiving bus request

signals from multiple master devices and in response
thereto generating address bus grant signals for the
master devices;

a queuing structure including multiple master queues,

each corresponding to one of the master devices, and
multiple slave queues, each one corresponding to one of
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multiple slave devices each having a transaction queue,
the queuing structurve veceiving the bus grant signals and
receiving respective slave acknowledge signals from
respective slave devices, wherein each time an address
bus grant is issued a vecord is entered in the queuing
structure, the vecovd comprising a first entry in a master

queue identified by the address bus grant signals, the

fivst entry identifving a tavget slave device in accovdance

with the slave acknowledge signals, and a second entry
in a slave queue identified by the slave acknowledge
signals, the second entry identifving an orviginating mas-
ter device in accovdance with the address bus grant
signals;

a matching circuit vesponsive to queue entries from the

queuing structuve for producing match bits identifving
selected recovds the first entry of which is at the head of
a master gueue, wherein said selected vecords include
all vecords within the queuing structure the first entry of
which is at the head of a master queue, and wherein the
match bits partially identify said selected records,
entries at the head of the master gueues being used in
combination with the match bits to uniquely identify the
selected vecords, and wherein the matching circuit is
responsive to read-ready signals from the slave devices

for producing read-veady bits in one-to-one corvrespon-

dence with the match bits, and wherein the matching
circuit produces a match bit and a read-ready bit for
each queue location of the slave device transaction
queues; and

a data arbitration circuit responsive to the match bits and

to queue entries from the queuing structuve for generat-
ing data bus grant signals for the master devices and for
generating for each slave device a multibit signal which
when active identifies a transaction within the transac-
tion queue of the slave device, wherein the data arbitra-
tion circuit produces a signal bit for each queue location
of the slave device transaction queues.
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