(19) United States

12 Reissued Patent
Youn et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE44687E

US RE44,687 L
Dec. 31, 2013

(54) PREDICTION-BASED DYNAMIC THREAD
POOL MANAGEMENT METHOD AND

AGENT PLATFORM USING THE SAME

(71) Applicant: Sungkyunkwan University, Suwon-S1
(KR)

(72) Inventors: Hee Yong Youn, Seongnam-si1 (KR); Ji
Hoon Kim, Seoul (KR)

(73) Assignee: Sungkyunkwan University, Suwon-S1
(KR)

(21) Appl. No.: 13/815,568

(22) Filed: Apr. 10, 2013
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 8,296,454
Issued: Oct. 23,2012
Appl. No.: 12/022,889
Filed: Jan. 30, 2008
(30) Foreign Application Priority Data
Jun. 13,2007 (KR) ... 10-2007-0057707
(51) Int.CL.
GOol’ 15/16 (2006.01)
GO6l’ 9/46 (2006.01)
(52) U.S. CL
USPC e 709/232;°718/102
(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,207,043 B2* 4/2007 Blytheetal. 718/104

7,237,242 B2* 6/2007 Blytheetal. 718/105
2003/0056123 Al* 3/2003 Hsiehccoooeeiiiiin, 713/300
2003/0196136 Al* 10/2003 Haynesetal. 714/13
2007/0197877 Al* 82007 Decorteetal. 600/300
2007/0254732 Al* 112007 Walkeretal. 463/16
2008/0295107 Al* 11/2008 Muscarella 718/104

FOREIGN PATENT DOCUMENTS

7/2004
6/2007

KR 1020040062410
KR 1020070059837

* cited by examiner

Primary Examiner — Peter-Anthony Pappas
Assistant Examiner — Thomas Richardson

(74) Attorney, Agent, or Firm — Lexyoume IP Meister,
PLLC.

(57) ABSTRACT

The present invention relates to a prediction-based dynamic
thread pool management method and an agent platform using
the same. An prediction-based dynamic thread pool manage-
ment method according to the present invention includes: (a)
calculating a thread variation to a variation of the number of
threads at a time t1, (b) calculating the number of expected
threads expected at a time {2 on the basis of the thread varia-
tion, (¢) determining a change of the thread variation accord-
ing to the time elapsed, and (d) decreasing an executing
frequency of said steps (a) and (b) when it 1s determined that
the change of the thread variation at said step (c¢) 1s small and
increasing the executing frequency of said steps (a) and (b)
when 1t 1s determined that the change of the thread variation
1s large.

8 Claims, 8 Drawing Sheets

nz 4 F 5 ¥%1*‘**¥%1‘?'§i*fi‘?fl‘?—!I*f--!'F"*!Ffﬂi"l‘FF?%¥HFFFJ'!#*?*“'?**?-HE*’**?'#/EF*’EI#!’F*lr;ﬁ"ii-?i'l-i"-*‘f#

| |

’ A
5

r & i

[o |]

r 1

=

U.S. Patent Dec. 31, 2013 Sheet 1 of 8 US RE44.,687 E

FIG. 1

nz SEREESEE N EEEEEEEREE IR SR AR EEE A SRR S S S R AR S A LR AL R R R AR IR A R R
- ..I
A
I
& -
B .
T "
L
-*'rl. ;
. 3
- |
w 1
T ¥
- |
2 L 5 1
. : . ,g-;ﬁ:"Ef 3 » :
I‘] .-I F 3 E I BRI R+ FI PR P EFEREYERFPFEFRPPIPFETERGTE & &2 § 7 'E*J] Ry T P PR R PR SR T FR R AT RS
__ ' - "
E . r r
-- _ » r
ST) ¥ "
E
| *
(™
W ™
'Iu.r -
- -
k
- L
*
T T
- .
b ™
* - "
‘ ekl (=
/_./ s
L]
L %
f-’_{.‘ - = ™
-
. - L ;
* - :
/ff .
. 1 1
__,-'"J-’ b X I
_.-'-H » L h
*
[k
h [[
: | v
= L
u-hﬂ_*-"" : L = L
- k"
b
- it "

L

g
N

—r
Lt

US RE44,687 L

Sheet 2 of 8

Dec. 31, 2013

U.S. Patent

FIG. 2

[T W & §F 5§ 8T § EF N

j;;;iaii .

" aaies iii-i‘i‘%

. T e T, I PP P i Pl M Pl PSP B L

U.S. Patent Dec. 31, 2013 Sheet 3 of 8

H

Life-cycle |} agent
manager | descr iptor

YRt g iplguinio-Jersbeapt e g g i e

thread pool |
controller §

agent container

1 7.

platform |
manager

a '
-
e
'
l--!'-lil-fi-.nl.:l_-i-'-i-:i:}'-l'i-.i'.i :l-ll Ay A A A A g ma oA A ra

main contalner

0

— — |
communication | parser |

31 32

30

US RE44,687 L

agent platform core f

- message |

queue E

33

MTP |

US RE44,687 L

Sheet 4 of 8

Dec. 31, 2013

U.S. Patent

3 | B |
UCISSIWSUB S| LOISSIWSLE) | j o i novd | TV
obesSey 189 | LU0 188G) obessol Jdii
s18(8(| | -
oBESSE| 515150 01u0h] v
191s1H8 19g - T -
1915168 J8Q) SOESSON d LI
yoJtess | | -
w ooy [T N
oBESSE| o180 [[- YOYETIV)
— e e ——— e -— mw ,m.wmmm
1015105 Uo11BOO[[Y | | [0J43U0D A il
eysibey [[
[IIoiield
_ lielg
_ B T Tuwopield
U) 2leo .l) _mu\mw(_o |) 11U il
ayeely [| - -
518919
s1ee1n | | 1L
memmms_ 1004 pealyl)i 18} |C4IUC)H | | J8ulBIUON | dnoinpes Il Jst 1 BluonH 1018 d
A1 1uaby 1004 Pe8IY]|| Jusbhy Ul ey 10V UlRY 1ushy
_ L § T

U.S. Patent

Dec. 31, 2013 Sheet S of 8

US RE44,687 L

-, 9 L oo _ o o -~ _ o _
- |
w H
74 |
83 ;
E o
D § :
:
= 7L_ o i o e - o
I AT E
o ;
:
€
) E ;
c g ETTET —
! ¥
€A, |
0 55
L o o _ _ o _ o -
QD a
o
i 1
Iy b
i t i
: : :
| |
I
R — ; — e —

5 B
Number of thread

—&— the proposed scheme —8—watemark

U.S. Patent Dec. 31, 2013 Sheet 6 of 8 US RE44.,687 E

Memory usage (KB)

Number of thread

-—&— e proposed scheme —8®—watemark

s . [N T

U.S. Patent Dec. 31, 2013 Sheet 7 of 8 US RE44.,687 E

e e
i
1
I
I
I
I
I
I
I
|
|
|
|
I
|
|
I
I
I
|
I
|
|
I
I
|
I
|
I
|
|
I
I
|
I
|
|
|

)
:
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
I
|
|
|
|
|
|
I
|
I
|
|
I
|
|
|
I

N
|
:
:
z
|
I
!
|

Response time (m sec)

| 2 3 4 5 6 7 8 9 10
Number of thread

—&— e proposed scheme —&—watem ark

rorira ra.

U.S. Patent Dec. 31, 2013 Sheet 8 of 8 US RE44.,687 E

Number of thread

—a— the proposed scheme —&—watemark

[LETITELY 1]

FETTLE FLLE PE] L

US RE44,687 E

1

PREDICTION-BASED DYNAMIC THREAD
POOL MANAGEMENT METHOD AND
AGENT PLATFORM USING THE SAME

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CLAIMING FOREIGN PRIORITY

The applicant claims and requests a foreign priority,
through the Paris Convention for the Protection of Industrial
Property, based on patent applications filed in the Republic of
Korea (South Korea) with the filing date of Jun. 13, 2007 with
the patent application number 10-2007-0057707 by the appli-
cant, the contents of which are incorporated by reference into
this disclosure as 1f fully set forth herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present 1nvention relates to a prediction-based
dynamic thread pool management method and an agent plat-
form using the same; and, more particularly, a prediction-
based dynamic thread pool management method capable of
preventing a delay of response time by generating a thread
with previously predicting the number of required threads and
performing quick management by suppressing unnecessary
waste ol resources by increasing the efficiency of resource

utilizations and an agent platform using the same.

2. Background of the Related Art

Recently, real-time system technologies such as wireless
communications, mobile computing and intelligent agents
have realized new paradigms of applications for accessing,
information anytime and anywhere. The applications for an
ubiquitous system need not only to utilize resources distrib-
uted and environment but also to provide intelligent services
to users.

In order to satisly these requirements, the applications
should require a high degree of flexibility and adaptability 1n
order to deal with dynamic ubiquitous environments and het-
crogeneous platforms. Also, the applications should be real-
1zed by the use of the mntelligent agents which provide cus-
tomized services to each user.

Moreover, the platform 1itself should be able to provide an
optimized service of platform level. Generally, 1n order to
realize this, an agent platform has used a multi-thread model
to support a concurrency to simultaneously provide the ser-
vices to the agents.

Brietly to describe the agent platform, firsts the agent
denotes software which automatically carries out a job which
the user desires on behalf of the user 1n a user’s view. The
character of agent can be autonomy, intelligence, mobility,
social ability or the like.

In addition to the basic characteristics of the agent, the
agent has reactivity to respond against a change 1n an envi-
ronment, veracity to prevent exchange of wrong information
and rationality to achieve an object by the use of a rational
method.

The agent 1s largely classified into a multi-agent and a
mobile-agent. The multi-agent has a structure 1n which com-
plicated and various operations, which cannot be solved by
only one agent, can be carried out through collaboration
between agents and the mobile-agent has a structure 1n which

10

15

20

30

35

40

45

50

55

60

65

2

a program 1tsell moves through a network so as to process
tasks depending on a user’s object.

The agent platform should support agent communication
languages such as ACL (Agent Communication Language)
and KQML (Knowledge Query Mamipulation Language) so
that the agents existing on heterogeneous systems collaborate
with each other. Currently, agent platforms such as JADE and
Aglets have been widely used.

Herein, FIPA (Foundation for Intelligent Physical Agents)
agent management specifications identily roles of key agents
required for managing the platform, and describe agent man-
agement languages and ontology.

Meanwhile, thread management models such as creation
and deletion of a thread have been proposed 1n various forms
under an environment of a computing system such as an agent
system.

A thread per request model creates a new thread at a user’s
request and deletes the created thread after processing the
corresponding request. Since the thread per request model has
a simple structure and 1s easily realized, the thread per request
model 1s recognized as a model suitable for database search-
ing or file transferring 1n which it takes a relatively long time
to process one request.

However, the thread per request model creates the new
thread and processes the thread when the user’s request
exists, and deletes the corresponding thread when the pro-
cessing of the corresponding request 1s completed. At this
time, since the thread per request model may be overloaded
by the creation and deletion of the threads, the thread per
request model 1s judged as an 1neificient structure in case that
it recerves many requests from the users.

A worker thread pool model was proposed as an alternative
to the thread per request model. The worker thread pool
model previously creates a predetermined number of worker
threads to form a thread pool. The worker thread pool model
allocates one worker thread 1n the thread pool at the user’s
request and makes the worker thread be on standby 1n the
thread pool when the processing 1s terminated.

Therefore, the worker thread pool models have advantages
to shorten a response time and eliminate a danger of exhaus-
tion of system resources caused by excessive creation of the
thread by removing the overload occurring the creation and
deletion of the worker thread.

However, since the predetermined number of worker
threads should be maintained in spite of receipt of small
number of user’s requests, a predetermined amount of system
resources 1s allocated 1n the worker thread pool model. Even
though system resources to which the thread pool 1s allocated
remain, the user’s request should be on standby until the
worker thread completes the previous operation in case of
receipt of larger number of user’s requests. As described
above, the worker thread pool model has a defect that the
system resource cannot be efficiently utilized.

A watermark thread pool model has been developed to
cificiently utilize the system resource while maintaining a
response time to the user’s request short by dynamically
changing the size of thread pool according to the user’s
request amount.

Low and high watermarks are set in the worker thread pool
and the worker thread as high as the low watermark 1s previ-
ously created at the time of starting a service. When all
threads as high as the low watermark are used due to the large
number of user’s requests, the worker threads which will
process the user’s request are created betfore the high water-
mark.

However, the watermark thread pool model cannot provide
an optimized solution from the viewpoint of the response time

US RE44,687 E

3

or elficient usage of the system resource accompanied by
creation of the threads in that 1t changes the size of the thread
pool 1n case of receipt of the user’s request.

[,

SUMMARY OF THE INVENTION

Technical Problem

It 1s therefore an object of the present invention to provide
a prediction-based dynamic pool management method
capable of preventing a delay of response time by generating
a thread with previously predicting the number of required
threads and performing quick management by suppressing
unnecessary waste of resources by increasing the efficiency
of resource utilizations and an agent platform using the same.

Technical Solution

In order to achieve the above-mentioned object, a predic-
tion-based dynamic thread pool management method accord-
ing to the present invention includes: (a) calculating a thread
variation to a variation of the number of threads at a time t1;
(b) calculating the number of expected threads expected at a
time t2 on the basis of the thread vanation; (¢) determining a
change of the thread vanation according to the time elapsed;

and (d) decreasing an expecting frequency of said steps (a)
and (b) when 1t 1s determined that the change of the thread
variation at said step (c¢) 1s small and increasing the expecting,
frequency of said steps (a) and (b) when it 1s determined that
the change of the thread variation 1s large.

Herein, the step (¢) may include: (cl) setting a sampling
constant defining the number of the thread variations sampled
per hour; (¢2) sampling the thread variations per hour as many
as the sampling constant; (¢3) calculating an average and a
variance ol the sampled thread variations; (c4) applying the
sampled thread variations, the average of the sampled thread
variations and the variance of the sampled thread variations to
a Gaussian probability density function; and (¢5) determining
that the change of the thread variation 1s small 1n case that the
change of the thread variation 1s out of a predetermined ret-
erence range from a center of a result of the application of the
(Gaussian probability density function and determining that
the change of the thread vanation is large in case that the
change of the thread varnation 1s within the reference range
trom the center of the result of the application of the Gaussian
probability density function.

Herein, the Gaussian probability density function is repre-
sented by

o —m)* 20
f(x) =

V 2o

(where, x represents the thread variation, m represents the
average of the thread variations and o~ represents the density
of the thread varnations.)

And, the step (d) includes: (d1) increasing the executing
frequency of said steps (a) and (b) by a predetermined refer-
ence unit in case that 1t 1s determined that the change of the
thread variation 1s out of the reference range from the center
of the result of the application of the Gaussian probability
density function 1n the step (c5); and (d2) decreasing the
executing frequency of said steps (a) and (b) by the predeter-
mined reference unit 1n case that 1t 1s determined that the
change of the thread variation i1s within the reference range

10

15

20

25

30

35

40

45

50

55

60

65

4

from the center of the result of the application of the Gaussian
probability density function in the step (c5).
And, the center of the application result of the Gaussian
probability density function is determined by a Q-Function.
Herein, the steps (d1) and (d2) are represented by

(it ¥ a,. 20| > R then At, = At, — At,,

it ¥ a.20|

< R then At; = Aty + At,,

(where, a, represents the thread vanation, Q(X) represents the
Q-Function, R represents the reference range, At_, represents
a time taken to create one thread, and At , represents a value
corresponding to one cycle 1n the executing frequency of the
steps (a) and (b) and 1s integral multiple of At_).

On the other hand, 1n order to achieve the above-mentioned
object, an agent platform 1n accordance with another embodi-
ment of the present invention includes: a message transport
protocol transmitting and receiving messages to and from
agents on the basis of HI'TP by using an agent communica-
tion language to enable cooperation between agents existing
in heterogeneous systems; and an agent platform core man-
aging the agents by transmitting and recerving the messages
to and from the agents via the message transport protocol by
the use of a thread pool managed by a prediction-based
dynamic thread pool management method.

Herein, the agent communication language includes an
ACL (Agent Communication Language).

And also, the agent platform core includes: a main con-
tainer being 1n charge of execution and management of a
platform; an agent container managing the agents by hierar-
chically grouping the agents with a container; and an agent
description table managing a reference value for information
on the agents by using IDs of the agents as key values.

Herein, the agent container includes: a life-cycle manager
monitoring the conditions and operations of the agents; an
agent descriptor managing agent specification information
including the IDs, addresses and functions of the agents; and
a thread pool controller managing the thread pool through the
prediction-based dynamic thread pool management method.

And, the message transport protocol includes an HI'TP
communication imncluding an HT'TP server module process-
ing messages recerved from the agents on the basis of HI'TP
and an HTTP client module processing the messages trans-
mitted to the agents on the basis of the HT'TP; an ACL parser
encoding and decoding an ACL message for transmitting and
receiving data to and from the agents; and a message queue
performing ordering and queuing of the messages transmitted
to and received from the agents through the HI'TP commu-
nication.

Eitect of the Invention

As described above, according to the present mvention,
there are provided a prediction-based dynamic pool manage-
ment method capable of preventing a delay of response time
by generating a thread with previously predicting the number
of required threads and performing quick management by
suppressing unnecessary waste of resources by increasing the
elficiency of resource utilizations and an agent platform using
the same.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a graph 1llustrating the number n of threads versus
the time t;

US RE44,687 E

S

FIG. 2 1s a Gaussian probability density graph 1llustrating
an average and variance of thread varniations according to the
present invention;

FI1G. 3 1s a diagram 1llustrating a configuration of an agent
platform to which a prediction-based dynamic thread pool
management method according to the present invention;

FI1G. 4 1s a diagram 1illustrating the operation condition of
an agent platform core of the agent platform of FIG. 3;

FIG. 5 1s a graph 1llustrating a comparative analysis of a
response time performance 1n overload between a conven-
tional watermark thread pool model and the prediction-based
dynamic thread pool management method according to the
present invention;

FIG. 6 1s a graph illustrating a comparative analysis of
memory usage in the overload between the conventional
watermark thread pool model and the prediction-based
dynamic thread pool management method according to the
present invention;

FIG. 7 1s a graph 1llustrating a comparative analysis of a
response time performance in low load between the conven-
tional watermark thread pool model and the prediction-based
dynamic thread pool management method according to the
present invention, and

FIG. 8 1s a graph illustrating a comparative analysis of
memory usage in the low load between the conventional
watermark thread pool model and the prediction-based
dynamic thread pool management method according to the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

Hereinafter, embodiments of the present invention will be
described 1n more detail with reference to the accompanying
drawings.

A prediction-based dynamic thread pool management
method according to the present invention proposes a method
of quickly supplying optimal services and efficiently using
resources. The prediction-based dynamic thread pool man-
agement method can improve the response time of an agent
platform efficiently 1n case that the number of agent’s
requests 1s large by dynamically managing the number of
threads according to an agent’s request amount.

That 1s, the prediction-based dynamic thread pool manage-
ment method according to the present invention considers the
following matters so as to efliciently utilize the system
resource:

Creation of the threads: previously create a thread by
grasping an increment level when the number of requests
received from the agent increases.

Deletion of the threads: avoid a sharp decrement in the
number of threads when the number of requests recerved from
the agent decreases. The reason why avoiding the sharp
decrease 1n number of threads 1s that, after the number of
threads decreases rapidly according to the decrement in the
number of requests, unnecessary deletion and creation pro-
cesses are repeated when the number of threads increases
again. In order to prevent these problems, the thread 1s not

deleted immediately, but the thread 1s maintained for a pre-
determined time.

Increase/decrease rate of the threads: prevent a decrement
of the response time or inefficient utilization of the system
resource caused by the creation of the unnecessary threads by
decreasing the number of controls when the increase/de-
crease rate of the thread 1s low and increasing the number of
controls when the increase/decrease rate of the thread 1s high.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

The prediction-based dynamic thread pool management
method according to the present invention will be described
in more detail with reference to FIGS. 1 and 2.

FIG. 1 1s a graph illustrating the number of threads n for a
time t. Herein, n, represents the number of threads at the time

t and 1s defined as shown 1n Equation 1.

n, = {X| x 1s the number of thread in the system Equation 1

when time t}

The variation of the number of the threads at the time t, that
1s, the thread vanation at 1s defined and obtained from the
following Equation 2.

a’ = {x|x is the variant when time t} Equation 2

Ny — Iy Ay

t — At

For example, in FIG. 1, a number of expected threads at a
time t2 which can be predicted at the time t1 are obtained from
Equation 3.

Jexpecied (2, t1) = {X| x 1s the expected n,, when Equation 3

time t; }

— afl tz

Herein, expected (t,,t,) 1s a function for defining and
calculating the number of threads.

Meanwhile, when a time delay to which the number of the
expected threads 1s applied 1s represented by At, (a value
being 1n inverse proportion to the number of repeated pro-
cesses of predicting the expected threads per unit time), a time
taken to create one thread is represented by At_, an observa-
tion error function isrepresented by 1 and a used resource

EFFOF

1s represented by Resource,, they are defined as follows.

Aty = {x|x 1s the time delay between the time Equation 4
of applying variable a’}
At,, ={x| x 1s the time delay to make one thread} Equation 5

kcZ, ¥ At, Aty =k-At,
foror(t) ={X| X 15 expected value of error when time t}

— |fEIpEESIEd (t, &td) — Hrl

resource; = {X| X 1s exhausted resource in system Equation 6

k for thread pool scheduling

By considering the number of the expected threads
obtained from the above-mentioned method, as an applica-
tion range 1s changed from t1 to t2 and t3, {_ 1ncreases as
shown 1n FIG. 1. As the time delay At , decreases, a required
amount of consumed resource increases. That 1s, the time
delay At 1s 1n proportion to and 1s 1n mverse proportion to
Resource,.

Therefore, the prediction-based dynamic thread pool man-
agement method according to the present invention uses a
time delay variable algorithm where the time delay At

increases in case that a change of the thread variation 1s small

US RE44,687 E

7

and the time delay At ,decreases 1n case that the change of the
thread variation 1s large by grasping the change of the thread
variation. That 1s, a repetition number per hour (hereinaftter,
referred to as ‘executing frequency’) of a process for calcu-
lating the number of the expected threads, that 1s, a step of
calculating the thread variation to the variation of the number
of threads at a time t1 and a step of calculating the number of
the expected threads at a time t2 on the basis of the vaniation
of the thread decrease 1n case that the change of the thread
variation 1s small and the executing frequency increase in case
that the change of the thread varnation 1s large.

Hereinatter, the principle of the time delay variable algo-
rithm 1n the prediction-based dynamic thread pool manage-
ment method according to the present mvention will be
described 1n detail.

First, a sampling constant for defining the number of the
thread variations sampled per hour 1s set. Herein, 1n the pre-
diction-based dynamic thread pool management method
according to the present invention, setting the sampling con-
stant to 40 1s explained as one example.

In this example, the average and variance of 40 thread
variations per hour, a, are used. The sampling constant of 40
1s determined to be one of experimental values sensitive to a
change of the thread variations, a, through repeated experi-
ments.

The thread variations sampled as large as the sampling
constant per hour, and the average and variance (or standard
deviation) calculated by using the thread varnations are
applied to the Gaussian probability density function. The pdf

Equation of Gaussian varniables for the thread variations 1s
shown 1n Equation 7.

E_(I_m)z /202 Equation 7

f(x) =

V 2ro2

In Equation 7, x represents the thread variations, a, m
represents the average of the thread variations and o~ repre-
sents the variance of the thread variations. Herein, when it 1s
supposed that the average m and variance o of the threads
variations have values of 5 and 3, respectively, the values for
the average and the variance are plotted 1n the graph shown in
FIG. 2.

At this time, a delay decreases by a predetermined refer-
ence unit 1n case that the change of the thread variation 1s out
ol a predetermined reference range from the center calculated
through a Q-Function, for example, 70% 1n FI1G. 2 (above 7 or
below 3 1 FIG. 3) and the delay increases by the reference
unit 1n case that the change of the thread variation 1s within the
reference range.

This 1s represented by Equation 8.

d; — I Equation 8

(if Y a,. QQ[] > R then Aty = Aty — At,,

o

iV, QQFIHm]

< R then Aty = Aty + At,,

Herein, a, represents the thread variation, Q(x) represents 1s
the Q-Function, R represents the reference range, and At and
At , are the same as those described above.

By the above-mentioned configuration, in the prediction-
based dynamic thread pool management method, a delay of a
response time 1s prevented by predicting the number of
threads more actually by creating the thread by predicting the

5

10

15

20

25

30

35

40

45

50

55

60

65

8

number of required threads and applying time delay variable
algorithm as described above at the time of creating the
thread, and unnecessary waste of resources 1s preventing by
increasing the etficiency of resource usage, thereby quickly
coping with the problems.

Heremafiter, an agent platform 1 to which the prediction-
based dynamic thread pool management method according to
the present mnvention will be described 1n more detail with

reterence to FIGS. 3 and 4.

The agent platform 1 according to the present mvention
creates a thread pool 13 at the time of mitial driving. At this
time, the size of the thread pool 13 1s dynamically controlled
by an agent’s request. That 1s, when the agent platform 1
receives one request, the agent platform 1 allocates one thread
in the thread pool 13. Unless a worker thread does not exist,
the agent platform 1 creates a new thread.

As shown 1n FIG. 3, a thread pool controller 14 1s disposed
within an agent container 10 of the agent platform 1. The
thread pool controller 14 calculates the number of the
expected threads by the use of the above-mentioned {

expected

(t2,t1) and regulates the size of the thread pool 13 on the basis
of the calculated number of the expected threads.

The agent platform 1 includes a message transport Protocol
(MTP) 30 for transmitting and receiving messages to and
from the agent with credibility on the basis of HI'TP by the
use of the ACL (Agent Communication Language) of an FIPA
(Foundation for Intelligent Physical Agents) The agent plat-
form 1 turther includes an agent platform core 3 that manages
the agent and the agent platform 1.

Specifically to describe the components, the message
transport protocol 30 may include an HT'TP commumnication
31, an ACL parser 32 and a message queue 33.

The HTTP communication 31, which 1s a module for com-

municating the agents on the basis of an HI'TP, incorporates
both a client module and a server module. The HTTP server
module processes the message at the time of receiving the
message and the HT'TP client module processes the message
at the time of transmitting the message.
The ACL parser 32 encodes and decodes ACL messages
transmitted to and received from the agents. The message
queue 33 performs ordering and queuing of the message at the
time of receving and transmitting the messages from and to
several agents.

Meanwhile, the agent platform core 3 may include a main
container 20, an agent container 10 and an ADT (Agent
Description Table) 40.

The main container 20, which 1s a module for executing
and managing the agent platform 1, may include a platform
manager 22 and a service manager 21.

The platform manager 22 initializes the platform and trans-
mits the messages received from the message transport pro-
tocol 30 to agent processing modules. The service manger 21
manages registration of additional services added to the agent
platform 1 and the services.

The agent container 10 carries out the hierarchical group-
ing of agents having the same role and function by using a
container. Herein, the agent container 10 may include a life-
cycle manger 11, an agent descriptor 12, a thread pool 13 and
a thread pool controller 14.

The life-cycle manager 11, which 1s a thread for monitor-
ing and managing conditions and operations of the agents,
carries out start, suspend, resume and stop functions. The
agent descriptor 12 manages agent specification information
including IDs, addresses, and roles of the agents.

Herein, the thread pool 13 and the thread pool controller 14
manage the thread pool 13 by using the above-mentioned

US RE44,687 E

9

prediction-based dynamic thread pool management method
according to the present invention. Accordingly, description
thereof will be omitted.

The agent description table 40 1s a Hash table for managing,
a reference value for agent information by using the IDs of the
agents as key values.

Undescribed reference numeral 51 of FIG. 3 represents an
AMS (Agent Management System) and 1s an agent for totally
controlling the access to and the usage of the agent platform
1. The agent management system 31 provides a white page
service and manages life cycles of the agents.

Undescribed reference numeral 52 of FIG. 3 represents a
DF (Directory Facilitator) and searches an agent for a specific
service existing on a network as an agent provided to a yellow
page service from the agent platiform 1.

Hereinafter, a configuration and an operation of the agent
plattorm 1 according to the present mvention will be
described 1n more detail.

The agent platform core 3 calls and uses an MTP library.
The agent platform core 3 1s hierarchically constituted of one
main container 20 and a plurality of agent containers 10. The
agent container 10 manages a plurality of agent information
n a group.

The agent container 10 constitutes the agent information
by specification information for connection and management
of the agents, and condition information for the life cycles.
The agent thread carries out start, stop, resume and run func-
tions similarly as the current agent condition.

The agent platform core 3 plays roles 1n general manage-
ment of the agent platform 1 and connection of interactions
between the agents. The agent platform core 3 manages a
relationship between the service and a module through the
stream of main operations.

By this configuration, when the agent platform 1 starts, the
agent container 10 1s created. The main container 20 reads a
configuration file of XML format for imtialization. The con-
figuration file 1s constituted of version information, name,
address, port and resource information of the agent platform
1.

After then, the ADT 40 for direct access to the agent speci-
fication information 1s created. A main thread group table (not
shown) of the ADT 40 which manages reference values of the
agent container 14, the thread pool controller 14 and the
thread pool 13 are created.

The HT'TP server module of the HT'TP communication 31
of the message transport protocol 30 1s mitialized and com-
pletes preparation for recerving the ACL messages by call-
back. FIG. 4 1llustrates a flow of major operations of the agent
platform core 3 and 1s a diagram for describing a correlation
between the module and service for the management of the
agents.

Meanwhile, the ACL messages are transmitted so as to
register the agents 1n the agent platform 1. At this time, the
agent platform core 3 checks whether or not the ACL message
1s a message transmitted to the agent platiorm 1 through
receiver 1items of the ACL after receiving the call-back of the
messages from the message transport protocol 30. After the
agent platform core 3 checks whether the transmitted mes-
sage 1s aregistered message through content items of the ACL
and obtains the name, address, port, detailed information and
corresponding container information of the agent.

Next, the agent platform core 3 checks whether or not the
message has been already registered 1n the agent description
table 40 by using the ID of the agent as a Hash key and then,
it registers the ID of the agent when the message 1s not
registered 1n the agent description table 40.

10

15

20

25

30

35

40

45

50

55

60

65

10

At this time, the agent platform core 3 transmits a failure
message including a message ‘already-registered” to the
agent when the ID of the agent has been already registered
After the ID of the agent has been registered in the agent
description table 40, one agent thread in the tread pool 13 1s
allocated. The allocated agent thread has the detailed agent
information and performs dynamic momtoring depending on
the condition of the agent.

After checking whether the corresponding agent container
10 has been already created, a new agent container is created
when the corresponding container 10 does not exist and the
corresponding agent container 1s added to the existing agent
container 10 when the corresponding agent container 10
exists. As described above, when the registration 1s com-
pleted, the registered processing result 1s transmitted to the
agent.

Meanwhile, in case that a receiwver of the ACL message
received through the message call-back 1s not the agent plat-
form 1, the agent platform core 3 transmits a message 1ndi-
cating that the receiver 1s not the agent platform 1 to the
corresponding agent. At this time, the agent which transmits
the message does not have both physical address information
and port information of an agent which receives the message.
It requests the agent platform 1 to transmit the message with
the only ID of the agent which recerves the message.

Accordingly, the agent platform 1 obtains required infor-
mation from the agent thread module with the agent specifi-
cation information after searching the agent description table
40 for finding address information corresponding to the name
of the agent which receives the message and changes attribute
values such as the name and address of the agent which
receives the message. The agent platform 1 transmits the
changed attribute information to the corresponding agent.
The agent platform core 3 processes the message 1n parallel
with being supported from the message transport protocol 30.
The agent platform core 3 monitors the agent by the use of the
thread to collect management information.

Meanwhile, FIGS. 5 and 6 are graphs illustrating a
response time and memory usage i overload. As shown in
FIGS. 5 and 6, when the number of threads 1s not less than 4,
the prediction-based dynamic thread pool management
method according to the present invention i1s superior to a
known watermark thread pool model in the response time,
while the prediction-based dynamic thread pool management
method according to the present mvention needs more
memory usage of less than 0.5% than the known watermark
thread pool model.

Under experimental conditions shown in FIGS. 5 and 6, the
s1ze of the thread pool 1s predicted by transmitting the agent
request message every 0.1 second and setting an 1dle timeout
to 0.3 seconds before deleting the thread. As the agent’s
request amount increases, the number of threads to be sched-
uled also increases. Therefore, the response time itself
increases. In this case, 1t 1s preferable to decrease the response
time despite using more system resources. It 1s found that the
prediction-based dynamic thread pool management method
according to the present invention is preferable to the water-
mark thread pool model.

FIGS. 7 and 8 are diagrams illustrating the response time
and memory usage 1n low load. Under experimental condi-
tions shown 1 FIGS. 7 and 8, the agent request message 1s
transmitted every 5 seconds. In this case, the watermark
thread pool model has a low watermark value, and thus 1t
operates similarly as a worker thread pool model. As shown 1n
FIG. 7, the response time 1n the low load 1s similar to that 1n

US RE44,687 E

11

the overload. However, the prediction-based dynamic thread
pool needs memory still less than the watermark thread pool
in the memory usage view.

While preferred embodiments of the present invention
have been described 1n detail, the scope of the invention 1s not
limited to 1it, but various additional variations and modifica-
tions 1n those embodiments which occur to those skilled in the
art once they learn of the basic inventive concepts defined 1n
the appended claims belong to the scope of the invention.

What 1s claimed 1s:

1. A method for managing a thread pool 1n a computing
system using threads in the thread pool to execute tasks com-
prising:

(a) calculating a thread variation based on a number of

threads:

(b) calculating an expected number of threads to be
required for a future time based on the calculated thread
variation, so as to regulate threads in the thread pool
according to the expected number;

(¢) determiming a change from the previous thread varia-
tion and the present thread vanation; and

(d) decreasing an executing frequency of said steps (a) and
(b) 11 the change of the thread varnations at said step (¢)
1s determined as small and otherwise increasing the
executing frequency of said steps (a) and (b),

wherein said step (¢) includes:

(cl) setting a sampling constant defining a number of the
thread variations to be sampled per hour;

(c2) sampling the thread variations as many times per hour
as the sampling constant;

(c3) calculating an average and a variance of the sampled
thread variations;

(c4) applying the sampled value, the average and the vari-
ance ol the sampled thread variations to a Gaussian
probability density function; and

(c5) determining the change of the thread varnations as
small 1f the change of the thread variations 1s out of a
predetermined reference range from a center of a result
of the application of the Gaussian probability density
function and as not small otherwise,

wherein the Gaussian probability density function is rep-

resented by
p—(—m)* 20
f(x) =
vV 2702

where, X represents the thread vanation, m represents the
average ol the thread variations, and o2 represents the vari-
ance ol the thread variations, and

wherein said step (d) includes:

(d1) increasing the executing frequency of said steps (a)
and (b) by a predetermined reference amount 1n case that
it 1s determined that the change of the thread variations 1s
out of the reference range from the center of the result of
the application of the Gaussian probability density func-
tion 1n said step (c3); and

(d2) decreasing the executing frequency of said steps (a)
and (b) by the predetermined reference amount in case
that it 1s determined that the change of the thread varia-
tions 1s within the reference range from the center of the
result of the application of the Gaussian probability den-
sity function 1n said step (c5).

2. The method according to claim 1, wherein the center of

the application result of the Gaussian probability density
function 1s determined by a Q-Function.

10

15

20

25

30

35

40

45

50

55

60

65

12

3. The method according to claim 2, wherein said steps (d1)
and (d2) are represented by

(it ¥ a,. 20| > R then At, = At, — At,,

it ¥ a.20| <R then At, = At, +At,,

where, a, represents the thread vanation, Q(X) represents the
Q-Function, R represents the reference range, At represents
a time taken to create one thread, and At ,represents as a value
corresponding to one cycle 1n the executing frequency of said
steps (a) and (b) and 1s integral multiple of At_ .

4. An agent platform based on a computing system using,
threads 1 a thread pool to execute tasks with respect to
agents, comprising:

a message transport protocol for transmitting and receiving
messages to and from the agents on the basis of HI'TP by
using an agent communication language to enable coop-
cration between the agents existing in heterogeneous

systems; and

an agent platform core for managing the agents by trans-
mitting and receiving the messages to and from the
agents via the message transport protocol, so as to man-
age the agents,

wherein the agent platform core includes:

a thread pool controller for managing the thread pool by
dynamically regulating a number of the threads in the
thread pool and by adjusting frequency of calculating an
expected number of threads according to claim 1.

5. The agent platform according to claim 4, wherein the
agent communication language includes an ACL (Agent
Communication Language).

6. The agent platform according to claim 5, wherein the
agent platform core 1includes:

a main container being 1n charge of execution and manage-

ment of a platform;

an agent container managing the agents by hierarchically
grouping the agents with a container; and

an agent description table managing a reference value for
information on the agents by using IDs of the agents as
key values.

7. The agent platform according to claim 6, wherein the

agent container includes:

a life-cycle manager monitoring the conditions and opera-
tions of the agents;

an agent descriptor managing agent specification informa-
tion including the IDs, addresses and functions of the
agents; and

a thread pool controller managing the thread pool through
the prediction-based dynamic thread pool management
method.

8. The agent platform according to claim 7, wherein the

message transport protocol includes:

an HTTP communication including an HTTP server mod-
ule processing messages recetved from the agents on the
basis of HI'TP and an HTTP client module processing
the messages transmitted to the agents on the basis of the
HTTP;

an ACL parser encoding and decoding an ACL message for
transmitting and receiving data to and from the agents;
and

a message queue performing ordering and queuing of the
messages transmitted to and recerved from the agents
through the HT'TP communication.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

