(19) United States

12 Reissued Patent
Krakirian et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE44610E

US RE44.610 E
Nov. 26, 2013

(54) NODE IDENTIFICATION FOR DISTRIBUTED
SHARED MEMORY SYSTEM

75) Inventors: Shahe Hagop Krakirian, Palo Alto, CA
20Pp
(US); Isam Akkawi, Sunnyvale, CA
(US)

(73) Assignee: Intellectual Ventures Holding 80 LLC,
Las Vegas, NV (US)

(21) Appl. No.: 13/468,751

(22) Filed: May 10, 2012

(Under 37 CFR 1.47)
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 7,715,400
Issued: May 11, 2010
Appl. No.: 11/740,432
Filed: Apr. 26, 2007
(51) Int.CL
HO4L 12/28 (2006.01)
(52) U.S. CL
USPC 370/392; 370/389; 370/401; 711/147;

711/141;709/213;709/230

(58) Field of Classification Search
USPC e, 370/392, 389; 711/147

See application file for complete search history.

Block’s Home

A\

CPU
DSM 101
Management
Chip
Memory CPU
DDR?2
Memory CPU | [~ DSM
Management |
/ Chip 102
Memory CPU DDR?

105 Management

(56) References Cited
U.S. PATENT DOCUMENTS

5,774,731 A * 6/1998 Higuchietal. 710/200
6,160,814 A * 12/2000 Renetal. 370/427
6,757,790 B2* 6/2004 Chalmeretal. 711/147
6,877,030 B2* 4/2005 Deneroff 709/213
6,922,766 B2* 7/2005 Scottccovviviiniriinnnnn, 711/202
2001/0037435 Al* 112001 Van Doren 711/153
2003/0076831 Al* 4/2003 Van Dorenetal. 370/394
2004/0030763 Al* 2/2004 Manteretal. 709/223
2004/0148472 Al* 7/2004 Barrosoetal. 711/141

* cited by examiner

Primary Examiner — Duc C Ho

(57) ABSTRACT

An example embodiment of the present invention provides
processes relating to a connection/communication protocol
and a memory-addressing scheme for a distributed shared
memory system. In the example embodiment, a logical node
identifier comprises bits 1n the physical memory addresses
used by the distributed shared memory system. Processes in
the embodiment include logical node 1dentifiers 1n packets
which conform to the protocol and which are stored 1n a
connection control block 1n local memory. By matching the
logical node identifiers 1n a packet against the logical node
identifiers 1n the connection control block, the processes
ensure reliable delivery of packet data. Further, in the
example embodiment, the logical node 1dentifiers are used to
create a virtual server consisting of multiple nodes 1n the
distributed shared memory system.

23 Claims, 13 Drawing Sheets

CPU [—
1073 DSM / Memory
Management
Chip \
CPU —Memory
DDRZ
Block Cache

DSM / CPU [—IMemory

\

104 Chip

DDR2

/

Block Cache

CPU [—Memory

=]
—
=
3 [i
m
s

- QUJE)) A20[d

.

—_

S dry) 701 01

- JUSWIAZCURIA] COT TUSWASEULIA
._ll INSd INSd
W

W

e

79

YR 20T

er)

v—

—

)

3

)

>

z

diy;
E@E@.mwu UBIN JUSWIASCURIA]
eO1 101 AN

SJWOH 5 204

U.S. Patent

US RE44,610 E

Sheet 2 of 13

Nov. 26, 2013

U.S. Patent

e e R o o o o e ot o e g g e et et P R sl s S e E e 8 G B e BB S R e e e E s e s e T e P e e e e s

VI BEYY .
IVIN NI Y P

Ui €01 TE |

ol o el T A 2 BT S A A e el e bl bt

2iel

i ol o ﬂ- |||||||||||||||||||||||||||||||||||

- ¥

._% “

. 1 "

[g | ;
y o

r

m .. . b m --------- e %
=2 1Rl
% RIS RIINg)

A A i A A A A A FFFF T FFFF ST FFFFF A A AF I 22 S i F 2 a2 o r .

Ay

o
e

| TOTRUIREA] ATOTUSTA] PIDI3T0 ™ |

PRI

..

1w

R YINC

M BN

e EF P R K T CF F F F R T 1 R F E N FF K

IS[IGIIU0T)
WY S
RiL4iN
91

a&%%m

Ty T T L T T T T L W R

bisVF =N,

LH

Ee

LG4

am,m.ﬁw..._.ﬁ

¢ "SI

US RE44,610 E

(IS
EQH A (dSD [0]dIA (S [T]uoT (dSD [0]ua]
[SIVS 18X0 00X0
INENGRE IIII
JOJ JOPBIH 19U 0JV'S LLIVS WHMN = MQMM
l0lvA (11VQ

%H

(g+u)
(1+0)

- e I 0 e e i e e
I~

-

ol

g YR —
L (SARMOMA T 10 T () BRI, T

ol

= (SAAOMA 881 01 () peojAed A

g

b 1BULIO 1930e]

W 1IPUILBYIH .H®>O d(T 10 Um @.m I

IOPLIH PUIYI]

E----m--mmm ONLTB TG HOGI e g s L8 6 UL E

U.S. Patent

ﬁ I |
H " .

C[HOM

7 31

US RE44,610 E

(I [BO07] 20IN0S

1959 (T I0] JopeaH (1[|20 UOBUDSI(] =

e a--=-mm---------m--?ﬁ
1l 116 4 rd L3860

<
S
- 9]0 RLULIALANE | |
2 DD uetreAu] i
i
P,
(SAIOMA ZI0 1 Q) e, day
<
—
Q (SAIOMA 88T O () PeorAed dAd
&
> Jeur1oq 1ayoeJ
z puegruyu] A0 T

19pesH J(Td

(HY D) 1opeal Aoy 8007 d]

o[tf]e]#]s o) s szt tprp ot~

U.S. Patent

G "SI

US RE44,610 E

INSIOY | NPV

1908 (T 0] Jorredy, feuondo ONSTV ONIPV|

a--mm-mm-mm-mmm-mmmmm--mmmmﬁﬁ'

e,

o

3 AINTIS AN T
E L T3] 101 JPEIH] 45 T NSPUSS s|la| epoopwd oA |av|ealexo[0
8 e 0 e e e s e A A T
=

s (SCAIOMA T 10 T “0) JAIELL, d(TY Mﬂ%
g

JeuLIo. 1998 d d(T (SAYOMA 881 01 0) PeojAed dAY

TOPEIH dd™

O1T]C|e|P|S|9|L8|6|10ITNCNE] Lmﬁm:Dwﬁaoﬁmmmmmwmmmomh;mmomomﬁm%

U.S. Patent

U.S. Patent Nov. 26, 2013 Sheet 6 of 13 US RE44,610 E

3302872025242 3222120 ALS| 17| TOILSL L3N 21RO 9 (817|613 4|3 2]1]0

P FAIL | DOWN
g| Reserved | GTAT | STAT MY_LND
Reserved
Path 0 Middle Fabric Address Path O Low Fabric Address
‘ ‘ TISEL Reserved Path O High Fabric Address
Path 1 Middle Fabric Address Path 1 Low Fabric Address
E‘EEERE/I ‘ Reserved Path 1 High Fabric Address
Reserved

Transmit Replay Buffer Head and Trail Pointers for VCO
Transmit Replay Buftfer Head and Trail Pointers for VCO
Transmit Replay Butfer Head and Trail Pointers for VCI

Transmit Replay Bufter Head and Trail Pointers for VC1

Transmit Replay Butier Head and Trail Pointers for VC2
Transmit Replay Butter Head and Trail Pointers for V2
Transmit Replay Bufter Head and Trail Pointers for VC3
Transmit Replay Buffer Head and Trail Pointers for V3

Send Sequence Number for VCI1 Send Sequence Number for VCO
Send Sequence Number for V3 Send Sequence Number for VC2

Expected Sequence Number for VC1 | Expected Sequence Number for VCO

Expected Sequence Number for VC3 | Expected Sequence Number for VC2

Transmitted Packet Count for VCO

Transmitted Packet Count for V1

Transmitted Packet Count for VC2
Received Packet Count for VCO
Received Packet Count for V(1
Received Packet Count for V(2
Received Packet Count for VC3

r—l

2
-

w,
2 | DD — p— s === =] =
b | — O e Y N Y IS I = Jdla] v e 0 | — A

[
2

M2 D2 D
~l|Sv|tAn |~

IJ
o0

Replayed Packet Count for VC1 Replayed Packet Count for VC1
Replayed Packet Count for VC3 Replayed Packet Count for VC2
Recerved Send SN Error Count Received ECRC Error Count

o | I
O N

aJ
p—

Fig. 6

) RARS ddy | (I0AIS O
¢cd °PON SA (1 PARS Ol
(1 PARS O]

(] TOATIS O
(1 RAIRS O] / W—m

) JoAIRS ddy
Cd 2PON KA

US RE44,610 E

(1 RATS O

@ 1ARS OI | T€9PON SA
(1 19A1S OI | TV 9PON SA 0T =d dIN'T
ATARS O | 1V °PON SA .
o1 00 qT1AIRS OI | OV 9PON SA ¢ L=lMEL D JOAIG ddy
e 101 S0 | THEPONSA 9PON SA
- Cofo | oo J
“ 10 20
00 ¢ OV FPON SA | TV 9PON SA G SPON SA
I~
- Z0 10 CVIPON SA | TvopoN SA
5 00 10 OVPON SA | TV SpoN SA 80=C dIN1
= HE CVIPON SA | OV 3PON SA [0=d UIN']
L) 00 |V 9PON S A OV 9PON SA 19 9PON SA
QIN 1OS0_| _(IN OIS | 9PON UONSUNS3(T | PON 904N0g S v—
c0 =0 dIN] .
e 01| Despgddy 31 =d dIN'T ooaan
S 30)1 = VUIN JLIqe 0=V dINT
> 9 ST e I _
< 20 (RPAIRS OI JONMS CV °PON SA
“ 20 0=AddINT
S 00T OV9PONSA 0=V dINT
Z €01 dearsod __DWawrgddy 1V OPON SA
o T [00=d QINT]
60 T 3PON SA 19AJSG [EMIIA e
10 ¢d SpON SA "0V 9PON SA
ot 1 aeARs Od
0

CV 2PON SA . g V IOAIRS [eniI
00 OV FPON SA

CQINTPUSISSY | SPON

U.S. Patent

U.S. Patent Nov. 26, 2013 Sheet 8 of 13 US RE44,610 E

from VM or DMM 50

LN 0 T 0 0 Bl gt e e

"I"..i:.'

L e e . 3 - . 5 . 5 L I Ty = e o e e M b B B B B b B Bk Mk omom A mouwerdeTawTTEWTTT®TBARTTT AWM EET TR R M E o m s mom . m omom omom omom L, W B, MW
|]

g Loockup CCB Entry Using Given DestLNID; e
1T DestMID s Not iy CCB, Send Error Messape to CMM or BRM §

oy

ll

Bastb NI and COCRB's
VY LN

i’”.'l’m

Transnut Packet
to Fabrie Bink

ol o o P

ge
—
K

U.S. Patent Nov. 26, 2013 Sheet 9 of 13 US RE44,610 E

Node’s RDM Receives RDP Packet Over Network

902
902
Does Packet’s Dest NO
Fabric Addr Match
Node’s?
004 Yes
903 =
Process the
Non-RDP Packet Packet?
Yes
905 Lookup CCB Entry Using Packet’s SreLLNID:
If SrcLNID 1s Not in CCB, Discard Packet
906
Does Packet’s Src Fabric No
Addr Match CCB’s
Remote Fabric Addr?

907

Does Packet’s
DestLNID Match
CCB’s My_LNID?

Discard the
Packet

908

Yes

Pass Packet’s
Contents to CMM
or DMM 909

Fig. 9

US RE44,610 E
o
)
oo

A e Sk bk L e e s b A e et I EF I FITRTTRFINTTRTFETTNT TR ENY IR ERTT Y ENTF Y

4 26 SIINGREE:

Sheet 10 of 13

SBIPPY ALOWRIA 1BYISAUS BG-0% TUM SN Ut WMsAS Q] Spon-g

AA A A A A AN B AR RN AR R A A s R A A A RN N RN AR A AR FRFFFFIFFIFFFETF TP TP FREE N N P r ey e Cyr

_ (1M
YO GE _

g
m ﬁ l-

Nov. 26, 2013

[

o

U.S. Patent

‘4’1

N

SRSSAIPDY AIGIURA [EDISAY] 1A-0F UM SM1d7Y SUIS) WasAS TS0 apop~9]

US RE44,610 E

Sheet 11 of 13

Nov. 26, 2013

U.S. Patent

A Y e o o o
»
Je £ BT B L eSS Wy
SAlxUdgr) [m i tih
o

Hor s W i s b s WA el C

m
.
e] \«n ol SN B il W A
oAb i i betiad L2 AT
..%N% hyen. lﬁum{w{‘“.}u«ﬁ m..l.-.__. u._.u.,,...m._““
W
O A A A AL P L PEL LR LLLELELELELELESPLLEESESELLLT IS ISPISIIPEI SIS ET T I IS
...lJl‘ u\J. l__.Lu.-_, ‘nmt..-.__ ..W.U
- R0

lllllllll

--

lllllll

...

W

e e o o
: oo | L ~

. T b s £ Foo = M E= N

A AT M.ru m(o b AL T T 1 gr, ¥

. R RPN e _.lm L. _"._..,h..,_“m A ﬁ....a.,.d "y

.

.

O NI NI N B IS J TSI T T TP I IS

L AJOE T BP0

(13 FAOALS 1D
.H_.. «

W LW LW LW LW R LN WL NN

U.S. Patent Nov. 26, 2013 Sheet 12 of 13 US RE44,610 E

Cl"‘a‘iM Rgcsiven

Meniory Operation
from DM

ﬂ""

f,/ﬁ ‘O{} 4 gor 8) Muost

signiticant Bits of

F Blemaory Operavon Uan |
i Mrocesd Without |

ProctllE N B et G e S -["
Vi Prog c=-m=“;7 [x Hafing to Pnysical :vf’l H}F}
; L NI = ing Adddress bgual
20 bl = MY LNIE or Zere?

4 (o1 §) Most Nignificant Bits Fquﬂl MY NI,

~et Them to fero Before Transmission Gv o HYD L7
4 {ov &} Most Signiticant Bits Egual Zero, Set ';'

| Them to MY _LNID Before Transmission Over W1 | } 243

o A R e

"l

U.S. Patent Nov. 26, 2013 Sheet 13 of 13 US RE44,610 E

UM Receives

Menmiry CGperation
from CPU Over HT

-
3
(>
Fon

' Memory Operalion Can Procesd Do d (or §) Mo
FWithout Processing Relating 1o No Sigrficant Bis of
A7 LNID Swapping, I Phygical el Physicat Memiory |
; hMemory Acdress Not For Nong Address bguol f«v“"’w
3434 _ Exporied Local Memory ﬁ Mo, MY LNID oy Zero? ﬁ.-«*f

'ruw"

..........

D4 (or B) Baost Sigmificant Bits Equal MY LNID,

' Set DstlNID 1o Zere for ROM Facket; 174 {or §) <N

- Most Stgraheant Bis BEqual Zero, Bet DstN (o _

' MY LN for REM Packeet L343

US RE44,610 E

1

NODE IDENTIFICATION FOR DISTRIBUTED
SHARED MEMORY SYSTEM

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS 10

The present application is for the broadening reissue of

U.S. Pat. No. 7,715,400, entitled “NODE IDENTIFICATION
FOR DISTRIBUTED SHARED MEMORY SYSTEM,” which
issued May 11, 2010 from U.S. patent application Ser. No. 15
11/740,432, which was filed Apr. 26, 2007.

[This] 77%e present application is related to the following
commonly-owned U.S. utility patent application, [filed on
Jan. 29, 2007. whose] the disclosure of which 1s incorporated
herein by reference in its entirety for all purposes: U.S. patent
application Ser. No. 11/668,275, entitled “Fast Invalidation
for Cache Coherency in Distributed Shared Memory Sys-

tem,” filed on Jan. 29, 2007.

20

TECHNICAL FIELD
25

The present disclosure relates to an 1dentification process
tor the nodes 1n a distributed shared memory system.

BACKGROUND
30

A distributed shared memory (DSM) 1s a multiprocessor
system 1n which the processors 1n the system are connected by
a scalable interconnect, such as an InfiniBand switched fabric
communications link, instead of a bus. DSM systems present
a single memory image to the user, but the memory 1s physi- 35
cally distributed at the hardware level. Typically, each pro-
cessor has access to a large shared global memory 1n addition
to a limited local memory, which might be used as a compo-
nent of the large shared global memory and also as a cache for
the large shared global memory. Naturally, each processor 40
will access the limited local memory associated with the
processor much faster than the large shared global memory
associated with other processors. This discrepancy 1n access
time 1s called non-uniform memory access (NUMA).

A major technical challenge 1n DSM systems 1s ensuring 45
that the each processor’s memory cache 1s consistent with
cach other processor’s memory cache. Such consistency 1s
called cache coherence. To maintain cache coherence 1n
larger distributed systems, additional hardware logic (e.g., a
chipset) or software 1s used to implement a coherence proto- 50
col, typically directory-based, chosen in accordance with a
data consistency model, such as strict consistency. DSM sys-
tems that maintain cache coherence are called cache-coherent
NUMA (ccNUMA).

Typically, if additional hardware logici1s used, anodeinthe 55
system will comprise a chip that includes the hardware logic
and one or more processors and will be connected to the other
nodes by the scalable interconnect. For purposes of initial
connection and later communication between nodes, the sys-
tem might employ node 1dentifiers, e.g., serial, random, or 60
centrally-assigned numbers, which in turn might be used as
part of an address for physical memory residing on the node.

SUMMARY
63
In particular embodiments, the present invention provides
methods, apparatuses, and systems directed to node 1dentifi-

2

cation 1n a DSM system. In one particular embodiment, the
present ivention provides node-i1dentification processes for
use with a connection/communication protocol and a
memory-addressing scheme 1n a DSM system.

DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram showing a DSM system, which
system might be used with some embodiments of the present
invention.

FIG. 21s a block diagram showing some of the physical and
functional components of an example DSM-management
chip or logic circuit, which chip might be used as part of a
node with some embodiments of the present invention.

FIG. 3 1s a diagram showing the format of an RDP over
Ethernet packet and 1ts header, which formats might be used
in some embodiments of the present invention.

FIG. 4 1s a diagram showing the format of an RDP over
InfiniBand packet and its header, which formats might be
used 1n some embodiments of the present mnvention.

FIG. § 1s a diagram showing the format of an RDP packet,
its header, and 1ts optional trailer, which formats might be
used 1 some embodiments of the present invention.

FIG. 6 1s a diagram showing the format of a connection
control block, which format might be used 1n some embodi-
ments of the present mvention.

FI1G. 7 1s a diagram showing an example illustrating the use
of LNIDs with respect to the RDP protocol, which protocol
might be used with an embodiment of the present invention.

FIG. 8 1s a diagram showing a flowchart of an example
process for building an RDP packet for transmission over the
switched fabric network, which process might be used with
an embodiment of the present invention.

FIG. 9 1s a diagram showing a flowchart of an example
process for validating an RDP packet received over the
switched fabric network, which process might be used with
an embodiment of the present invention.

FIG. 10 1s a diagram showing the format of a 40-bit physi-
cal memory address in a 16-node DSM system and the format
of a 40-bit physical memory address 1n a 256-node DSM
system, which formats might be used with embodiments of
the present invention.

FIG. 11 1s a diagram showing, for didactic purposes, the
local views of a physical address space for a virtual server
comprised of three nodes.

FIG. 12 1s a diagram showing a flowchart of an example
process for altering a physical memory address prior to trans-
mission over a HyperTransport bus, which process might be
used with an embodiment of the present invention.

FIG. 13 1s a diagram showing a flowchart of an example
process for altering a physical memory address prior to trans-
mission over a switched fabric, which process might be used
with an embodiment of the present invention.

DESCRIPTION OF EXAMPLE EMBODIMENT(S)

The following example embodiments are described and
illustrated in conjunction with apparatuses, methods, and sys-
tems which are meant to be examples and illustrative, not

limiting 1n scope.

A. ccNUMA DMA System with DSM-Management
Chips

A DSM system has been developed that provides cache-
coherent non-uniform memory access (cCNUMA) through
the use of a DSM-management chip. In a particular embodi-

US RE44,610 E

3

ment, a DSM system may comprise a distributed computer
network of up to 16 nodes, connected by a switched fabric,

where each node includes two or more Opteron CPUs and one
DSM-management chip. In another embodiment, this DSM
system comprises up to 256 nodes connected by the switched
fabric.

The DSM system allows the creation of a multi-node vir-
tual server which 1s a virtual machine consisting of multiple
CPUs belonging to two or more nodes. In some embodi-
ments, the nodes use a connection/communication protocol
to communicate with each other and with virtual I/O servers
in the DSM system. Enforcement of the connection/commus-
nication protocol 1s also handled by the DSM-management
chip. Consequently, virtual I/O servers include a DSM-man-
agement chip, though they do not contribute any physical
memory to the DSM system and consequently do not make
use ol the chip’s functionality directly related to cache coher-
ence, 1n particular embodiments. For a further description of
a virtual I/O server, see U.S. patent application Ser. No.
11/624,542, entitled “Virtualized Access to I/O Subsystems”,
and U.S. patent application Ser. No. 11/624,573, entitled
“Virtual Input/Output Server”, both filed on Jan. 18, 2007,
which are incorporated herein by reference for all purposes.
As explained below, the connection/communication protocol
uses an 1dentifier called a logical node 1dentifier (LNID) to
identily source and destination nodes for packets that travel
over the switched fabric.

FIG. 1 1s a diagram showing a ccNUMA DSM system,
which system might be used with a particular embodiment of
the invention. In this DSM system, four nodes (labeled 101,
102, 103, and 104) are connected to each other over a
switched fabric (labeled 1035) such as Ethernet or InfiniBand.
In turn, each of the four nodes includes two Opteron CPUSs, a
DSM-management chip, and memory 1n the form of DDR2 S
DRAM (double-data-rate two synchronous dynamic random
access memory). In this embodiment, each Opteron CPU
includes a local main memory connected to the CPU. This
DSM system provides NUMA (non-uniform memory access)
since each CPU can access 1ts own local main memory faster
than 1t can access the other memories shown 1n FIG. 1.

Also as shown 1n FI1G. 1, a block of memory has 1ts “home”
in the local main memory of one of the Opteron CPUs 1n node
101. That 1s to say, this local main memory 1s where the
system’s version of the memory block 1s stored, regardless of
whether there are any cached copies of the block. Such cached
copies are shown 1n the DDR2s for nodes 103 and 104. The
DSM-management chip includes hardware logic (e.g., the
CMM) to enforce a coherence protocol and make the DSM
system cache-coherent (e.g., ccNUMA) when multiple nodes
are caching copies of the same block of memory.

B. Example System Architecture of a

DSM-Management Chip

FIG. 2 1s diagram showing the physical and functional
components of a DSM-management chip, which chip might
be used as part of a node with particular embodiments of the
invention. The DSM-management chip includes interconnect
functionality facilitating communications with one or more
processors, which might be Opteron processors offered by
Advanced Micro Devices (AMD), Inc., of Sunnyvale, Calif.,
in some embodiments. As FIG. 2 1llustrates, the DSM-man-
agement chip 1includes two HyperTransport Managers
(HIM), each of which manages communications to and from
a processor over a HT (HyperTransport) bus. More specifi-
cally, an HTM provides the PHY and link layer functionality
for a cache coherent HT interface such as Opteron’s ccHT.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

The HIM captures all received HT packets 1n a set of recerve
queues per interface (e.g., posted/non-posted command,
request command, probe command and data) which are con-
sumed by the Coherent Memory Manager (CMM). The HI'M
also captures packets from the CMM 1n a similar set of trans-

mit queues per interface and transmits those packets on the
HT interface. As a result of the two HTMs, the DSM-man-
agement chip becomes a coherent agent with respect to any
bus snoops broadcast over the cache-coherent HT bus by a
processor’s memory controller. Of course, other inter-chip or
bus communications protocols might be used 1n other
embodiments of the present invention.

Also as shown 1n FIG. 2, the two HTMs are connected to a
Coherent Memory Manager (CMM), which enforces a coher-
ence protocol and thereby provides cache-coherent access to
memory shared by the nodes that are part of the DSM fabric.
In addition to interfacing with the Opteron processors
through the HTM, the CMM 1nterfaces with the fabric via the
RDM (Reliable Delivery Manager). Additionally, the CMM
provides interfaces to the HI'M for DMA (Direct Memory
Access) and configuration.

In some embodiments, the CMM behaves like both a pro-
cessor cache on a cache-coherent (e.g., ccHT) bus and a
memory controller on a cache-coherent (e.g., ccHT) bus,
depending on the scenario. In particular, when a processor on
a node performs an access to a home (or local) memory
address, the home (or local) memory will generate a probe
request that 1s used to snoop the caches of all the processors
on the node. The CMM will use this probe to determine 11 1t
has exported the block of memory containing that address to
another node and may generate DSM probes (over the fabric)
to respond appropriately to the initial probe. In this scenario,
the CMM behaves like a processor cache on the cache-coher-
ent bus.

When a processor on a node performs an access to a remote
memory, the processor will direct this access to the CMM.
The CMM will examine the request and satisiy it from the
local cache, 1f possible, and, 1n the process, generate any
appropriate probes. If the request cannot be satisfied from the
local cache, the CMM will send a DSM request to the remote
memory’s home node to (a) fetch the block of memory that
contains the requested data or (b) request a state upgrade. In
this case, the CMM will wait for the DSM response before 1t
responds back to the processor. In this scenario, the CMM
behaves like a memory controller on the ccHT bus.

The RDM manages the flow of packets across the DSM-
managementchip’s two fabric interface ports. The RDM has
two major clients, the CMM and the DMA Manager (DMM),
which initiate packets to be transmitted and consume received
packets. The RDM ensures reliable end-to-end delivery of
packets using a connection/communication protocol called
Reliable Delivery Protocol (RDP). On the fabric side, the
RDM interfaces to the selected link/MAC (XGM {for Ether-
net, IBL for InfiniBand) for each of the two fabric ports. In
particular embodiments, the fabric might connect nodes to
other nodes. In other embodiments, the fabric might also
connect nodes to virtual 10 servers. In particular embodi-
ments, the processes using LNIDs described below might be
executed by the RDM.

The XGM provides a 10G Ethernet MAC function, which
includes framing, inter-frame gap handling, padding for
minimum frame size, Ethernet FCS (CRC) generation and
checking, and flow control using PAUSE frames. The XGM
supports two link speeds: single data rate XAUI (10 Gbps)
and double data rate XAUI (20 Gbps). In particular embodi-

ments, the DSM-management chip has two instances of the

US RE44,610 E

S

XGM, one for each fabric port. Each XGM instance inter-
faces to the RDM, on one side, and to the associated PCS, on

the other side.

The IBL provides a standard 4-lane IB link layer function,
which includes link initialization, link state machine, CRC
generation and checking, and flow control. The IBL block
supports two link speeds, data rate (8 Gbps) and double data
rate (16 Gbps), with automatic speed negotiation. In particu-
lar embodiments, the DSM-management chip has two
instances ol the IBL, one for each fabric port. Each IBL
instance interfaces to the RDM, on one side, and to the asso-
ciated Physical Coding Sub-layer (PCS), on the other side.

The PCS, along with an associated quad-serdes, provides
physical layer functionality for a 4-lane InfiniBand SDR/
DDR 1interface, or a 10G/20G Ethernet XAUI/10GBase-CX4
interface. In particular embodiments, the DSM-management
chip has two instances of the PCS, one for each fabric port.
Each PCS instance interfaces to the associated IBL and
XGM.

The DMM shown 1n FIG. 2 manages and executes direct
memory access (DMA) operations over RDP, interfacing to

the CMM block on the host side and the RDM block on the
fabric side. For DMA, the DMM interfaces to software
through the DmaCB table in memory and the on-chip DMA
execution and completion queues. The DMM also handles the
sending and receiving of RDP interrupt messages and non-
RDP packets, and manages the associated inbound and out-
bound queues.

The DDR2 SDRAM Controller (SDC) attaches to a one or
two external 240-pin DDR2 SDRAM DIMM, which 1s actu-
ally external to the DMS-management chip, as shown in both
FIG. 1 and FIG. 2. In particular embodiments, the SDC pro-
vides SDRAM access for the CMM and the DMM.

In some embodiments, the DSM-management chip might
comprise an application specific integrated circuit (ASIC),
whereas 1n other embodiments the chip might comprise a
ficld-programmable gate array (FPGA). Indeed, the logic
encoded 1n the chip could be implemented in software for
DSM systems whose requirements might allow for longer
latencies with respect to cache coherence, DMA, interrupts,
etc.

C. RDP Packets and Their Headers

FI1G. 3 1s a diagram showing the format of a packet for RDP
over Ethernet and the packet’s header, which formats might
be used 1n some embodiments of the present invention. When
RDP runs over the Fthernet MAC layer, an RDP packet 1s
encapsulated 1n an Ethernet MAC frame. The Ethernet header
of an encapsulated RDP packet 1s a VLAN-tagged header
(where VL AN stands for virtual local area network). In FIG.
3, SA identifies the 6-byte source MAC address and DA
identifies the 6-byte destination MAC address.

The Reliable Delivery Protocol allows RDP and non-RDP
packets to co-exist on the same fabric. When RDP runs over
the Ethernet MAC layer, RDP and non-RDP packets are
distinguished from each other by the presence of the VLAN
header and the value of the Length/Type field following 1t. For
an RDP packet: (a) the VL AN header 1s present, 1.e., the first
Length/Type field (following the last SA byte) has a value of
0x0081; and (h) the second Length/Type field (following the
VLAN header) has a value less than 1536 (frame length). An
Ethernet frame that does not satisiy both of the above condi-
tions 1s a non-RDP packet.

FI1G. 4 1s a diagram showing the format of a packet for RDP
over InfiniBand and the packet’s header, which formats might
be used 1n some embodiments of the present invention. It will

10

15

20

25

30

35

40

45

50

55

60

65

6

be appreciated that the header includes fields for Source
Local ID and Destination Local ID. When RDP runs over the

IB link layer, an RDP packet i1s encapsulated into an IB
packet. The format of an IB Local Transport Packet 1s used,
although the 12-byte Base Transport Header (BTH) which 1s
normally present after the Local Route Header (LRH) 1s
replaced by the RDP header (8 bytes) and the first 4 bytes of
the RDP payload. From the standpoint of the IB standard, bits
31:24 of the first DWORD of the RDP Header 1s the OpCode
field of Base Transport Header (BTH). The most significant
two bits (31:30) of that field have a fixed value of 0x3 (binary
11) for RDP packets, which specifies a “Manufacturer Spe-
cific OpCode’. The Rsv8 field of the BTH (bits 31:24 of the
second DWORD) 1s not protected by the 32-bit IB Invariant
CRC (ICRC). This corresponds to the most significant 8 bits
of the DstLNID. Thus, these bits do not have end-to-end
protection but do have point-to-point protection by the 16-bit
Variant CRC (VCRC), which presents an insignificant risk of
tailure since the DstLLNID 1s only used as a packet validation
field at the destination node in conjunction with many other
validation fields. A false match of a corrupted LNID MSB
(most significant bit) with good VCRC has very low prob-
ability and would only occur 1f the connection parameters
were set up inconsistently at the source and destination nodes.

When RDP runs over the InfiniBand link layer, RDP and
non-RDP packets are distinguished by the values of the LNH
field in the IB Local Route Header and the OpCode field in the
IB Base Transport Header. For an RDP packet: (a) LNH=0x2
(IBA Local); and (b) OpCode bits [7:6]=0x3 (Manufacturer
Specific OpCode). An InfiniBand packet that does not satisty
both of the above conditions 1s a non-RDP packet.

FIG. 5 1s a diagram showing the format of an RDP packet
and 1ts header, which formats might be used in some embodi-
ments of the present invention. An RDP packet consists of a
header, payload, and optional trailer. As shown in FIG. 5,
another field in the RDP packet 1s the SrcLNID (Source
Logical Node ID)) which 1dentifies the packet’s source node.
This 1s the connection identifier (1.e., remote LNID) at the
destination node. This field 1s also 16 bits wide. Also as shown
in FIG. 5, one of the fields 1n an RDP packet 1s the DestLNID
(Destination Logical Node ID) which [identities] identifies
the packet’s destination node. This 1s the connection identifier
(1.e., remote LNID) at the source node. This field 1s 16 bits

wide.

D. Using LNIDs with RDP

In particular embodiments, the DSM system uses a soft-
ware data structure called the connection control block
(CCB), stored mn local memory such as the local main
memory shown in FIG. 1, to facilitate implementation of the
RDP protocol. The RDM uses a recetved packet’s source
LNID as an index mto the CCB to find an entry for the
connection corresponding to the packet. FIG. 6 1s a diagram
showing the format of a CCB entry for a single connection,
which format might be used in [sonic] some embodiments of
the present invention. As shown 1n FIG. 6, each entry records
the fabric address for two paths, Path 0 and Path 1, which may
correspond to the two fabric interface ports shown connected
to the RDM 1n FIG. 2. In other embodiments, there might be
more than two paths, corresponding to more than two fabric

interface ports. It will be appreciated that the CCB entry has
a field called MY _LNID, which identifies the LNID for the

RDM’s node.

For an RDP connection between a pair of nodes, the node
at each end uses an LNID to refer to the node at the other end.
Within a multi-node virtual server (VS), every node 1is

US RE44,610 E

7

assigned a umque LNID, possibly by some management
entity for the DSM system. For example, within a three-node
VS, the LNID values might be 0, 1, and 2, or 1, 3, and 4, 1.¢.,
they not need to be sequentially incrementing from 0. In
addition, every server (multi-node virtual server or standal-
one server) assigns a unique LNID to each node that commu-
nicates with 1t. For example, a standalone server node that
communicates with the virtual server described above might
be assigned an LNID value of 16 by the VS. If that same node
communicates with another server, 1t may be assigned the
same LNID or a different LNID by that server. Therefore,
LNID assignments are umique from the standpoint of a given
server, but they are not unique across servers.

An example of LNID assignments 1s shown 1n FIG. 7. In
the example, a virtual computing environment (VCE) con-
s1sts of two virtual servers (A and B), an application server
(C), and a virtual I/O server (D). In this example, virtual
server A assigns LNID values 0, 1, and 2 to each of 1ts own
nodes (VS nodes A0, Al, and A2, respectively) and an LNID
value of 16 to virtual I/0O server D. Virtual server B assigns
values of 1 and 5 to each of 1ts own nodes (VS nodes B1 and
BS, respectively) and an LNID value of 18 to virtual I/O
server D. Application server C assigns an LNID value o1 3 to
virtual I/O server D. Virtual I/O server D assigns LNID values
0, 2, and 4, to VS nodes A0, A1 and A2, respectively, and
LNID wvalues of 6 and 8 to VS nodes B1 and BS. Finally,
virtual I/O server D assigns a value of 10 to application server
C. These various assignments are collected and summarized
in Table 7.1 in FI1G. 7.

Table 7.2 shows the SrcLNID and DstLNID values used in
the headers of RDP packets exchanged between different
node pairs. For example, VS nodes A0 and Al both belong to
virtual server A, so a packet from A0 to Al will have a
SrcLLNID value of 0 (LNID assigned to A1 by VS A), and a
DstLNID value of 1 (LNID assigned to A1 by VS A). As
another example, a packet from Al to I/O server D will have
a SrcLNID value of 2 (LNID assigned to Al by I/O server D)
and a DstLNID value of 16 (LNID assigned by VS A to I/O
server D).

FIG. 8 1s a diagram showing a flowchart of an example
process for building an RDP packet for transmission over the
switched fabric network, which process might be used with
an embodiment of the present invention. In the process’s first
step 801, the node’s Rehable Delivery Manager (RDM)
receives a DestLNID and data for an RDP packet from the
node’s CMM or DMM. The RDM uses the packet’s
DestLNID to look up the entry corresponding to the
DestLLNID 1n the Connection Control Block (CCB), 1n step
802. It there 1s no corresponding entry, the RDM sends an
error message to the CMM or DMM, as the case may be. Then
in step 803, the RDM builds an RDP header for an RDP
packet for the data, using the DestLLNID and the CCB entry’s
MY _LNID value. In step 804, the RDM builds a fabric header
tor the RDP packet, using information in the CCB entry’s
remote fabric address. Once the RDP packet 1s complete, the
RDM sends the packet to the fabric link for transmission to
the remote node, 1n step 803.

FIG. 9 1s a diagram showing a flowchart of an example
process for validating an RDP packet received over the
switched fabric network, which process might be used with
an embodiment of the present invention. In the process’s first
step 901, a node’s RDM receives an RDP packet over the
switched fabric network. The RDM then checks to see
whether the packet’s destination fabric address (e.g., the
6-byte MAC DA 1n an Ethernet header or the Destination
Local ID 1 an Infimiband LRH) matches the node’s fabric
address, 1n step 902. If not, the RDM discards the packet.

10

15

20

25

30

35

40

45

50

55

60

65

8

Otherwise, the RDM goes to step 903 and determines whether
the packet 1s an RDP packet. If not, the RDM will process the

packet as a non-RDP packet, in step 904. Otherwise, if the
packet1s an RDP packet, the RDM uses the packet’s SrcLNID
to look up the entry correspondmg to the SrcLNID 1n the
Connection Control Block (CCB), 1n step 903. If there 1s no
corresponding entry, the RDM discards the packet. Then the
RDM goes to step 906 and checks to make sure that the
packet’s source fabric address (e.g., the 6-byte MAC SA in an
Ethernet header or the Source Local ID 1n an Infinitband LRH)
matches the CCB entry’s remote fabric address (e.g., for Path
0 or Path 1). If not, the RDM discards the packet. Otherwise,
the RDM checks to determine whether the packet’s
DestL.NID matches the CCB entry’s MY _LNID, 1n step 907.
IT not, the RDM discards the packet. But 11 there 1s a match,

the RDM forwards the packet to the CMM or DMM {for
turther processing.

=, Using LNIDs With Memory-Addressing Scheme

As 1ndicated earlier, the DSM system also uses LNIDs 1n
its memory-addressing scheme. In particular embodiments,
the physical memory address width 1s 40-bits (e.g., in DSM
systems that use the present generation of Opteron CPUs),
though it will be appreciated that there are numerous other
suitable widths. FIG. 10 1s a diagram showing the format of a
40-bit physical memory address i a 16-node DSM system
and the format of a 40-bit physical memory address 1n a
256-node DSM system. As shown i FIG. 10, the four most
significant bits comprise an LNID in the 16-node DSM sys-
tem and the eight most significant bits comprise an LNID in
the 256-node DSM system.

In particular embodiments of the DSM system, the physi-
cal address space for a virtual server i1s arranged so that the
local node’s memory always starts at address 0 (zero). One
reason for using this arrangement 1s compatibility with legacy
system software, in particular embodiments. Specifically,
with local memory starting at address 0, system software
(e.g., boot code) accesses local memory the same way that it
does on a standard server. Another reason for using this
arrangement 1s that 1t simplifies the address lookup 1n the
CMM. For a memory read/write request from a local proces-
sor, an address 1n the lower Visth or 1/2ssth segment of the
40-bit address space 1s always local and all other addresses
map to memory 1n other nodes.

To see how the arrangement works, consider the example
of a virtual server consisting of three nodes: 0, 1, and 2. In a
16-node DSM system, the total addressable memory space
for this virtual server would be 1 terabyte (2°40) and each
node would be allocated a segment which 1s Yis of that space
(64GB or 2°36). From a global view, the first 64GB segment
of the physical address space starting at address 0 would be
allocated to node 0 (1.e., the node whose LNID equals 0), the
next 64GB segment to node 1, and the following segment to
node 2. The remaining 13 segments would be unused since
LNIDs 4-15 are not used.

FIG. 11 shows this physical address space tfrom the local
view of each of the three nodes 1n the virtual server. The local
view of node 0 would be the same as the global view and 1s
shown 1n FIG. 11 under the label “Node 07, with Local
Memory (0) first. Node 1 Memory second, and Node 2
Memory third. The local view of node 1 would be as shown
under the label “Node 17, with Local Memory (1) first, Node
0 Memory second, and Node 2 Memory third. And the local
view ol node 2 would be as shown under the label “Node 27,
with Local Memory (2) first, Node 1 Memory second, and
Node 0 Memory third.

US RE44,610 E

9

It will be appreciated that in order to accomplish this
arrangement, the locations of the local segment and the node
0 segment are swapped in the address map. And since
MY _LNID, as defined above, 1s the LNID assigned to the
local node, this 1s equivalent to swapping MY _LNID with
LNID 0 1n the address map. However, such a swapping would
create confusion 1n the DSM system 1f 1t were applied to
memory traific leaving the node over the switched fabric.
Theretore, the node’s CMM reverses the swapping for traffic
leaving the node.

FIG. 12 1s a diagram showing a flowchart of an example
process for altering a physical memory address, by the swap-
ping a described above, prior to transmission over a Hyper-
Transport bus. In the process’s first step 1201, anode’s CMM
receives a memory operation (e.g., a read, write, or probe)
pertaining to a physical memory address from the RDM on
the DSM-management chip. In step 1202, the CMM deter-
mines whether the four (or eight) most significant bits 1n the
physical address are equal to: (1) the MY _LNID value for the
node; or (2) zero. If so, the CMM goes to step 1203, where: (1)
if those bits are equal to the MY _LNID value, the CMM sets
the bits to zero (e g., by changing to zero the four (or eight)
most significant bits 1in the physical memory address) before
transmission of the operation over the HyperTransport bus;
and (2) 1T those bits are equal to zero, the CMM sets those bits
to MY_LNID (e.g., by changing to MY _LNID the four (or
eight) most significant bits 1n the physical memory address)
before transmission of the operation over the HyperTransport
bus. Otherwise, 1f those bits are not equal to MY_LNID or
zero, the CMM goes to step 1204 and allows the memory
operation to proceed without processing relating to LNID
swapping.

FIG. 13 1s a diagram showing a flowchart of an example
process for altering a physical memory address, by reversing,
the swapping as described above, prior to transmission over a
switched fabric. In the process’s first step 1301, a node’s
CMM receives a memory operation (e.g., a read, write, or
probe) pertaining to a physical memory address from one of
the node’s CPUs over the HyperTransport (e.g., ccHT) bus
that connects the node’s CPUs to the node’s DSM-manage-
ment chip. In step 1302, the CMM determines whether the
tour (or eight) most significant bits in the physical address are
equal to (1) the MY _LNID value for the node; or (2) zero. If
s0, the CMM goes to step 1303, where: (1) 1 those bits are
equal to the MY_LNID value, the CMM sets the DstLNID
valueto zero (e g., by changing to zero the four (or eight) most
significant bits 1n the physical memory address) before trans-
mission of the operation to the RDM; and (2) 1f those bits are
equal to zero, the CMM sets the DstLNID valueto MY _LNID
(e.g. by changing to MY_LNID the four (or eight) most
significant bits 1n the physical memory address) before trans-
mission of the operation to the RDM. Otherwise, 11 those bits
are not equal to MY _LNID or zero, the CMM goes to step
1304 and allows the memory operation to proceed without
processing relating to LNID swapping, if the physical
memory address 1s not for exported local memory. (If the
physical memory address 1s for exported local memory, a
probe operation to another physical memory address might
result, feeding back into the process at step 1301.)

Particular embodiments of the above-described processes
might be comprised of instructions that are stored on storage
media. The instructions might be retrieved and executed by a
processing system. The instructions are operational when
executed by the processing system to direct the processing
system to operate 1n accord with the present invention. Some
examples of instructions are software, program code, firm-
ware, and microcode. Some examples of storage media are

10

15

20

25

30

35

40

45

50

55

60

65

10

memory devices, tape, disks, integrated circuits, and servers.
The term “processing system” refers to a single processing
device or a group of inter-operational processing devices.
Some examples of processing devices are mtegrated circuits
and logic circuitry. Those skilled 1n the art are familiar with
instructions, storage media, and processing systems.

Those skilled 1n the art will appreciate variations of the
above-described embodiments that fall within the scope of
the invention. In this regard, 1t will be appreciated that there
are many other possible orderings of the steps 1n the processes
described above and many other possible modularizations of
those orderings. Also, 1t will be appreciated that the above
processes relating to memory-addressing will work with
physical memory addresses that exceed 40-bits in width and
DSM systems that have more than 256 nodes. Further, 1t will
be appreciated that the DSM system will work with nodes
whose CPUs are not Opterons having a ccHT bus. As a result,
the invention 1s not limited to the specific examples and
illustrations discussed above, but only by the following
claims and their equivalents.

What 1s claimed 1s:

1. A method],] comprising:

receiving, at [a distributed memory logic circuit of] a first

node, data for a packet destined to [a distributed memory
logic circuit of] a second node, wherein the first and
second nodes are connected by a network switch fabric
and are parts of a distributed shared memory system, and
wherein the data for the packet includes a physical
memory address 1n which one or more bits 1n the physi-
cal memory address comprise a destination logical node
identifier for the second node;

using the destination logical node identifier as an index into

a connection control block to locate an entry for a con-
nection between the first and second nodes, resulting in
a located entry of the connection control block, wherein
the connection control block is stored 1n a local memory
on the first node:

building [a] #2ze packet in a format of a connection and

communication protocol using the data, the destination
logical node 1dentifier, and a logical node 1dentifier for
the first node, wherein the logical node 1dentifier for the
first node 1s included 1n the located entry of the connec-
tion control block [entry];

adding, to the packet, a header that includes a switch fabric

address for the second node, wherein the switch fabric
address 1s 1dentified 1n the located entry of the connec-
tion control block; and
transmitting the packet [on a link] to the switch fabric.
2. A method as in claim 1, wherein the distributed shared
memory system 1s a cache coherent non-uniform memory
access system.
3. A method as in claim 1, wherein [the] a distributed
memory logic circuit in the first node sets the destination
logical node identifier to zero 1f the destination logical node
identifier in the physical memory address equals the logical
node 1dentifier for the first node.
4. A method|.] comprising:
receiving, at [a distributed memory logic circuit of] a first
node, a packet from [a distributed memory logic circuit
of] a second node, wherein the packet includes a source
logical node 1dentifier and wherein the first and second
nodes are connected by a network switch fabric and are
parts of a distributed shared memory system;

determining whether a destination switch fabric address
included 1n the packet matches a switch fabric address
for the first node;

US RE44,610 E

11

using the source logical node 1dentifier as an index into a
connection control block to locate an entry for [the] a
connection between the first and second nodes, resulting
in a located entry of the comnection control block,
wherein the connection control block 1s stored 1n a local
memory on the first node;

determining whether a destination logical node 1dentifier
included 1n the packet matches a logical node 1dentifier
for the first node, wherein the logical node identifier for
the first node 1s 1dentified 1n the located entry of the
connection control block:; and

accepting data 1n the packet for further processing by the
first node.

5. The method of claim 4, wherein the packet 1s discarded
if the destination switch fabric address included 1n the packet
does not match the switch fabric address for the first node.

6. The method of claim 4, wherein the packet 1s discarded
if the destination logical node 1dentifier does not match the
logical node 1dentifier for the first node identified 1n the
located entry of the connection control block.

7. The method of claim 4, wherein the distributed shared
memory system 1s a cache coherent non-uniform memory
access system.

8. A distributed memory logic circuit encoded with execut-
able logic, the logic when executed operable to:

receive, at [the distributed memory logic circuit of] a first
node, data for a packet destined to [a distributed memory
logic circuit of] a second node, wherein the first and
second nodes are connected by a network switch fabric
and are parts of a distributed shared memory systeml.];
and wherein the data for the packet includes a physical
memory address in which one or more bits 1n the p/ysi-
cal memory address comprise a destination logical node
identifier for the second node;

use the destination logical node 1dentifier as an index 1nto
a connection control block to locate an entry for a con-
nection between the first and second nodes, resulting in
a located entry of the connection control block, wherein
the connection control block 1s stored 1n a local memory
on the first node:

build [a] #ze packet in a format of a connection and com-
munication protocol using the data, the destination logi-
cal node 1dentifier, and a logical node 1dentifier for the
first node, wherein the logical node 1dentifier for the first
node 1s included 1n the located entry of the connection
control block [entry];

add, to the packet, a header that includes a switch fabric
address for the second node, wherein the switch fabric
address 1s 1dentified 1n the located entry of the connec-
tion control block; and

transmit the packet Jon a link] to the switch fabric.

9. The distributed memory logic circuit of [in] claim 8,
wherein the distributed shared memory system 1s a cache
coherent non-uniform memory access system.

10. The distributed memory logic circuit of claim 8,
wherein the [distributed memory logic circuit of the first node
sets] logic is further operable to set the destination logical
node 1dentifier to zero 1f the destination logical node identifier
in the physical memory address equals the logical node 1den-
tifier for the first node.

11. A distributed memory logic circuit encoded with
executable logic, the logic when executed operable to:

receive, at [the distributed memory logic circuit of] a first
node, a packet from [a distributed memory logic circuit
of] a second node, wherein the packet includes a source
logical node 1dentifier and wherein the first and second

10

15

20

25

30

35

40

45

50

55

60

65

12

nodes are connected by a network switch fabric and are
parts of a distributed shared memory system;

determine whether a destination switch fabric address
included 1n the packet matches a switch fabric address
for the first node;

use the source logical node 1dentifier as an index into a
connection control block to locate an entry for a connec-
tion between the first and second nodes, resulting in a
located entry of the connection control block, wherein

the connection control block is stored 1n a local memory
on the first node;

determine whether a destination logical node identifier

included in the packet matches a logical node 1dentifier
for the first node, wherein the logical node identifier for
the first node 1s identified in the located entry of the
connection control block:; and

accept data 1n the packet for further processing by the first

node.

12. The distributed memory logic circuit of claim 11,
wherein the packet 1s discarded 11 the destination switch fab-
ric address included 1n the packet does not match the switch
tabric address for the first node.

13. The distributed memory logic circuit of claim 11,
wherein the packet 1s discarded 11 the destination logical node
identifier does not match the logical node 1dentifier for the
first node 1dentified 1n the located entry of the connection
control block.

14. The distributed memory logic circuit of claim 11,
wherein the distributed shared memory system 1s a cache
coherent non-uniform memory access system.

15. A distributed shared memory system comprising:

a network switch fabric;

two or more nodes [in a distributed shared memory system}

connected by [a] the network switch fabric[; and
wherein], each of the two or more nodes [comprises]
COMpPYISInG.:

one or more processors|.],

local memory; and

a distributed shared memory logic circuit],

wherein the distributed memory logic circuit is] encoded

with executable logicl, the logic] #:at

when executed, is operable to:

receive, at [the distributed memory logic circuit of] a
local node, data for a packet destined to [a distributed
memory logic circuit of] a remote node of the two or
more nodes in the distributed shared memory system,
wherein the data for the packet includes a physical
memory address 1 which one or more bits 1in the
phvsical memory address comprise a destination logi-
cal node 1dentifier for the remote node,

use the destination logical node identifier as an imdex
into a connection control block to locate an entry for
a connection between the local node and the remote
node, resulting in a local entry of the connection
control block, wherein the connection control block 1s
stored 1n local memory on the local node,

build [a] #e packet ir a format of a connection and com-

munication protocol using the data, the destination logi-
cal node 1dentifier, and a logical node 1dentifier for the
local node, wherein the logical node identifier for the
local node 1s included 1n the located entry of the connec-
tion control block [entryl].

add, to the packet, a header that includes a switch fabric

address for the remote node, wherein the switch fabric

address 1s 1dentified 1n the located entry of the connec-
tion control block,

US RE44,610 E

13

transmit the packet Jon a link] to the network switch fabric,
receive, at [the distributed memory logic circuit of] the
local node, a second packet from [a distributed memory
logic circuit of] the remote node or another remote node
of the two or more nodes 1n the distributed shared
memory system, wherein the second packet includes a
source logical node 1dentifier,

determine whether a destination switch fabric address

included in the second packet matches a switch fabric
address for the local node,

use the source logical node 1dentifier as an index into the

connection control block to locate an entry for a connec-
tion between the local and remote node, resulting in a
second located entry of the comnnection contvol block,
determine whether a destination logical node 1dentifier
included in the second packet matches [a] #4e logical
node 1dentifier for the local node, wherein the logical
node 1dentifier for the local node 1s identified in the
second located entry of the connection control block,
and

accept data in the packet for further processing by the local

node.

16. A method comprising:

receiving, at a first node in a distributed shaved memory

system, a message from a second node in the distributed
shaved memory system, the distributed sharved memory
system comprising a plurality of interconnected nodes
each having a unique logical node identifier, wherein the
message indicates a memory operation related to a local
memory of the first node and identifies a memory
address;

if a first plurality of contiguous bits of the memory address

equal a logical node identifier of the first node, changing
the first plurality of contiguous bits to a predetermined
value;

if the first plurality of contiguous bits of the memory

address equal the predetermined value, changing the
fivst plurality of contiguous bits to the logical node iden-
tifier of the first node; and

Jorwarding the message to a processor of the first node for

processing.

17. The method of claim 16, wherein the predetermined
value is zevo.

18. The method of claim 16, wherein each node of the
plurality of interconnected nodes internally accesses a
respective local memory having memory addresses with a
first plurality of contiguous bits set to the predetermined
value.

19. The method of claim 16, whervein a given node of the
plurality of interconnected nodes accesses a local memory of
another node of the plurality of interconnected nodes that has
a logical unit identifier equal to the predetermined value
using the given node’s own respective logical node identifier
for the another node.

20. The method of claim 16, wherein the memory operation
is one of a read command, a write command, or a probe.

21. A method comprising:

receiving, at a first node in a distributed shared memory

system, a message from a processor of the first node

10

15

20

25

30

35

40

45

50

55

14

identifving a memory operation related to a local
memory of a second node in the distributed shared
memory system, the distributed shared memory system
comprising a plurality of nodes each having a unique
logical unit identifier, the plurality of nodes being inter-
connected by a switch fabric, wherein the message iden-
tifies a memory address;

if a first plurality of contiguous bits of the memory address
equal a logical node identifier of the first node, changing
the first plurality of contiguous bits to a predetermined
value;

if the first plurality of contiguous bits of the memory
address equal the predetermined value, changing the
fivst plurality of contiguous bits to the logical node iden-

tifier of the first node; and

forwarding the message to the second node for processing.
22. A distributed shaved memory system, comprising:

a network switch fabric; and

a plurality of nodes interconnected by the network switch

Jabric, each given node of the plurality of nodes com-

prising:

a logical node identifier of a plurality of contiguous bits;

a local memory;

a distributed sharved memory management chip opera-
tive to shave the local memory of the given node with
others of the plurality of nodes in the distributed
shaved memory system to create a shared memory
accessible using binary addvesses comprising a plu-
rality of bits, wherein a set of contiguous most-signifi-

cant bits of the binary addresses collectively represent
a logical node identifier of a node of the plurality of
nodes; and

one or movre processors each operative to access the
local memory of the given node, the local memory
accessed using binary addresses having the set of
contiguous most-significant bits collectively set to a
predetermined value,

wherein the distributed sharved memory management
chip is further operative to map the predetermined
value to the logical node identifier of the given node in
memory management traffic transmitted between the
plurality of nodes that include one or more binary
addresses of the sharved memory.

23. The distributed shaved memory system of claim 22,
wherein the distributed shaved memory management chip of
each node of the plurality of nodes is further operative to:

if the set of contiguous most-significant bits of a given

binary address equal the logical node identifier of the
given node, change the set of contiguous most-signifi-
cant bits of the given binary address to the predeter-
mined value; and

if the set of contiguous most-significant bits of the given

binary address equal the predetermined value, change
the set of contiguous most-significant bits of the given
binary address to the logical node identifier of the given
node.

	Front Page
	Drawings
	Specification
	Claims

