USOORE44402E
(19) United States
a2y Reissued Patent (10) Patent Number: US RE44,402 E
Meier et al. 45) Date of Reissued Patent: Jul. 30, 2013
(54) SYSTEM AND METHOD FOR STORING A (56) References Cited

SEQUENTIAL DATA STREAM
U.S. PATENT DOCUMENTS

(75) Inventors: Karl Meier, Portland, OR (US); Nathan 5.410.546 A 4/1995 Boyer et al.

Dohm, Natick, MA (US) 6,510,474 B1* 1/2003 Stracovsky etal. 711/158
6,526,484 Bl 2/2003 Stacovsky et al.
(73) Assignee: Jinsalas Solutions, LL.C, Dover, DE 7,149,857 B2* 12/2006 Jeddelohcovvvviinnn. 711/158
(US) 7,240,347 Bl 7/2007 Lim et al.
7,243,184 B1* 7/2007 Fergusonetal. 711/100
(21) Appl. No.: 12/943,839 2003/0212985 Al1* 11/2003 Chanetal. 717/120

* cited b *
(22) Filed: Nov. 10,2010 cited by examiner

(Under 37 CFR 1.47)
Related U.S. Patent Documents

Primary Examiner — Pierre-Michel Bataille

Reissue of: (57) ABSTRACT
(64) Patent No.: 7,451,282 The present invention provides an improved apparatus and
Issued: Nov. 11, 2008 method for the receipt of high-speed sequential data streams.
Appl. No.: 11/076,464 It utilizes the concept of banked memories to reduce the
Filed: Mar. 9, 2005 required speed and size of the input butlers used to recetve the
data streams. This allows the device to employ large, rela-
(51) Int. Cl. tively slow memory elements, thereby permitting large
Goor 12/00 (2006.01) amounts of sequential data to be stored by the receiving
(52) US. CL device. Using control information that was written as the data
USPC ..o, 711/158; 711/151; 711/5; 711/6; was being stored in the memory banks, a reordering element
711/E12.002 1s later able to retrieve the data elements from the plurality of
(58) Field of Classification Search memory banks, in an order that 1s different from that 1n which
USPC 711/158, 169, E12.001, E12.002; 710/3, the stream was received, and to reassemble the data stream
710/6, 39, 40, 41, 58, 116, 123; 718/100, into the original sequence.
718/102, 103;370/392, 393, 394, 717/120
See application file for complete search history. 25 Claims, 4 Drawing Sheets

270 210
27T
277 |
273 |
574 |
— 1 1| — 1
—
—
— |
I e
35 530 —
] — [
550 — T —1 []
— | =
200 201

(|

260

U.S. Patent Jul. 30, 2013 Sheet 1 of 4 US RE44,402 E

— Bank O _
20a N
35
Bank 1 .
20b N
Input Data Stream 35
Q
35
Bank 2
20c
35
Bank 3
20d
35

110 . Ouéput Ouctfut
ol e | o

FIG. 2a

U.S. Patent Jul. 30, 2013 Sheet 2 of 4 US RE44,402 E

o I8 I Nl 20 0) 7 I
110 - input 1
120) Bk -
so Benk2 | LS |~

FIG. 2b
Bank 0 .
300
Input Data Stream
Bank 1 >
3710
FIG. 3

Data Input 0 | Input1 | Input2 | Input3 | Input4 | Input5 | Input 6 Input 7
Stream
. input 0 | Qutput | Input2 | Output | Input4 | Quiput | Input 6 Output
B D F H

A C E G

FIG. 4a

U.S. Patent Jul. 30, 2013 Sheet 3 of 4 US RE44.402 E

Data | Input0 | Input 1 input 2 input 3 Input 4 Input 5 Input 6 input 7
Stream
B el el il I il

| e

FIG. 4b

210

Data Control

i

39 230 —

i
LR

B

220
200 201

i

260

FIG. 5

U.S. Patent Jul. 30, 2013 Sheet 4 of 4 US RE44,402 E

~_Data | Control
I
I
I
I
I
35 I
I
I |::::]
I 550
200 201
260
FIG. 6
210
270
_Data | Control
271 | I
272 | I
273 | I
274 | I
| I
35 I
[::::] I
I [::::]
) 230 I S5
220 200 201

I\)D
)
QO

FIG. 7

US RE44,402 E

1

SYSTEM AND METHOD FOR STORING A
SEQUENTIAL DATA STREAM

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

In computer systems, there 1s often a need to recerve and
store an incoming data stream, with the purpose of using or
transmitting that data at a later time. In the case of data
streams containing information utilizing a specific format,
the order 1n which the data 1s received 1s relevant to its content
and context. Therefore, 1n these cases, 1t 1s essential not only
to capture the mndividual data elements 1n the stream, but 1t 1s
also essential that the order in which the data stream was
received 1s preserved.

Therefore, many implementations utilize FIFOs or bullers
to capture the data stream as it 1s recerved, typically using
sequential addresses 1n the storage elements to store each
subsequent data element. For example, in the case of a com-
puter network, an incoming packet 1s received by a network
device, such as a switch, a router, or an end node. This packet
usually conforms to a specific protocol, such as Ethernet, PCI,
FDDI, ATM, or others, which define the format, and therefore
the context of each data element. Most typically, these net-
work devices utilize storage elements, such as random access
memories (RAMSs) to store the data stream as 1t 1s recerved.
Memory elements have a number of locations 1into which data
can be written or from which data can be read, known as
addresses. In the case of data streams, these memories typi-
cally store consecutive data elements from the incoming data
stream 1n consecutive memory locations. By doing so, the
data elements are retained, as 1s the sequence of the data.
Using this method, a particular data element within a data
stream can be 1dentified by the address 1n memory where the
first data element 1s stored (known as the starting address),
and the location of the desired data element within the stream.
Thus, 1f the incoming stream was stored in memory beginning
at starting location M, and the data element of interest was the
N™ received in the data stream, that data element will neces-
sarily be stored in location M+N-1.

The use of a single memory element to recerve and store
incoming data streams 1s well known, and provides a simple
method of preserving the original sequence of the incoming,
data stream. However, 1t 1s not without its drawbacks. In many
cases, such as that of computer networks, the speeds at which
data streams can be transmitted constantly increases, thus
requiring a corresponding increase in the speed of the
memory element receiving the data stream. In fact, in most
applications, the memory element operates at speeds greater
than the incoming data stream, preferably greater than twice
the incoming data rate. By having twice the speed of the
incoming data, the memory element 1s able to transmit a
previously stored data stream while simultaneously receiving
an mcoming data stream. In this way, 1t 1s guaranteed that the
memory can empty itself of old data streams at least as
quickly as 1t 1s receiving new data streams. Thus, a memory
clement operating at a rate of at least twice the speed of the
incoming data should never {ill under 1deal conditions.

However, as the rates at which data packets can be sent
increases, it becomes more ditficult to have memory elements
capable of operating at more than twice that speed. Such
memories, while available, are typically expensive or con-

10

15

20

25

30

35

40

45

50

55

60

65

2

sume significant amounts of silicon within an integrated cir-
cuit. One alternative, known as dual port memories, allow
simultaneous access to two addresses. However, these memo-
ries typically require significant silicon space as well.

In addition to the speed requirements associated with these
memories, in many applications, such as computer networks,
there 1s also a concurrent need for large amounts of storage.
To optimize network traffic, 1t 1s very advantageous for a
receiving device to be able to store many incoming messages
quickly. The most common way of achieving this goal 1s to
incorporate large amounts of memory into the receiving
devices, thereby enabling them to recerve significant amounts
of data. However, the combination of large amounts of
memory and high speed 1s difficult to achieve. Therelore,
there 1s typically a compromise between performance and
device size and cost, to balance these contlicting goals.

In view of these tradeotls, a system and method for recerv-
ing large amounts of high speed sequential data, and retaining
the data elements, and their order of arrival 1s needed.

SUMMARY OF THE INVENTION

The problems with the prior art have been overcome with
the present mvention, which provides an improved system
and method for the storing of sequential data streams.

One technique that can be used to reduce the memory
bandwidth 1s to utilize a number of memory elements to
receive the incoming data stream. Using a predetermined
order, portions of the incoming data stream can be stored 1n
cach of a number of memory elements. For example, assume
that four memory elements are utilized. The first data element
of the incoming stream would be written to the first memory
clement; the second data element to the second memory, until
cach memory element had recerved one data element. At this
point, the sequence would repeat, such that the fifth data
clement 1s stored 1n the same memory element as the first data
clement. Since the incoming data stream 1s being stored 1n
four separate memory elements, the speed required of those
memories 1s reduced by a factor of four. Similarly, since there
are four separate memory elements, the size of each can be
reduced by a factor of four. This presents a much more fea-
sible solution than a single large, very high speed memory.

This technique, also known as memory banking, 1s well
known and 1s used elsewhere 1n electronics. However, its
usage 1s typically confined to those applications where the
source of the data which 1s being stored in the banked memory
1s deterministic or 1s controlled. As an example, the memory
system ol a personal computer may be banked. In this case, all
of the data sources, including the mput devices such as CD
and DVD readers, are controlled by the central processing
unit. This CPU typically assigns the starting address to which
the data will be written. Thus, 1t can be guaranteed that
streams ol data will always be stored starting at a specific
location within a specific bank in memory. Similarly, the
stored data can also be read out of banked memory 1n a
specific order. Similar attributes exist 1n most banked
memory architectures.

The banking technique has typically been less desirable 1n
applications where the data sources are less predictable. For
example, 1n a network switch, data begins arriving at the
switch at indeterminate times. This makes 1t difficult to align
the incoming data to insure that the first element 1s written
into the first bank. Therefore, 1t 1s not possible to isure that
when the data stream 1s read from the memory elements, that
it 1s read 1n the correct sequence, since the first element may

not be in the first bank.

US RE44,402 E

3

The present mvention utilizes the concept of banked
memories to reduce the required speed and size of the input
butilers. This allows the devices to employ large, relatively
slow memory elements, thereby permitting large amounts of
sequential data to be stored by the recerving device. Because
of the nature of the banked memory architecture, the first
clement of the data stream may not always be stored 1n the
first memory element. However, the receiving device then
uses control information, which 1t previously generated and
stored 1n conjunction with each element of the sequential data
to properly reconstruct the data stream into the correct
sequence.

Brietly, the banked memories are set up such that each
receives a unique time slice during which it writes the data
clement which 1s currently being recerved (if any). Each bank
also has at least one umique time slice during which its con-
tents may be read by other logic within the device. As a
sequential data element arrives, 1t 1s written 1nto whichever
memory bank 1s enabled to write data during that particular
time slice. The subsequent data elements are then stored in the
memory banks according to the order in which the individual
banks are enabled for storing data.

At a later time, logic within the device begins to read the
data from the memory banks. Since there 1s no predetermined
bank wherein the storage of all incoming data streams 1s
guaranteed to start, the logic 1s unable to guarantee that 1t
always reads the first data element of the sequential stream
first.

Using control information that was written as the data was
being stored 1n the memory banks, the logic 1s able to reas-
semble the data stream 1nto the original sequence used when
the data was transmitted to the device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a first embodiment of a banked memory
architecture used to store incoming sequential data streams 1n
accordance with the present invention;

FIG. 2a illustrates a first representative timing diagram
implemented 1n conjunction with the architecture of FIG. 1;

FI1G. 2b illustrates a second representative timing diagram
implemented 1n conjunction with the architecture of FIG. 1;

FIG. 3 illustrates a second embodiment of the banked
architecture used to store incoming sequential data streams 1n
accordance with the present invention;

FIG. 4a illustrates a first representative timing diagram
implemented 1n conjunction with the architecture of FIG. 3;

FI1G. 4b illustrates a second representative timing diagram
implemented 1n conjunction with the architecture of FIG. 3;

FIG. § 1llustrates a representative embodiment of the re-
ordering element of the present invention;

FIG. 6 illustrates a second representative embodiment of
the re-ordering element of the present invention; and

FI1G. 7 illustrates a third representative embodiment of the
re-ordering element of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FI1G. 1 1llustrates a first embodiment of the banked memory
clements used within the recerving device. Input Data Stream
10 1s the mnput to each of the memory elements 20. In FIG. 1,
a total of four memory elements are shown. However, the
present invention 1s not limited to specifically four banks; the
invention simply requires that there be more than one
memory bank. During specific time intervals, a single one of
the memory elements 1s enabled to store a data element from
the data input stream 10. Each of the memory elements 1s also

5

10

15

20

25

30

35

40

45

50

55

60

65

4

enabled during a different time 1nterval to output data which
it has previously stored. FIG. 2a illustrates a representative
timing diagram that best illustrates the operation of a typical
banked memory configuration. Row 100 displays the input
data stream. In FIG. 2a, a total of 8 data elements are shown.
However, there 1s no mimimum or maximum number of data
clements that may be contained 1n a given input data stream.
In this particular diagram, the first data element in the data
stream, Input 0, 1s available and stored when Bank 0 (shown
in Row 110) 1s enabled. During the next clock cycle, Bank 0
(Row 110) 1s disabled, and Bank 1 (Row 120) 1s enabled to
store the next data element, Input 1. The process continues
until each of the memory elements has stored one data ele-
ment. At this point, the sequence repeats, with the fifth data
clement, Input 4, being stored in Bank 0 (Row 110). Although
this example shows that the first data element 1s stored 1n the
first bank, this 1s not a requirement, nor 1s it possible to
guarantee this behavior. The operation of the banks 1s deter-
ministic, as can be seen 1 FIG. 2. However, the mput data
stream typically arrives from another source and 1s therefore
not aligned with the internal timing of the recerving device.
Therefore, as shown 1n FIG. 2b, 1t 15 possible that the first data
clement of the Input Data Stream arrives when Bank 3 (Row
140) 1s enabled. In this scenario, Bank 3 stores the first data
element, Bank 0 stores the second data element, Bank 1 stores
the third data element, Bank 2 stores the fourth data element,
and the pattern repeats for the length of the input data stream.

With any banked memory architecture, one of the biggest
advantages 1s that the speed of the memory elements can be
reduced. In FIG. 2a, each bank need only store every fourth
data element, therefore lowering the required speed. To gen-
cralize, the bandwidth needed for each memory element to
store the mnput data stream can be given by L/B, where L 1s the
line rate, or the rate at which input data elements arrive, and B
1s the number of memory banks.

In FIGS. 2a and 2b, the memory elements are configured
such that they are enabled to output a previously stored data
clement every fourth cycle. Thus, when Bank 0 (Row 110) 1s
storing Input 0, Bank 2 (Row 130) 1s outputting a previously
stored element. This element could be from the current input
data stream, or from a data stream that was received at an
carlier time. In this scenario, the order 1n which the memory
banks output previously stored data elements tracks the order
in which the banks store data elements. The bandwidth
needed for each memory element to output a data element can
also be given by L/B, when the rate at which the elements are
output matches the rate at which they are stored, as 1s the case

in FIG. 2.

In the embodiments 1llustrated in FIGS. 2a and 2b, the total
bandwidth of each memory bank 1s 2*L/B or L/2. Therefore,
cach memory needs to operate at only half the speed of the
incoming data stream.

FIG. 3 shows an alternate embodiment of the memory
banking architecture. In this embodiment, the input data
stream 1s directed to two memory elements, Bank 0 300 and
Bank 1 310. FIG. 4a shows a first representative timing dia-
gram that can be used in conjunction with the configuration of
FIG. 3. During each clock cycle, one of the banks stores an
incoming data element, while the other bank outputs a previ-
ously stored element. Using this configuration, the bandwidth
needed by each memory element to recerve mput data ele-
ments 1s given by L/B, or L/2. Similarly, the bandwidth
needed to output previously stored elements 1s L/2. Thus,
cach memory element has a total bandwidth of L, which 1s
half of the bandwidth which 1s needed 11 only a single memory
clement 1s employed. FIG. 4b shows a second representative
timing diagram that can be used 1n conjunction with FIG. 3. In

US RE44,402 E

S

this scenario, the memory elements are configured such that
there 1s twice as much bandwidth available to output previ-
ously stored elements as there 1s to store new 1nput data
clements. This configuration i1s usetul 1n a variety of sce-
narios. For example, 1f there are two destinations for the
stored data, each destination 1s able to access that data at the
line rate. A scenario as 1s illustrated in FIG. 4b 1s also useful
to allow the receiving device to quickly be able to retrieve
stored data elements, thus minimizing the chances that the
memory elements will become full.

Returming to FIG. 4b, the memory elements operate using,
a clock rate which 1s 1.5 times that of the mncoming data
stream. This enables the memories to each devote a third of
their bandwidth to the incoming data stream and two thirds of
their bandwidth to the output data stream. FIG. 4b shows that
Bank 0 stores a data element every third clock cycle, while the
other two cycles are used to output data. Bank 1 has the same
pattern, simply skewed 1n time by one clock cycle. Thus, in
the time required to store two new data elements, such as
Input 1 and Input 2, the memory elements are able to output
four previously stored elements, Outputs B, C, D and E.

Returming to FIG. 1, each of the memory elements 20 1s in
communication with the imput data stream 10, as previously
described. In addition to the actual data elements, control
information associated with the relative position of the par-
ticular data element in the current data stream 1s also trans-
mitted to the reordering storage element. This control 1nfor-
mation can be generated using a number of techniques. In one
embodiment, as a new mput data stream arrives, an entry 1s
created 1n a separate memory element 30. This entry contains
the starting address of the data stream within the banks, as
well as the bank number at which the first data element of the
stream was stored. In addition, either the last address of the
data stream, or the number of data elements in the data stream
1s also stored. It 1s well known to those skilled 1n the art, that
based on the starting address and the number of data elements
in a data stream, status indicators can be generated for each
data element which indicate their relative position within the
data stream. More specifically, 1t 1s possible to 1dentity the
first data element, and the last data element, while the remain-
der of the data elements 1s collectively i1dentified as being 1n
the middle. In the preferred embodiment, a flag 1s stored with
the first data element as 1t 1s written into the memory element
20, indicating that 1t 1s the first data element. Alternatively, a
count of the data elements modulo N, where N 1s the number
of banks can be employed. As the data 1s read out of the
memory elements 20, this flag 1s used to determine the OFF-
SE'T value (described in more detail later) that 1s passed to the
ordering logic. A similar flag 1s used to indicate the end of the
packet. Alternatively, the number of data elements contained
in the packet can be stored, either with the first data element,
or 1n a separate storage element 30. As the data elements are
presented to the reordering element, this number 1s decre-
mented, and a signal indicating the end of the packet 1s gen-
erated when the count reaches zero.

FIG. § illustrates an embodiment of the high speed reor-
dering storage element of the current invention. The data
paths 35 from the banked memory elements (as shown 1n FIG.
1 and FIG. 3) are all in communication with the reordering
storage element 200, which 1s preferably a FIFO or register
file. Data paths 335 transmit the previously stored data ele-
ments. The associated control information described above 1s
used by the status logic 210 to generate revised control infor-
mation which 1s stored in conjunction with the data elements
in the storage element 201. In the preferred embodiment, the
following control information 1s passed to the status logic

210:

5

10

15

20

25

30

35

40

45

50

55

60

65

Status Encodings transmutted to Status Logic
(incoming control information)

SOP_EOP start of packet and end of packet (only valid in a single
word packet)

SOP start of packet

MOP middle of packet - asserted for all data elements that are not
SOP or EOP

EOP end of packet

IDLE no data this cycle

EOPK end of packet that was cut-through and killed. This

encoding is only valid in cut-through implementations.

SOP mdicates that the current data element 1s the first data
clement in a new data stream. In the preferred embodiment,
this indicator 1s transmitted when the first data element within
a data stream 1s being presented. In one embodiment, the
address of the data element within the banked memory ele-
ments 1s compared to the stored starting address. The first
clement 1n which a match 1s found 1s deemed to be the SOP. It
1s important to note that there are multiple banks, and each of
these banks utilizes the same addresses. Therefore, 1t 1s pos-
sible that the SOP indicator 1s applied to a data element that 1s
from the right address, but the wrong bank. Thus, the SOP
indicator actually signifies that this is the first data element of
the data stream that the reordering element has recerved,
rather than signifying that this 1s actually the first data element
of the data stream.

Conversely, EOP indicates that the current data element 1s
the last data element 1n a data stream. In the preferred embodi-
ment, this indicator 1s transmitted when the total number of
data elements transmitted matches the value contained 1n the
entry associated with this data stream. As was the case above,
the EOP indicator actually signifies that this is the last data
clement that the reordering element will recerve, rather than
signitying that 1t 1s truly the last data element of the input data
stream.

IDLE indicates that no data elements are currently being
transferred. These three indicators, SOP, EOP and IDLE, are
the minimum set of control mformation necessary to imple-
ment the present invention. The other indicators are used to
provide additional functionality.

MOP indicates that the current data element 1s neither the
first nor the last 1n the current data stream. While this can be
inferred through momtoring of SOP, EOP, and IDLE, a sepa-
rate indicator can be used to simplity the logic associated with
the Status Logic 210.

SOP_EOP 1s a special indicator that 1s only used with data
streams that are exactly one data element 1n length. In those
cases, the first data element and the last data element are one
in the same, and thus a separate indicator 1s created. For
embodiments 1n which single data element data streams are
not permitted, this indicator can be eliminated.

Finally, EOPK indicates that the current data element 1s the
last element of the data stream, in which the data stream has
not been properly received. In addition to indicating that this
1s the last data element of the stream, this indicator signifies
that the data elements from this data stream that preceded 1t
should all be discarded. This indicator 1s only necessary 1n
implementations 1 which the banked memory elements
begin outputting a data stream before that entire data stream
has been received.

Finally, an indicator, known as OFFSET, 1s also created.
This indicator signifies the order 1n which the data will be
presented to the reordering storage element. In the preferred
embodiment, an OFFSET of 0 indicates that the data 1s 1n the
proper order, 1.e. data element 0, data element 1, etc. An

US RE44,402 E

7

OFFSET of 1 indicates the first data element will be trans-
mitted after each of the other banks has transmitted one ele-
ment. In the case of four banks, this sequence would be data
element 1, dataelement 2, data element 3, data element 0, data
clement 5, etc. Similarly, an OFFSET of 2 indicates that the
first two data elements will be transmitted after each of the
other banks has transmitted an element. The value of OFF-
SE'T can range from O to a value that 1s one less than the

number of banks.

Although this description will assume the use of the pre-
viously described status indicators, the mnvention 1s not lim-
ited to only this embodiment. The reordering element
requires an indication that the data stream 1s beginming, the
specific pattern (or offset) in which 1t will be transmatted, and
an indication that the data stream has ended. Those skilled 1n
the art would appreciate that these three pieces of information
can be supplied 1n a multitude of different ways, several of
which are described above.

Returming to FIG. 5, based on the incoming control infor-
mation, status logic 210 creates a revised status for each data
clement. In the preferred embodiment, the following status

codes are generated by status logic 210 and stored 1n control
store 201:

Status Encodings stored with the data in the re-ordering element

SOP_EOP start of packet and end of packet (only for single word
packets)

OSOP first word 1n multi-word packet - must get converted to
MOP or EOP or EOPK at output

SOPE end of packet coming in, but start of packet going
out - only valid for a 2 word packet
(convert following OSOP mmto EOP)

SOPEK end of packet (kill) coming in, but start of packet going
out - only valid for a 2 word packet
(convert following OSOP mmto EOPK)

SOP start of packet going out (convert following OSOP into
MOP)

MOP middle of packet

EOP end of packet

MOPE end of packet coming in, middle of packet going out
(convert following MOP into EOP)

MOPEK end of packet (kill) coming in, middle of packet going
out (convert following MOP into EOPK)

IDLE no data this cycle

EOPK end of packet that was cut-through and killed. only

valid in cut-through implementations

SOP_FOP has the same significance in this encoding as
was previous described. It 1s used to i1dentity single data
clement data streams. Those implementations that do not
support single data element data streams can eliminate this
status 1ndicator.

OSOP indicates that the data element associated with this
status was the first element of the current data stream received
by the reordering storage element, however 1t 1s not truly the
first data element in the data stream since the OFFSET value
was non-zero. This status will later be converted to a MOP,
EOP, or EOPK, depending on the scenario.

SOPE indicates that the data element was the last 1n the
data stream when 1t was received by the reordering element,
but 1s actually the first data element 1n the data stream. This
status 1s only used with data streams that contain exactly two
data elements. This indicator can be eliminated 1f two data
clement data streams are not implemented.

SOPEK 1ndicates that the data element was the last in the
data stream when 1t was recerved by the reordering element
and that the packet should be discarded since 1t was recerved
in error, but 1t 1s actually the first data element in the data

10

15

20

25

30

35

40

45

50

55

60

65

8

stream. This status 1s only used with data streams that contain
exactly two data elements. As 1s the case with SOPE, this
indicator can be eliminated 1f two data element data streams
are not implemented.

SOP indicates that the data element being stored 1s actually
the first element 1n the data stream. Any subsequent OSOP
must be converted mto a MOP upon transmission from the
reordering element.

MOP indicates that the data element being stored 1s 1n the
middle of the data stream.

EOP indicates that the data element being stored 1s the last
in the data stream.

MOPE indicates that the data element being stored was the
last from that data stream which the reordering element
received, but 1s actually a MOP. In this case, the subsequent
MOP must be converted to an EOP.

MOPEK 1s similar to the MOPE, except that the subse-
quent MOP 1s converted into a EOPK.

IDLE indicates that there 1s no data element.

EOPK indicates that this 1s the last data element of a data
stream that 1s to be discarded.

This set of indicators allows for a wide variety of data
stream sizes, and also allows for “cut-through™ implementa-
tions, wherein data streams are read out of the banked
memory elements before they have been completely recerved.
If the *“cut-through” implementation 1s not allowed, and all
packets are greater than two data elements, this set of indica-
tors can be significantly reduced. Under those conditions,
only OSOP, SOP, MOP, EOP, MOPE, and IDLE need to be
used to implement the present invention.

In the preferred embodiment, the reordering element com-
prises a FIFO having a read pointer 250 and a write pointer
230. Wnite pointer 230 1s used to index into the FIFO to
determine which of the storage elements 200 will be used to
store the incoming data from the data path 35. Read pointer
250 1s used to determine which of the storage elements 200
will be used to output the next element from the FIFO. As 1s
typical with all FIFOs, a mechanism (not shown) also exists to
prevent the FIFO from being written with more data than 1t
can hold. This prevention can be accomplished through the
use of a “full” flag, an “almost full” flag, or a FIFO count.
Each of these can be used to signal when the FIFO can be
longer accept more data. The present invention can operate
with any of these embodiments. Additionally, an empty flag
260 1s preferably used to indicate when there 1s no active data
currently being stored in the FIFO.

In addition to these typical elements, the FIFO also com-
prises a write pointer logic element 220. This write pointer
logic element 220 uses the incoming status information, such
as SOP, MOP, EOP, the OFFSET wvalue and the current value
of the write pointer 230 to determine where the next data
clement should be written. It also uses this mnformation to
properly increment and update the write pointer.

The following example illustrates one embodiment of the
operation of the reordering element, as well as the use of the
read pointer and write pointer. It 1s assumed, for purposes of
illustration, that there are two banks of memory elements
which deliver the data to the reordering element. As indicated
earlier, there are a number of embodiments which the reor-
dering element could utilize, and the invention 1s not limited
to only this embodiment. In fact, a second somewhat different
embodiment 1s described later to further illustrate the fact that
many embodiments of the reordering element are possible
and within the scope of the present invention. The following
Table 1 describes the 6 data streams which are to be sent to the
reordering element:

US RE44,402 E

9
TABL,

(L]

Size
(elements)

OFFSET

Data Stream (value can only be 0 or 1)

Don’t care (O or 1)
Yes (1)
Yes (1)
Yes (1)
Yes (1)
No (0)

A ST N S I SN T e
(o I) b

Data Streams 1 through 4 all have an iitial offset, which
means that the data elements will arrive as follows: data
element 1, data element 0, data element 3, data element 2, etc.
Data Stream 5 1s correctly ordered, as 1s Data Stream 0, since
it 15 a stream comprising only a single data element.

Table 2 illustrates the operation of the reordering element.
The first column represents the number of the clock cycle
during which the specific actions occurred. The next 3 col-
umns, o_1in, status_in and din represent the data and associ-
ated status information that 1s being presented to the reorder-
ing clement.

The next 6 columns, status_enc, wr_addr, data, WP, RP,
and E represent the internal storage within the reordering
clement. Specifically, status_enc 1s the revised status infor-
mation generated using the recerved status_in and o_1n nfor-
mation. Wr_addr 1s the address which 1s currently being writ-
ten to. Data represents the stored version of din. WP and RP
are the values of the write pointer and read pointer, respec-
tively. Finally, E 1s an indication that the reordering element 1s
empty.

The remaining 2 columns, status_out and dout represent
the status and data as they are output by the reordering ele-

ment.

TABLE 2

Data element storage within
reordering element

Input to
reorderine element

time o©o_in status_in din status enc wraddr data WP RP E
0 X SOP/EOP 0 SOP/EOP 0 0 0O 0 1
1 JLE 1 0O 0O
2 1 SOP 1 OSQOP 2 1 1 1 1
3 1 EOP 0 SOPE 1 0 1 1 1
4 JLE 3 1 0O
5 JLE 3 2 0
6 SOP 1 OSOP 4 1 3 3 1
7 MOP 0 SOP 3 0 3 3 1
8 EOP 2 EOP 5 2 5 3 0
9 JLE 6 4 0

10 JLLE 6 5 0
11 SOP 1 OSQOP 7 1 6 6 1
12 MOP 0 SOP 6 0 6 6 1
13 MOP 3 MOP 9 3 8 6 0
14 EOP 2 MOPE 8 2 8 7 0
15 JLE 10 8 O
16 JLE 10 9 0
17 SOP 1 OSOP 11 1 10 10 1
18 MOP 0 SOP 10 0 10 10 1
19 MOP 3 MOP 13 3 12 10 0O
20 MOP 2 MOP 12 2 12 11 O
21 EOP 4 EOP 14 4 14 12 O
22 JLE 15 13 0O
23 JLE 15 14 O
24 0 SOP 0 SOP 15 0 15 15 1
25 0 MOP 1 MOP 16 1 16 15 O
26 0 EOP 2 EOP 17 2 17 16 O
27 JLE 18 17 0O
28 JLE 18 18 1

10

15

20

25

30

10

Reterring to Table 2, during clock cycle 0, a data stream
comprising a single element 1s presented to the reordering
clement. At this time, the reordering element has no data in 1t
and all of its pointers are reset to 0. Since the reordering
clement 1s empty, the E flag 1s set to 1. Since 1t 1s a data stream
with a single data element, the SOP_EOP flag 1s asserted at its
input. The reordering element, seeing the SOP_EOP flag,
recognizes that the o_in flag 1s irrelevant and stores the
incoming data element at wr_addr 0 and maintains the

SOP EOP status.

During clock cycle 1, no new data 1s presented to the
reordering element, as demonstrated by the incoming status
of IDLE. During this clock cycle, the WP 1s incremented since
wr_addr 0 already contains data. Stmilarly, the E tlag 1s reset,
since the reordering element 1s no longer empty, since the WP
and RP no longer have the same value. Since the reordering
clement 1s not empty, it can output the data element pointed at
by RP. Thus, during clock cycle 1, the first data element and
its status SOP_EOP are output by the reordering element.

During clock cycle 2, the first data element of the second
data stream 1s presented to the reordering element. The reor-
dering element uses the status_in of SOP, coupled with the
o_1in of 1 to determine that this 1s actually the second data
element of the data stream. It then utilizes the WP, and adds
one to compensate for the fact that this 1s really the second
data element, and stores the data in wr_addr 2. Its associated
status 1s revised to OSOP, indicating that 1t 1s the first data
clement recerved, but not actually the first data element of the
data stream. The RP 1s also incremented to 1 since a data
clement has been output from the reordering element during
the previous clock cycle. Also during this time, the E flag 1s
again set to 1 since the RP and WP match. Thus, no data can
be output from the reordering element.

Output from
reordering

element

status out

IDLE

SOP/EOP

IDLE
IDLE
SOP
EOP
IDLE
IDLE
SOP
MOP
EOP
IDLE
IDLE
SOP
MOP
MOP
EOP
IDLE
IDLE
SOP
MOP
MOP
MOP
EOP
IDLE
SOP
MOP
EOP
IDLE

dout

g

I SN FS T T) b — O

 —

US RE44,402 E

11

During clock cycle 3, the second data element of the sec-
ond data stream 1s presented to the reordering element. The
reordering element uses the status_in of EOP, the o_1in of 1,
coupled with the fact that the previous data element’s incom-
ing status was SOP, to determine that the status_enc for this
element should be SOPE, which indicates that it was the last
data element from the data stream that was received, but 1s
actually the first data element 1n a data stream comprising
only 2 data elements. Since this data element actually should
be betfore the previous one, 1t 1s stored at wp_addr 1.

During clock cycle 4, no new data streams are presented to
the reordering element, as indicated by a status_in of IDLE.
The WP 1s also incremented by two to a value of 3, since both
wp_addr 1 and 2 have been utilized already. Since WP and RP
are different, the reordering element 1s free to output data
again, starting at the address indicated by RP. Since the sta-
tus_enc of that data element 1s SOPE, the reordering element
recognizes that this data element 1s the first data element of
the data stream, and the next data element (the element at RP
2) 1s the last element of the data stream. Thus, the status_out
generated 1s SOP.

During clock cycle 5, no new data streams are presented to
the reordering element, as indicated by a status_in of IDLE.
The RP 1s incremented since a data element was output during
the previous clock cycle. WP and RP are still different; there-
fore, the reordering element 1s free to output data again,
starting at the address indicated by RP. Since the status_enc of
that data element 1s OSOP, and the status_enc of the prevrous
data element was SOPE, the reordering element recognizes
that this data element 1s the last data element of the data
stream. Thus, the status_out generated 1s EOP.

During clock cycle 6, the actions are similar to those occur-
ring during clock cycle 2. The reordering clement uses the
status_1in ol SOP, coupled with the o_1in o1 1 to determine that
this 1s actually the second data element of the data stream. It
then utilizes the WP, and adds one to compensate for the fact
that this 1s really the second data element, and stores the data
in wr_addr 4. Its associated status 1s revised to OSOP, indi-
cating that 1t 1s the first data element recerved, but not actually
the first data element of the data stream. The RP i1s also
incremented to 3 since a data element has been outputted from
the reordering element during the previous clock cycle. Also
during this time, the E flag 1s again set to 1 since the RP and
WP match. Thus, no data can be output from the reordering
clement.

During clock cycle 7, the second data element of the sec-
ond data stream 1s presented to the reordering element. The
reordering element uses the status_in of MOP, the o_1n of 1,
coupled with the fact that the previous data element’s incom-
ing status was SOP, to determine that the status_enc for this
clement should be SOP, which indicates that 1t 1s actually the
first data element 1n a data. Since this data element actually
should be before the previous one, 1t 15 stored at wp_addr 3.

During clock cycle 8, the status_in indicates that this 1s the
last data element which will be recetved 1n the current data
stream. Since the o_in flag 1s set, the reordering element
recognizes that data elements are sent out of order. Therefore,
this element may or may not be truly the last element. To
determine whether 1t truly 1s, 1n this scenario, the reordering
clement compares the number of the data element (1n this case
it 1s the third element) to the number of banks. If the number
of the data element 1s a perfect multiple of the number of
banks, and the o_in flag1s set, then this 1s not truly the last data
clement (as seen during clock cycle 14). In this case, 3 1s not
a multiple of 2 and therefore, this truly 1s the last data element.
Thus, the status_enc stays EOP. The WP 1s also incremented
by 2, to become 3. Since the RP and WP are no longer equal,

10

15

20

25

30

35

40

45

50

55

60

65

12

E 1s now updated to O and the reordering element can begin to
output data. The data at RP 3 1s output first, with a status_out

of SOP.

During clock cycle 9, no new data 1s presented. The RP 1s
incremented to 4, and the next data element 1s output. This
element had a status_enc of OSOP. Since 1t follows a SOP
(and not a SOPE), its status_out i1s changed to MOP before it
1s sent.

During clock cycle 10, no new data 1s presented. The RP 1s
incremented to 5, and the next data element 1s output. This
element had a status_enc of FOP, which remained unaltered
as 1t 1s sent. Clock cycles 11 and 12 closely mirror time
periods 6 and 7 and need not be described again.

During clock cycle 13, the third data element of a data
stream comprising four data elements arrives, having a sta-
tus_in of MOP. Since it 1s not following a SOP, the status_enc
remains MOP. Also, at this time, the WP and RP are different;
therefore the data elemen‘[at RP 6 can be sent, with a status_
out of SOP.

During clock cycle 14, the fourth data element arrives with
a status 1n of EOP. As described in connection with clock
cycle 8, the reordering element compares the number of the
data element (in this case 4) with the number of banks (2).
Since 1t 15 a perfect multiple, the reordering element deter-
mines that this 1s not actually the last data element; rather the
previously received data element was. Thus, 1ts status_enc 1s
set to MOPE, which indicates that 1t 1s really the data element
betore the EOP.

During clock cycle 15, the reordering element sends the
data element at RP 8 (which has a status_enc of MOPE). This
1s modified to a status_out of MOP as 1t 1s sent. However, this
status_enc also mnforms the reordering element that the next
data element will have a status_out of EOP, as 1s shown during
clock cycle 16.

The remaining clock cycles illustrate more transactions,
using the same principles and rules explained above and
therefore need not be described 1n detail.

Based on the definitions and descriptions given above, a
reordering element can be implemented. The pseudo-code
that follows illustrates one embodiment of the reordering
clement, specific to implementations having exactly two
banks. The following code uses the same nomenclature as
was used 1n Table 2. Registered states are identified by the
suifix “_mr”. Combinatorial signals which serve as the inputs
to these registers will have the same name, without the *_mr”
suflix.

The following pseudo-code contains numerous comments
to Turther explain its operation.

// 1nputs to write logic
input status_in; // status from the data source
input o_in; // offset status from the source
input din; // data from the data source

// outputs used to store information within the
/freordering element (for the write logic)

output ram_wen; // write-enable to the RAM

/fwithin the reordering element

output ram_waddr; // write address to the RAM
/fwithin the reordering element

output ram_data; // write data to the RAM

/fwithin the reordering element

// traditional regs to write logic

reg Wp_Ir;

reg wc_Int;

// 2 (which 1s the number of banks)

reg last_write_status_mur;

// element written to the RAM

// interface to RAM (for the read logic)
output ram_raddr;

input ram_dout;

// write-pointer
/{ element count modulo

// status of the last

// read address for the RAM
// read data from the RAM

US RE44,402 E
13 14

-continued -continued
// mmputs to the read logic EOPK : 1f (last_write_status_mr == SOP)
input full; // indicates when the status _enc = SOPEK;
// reordering element is full clse
input dest_accept; // flow control from the > if (wc)
// destination status_enc = MOPEK;
// outputs from the reordering element to the else
// destination status_enc = EOPK;
output data_out; // data from the reordering element default : status_enc = IDLE;
output status_out; // modified status created as the endcase
// data is sent from the reordering element 10 // write the data to the reordering element anytime
// registers to read logic // there 1s non-idle data from the data source
reg rp_Imt; // read pointer ram_wen = (status_in != IDLE);
reg last_read status_mur; // status of the last word // use the write pointer when packet 1s in-order OR
// read from the RAM // the packet 1s out-of-order and an odd data
// Having defined all of the registers, inputs and outputs, // element OR the packet 1s out-of-order, an even
// the pseudo-code for the write logic now follows. This 5 // data element, and the last element in the stream
// pseudo-code generates the status_enc for each incoming if (~o_in || (o_in & wc) || (o_in & ~wc &
// data element based on the o_in and status_in indicators. ((status_in == EOP) || (status_in == EOPK))))
// It also determines the proper location at which to write ram_waddr = wp_mr;

// the iIncoming data element. Finally, it updates the write // use the write pointer, incremented by one when

// pointer (WP) as necessary.

// the packet is out-of-order, an even data

/f // element, and not the last element. Since the
// Reordering element write logic 20 // reordering element is a finite size, all adds
/ // must be modulo the size of the reordering
// track the data element count of the current data // element (which 1s defined as RAM_WORDS)
// stream modulo 2 (since there are two banks) else
// each time a SOP or SOP_EOP is received, reset ram_waddr = (wp_mr + 1)% RAM_WORDS;
// the count at the beginning of every packet // concatenate the status and the packet data when
if ((status_in == SOP) || (status in == SOP EOP)) || 25 // writing to the RAM. The RAM’s width is equal to
we = 0; // the width 1f each data element, plus the number
else // of bits needed to express the encoded status.
// increment the count with each valid data element ram_data = {status_enc, din};
if ((status_in == MOP) || (status_in == EOP) | // update the write pointer
(status_in == EOPK)) // add one to the pointer when the data comes 1n
WC = ~WC_IT; 30 // order OR
// hold the old value if there 1s not a valid data // when the data 1s out-of-order,
// word (such as during an IDLE) // when this 1s the end of the stream and this 1s
else // an odd element
WC = WC_IIT; // or when this 1s the only element in the data
// determine when an element within a stream is // stream (SOP_EOP)
// entering the reordering element 35 if ((~o_in & (status_in !=IDLE)) |
nonidle_in = (status_in != IDLE); (o_in & (status_in == SOP_EOP)) ||
// encode the status that is stored in the (o_in & ((status_in == EOP) || (status_in ==
// reordering element EOPK)) & ~wc))
// If the stream 1s sent 1n the correct order, then wp = (wp_mr + 1) % RAM_WORDS;
// the status 1s unchanged else
if (~o_1n) // add two for streams which are recerved out-
status_enc = status_in; 40 // of-order after an even element is recerved
clse if (o_in & wc & (status_in !=IDLE))
// here, the elements are out of order and need the wp = (wp_mr + 2) % RAM_WORDS;
// status needs to be modified before it 1s written // hold the write-pointer value if there is no
/f into the reordering element. The following rules // data coming in
// are used: else
1. a status of SOP_EOP is never changed since it 1s 45 WP = Wp_Inr;
the only element of the stream // update the last word status when the packet
2. a status of SOP are always changed to OSOP // source 1s not idle
3. a status of MOP can become an SOP if the previous if (non_idle_in)
element was an OSOP; otherwise, it remains MOP last write status = status in;
4. a status of EOP can become a SOPE if this stream // hold the last status if there 1s no data
has only two elements; if the element count 1s a 50 // coming in
multiple of the number of banks, then an EOP else
becomes a MOPE; otherwise 1t remains an EOP last write status = last write status mur;
5. a status of EOPK can become SOPEK, MOPEK, // Pseudo-code for the read logic follows. This pseudo-code
or EOPK, following the same rules as described // reads data from the reordering element 1n sequential
for EOP // order, and generates the status_out for each outgoing
6. Otherwise, the status_enc i1s IDLE // data element based on the status_enc indicators. It also

case (status_in)
SOP_EOP : status_enc = SOP_EOP;

55

// determines whether the reordering element 1s empty and
// determines the proper location from which to read the

SOP : status_enc = OSOP; // outgoing data element. Finally, it updates the read
MOP - 1f (last_write_status mr == SOP) // pointer (RP) as necessary.
status _enc = SOP; 7/
else // Reordering element read logic
status_enc = MOP; 60 7/
EOP - 1f (last_write_status mr == SOP) // the reordering element 1s empty when the read
status_enc = SOPE; // pointer equals the write pointer (and the
else // reordering element is not full)
if (wce) empty = (wp_mr == rp_mr) & !Hull;
status_enc = MOPE; // this generates a new read pointer when necessary
else 65 // the read pointer 1s incremented when there 1s

status_enc = EOP;

// data to send and when the output source can

US RE44,402 E

15

-continued

// accept the data
if (dest_accept & ~empty)
p = (rp_mr + 1) % RAM_WORDS;
// keep the read-pointer value unchanged 1f nothing
// 18 being read
clse

Ip = Ip_IMr;
// the ram address 1s merely the registered read

pointer

/f
//
/f
//
/f

9.
10.

ram_raddr = rp_mr;

// take the encoded status out of the RAM

status_raw =
ram_dout[RAM_WIDTH-1:RAM_WIDTH-4];

// 1f there 1s data in the reordering element and

// the destination is accepting it, then extract

// the status from the RAM

if (~empty & dest_accept)

// based on the status_enc and the status of the
previous data element that was sent by the

reordering element, the status_out of the data

leaving the reordering element 1s created. The
following rules are used to generate the

status_out:

a status of SOP_EOP is never changed since it is the
only element of the stream

a status of SOP 1s never changed since it is the

first element of the stream

a status of SOPE 1s changed to SOP since it is the

first element of the stream

a status of SOPK 1s changed to SOP since it is the
first element of the stream

a status of OSOP 1s always changed, depending on the
status_out of the data element that preceded it. If

the previous element was simply a SOP, then the
status_out becomes MOP. If it was SOPE, then the
status_out becomes EOP, since it 1s the last element
of a data stream comprising only 2 elements. If it

was SOPEK, then it becomes EOPK. No other situations
should ever happen

MOPE 1s always changed to MOP, since this element 1s
neither the first nor last element. It 1s always the
next-to-last element.

MOPEK 1is always changed to MOP, since this element
is neither the first nor last element. It 1s always

the next-to-last element.

a status of MOP depends on the status of the

preceding data element. If the previous element was
MOP, then this status out will be MOP, as well. If
the previous status_out was MOPE, that indicates
that this is the last data element, so 1ts
status_out becomes EOP. Similarly, 1f the previous
status_out was MOPEK, that indicates that this is
the last data element, so its status_out becomes
EOPK.
a status of EOP is never changed

a status of EOPK is never changed.

Otherwise, the status out 1s IDLE

case (status_raw)

SOP _EOP : status_out = SOP_EOP;

SOP : status_out = SOP;

SOPE : status_out = SOP;

SOPEK : status_out = SOP;

OSOP : case (last_read_status_mr)
SOP : status_out = MOP;
SOPE : status_out = EOP;
SOPEK : status_out = EOPK;

// the default case should never happen
default : status_out = IDLE;
endcase

MOPE : status_out = MOP;

MOPEK : status_out = MOP;

MOP : case (last_read_status_mr)
MOP : status_out = MOP;
MOPE : status_out = BEOP;
MOPEK : status_out = EOPK;
default : status out = MOP;
endcase

10

15

20

25

30

35

40

45

50

55

60

65

16

-continued
EOP : status_out = EOP;
EOPK : status_out = EOPK;
default : status_out = IDLE;
endcase

// send the 1dle status if the fifo 1s empty or if
/1t 1s stalled

else
status_out = IDLE;

// the data element comes straight from the RAM
data_out = ram_dout|[RAM_WIDTH-5:0];
// maintain the status of the last data element
// read from the reordering element
if (~empty & dest_accept)
last read status = status raw;
// hold the last status if there 1s no data coming
// 1n
else
last read status = last _read_status mr;

The following example illustrates the operation of a second
embodiment of the reordering element, as well as the use of
the read pointer and write pointer. It 1s assumed, for purposes
of illustration, that there are four banks of memory elements
which deliver the data to the reordering element. The follow-
ing Table 3 describes the 4 data streams which are to be sent
to the reordering element:

TABLE 3
OFFSET Size
Data Stream (value can be 0—=3) (elements)
0 Yes (1) 7
1 Yes (2) 11
2 Yes (3) 8
3 No (0) 6

Data Stream 0 has an offset of 1, which means that the data
elements will arrive as follows: data element 1, data element

2, data element 3, data element 0, etc. Data Stream 1 has an
offset of 2, which means that the data elements will arrive as
follows: data element 2, data element 3, data element 0,data
element 1, etc. Data Stream 2 has an offset of 3, which means
that the data elements will arrive as follows: data element 3,
data element 0, data element 1, data element 2, etc. Data
Stream 3 1s correctly ordered.

Table 4 illustrates the operation of the reordering element.
Several additional status indicators are used 1n this embodi-
ment, due to the addition of 2 more banks. First, a new
status 1n indicator INV 1s used to indicate that the data ele-
ment currently being transmitted 1s not valid, but additional
valid data elements for this data stream are forthcoming. For
example, 1n a data stream comprising S data elements with an
offset of 1, the data elements will arrive 1n the following
order: data element 1, data element 2, data element 3, data
element 0, invalid, invalid, invalid, data element 4. Thus, the
reordering element must recognize the need to treat the INV
umquely. The wr_addr logic acts as though the data element
1s valid, although the data 1s not actually written to the reor-
dering element. This status differs from IDLE, which does not
cause any action on the part of the wr_addr logic. Similarly,
several new status_enc indicators are used, specifically
MOPE1, MOPE2 and MOPE3. As betore, MOPEFE indicates
that the current byte was EOP as 1t arrived, but 1s MOP when
transmitted. However, since there are now multiple banks, 1t
1s imperative to identily how many data elements will follow
the MOPE before the true EOP 1s encountered. In this
embodiment, MOPE1 indicates that the next data element 1s
the EOP. MOPE2 indicates that the second data element

US RE44,402 E

17

received after this 1s the EOP. Finally, MOPE3 indicates that
the third data element received after this 1s the EOP. If the
embodiment contained additional banks, additional sta-
tus_enc indicators can be added. Finally, the status_enc

E

OSOP 1s not used 1n this embodiment. By illustrating a sec-
ond embodiment, 1t will be clear to those skilled 1n the art that
there are multiple ways in which the reordering element can
be physically implemented 1n order to achieve its desired
function.
TABLE 4
time O in status in din Status enc wraddr data WP RP
0 SOP 1 MOP 1 1 0 0
1 MOP 2 MOP 2 2 0 g
2 MOP 3 MOP 3 3 0 0
3 MOP 0 SOP 0 0 0 0
4 MOP 5 MOP 5 4 4 0
5 MOP 6 MOP 6 6 4 1
6 | INV X — — — 4 2
7 1 EQOP 4 MOPE?2 4 4 4 3
8 2 SOP 2 MOP 9 2 7 4
9 2 MOP 3 MOP 10 3 7 5
10 2 MOP 0 SOP 7 0 7 6
11 2 MQOP 1 MOP 8 1 7 7
12 2 MOP 6 MOP 13 6 11 7
13 2 MQOP 7 MOP 14 7 11 8
14 2 MOP 4 MOP 11 4 11 9
15 2 MOP 5 MOP 12 5 11 10
16 2 MOP 0 MOP 17 10 15 11
17 2 INV X — — — 15 12
1% 2 MOP % MOP 15 8 15 13
19 2 EOP 9 MOPLE1 16 9 15 14
20 IDLE X — — — 18 15
21 3 SOP 3 MOP 21 3 18 16
22 3 MQOP 0 SOP 18 0 18 17
23 3 MOP 1 MOP 19 1 18 18
24 3 MQOP 2 MOP 20 2 18 18
25 3 MOP 7 MOP 25 7 22 18
26 3 MOP 4 MOP 22 4 22 19
27 3 MOP 5 MOP 23 5 22 20
28 3 EOP 6 MOPEL 24 6 22 21
29 g SOP 0 SOP 26 0 26 22
30 0 MOP 1 MOP 27 1 26 23
31 0 MOP 2 MOP 28 2 26 24
32 0 MOP 3 MOP 29 3 26 25
33 0 MQOP 4 MOP 30 4 30 26
34 g EOP 5 EOP 31 5 30 27
35 IDLE X — — — 32 28
36 IDLE X — — — 32 29
37 IDLE X — — — 32 30
3% IDLE X — — — 32 31
39 IDLE X — — — 32 32

s S TR G oo oo o oo S o oo oo Y o Y o o o oo T e e oo S oo A o oo Y o o T o o T oo oo T s oo T come A oo e B o B i B Y < .

Referring to Table 4, the operation of the reordering ele-
ment 1n a four bank memory embodiment will be described,
although this embodiment can be generalized to support an
arbitrary number of banks.

During clock cycle 0, a data element arrives, with an OFF-
SET of 1. The wr_addr starts with a value of WP+0_1n, and
will increment this until 3 data elements (this value 1s calcu-
lated as the number of banks (NUM_BANKS) minus o_in)
have been received. At that point, the wr_addr will wrap back
to WP, where the fourth data element 1s placed. After 4 (1.¢.
NUM_BANKS) data elements have been successtully writ-
ten to the reordering element, the WP 1s incremented by 4
(again, the number of banks), as shown during clock cycle 4.
This sequence repeats a second time as more data elements
are received. Note that during clock cycle 6, a status_in of
INV 1s recerved. The wr_addr logic treats this as though 1t
received actual data, allowing 1t to correctly register a
wr_addr of 4 for the next data element. Without the use of
INV, the data element received during clock cycle 7 would

status out

50

55

60

65

18

have been placed in wr_addr 7, which would have resulted in
the stream being out of order. In addition, the INV increments
a new 1nternal counter, inv_num, which records the number of
invalid data elements recerved during the current data stream.
It 1s reset whenever an SOP 1s encountered and incremented
whenever an INV 1s encountered.

During clock cycle 7, a data element with a status_in of

EOP 1s encountered. This signifies that the entire data stream
has been recerved. The status enc that will be used 1s based on

dout

IDLE
IDLE
IDLE
IDLE
SOP
MOP
MOP
MOP
MOP
MOP
EOP
IDLE
SOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
EOP
IDLE
IDLE
SOP
MOP
MOP
MOP
MOP
MOP
MOP
EOP
SOP
MOP
MOP
MOP
MOP
EOP
IDLE

Chy ot B o b = O

O ND 0 =1 Oy B o b = O

 —

I LN VS N S I =R B e SR VIR SRR VL R S

the number of banks, o_in and mv_num. Specifically, the
value of NUM BANKS-0 1in-inv_num 1s calculated. A
value of O signifies that this 1s truly the last data element and
the status_enc 1s EOP. Any non-zero value indicates the
numeric value which will follow the MOPE (i.e. MOPFI1,
MOPE2, and MOPE3). In this scenario, the computed value
1s given by 4-1-1=2. Thus, a status_enc of MOPE2 1s used
during clock cycle 7. This computed value 1s also used to
properly increment the WP after the EOP 1s received. Since
the true FOP 1s 2 data elements after this one, the next avail-
able wr_addr 1s 3 more than the current value. Therefore, WP
1s set to the current value of wr_addr+(the value computed
above+1), as shown 1n clock cycle 8.

During clock cycle 8, the read logic uses the RP, which 1s
currently set to 4, to index 1nto the reordering element. It then
retrieves a data element which has a status enc of MOPE?2.
The read logic converts this into a MOP, and loads the value
of 2 into a down counter, EOP_cntr. Each subsequent data
clement will cause this counter to decrement. When the

US RE44,402 E

19

counter .

HOP_cntr reaches 0, the read logic changes the sta-

tus_enc from MOP to EOP, as shown during clock cycle 10.
Also occurring during this clock cycle 1s the receipt of a new
data stream, as signified by the status_in of SOP. As described
above, the write logic begins storing this new data element at
wr_addr=WP+o0 1n.

The following pseudo-code describes the various actions

of the reordering element, as they are described above. The
following list of signals identifies the nputs, outputs and

registers

in the pseudo-code. The following pseudo-code 1s

somewhat simplified by assuming that all received data

streams

are greater than four data elements. Also, 1t 1s

assumed that cut through 1s not enabled. One skilled 1n the art

1S aware

that this embodiment 1s capable of supporting these

situations; 1t 1s simply to improve the readability and under-

standing

// 1Imputs to

input status_in;

input o_in;
input din;

ol the pseudo-code that they have been eliminated.

write logic

// status from the data source
// offset status from the source
// data from the data source

// outputs used to store information within the
// reordering element (for the write logic)

output ram_wen;

// write-enable to the RAM

// within the reordering element

output ram_waddr; // write address to the RAM
// within the reordering element
output ram_ data; // write data to the RAM

// within the reordering element
// traditional regs to write logic

reg wp_Imr

e WO _IIT,

reg 1nv_cntr_mr;

/{ this data

reg SOP_cntr_mr;

// intertace

output ram_ raddr;
input ram_dout;

// 1Imputs to
input full;

X // write-pointer

// element count modulo
(NUM_BANK)
// number of INV received during
stream
/fused to determine true SOP
to RAM (for the read logic)
// read address for the RAM
// read data from the RAM
the read logic
// indicates when the

// reordering element 1s full

input dest_

accept; // flow control from the

// destination
// outputs from the reordering element to the
// destination

output data_out;
output status_out;

// data from the reordering element
// modified status created as the

// data 1s sent from the reordering element
// registers to read logic

reg rp_Imr;

reg EOP_cntr_mur;

// read pointer
// number of data elements

/! left betore EOP is reached.

reg EOP_cntr_en;

// enable for EOP counter

// Pseudo-code for the write logic 1s as follows. This
// pseudo-code generates the status_enc for each incoming
// data element based on the o_in and status_in indicators.
// It also determines the proper location at which to write
// the iIncoming data element. Finally, it updates the write
// pointer (WP) as necessary.
//
// Reordering element write logic
//
// track the data element count of the current data
// stream modulo (NUM_BANKS)
// each time a SOP 1s received, reset the word
// count and the INV count at the beginning of
/! every packet
if ((status_in == SOP))
we = 0;
else
// increment the count with each valid element.
// Status_in of INV also increments the word count to
// guarantee that subsequent words are correctly
// stored. The number of INV recerved will be counted
// and taken into account when updating the write

10

15

20

25

30

35

40

45

50

55

60

65

20

-continued

// pointer after an EOP is received.
if ((status_in == MOP) || (status_in == EOQP) |
(status_in == INV))
wc = (we_mr + 1) % NUM_BANKS;
// hold the old value if there is not a valid
// data word (such as during an IDLE)
clse
WC = WC_II;
// track mvalid word count of the current packet
// - reset count at the beginning of every packet
if (status_in == SOP)
inv_cntr = 0;

else
// inc mmvalid count with each mvalid slot
// - there will never be more than
/F (NUM_BANKS-1) invalids per packet
if (status_in == INV)
Inv_cntr = inv_cntr_mr + 1;
// hold the old value if there 1s not an mmvalid
// data word
else
Inv_cntr = 1mnv_cntr_mr;
// determine if this is the first quantum of data

// - set the state on a SOP
// - hold until NUM BANKS of data received
// - clear when NUM BANKS of data received

first_quant = ((status_in == SOP) | first_quant_mr)
& ~((wc_mr == (NUM_BANKS-1)) &&
(status_in == MOP));
// counter to determine the real start of packet
if (status_in == SOP)
SOP cntr=o0 in;
else
if (status_in == MOP)
SOP_cntr = SOP_cntr_mr + 1;
else
SOP_cntr = SOP_cntr_mur;
// encode the status that 1s stored in the
// reordering element
// If the stream 1s sent in the correct order, then
// the status 1s unchanged
if (o_in == 0)
status enc = status_in;
else
// here, the elements are out of order and need
// the status to be modified before it 1s written
// 1mnto the reordering element. The following
// rules are used:
1. astatus of SOP are always changed to MOP
2. astatus of MOP can become an SOP if it 1s exactly
(NUM_BANKS - o_in) after the OSOP; otherwise
it remains MOP
3. astatus of EOP can become a variant of MOPE,
depending on the offset and the number of 1nvalids
received; otherwise 1t remains an EOP
4. Otherwise, the status_enc 1s IDLE
case (status_in)
SOP
MOP

: status_enc = MOP;
: 1f ((SOP_cntr == 0) & first_quant))
status_enc = SOP;
else
status_enc = MOP;
: case (NUM_BANKS -
O_In — 1mnv_ctr)
0: status_enc = EOP;
l: status_enc = MOPEI;
2: status_enc = MOPE2;
3: status_enc = MOPE3;
default: status enc = EOP;
endcase
: status_enc =

EOP

default
endcase
// write the data to the reordering element anytime
// there 1s data from the data source

ram_wen = ((status_in != IDLE) && (status_in !=

JLE;

INV));
// use the write pointer, incremented by (o_in +
// we) MODULO (NUM_BANKS).

ram_waddr =
(wp_mr + ((o_in + wc) % NUM_BANKS) %

21

-continued

RAM_WORDS);
// concatenate the status and the packet data when
// writing to the RAM
ram_data = {status_enc, din};
// update the write pointer
// add NUM_BANKS to the pointer,
when a multiple of
// NUM_BANKS elements have been recerved.
// add wc — inv_ctr + 1 to the write pointer when
// an EOP is received.
if ((status_in == MOP) &&
(we == (NUM_BANKS - 1)))
Wp =
(wp_mr + NUM_BANKS) % RAM_WORDS;
else
// add enough to reach the true EOP once a
// status_1n of EOP 1s received. The amount to
// be added to the current WP 1s given by wc -
//inv_cntr_mr + 1.
if (status_in == EOP)
wp = (wp_mr + wc — mmv_cntr_mr + 1) %
RAM_WORDS;
// hold the write-pointer value if neither of
// these conditions apply
else
WP = WP_INT;
// Pseudo-code for the read logic 1s as follows. This
// pseudo-code generates the status_out for each outgoing
// data element based on the status_enc indicators. It also
// determines whether the reordering element 1s empty and
// determines the proper location from which to read the
// outgoing data element. Finally, it updates the read
// pointer (RP) as necessary.
/f
// Reordering element read logic
//
// the reordering element 1s empty when the read
// pointer equals the write pointer (and the fifo
// 1s not full)
empty (wp_mr == rp_mr) & !full;
// this generates a new read pointer when necessary
// the read pointer is incremented when there 1s
// data to send and when the output source can
// accept the data
if (dest_accept & ~empty)
p = ({p_mr+ 1) % RAM_WORDS;
// keep the read-pointer value unchanged if nothing
// 1s being read
clse
Ip = Ip_Mr;
// the ram address 1s merely the registered read
// pointer
ram_raddr = rp_mur;
// take the encoded status out of the RAM
status_raw =
ram_dout[RAM_WIDTH-1:RAM_WIDTH-4];
// 1f there 1s data 1n the reordering element and
// the destination 1s accepting it, then extract
// the status from the RAM
if (~empty & dest_accept)
// based on the status_enc and the status of the
// previous data element that was sent by the
// reordering element, the status_out of the data
// leaving the reordering element 1s created. The
// following rules are used to generate the
// status_out:

1. astatus of SOP 1s never changed since it 1s the

first element of the stream

2. MOPEL, MOPE2 and MOPE3 are always changed to

MOP, since these elements are neither the first nor last
element. They indicate that the EOP 1s approaching.
It 1s always the next-to-last element.

3. a status of MOP depends on the status of the
EOP_cntr. When the number of elements indicated by
the MOPE status have been transferred, the next MOP
will be changed to an EOP. The EOP_cntr 1s used to
correctly calculate the proper data element whose
status should be altered. If it 1s not converted to

an EOP, its status will remain MOP. Before the
MOPE 1s recerved, all MOP remain unchanged.

US RE44,402 E

10

15

20

25

30

35

40

45

50

55

60

65

22

-continued

Otherwise, the status out i1s IDLE
case (status_raw)
SOP : begin
EOP cntr en = 0;
EOP_cntr = 0;
status_out = SOP;
end
MOPE1 : begin
EOP _cntr en = 1;
EOP cntr=1;
status_out = MOP;
end
MOPE?2 : begin
EOP cntr en = 1;
EOP cntr = 2;
status_out = MOP;
end
MOPE3 : begin
EOP cntr en = 1;
EOP_cntr = 3;
status_out = MOP;
end
MOP : begin
if (EOP_cntr_en_mr)
begin
EOP_cntr =
EOP cntr mr - 1;
if (EOP_cntr == 0)
begin
EOP cnfr en = 0;
status_out = EOP;
end
else
begin
EOP _cnfr_en = 1;
status_out = MOP;
end
end
else
begin
EOP cnfr en = 0;
EOP_cntr = 0;
status_out = MOP;
end
end
EOP : begin
EOP cntr en = 0;
EOP_cntr = 0;
status out = EOP;
end
default : begin
EOP cntr en = 0;
EOP_cntr = 0;
status_out = IDLE;
end
endcase
// send the 1dle status if the fifo 1s empty or if
/f 1t 18 stalled

else

begin
EOP_cntr en = 0;
EOP cntr = 0;
status_out = IDLE;

end

// the data element comes straight from the RAM
data_out = ram_dout[RAM_WIDTH-5:0];

While two embodiments are 1llustrated and explained 1n
this specification, other embodiments are within the scope of
the present invention. Similarly, although the embodiments
described two and four banked memory architectures, the
invention 1s not so limited. An arbitrary number of banks can
be used 1n conjunction with the present invention.

The reordering element can also be implemented using a
main storage element, and an auxiliary holding butier 270 as
illustrated 1 FIG. 6. The data paths 35 from the banked
memory elements are 1n communication with the reordering
storage elements 200 and the auxiliary holding buffer 270.
The auxiliary holding butier 270 must be capable of storing

US RE44,402 E

23

N-1 data elements, where N 1s the number of banks. In the
preferred implementation, the auxiliary holding buifer 270 1s
capable of storing a new data element while simultaneously

presenting a data element to the reordering storage element
200.

When a new packet 1s being transmitted, as indicated by an
incoming status of SOP, the OFFSET value 1s checked. If the

packet 1s being sent in the proper order, as determined by an
OFFSET value of 0, the auxiliary holding buifer 270 1is

bypassed and the data elements are stored directly in the
reordering storage element 200 1n sequential order.
However, 1l the OFFSET 1s non-zero, this indicates that the
data elements will be arriving out of order. The write pointer
logic 220 will store the first M data elements sequentlally 1n

the holding buifer 270, where M 1s the number of banks minus
the OFFSET. For example if there are 4 banks with an OFF-
SET of 1, the data elements will arrive as data element 1, data
clement 2 data element 3, data element 0, data element 5 etc.
Thus, the holdmg butler 270 must store three clements (data
clements 1-3) 1 locations 271, 272 and 273 belfore the true
first data element arrives. Similarly, 1f the OFFSET 1s 3, the
write pointer logic would store one data element 1n the hold-
ing buffer 270 at location 271.

Once the write pointer logic 220 has stored M data ele-
ments 1n the holding butler, 1t enables the next data element to
be written directly to the reordering storage element 200,
since this 1s the true first data element. A number of data
clements, equal to the value of the OFFSET, are written
directly to the reordering element sequentially. For example,

10

15

20

25

24

if the OFFSET 1s 1, only a single data element 1s written
directly to the reordering storage element 200. If the OFFSET
1s 3, then three data elements are written directly to the reor-
dering storage element 200. After this number of data ele-
ments has been written directly to the reordering element, the
write pointer control logic 220 then redirects the next data
clement to location 271 in the holding buffer 270. Simulta-

neous with the writing of the next data element 1nto location
271, the current contents of location 271 1n the holding buifer
are transierred to the next sequential address 1n the reordering
clement 200, as represented by the write pointer 230. While
cach of the next M data elements are being stored in the
holding butter 270, the contents of the location in the holding
buifer that are being overwritten are transferred to the reor-
dering element. This process repeats until the EOP 1s
received. Table 5 shows the operation of the reordering stor-
age element 200, 1n conjunction with the holding butter 270.

As can be seen during time periods 13 and 14, this imple-
mentation requires 1dle time between packets with different
olfsets. Specifically, when a packet with an offset 1s followed
by a packet with a higher offset (or an offset of 0), there may
need to be idle cycles inserted to allow the contents of the
holding buifer to be transierred to the reordering element. For
non-zero offset values, the maximum number of 1dle cycles
required 1s defined as the new offset value minus the previous
offset value. If the new offset value 1s zero, the maximum
number of 1dle cycles 1s defined as the number of banks, less
the previous offset value. This wait time can be less, depend-
ing on the number of data elements currently in the holding
buffer when an EOP 1s recetved.

TABLE 35
Holding Holding Reordering
time O_in status_imm din Buffer Address Buffer Data Element Data Source WP Data
0 0 SOP 0 — — Banked memory 0 0
1 0 MOP 1 — — Banked memory 1 1
2 0 MOP 2 — — Banked memory 2 2
3 0 MOP 3 — — Banked memory 3 3
4 0 EOP 4 — — Banked memory 4 4
5] SOP 1 0 1 — 4 —
6 MOP 2 1 2 — 4 —
7 MOP 3 2 3 — 4 —
8 MOP O - - Banked Memory 5 0
9 MOP 5 0 5 Holding Buffer(O) 5 1
10 MOP 6 1 6 Holding Buffer(1) 6 2
11 MOP 7 2 7 Holding Buffer(2) 7 3
12 EOP 4 — — Banked Memory 8 4
13 — JLE X — — Holding Buffer(O) 9 5
14 — JLE X — — Holding Buffer(1) 10 6
15 3 SOP 3 0 3 Holding Buffer(2) 11 7
16 3 MOP O — — Banked Memory 12 0
17 3 MOP 1 — — Banked Memory 13 1
18 3 MOP 2 — — Banked Memory 14 2
19 3 MOP 7 0 7 Holding Butifer(0) 15 3
20 3 MOP 4 — — Banked Memory 16 4
21 3 MOP 5 - - Banked Memory 17 5
22 3 MOP 6 — — Banked Memory 18 6
23 3 INV X - - Holding Butfer(0) 19 7
24 3 MOP 8 — — Banked Memory 20 8
25 3 EOP 9 — — Banked Memory 21 9
26 2 SOP 2 0 2 — 21 —
27 2 MOP 3 1 3 — 21 —
28 2 MOP O — — Banked Memory 22 0
29 2 MOP 1 — — Banked Memory 23 1
30 2 MOP 6 0 6 Holding Butifer(0) 24 2
31 2 MOP 7 1 7 Holding Buffer(1) 25 3
32 2 MOP 4 - - Banked Memory 26 4
33 2 MOP 5 — — Banked Memory 27 5
34 2 MOP 10 0 10 Holding Buffer(0) 28 6
35 2 INV X — — Holding Buffer(1) 29 7
36 2 MOP 8 — — Banked Memory 30 8
37 2 EOP 9 — — Banked Memory 31 9
38 JLE X — — Holding Buffer(O) 32 10
39 JLE X — — — —

US RE44,402 E

25

In an alternate embodiment, shown 1n FIG. 7, the holding
butfer 270 1s used to store all data elements before they are
written sequentially to the reordering element. In this case,
the reordering element 200 recerves 1ts input from the holding
bufter 270, and all data elements are stored in the holding
butfer 270 before being ultimately stored 1n the reordering
clement. The reordering element stores 1tems in sequential

order. In one implementation, the holding buffer acts as a
parallel load/shift register, in which the contents of address
271 (HBAO 1n Table 6) are presented as the mput to the
reordering element. Each of the locations in the holding
butter 271-274 (HBA0-HBA3) can receive their input either
from the adjacent holding butler location, or from the banked
memory elements. Each of the locations within the holding
buffer 271-274 are capable of storing and outputting data
during the same clock cycle. Alternatively, a linked list struc-
ture can be used. Table 6 illustrates the operation of one
implementation of this embodiment. In this embodiment,
HBAO provides the input to the reordering element. The
inputs to HBAO-HBA2 are either from the holding butifer
location immediately to the left in Table 6, or from the banked
memory (denoted as din 1n Table 6), while the input to HBA3
can only come from the banked memory. During each clock
cycle, the current contents of a holding buifer location 271-
274 can either remain unchanged, or shift to the location
immediately to the right as shown 1n Table 6. It 1s obvious to
one skilled 1n the art that there are multiple implementations
in which this result can be achieved, and the present invention
1s not limited only to the embodiment described above.

TABLE 6
HBA HBA HBA HBA
time O _in status_1n din 3 2 1 0 WP Data
0 0 SOP 0 — — — 0 — —
1 0 MOP 1 — — — 1 0 0
2 0 MOP 2 — — — 2 1 1
3 0 MOP 3 — — — 3 2 2
4 0 EOP 4 — — — 4 3 3
5 “ SOP 1 — 4 4
6 MOP 2 2 | — 4 —
7 MOP 3 3 2 1 — 4 —
8 MOP 0 3 2 1 0 4 —
9 1 MOP 5 5 3 2 1 5 0
10 1 MOP 6 6 5 3 2 6 1
11 1 MOP 7 7 6 5 3 7 2
12 1 EOP 4 7 6 5 4 8 3
13 3 SOP 3 3 7 6 5 9 4
14 3 MOP 0 3 0 7 6 10 5
15 3 SOP 1 3 1 0 7 11 6
16 3 MOP 2 3 2 1 0 12 7
17 3 MOP 7 7 3 2 1 13 0
18 3 MOP 4 7 4 3 2 14 1
19 3 MOP 5 7 5 4 3 15 2
20 3 MOP 6 7 6 5 4 16 3
21 3 INV X — 7 6 5 17 4
22 3 MOP 8 — 8 7 6 18 5
23 3 EOP 9 — 9 8 7 19 6
24 2 SOP 2 2 — 9 8 20 7
25 2 MOP 3 3 2 — 9 21 8
26 2 MOP 0 — 3 2 0 21 9
27 2 MOP 1 — 3 2 1 21 0
28 2 MOP 6 — 6 3 2 22 1
29 2 MOP 7 — 7 6 3 23 2
30 2 MOP 4 — 7 6 4 24 3
31 2 MOP 5 — 7 6 5 25 4
32 2 MOP 10 10 — 7 6 26 5
33 2 INV X 10 — — 7 27 6
34 2 MOP 8 — 10 — 8 28 7
35 2 EOP 9 — — 10 9 29 8
36 IDLE X — — — 10 30 9
37 IDLE X — — — — 31 10
38 IDLE X — 31 —
39 IDLE X — —

5

10

15

20

25

30

35

40

45

50

55

60

65

26

What 1s claimed:

1. A device for recerving and storing a data stream com-
prising a plurality of data elements, transmitted 1n a predeter-
mined sequence, and later retransmitting said data elements
in said predetermined sequence, said device comprising:

a plurality of storage elements, wherein each of said stor-
age elements selectively receives and stores a portion of
said data elements 1n a first ordered sequence;

a logic element, wherein said logic element generates and
stores information associated with said data stream, and
generates and transmits status information associated
with each of said stored data elements based on said
information associated with said data stream; and

a reordering element, wherein said reordering element
receives said stored data elements from said plurality of
storage elements and said associated status information
from said logic element in a second ordered sequence,
stores said data elements and retransmits said data ele-

ments 1n said predetermined sequence.

2. The device of claim 1, wherein said first and said second
ordered sequences are the same.

3. The device of claim 1, wherein said status information
comprises information related to the relative position of said
data element 1n said stream.

4. The device of claim 1, wherein said first ordered
sequence 1s repeated after each one of said plurality of storage
clements receives one data element from said stream.

5. The device of claam 1, wherein said second ordered
sequence 1s repeated alter said reordering element recerves
one data element from each one of said plurality of storage
clements.

6. The device of claim 1, wherein said reordering element
creates revised status information based on said status infor-
mation, and stores said revised status information.

7. The device of claim 1, wherein said reordering element
turther comprises a plurality of individually addressable stor-
age elements and a write control logic element adapted to
determine into which of said plurality of individually addres-
sable storage elements said stored data element 1s stored
based on said associated status.

8. The device of claim 1, wherein said reordering element
turther comprises a first plurality of individually addressable
storage elements, a second plurality of individually address-
able storage elements and a write control logic element
adapted to determine into which plurality of individually
addressable storage elements said stored data element 1s
stored based on said second ordered sequence 1n which said
stored data elements are received, wherein said first plurality
receives data elements from said second plurality and from
said storage elements 1n said predetermined sequence.

9. The device of claim 1, wherein said reordering element
turther comprises a first plurality of individually addressable
storage elements, a second plurality of individually address-
able storage elements and a write control logic element
adapted to determine 1nto which storage element of said sec-
ond plurality said data element 1s to be stored, and wherein
said first plurality of addressable storage elements receives
data elements from said second plurality of addressable stor-
age elements 1n said predetermined sequence.

10. A method of recerving and storing a data stream com-
prising a plurality of data elements, transmitted 1n a predeter-
mined sequence, and later retransmitting said data elements
in said predetermined sequence, said method comprising:

a. providing a plurality of storage elements, each adapted to

selectively receive and store a portion of said data ele-
ments, and a reordering element adapted to receive said

US RE44,402 E

27

stored data elements from said plurality of storage ele-

ments and to transmit said data elements 1n said prede-

termined sequence;

b. storing a sequential data element from said stream in one

of said storage elements according to a first order;

c. repeating step b until each of said plurality of said data
elements has stored one data element;

. selectively storing each of the subsequent data elements
in said plurality of storage elements, following said first
order of said storage elements as utilized 1n steps b and
C;

¢. transmitting a stored data element from one of said
storage elements to said reordering element, whereby
said storage element 1s selected based on a second order,
and storing said stored data element 1n said reordering
element;

f. repeating step ¢ until each of said storage elements has
transmitted one data element;

g, selectively transmitting each of the remaining stored
data elements from said plurality of storage elements,
following said second order as utilized in steps e and 1
until each of said stored data elements associated with
said stream has been stored by said reordering element;
and

h. retransmitting said stored data elements from said reor-
dering element 1n said predetermined sequence.

11. The method of claim 10, further comprising: providing

a logic element adapted to create and store control informa-

tion associated with said data stream and to generate status

information associated with each of said stored data elements
based on said control information.

12. The method of claim 11, wherein said reordering ele-
ment receives said status information, and generates and
stores revised control information associated with each data
clement.

13. The method of claim 11, wherein said reordering ele-
ment recerves said data elements 1n said second sequence and
uses said associated status information to reorder said data
clements 1nto said predetermined sequence.

14. A device, comprising:

a plurality of storage elements; and

a reordering element;

wherein the device is configured to:
receive, via a network, a data stream having data ele-

ments that have been transmitted in an original
sequence;

store data elements in the received data stream to ones of

the plurality of storage elements accovding to a first
ordering that is based, at least in part, on respective
portions of a vecurring time interval in which the data
elements are received;: and
generate information associated with the data stream,
whevrein the reovdering element is configured to receive,
accordingto a second ordering, the stored data elements
along with the generated information associated with
the data stream, and wherein the reovdering element is
configured to output the received data elements in the
original sequence.
13. The device of claim 14, wherein the first and second
orderings are the same.

5

10

15

20

25

30

35

40

45

50

55

28

16. The device of claim 14, wherein at least first and second
ones of the data elements are vespectively stoved in first and
second ones of the plurality of storage elements based on the
first and second data elements being respectively received in
first and second ones of the different time intervals.

17. The device of claim 14, wherein a speed at which the
device is configured to veceive the data stream is greater than
a speed with which one or more storage elements in the
plurality of storage elements are capable of storing data.

18. The device of claim 14, wherein the generated infor-
mation associated with the data stream includes information
identifving a data element that is first in the oviginal sequence
and information identifving a data element that is last in the
original sequence.

19. The device of claim 14, wherein the generated infor-
mation includes information indicating one of the plurality of
storage elements to which a first-received one of the plurality
of data elements is stored.

20. A method, comprising:

a network device receiving a data stream via a network,
wherein the data stream comprises a plurality of data
elements that were transmitted in an oviginal sequence;

the network device selectively storing at least first and
second ones of the plurality of data elements, respec-
tively, in at least first and second ones of a plurality of
storage elements accovding to a first ovder that is based
at least in part on vespective portions of a recurving time
interval in which the first and second data elements were
received;

the network device generating information associated with
the data stream, wherein the generated information
includes information corresponding to at least the first
and second ones of the plurality of the data elements;

the network device transmitting the plurality of data ele-
ments from the plurality of storage elements to a reor-
dering element according to a second ovder; and

the reorvdering element outputting the plurality of data
elements in the original sequence, wherein said output-
ting is based, at least in part, upon the generated infor-
mation associated with the data stream.

21. The method of claim 20, wherein the generated infor-

mation includes contrvol information and status information.

22. The method of claim 21, wherein the control informa-
tion includes a starting address of the data stream within the
plurality of storage elements.

23. The method of claim 20, further comprising outputting
at least one of the plurality of data elements in the original
sequence while veceiving one or movre data elements from an
additional data stream.

24. The method of claim 20, further comprising:

priorto said outputting, the vreordering element causing the
plurality of data elements to be stored according to the
second order.

25. The method of claim 20, wherein said selectively stor-
ing includes receiving and discarding data marked as invalid
prior to storing at least a thivd one of the plurality of data
elements in a third one of the plurality of storage elements
according to the first ovder.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

